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A critical aspect of malware forensics is authorship analysis. The successful outcome of
such analysis is usually determined by the reverse engineer’s skills and by the volume and
complexity of the code under analysis. To assist reverse engineers in such a tedious and
error-prone task, it is desirable to develop reliable and automated tools for supporting the
practice of malware authorship attribution. In a recent work, machine learning was used to
rank and select syntax-based features such as n-grams and flow graphs. The experimental
results showed that the top ranked features were unique for each author, which was
regarded as an evidence that those features capture the author’s programming styles. In
this paper, however, we show that the uniqueness of features does not necessarily
correspond to authorship. Specifically, our analysis demonstrates that many “unique”
features selected using this method are clearly unrelated to the authors’ programming
styles, for example, unique IDs or random but unique function names generated by the
compiler; furthermore, the overall accuracy is generally unsatisfactory. Motivated by this
discovery, we propose a layered Onion Approach for Binary Authorship Attribution called
OBA2. The novelty of our approach lies in the three complementary layers: preprocessing,
syntax-based attribution, and semantic-based attribution. Experiments show that our
method produces results that not only are more accurate but have a meaningful connec-
tion to the authors’ styles.
ª 2014 The Author. Published by Elsevier Ltd on behalf of DFRWS. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Introduction

Malware is an increasing threat to network and
distributed systems. To this end, determining the author-
ship of malware has many practical applications, ranging
from post-mortem forensic analysis of malware corpora to
online detection of live polymorphic malware. Determining
software authorship based on stylistic features is possible
because humans are creatures of habit, and habits tend
to persist. However, most existing work on software
lrabaee).

ier Ltd on behalf of DFRWS
authorship attribution relies on features that are obtained
from the program source code (Bai et al., 2013; Ding and
Samadzadeh, June 2004; Frantzeskou et al., 2004; Krsul
and Spafford, 1997; Kruegel et al., 2005; MacDonell et al.,
1999). Such methods cannot easily be applied to malware
whose source code is not always available.

To the best of our knowledge, the only notable exception
is the use of machine learning techniques to correlate
syntax-based features with authorship (Rosenblum et al.,
2011), which will be referred to, in this paper, as Identify
the Author of Program Binaries (IAPB) approach. The fea-
tures considered in IAPB are obtained from predefined
templates, which include idioms, n-grams, and flowgraphs.
The features are ranked based on the degree of correlation
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with authorship during the training phase. The experi-
mental results show that, in most cases, the top-ranked
features are unique for each author; this supports the
claim that the top-ranked features successfully capture an
author’s programming style. However, our paper finds that
the above conclusion about IAPB may be overly optimistic.
Specifically, our analysis demonstrates that many top-
ranked features selected using this method, although
unique for each author, are in fact clearly unrelated to an
author’s programming style. For example, they may
correspond to a unique identifier or function names con-
taining random (and thus unique) numbers generated by
the compiler, which obviously do not reflect programming
style. Furthermore, our analysis will show the overall ac-
curacy of IAPB to be less promising.

Motivated by this discovery, the current paper proposes
a novel multilayer approach to binary authorship attribu-
tion, OBA2, which incorporates three complementary
layers, preprocessing, syntax-based attribution, and
semantic-based attribution, for improving the accuracy.
Moreover, the existing work and our approach are
compared using real-world data and similar implementa-
tions. The results show that OBA2 generally yields more
accurate outcomes, with a more meaningful connection to
author style.

Motivations

IAPB is a pioneering research when it comes to the
authorship attribution of binary code. The underlying ideas
contributed to our understanding of authorship analysis.
Nevertheless, we identify the following gaps:

� The existing IAPB method for binary code authorship
attribution does not completely tackle the problem of
filtering the features that are clearly unrelated to an
author’s style, such as compiler-generated functions.
This leads us to investigate methods that automatically
detect and filter out such features.

� The features obtained with the IAPB method follow
generic templates, such as sequences of commands,
whose semantics are less known. The selection of
features without understanding their underlying
semantics may bring misleading results. Therefore, we
avoid such generic feature templates in feature
selection.

� The IAPB method equates the uniqueness of features to
an author’s style, which leads to features that are unique
but sometimes unrelated to style. To the best of our
knowledge, little effort has been made to establish a
formal definition of an author’s programming style. In
this paper, we took the first step toward defining this
important concept.
Contributions

Our paper makes the following contributions.

� We propose OBA2, a layered approach to an effective
authorship attribution that combines techniques for
filtering out unrelated code – Stuttering Layer (SL), a
syntax-based attribution layer – Code Analysis Layer
(CAL), and a semantics-based attribution layer – Regis-
ter Flow Analysis Layer (RFAL).

� For the SL layer, we design a signature-based method
capable of automatically detecting software library
functions and/or other functions known to be unrelated
to an author’s style.

� For the CAL layer, we provide a method for building a
syntax dictionary to create a profile for each author by
establishing mappings between binary code syntax and
identified source codes.

� For the RFAL layer, we devise a novel model called the
register flow graph that captures semantics-based fea-
tures representing patterns in the way registers are
manipulated.

� We compare the proposed OBA2 approach with
IAPB by experimenting with the same real-world
data from the Google Code Jam programming
competition (The Google Code Jam, 2014). The re-
sults show that OBA2 has meaningful results with
superior accuracy.

The rest of the paper is organized as follows. Section
IAPB Approach reviews related work. Section OBA2
Methodology provides a detailed description of the main
methodologies. Section Evaluation evaluates the proposed
approach and compares it to existing work. Section
Limitations and future direction gives limitations and
future directions, and Section Conclusion presents the
conclusions.

IAPB Approach

In this section, we briefly review the existing Identify
the Author of Program Binaries (IAPB) approach
(Rosenblum et al., 2011). The authors first show that
authorship attribution is challenging with only binary
code because of the limited understanding of the survival
of programming styles and features after compilation.
Accordingly, a technique was proposed to automatically
detect useful stylistic features of binary code based on
predefined feature templates, including idioms, graphlets,
supergraphlets, call graphlets, n-grams, and external
interactions. Machine learning algorithms are then
employed to rank the stylistic significance of those fea-
tures. Next, classification and clustering techniques are
applied to top features for authorship attribution and for
clustering binary programs based on authorship. We
briefly review the IAPB feature templates and feature
ranking in the following, while omitting more details due
to space limitations.
Feature template

IAPB extracts features using five pre-defined templates
as follows:

Idioms: Idioms are short sequences of instructions
intended for capturing stylistic characteristics in assembly
files obtained from binary code using disassembler tools.



Fig. 1. Methodology for identifying and filtering library code.
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The IAPB approach designs a template for idioms with a
maximum of three instructions.

Graphlets: In the IAPB approach, a graphlet is a 3-node
subgraph of the Control Flow Graph (CFG). To fetch
graphlets from a binary file, with each basic block
belonging to a function, all 3-node subgraphs of the CFG
including this basic block will be computed.

Supergraphlets: Supergraphlets are obtained by
collapsing and merging neighbor nodes of the CFG. The
node collapsing algorithm operates on the same canonical
representation as that for graphlets; two collapsed nodes
may lead to a new color, and their edge types may also
change.

Libcalls and Call Graphlets: Libcalls are function names
of imported libraries, e.g., call ds: printf. Call graphlets
are graphlets containing only nodes with a call instruction.

N-grams: N-grams are a set of byte sequences or in-
struction level sequences. N-grams are short sequences of
bytes of length N.

Feature ranking

IAPB first extracts simple, syntax-based features based
on the above pre-defined feature templates, without con-
cerning whether the extracted features may indeed be
related to author styles. Many of those extracted features
may be common to most of the programs, even though
those programs are written by different authors. Therefore,
in the feature ranking phase, the extracted features are
ranked based on a set of binary programs with known
authors as the training data. The goal of the feature ranking
algorithm is to rank lower those features that are common
tomost authors, such that theywill not be selected later on,
while ranking higher those features that are unique for
each author, since those are believed to represent the
programming style.

OBA2 methodology

In this section, we introduce the OBA2 approach, which
consists of three complementary layers as follows.

Stuttering Layer (SL)

An important initial step in most reverse engineering
tasks is to distinguish between user code and library code.
This saves considerable time and helps shift the focus to
more relevant functions. For example, our results show that
the simplest C program, Hello World!, contains up to 60
initialization and standard library (shared) functions, even
though it has only one main user function. To this end, IDA
Pro (IDA, 2014) has an advanced feature for identifying
code sequences and standard library functions, which is
designed to recognize hex code sequences (e.g., statically
linked library code, helper functions, and initialization
code) that are generated by common C-family compilers.
Fig. 1 is a schematic of a proposed methodology that
highlights user functions by identifying and eliminating
library code.

More specifically, the SL process consists of the
following four steps.
� The first step is to parse the libraries in order to
extract function prototypes, API data structures, and
typing information, which are beneficial for recog-
nizing the correct function call conventions and
parameters.

� The second step is to create a hash-based pattern for
each exported function in the library based on inter-
esting byte sequences, the size of the function, and
features from the function implementation such as
constant values, strings, imports, and called functions. A
double hashing of this informationwould yield a unique
value for the combination of extracted features. To avoid
collisions of the resulting signatures, a hierarchical tree-
based hashing technique is employed, which takes into
account different features from each level. Then, we
synthesize the hash values in a way that reduces the
probability of collision. This process is applied itera-
tively to all functions and libraries. The results are saved
as signature files.

� The third step involves applying the signatures to the list
of function calls in disassembled code, performing
signature matching, andmarking the library calls. This is
accomplished by considering the stack frame informa-
tion of the function call, including the pushed values,
the structure, and the parameters. Next, a hash value is
generated for the extracted features, which is compared
against the list of existing hashes. If the signature
matches any of the known functions, it is tagged with
the name of the library.

� Finally, the identified functions are excluded from the
function list, and the user code is returned for further
analysis.

The outcome of the above process is the generation of
function signatures for shared libraries, which will then be
used for highlighting user functions to be analyzed in the
CAL and RFAL layers.



Table 1
Part of the STL repository.

Source code Assembly

array xor-push-mov-push-lea-call

pointer n/a
reference sign lea eax, * - mov *, eax

c-libraries n/a
cin lea-push-mov-call-cmp-call

if mov-cmp-jnz-xor-jmp

if/else mov-cmp-jnz-mov-jmp

for loop cmp-jg-xor-jmp

while mov-cmp-jge-mov-add-mov-jmp-xor

cout push-mov-cmp-call-cmp-call

Integers, Doubles,
Floats, and Chars

n/a

printf push-call-add-cmp-call

scan lea-push-push-call-add-cmp-call

if/else if mov-cmp-jl-mov-add-mov-jmp

cerr push-call-add-mov-call-cmp-call

memset lea-push-call-add-xor-

push-mov-push-lea-call
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Code Analysis Layer (CAL)

The SL layer produces filtered code for further analysis
in the next layer, called the Code Analysis Layer (CAL). The
intuition behind the CAL layer is the following. Many pro-
gramming styles may be captured in the syntax of the code.
For example, an author may have the habit of using more
for loops than while loops, or if conditions than switch

conditions, etc; an author may also have a particular habit
of entering parameters, or a peculiar way in using scan,
cin, cout, or printf, etc. When such habits become sig-
nificant enough to distinguish an author among others (i.e.,
uniqueness) and to correlate different programs written by
that author (i.e., similarity), the habits become a style of the
author, which is captured by patterns in the syntax of the
code. Fig. 2 shows the main components of the CAL layer,
which is detailed in the following.

STL repository
The main challenge of the CAL layer is to reconstruct the

source code-level syntax from binary code. To that end, we
have created an Syntax Template Library (STL) that matches
Cþþ vocabularies to assembly instructions. An excerpt is
shown in Table 1, where n/a indicates that no correspond-
ing assembly pattern is available. Note that the matching
will not always be exact, so, later in this section, we will
explain how to use STL to detect both exact and inexact
matching.

Syntax signature verification
To use syntax as a tool for capturing the programming

styles of authors, we introduce a set of syntax signature
templates with which we will perform syntax signature
verification. These are designed to capture an author’s
Fig. 2. Code Analysis Layer (CAL).
choices of programming options (e.g., if or switch),
which, along with their relative frequency of appearances,
can reflect different levels of author style and expertise. By
considering the use of containers in programming lan-
guages and their associated templates, we develop STL and
extend it by introducing templates to capture choices of
algorithms, the use of API and I/O devices, the type of
encryption algorithms, OpenSSL, socket type, and data
structure. The availability of STL enables the architecture to
verify syntax signatures over user-related code based on
functions in assembly language in order to flag author-
related code that may indicate an author’s style.

Exact matching
We deal with the filtered code as a collection of basic

blocks, where a basic block is a maximal sequence of in-
structions that executes, without branching, from begin-
ning to end. Each basic block has a single entry point (the
first instruction in the block) and a single exit point (the last
instruction in the block). By checking all code blocks in the
filtered code, we extract code blocks that exactly match the
predefined syntax signature templates based on STL. The
resulting code blocks reflect the use of a particular syntax
in user-generated code and also the frequency with which
it occurs. The process of exactmatching compares assembly
code instructions. Two code blocks are considered an exact
match only if all statements in the two blocks are identical.
One way to identify exact matches is to compare each code
block in the user-generated code with all the signature
templates, but this would be computationally prohibitive,
with a complexity of O(n2), where n is the total number of
code blocks. Alternatively, as shown in Algorithm 1, we
employ an indirect and more efficient approach based on
hashing: two code blocks are an exact match if they have
the same hash value. In the algorithm, the first loop cal-
culates the hash values of the code blocks and stores the
results; the second loop counts the occurrences in STL; and
if the count is not less than two, the corresponding code
blocks are an exact match and will be stored in the third
loop.
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Algorithm 1. Exact Syntax Signature Detection
Inexact matching
We also extract from the user-generated code the code

blocks that do not exactly match the predefined syntax
signature templates in the STL but exhibit similar patterns.
The presence of inexact matching code blocks reflects the
probable use of a particular syntax in user-generated code
and the number of times it occurs. Inexact matching of code
blocks is detected as follows. For each code block, some
syntax templates are extracted from the STL to form a
template vector denoted by v. Two code blocks rx and ry

are considered to match inexactly if the similarity between
their template vectors, denoted by sim (vx; vy), is within
a user-specified minimum similarity threshold minS. The
template vector is constructed as a combination of the five
types of templates in the STL: the first type represents the
container, i.e., each container is a template; the second
represents the choice of algorithm in user-related code; the
third represents the socket APIs; the fourth represents the
use of I/O devices; and the fifth represents the encryption.
To detect inexact matches, Algorithm 2 first maps template
vectors to a user-specified vector length, and then maps
them to a hash table. Algorithm 2 detects inexact matches
by iterating through five steps:

1 Computing the median value: The first step is to
compute the median of the number of template oc-
currences for all the code blocks. Since the number of
template occurrences may be distributed over a wide
range, using the median value, which is resistant to
outliers, helps to separate the templates which occur
more frequently.

2 Filtering templates: The second step is to filter the
templates based on the median value 0 to find those
which occur most often. Templates that appear only a
few times within all the extracted code blocks are
unimportant for the purpose of comparing code blocks.
The strategy is to restrict attention to the templates
that are the most significant ones for inexact matching
of code blocks.

Algorithm 2. Inexact Syntax Signature Detection



Table 2
Part of score-boarding profile.

STL

Category Class Exact Inexact No

Container Pair x 2
Vector
List x 1
Queue
Stack x 1
Hash sets
Valarray x 2

Algorithm Sort
Depth-first search x 1
Dijkstra’s algorithm
Minimum spanning
Breadth-first search x 1

Socket Data transfer mech
Options management x 2
Network addressing x 3
Connection setup x 3

I/O stdin x 3
printf x 4
scanf x 2
puts x 1
gets
getche x 1

Encryption TEA
RC4 x 2
AES
MD5
RSA

Table 3
Classes of register access.

Class Arithmetic Logical Generic Stack

1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1
5 1 1 0 0
6 1 0 1 0
7 1 0 0 1
8 1 1 1 0
9 1 1 0 1
10 1 0 1 0
11 1 1 1 1
12 0 1 1 0
13 0 1 0 1
14 0 0 1 1
15 0 1 1 1

S. Alrabaee et al. / Digital Investigation 11 (2014) S94–S103 S99
3 First-level mapping: The third step is to map all tem-
plates to a set of user-specified length vectors. These
new vectors group together templates having the same
user-specified length; the comparison of code blocks
will be based on these groups.

4 Generating binary vectors: For each code block, we
generate a binary vector by comparing the value of a
template vector with the corresponding value in the
median vector. If the template value is larger than the
corresponding median, we insert 1 into the binary
vector; otherwise, 0. The size of the binary vector is the
same as that of the user-specified length vector in the
previous step.

5 Hashing binary vectors (second-level mapping): Given
that the binary vectors have the same size k, there are
2k possible combinations. In this step, each code block
is hashed to a bucket based on its binary vector. The
inexact code blocks are identified by keeping track of
the frequency of code block occurrences in the hash
tables. The code blocks having more than minS

matches are considered inexact matches.

Code region detection
We identify regions in the assembly code files that

match the exact or inexact code blocks in the user-
generated code. These regions are then divided into the
regions that exactly or inexactlymatch the actual regions in
the assembly code files.

Development of syntax author profiles
For each author, we build a syntax author profile (SAP)

that includes the type of semantics, the style of creating
and calling functions, and the complexity of the programs.
The resulting profile may be used in various authorship
attribution tasks (e.g., classification or clustering). We show
a sample of a syntax profile in Table 2, which is a score-
boarding profile where the last column shows the num-
ber of occurrences.

Register Flow Analysis Layer (RFAL)

In this section, we introduce a novel model for binary
code representation, called the Register Flow Graph (RFG),
which can be used to capture programming styles based on
an important semantics of the code, i.e., how registers are
manipulated.

Register flow graph
This section describes the construction and use of the

register flow graph. The flow and dependencies between
the registers are important semantic aspects about the
behavior of a program, which might indicate the author’s
skills or habits. Regardless of the number or degree of
complexity of functions, following registers are often
accessed: ebp, esp, esi, edx, eax, and ecx. Therefore, the
steps involved in constructing the RFG for these registers
are the following:

� Counting the number of compare instructions,
� Checking the registers for each compare instruction,
� Checking the flow of each register from the beginning

until the compare is reached,
� Classifying the register changes according to the classes
given in Table 3.

We classify the assembly instructions into four families:
stack, arithmetic, logical operation, and generic operation
families, which makes a total of 15 classes, as shown in
Table 3). The four families are explained as follows:

� Arithmetic: this class contains the following; add, sub,
mul, div, imul, idiv, etc.

� Logical: this class contains the following; or, and, xor,
test, shl.

� Generic: this class contains the following; mov, lea,
call, jmp, jle, etc.

� Stack: this class contains push and pop.
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Extraction of RFG
We employ an example to show how to extract the RFG.

The first step is to highlight the cmp instructions in the
main function. For illustration purpose, we base our dis-
cussion upon a randomly selected author from the Google
jam code set (The Google Code Jam, 2014) and by selecting
part of the main function as follows:
We note that the above code fragment contains two
compare instructions, so we can construct two RFGs. We
filter the instructions and keep only those related to the
registers in the compare instructions. The first graph is
constructed as follows:

- Step1:Wekeepall the instructionsuntil thefirst compare.
- Step 2: We filter these instructions by eliminating the
instructions that are not related to the registers of the
compare instructions, so the sequences will be:
- Step 3: We construct the state graph from the previous
sequences as in Fig 3a. Nodes 1 and 4 represent arith-
metic operations; referring to Table 3, the vector [1
0 0 0] is of class 1, so we replace the two nodes by one
node. Nodes 2 and node 3 represent a stack operation
and a normal operation, respectively; referring to Table
3, the vector [0 0 1 1] is of class 14.

- Step 4: We reshape Fig. 3a for the sake of simplicity, so
the new shape is as shown in Fig. 3b.

- Step 5: We construct the RFG vector by calculating the
hash value of the compare operands and their corre-
sponding color class. For example,we have cmp esi, esp

in Fig. 3, therefore we hash this instruction with the op-
erandsrelativeclasses (class14andclass1). Thehashvalue
will be <5bbe6adada7ab53d67a5ec7ba746c97a> as
shown in Fig. 3c.
Applying the RFG to author attribution
As an abstract intermediary representation between the

ASM and the source code, the RFG model may be closely
related to programming styles since it captures details of
control statements, variable instantiations, parameter
passing, etc. We now explain how to apply this model to
defining signatures of author styles.

The aforementioned informal graphical descriptions
provide a foundation for the concepts needed to identify
stylistic signatures based on the RFG for a known author
with a set of programs P ¼ {p1, , pn}. We consider the set of
registers REG ¼ {esi, esp, } supplied with a function
FReg ˛ REG/ TREG, where TREG represents a register type
set, i.e., TREG ¼ {pointer, stack, arithmetic, general, }.

For example, FReg[{esp}] ¼ {stack} means that esp is of
the stack pointer type; FReg[{eax}] ¼ {arithmetic} means
that eax is often used in arithmetic operations. We also
Fig. 3. (a) The states of registers (esi and esp); (b) The classes of nodes in
RFG-01; and (c) The RFG hash vector.



Fig. 4. Dissimilarity scale.
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assume that there is a set of assembly instruction classes; in
Table 3, IC ¼ {arithmetic, logical, normal, stack} (instruction
class). Accordingly, our algorithm uses the variable re-
lations ClrsReg ˛ REG4 Clrs, where Clrs is a set of register
colors in ℙ(IC), thus linking a register, and by extending a
register type, with a set of assembly instruction types.

We formulate the problem of style signature identifi-
cation as the problem of constructing a valued class system
based on a dissimilarity between two compare (e.g., cmp)
type instructions in the assembly code:

� Let A be an author with a set P of programs;
� For each program p, and for each interesting function in

p, construct a valued class system based on the assembly
compare type instructions with a specific dissimilarity
function;

� Considering all authors, compute the mutual informa-
tion between these classes and select, for each author, a
set of representative classes. This step may be achieved
with manual intervention if the selected classes for a
given author are too numerous.

FReg and IC are the input to our algorithm, ClrsReg and
CMP ˛ ℙ(ClrsReg � ClrsReg) – the set of the compare type
instructions colors – being obtained after parsing the pro-
gram. A set K in ℙ(CMP) is defined as class system if the
following properties are verified (Brucker, July 2001):

C1 : CMP˛K;
C2 : cc˛CMP; fcg˛K;
C3 : cA;B˛K with AXBsB; then AXB˛K:

All elements of K are called classes; the singletons {c}
and CMP are trivial classes. The set K is a valued class system
if there is a function f so that for each c ˛ CMP, f({c})¼ 0 and
c A, B ˛ K with A= B0 f(A) < f(B). In order to compute
the pair (K,f) given the CMP set with the elements ordered
on the assembly address offsets, we introduce the following
dissimilarity function d between two assembly compare
type instructions. For any consecutive, i.e., based on their
offset, c1 and c2 ˛ CMP,
dðc1; c2Þ ¼
8<
:

0 if c1 and c2 involve the same types of registers and colors;
1 if c1 and c2 involve the same registers ðor typesÞ but different colors;
2 if c1 and c2 involve one common register ðor typeÞ with the same color:
Else, c2 forms only a singleton in our class system. First,
K is initialized to the set of CMP. Whenever two compare
(e.g., cmp) instructions, c1 and c2, are dissimilar (i.e., the
above definition applies), a subset {c1, c2} forms a class
which is added to K with f(c1, c2) ¼ d(c1, c2). If three
consecutive compare instructions, c1, c2, c3, have common
(types of) registers (i.e., d(c1, c2) and d(c2, c3) can be
assessed), the algorithm constructs an extra class {c1, c2, c3}
added to K with f({c1, c2, c3}) ¼ max (d(c1, c2), d(c1, c3)) þ 1.
Designed for pseudo-hierarchies, the most appropriate
graphical representation of our system (K,f) is the pyramid.
For instance, Fig. 4 depicts seven compare type instructions
({c1, , c7}) having led to a class system with eight trivial
classes ({c1, , c7}, {c1}, , {c7}) and seven non trivial classes:
{c1, c2}, {c2, c3}, {c1, c2, c3}, {c3, c4}, {c2, c3, c4}, {c1, c2, c3, c4},
{c5, c6}. In this example, f(c1, c2) ¼ 1, meaning that c1 and c2
involve the same (type of) registers and colors.

If ever ci has a frequency freq > 1, it affects the pyramid
by stretching the hierarchy inwhich it belongs with (1/freq)
up. Therefore, (K,f) is automatically obtained for each
function and program belonging to a given author whose
RFG style is identified as the common elements in the
corresponding (K,f)s which do not overlap those belonging
to other authors. Mutual information definition helps
automatically identify these classes.

Evaluation

Google Code Jam

Google Code Jam (The Google Code Jam, 2014) is an
international programming competition hosted and
administered by Google. The competition consists of a set
of algorithmic problems over multiple rounds that must be
solved in a fixed amount of time. Competitors may use any
programming language and development environment to
obtain their solutions. Each round of the competition in-
volves writing a program to solve a small number (usually
3–6) of problems.We use the 2009 and 2010 contest data in
our evaluation as the one utilized by Rosenblum et al.
(Rosenblum et al., 2011).

Although Code Jam solutions are not restricted to any
particular programming language, we restrict our



Table 4
The number of features for the Google Code Jam corpus.

Features # Code Property

Inst. Control flow Ext.

N-grams 591,698 *
Idioms 75,277 *
Graphlets 75,132 * *
Supergraphlets 14,945 * *
Callgraphlets 2098 * *
Library calls 169 *
Inexact STL) 1733 *
Exact STL 675 *
RFG 269 * * *

Fig. 6. Comparison between different features.
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attentions to those solutions that were written in C or Cþþ
as utilized by Rosenblum et al. In the Google Code Jam
competition, each contestant submits two solutions (long
and short test cases). We remove the second solution in
order to be identical with the data sets used by Rosenblum
et al. Table 4 summarizes binary code feature templates and
the number of each instantiated one in a typical corpora for
Google Code Jam.

Results and analysis of OBA2

In this subsection, we compare OBA2 with the existing
IAPB approach in terms of accuracy and false positive rate.
The false positive rate comparison is shown in Fig. 5. From
the results, it is clear that OBA2 leads to more accurate
results than IAPB. The reason is three-fold. First, the SL layer
in the former eliminates style-unrelated functions, such as
compiler-generated functions, run time functions, and se-
curity functions, so the false positive rate of OBA2 is
reduced, while IAPB does not take into account such
functions, Second, OBA2 is designed to perform on a large
database of assembly code (ASM) files to automatically
detect all syntax templates and updates the authors’ pro-
files accordingly, Third, OBA2 evaluates the feasibility of
detecting exact syntax templates with different levels of
normalization. Fig. 7 shows the impact of not using the SL
layer in OBA2. We notice that the false positive rate will
increase accordingly due to the mixture of style-unrelated
code and style-related code. Finally, we compare in finer
details the relative contribution of different features of
OBA2 with those of the IAPB method in Fig. 6
Fig. 5. False positive rate comparison.
We can observe that the semantics-based RFG layer
performs the best while the syntax-based layer (CAL) fol-
lows, both of which are superior in contrast to various
features of the IAPB method. Also, we can see that the ac-
curacy of IAPB decreases quickly when the number of au-
thors is 5 or more, with the results below 30%. The reason is
that, with more candidate authors present, the results of
IAPB become less reliable since the amount of style-
unrelated functions increase (e.g., it could be due to two
authors using the same compiler, or even the same OS
environment).
Limitations and future direction

The previous section shows evidences that the proposed
OBA2 approach yields more accurate results than the
existing IAPBmethod. Nonetheless, the OBA2 approach still
has many limitations, including the following:

� Like most existing work, OBA2 assumes the binary code
is already de-obfuscated. In practice, de-obfuscation of
malware can be demanding. How to conduct authorship
attribution directly over obfuscated code is an impor-
tant but very challenging issue.

� Again, like existing work, OBA2 requires training data
with known authorship in order to collect sufficient
features before the method can be applied to new code.

� As the experimental results show, the accuracy will
decrease as the number of candidate authors increases
(in which regard OBA2 performs better than IAPB).

� We have not investigated the impact of different com-
pilers in this work.

� We have not evaluated the proposed method over other
programming languages.

Besides addressing the above issues, our future work
will include extending the approach to characterizing,
instead of identifying, the malware author and its origin, by
determining information like the level of programming
skills, the geographic location of the author or organization,
the type of targets of the malware, the language, etc.
Another possible extension would be to give OBA2 the
capability of verifying its output using formal models such
as STL or LTL.



Fig. 7. False positive rate comparison without the stuttering layer (SL).
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Conclusion

The reverse engineering of malware binaries has been
an important but challenging issue. In particular, author-
ship attribution for malware binary code has received only
limited attention compared to source code authorship
attribution, since most stylistic features will not survive the
compilation. In this paper, we have presented a multi-layer
approach to improving the accuracy of existing binary code
author attribution method. We have implemented and
compared the proposed method to existing research, and
experiments have shown our method to yield superior
results.
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