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Abstract

Barrier Coverage with Wireless Sensor Networks

Mohsen Eftekhari Hesari, Ph.D.

Concordia University, 2014

We study the problem of barrier coverage with a wireless sensor network. Each sensor

is modelled by a point in the plane and a sensing disk or coverage area centered at the

sensor’s position. The barriers are usually modelled as a set of line segments on the

plane. The barrier coverage problem is to add new sensors or move existing sensors

on the barriers such that every point on every barrier is within the coverage area of

some sensors. Barrier coverage using sensors has important applications, including

intruder detection or monitoring the perimeter of a region.

Given a set of barriers and a set of sensors initially located at general positions in

the plane, we study three problems for relocatable sensors in the centralized setting:

the feasibility problem, and the problems of minimizing the maximum or the aver-

age relocation distances of sensors (MinMax and MinSum respectively) for barrier

coverage. We show that the MinMax problem is strongly NP-complete when sensors

have arbitrary ranges and can move to arbitrary positions on the barrier. We also

study the case when sensors are restricted to use perpendicular movement to one of

the barriers. We show that when the barriers are parallel, both the MinMax and

MinSum problems can be solved in polynomial time. In contrast, we show that even

the feasibility problem is strongly NP-complete if two perpendicular barriers are to

be covered.
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For the barrier coverage problem in distributed settings, we give the first dis-

tributed local algorithms for fully synchronous unoriented sensors. Our algorithms

achieve barrier coverage for a line segment barrier when there are enough sensors

to cover the entire barrier. Our first algorithm is oblivious and terminates in Θ(n2)

time, whereas our second one uses two bits of memory at each sensor, and takes Θ(n)

steps, which is asymptotically optimal. However, if the sensors are semi-synchronous,

and do not share the same orientation, we show that no algorithm exists that always

terminates within finite time. Finally, for sensors that share the same orientation

we give an algorithm that terminates within finite time, even if all sensors are fully

asynchronous.

Finally, we study barrier coverage with multi-round random deployment using

stationary sensors. We analyze the probability of barrier coverage with uniformly

dispersed sensors as a function of parameters such as length of the barrier, the width

of the intruder, the sensing range of sensors, as well as the density of deployed sensors.

We propose two specific deployment strategies and analyze the expected number of

deployment rounds and deployed sensors for each strategy. We present a cost model

for multi-round sensor deployments, and for each deployment strategy we find the

optimal density of sensors to be deployed in each round that minimizes the total

expected cost. Our results are validated by extensive simulations.
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Chapter 1

Introduction

A wireless ad hoc network is an infrastructure-less network consisting of many wireless

nodes. The data propagation in a wireless ad hoc network does not rely on any pre-

existing infrastructure e.g. routers or access points; instead, wireless nodes forward

data from other nodes. A wireless sensor network is an ad hoc network in which

every node has a microcontroller, a communication module and sensing modules.

For convenience, in the rest of this thesis, we refer to the nodes of a wireless sensor

network simply as sensors. The goal of a wireless sensor network is to monitor some

aspects of the environment. Each sensor is equipped with a set of sensing module

(e.g. motion, light, temperature and humidity) and gathers information from its

surrounding environment. Each sensor is also equipped with a communication module

that enables it to communicate with other sensors or base stations. Every sensor in

the network gathers information from its surrounding environment and passes it on to

the base station(s) possibly through other sensors. The applications of wireless sensor

networks are broad, ranging from temperature or humidity control in a building to

habitat monitoring or surveillance of a restricted area and localization and tracking

of an entity of interest (for examples see [ZG04]).

Surveillance, also called intrusion detection, is an important application of wireless
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sensor networks. The goal of a surveillance system is to detect the entrance of entities

of interest in a restricted area. For simplicity we use the terms intruder and intrusion

detection to refer to the entity of interest and its detection by the network respectively.

However this usage of the terms does not imply any illegal or unfavorable entrance or

activity of the entity of interest. The literature on intrusion detection using wireless

sensors can be classified into two major categories:

Area Coverage The goal of area coverage is the monitoring of an entire region

[HT03, KLB04, MKPS01], on the assumption that the intruder might appear

at any point in the region and must be detected within a fixed time delay.

Barrier Coverage In contrast to area monitoring, the focus of barrier coverage is

on monitoring the entire boundary or a part of the boundary of a given region

[BBSK07, BBH+09, CKK+09, CKK+10, KLA05].

Assuming that an intruder cannot enter a region without crossing its boundary,

monitoring the boundary of the region is sufficient to detect all intruders with pos-

sibly fewer sensors. Wireless sensors can be deployed to monitor the perimeter of a

restricted area, thereby creating a virtual barrier. Compared to wired alternatives,

a wireless sensor-based monitoring system can provide a cost-effective solution for

surveillance and intrusion detection.

The focus of this thesis is on the barrier coverage problem with wireless sensors.

In the following we first present the models that we use to study barrier coverage and

then we present the problems that we tackle in this thesis.

1.1 Model and Definitions

We proceed to define three essential entities: barrier, sensor, and intruder. We go

on to discuss the various mobility models we use in this thesis, the possible sensor
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deployment policies, and coverage redundancy. A barrier is the boundary, or a part of

the boundary, of a restricted area that we wish to monitor. Examples are the border

between two countries with the purpose of monitoring and regulating movement of

people and vehicles between the two countries or a border between two sides of a

jungle to study the movements of animals between the two sides. The sensors are the

small pieces of equipment that are scattered along the barrier to monitor it. Finally

the intruder is an entity of interest that crosses the barrier. To formulate the problem

we need to first define model(s) for each of these three entities. We start with the

barrier:

1.1.1 Barrier

There are two common models for a barrier in the literature:

• A barrier can be modelled as a long narrow band with a relatively small width

compared to its length [KLA05, CKL07, LDWS08]

• The barrier can be modelled as a line segment, given that its width is zero

[CKK+09, CKK+10, MNO11].

The problem may involve more than one barrier segment. For example arbitrary

curved barriers can be modelled as a set of barrier segments. In fact in many problems

we consider a set of barriers as an input.

1.1.2 Sensors

In a monitoring system each sensor is equipped with the essential sensing module and

may or may not have other optional modules. Here are the list of the modules that

we need for our problem formulation:
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Sensing module: The sensing module may be a motion detector, heat detector, or

detector of any other type of property that can be used to detect intruders.

In this thesis, we do not go into details of the sensing module but look at it

as a provided interface. For any sensor there is a neighborhood in which the

sensor is capable of detecting intruders. We call this neighborhood the sensing

area. In general, the sensing area of a sensor can have any shape and the event

detection probability could be non-homogeneous throughout the sensing area of

the sensor (depending on the sensor module, the environment properties, etc.)

but in this thesis we only consider sensors with unit disk sensing areas and we

assume that a sensor can detect an intruder if and only if it is within the sensing

disk of the sensor. This is a model which is commonly used in the literature of

wireless sensor networks.

Mobility module: In general, mobility of sensors may help barrier coverage by al-

lowing sensors to move from overly monitored areas to those areas that do not

have sufficient sensors for intended coverage. The mobility of sensors may be

restricted in different ways, for example, the direction or the maximum distance

that a sensor can move. Throughout this thesis we are using different mobility

assumptions which are explained in more detail later on in this chapter.

Visibility module: The visibility module enables the sensor to locate other neigh-

boring sensors when they are close enough. Visibility is different from sensing:

the visibility module enables detection of other sensors, while the sensing mod-

ule detects intruders. As in the case of sensing module, we define a visibility

range for each sensor and assume that a sensor u can see another sensor v if

and only if v lies within u’s visibility range. We generally assume that when u

sees sensor v, it can also determine its distance from v.
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Communication module: A communication module enables sensors to communi-

cate to each other or predefined base stations, for example to report collected

sensor data or collaboratively compute or aggregate a function of this data.

However in this thesis we are only concerned with the establishment of barrier

coverage and not the collection of sensor data. In general communication gives

more power to sensors e.g. local or even global knowledge of network topology,

possibility of having centralized algorithms etc. However, the algorithms in this

thesis do not use any communication between sensor nodes. Nevertheless, one

way to achieve visibility of nearby sensors could be via carrier sensing which

utilizes the radio transceiver of the communication module.

1.1.3 Intruder

An intruder can be modelled as a 2-dimensional shape in the plane whose trajectory

is a curve that intersects the barrier. In this thesis we consider the intruder as an

object with non-zero area. We assume that a sensor detects an intruder if and only if

the intersection of the sensing range of the sensor and the intruder area is non-zero.

As mentioned earlier, different mobility capabilities can be considered for sensors.

In the following we discuss the models that we use throughout this thesis in more

detail.

1.1.4 Mobility Model

As stated earlier, the mobility module enables a sensor to move from its initial de-

ployment to a new position. Sensor networks can be divided into 3 categories based

on the ability of sensors to move:

Stationary sensors : sensors have no movement module and do not have any mo-

bility capability.
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Relocatable sensors : All or some sensors can relocate to new positions after the

initial deployment but after reaching their final positions, they stay stationary.

During the border monitoring phase sensors do not move.

Mobile sensors : All or some sensors are moving constantly (patrolling) after the

deployment and during the border monitoring phase.

Relocatable and mobile sensors can increase the performance of the barrier coverage

by covering the previously uncovered areas of the barrier. Our set of problems consider

sensors that are either all stationary or all relocatable.

Even for mobile and relocatable sensors, the mobility can be limited in many

ways. Limitations on both the distance and the direction that a sensor moves can be

assumed.

1.1.5 Sensor Deployment Policies

A key decision in the design and implementation of a wireless sensor monitoring

system is choosing the method of deploying the sensors.

There are three major sensor deployment strategies:

1. Deterministic deployment

2. Multi-round random deployment

3. Ad hoc deployment using relocatable sensors

In a deterministic deployment, sensors are deployed in predetermined positions.

Whereas in a multi-round random deployment, sensors are dispersed randomly on

the barrier in rounds. A new round of deployment is necessitated if the intended

barrier coverage is not achieved in the previous rounds [YQ10]. Finally, in an ad hoc

deployment with mobile sensors, sensors are initially located at arbitrary positions
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and then some of the sensors may relocate to new positions such that the entire barrier

is covered [SCLP08, CKK+09, CKK+10, CGLW12]. It is not difficult to see that with

a deterministic deployment or the use of relocatable sensors, possibly fewer sensors

are needed. However, deterministic deployment or use of relocatable sensors may not

be feasible in many situations (e.g. hazardous or mountainous areas). On the other

hand, with random deployment it is hard if not impossible to guarantee achieving

barrier coverage in finite number of deployment rounds. Finally, the installation cost

of the system as a combination of deployment cost and sensors cost should also be

taken into account when deciding the deployment strategy.

In this thesis we consider two of the deployment strategies: multi-round random

deployment and ad hoc deployment using relocatable sensors.

1.1.6 Coverage Redundancy

One challenge in the design of wireless sensor monitoring systems is errors in intrusion

detection. There are errors related to the sensing modules of the sensors: false positive

and true negative. Also it is possible that although a sensor correctly detects an

intruder the information cannot reach a base station due to communication problems.

In general, one way to reduce the rate of errors in a sensor network is deploying

redundant sensors on the barrier. We say a border is (k, w)-covered if any intruder

with a width greater than or equal to w is detected by at least k distinct sensors. The

concept is similar to weak k-barrier coverage defined in [KLA05], and differs only in

generalizing the notion of intruders considered there.
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1.2 Problem Statement

The problems that we tackle in this thesis can be categorized into three sets. In the

following we describe each set of problems separately.

1.2.1 Centralized Barrier Coverage of Multiple Barriers with

Relocatable Sensors

In this set of problems, we assume that there exists a centralized entity that has global

knowledge about the entire barrier and the sensors on it. Therefore this entity can

determine if any portion of the barrier is not covered and then, if necessary, make the

decision about which sensor to move to which position such that the intended barrier

coverage is achieved. In this thesis, we study the problem with respect to different

constraints:

• Feasibility problem: Given an input of sensors and barriers the problem is to

decide whether there exists a set of final positions (one for each sensor) such

that all the barriers are fully covered.

• MinSum problem: Given the input the problem is to find a feasible solution

such that the sum of all movements (displacements of sensors) is minimized.

• MinMax problem: Similar to MinSum but instead of the sum of movements the

maximum movement is the subject of minimization.

The study of the MinSum and the MinMax problems, is motivated by the mini-

mization of the overall energy consumption of sensors, and the minimization of the

deployment time (e.g. the time that the last sensor takes to reach its final position),

respectively.
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1.2.2 Distributed Barrier Coverage of A Single Barrier with

Relocatable Sensors

For this set of problems, we assume that sensors are autonomous robots, each with

localized information gathered from within its visibility radius. Here again depending

on the assumed properties of sensors (whether sensors have a local or global sense

of orientation, sensing model of sensors, time synchronization between sensors and

the barrier shape) the results vary from giving optimal algorithms to proving non-

existence of any distributed algorithm for the problem.

1.2.3 Barrier Coverage of A Single Barrier with Stationary

Sensors and Random Deployment

Finally, in the last set of problems, we assume that sensors are dispersed randomly

along the barrier and they cannot move once they are deployed. Assuming sensors

with fixed sensing ranges much less than the barrier length, and finite number of

deployed sensors, the intended barrier coverage is achieved with some probability

p less than 1. This implies that with probability 1 − p the barrier is not covered

and since sensors cannot move, more sensors needed to be deployed on the barrier.

However if these new sensors added in the second round are also randomly deployed,

still there may be a chance that the barrier is not covered after the second round of

deployment and therefore more rounds of deployment may be needed until intended

coverage is achieved. In this thesis we study several multi-round random deployment

strategies.
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1.3 Contributions of Thesis

In this section we summarize our contributions in each of the sub-problems introduced

in the previous section:

1.3.1 Centralized Algorithms for Barrier Coverage of Multi-

ple Barriers with Relocatable Sensors

We consider several variations of the problem of covering a set of barriers (modelled

as line segments) using relocatable sensors. Unlike the previous studies that only

considered initial positions of sensors being on the line containing the barrier, we

consider sensors initially located at general positions in the plane. Given a set of

barriers and a set of sensors located in the plane, we study three problems: (i)

the feasibility of barrier coverage, (ii) the MinMax problem, and (iii) the MinSum

problem. When sensors are permitted to move to arbitrary positions on the barrier,

the MinMax problem is shown to be strongly NP-complete for sensors with arbitrary

ranges. We also study the case when sensors are restricted to use perpendicular

movement to one of the barriers. We show that when the barriers are parallel, both

the MinMax and MinSum problems can be solved in polynomial time. In contrast, we

show that even the feasibility problem is strongly NP-complete if two perpendicular

barriers are to be covered, even if the sensors are located at integer positions, and

have same sensing ranges. On the other hand, we give polytime algorithms for special

cases of the feasibility problem. We also present several approximation algorithms

for the problem.
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1.3.2 Distributed Algorithms for Barrier Coverage of A Sin-

gle Barrier with Relocatable Sensors

We study barrier coverage with relocatable sensors that have same sensing ranges and

are initially located at arbitrary positions on the barrier and can relocate along the

barrier. We study the problem in the distributed settings for the first time. We as-

sume that each sensor has a constant visibility range and can move only a constant dis-

tance in every cycle. Furthermore we consider three different synchronization schemes

for the sensors: fully synchronous (FSYNC), semi-synchronous (SSYNC) and asyn-

chronous (ASYNC) sensors. The results vary extensively based on the model used.

For fully synchronous sensors, we give the first two distributed algorithms that

achieve barrier coverage for a line segment barrier when there are enough sensors in

the network to cover the entire barrier. Our algorithms are local in the sense that

sensors make their decisions independently based only on what they see within their

constant visibility range. One of our algorithms is oblivious whereas the other uses

two bits of memory at each sensor to store the type of move made in the previous step.

We show that our oblivious algorithm terminates within Θ(n2) steps with the barrier

fully covered, while the constant-memory algorithm is shown to take Θ(n) steps to

terminate in the worst case. Since any algorithm that can only move a constant

distance in one step requires Ω(n) steps on some inputs, our second algorithm is

asymptotically optimal.

We show that if there is no agreement between sensors on a global orientation

(sensors are unoriented), then there is no algorithm for barrier coverage that always

terminates. Obviously, the non-existence results also hold true for asynchronous

sensors.

Finally, assuming that sensors share a global orientation, we give an algorithm
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for barrier coverage that terminates after finite time even if sensors are fully asyn-

chronous.

1.3.3 Barrier Coverage of A Single Barrier with Stationary

Sensors and Random Deployment

We study multi-round wireless sensor deployment on a border modelled as a line

segment. We present two different classes of deployment strategies: complete and

partial. In complete strategies, in every round, sensors are deployed over the entire

border segment, while in partial strategies, sensors are deployed over only some part(s)

of the border. First, we analyze the probability of (k, w)-coverage for any complete

strategy as a function of parameters such as length of barrier to be covered, the width

of the intruder, the sensing range of sensors, as well as the density of deployed sensors.

Second, we propose two specific deployment strategies - Fixed-Density Complete and

Fixed-Density Partial - and analyze the expected number of deployment rounds and

expected total number of deployed sensors for each strategy. Next, we present a model

for cost analysis of multi-round sensor deployment and calculate, for each deployment

strategy, the expected total cost as a function of problem parameters and density of

sensor deployment. Finally we find the optimal density of sensors in each round that

minimizes the total expected cost of deployment for each deployment strategy. We

validate our analysis by extensive simulation results.

1.4 Outline of Thesis

The rest of this thesis is organized as follows: In Chapter 2 we summarize the related

work on the barrier coverage problem. Centralized algorithms for barrier coverage

with relocatable sensors are studied in Chapter 3. In Chapters 4 we study distributed
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algorithms for barrier coverage with fully synchronous sensors while Chapter 5 is de-

voted to barrier coverage problem using semi-synchronous and asynchronous sensors.

In Chapter 6 we study the multi-round random deployment of stationary sensors and

finally in Chapter 7 we conclude this thesis and give directions for future research.
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Chapter 2

Related Work

In this chapter we review the current state of the research in the area of barrier

coverage with wireless sensors. The concept of barrier coverage with sensor networks

was first introduced in [Gag92] as one possible application for WSNs. Based on the

mobility capabilities of sensors, we classify the literature on barrier coverage into three

categories: barrier coverage with stationary sensors, barrier coverage with relocatable

sensors and barrier coverage with mobile sensors.

Sensors with mobility can possibly increase the number of solutions to a barrier

coverage problem. Mobile sensors, if redundant in their initial position, can relo-

cate to cover gaps on the barrier which require new deployments otherwise [BJY+10,

CGLW12, CKK+09, CKK+10, MLC+12, MNO11, SLX+10]. Also continuously mov-

ing sensors (patrolling) can increase the chance of an intruder being detected [HCL+12,

KLZ10]. However in this thesis we do not study mobile sensors (see [KLZ10] and

[HCL+12] as examples on barrier coverage with mobile sensors).

Also another solution to covering the gaps on the barrier can be obtained by

increasing the sensing ranges of currently deployed sensors. In [MLC+12] the sensing

range of sensors which results in minimum total power consumption of sensors as a

function of the sensing range is calculated. However, in this thesis we do not consider
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changing the initial sensing range of sensors.

In the following we summarize the previous literature on barrier coverage with

relocatable and stationary sensors:

2.1 Barrier Coverage with Relocatable Sensors

Relocating the sensors after the initial deployment is studied in many previous works

[BBH+09, CKK+09, CKK+10, SLX+10, MNO11]. As mentioned in Chapter 1, re-

locating sensors is one way to achieve barrier coverage after the initial deployment.

Given initial positions of the sensors, the goal of a sensor relocating algorithm is to

determine how the sensors should move to new positions such that the entire bar-

rier is fully covered. These algorithms can be classified into two major categories:

centralized versus distributed algorithms. In the following we study the literature in

each category separately:

2.1.1 Centralized Algorithms

The centralized version of the problem has been studied with respect to different

constraints: minimizing the maximum distance traveled by every sensor (MinMax),

minimizing the sum of the distances traveled by all sensors (MinSum), or minimizing

the number of sensors that moved (MinNum).

In [SLX+10] barrier coverage using sensor relocatable sensors is studied. The

deployment strategy is as follows: In the first phase, sensors are dropped aiming for

some pre-determined locations on parallel lines (k parallel lines to achieve k-barrier

coverage). Because of the deployment error the drop location might be within an

error range of the pre-determined location. In the second phase each sensor moves to

its final position within its moving range and stays stationary afterward. Based on
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this model, the authors introduced an algorithm to minimize the maximum moving

distance of sensors while keeping strong k-barrier coverage property. Their algorithm

is basically discretizing the problem and solving it by a mixture of binary search

technique and a maximum flow algorithm.

In [DHM+09] different optimization problems in the area of mobile sensors are

studied. Minimizing the maximum, sum or number of movements to obtain a specific

property (e.g. obtain a connected network, or a connected path) is studied. Although

the studied problems is not directly related to barrier coverage, the measures and

techniques are used in barrier coverage problem as well.

In [BBH+09] the problem of relocating sensors which were initially deployed inside

a circular or simple polygon area is studied. The objective is to solve the MinMax

and MinSum problems. The authors assumed that the sensing range of the sensors

are large enough to cover the entire perimeter of the area. Different variations of

the problem are studied. The authors provided polynomial time algorithms for the

MinMax problem when sensors are located inside or on the perimeter of a circle

or simple polygon. Also they provided approximation algorithms for the MinSum

problem. The question whether the MinSum problem is NP-complete or not is left

as an open problem. It was also shown that there exists a trivial solution to the

problem of MinSum when sensors are located initially on a line segment barrier or on

the perimeter of a circular barrier.

In [CKK+09, CKK+10, MNO11] the authors considered a model in which sensors

are initially located on a line segment. The sensors are relocated (by moving left

or right) to new positions to achieve coverage of the whole barrier. In contrast to

[BBH+09], in all these papers the sensing range of the sensors are also taken into

account.
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In [CKK+09] different variations of the MinMax (minimizing the maximum move-

ment of sensors to achieve coverage) problem are studied. The authors considered

two cases: 1) sensors have same sensing range 2) sensors have different sensing range.

A quadratic time algorithm is introduced for the MinMax problem when sensors have

the same sensing range. Also a linear time 2-approximation algorithm is introduced

to find the solution to the MinMax problem when the coverage is feasible (sum of the

sensing range of sensors is greater than the length of the barrier). The complexity

of the general MinMax problem with sensors of different sensing range was left as an

open problem. But a variation of the problem where the position of one sensor is

fixed is shown to be NP-complete.

Recently, in [CGLW12] it was shown that the MinMax is polytime solvable even

when sensors have different sensing ranges. Also authors introduced an O(n log n)

algorithm for the problem when sensors have the same sensing range. Furthermore a

linear time algorithm is provided for the case where sensors are initially located on

the barrier itself.

In [CKK+10] the authors studied the problem of minimizing the sum of the move-

ments to achieve coverage (MinSum) when sensors are initially located on a line and

the barrier is a portion of the same line. The authors took into account the sensing

range of the sensors and the possibility of a sensor being initially positioned outside

the barrier. The problem is shown to be NP-complete when sensors have different

sensing ranges and polynomial time algorithms are introduced for the case where sen-

sors have the same sensing range. Considering the MinSum problem where sensors

have identical sensing ranges, for the case where total sensing range of the sensors is

equal to the length of the barrier, linear time algorithms are given to calculate the

optimal solution. Also for the case where sensing range of the sensors is greater than

the length of the barrier an algorithm of O(n2) running time is introduced.
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In [MNO11] the problem of minimizing the number of relocated sensors to achieve

coverage (Min-Num) of a linear barrier when sensors are located on the barrier is stud-

ied. The authors showed that the problem is NP-hard when sensors have different

sensing range. Also the Min-Num problem is shown to have a polynomial solution

when all sensors have the same sensing range. All the cases when sensors have the

same sensing range, are studied and for each case a polynomial algorithm is intro-

duced. The authors also studied the case where the barrier is the perimeter of a circle

and sensors are located on it. It is shown that the problem is NP-hard if sensors

have different sensing ranges and a polynomial time algorithm is provided for the

case where all sensors have the same sensing range. The Min-Num problem when the

barrier consists of more than one line segment or when there are constant number of

different sensing ranges, is left as an open problem.

2.1.2 Distributed Algorithms

While to our knowledge, the barrier coverage problem has not been studied in the dis-

tributed setting, there is a large body of recent work on the capabilities of autonomous

mobile robots that is related to our work; see for example [FPS12, Mat94, PS06, SY99].

Initially the robots are assumed to be at arbitrary positions on the plane. Their goal

is to collectively solve a given task; a typically studied task is the formation of some

kind of pattern in the plane. Each robot repeatedly performs a Look-Compute-Move

cycle. First it looks at the positions of the other robots, then it computes its own

next position, and finally it moves to this new position. The robots are anonymous

and identical, have no centralized coordination, nor do they communicate with each

other; their decisions are made solely based on their observations of their surround-

ings. Different variations of the model exist based on whether or not the robots are

synchronous, have agreement on a coordinate system, and have a local memory.
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The computation model we use in Chapters 4 and 5 falls into the same general

framework. Indeed, our sensors follow a Look-Compute-Move cycle, and have partial

agreement on a coordinate system. However, our sensors have two important restric-

tions compared to the standard model of autonomous mobile robots. The sensors in

our model have a constant visibility range, and in each cycle, they move a constant

distance. Both these restrictions are more realistic for sensors. There are two other

differences between our sensors and the typical autonomous mobile robot. First, the

sensors may not be identical; for example, their sensing ranges could be different.

Second, the sensors are not points on the plane; indeed they are similar to the fat

robots studied in [CGP09, DDCM13], in the sense that they can detect each other’s

presence when their sensing ranges overlap.

Limited visibility is indeed an important restriction, and some papers have studied

the impact of this restriction. As mentioned in [ASY95], there is no deterministic

algorithm for the point formation or gathering problem, even for two robots under

limited visibility, if they don’t see each other at first. The authors give a synchronous

algorithm that solves point formation for sensors in the same visibility graph, even if

they don’t share a coordinate system. In [FPSW01], an asynchronous algorithm for

the same problem is given under limited visibility and a common coordinate system.

In terms of movement capabilities, in the autonomous mobile robot literature, while

the distance a robot can move in one cycle is assumed to be finite, there is no fixed

bound on this distance.

The two problems that are closest to the barrier coverage problem and have been

studied in the context of autonomous robots are the line or circle formation problem

and the spreading problem. In the line formation problem, n robots are initially

placed at arbitrary positions on the plane, and they must move to place themselves

on a line, which is not specified in advance. The problem can be solved with total or
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partial agreement on the coordinate system and unlimited visibility. Our problems in

Chapter 4 and 5 differ in that the sensors are already on the barrier (a line segment

or a circle); they must move to achieve complete coverage of the barrier. In the

spreading problem [CP06], n robots are initially placed on a line, and must move to

equidistant positions between the leftmost and rightmost robots. Clearly in a fully

synchronous model and transparent sensors, where each robot can see all the other

robots, the problem can be solved in one step, and is similar to the line formation

problem. However, the authors of [CP06] make an assumption of a particular type of

limited visibility: a robot can only see the robots that are closest to it (e.g. sensors

are opaque). They show that the simple strategy of moving to the midpoint of the

two neighbors converges to sensors with equidistant positions. Also a version of the

algorithm in which sensors are fully synchronous and every sensor knows the number

of other sensors on its left and right, is shown to terminate after n−2 time steps where

n is the number of sensors. It is important to point out that in contrast to [CP06],

in our model, a sensor only sees sensors in its visibility range, and therefore may not

even see the sensor that is closest to it. Additionally, it cannot move an arbitrary

distance in one cycle as in [CP06], it can move only a fixed distance independent of

the distance between any two sensors.

The authors in [FPS08] studied the spreading of mobile sensors on a ring. They

showed that if the ring is not directed (sensors do not share a common orientation

of the ring) then there is no algorithm that can achieve exact spreading where the

distance between every two consecutive sensors is the same. The negative result holds

even if sensors have unlimited visibility range, unbounded memory and computational

power and all their actions (computations and movements) are instantaneous. How-

ever when it comes to an oriented ring, the authors presented an exact algorithm for
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spreading problem when sensors are aware of the final required distance between con-

secutive sensors. An approximation algorithm that converges to uniform spreading of

sensors is presented when this distance is unknown to the sensors. The positive results

hold true even if sensors are oblivious (have no memory of the past), asynchronous

and have fixed visibility range.

In [EB09] authors extended the study of the spreading problem on a ring with

oblivious agents. The authors assume that agents agree on a grid coordinate and they

move only on the grid positions. Also every agent has a fixed visibility range of d∗.

Let n and k denote the length of the ring and the number of sensors. The authors

show that if d∗ < �n/k� and the ring is undirected (no global agreement between

agents on the orientation of the ring), the spreading task is impossible. However an

algorithm for the spreading problem is given when d∗ ≥ �n/k� and the ring is directed.

Note that in the given algorithm agents may never stop moving although spreading

is achieved. However when agents are required to spread and stop (quiescent spread)

authors showed that the task is impossible under the presented model. An algorithm

which achieves quiescent and almost uniform spread is presented.

The barrier coverage problem has the same input as the spreading problem, but

it differs in that the final positions are not required to be equidistant; instead they

are required to achieve coverage. Equidistant positions are neither necessary nor

sufficient for barrier coverage in general, though in the situation where the number

and range of identical sensors is exactly enough to cover the barrier, the final positions

of sensors would have to be equidistant. The difference in the problem requirements

leads to different results. For example in Chapter 4 under certain conditions (e.g.

extra sensor), we show how our algorithms can be extended for barrier coverage of

a ring whereas the spreading problem in the same model is shown to be impossible.

However our results conform to the previous results when the spreading and barrier
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coverage requirements coincide (e.g. when the number of sensors are exactly enough

to cover the barrier).

The focus of [FPS08] and [EB09] are sensors/agents located on a ring which is

different than our main focus in this thesis. However some of our results are also

extended for circular barriers.

2.2 Barrier Coverage with Stationary Sensors

The study of barrier coverage with random deployment was initiated in the seminal

paper of Kumar et. al. [KLA05]. The authors introduced the notion of strong

and weak k-barrier coverage for barriers modelled with narrow strips and intruders

trajectories modelled as crossing paths. Strong k-barrier coverage guarantees the

detection of any intruder that crosses the barrier by at least k distinct sensors. In

contrast, weak k-barrier coverage only guarantees the detection of intruders along

paths that are orthogonal to the barrier. It can be seen that strong coverage implies

weak coverage but not vice versa. The authors studied the weak k-barrier coverage

problem on narrow strips with width proportional to the inverse of the length. Critical

conditions for weak k-barrier coverage are calculated when the length of the barrier

goes to infinity. It was shown that to ensure barrier coverage with high probability,

there should be at least log n active sensors on each orthogonal crossing path where

n denotes the total number of sensors. Also an optimal deterministic deployment

strategy to obtain k-barrier coverage (k parallel rows of sensors) with fewest possible

number of sensors is presented.

In [CKL07] a new measure for barrier coverage called L-local k-barrier coverage

is introduced. In contrast with strong barrier coverage, this new measure can be

determined locally by sensors. A barrier is L-local k-barrier covered if and only if any

crossing path that fits in a segment of length L of the barrier is detected by at least

22



k distinct sensors. Algorithms to determine whether the barrier is L-local k-barrier

covered are introduced.

In [LDWS08] the work of [KLA05] is extended by removing the constraint on the

width of the barrier and showing that strong barrier coverage can be achieved with

high probability (whp) at a certain sensor density if width of the barrier is Ω(log l),

where l denotes the length of the barrier. They also proved that strong barrier

coverage cannot be achieved whp if the width of the barrier is o(log l) regardless

of the density of the sensors. The authors also studied the construction of sensor

barriers with the help of so-called vertical barriers, which improve the chance of

barrier coverage by dividing the barrier into smaller segments.

In [LZS+11] weak k-barrier coverage is studied when sensors are deployed ran-

domly. Given a barrier of finite length and total number of deployed sensors, a lower

bound on the probability that the barrier is weakly k-barrier covered is calculated.

Simulation results show the tightness of the estimated lower bound when k is small.

The authors also provided an algorithm that determines whether a given barrier is

weakly k-barrier covered and if not, to calculate the percentage of the barrier which

is not weakly k-barrier covered.

In [YQ10] a multi-round deployment strategy is studied. Randomness in the

deployment is modelled using an error range Rerr. At each round of deployment,

the intended location of sensors is determined using the uncovered distances (gaps)

and number of available sensors for that round. In the deployment phase, due to

the randomness of the deployment, rather than falling at its intended location, each

sensor might fall at a distance from it. However, this distance from the intended

location is bounded by Rerr. After the end of a round of deployment, the remaining

new gaps are calculated and the procedure is repeated until all gaps are covered. The

goal is to minimize the total number of sensors used to cover the entire barrier. The
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authors derived the optimal solution for the general n-round deployment and showed

that the optimal number of sensors can always be achieved by using only two rounds.

The probability of path coverage is studied in [NMA10]. The authors considered

Poisson-distributed sensors on a closed curve (belt) of finite length and a given width.

The probability of a barrier being 1-weak barrier-covered is calculated as a function of

the number and sensing range of sensors. Also an estimate of the number of coverage

gaps, and the length of gaps is derived. In their model, sensors are not necessarily

located on the barrier but in a strip of some width.
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Chapter 3

Centralized Algorithms Using

Relocatable Sensors1

In this chapter we consider the algorithmic complexity of several natural generaliza-

tions of the barrier coverage problem with sensors of arbitrary ranges. We generalize

the work in [CGLW12, CKK+09, CKK+10, MNO11] in two significant ways. First, we

assume that the initial positions of sensors are arbitrary points in the two-dimensional

plane, not necessarily on the line containing the barrier. This assumption is justified

since in many situations, initial dispersal of sensors on the line containing the barrier

might not be practical. Second, we allow more than one barriers that are parallel or

perpendicular to each other. This generalization is motivated by barrier coverage of

the perimeter of an area.

3.1 Computational Model and Preliminaries

Throughout this chapter, we assume that a set of sensors S = {s1, s2, . . . , sn} is

given where sensors s1, s2, . . . , sn are located in the plane in positions p1, p2, . . . , pn

1Partial results of this chapter are also published in [DDE+13]
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respectively, with pi = (xi, yi) for some real values xi, yi. The sensing ranges of the

sensors are positive real values r1, r2, . . . , rn, respectively. A sensor si can detect any

intruder in the closed circular area around pi of radius ri. We assume that sensor si

is mobile and thus can relocate itself from its initial location pi to another specified

location p′i. A barrier b is a line segment in the plane. We define an arrangement

as an ordered pair A = (S,B) comprising a set S of sensors and a set B of barriers.

Given an arrangement A = (S,B) with B = {b1, b2, . . . , bk}, and S = {s1, s2, . . . , sn}
and sensors located at p1, p2, . . . , pn in the plane, of sensing ranges r1, r2, . . . , rn, the

barrier coverage problem is to determine for each si its final position p′i on one of

the barriers, so that all barriers are collectively covered by the sensing ranges of

the sensors. We call such an assignment of final positions a covering assignment.

Figure 3.1 shows an example of a barrier coverage problem and a possible covering

assignment. We are also interested in optimizing some measure of the movement of

sensors involved to achieve coverage, such as MinMax and MinSum. We use standard

cost measures such as Euclidean or rectilinear distance. The distance between the

initial position p and a final position p′ of a sensor is denoted by d(p, p′).

p′4p′2

p′3
p′1

(a)

p1b1

b2 p3

p2

p4

b1

b2

(b)

Figure 3.1: (a) A given barrier coverage problem (b) a possible covering assignment

We are interested in the algorithmic complexity of three problems:

Feasibility problem: Given an arrangementA = (S,B) with sensors in S located in

the plane at p1, p2, . . . , pn, determine if there exists a valid covering assignment,

i.e. determine whether there exist final sensor positions p′1, p
′
2, . . . , p

′
n on the

barriers such that all barriers in B are covered.
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MinMax problem: Given an arrangement A = (S,B) with sensors in S located in

the plane at p1, p2, . . . , pn, find final sensor positions p′1, p
′
2, . . . , p

′
n on the barriers

so that all barriers in B are covered and max1≤i≤n{d(pi, p′i)} is minimized.

MinSum problem: Given an arrangement A = (S,B) with sensors in S located

in the plane at p1, p2, . . . , pn, find final sensor positions p′1, p
′
2, . . . , p

′
n on the

barriers so that all barriers in B are covered, and
∑n

i=1 d(pi, p
′
i) is minimized.

3.2 Our Results

Throughout the chapter, we consider the barrier coverage problem with sensors of

arbitrary ranges, initially located at arbitrary locations in the plane. In Section 3.3,

we assume that sensors can move to arbitrary positions on any of the barriers. While

feasibility is trivial in the case of one barrier, it is straightforward to show that it is

NP-complete for even two barriers. The NP-completeness of the MinSum problem

for one barrier follows trivially from the result in [CKK+10]. In this chapter, we

show that the MinMax problem is strongly NP-complete even for a single barrier.

We show that this holds both when the cost measure is Euclidean distance and when

it is rectilinear distance.

In light of these hardness results, in the rest of the chapter, we consider a more

restricted but natural movement. We assume that once a sensor has been ordered to

relocate to a particular barrier, it moves to the closest point on a line containing a

barrier. We call this perpendicular movement. Note that it is possible for a sensor that

is not located on the barrier to cover part of the barrier. However, we require final

positions of sensors to be on the line containing the barrier. Section 3.4.1 considers

the case of one barrier and perpendicular movement, while Section 3.4.2 considers

the case of perpendicular movement and multiple parallel barriers. We show that all
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three of our problems are solvable in polynomial time. Finally, in Section 3.5, we

consider the case of perpendicular movement and two barriers perpendicular to each

other. We show that even the feasibility problem is strongly NP-complete in this

case. The NP-completeness result holds even in the case when the given positions of

the sensors have integer values and the sensing ranges of sensors are limited to two

different integer sensing ranges. In contrast, we give an O(n1.5) algorithm for finding

a covering assignment for a natural restriction of the problem that includes the case

when all sensors are located in integer positions and the sensing ranges of all sensors

are of diameter 1. Furthermore, we give a sufficient condition for the problem where

a covering assignment can be calculated in linear time. Finally, we present three

approximation algorithms for maximizing the fraction of the covered segments on the

barriers. Our results are summarized in Table 3.1 below.

Barriers Movement Feasibility MinMax MinSum
one Arbitrary O(n) NPC NPC [CKK+10]
two Arbitrary NPC NPC NPC
one Perpendicular O(n) O(n log n) O(n2)

k parallel Perpendicular O(kn) O(knk+1) O(knk+1)
2 perpendicular Perpendicular NPC NPC NPC

Table 3.1: Summary of our results. We assume sensors are ordered with respect to
the x-coordinates of leftmost points in their coverage areas.

3.3 Arbitrary Final Positions

In this section, we assume that sensors are allowed to relocate to any final positions

on the barrier(s). We consider first the case of a single barrier b. Without loss of

generality, we assume that b is located on the x-axis between (0, 0) and (L, 0) for

some L. The feasibility of barrier coverage in this case is simply a matter of checking
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whether Σn
i=12ri ≥ L. For the MinSum problem, it was shown in [CKK+10] that even

if the initial positions of sensors are on the line containing the barrier, the problem

is NP-complete; therefore the more general version of the problem studied here is

clearly NP-complete. Recently, it was shown in [CGLW12] that if the initial positions

of sensors are on the line containing the barrier, the MinMax problem is solvable in

polynomial time. We proceed to study the complexity of the MinMax problem when

initial positions of sensors can be anywhere on the plane, and the final positions can

be anywhere on the barrier. See Figure 3.2 for an example of the initial placement of

sensors.

Theorem 3.1. Consider an arrangement A = (S, {b}). Let S = {s1, s2, . . . , sn}
be a set of sensors of ranges r1, r2, . . . , rn initially located in the plane at positions

p1, p2, . . . , pn. Let the barrier b be a line segment between (0, 0) and (L, 0). Given

an integer k, the problem of determining if there is a covering assignment such that

the maximum relocation distance (Euclidean/rectilinear) of the sensors is at most k

is strongly NP-complete.

Proof. The problem is trivially in NP; we give here a reduction from the 3-partition

problem [GJ90]. We are given a multiset A = {a1 ≥ a2 ≥ · · · ≥ a3m} of 3m positive

integers such that B/4 < ai < B/2 for 1 ≤ i ≤ 3m and
∑3m

i=1 ai = mB for some B.

The problem is to decide whether A can be partitioned into m triples T1, T2, . . . , Tm

such that the sum of the numbers in each triple is equal to B. We create an instance

of the barrier coverage problem as follows: Let L = mB+m−1, the barrier b be a line

segment from (0, 0) to (L, 0), and let k = L. Place a sensor si of range ai/2 at −ai/2

where 1 ≤ i ≤ 3m. In addition, place m− 1 sensors s3m+1, s3m+2, . . . , s4m−1 of range

1/2 at positions (B+1/2, k), (2B+3/2, k), (3B+5/2, k), . . . , ((m−1)B+(2m−3)/2, k).

See Figure 3.2 for an example. Since L =
∑4m−1

i=1 2ri, all sensors must move to the

barrier in any covering assignment. Observe that the distance from any of the m− 1
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sensors located above the barrier to the barrier is k, and when all of them move this

distance, there are gaps of length B between these sensors on the barrier.

If there is a partition of S into m triples T1, T2, . . . , Tm, the sum of each triple

being B, then there is a solution to the movement of the sensors such that the three

sensors corresponding to triple Ti are moved to fill the ith gap in the barrier b. The

maximal move of the three sensors corresponding to Ti into ith gap is at most L,

and the maximum of the moves of all sensors is k in this case. If such a partition

does not exist, then any covering assignment for the barrier b corresponds to moving

at least one of the sensors above the x-axis by k + 1 (rectilinear distance), and by
√
k2 + 1 > k (Euclidean distance).

It remains to show that the transformation from the 3-partition problem to the

sensor movement problem is polynomial. Since 3-partition is strongly NP-complete

[GJ90], we may assume that the values a1, a2, . . . , a3m are bounded by a polynomial

c(3m)j for some constants c and j. The 3-partition problem can be represented using

O(m logm) bits. Therefore, B ≤ c1m
j and k ≤ c2m

j+1 for some constants c1 and

c2. Our reduction uses n = 4m − 1 sensors. In the corresponding barrier coverage

problem we need O(n log n) bits for the positions and sizes of sensors s1, s2, . . . , sn

and we need O(n log n) bits to represent the position and size of each sensor of size 1.

Thus we need O(n log n) bits to represent the corresponding barrier coverage problem,

which shows that the transformation is polynomial.

By adding one additional sensor at distance > k above the barrier, we can create

an instance of the problem where
∑4m−1

i=1 2ri > L, and the proof remains exactly the

same as that sensor cannot be involved in a covering assignment that has maximum

relocation distance k.

Finally, it is straightforward to see that any given covering assignment can be

verified in polynomial time, completing the proof of strong NP-completeness.
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Figure 3.2: Reduction from 3-partition to the MinMax problem

It is easy to see that when there are two barriers to be covered, even feasibility

of coverage is NP-complete. This can be shown by reducing the Partition problem

[GJ90] to an appropriate 2-barrier coverage problem, as in [CKK+09]. It follows that

k-barrier coverage is also NP-complete.

3.4 Perpendicular Movement: Parallel Barriers

In this section, we assume that all sensors use only perpendicular movement to a

barrier. Furthermore, in the case of several barriers, the barriers are parallel to each

other. Figure 3.3 illustrates an example of such a problem. Without loss of generality,

we assume barriers b1, b2, . . . , bk, k ≥ 1 are parallel to the x-axis. Thus, sensors may

only move in a vertical direction. Let the set of n sensors s1, s2, . . . , sn be initially

located at positions p1, p2, . . . , pn respectively, where pi = (xi, yi). We assume that

the sensors are listed in the order of the leftmost x-coordinates they can cover, i.e.,

x1 − r1 ≤ x2 − r2 ≤ · · · ≤ xn − rn. For simplicity we assume all points of interest

(sensor locations, left/right endpoints of sensor ranges and barriers) are distinct.

Since there are k barriers, there are up to k points on barriers with the same x-

coordinate. We therefore speak of sensors being candidates for x-coordinates: a sensor

s in position p = (x, y) with sensing range r is a candidate sensor for x-coordinate

x′ if x − r ≤ x′ < x + r. Alternatively we say s potentially covers the x-coordinate

x′. Notice that the sensor s potentially covers a half-open interval of x-coordinates;
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this definition simplifies our algorithms. Furthermore, for any interval I on a barrier,

we call it k-coverable iff for every point on I there are at least k distinct candidate

sensors in S. We first consider the simpler case of k = 1.

3.4.1 One Barrier

Without loss of generality, let the barrier b = b1 be the line segment between (0, 0) and

(L, 0). Since the y-coordinate of all points on the barrier are the same, we sometimes

represent the barrier or a segment of the barrier by an interval of x-coordinates. For

technical reasons, we denote the segment of the barrier between the points (i, 0) and

(j, 0) by the half-open interval [i, j).

We first show a necessary and sufficient condition on the sensors for the barrier to

be covered. We give a dynamic programming formulation for the MinSum problem.

We denote the set of sensors {si, si+1, . . . , sn} by Si. If the barrier is an empty interval,

then the cost is 0. If no sensor is a candidate for the left endpoint of the barrier, or

if the sensor set is empty while the barrier is a non-empty interval, then clearly the

problem is infeasible and the cost is infinity. If not, observe that the optimal solution

to the MinSum problem either involves moving sensor s1 to the barrier or it doesn’t.

In the first case, the cost of the optimal solution is the sum of |y1|, the cost of moving

the first sensor to the barrier, and the optimal cost of the subproblem of covering the

interval [x1 + r1, L) with the remaining sensors S2 = S − {s1}. In the second case,

the optimal solution is the optimal cost of covering the original interval [0, L) with
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S2. The recursive formulation is given below:

cost(Si, [a, L)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if L < a

∞ if xi − ri > a or (Si = ∅ and L > a)

min

⎧⎪⎨
⎪⎩

|yi|+ cost(Si+1, [xi + ri, L)),

cost(Si+1, [a, L))
otherwise

Observe that a subproblem is always defined by a set Si and a left endpoint to

the barrier which is given by the rightmost x-coordinate covered by a sensor. Thus

the number of possible subproblems is O(n2), and it takes constant time to compute

cost(Si, [a, L)) given the solutions to the sub-problems. Using either a tabular method

or memoization, the problem can be solved in quadratic time. The same dynamic

programming formulation works for minimizing the maximum movement, except that

in the case when the i-th sensor moves to the barrier in the optimal solution, the cost

is the maximum of |yi| and cost(Si+1, [xi + ri, L)) instead of their sum. A better

approach is to check the feasibility of covering the barrier with the subset of sensors

at distance at most d from the barrier in O(n) time, and find the minimum value of

d using binary search on the set of distances of all sensors to the barrier. This yields

an O(n log n) algorithm for MinMax. This proves the following theorem:

Theorem 3.2. Let s1, s2, . . . , sn be n sensors initially located in the plane at positions

p1, p2, . . . , pn respectively, and let b be a barrier between (0, 0) and (L, 0). The MinSum

problem using only perpendicular movement can be solved in O(n2) time, and the

MinMax problem can be solved in O(n log n) time.

3.4.2 Multiple Parallel Barriers

For simplicity, we explain the case of two barriers; the results generalize to k barriers

as stated in Theorem 3.3. Assume without loss of generality that the two barriers
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to be covered are b1 between (0, 0) and (L, 0) and b2 between (P,W ) and (Q,W ),

0 ≤ P . We shall assume that L ≤ Q, the case L > Q is very similar. We assume that

the sensing ranges of sensors are smaller than half the distance W between the two

barriers, and thus it is impossible for a sensor to simultaneously cover two barriers.

See Figure 3.3 for an example of such a problem.

p1

(0, 0) (L, 0)

s1 p2

p3
p4

p5

p6

s2

s3
s4

s5

s6

(P,W ) (Q,W )

p7s7
p8

p9

s8

s9

Figure 3.3: An example of a barrier coverage problem with two parallel barriers

Since there are two barriers, there are two points on barriers with the same x-

coordinate. We first show a necessary and sufficient condition on the sensors for the

two barriers to be covered. Clearly, since the sensing range of every sensor is smaller

than half of the distance between the two barriers, the barrier coverage problem for

the two parallel barriers b1 and b2 above is solvable by a set of sensors S only if the

interval [0, P ) is 1-coverable, [P, L) is 2-coverable, and [L,Q) is 1-coverable by S. We

proceed to show that this is also a sufficient condition, and give an O(n) algorithm

for finding a covering assignment for two parallel barriers.

Lemma 3.1. Let s1, s2, . . . , sn be sensors located at positions p1, p2, . . . , pn respectively

where pi = (xi, yi) and x1−r1 ≤ x2−r2 ≤ · · · xn−rn. Let b1 between (0, 0) and (L, 0)

and b2 between (P,W ) and (Q,W ), where 0 ≤ P < L ≤ Q, be two parallel barriers

to be covered. If intervals [0, P ) and [L,Q) are 1-coverable, and interval [P, L) is

2-coverable, then a covering assignment that uses only perpendicular movement of the

sensors can be obtained in O(n) time.
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Proof. We give an algorithm to find such a covering assignment. First we assign

sensors to cover b1 between (0, 0) and (P, 0) by repeatedly assigning an arbitrary

candidate sensor to cover the leftmost uncovered point of this interval. Clearly this

is possible, since the interval of x-coordinates [0, P ) is 1-coverable. Let s be the last

sensor that was used in this assignment, of range r, and initially in position (x, y), so

that its final position is (x, 0) where x+ r ≥ P .

x+ r ≥ L; Then we have a single barrier left and the interval of x-coordinates [x +

r,Q) is 1-coverable, so we can use the algorithm of the previous section.

P < x+ r < L; Then since [P, L) was initially 2-coverable, and s is the only un-

available sensor among all candidate sensors for this interval, it follows that

the interval of x-coordinates [P, x + r) is now 1-coverable and [x + r, L) is 2-

coverable. We now have a sub-problem of the same type as the original problem

and proceed to solve it recursively.

x+ r = P ; Then there must be two other sensors that are candidates for the x-

coordinate P . We arbitrarily pick one of these two candidate sensors and assign

it to barrier b1. It follows that the point (P,W ) on barrier b2 must be 1-

coverable, and in fact the initial interval of b2 is 1-coverable. Once again, the

remaining sub-problem can be solved recursively.

Since at every step of the algorithm, one of the sensors is assigned to cover one

of the barriers, in increasing order of the values xi − ri, the algorithm takes O(n)

time.

It is easy to see that the lemma can be generalized for k barriers to show that the

feasibility problem can be solved in O(kn) time. We proceed to study the problem of

minimizing the sum of movements required to perform barrier coverage.
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The dynamic programming formulation given in Section 3.4.1 can be general-

ized for the case of two barriers. The key difference is that in an optimal solution,

sensor si may be used to cover a part of barrier b1 or barrier b2 or neither. Let

xcost(Si, [a1, L), [a2, Q)) denote the cost of covering the interval [a1, L) of the barrier b1

and the interval [a2, Q) of the second barrier with the sensor set Si = {si, si+1, . . . , sn}.
The optimal cost is given by the formulation below:

xcost(Si, [a1, L), [a2, Q)) =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cost(Si, [a2, Q)) if L < a1

cost(Si, [a1, L)) if Q < a2

∞ if xi − ri > min{a1, a2} or (Si = ∅ and Q > min{a1, a2})

min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|yi|+ xcost(Si+1, [xi + ri, L), [a2, Q)),

|W − yi|+ xcost(Si+1, [a1, L), [xi + ri, Q)),

xcost(Si+1, [a1, L), [a2, Q))

otherwise

It is not hard to see that the formulation can be generalized to k barriers; a sensor

si may move to any of the k barriers with the corresponding cost being added to the

solution. Observe that a subproblem is now given by a set Si, and a left endpoint of to

each of the barriers to be covered. The total number of subproblems is O(nk+1) and

the time needed to compute the cost of a problem given the costs of the subproblems

is O(k). Thus, the time needed to solve the problem is O(knk+1). Clearly a very

similar formulation as above can be used to solve the MinMax problem in O(knk+1)

time as well. We have proved the following theorem.

Theorem 3.3. Let s1, s2, . . . , sn be n sensors initially located in the plane at positions

p1, p2, . . . , pn respectively where pi = (xi, yi) and x1 − r1 ≤ x2 − r2 ≤ · · · xn − rn.

Both the MinSum problem and the MinMax problem for k parallel barriers using only

perpendicular movement can be solved in O(knk+1) time.
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The approach used to solve MinMax for a single barrier can be generalized for

two barriers, as shown in the theorem below, getting a better time complexity.

Theorem 3.4. Let s1, s2, . . . , sn be n sensors initially located in the plane at positions

p1, p2, . . . , pn respectively, and let b1 between (0, 0) and (L, 0) and b2 between (P,W )

and (Q,W ) be the two parallel barriers to be covered. The MinMax problem for the

two parallel barriers using only perpendicular movement can be solved in O(n log n)

time.

Proof. We first show that given a maximum distance d, we can decide in linear time

whether a covering assignment exists so that every sensor relocates at most distance

d to its final position. If d < W/2, the sets of candidate sensors for each of the

two barriers are disjoint. We can verify independently the feasibility of covering each

barrier with its set of candidate sensors, as shown in Lemma 3.1.

If d ≥ W/2, we partition sensors in S that can cover any part of the barriers into

the sets A, B, and C where A consists of sensors that are only candidates for barrier

b1 (that is, they are at distance > d from barrier b2), B consists of sensors that are

only candidates for barrier b2, and C consists of candidates for both barriers. We

assign all sensors in set A to barrier B1 and all sensors in set B to barrier B2. This

now leaves a set of uncovered intervals on each barrier. If there is a point x that

is uncovered on either barrier and has no candidate sensors, then barrier coverage

is impossible. If there is a point x that is only uncovered on one barrier and has

a candidate sensor, then we assign the candidate sensor to the barrier. After this

process is completed, we have a set of intervals that are 2-coverable. We now appeal

to Lemma 3.1 to complete the proof.

The optimal value of d can be found using binary search on the set of distances

of all sensors from each of the two barriers, and the algorithm in Lemma 3.1 takes

O(n) time.
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Note that our algorithms for k parallel barriers can be extended for k-barrier

coverage of a single barrier that requires every point on the barrier to be covered by

at least k distinct sensors.

3.5 Perpendicular Movement: Two Perpendicular

Barriers

In this section we consider the problem of covering two perpendicular barriers. Once

again, we assume that sensors can relocate to either of the two barriers, using only

perpendicular movement. Figure 3.4 illustrates an example of such a problem. In

contrast to the case of parallel barriers, we show here that even the feasibility problem

in this case is NP-complete. For simplicity we assume that b1 is a segment on the

x-axis between (0, 0), (L1, 0) and b2 is a segment on the y-axis between (0, 0), (0, L2).

Since the sensors can only employ perpendicular movement, the only possible final

positions on the barriers for a sensor si in position pi = (xi, yi) are p′i = (0, yi) or

p′i = (xi, 0).

We first show that the feasibility problem for this case is NP-complete by giving a

reduction from the monotone 3-SAT problem [Gol87]. Recall that a Boolean 3-CNF

formula f = c1∧c2∧ ...∧cm of m clauses is called monotone if and only if every clause

ci in f either contains only unnegated literals or only negated literals. In order to

obtain a reduction to a barrier coverage problem with two perpendicular barriers, we

first put a monotone 3-SAT formula in a special form as given in the lemma below.

Lemma 3.2. Let f = f1 ∧ f2 be a monotone 3-CNF Boolean formula with n clauses

where f1 and f2 only contain unnegated and negated literals respectively, and every

literal appears in at most m clauses. Then f can be transformed into a monotone

formula f ′ = f ′
1 ∧ f ′

2 such that f ′
1 and f ′

2 have only unnegated and negated literals
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respectively, and f ′ has the following properties:

1. f and f ′ are equisatisfiable, i.e. f ′ is satisfiable if and only if f is satisfiable.

2. All clauses are of size two or three.

3. Clauses of size two contain exactly one variable from f and one new variable.

4. Clauses of size three contain only new variables.

5. Each new literal appears exactly once: either in a clause of size two or in a

clause of size three.

6. Each variable xi of f appears exactly in m clauses of f ′
1, and exactly in m

clauses of f ′
2.

7. f ′ contains at most 3mn clauses.

8. The clauses in f ′
1 (respectively f ′

2) can be ordered so that all clauses containing

the literal xi (xi) appear before clauses containing the literal xj (respectively xj)

for i < j, and all clauses of size three are placed last.

Proof. Let f = f1∧f2 be a monotone 3-CNF Boolean formula, where f1 only contains

unnegated literals and f2 only contains negated literals. Assume the clauses are

numbered from 1 to n, and let m be the maximum number of occurrences of any

literal in f . For each unnegated literal xp that appears in the clause numbered i, we

introduce a new variable xp,i; suppose there are k such variables where 1 ≤ k ≤ m.

If k < m, we also introduce m − k new variables yp,1, yp,2, . . . , yp,m−k. Similarly, for

each negated literal xp that appears in the clause numbered j in f1, we introduce a

new variable xp,j; suppose there are k such variables where 1 ≤ k ≤ m. If k < m, we

also introduce m− k new variables zp,1, zp,2, . . . , zp,m−k.

For each clause ci ∈ f1 of the form (xp ∨ xq ∨ xr), we put the collection of clauses

(xp∨xp,i), (xq∨xq,i), (xr∨xr,i) into f
′
1 and the clause (xp,i∨xq,i∨xr,i) into f

′
2. Similarly
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for each clause cj ∈ f2 of the form (xp ∨ xq ∨ xr), we put the collection of clauses

(xp ∨ xp,j), (xq ∨ xq,j), (xr ∨ xr,j) into f ′
2 and the clause (xp,j ∨ xq,j ∨ xr,j) into f ′

1.

For every literal xp ∈ f1 that occurs k < m times in f1, we add clauses (xp∨yp,1)∧
(xp ∨ yp,2) ∧ · · · (xp ∨ yp,m−k). Similarly, for every literal xp that occurs k < m times

in f2, we add clauses (xq ∨ zq,1) ∧ · · · ∧ (xq ∨ zq,m−k). Finally, let f
′ = f ′

1 ∧ f ′
2. From

the construction of f ′ it is easy to verify that it has Properties 2 to 7 stated in the

lemma. Property 8 follows from Property 2, 3, and 4.

Now we show that f and f ′ are equisatisfiable. First assume f is satisfiable, and

let A be a satisfying assignment for f . We show how to obtain a satisfying assignment

A′ for f ′. For every variable xp in f , A′ uses

(a) the same truth assignment for xp as in A,

(b) the opposite truth value for all new variables xp,i,

(c) the truth value true for every new variable of the type yp,i, and

(d) the truth value false for every new variable of the type zp,i.

To see that A′ satisfies f ′, observe that all clauses of size two in f ′
1 are of the form

(xp ∨ xp,i) or (xp ∨ yp,i) and are clearly satisfied. The only clauses of size three in f ′
1

are of type (xp,i∨xq,i∨xr,i) and correspond to a clause ci = (xp∨xq ∨xr) in f2. Since

A satisfies ci, one of xp, xq, xr must be false. But then one of xp,i, xq,i, xr,i must be

true in A′, and hence the clause (xp,i ∨ xq,i ∨ xr,i) is satisfied. A similar argument can

be made about the clauses in f ′
2.

Next assume that f ′ is satisfiable, and let A′ be a satisfying assignment for f ′. We

claim that taking the assignment for the original variables xp in A′ will also satisfy f .

To see this, consider the clause ci = (xp∨xq∨xr) in f1. In f ′
2 there is a corresponding

clause (xp,i∨xq,i∨xr,i). Since A
′ satisfies this clause, at least one of xp,i, xq,i, xr,i must

be false. Suppose xp,i is false. To satisfy the clause (xp∨xp,i) in f ′
1, the truth value of
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xp in A′ must be true. Thus the clause ci = (xp ∨ xq ∨ xr) is satisfied in f1. A similar

argument can be made about the clauses in f2.

We give an example that illustrates the reduction and the ordering specified in

Property 8.

Example 3.1. Consider 3-CNF formula

f = (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

An equisatisfiable formula f ′ satisfying the properties of Lemma 3.2 is:

f ′ = (x1 ∨ x1,1) ∧ (x1 ∨ x1,3) ∧ (x1 ∨ y1,1) ∧ (x2 ∨ x2,2) ∧ (x2 ∨ x2,3)

∧ (x2 ∨ y2,1) ∧ (x3 ∨ x3,1) ∧ (x3 ∨ x3,2) ∧ (x3 ∨ x3,3) ∧ (x4 ∨ x4,1)

∧ (x4 ∨ x4,2) ∧ (x4 ∨ y4,1) ∧ (x1,4 ∨ x2,4 ∨ x4,4) ∧ (x2,5 ∨ x3,5 ∨ x4,5)

∧ (x1 ∨ x1,4) ∧ (x1 ∨ z1,1) ∧ (x1 ∨ z1,2) ∧ (x2 ∨ x2,4) ∧ (x2 ∨ x2,5) ∧ (x2 ∨ z2,1)

∧ (x3 ∨ x3,5) ∧ (x3 ∨ z3,1) ∧ (x3 ∨ z3,2) ∧ (x4 ∨ x4,4) ∧ (x4 ∨ x4,5) ∧ (x4 ∨ z4,1)

∧ (x1,1 ∨ x3,1 ∨ x4,1) ∧ (x2,2 ∨ x3,2 ∨ x4,2) ∧ (x1,3 ∨ x2,3 ∨ x3,3)

Lemma 3.3. Let s1, s2, . . . , sn be n sensors initially located in the plane at positions

p1, p2, . . . , pn respectively, and let b1 between (0, 0) and (L1, 0) and b2 between (0, 0)

and (0, L2) be the two perpendicular barriers to be covered. Then the problem of

finding a covering assignment using perpendicular movement for the two barriers is

strongly NP-complete.

Proof. It is easy to see that any given covering assignment can be verified in poly-

nomial time. Given a monotone 3-SAT formula f , we use the construction described

in Lemma 3.2 to obtain a formula f ′ = f ′
1 ∧ f ′

2 satisfying the properties stated in

Lemma 3.2 with clauses ordered as described in Property 8. Let f1 have i1 clauses,
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and f2 have i2 clauses, and assume the clauses in each are numbered from 1, . . . , i1

and 1, . . . , i2 respectively. We create an instance P of the barrier coverage problem

with two barriers b1, the line segment between (0, 0) and (2i1, 0) and b2, the line

segment between (0, 0), and (0, 2i2).

For each variable xi of the original formula f we have a sensor si of sensing range

m located in position pi = ((2i−1)m, (2i−1)m), i.e., on the diagonal. See Figure 3.4

for an illustration of the instance of barrier coverage corresponding to the monotone 3-

SAT formula from Example 3.1 above. Each of the variables xi,j, yi,j, zi,j is represented

by a sensor of sensing range 1, denoted si,j, s
′
i,j, and s′′i,j respectively, and is placed

in such a manner that the sensors corresponding to variables associated with the

same si collectively cover the same parts of the two barriers as covered by sensor si.

Furthermore, sensors corresponding to variables that appear in the same clause of size

three cover exactly the same segment of a barrier. A sensor corresponding to a new

variable xi,j that occurs in the pth clause in f ′
1 and in the qth clause in f ′

2 is placed

in position (2p− 1, 2q− 1). For example the sensor s1,3 corresponding to the variable

x1,3 appears in the second clause of f ′
1 and the fifteenth clause of f ′

2, and hence is

placed at position (3, 29). Similarly, the sensor s2,4 corresponding to the variable x2,4

appears in the thirteenth clause of f ′
1 and the fourth clause of f ′

2, and hence is placed

at position (25, 7). A sensor corresponding to variable yi,j which occurs in the �th

clause in f ′
1 is placed in position (2�−1,−1) and sensor corresponding to variable zi,j

which occurs in the �th clause of f ′
2 is placed in position (−1, 2�− 1). It is easy to see

that the reduction is polynomial, and the sensor sizes and border length are linear in

the length of the input to the barrier coverage problem.

Observe that in this assignment of positions to sensors, for any i, there is a one-

to-one correspondence between the line segments of length 2 in b1 and b2 and clauses

in f ′
1 and f ′

2 respectively. In particular, the sensors that potentially cover the line
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Figure 3.4: Barrier coverage instance corresponding to Example 3.1

segment from (2i− 2, 0) to (2i, 0) on the barrier b1 correspond to variables in clause

i of f ′
1. Similarly, the sensors that potentially cover the line segment from (0, 2i− 2)

to (0, 2i) on the barrier b2 correspond to variables in clause i of f ′
2. Thus, by associ-

ating the vertical move of a sensor with an assignment of true to the corresponding

variable of f ′, and the horizontal move of a sensor with an assignment of false to

the corresponding variable of f ′, f ′ is satisfiable if and only if for the corresponding

instance P there exists a covering assignment assuming perpendicular movement.

Since any instance of monotone 3-SAT problem can be transformed into an in-

stance of monotone SAT problem in which no literal occurs more than three times,

it follows from the proof that the problem is NP-complete even when the sensors are

in integer positions and the ranges of sensors are limited to two different sizes 1 and

m ≥ 3. It is also clear from the proof that the perpendicularity of the barriers is

not critical. The key issue is that the order of intervals covered by the sensors in
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one barrier has no relationship to those covered in the other barrier. In the case of

parallel barriers, this property does not hold. The exact characterization of barriers

for which a polytime algorithm is possible remains an open question.

In the following we extend the NP-completeness results further to the case where

sensors have the same sensing ranges. To achieve this, we use a technique that we

call binding of sensors:

Definition 3.1. Given an arrangement A = (S,B) and S ′ ⊆ S, sensors in S ′ are

called bound together iff in any covering assignment of A, all sensors in S ′ move in

the same direction (if any of them moves at all).

Lemma 3.4. Consider the partial arrangement shown in Figure 3.5 and assume that

barrier segments b1,1, b1,2, . . . , b1,6 are potentially covered only by {s1, t2}, {s2, t1} ,

{s3, t1}, {s3, t4}, {s4, t4}, and {s5, t3} respectively. Also assume that b2,1, b2,2, . . . , b2,6

are potentially covered only by {s1, t1}, {s2, t2} , {s3, t2}, {s3, t3}, {s4, t3}, and {s5, t4}
respectively. Then sensors s1, s2, . . . , s5 are bound together.

Proof. Consider a covering assignment c of the arrangement. First we consider the

case where sensor s1 moves down according to c to the bottom border. Since c is a

covering assignment, b2,1 must be covered by some sensor(s) in S moved according to

c. However s1 and t1 are the only sensors that potentially cover b2,1, and therefore

according to c, sensor t1 must move left. Similarly, since b1,2 and b1,3 are potentially

covered only by {s2, t1} and {s3, t1} respectively and t1 moves left, sensors s2 and s3

must move down in c to cover b1,2 and b1,3 respectively. Similarly it can be shown

that sensors t3 must move left to cover b2,4, s5 must move down to cover b1,6, also t4

must move left to cover b2,6, and finally s4 has to move down to cover b1,5.

Similarly it can be shown that in any covering assignment, if s1 moves left then

all s2, ..., s5 need to move left as well. With similar arguments it can be shown that
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if any sensor in {s2, s3, s4, s5} moves then all sensors in {s1, s2, . . . , s5} also move in

the same direction and therefor the sensors are bound together.

b1,1 b1,2 b1,3 b1,4 b1,5 b1,6

b2,1

b2,2

b2,3

b2,4

b2,5

b2,6

s1

s2

s3

s4

s5

t1

t2

t3

t4

Figure 3.5: Bound sensors: In any covering assignment, sensors s1, s2, . . . , s5 always
move in the same direction.

We use this binding gadget in the proof of the following theorem:

Theorem 3.5. Let s1, s2, . . . , sn be n sensors initially located in the plane at positions

p1, p2, . . . , pn respectively, and let b1 between (0, 0) and (L1, 0) and b2 between (0, 0)

and (0, L2) be the two perpendicular barriers to be covered. Then the problem of

finding a covering assignment using perpendicular movement for the two barriers is

strongly NP-complete even if all sensors have unit sensing radius and are located at

integer positions.

Proof. In Lemma 3.3 we showed that the problem is NP-complete when sensors are

allowed to have different sensing ranges. As mentioned before the problem is NP-

complete even if sensors are limited to two sizes 1 and 3. Using the binding technique
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presented in Lemma 3.4, we reduce the problem to one where all sensors have unit

sensing ranges.

Note that in the construction of the clauses in the proof of Lemma 3.3, clauses

are ordered with respect to the old variables and the clauses that contain only new

variables (clauses of size three) are placed last. Therefore the area of the arrangement

can be divided into five disjoint parts:

Area 1 : A rectangular area at the left bottom, that only contains sensors of size 3

located on the diagonal of the area.

Area 2 : The rectangular area on the top of Area 1 that only contains sensors of

unit sensing range.

Area 3 : The rectangular area on the right of Area 1 that only contains sensors of

unit sensing range.

Area 4 : The rectangular area on the bottom of Area 1 that only contains sensors

of unit sensing range.

Area 5 : The rectangular area on the left of Area 1 that only contains sensors of

unit sensing range.

Let A be an arrangement of the problem described above. In the following, we

build an arrangement A′, such that:

1. Every sensor in A′ has unit sensing radius.

2. There exists a covering assignment for A iff there exists a covering assignment

for A′.

Let n′ be the number of sensors in Area 1 of A and i1, i2 denote the number of

clauses of size 3 in f ′
1 and f ′

2 respectively. Let B′ = {b′1, b′2} be the set of barriers in

46



A′ with b′1 being the line segment between (0, 0) and (20n′ + 2i1, 0) and b′2 being the

line segment between (0, 0), and (0, 20n′ + 2i2). We put the sensors of unit sensing

radius in A′ as follows:

For every sensor si in Area 1 of A with sensing radius 3, and using the binding

technique explained in Lemma 3.4, we place a set of sensors of unit sensing radius in

A′ that together replicate the behavior of si. More precisely, for every sensor si in

Area 1 of A located at (xi, yi) we put 18 sensors in A′:

• 4 sensors ei,1, ei,2, ei,3, ei,4 located at (20i−19, 20i−19), (20i−19, 20i−1), (20i−
1, 20i− 19), (20i− 1, 20i− 1) respectively.

• 6 sensors ti,1, ti,2, ti,3, ti,4, ti,5, ti,6 located at (20i− 14, 20i− 18), (20i− 18, 20i−
14), (20i − 8, 20i − 12), (20i − 12, 20i − 8), (20i − 2, 20i − 6), (20i − 6, 20i − 2)

respectively.

• 8 sensors vi,1, vi,2, vi,3, vi,4, vi,5, vi,6, vi,7, vi,8 located at (20i− 17, 20i− 17), (20i−
15, 20i− 15), . . . , (20i− 3, 20i− 3) respectively.

For every sensor si,j in Area 2 of A that corresponds to a variable that occurs in

the pth clause in f ′
1 and qth clause of f ′

2, we put a sensor si,j in A′ at (2�p−1
3
�+ 6p−

2, 14n′ + 2q − 1).

For every sensor si,j in Area 3 of A that corresponds to a variable that occurs in

the pth clause in f ′
1 and qth clause of f ′

2, we put a sensor si,j in A′ at (14n′ + 2p −
1, 2� q−1

3
�+ 6q − 2).

For every sensor s′i,j in Area 4 of A that corresponds to a variable that occurs in

the pth clause in f ′
1, we put a sensor s′i,j in A′ at (2�p−1

3
�+ 6p− 2,−1).

Finally, for every sensor s′′i,j in Area 5 of A that corresponds to a variable that

occurs in the qth clause of f ′
2, we put a sensor s′′i,j in A′ at (−1, 2� q−1

3
�+ 6q − 2).

See Figure 3.6 for a partial example that illustrates the positions of sensors in A′
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corresponding to sensors s1, s1,1, s1,3, s1,4, s
′
1,1, s

′′
1,1, s

′′
1,2 in A. The binding technique

guarantees that all sensors vi,1, vi,2, . . . , vi,8 move in the same direction in a covering

assignment.

. . .

...
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Figure 3.6: Partial example: Barrier coverage instance corresponding to Example 3.1

Next we show that there exists a covering assignment for A′ iff there is a covering

assignment for A. First we assume that there exists a covering assignment c for A
and show that a covering assignment for A′ exists. We move the sensors in A′ such

that both borders b′1 and b′2 are covered as follows: For every sensor in A′ if the sensor

corresponds to a sensor in the Areas 2, 3, 4, or 5 of A we move the sensor as stated for

its corresponding sensor in c. For every sensor vi,j, we move it in the same direction

as si in c. For sensors ti,j we move them in the opposite direction of si in c. We

move all ei,1 and ei,3 to the bottom and all ei,2 and ei,4 to the left. It is easy to verify

that every point on b′1 and b′2 is covered by some sensor in A′ and therefore this is a

covering assignment for A′.
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Second we show that if there exists a covering assignment c′ for A′ then there

exists a covering assignment for A: Since for every i with 1 ≤ i ≤ n′ all sensors

vi,1, vi,2, . . . , vi,8 are bound together they must move in the same direction in c′. We

move the sensor si in A in the same direction as sensors vi,j. For every other sensor

in A we move them in the same direction as in c′ for its corresponding sensor in A′.

Again it is easy to verify that this assignment is a covering assignment for A.

It is clear from the construction that this reduction takes polynomial time and

the theorem follows.

3.5.1 Special Cases

We now turn our attention to restricted versions of barrier coverage of two perpen-

dicular barriers for which we have polytime algorithms.

We call an arrangementA = (S, {b1, b2}), a non-overlapping arrangement if for any

two sensors si, sj ∈ S, the intervals that are potentially covered by s1 and s2 on the

barrier b1 (and b2) are either the same or disjoint. An example of a non-overlapping

arrangement is shown in Figure 3.7. This would be the case, for example, if all sensor

(0, 0) (L1, 0)

(0, L2)

Figure 3.7: A non-overlapping arrangement of sensors. Each interval on the x-axis
and y-axis delineated by dotted lines is represented by a sensor in the corresponding
bipartite graph.
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ranges are of the same diameter equal to 1 and the sensors are in integer positions.

We show below that for a non-overlapping arrangement, the problem of finding a

covering assignment is polynomial.

Theorem 3.6. Let S = {s1, s2, . . . , sn} be a set of n sensors initially located in the

plane at positions p1, p2, . . . , pn and let b1 and b2 be two perpendicular barriers to be

covered. If A = (S, {b1, b2}) is a non-overlapping arrangement, then there exists an

O(n1.5) algorithm that finds a covering assignment for A, using only perpendicular

movement or reports that none exists.

Proof. If there exists a segment of either of the barriers that is not covered by any of

the sensors, then clearly there is no covering assignment. Otherwise, the problem of

finding a covering assignment in this case can be reduced to the problem of maximum

matching in a bipartite graph. Create one node for each sensor and one node for

each segment of each barrier that is potentially covered by a sensor. Since A is

a non-overlapping arrangement, the segments are disjoint and together they cover

both barriers (see Figure 3.7). We put an edge between a node representing a barrier

segment and a node representing a sensor if the sensor can cover the segment. Clearly,

the problem of finding a covering assignment is equivalent to finding a matching

in which each node representing a segment of the barrier is matched with a node

representing a sensor. Since each node representing a sensor has degree two, this can

be done in time O(n1.5) using the Hopcroft-Karp algorithm.

In the following we show another sufficient condition for an arrangement to have

a covering assignment.

Theorem 3.7. Let S = {s1, s2, . . . , sn} be a set of n sensors with same sensing

ranges, initially located in the plane at positions p1, p2, . . . , pn and let b1 and b2 be

two perpendicular barriers to be covered. If b1 and b2 are both 3-coverable, then there

exists a covering assignment for A = (S, {b1, b2}) that can be calculated in O(n) time.
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Proof. The basic idea is to convert A to a maximal matching problem on a bipartite

graph. First, we re-label the sensors based on their x-coordinate. Let s′1, s
′
2, . . . , s

′
n

denote the new labels of the sensors. We divide b1 into m =
⌊
n
2

⌋
disjoint segments

b1,0, b1,1, . . . , b1,m−1 as follows:

• b1,0 = [�−1, �0) where �−1 = 0 and �0 = x′
1 + r.

• For every 0 < i < m, b1,i = [�i−1, �i) where �i = x′
2i+1 + r (if x′

2i+1 + r > |b1| the
segment ends at |b1|).

From the definition of b1,0, b1,1, . . . , b1,m−1 it can be seen that these segments are

disjoint segments starting one after another on b1. As mentioned in the definition of

b1,0 it starts from the origin. Also since 2(m − 1) + 1 = 2m − 1 ≥ n − 2, it can be

seen that b1,m−1 continues to at least the end of b1. Therefore
⋃

0≤i<m b1,i = b1.

Take a non-empty interval b1,i with 0 ≤ i < m. Since b1 is 3-coverable, it is

easy to see that �i−1 is potentially covered by both s′2i+1 and s′2i+2. Also �i must be

potentially covered by s′2i+2. Therefore any point in the interval b1,i is potentially

covered by both s′2i+1 and s′2i+2 (see Figure 3.8)..

Similarly, we relabel sensors with respect to their y-coordinates and partition b2

into segments b2,0, b2,1, . . . , b2,m−1. With a similar argument it can be shown that

these segments are disjoint and
⋃

0≤i<m b2,i = b2. Also any point in the interval b2,i

with 0 ≤ i < m is potentially covered by both s′′2i+1 and s′′2i+2.

Similar to the proof of Theorem 3.6, we make a matching problem in a bipartite

graph as follows: We create one node for each sensor and one node for each segment

bi,j on b1 or b2. For every node corresponding to a segment b1,i we add two edges to

nodes corresponding to sensors s′2i+1 and s′2i+2. Also for every node corresponding to

a segment b2,i we add two edges to nodes corresponding to sensors s′′2i+1 and s′′2i+2.

Note that according to this construction, the degree of every node in the graph,

corresponding to a barrier segment in the arrangement is 2 and the degree of every
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node in the graph, corresponding to a sensor in the arrangement is at most 2. A

maximum matching that matches every nodes corresponding to barrier segments can

be found in linear time and it is easy to see that any such matching corresponds to a

covering assignment of A.

s′1

s′2

s′3

s′4

s′5

s′6

s′2i−1

s′2i

s′2i+1

s′2i+2

b1,0 b1,1 b1,2 b1,i
. . . . . .

. . . . . .

Figure 3.8: Sufficiency of potential 3-coverage.

As shown in Theorem 3.7, if both barriers in an arrangement are 3-coverable

then there exists a covering assignment for the arrangement. In contrast, Figure 3.9

illustrates an arrangement where b1 and b2 are 2 and 3-coverable respectively, and yet

we show that no covering assignment exists for this arrangement: To the contrary

assume that c is a covering assignment of the mentioned arrangement. One of the

sensors in {s1, s2, s3} must move left in c to cover [0, 2] on b2. Let si with 1 ≤ i ≤ 3

denote a sensor that moves left. Hence, both si,1 and si,2 must move down to cover

[3i − 3, 3i − 1] on b1. Consequently, sensors si+3 and si+4 must move left to cover

[2i, 2i + 2] on b2. However, this results in [i + 8, i + 9] on b1 being left uncovered

which contradicts the assumption that c is a covering assignment of the arrangement.

Therefore there is no covering assignment for the arrangement in Figure 3.9.

The existence of a covering assignment for a general assumption of one border

being k-coverable and the other border being k′-coverable, for other values of k and
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Figure 3.9: An example of an arrangement where b1 and b2 are 2 and 3-coverable and
yet there exists no covering assignment for the arrangement.

k′, is an open problem.

3.5.2 Approximation Algorithms

In the previous section we considered the barrier coverage of two perpendicular bar-

riers with sensors limited to perpendicular movements and we showed that even the

feasibility problem is NP-complete. The NP-completeness result implies that the op-

timization problem of maximizing the sum of lengths of the covered segments on the

barriers is NP-hard. In this section we present three approximation algorithms for

maximizing the sum of lengths of the covered segments on the barriers. Our first

algorithm is a trivial observation which has a 1/2 approximation ratio:

Theorem 3.8. Let S = {s1, s2, . . . , sn} be a set of n sensors initially located in the

plane and let b1 and b2 be two perpendicular barriers to be covered. There exists an

O(n log n) approximation algorithm with 1/2 approximation ratio.

Proof. Let c1 and c2 denote the sum of the lengths of segments that are 1-coverable

on b1 and b2 respectively. We simply move all sensors in S down to b1 if c1 ≥ c2 and

we move all sensors left to b2 otherwise.

First, it is easy to see that c1 can be calculated by first sorting sensors with

respect to their x-coordinates in O(n log n) and then calculating the summation of
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the lengths of segments on b1 that are covered by sensors in O(n). The value of c2

can be calculated similarly and therefore the overall running time of the algorithm is

O(n log n).

Second we show that the approximation ratio of the algorithm is 1/2: Let �1 and

�2 respectively denote the sum of lengths of covered segments on b1 and b2 in an

optimal assignment. Clearly, c1 ≥ �1 and c2 ≥ �2 and therefore max(c1, c2) ≥ �1+�2
2

.

However, max(c1, c2) is exactly the sum of the lengths of covered segments according

to our algorithm, and therefore the approximation ratio is at least 1/2.

Note that the above algorithm does not assume any special condition for the

arrangement. However, assuming that both barriers are 1-coverable and furthermore

one of the barriers is k-coverable, we give another algorithm that has an approximation

ratio of 2k−1
2k

:

Theorem 3.9. Let S = {s1, s2, . . . , sn} be a set of n sensors with sensing range r,

initially located in the plane and let b1 and b2 be two perpendicular barriers to be

covered with |b1| = |b2| = L. If one of the barriers is k-coverable and the other one

is 1-coverable then an assignment of sensors that covers at least 2k−1
k

L on the two

barriers can be calculated in O(kn+ n log n) time.

Proof. Without loss of generality we assume b1 and b2 are k-coverable and 1-coverable

respectively and that sensors are ordered with respect to their x-coordinates.

We partition sensors in S into k subsets S1, S2, . . . , Sk defined as follows

Sj = {si ∈ S|i ≡ j (mod k)}

Let Si = S − Si denote the subset of all sensors not in Si and let ci denote the

sum of lengths of covered segments on b2 if all sensors in Si move to b2. Let cj be the
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maximum among all ci with 1 ≤ i ≤ k. We move all sensors in Sj down to b1 and all

sensors in Sj left to b2.

We show that using this algorithm b1 is fully covered and at least k−1
k
L on barrier

b2 is covered. This leads to overall 2k−1
k

L lengths of barriers being covered.

First we show that b1 is fully covered if all sensors in Sj are moved down: Let

p ∈ [0, L] denote a point on b1. Since b1 is k-coverable, point p has at least k

consecutive candidate sensors in the list s1, s2, . . . , sn. Obviously at least one of the

sensors that potentially cover p is in Sj. Therefore if we move all sensors in Sj down,

b1 is fully covered.

Second we show that cj ≥ k−1
k
L. Assume to the contrary that cj <

k−1
k
L. Let c

denote the sum of lengths of segments of b2 that are covered if all sensors are moved

to the left. It is easy to see that every sensor is considered k − 1 times in
∑

0≤i<k ci

and therefore c ≤ 1
k−1

∑
0≤i<k ci. However since cj = max1≤i≤k ci and cj < k−1

k
L,

we obtain c < L which contradicts the assumption that b2 is 1-coverable. Therefore

cj ≥ k−1
k
L.

Finally we show that this algorithm takes O(kn+ n log n) time: To calculate the

partitions S1, S2, . . . , Sk we need to sort the sensors according to their x-coordinates

takes O(n log n) time. Calculating each ci with 1 ≤ i ≤ k can be done by sorting

all sensors in S with respect to their y-coordinates in O(n log n) time, and then

calculating the summation of lengths of segments of b2 that sensors in Si cover in kn

time. Finally, finding the maximum among all ci values with 1 ≤ i ≤ k can be done in

O(k) time. Therefore the overall running time of the algorithm is O(kn+n log n).

For an example of the algorithm consider the arrangement in Figure 3.10. Ac-

cording to our algorithm, k = 2 and S1 = {s1, s3, . . . , s9} and S2 = {s2, s4, . . . , s10}.
Theorem 3.9 implies that sensors in each of S1 or S2 are enough to cover b1. Since

c1 = 17 and c2 = 20, according to our algorithm sensors in S2 are moved left and
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sensors in S1 are moved down. By this assignment 44 units are covered in total on

b1 and b2. However, an optimal algorithm can cover both barriers by moving sensors

in {s2, s3, s6, s7, s9} and {s1, s4, s5, s8, s10} down and left respectively. Therefore the

approximation ratio of our algorithm, on this example is 44
48

= 11
12
.

s1

s2

s3
s5

s6

s7

s8

s9

s10

0

24

240

s4

Figure 3.10: An arrangement where b1 and b2 are 2 and 1-coverable respectively.

Finally, given that there exists a covering assignment for the input arrangement,

our third algorithm has an approximation ratio of at least 3/4.

Theorem 3.10. Let S = {s1, s2, . . . , sn} be a set of n sensors with sensing range

r, initially located in the plane and let b1 and b2 be two perpendicular barriers to be

covered with |b1| = |b2| = L. Given that there exists a covering assignment for the

arrangement A = (S, {b1, b2}), then an assignment of sensors which covers at least

3
2
L on the two barriers can be calculated in O(n2) time.

Proof. Since we assumed that there exists a covering assignment for A, therefore both

b1 and b2 are 1-coverable. Our algorithm works as follows: In the first phase of the

algorithm, for any point p with p ∈ b1, if p has only one candidate sensor then we move

that sensor down to b1 and remove it from S. We continue this until every uncovered

point on b1 has at least 2 distinct candidate sensors in S. Let �1, �2, . . . , �m denote the

continuous maximal intervals on b1 that are yet not covered. Consider an interval �i
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and let Si denote a subset of S such that every sensor in Si potentially covers some

points in �i. Since every point in �i with 1 ≤ i ≤ m has at least two candidate sensor

in Si, similar to our previous algorithm, the subset Si can be partitioned into Si,1 and

Si,2 such that the sensors in each subset can fully cover entire �i if moved down. In

the second phase of the algorithm, we start with segment �1 and choose among S1,1

and S1,2, the subset that its sensors cover more length on the uncovered parts of b2

and move them to the left. We move the other subset down to b1. We do this for

all segments �i and subsets Si,1 and Si,2 with 2 ≤ i ≤ m and update the uncovered

segments on b2 at the end of each iteration.

It is easy to see that this algorithm covers b1 completely. Now we show that if

sensors are moved according to the above algorithm at least L
2
is covered on b2 and

therefore the overall covered length on barriers is 3
2
L.

Let T denote any subset of S and let cTi,j denote the length of b2 that can be

covered by sensors in Si,j and cannot be covered by sensors in T . Without loss of

generality assume that in the second phase of the algorithm, for every iteration i with

1 ≤ i ≤ m, sensors in subset Si,1 are moved left and those in Si,2 are moved down.

Therefore:

c
∪1≤j<iSj,1

i,1 ≥ c
∪1≤j<iSj,1

i,2

Summing over all intervals li with 1 ≤ i ≤ m, we get:

∑
1≤i≤m

c
∪1≤j<iSj,1

i,1 ≥
∑

1≤i≤m

c
∪1≤j<iSj,1

i,2 (3.1)

Also note that since we assumed there exists a covering assignment for A, the sensors

that are moved to b1 in the first phase of the algorithm must also move down in any

covering assignment of A. Therefore sensors in ∪1≤i≤mSi are enough to cover b2 and
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therefore: ∑
1≤i≤m

c
∪1≤j<iSj,1

i,1 +
∑

1≤i≤m

c
(∪1≤j≤mSj,1)∪(∪1≤j<iSj,2)
i,2 = L

However it is easy to see that:

∑
1≤i≤m

c
∪1≤j≤mSj,1∪1≤j<iSj,2

i,2 ≤
∑

1≤i≤m

c
∪1≤j<iSj,1

i,2

and therefore: ∑
1≤i≤m

c
∪1≤j<iSj,1

i,1 +
∑

1≤i≤m

c
∪1≤j<iSj,1

i,2 ≥ L

Combining this with Equation 3.1 we get:

∑
1≤i≤m

c
∪1≤j<iSj,1

i,1 ≥ L

2

This proves the lower bound on the length that is covered by sensors if they are moved

according to the algorithm above.

Finally we show that the running time of the algorithm is O(n2). We first sort

the sensors according to their x-coordinates. This takes O(n log n) time. Then in

the first phase of the algorithm, for every sensor si with 1 ≤ i ≤ n we determine

whether there is a point p on b1 such that si is its only candidate sensor and if so we

move si down. This phase can be done in O(n). Partitioning of sensors into Si,1 and

Si,2 with 1 ≤ i ≤ m can be done similar to the technique explained in the proof of

Theorem 3.10 that takes O(n) time. Finally, for calculating values of ci,j, for every

sensor in S since it only belongs to one ci,j we only calculate the portion it covers

on b2 once which takes O(n). Therefore the overall calculation of all c
∪1≤j<iSi,1

i,j takes

O(n2) time and the total running time of the algorithm is O(n2).
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3.6 Conclusions

It was previously shown that the MinMax barrier coverage problem when the sensors

are initially located on the line containing the barrier is solvable in polynomial time

[CGLW12]. In contrast, our results in this chapter show that the same problem be-

comes strongly NP-complete when sensors of arbitrary ranges are initially located in

the plane, and are allowed to move to any final positions on the barrier. It remains

open whether this problem is polynomial in the case when there is a fixed number

of possible sensor ranges. If sensors are restricted to use perpendicular movement,

the feasibility, MinMax, and MinSum problems are all polytime solvable for the case

of k parallel barriers. However, when the barriers are not parallel, even the feasi-

bility problem is strongly NP-complete, even when sensor ranges are the same. We

presented polynomial time solutions for some special cases and three approximation

algorithms for the problem of covering the maximum possible fraction of the barriers.

Our approximation algorithms assume that sensors have same sensing range, however

they can be extended for the case where sensors have arbitrary sensing ranges.
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Chapter 4

Synchronous Distributed

Algorithms Using Relocatable

Sensors1

Our focus in this chapter is on the barrier coverage problem using ad hoc deployment

of relocatable sensors. We model a barrier with a line segment. We assume sensors

are autonomous with limited visibility range and are initially located on the barrier.

We present two distributed algorithms for barrier coverage.

The rest of this chapter is organized as follows: In Section 4.1 we present a sum-

mary of our results in this chapter. In Section 4.2 we present our model of the network

and barrier, and introduce some terminology and basic facts. In Sections 4.3 and 4.4,

we present our algorithms and prove their correctness and running times. Finally in

Section 4.5, we briefly review our results and discuss some open problems.

1Results of this chapter are also published in [EKK+13]
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4.1 Our results

We present two synchronous local distributed algorithms for the barrier coverage

problem with identical sensors that have constant visibility range and constant move-

ment per time step (the notion of time step is defined more precisely in Section 4.2).

The first algorithm is an oblivious algorithm that achieves barrier coverage in Θ(n2)

time steps on a line segment barrier when sensors have identical sensing ranges and

there are enough sensors to cover the entire barrier. In contrast to the first algorithm,

our second algorithm uses two bits of memory for each sensor to store its state. It

improves the running time of the first algorithm to Θ(n) time steps. Note that any

algorithm that can move only a constant distance in one step requires Ω(n) time

steps in the worst case, and so our second algorithm is asymptotically optimal. Our

algorithms are self-stabilizing: if any sensors were to be removed after coverage has

been achieved, the remaining sensors can re-establish coverage if sufficient number of

sensors remains. We also study the behavior of our algorithms in cases where there

are not enough sensors to cover the entire border.

4.2 Computational Model and Preliminaries

We model the barrier with a line segment of length L ∈ Z covering the interval [0, L]

on the x-axis. A sensor network consists of a set of n sensors S = {s1, s2, . . . , sn}.
Each sensor in the network is a mobile device equipped with a sensing module. We

assume a sensor can sense an intruder or event if and only if it lies within the sensor’s

sensing range. Every sensor also has a communication module that can send and

receive information within its communication range, and a movement module that

enables the sensor to move along the barrier. Let sti = (xt
i, y

t
i , ri, Ri) denote a sensor si

located at (xt
i, y

t
i) at time t with sensing range ri and communication range Ri. In this
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chapter, we assume that all sensors have the same sensing range r, and therefore the

coverage length of a sensor is 2r. We assume that for every sensor r ≤ x0
i ≤ L−r, and

that for i �= j, we have x0
i �= x0

j . For convenience, we assume that x0
1 ≤ x0

2 · · · ≤ x0
n.

We emphasize that while these names and positions of sensors facilitate our proofs,

they are not known to any of the sensors, which are completely anonymous.

We assume a fully synchronous (FSYNC) model where time is divided into globally

agreed time steps. In each step, every sensor executes a Look-Compute-Move cycle.

We assume limited visibility: the visibility radius of the sensor is twice the sensing

range (range in which the sensor can sense intruders). More precisely, sensor sti is able

to see all other sensors located in [xt
i−2r, xt

i+2r]. We say sti sees s
t
j on its right if and

only if 0 < xt
j −xt

i ≤ 2r and sti sees s
t
k on its left if and only if 0 < xt

i −xt
k ≤ 2r. Note

that each sensor has its own conception of left and right, but there is no necessity for

global agreement on this. Observe that a sensor is able to detect the next sensor iff

there is no gap between them. For networked sensors, visibility could be achieved by

exchanging hello messages so long as the communication range is twice the sensing

range. An important additional assumption is that a sensor can sense an endpoint of

the barrier if it lies within its sensing range. Finally, we also assume limited movement:

in a single time step, a sensor can move at most one unit of distance and the time

step is long enough such that this unit distance movement is achievable for sensors.

We study a discrete version of the problem where the coverage length 2r of every

sensor is an integer greater than 1 (2r ∈ N>1). Note that an input with sufficient

sensors to cover the border and sensors at distinct initial positions would necessarily

already cover the border for r = 0.5. Initially every sensor’s coverage area starts

and ends on integer points in the interval [0, L]. In other words, at time t = 0 every

sensor’s position is in the form x0
i = r + m for 0 ≤ m ≤ L − 2r, and m ∈ Z. We

say an algorithm A for barrier coverage terminates on input S at time t if and only
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if when running A on S, no sensor in S moves at any time t′ ≥ t.

We start with some terminology and simple facts about the behavior of algorithms

in our model. We define a gap as a maximal interval on (0, L), where no point in

this interval is within the sensing range of any sensor in the network. Informally, a

pile is a subset of sensors that contains all sensors between two consecutive gaps, or

between a gap and a barrier endpoint.

Definition 4.1. A pile at time t is a maximal set of k ≥ 1 consecutive sensors

P t = {sj ∈ S|i ≤ j ≤ i+ k − 1}t, with xt
j+1 − xt

j ≤ 2r for all i ≤ j < i+ k − 1.

In Figure 4.2 at time t = 2, the piles in the network from left to right are {s1}2,
{s2, s3}2, {s4, s5, s6, s7}2, and {s8}2. For illustration purposes, in the figures, a sen-

sor’s coverage length is represented as a rectangle of length 2r which shows the interval

that the sensor with circular sensing area can cover on the barrier. Also for conve-

nience, two sensors whose coverage lengths overlap are placed at different levels in the

illustration; however, as stated earlier, all sensors are initially placed on the barrier

and can only move on the barrier. Clearly, at any time, sensors in the network are

partitioned into piles that are collectively exhaustive and mutually exclusive.

For any pile P t = {si, si+1, . . . , si+k−1}t, we call sti the leftmost sensor, sti+k−1 the

rightmost sensor, the set

{si+1, si+2, . . . , si+k−2}t the middle sensors and |P t| = k the size of P t. Also we define

gl(P
t) = xt

i− r and gr(P
t) = xt

i+k−1+ r as the leftmost and rightmost points on [0, L]

that are covered by sensors in P t respectively. The length of P t can be calculated as

gr(P
t)− gl(P

t). See Figure 4.1 for an example of a pile.

Let U t = {si, si+1, . . . , sj}t denote a subset of P t. Then there is no gap between

every two consecutive sensors in U t. We define excess of U t denoted e(U t) as the

difference between the maximum length of the barrier that can be covered by sensors

in U t and the actual length of the barrier that is covered by sensors in U t, that is,
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e(U t) = 2r ∗ (j − i)− (xt
j − xt

i).

Lemma 4.1. For any pile P t = {si, si+1, . . . , sj}t and integer k, if i ≤ k ≤ j then:

e(P t) = e({si, si+1, . . . , sk}t) + e({sk, sk+1, . . . , sj}t)

Proof. Using the definition of excess of P t:

e(P t) = 2r ∗ (j − i)− (xt
j − xt

i)

= 2r ∗ (j − k + k − i)− (xt
j − xt

k + xt
k − xt

i)

= 2r ∗ (j − k)− (xt
j − xt

k) + 2r ∗ (k − i)− (xt
k − xt

i)

= e({sk, . . . , sj}t) + e({si, . . . , sk}t)

Based on their excess and length, we distinguish two special types of piles below.

Definition 4.2. A pile P t = {si, si+1, . . . , si+k−1}t is called a heavy pile if it has the

following properties:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e(P t) ≥ 2 if gl(P
t) > 0 and gr(P

t) < L

e(P t) ≥ 1 if gl(P
t) = 0 xor gr(P

t) = L

e(P t) ≥ 0 if gl(P
t) = 0 and gr(P

t) = L

Definition 4.3. A pile P t = {si, si+1, . . . , si+k−1}t is called amedium pile if e(P t) = 1

and |P t| ≥ 3 and gl(P
t) > 0 and gr(P

t) < L.

In Figure 4.2, {s4, s5, s6, s7, s8}0 and {s5, s6, s7, s8}3 are heavy piles, while {s1, s2, s3}0

is a medium pile. For a heavy or medium pile P t, we define ol(P
t) and or(P

t) as

the leftmost and rightmost points on the barrier that are covered by more than one
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sensor from P t:

ol(P
t) = min{x : 0 ≤ x ≤ L and ∃sti, stj ∈ P t and x is covered by both sti and stj}

or(P
t) = max{x : 0 ≤ x ≤ L and ∃sti, stj ∈ P t and x is covered by both sti and stj}

Figure 4.1 shows the values ol, or, gl, and gr on a heavy pile. The following lemma

shows that there exists at least one heavy pile in the network at any time, if there

are enough sensors to cover the entire barrier.

gl ol or gr

gr − orol − gl

2r

Figure 4.1: An example of a (heavy) pile. The shaded areas are gaps.

Lemma 4.2. If there are enough sensors to cover the entire barrier, the network

contains at least one heavy pile.

Proof. Assume at any time t the set of the sensors in the network S is partitioned

into m piles U t
1, U

t
2, . . . , U

t
m. Since the number of sensors is enough to cover the entire

barrier, it is easy to see that
∑m

i=1 e(U
t
i ) is at least equal to the number of gaps on

the barrier. We also know that there is a gap between the covered areas of every two

consecutive piles. Therefore there are at least m− 1 gaps on the barrier between the

piles. Consider the left and right endpoints of the barrier:

Both points are covered by sensors.

If both endpoints are covered by the same pile, we have a single pile in the

network which is heavy. Without loss of generality assume U t
1 and U t

m are two

piles covering the border endpoints. If e(U t
1) > 0 (e(U t

m) > 0), then U t
1 (U t

m) is
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a heavy pile. If e(U t
1) = e(U t

m) = 0, since there are m − 1 gaps on the barrier,∑m−1
i=2 e(U t

i ) ≥ m − 1. Therefore there is at least one pile U t
i , with 1 < i < m

where e(U t
i ) > 1 and hence U t

i is a heavy pile.

Only one of the points is covered by a sensor.

Without loss of generality let U t
1 be the heavy pile covering the endpoint of the

barrier. If e(U t
1) > 0, then U t

1 is a heavy pile. Otherwise e(U t
1) = 0 and since

there are m gaps on the barrier,
∑m

i=2 e(U
t
i ) ≥ m. Therefore there is at least

one pile U t
i , and 1 < i ≤ m where e(U t

i ) > 1 and hence U t
i is a heavy pile.

Neither of the points is covered by any sensor.

There arem+1 gaps on the barrier and therefore
∑m

i=1 e(U
t
i ) ≥ m+1. Therefore,

we know there is at least one pile U t
i and 1 ≤ i ≤ m where e(U t

i ) > 1 and hence

U t
i is a heavy pile.

4.3 An Oblivious Distributed Algorithm for Bar-

rier Coverage

In this section, we describe an oblivious distributed algorithm for barrier coverage

and prove that it terminates in Θ(n2) steps. As shown in Algorithm 4.1, in each step,

every sensor that senses another sensor on one side and a gap on the other side moves

one unit toward the gap. An example of this algorithm is shown in Figure 4.2.

Algorithm 4.1 Oblivious algorithm for barrier coverage

Every sensor si ∈ S at the beginning of every step does the following:
if si sees another sensor on one side and there is a gap on its other side then
si moves one unit toward the gap during this step

end if
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Figure 4.2: Algorithm 4.1 example, r = 1

Next we prove the correctness of Algorithm 4.1. We start with some lemmas

that show the behavior of heavy and medium piles. First we establish a relationship

between piles in consecutive steps.

Definition 4.4. We call U t−1
1 the parent of U t

2 and U t
2 is a child of U t−1

1 if and only

if ⎧⎪⎨
⎪⎩

U t
2 contains all sensors in U t−1

1 if |U t−1
1 | ≤ 2

U t
2 contains all middle sensors in U t−1

1 if |U t−1
1 | > 2

In Figure 4.2, the pile {s5, s6, s7, s8}3 is a child of the pile {s4, s5, s6, s7}2. Observe

that a heavy or medium pile at time t can be the child of two or more heavy piles at

time t−1. The following technical lemmas show that heavy and medium piles cannot

appear out of nowhere, they must always have one or more parents in the previous

step.

Lemma 4.3. Let P t+1 be a heavy or medium pile at time t + 1 and U t be a pile at

time t. If P t+1 contains at least two sensors from U t then U t is a heavy or medium

pile and a parent of P t+1.
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Proof. Let si and sj be the leftmost and rightmost sensors in U t ∩ P t+1 respectively.

First we show that U t is a parent of P t+1. If {si, sj} are the leftmost and rightmost

sensors of U t then P t+1 contains all sensors of U t. Otherwise one of {si, sj} is a

middle sensor of U t, and since middle sensors of a pile do not move P t+1 contains all

middle sensors of U t. In both cases, U t is a parent of P t+1.

Second we show U t is either a heavy or medium pile. We consider the possibilities

for movement of sti and stj. Since s
t
i and stj are both are in the same pile U t, either sti

moves to the left or it does not move. Similarly either stj moves to the right or does

not move at all. Therefore all possible cases are as follows:

sti and stj move to the left and right respectively:

It can be seen that e(U t) = e({stk|i ≤ k ≤ j}) = 2 + e({st+1
k |i ≤ k ≤ j}) ≥ 2

and hence U t is a heavy pile.

sti moves to the left and stj does not move:

Since sti moves left e(U t) ≥ e({stk|i ≤ k ≤ j}) = 1 + e({st+1
k |i ≤ k ≤ j}) ≥ 1.

Also since stj does not move either j = n (it is the rightmost sensor in the

network and reached the right end of the barrier) or stj is a middle sensor of U t.

If j = n then U t is a heavy pile. If not, then stj is a middle sensor of U t, and

|U t| ≥ 3 and is a medium pile. Thus U t is a heavy pile or a medium pile.

stj moves to the right and sti does not move:

This case is similar to the previous case and either U t is either a heavy pile or

a medium pile.

neither sti nor stj move:

Since sti does not move, either it is the leftmost sensor in the network and

reached the left end of the barrier or it is the leftmost middle sensor of U t.

In both cases it is the leftmost sensor of P t+1. Similarly st+1
j is the rightmost
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sensor of P t+1. Therefore P t+1 ⊆ U t and U t is either a heavy or medium pile.

We have shown that in all cases U t is either a heavy or a medium pile and a parent

of P t+1.

Lemma 4.4. Any heavy or medium pile P t+1 at time t + 1 with t ≥ 0 is a child of

one or more heavy or medium piles at time t.

Proof. First consider the case where gl(P
t+1) > 0 or gr(P

t+1) < L. Since P t+1 is a

heavy or medium pile, we have |P t+1| ≥ 2. Let st+1
i and st+1

i+1 denote two consecutive

sensors of P t+1 such that e({si, si+1}t+1) ≥ 1. The existence of such two sensors

is guaranteed since P t+1 is either a heavy or medium pile with gl(P
t+1) > 0 or

gr(P
t+1) < L. Let U t

1 and U t
2 denote the piles containing sti and sti+1. One of the

following two cases holds:

U t
1 = U t

2:

Therefore {si, si+1} ⊆ P t+1 ∩ U t
1 and by Lemma 4.3, U t

1 is a heavy or medium

pile and a parent of P t+1.

U t
1 �= U t

2:

Since e({si, si+1}t+1) ≥ 1, sensors sti and sti+1 move to the right and left respec-

tively and therefore it can be seen that e({si, si+1}t+1) = 1. Since P t+1 is a

heavy or medium pile, it must contain at least one other sensor. Without loss

of generality assume st+1
i+2 ∈ P t+1. Since sti+1 moves to the left therefore sti+1 and

sti+2 belong to the same pile U t
2. By Lemma 4.3, U t

2 is a heavy or medium pile

and a parent of P t+1.

Second consider the case where gl(P
t+1) = 0 and gr(P

t+1) = L. In this case P t+1

contains all sensors in the network. Take any heavy pile U t (Lemma 4.2 guarantees

the existence of such a pile); clearly U t is a parent of P t+1.
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Additionally, it follows from the definition of a parent pile that a pile can be a

parent to at most one pile in the next step. Thus, the number of heavy and medium

piles in the network can never increase. We now proceed to show that the total excess

in the heavy and medium piles is guaranteed to decrease within 2n − 1 steps. The

following technical lemma is useful in some of the proofs below.

Lemma 4.5. Let U t be a heavy or medium pile with a heavy or medium pile child

P t+1, and let sti and st+1
k be the rightmost sensor of U t and P t+1 respectively. If P t+1

is not a child of V t, the next medium or heavy pile, if any, to the right of U t, then:

e({si−1, . . . , sk}t+1) ≤ e({si−1, si}t)

Proof. First note that sensor sti−1 does not move to the right. We consider the pos-

sibilities for k (see Figure 4.3):

k = i− 1 : Then sti was dropped from the pile, and e({si−1, si}t) ≥ e({si−1}t+1) = 0.

k = i : Since sti does not move to the left, therefore e({si−1, si}t+1) ≤ e({si−1, si}t).

k = i+ 1 : Then either the next pile after U t was of size one and sensor sti+1 does

not move, in which case e({si−1, si, si+1}t+1) ≤ e({si−1, si}t)−1 or the next pile

was of size at least two, and sti+1 separated from it and moved left to join P t+1.

If it did not create an overlap with st+1
i (recalling that sti moved right) , then

e({si−1, si, si+1}t+1) ≤ e({si−1, si}t) − 1. If instead it created an overlap with

st+1
i then e({si−1, si, si+1}t+1) ≤ e({si−1, si}t).

k = i+ 2 : In this case, since P t+1 is not a child of the next heavy or medium pile

to the right of U t, it must be that si+1 is a singleton pile, followed by a gap of

size one and sti+2 separates from its pile to move left to join P t+1. In this case,

e({si−1, . . . , si+2}t+1) ≤ e({si−1, si}t)− 1.
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Figure 4.3: The different possibilities for the rightmost sensor st+1
k .

k > i+ 2 : Then P t+1 contains two sensors from V t and by Lemma 4.3, is a child of

V t, a contradiction.

Clearly the same arguments hold for sensors at the left endpoint of U t:

Corollary 4.1. Let U t be a heavy or medium pile with a heavy or medium pile child

P t+1, and let sti and st+1
k be the leftmost sensor of U t and P t+1 respectively. If P t+1

is not a child of V t, the next medium or heavy pile, if any, to the left of U t, then:

e({sk, . . . , si+1}t+1) ≤ e({si, si+1}t)

Next we show that if two or more heavy or medium piles merge into one child,

the excess of the child is strictly less than the combined excess of the parents, while

if a heavy or medium pile has a single parent, its excess cannot be more than that of

its parent.

Lemma 4.6. Let P t+1 be a heavy or medium pile. If P t+1 has k ≥ 1 heavy or medium

pile parents {U t
1, . . . , U

t
k}, then e(P t+1) ≤ Σk

j=1e(U
t
j )− (k − 1).

Proof. Let sti and stj be the leftmost and rightmost sensors of U t
1 and U t

k respectively.

Lemma 4.5 and Corollary 4.1 imply that movements of sensors to the left of sti+1
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and stj−1 do not add to the excess of P t+1 relative to its parents. Thus, we consider

only the difference in excess between {si+1, . . . , sj−1}t+1 and {si+1, . . . , sj−1}t. Recall
that the excess of a set of sensors is the difference between capacity of the pile and

the length of barrier covered by the set. The two sets contain the same sensors,

therefore their capacities are the same. However, the length of the barrier covered

by {si+1, . . . , sj−1}t+1 is at least k − 1 more than the length of barrier covered by

{si+1, . . . , sj−1}t, since the total lengths of gaps between the parents is at least k− 1.

The lemma follows.

We claim that a heavy pile with a single parent cannot have a medium pile parent.

For heavy piles with excess ≥ 2, this follows immediately from Lemma 4.6. A heavy

pile with excess 0 contains all sensors in S and must have a heavy pile parent, since

by Lemma 4.2, there exists a heavy pile in the previous step. Consider a heavy pile

P t+1, with excess 1 and a single parent that is a medium pile U t. Assume without

loss of generality that gr(P
t+1) = L, and let sti be the rightmost sensor of U t. Using

a case analysis similar to the proof of Lemma 4.5, it is easy to see that gr(P
t+1) = L

implies that the rightmost sensor of P t+1 must be either st+1
i or sti+1 with sti+1 being

a singleton sensor. In both these cases, it is easy to see that e(P t+1) = e(U t)− 1 = 0,

which contradicts the fact that P t+1 is a heavy pile with excess one. We conclude

that the single parent of a heavy pile must be a heavy pile itself.

We proceed to show that while the excess of a heavy pile with a single parent is

not necessarily smaller than its parent, some notion of progress in terms of the excess

is in fact achieved.

Lemma 4.7. Let P t be a heavy pile that does not cover the entire barrier. If P t is

the only heavy pile parent of heavy pile P t+1, then one of the following must hold:

(i) t is an excess-reducing step: e(P t+1) < e(P t)

72



(ii) t is a pile-maintaining step: e(P t+1) = e(P t) and one of the following is true:

(a) ol(P
t+1) = ol(P

t) < or(P
t) < or(P

t+1) and or(P
t+1) = gr(P

t+1)− 2r + 1

(b) gl(P
t+1) + 2r − 1 = ol(P

t+1) < ol(P
t) < or(P

t) and or(P
t) = or(P

t+1)

(c) gl(P
t+1) + 2r − 1 = ol(P

t+1) < ol(P
t) < or(P

t) and or(P
t) < or(P

t+1) =

gr(P
t+1)− 2r + 1

(iii) t is a pile-shortening step: e(P t+1) = e(P t) and or(P
t+1) = or(P

t) and

ol(P
t+1) = ol(P

t) and |P t+1| < |P t|

Proof. Let sti and stj be the leftmost and rightmost sensors of P t respectively, and

let st+1
p and st+1

q be the leftmost and rightmost sensors of P t+1 respectively. Assume

that e(P t+1) = e(P t), that is, t is not an excess-reducing step. Then from the proof

of Lemma 4.5, it can be seen that only one of two cases is possible for the rightmost

sensor of P t+1. Either q = j − 1, that is, stj is dropped from the pile in which case

or(P
t+1) = or(P

t), or q = j + 1 and stj+1 is added to the pile so that there is an

overlap between st+1
j and st+1

j+1, and or(P
t) < or(P

t+1) = gr(P
t+1)− 2r + 1. Similarly

at the left end of the pile, either p = i+1, that is, sti is dropped from the pile in which

case ol(P
t+1) = ol(P

t), or p = i − 1 and sti−1 is added to the pile so that there is an

overlap between st+1
i−1 and st+1

i with gl(P
t+1) + 2r − 1 = ol(P

t+1) < ol(P
t). It is now

easy to see that if a sensor is dropped at one endpoint, and not added at another,

then t is a pile-shortening step, while if a sensor is added at either endpoint, then t

is a pile-maintaining step.

Theorem 4.1. Given any input of n sensors with enough sensors to cover the barrier

(n ≥ L/2r), Algorithm 4.1 terminates in O(2rn2) steps with the whole barrier fully

covered.

Proof. Let X(t) be the total heavy and medium pile excess at time t. Then it follows

from Lemma 4.6 that X(t + 1) ≤ X(t). We prove that as long as the barrier is
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not completely covered, this quantity must in fact decrease within at most 2n − 1

steps. Assume for the purpose of contradiction that t is a step when the barrier is

not completely covered and X(t+2n− 1) = X(t). Then Lemma 4.6 implies that the

number of heavy and medium piles at time t + 2n − 1 is the same as the number of

heavy and medium piles at time t. Additionally, every medium or heavy pile at time

t+ 2n− 1 has a unique ancestor at every step in the time interval [t, t+ 2n− 2]. Let

P t+2n−1 be a heavy pile; we denote its unique heavy pile ancestor at time i as P i for

t ≤ i ≤ t + 2n − 2. Since X(t + 2n − 1) = X(t), it follows from Lemma 4.6 that

e(P t) = e(P t+i) for 0 ≤ i ≤ 2n − 1. Lemma 4.7 implies that for every t′ such that

t ≤ t′ < t + 2n − 1, step t′ is either a pile-maintaining step or a pile-reducing step.

Since |P t| ≤ n, there must exist at least one pile-maintaining step; let T be the first

pile-maintaining step in the time interval [t, t+ 2n− 2].

Without loss of generality assume that or(P
T+1) > or(P

T ). Then by Lemma 4.7,

or(P
T+1) = gr(P

T+1) − 2r + 1. Then T + 1 cannot be a pile-reducing step, and by

assumption, it cannot be an excess-reducing step. Therefore T + 1 is also a pile-

maintaining step. The same argument can be repeated for every step from T to

t + 2n − 2, proving that they must be all be pile-maintaining steps. However, in

each such pile-maintaining step t′, P t′ acquires a new rightmost sensor, and this can

happen at most n− 2 times. We conclude that T ≥ t+ n+ 1. Since T was the first

pile-maintaining step in the time interval [t, t+ 2n− 2], it must be that every t′ such

that t ≤ t′ < T was a pile-shortening step. However, since |P t| ≤ n, there can be at

most n consecutive pile shortening steps. Thus, T ≤ t+ n, a contradiction. We have

proved that X(t + 2n − 1) < X(t) for any time t that the barrier is not completely

covered.

Therefore, either the barrier is completely covered at time 2n i or X(2n i) ≤
X(0)− i. On any input of n sensors, X(0) is O(2rn). It follows that the barrier must
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be completely covered in O(2rn2) steps.

Theorem 4.2. There exist inputs of n sensors with n ≥ L
2r

where the running time

of Algorithm 4.1 is Ω(n2).

Proof. We claim that Algorithm 4.1 takes Ω(n2) time on the input shown in Fig-

ure 4.4.

· · ·· · ·s2p−1

s2p−2

s0 s4p−1

s1
s2 s2p s2p+1 s4p−2

Figure 4.4: A worst case input for Algorithm 4.1

Call Si the arrangement of n = 4p sensors defined as follows:

• Start with a heavy pile of 2p− i sensors with their left ends starting at consec-

utive positions 0 to 2p− i− 1.

• then a gap of size 1 followed by i piles of two sensors of excess 1 separated by

gaps of size 1.

• then a gap of 1 followed by (a) p − i/2 piles of two sensors and zero excess,

separated by gaps of size 2, if i is even and (b) p− (i− 1)/2 piles of two sensors

and zero excess, separated by gaps of size 2, and finally a single sensor if i is

odd.

The arrangement S0 is shown in Figure 4.4. We consider the time taken by

Algorithm 4.1 on input S0. It is easy to see that the final arrangement must be a pile

of 4p sensors of excess 0, and the sensor initially at position 1 (the second left-most

sensor) must move in any solution. However, we claim that in Algorithm 4.1, this

sensor cannot move until time 8p2 − 10p + 2, thus giving a Ω(n2) lower bound for

Algorithm 4.1. For convenience we number the sensors in the heavy pile thus: the

leftmost sensor is labelled 2p − 1, the next sensor is labelled 2p − 2 and so forth,
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until the rightmost sensor in the heavy pile is labelled 0. We prove by induction

that sensor i in the heavy pile moves for the first time at time ti = 2i2 + 3i and

the arrangement at this time is Si. The basis is clearly true since sensor 0 moves at

step 0 and the initial arrangement is S0. For the inductive step, after sensor i moves

at time ti, observe that there will be 2i + 1 pile-maintaining steps, followed by an

excess-reducing step, followed by 2i+3 pile-reducing steps to reach arrangement Si+1,

thus ti+1 = ti + 4i+ 5 = 2(i+ 1)2 + 3(i+ 1) as desired.

So far we considered the case where initially there exist enough sensors to cover

the border. In the following we study the behaviour of Algorithm 4.1 in cases where

the number of sensors is not sufficient to cover the entire border.

First we define some new notation. A non-singular pile (NSP) is a pile which

contains more than one sensor while a non-singular gap (NSG) is a gap with length

greater than one. Note that if all piles in the network are singular Algorithm 4.1

terminates.

As shown in the next lemma, for n in a certain range, Algorithm 4.1 never termi-

nates.

Lemma 4.8. Given any input of n sensors with L+1
2r+1

< n < L
2r
, Algorithm 4.1 never

terminates.

Proof. First we show that at any time t ≥ 0 there exists an NSP. Assume to the

contrary that at some time t every pile contains exactly one sensor. Since there is

a gap between any two sensors, the distance between the leftmost end of st1 and the

rightmost end of stn is at least 2rn+ n− 1 > 2r(L+1)
2r+1

+ L+1
2r+1

− 1 = L, a contradiction,

since all sensors are initially entirely in the interval [r, L − r] and can never move

outside this interval.

Let P t denote an NSP at time t. Clearly, since n < L/2r, there must be a gap

either to the right or to the left of P t. Let sti be the rightmost sensor of P t with a
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gap on its right (the case where there is a gap on the left of P t is symmetric). Thus,

in Algorithm 4.1, sensor sti must move to the right and thus the algorithm does not

terminate at time t.

Now we consider the case where n ≤ L+1
2r+1

. We show that Algorithm 4.1 terminates

in this case. Another notation that we need in our proofs is identically arranged time

steps:

Definition 4.5. Let t1 and t2 with t1 �= t2 denote two distinct time steps. t1 and t2

are called identically arranged iff for every sensor si its position at time t1 and t2 are

the same; or more formally:

∀si ∈ S xt1
i = xt2

i (4.1)

Lemma 4.9. On any input of sensors if Algorithm 4.1 does not terminate, there

exist two distinct identically arranged time steps t1 and t2 such that arrangement of

sensors at t1 (and t2) contains at least one NSP.

Proof. Clearly, if the algorithm does not terminate, there must be an NSP in every

time step. The existence of identically arranged time steps is straightforward since

the number of sensors and grid positions on the border are finite.

Lemma 4.9 implies that for any sensor si ∈ S and a time step t with t1 ≤ t < t2 if

sti moves to the right (left) then there exists a time step t′ such that t1 ≤ t′ < t2 and

st
′
i moves to the left (right).

Lemma 4.10. Let t1 and t2 denote two identically arranged time steps with t2 > t1

and let gt1 be a gap at time t1. Also let sensors st1i and st1i+1 denote the rightmost and

leftmost sensors on the left and right of gt1 respectively (if any). If there exists an

NSP in the arrangement at time t1, then there exists a time step t′ with t1 ≤ t′ < t2

such that either st
′
i moves to the right or st

′
i+1 moves to the left.
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Proof. We write the proof for the case where there exists an NSP on the left of st1i .

The proof for the other case is symmetric. For the sake of contradiction we assume

that si+1 does not move to the left in any time step between t1 and t2, also si does

not move to the right at any time step before t′ and show that st1i moves to the right

at t′.

Let P t1
1 denote an NSP on the left of st1i (see Figure 4.5). Let st1i1 denote the

rightmost sensor of P t1 . Obviously 1 ≤ i1 ≤ i and there exists a gap on the right

of st1i1 . Therefore st1i1 moves to the right. Lemma 4.9 implies that sτ1i1 moves to the

left for some time step τ1 with t1 ≤ τ1 < t2. Consider time step τ1. According to

Algorithm 4.1, a sensor moves to the left iff it is the leftmost sensor of some NSP. Let

P τ1
2 denote the NSP that contains sτ1i1 and let sτ1i2 denote the rightmost sensor of P τ1

2 .

It is easy to see that i1 < i2 ≤ i. Therefore sτ2i2 moves to the right. Inductively it can

be seen that at some time τk = t′ sensor si becomes the rightmost sensor of P τk
k and

since there is a gap to its right it moves to the right and the proof is complete.

· · · · · ·sisi1 si+1

gt1P t1
1

Figure 4.5: An example of sensors at time t1 with a gap and an NSP.

Lemma 4.11. Running Algorithm 4.1, if n ≤ L+1
2r+1

then there exists no pair of time

steps t1, t2 with t1 < t2 such that t1 and t2 are identically arranged and arrangement

of sensors at t1 contains at least one NSP.

Proof. We consider the following exhaustive cases at time t1:

- There exists a gap of size greater than two

- At least one of the border endpoints is not covered by any sensor

- All gaps are of size either one or two and both border endpoints are covered
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Consider the first case. Let gt1 be a gap of size greater than two at time t1 and let

st1i and st1i+1 denote the rightmost and leftmost sensors on the left and right of gt1

respectively. There exists an NSP either on the left or on the right of gt1 therefore

Lemma 4.10 implies that at some time step t′ with t1 ≤ t′ < t2 either s
t′
i moves to the

right or st
′
i+1 moves to the left and therefore xt′

i+1 − xt′
i < xt1

i+1 − xt1
i (the length of g

reduces). Observe that in running Algorithm 4.1, the length of a gap cannot increase

to any value more than 2. Therefore it is not possible that length of gt2 is the same

as the length of gt1 which implies that t1 and t2 are not identically arranged.

Considering the second case, similar to the first case the length of the gap adjacent

to the uncovered endpoint at time t1 will reduce at some time t1 ≤ t′ < t2 and

according to Algorithm 4.1 it cannot increase after that. Therefore the length of the

gap at time t2 is strictly less than the length of the gap at time t1 and t1 and t2 are

not identically arranged.

Finally consider the case where all gaps at time t1 are of size either one or two

and both border endpoints are covered. Let m1 and m2 denote the number of gaps of

length 1 and 2 respectively. Then the total length of gaps is clearly m1 + 2m2. Note

that n ≤ L+1
2r+1

implies that n− 1 ≤ L− 2rn ≤ total length of gaps and therefore:

n− 1 ≤ 2m2 +m1 (4.2)

Also let p and p′ denote the number of piles and NSPs at time t1. It can easily

be seen that p ≤ n − p′ (equality holds when all NSPs contain exactly two sensors).

Also since there is exactly one gap (either singular or non-singular) between every

two piles:

m1 +m2 = p− 1
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and hence

m1 +m2 ≤ n− p′ − 1 (4.3)

Finally, Eq. 4.2 and Eq. 4.3 implies that:

p′ ≤ m2 (4.4)

Now that we proved that the number of NSGs in the network is at least equal to

the number of NSPs, two sub-cases are possible at time t1:

- There exists an NSG in the network such that either there is no NSP to its left

or no NSP to its right

- There exist two NSGs in the network such that there is no NSP between them

In the following we show that in both cases t1 and t2 cannot be identically arranged.

Assume to the contrary.

First consider the sub-case where there exists an NSG g at time t1 with no NSP

on the left of it (proof for the case where there exists no NSP on the right of gt1 is

symmetric). Let st1i+1 denote the leftmost sensor on the right of gt1 . Since there is

an NSP on the right of st1i+1, Lemma 4.10 implies that st
′
i+1 moves to the left with

t1 ≤ t′ < t2. Therefore sensor st
′′
i+1 should move to the right at some time t′′ with

t < t′′ < t2. For st
′′
i+1 to move right there should be no gap between st

′′
i and st

′′
i+1 at

time t′′ and therefore:

xt′′
i > xt1

i

Therefore st
′′
i is located at xt1

i + 1 at some time between t1 and t′′. However for

this move to happen si−1 must be located at xt1
i − 2r and therefore at xt1

i−1 + 1 at

some time step between t1 and t2. Inductively, this implies that s1 must be located

at xt1
1 + 1 at some time step between t1 and t2 which is impossible since according to
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Algorithm 4.1 sensor s1 never moves to the right.

· · ·si+1· · ·
No NSP

gt1
sis1

Figure 4.6: Sub-case where there exists an NSG with no NSP to its left

Second we consider the case where there exist two consecutive NSGs with no NSP

between them. Let g1 and g2 denote two NSGs with no NSPs between them and g1

is on the left of g2. Let s
t1
i , s

t1
i+1, . . . , s

t1
j with i ≤ j denote the sensors between g1 and

g2. Since there exists an NSP on the left of st1i Lemma 4.10 implies that either si−1

moves to the right or si moves to the left at some time step between t1 and t2. In

both cases there must exist a time step between t1 and t2 such that si is located at

xt1
i − 1.

Similarly since there is an NSP on the right of sj, sensor sj should be located at

xt1
j +1 at some time step between t1 and t2. This implies that sj−1 must be at xt1

j−1+1

at some time step between t1 and t2. Inductively, si must be at xt1
i + 1 at some time

step between t1 and t2 (see Figure 4.7.

· · ·si
No NSPs

g1
sj

g2

si

si

t1

t′

t′′

t2 si

Figure 4.7: Sub-case where there exists two NSGs with no NSP between them

Now let t′ and t′′ denote the last time steps before t2 that si is located at xt1
i − 1

and xt1
i + 1 respectively. Obviously t′ �= t′′. If t′ < t′′, for st

′′
i to be located at xt1

i + 1

sensor si−1 must be located in xt1
i−1 +2 at some time step ≥ t′. For st2i−1 to be located

at xt1
i−1 sensor si must be located at xt1

i − 1 at some time step between t′ + 1 and t2
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which contradicts the assumption that t′ is the last time step that st
′
i is located at

xt1
i − 1. The case where t′′ < t′ similarly leads to a contradiction.

Theorem 4.3. For any input of n sensors, Algorithm 4.1 terminates if and only if

n ≤ L+1
2r+1

or L
2r

≤ n.

Proof. Theorem 4.1 and Lemma 4.8 describe the behavior of the algorithm when

n > L+1
2r+1

. The proof of termination for the case where n ≤ L+1
2r+1

is straightforward

from Lemma 4.9 and Lemma 4.11.

Finally we show that there exists an input arrangement where Algorithm 4.1

takes Ω(n) steps to terminate while clearly an optimal algorithm needs only 1 step;

see Figures 4.8.

......

t = 0

t = 1

t = 2

t = n− 3

t = n− 2

· · ·
· · ·
· · ·

· · ·
· · ·

s1
s2

s3 s4 s5 sn−2 sn−1 sn

s1 s2
s3

s4 s5 sn−2 sn−1 sn

s1 s2 s3
s4

s5 sn−2 sn−1 sn

s1 s2 s3 s4 s5 sn−2
sn−1 sn

s1 s2 s3 s4 s5 sn−2 sn−1 sn

Figure 4.8: An example where Algorithm 4.1 takes Ω(n) time to terminate while an
optimal algorithm terminates in one step.
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4.4 A Constant-Memory Algorithm for Barrier

Coverage

In this section, we describe Algorithm 4.2, a non-oblivious algorithm for barrier cov-

erage and prove its correctness and complexity. In Algorithm 4.2, each sensor remem-

bers whether it moved and the direction of the move in the previous step. Initially,

or if not moving in the previous step, a sensor behaves like in Algorithm 4.1: if it

senses a gap on one side and a sensor on the other it moves in the direction of the

gap. However, the key difference is that once a sensor makes a move in one direction,

it keeps moving in that direction in the subsequent steps as long as there is a gap

next to it in that direction. Once it is ”blocked” by a sensor in that direction, it stops

and waits for one time step, before making a new decision as in Algorithm 4.1 again.

Thus, two bits of memory are needed in Algorithm 4.2 to remember the type of

the previous move, however, it achieves full barrier coverage in linear time. Note that

in Algorithm 4.2, although every sensor needs to distinguish between its own left and

right sides, no global agreement among sensors on the concept of left and right is

assumed.

In the proofs below we use the following concept of a collection of sensors.

Definition 4.6. For every heavy pile

P = U0 at time 0, let Ct(P ) denote the collection of P at time t. Ct(P ) is defined

recursively as follows:

⎧⎪⎨
⎪⎩

C0(P ) = P if t = 0

Ct(P ) = Ct−1(P ) ∪ At
l(P ) ∪ At

r(P ) if t > 0

where At
l(P ) and At

r(P ) are the piles at time t that contains the leftmost and rightmost

sensors of Ct−1(P ) respectively.
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Algorithm 4.2

Every sensor si ∈ S initially does the following:
si.STATE =NO-MOVE

Every sensor si ∈ S at the beginning of every time step does the following:
switch si.STATE
case RIGHT-MOVE:
if si senses a gap on its right then
si moves one unit to the right during this step

else
si.STATE=NO-MOVE

case LEFT-MOVE:
if si senses a gap on its left then
si moves one unit to the left during this step

else
si.STATE=NO-MOVE

case NO-MOVE:
if si senses a sensor on its left and a gap on its right then
si moves one unit to the right during this step
si.STATE=RIGHT-MOVE

else
if si senses a sensor on its right and a gap on its left then
si moves one unit to the left during this step
si.STATE=LEFT-MOVE

end switch
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See Figure 4.9 for an illustration of a collection. Observe that while there are

no gaps between the sensors of a pile, there can be gaps between the sensors of a

collection.

t = 0

t = 1

t = 2

t = 3

t = 4

t = 5

P

Figure 4.9: The shaded areas show the collections of the pile P at consecutive steps,
r = 2.

Lemma 4.12. Let P = U0 and P t be two heavy piles at time 0 and t ≥ 0 respectively.

If P t is a descendant of P , then P t ⊆ Ct(P ).

Proof. We present an inductive proof. The basis follows directly from the definition

of C0(P ). Assume P t ⊆ Ct(P ) for some t ≥ 0. Let P t+1 denote a descendant of

P at time t + 1, then it is the only child of P t. We show that P t+1 ⊆ Ct+1(P ).

Let si and sj be the leftmost and rightmost sensors of Ct(P ). If si ∈ P t+1, then

P t+1 = At+1
l (P ) ⊂ Ct+1(P ). Similarly if sj ∈ P t+1, then P t+1 = At+1

r (P ) ⊂ Ct+1(P ).

If neither si nor sj is in P t+1, then P t+1 ⊂ Ct(P ) ⊆ Ct+1(P ).

Lemma 4.13. Let P = U0 and P t denote two heavy piles at time 0 and t ≥ 0

respectively. If P t is a descendant of P then Ct(P ) has the following properties:

(i) Either Ct(P ) is a pile (no gap between its leftmost and rightmost sensors), or

(ii) Between the leftmost and the rightmost sensor of Ct(P ) there are only gaps of

length one and for each such gap between sti ∈ Ct(P ) and sti+1 ∈ Ct(P ) we have:
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- if sti+1 is to the right of the rightmost sensor of P t, then sensor sti moves

one unit to the right and sti+1 does not move to the left.

- if sti is to the left of the leftmost sensor of P t, then sti+1 moves one unit to

the left and sti does not move to the right.

Proof. We present an inductive proof. It is clear that C0(P ) = P and therefore it

is a pile. Assume the argument is true for Ct(P ). We show that it is also true for

Ct+1(P ). We assume Ct+1(P ) is not a pile and show that all gaps in Ct+1(P ) have

unit length and all sensors on both sides of the gaps behave as stated.

Take any gap between st+1
i , st+1

i+1 ∈ Ct+1(P ) to the right of the rightmost sensor of

P t+1. Observe that sti+1 ∈ Ct(P ); if not, st+1
i+1 /∈ Ct+1(P ) either, since there is a gap

between st+1
i and st+1

i+1 . Since s
t
i is to the left of sti+1, clearly sti ∈ Ct(P ) as well. Since

sti and sti+1 are both in Ct(P ), one of the following cases holds at time t:

There is no gap between sti and sti+1:

Therefore sti cannot move to the right, and even if there is a gap between sti−1

and sti, by the inductive hypothesis, sti does not move to the left. We conclude

that sti does not move. However, since there is a gap between st+1
i and st+1

i+1, it

must be that sti+1 moved one unit to the right, thereby creating the gap. Observe

that this gap must be of length one, as needed for the induction. Since sti+1

moved to the right, st+1
i+1 cannot move to the left, as needed. We now show that

st+1
i moves to the right. If there is a gap between sti−1 and sti, by the inductive

hypothesis, sti−1 moves right and as already observed sti does not move, so there

is no gap between st+1
i−1 and st+1

i . If there is no gap between sti−1 and sti, by the

inductive hypothesis, sti−1 does not move to the left and as already observed sti

does not move, so there is no gap between st+1
i−1 and st+1

i . Since (a) there is no

gap between st+1
i−1 and sit+ 1, (b) there is a gap between st+1

i and st+1
i+1, and (c)

sti does not move, according to the algorithm, st+1
i moves to the right as needed.
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There is a gap of unit length between sti and sti+1:

By the inductive hypothesis, sti moves one unit to the right and sti+1 does not

move to the left. Since there is a gap between st+1
i and st+1

i+1, we conclude that

both sti and sti+1 move one unit to the right and the gap between st+1
i and st+1

i+1 is

of size one, as needed. Furthermore, since sti+1 moved to the right, st+1
i+1 cannot

move to the left, and since sti moved to the right, and st+1
i has a gap on its right,

st+1
i moves to the right, as needed.

We have shown that the gap between st+1
i and st+1

i+1 is of length one, and the two

sensors behave as stated. The proof of the case where st+1
i and st+1

i+1 are to the left of

the leftmost sensor of P t+1 is similar. This completes the proof by induction.

Theorem 4.4. Given any input of n sensors with enough sensors to cover the barrier

(n ≥ L/2r), Algorithm 4.2 terminates in at most (4r+1)n steps with the whole barrier

fully covered. Furthermore Algorithm 4.2 is asymptotically optimal.

Proof. Let P denote the heavy pile ancestor of a heavy pile that exists at time (4r+1)n

(Lemma 4.2 guarantees the existence of at least one heavy pile at all times). We

denote the heavy pile descendant of P at time t by P t. First we show that the right

endpoint of Ct+2(P ) is to the right of the right endpoint of Ct(P ). Let stj be the

rightmost sensor of Ct(P ) and assume it does not touch the endpoint of the barrier.

Observe that even if there is a gap to the left of stj, by Lemma 4.13, stj cannot move

to the left. We claim that if stj does not move, then there is no gap between st+1
j−1 and

st+1
j . If there is no gap between stj−1 and stj, and stj does not move, then since by

Lemma 4.13, stj−1 cannot move to the left, there is no gap between st+1
j−1 and st+1

j . If

instead there is a gap between stj−1 and stj then by Lemma 4.13, this gap is of length

one, and stj−1 moves to the right and closes the gap so that there is no gap between

st+1
j−1 and st+1

j . This proves the claim. Therefore either stj does not move and there is

no gap between st+1
j−1 and st+1

j or stj moves to the right. Now consider st+1
j : if there
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is gap to its right, it moves to the right, and if not, st+1
j does not move, but clearly

the rightmost sensor of Ct+1(P ) is a sensor sk with k > j. In both cases, the right

endpoint of Ct+2(P ) is at least one unit further to the right than that of Ct(P ). A

similar argument can be made about the left endpoint of Ct+1(P ). We conclude that

C4rn(P ) must span the entire barrier.

If there is no gap in C4rn(P ), then C4rn(P ) is a pile and the algorithm terminates

leaving the entire barrier covered. Assume instead that C4rn(P ) contains some gaps.

Let s4rni and s4rni+1 be the sensors that surround the rightmost gap in C4rn(P ) to the

right of P 4rn. As shown in Lemma 4.13, s4rni moves to the right while s4rni+1 does not

move to the left. Furthermore, no sensor to the right of s4rni+1 can move since there

are no gaps to the right of s4rni+1. Thus the rightmost gap in C4rn(P ) is consumed in

step 4rn and the rightmost gap in C4rn+1(P ) is between sk and sk+1 where k ≤ i− 1.

A similar argument holds for the leftmost gap in C4rn(P ) to the left of P 4rn. Thus

the distance between the rightmost and leftmost gap reduces by at least one sensor

in every step, and after n steps, the algorithm terminates with the barrier completely

covered.

To show that Algorithm 4.2 is asymptotically optimal take for example an input

where all the sensors are piled up at distinct positions at the left end of the barrier

and there is a gap of size Ω(n). Any algorithm that can only move sensors a constant

distance in each step, including Algorithm 4.2 takes Ω(n) steps to terminate and

therefore Algorithm 4.2 is asymptotically optimal.

In the following we show that when the number of sensors is insufficient to cover

the barrier, Algorithm 4.2 may not terminate.

Theorem 4.5. Given any input of n sensors with 3 < n < L
2r

and at least one NSP

in the input arrangement, Algorithm 4.2 does not terminate.

Proof. Assuming n < L
2r

first we show that if a sensor sti with 1 < i < n moves, then
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there exists a sensor sj with 1 < j < n such that st+a
j moves for some a such that

1 ≤ a ≤ 2r + 1. Without loss of generality assume sti moves to the right. According

to Algorithm 4.2 if there is a gap between st+1
i and st+1

i+1 then st+1
i moves to the right

and the claim is proved. Now consider the case where there is no gap between st+1
i

and st+1
i+1. Let P t+1 denote the pile containing st+1

i and let st+1
k and st+1

� denote the

leftmost and rightmost sensors of P t+1 respectively.

Case 1: k > 1. Since s1 never moves to the right and there exists a gap on the left

of st+1
k either st+1

k−1 moves to the right or st+1
k moves to the left or st+2

k moves to

the left.

Case 2: � < n. This case is symmetric to the previous case.

Case 3: k = 1 and � = n. Clearly, either st+1
1 or st+1

n must move, and we claim that

at least one of them will eventually detach from the pile. Since n < L
2r
, therefore

either xt+1
2 > 3r or xt+1

n−1 < L− 3r. Assume xt+1
2 > 3r and let m = 2r − xt+1

2 +

xt+1
1 < 2r (the proof of the other case is symmetric). Assuming no sensor sj

with 1 < j < n moves between time steps t + 1 and t + m + 1, at each time

step t′ ∈ {t + 1, t + 2, . . . , t +m + 1} sensor st
′
1 moves one unit to the left and

therefore xt+m+2
1 < xt+m+2

2 − 2r and according to Algorithm 4.2, sensor st+m+2
2

moves to the left.

In all cases we showed that if n < L
2r

and any sensor sti with 1 < i < n and t < ∞
moves then Algorithm 4.2 never terminates.

We only need to show that if n < L
2r

some sensor sti with 1 < i < n and t < ∞
moves. Take time step t = 0. We know that the arrangement of sensors contains at

least one NSP. Let P 0 denote an NSP at time t = 0 and let s0i and s0j denote the

leftmost and rightmost sensors of P 0. If i > 1 then s0i , then s0i moves to the left.

Similarly if j < n then s0j moves to the right. Now consider the case where i = 1 and
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j = n. Similar to Case 3 of the inductive step, some sensor st
′
k with 1 < k < n and

t′ ≤ 2r must move.

Similar to Algorithm 4.1 we show that there exists an input arrangement where

Algorithm 4.2 takes Ω(n) steps to terminate while an optimal algorithm needs only

1 step; see the example in Figure 4.10.

......

t = 0

t = 1

t = 2

t = n− 3

· · ·
· · ·
· · ·

· · ·

t = 3 · · ·

t = n− 2 · · ·
t = n− 1 · · ·
t = n · · ·

t = 2n− 6 · · ·
t = 2n− 5 · · ·

......

s1
s2 s3 s4 s5 sn−2 sn−1 sn

s1 s2
s3 s4 s5 sn−2 sn−1 sn

s1 s2
s3 s4 s5 sn−2 sn−1 sn

s1 s2
s3 s4 s5 sn−2 sn−1 sn

s1 s2
s3 s4 s5 sn−2 sn−1 sn

s1 s2
s3 s4 s5 sn−2 sn−1 sn

s1 s2
s3 s4 s5 sn−2 sn−1 sn

s1 s2
s3 s4 s5 sn−2 sn−1 sn

s1 s2
s3 s4 s5 sn−2 sn−1 sn

s1 s2 s3 s4 s5 sn−2 sn−1 sn

Figure 4.10: An example where Algorithm 4.2 takes Ω(n) time to terminate while an
optimal algorithm terminates in one step.

4.5 Conclusions

In this chapter we studied the barrier coverage problem when the barrier consists

of a single line segment, mobile sensors are located on the barrier and the sensing

range of all sensors are the same. We presented two local distributed algorithms that

achieve barrier coverage when there are enough sensors to cover the entire barrier.
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Our first algorithm is oblivious and the worst case running time of this algorithm is

O(n2). Our second algorithm uses two bits of memory to store the state of a sensor.

We showed that our second distributed algorithm terminates after O(n) steps and is

asymptotically optimal.

Many open questions remain. Does there exist a linear-time oblivious algorithm

for barrier coverage in our model? Would some generalization of our model, such as a

larger visibility range, help? Is there an asynchronous algorithm for barrier coverage

with restrictions of constant visibility and constant movement per unit step?
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Chapter 5

Asynchronous Distributed

Algorithms Using Relocatable

Sensors

In this chapter we study distributed algorithms for the barrier coverage problem with

semi-synchronous and asynchronous sensors. We again assume sensors with same

limited visibility and sensing ranges are initially located on the barrier modelled

as a line segment. First we show that if sensors do not share a common sense of

orientation, and sensors are semi-synchronous or asynchronous then there exists no

algorithm for the barrier coverage problem. Second in contrast to the non-existence

results, if sensors have same orientation, we give an algorithm that terminates with

the barrier fully covered if there are enough sensors on the barrier.

5.1 Computational Model and Preliminaries

As in Chapter 4, we model the barrier with a line segment of length L covering the

interval [0, L] on the x-axis. We assume all sensors are initially located on the barrier.
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Furthermore all sensors have the same sensing range r and visibility range 2r. Let

sti with 1 ≤ i ≤ n denote a sensor si at time t located at xt
i. We assume sensors

are labeled such that for every i and j with 1 ≤ i < j ≤ n, we have x0
i < x0

j . We

emphasize that while labels and positions of sensors facilitate our proofs, they are

not known to any of the sensors, which are completely anonymous, and completely

identical.

We say sti sees stj on its right if and only if 0 < xt
j − xt

i ≤ 2r and sti sees stk on

its left if and only if 0 < xt
i − xt

k ≤ 2r. Furthermore we assume sensors are opaque:

if there are multiple sensors on the right (left) and within visibility range of a given

sensor, it only sees the leftmost (rightmost) sensor. Observe that with 2r visibility

range, a sensor is able to detect whether there is a gap between its own and the next

sensor’s sensing areas.

Also every sensor has a conception of left and right, but there is no assumption

for global agreement on this unless stated otherwise. We say sensors are oriented if

and only if all sensors agree on a global left and right. Sensors are called unoriented,

if the orientation of each sensor can change at any time independently of the other

sensors. Obviously, when sensors are unoriented they do not necessary agree on left

and right.

In addition, we assume there are two special sensors s0 and sn+1 that are immobile,

and are always located at −r and L+r. While these special sensors do not require any

sensing capabilities or visibility, the other sensors in the network cannot distinguish

these special sensors from any other sensors. The entire set of sensors is denoted by

S = {s0, s1, . . . , sn, sn+1}.
Note that as in the previous chapter, in our figures, each sensor is represented by

a rectangle which shows the interval that the sensor covers on the line barrier. Also

for convenience, two sensors whose coverage lengths overlap are placed at different
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levels in the illustration; however in our assumptions, all sensors have circular sensing

area and are initially placed on the barrier and can only move on the barrier.

5.1.1 Synchronization Models of Sensors

As in the Chapter 4, each sensor works in a Look-Compute-Move cycle. In the Look

phase a sensor looks at the arrangement of other sensors within its visibility range.

Then in the Compute phase it calculates its next position based on the information

it gathered in the Look phase and possibly its state. Finally, a sensor in its Move

phase, moves toward the position it calculated in its Compute phase. Each sensor

repeats the Look-Compute-Move cycle endlessly.

The literature on autonomous robots considers three major models for synchro-

nization of sensors, which we use throughout this chapter.

Fully Synchronous Sensors (FSYNC): At any time all sensors are in the same

phase (Look, Compute, or Move). Furthermore every sensor is active in every

cycle.

Semi-Synchronous Sensors (SSYNC): Similar to FSYNC model, at any time all

sensors are in the same phase. However not all sensors are necessarily active in

every cycle. Every sensor, independently of the other sensors, may be inactive

for an arbitrary but finite number of cycles.

Asynchronous Sensors (ASYNC): For every Look-Compute-Move cycle of a sen-

sor, there may be an arbitrary but finite time delay between the phases as well

as between the cycles. Observe that this implies that sensors can be deactivated

at any time for an arbitrary time of finite duration.

As in the previous chapter, we define a gap as a maximal interval on [0, L], where

no point in this interval is within the sensing range of any sensor in the network. An
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overlap is a maximal interval on [0, L] such that every point in the interval is within

the sensing range of more than one sensor in the network. We say a sensor si with

1 ≤ i ≤ n has a gap or overlap on its right if xi+1 − xi > 2r or xi+1 − xi < 2r

respectively. Similarly a sensor si with 1 ≤ i ≤ n has a gap or overlap on its left

if xi − xi−1 > 2r or xi − xi−1 < 2r respectively. Two consecutive sensors are called

attached if there is neither a gap nor an overlap between them.

As in the previous chapter, we say an algorithm terminates, if there is a time t

where no sensor moves at any time after t. Furthermore, if there are enough sensors

initially on the barrier, an algorithm for barrier coverage must always terminate with

the barrier being fully covered.

5.2 Impossibility of Algorithms for Barrier Cover-

age in SSYNC

In this section we consider the case where sensors are unoriented. We show that there

is no algorithm for barrier coverage in the SSYNC and therefore in ASYNC models.

We give an adversary argument, by creating input arrangements and activation

schedules that force any algorithm in the SSYNC model to either not terminate, or

terminate without coverage. All movements will be assumed to be rigid; a sensor can

always reach the destination it has computed. We focus on three types of sensors (a)

sensors that have an overlap on one side, and a gap on the other side, (b) sensors

that are attached to the next sensor on one side and a gap on the other side and

(c) sensors that have an overlap on one side and are attached to the next sensor on

the other side (see Figure 5.1). Any algorithm for barrier coverage must specify rules

for movement in each of these situations. Note that with 2r visibility range, sensors

can only determine whether there exists a gap with a neighboring sensor but cannot
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determine anything about the length of such a gap. Thus, the magnitude of the

movement of a sensor can only be a function of an overlap, if any, with a neighboring

sensor, and cannot be a function of the length of an adjacent gap. We show that there

exist arrangements and activation schedules for the sensors that defeat all possible

combinations of these rules.

si
si si+1si−1 si−1

(a) (b)

si
si+1si−1

(c)

si+1

Figure 5.1: The three types of sensors under consideration

First we study the behavior of a sensor si with 1 ≤ i ≤ n that has an overlap of

e with the sensor on its left, and has a gap on its right, as in Figure 5.1(a). We show

that such a sensor must move right; if the gap is at least as big as the overlap, the

sensor must eventually move so as to exactly remove the overlap, and if the gap is

smaller than the overlap, the sensor must move at least enough distance to remove

the gap.

e
g

s1

Figure 5.2: Arrangement for proof of Lemma 5.1

Lemma 5.1. Consider an algorithm A for barrier coverage in SSYNC model and a

sensor sti with dist(sti−1, s
t
i) = 2r− e and dist(sti, s

t
i+1) = 2r+ g, with e, g > 0. If si−1

and si+1 are deactivated and only si is activated, there exists a time step t′ > t such

that:

(a) xt′
i = xt

i + e if g ≥ e and

(b) xt
i + g ≤ xt′

i ≤ xt
i + e if g < e.
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Proof. First we observe that the sensor si must eventually move at least distance

min(g, e) to the right. If not, the algorithm A does not terminate with barrier

coverage on the arrangement shown in Figure 5.2, since s1 is the only sensor that can

move in the arrangement. Next we show that xt′
i ≤ xt

i + e for some t′ > t. For the

sake of contradiction, assume that there is a value of overlap e, such that according to

A, sensor si moves more than e; that is si moves e+ a to the right, with a > 0. Then

we can construct an activation schedule such that A never terminates on the input

shown in Figure 5.3: A single sensor is activated in each step. The sensors sp to s1

are activated in consecutive steps, followed by the sensors sp+1 to sp+q−1. Then the

sequence is reversed. It is easy to verify that at the end of the activation schedule,

the initial arrangement is repeated again. The schedule can be repeated ad infinitum,

forcing non-termination of the algorithm. It follows that in the case when g ≥ e,

whatever the overlap e with si−1, we can force si to move exactly e to the right.

· · ·· · ·
p− 1 sensors

q sensorse
a

s1 sp−1
sp sp+q−1

· · ·s1 sp−1
sp sp+q−1

sp+1

sp+1

· · ·s1 sp−1
sp sp+q−1

sp+1

...

· · ·s1 sp−1
sp sp+q−1

sp+1

· · ·s1 sp−1
sp

sp+q−1
sp+1

...

...
· · ·s1 sp−1

sp sp+q−1

sp+1

· · ·s1 sp−1
sp sp+q−1sp+1

...

C1

C2

Cp+1

Cp+2

Cp+q

Cp+2q−1

C2(p+q)−1

· · ·s1 sp−1
sp

sp+q−1
sp+1Cp+q+1

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · · sp−1
sp sp+q−1

sp+1
Cp+2q · · ·

s1

Figure 5.3: Arrangement for proof of Lemma 5.1 (p, q ∈ N are chosen so that p e = q a)
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Next we consider the behavior of a sensor si that is attached to its neighbor on its

left, and has a gap on its right as in Figure 5.1(b). We activate si and keep si−1 and

si+1 deactivated. If si moves left, it creates an overlap with si−1 and by Lemma 5.1(a),

it will eventually move to the right to remove that overlap, and return to the same

position. Alternatively, si may not move at all, or may move to the right. If it moves

to the right, since it does not know the distance of the gap with si+1 and has no

overlap with si−1, it can only move a fixed constant distance, say b. The lemma

below is a consequence of the preceding discussion.

Lemma 5.2. Consider an algorithm A for barrier coverage and a sensor si with

dist(sti−1, s
t
i) = 2r and dist(sti, s

t
i+1) > 2r. If si−1 and si+1 are both kept deactivated

and si is activated, there exists a time t′ > t such that xt′
i = xt

i + h with h ≥ 0.

Finally, we consider the behavior of a sensor si that has an overlap e with si−1

and is attached to sensor si+1, as shown in Figure 5.1(c). As before, we activate only

si and keep both si−1 and si+1 deactivated. If si moves left, it creates a gap with

si+1. By Lemma 5.1(b), si must eventually move right, either returning to its initial

position, or moving further right. If it moves right by more than the value of the

overlap, then it creates a gap to its left, and once again by Lemma 5.1(b) , it must

move back left until the gap is removed. If for all values of the overlap, si makes a

move to the right that does not eliminate the overlap, then we show below that the

algorithm cannot achieve barrier coverage, leading to the conclusion that there must

exist some value of overlap such that such a sensor will either not move, or move to

exactly eliminate the overlap.

Lemma 5.3. Consider an algorithm A for barrier coverage. There exists an overlap

c with 0 < c < 2r such that for any sensor si with dist(sti−1, s
t
i) = 2r − c and
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dist(sti, s
t
i+1) = 2r, if si is the only one of {s,si−1, si+1} to be activated, there exists a

time step t′ with t′ > t such that either xt′
i = xt

i+c (si moves right to exactly eliminate

the overlap) or xt′
i = xt

i (si returns to the same position).

Proof. Assume the contrary. By the discussion preceding the lemma, we can conclude

that for any overlap e, there exists a time step t′ such that xt′
i = xt

i+d with 0 < d < e.

Consider the arrangement of sensors shown in Figure 5.4. We first activate s1 until

it moves distance d to the right. By assumption, there remains an overlap of e − d

between s0 and s1, and now there is an overlap of d between s1 and s2. We now

keep s1 deactivated, and activate s2. Lemma 5.1 implies that sensor s2 eventually

moves exactly d to the right and eliminates the overlap completely. Observe that

at this point, the arrangement repeats with only a different value of overlap. The

new value of the overlap between s0 and s1 is strictly greater than zero and and the

distance between s1 and s2 is exactly 2r. This activation schedule can be repeated

ad infinitum, and algorithm A never terminates with barrier coverage.

s1
s2

e
e

Figure 5.4: Arrangement for proof of Lemma 5.3

Now we proceed to prove our main result:

Theorem 5.1. Let s1, s2, . . . , sn be n sensors with sensing range r initially placed

at arbitrary positions on a line segment. If the sensors are unoriented and visibility

radius 2r, there is no algorithm for barrier coverage in the SSYNC model.

Proof. Consider the arrangement of sensors shown in Figure 5.5 with c chosen as in

Lemma 5.3. If the value of h as specified in Lemma 5.2 is zero, then choose b to be
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of any arbitrary non-zero length, otherwise, choose b = h. We create an activation

schedule with four phases with a different set of sensors being activated in each phase,

such that the sensors return to arrangement C1 at the end of each phase. At each

phase we only activate a subset of sensors and all other sensors are kept deactivated.

We first activate only the set of sensors {s1, s3, . . . , s2p−1}. By Lemma 5.2, there is

a future time step when either these sensors are in the same position (if h = 0), or

they move distance b = h to the right to yield arrangement C2. In the second case,

since sensors are unoriented, they will subsequently return to arrangement C1. Next

we activate only the set of sensors {s2, s4, . . . , s2p}. Using the same logic, they must

return to the same arrangement, possibly via arrangement C3. In the third phase,

we activate only the sensors {s2p+1, s2p+3, . . . , s2p+2q−1}. By Lemma 5.3, there is a

future time when either these sensors return to arrangement C1, or they have moved

left by a distance c to reach arrangement C4. In the second case, they will eventually

return to arrangement C1. In the fourth phase, we activate only the set of sensors

{s2p+2, s2p+4, . . . , s2(p+q)}. Using the same logic, they will return to arrangement C1,

possibly via arrangement C5. Observe that all sensors have been activated at least

once during the schedule. By repeating the above schedule ad infinitum, we can force

sensors to repeatedly return to the arrangement C1, thus completing the proof.

Since an adversary in the ASYNC model has at least the power it has in the

SSYNC model, obviously our non-existence results also hold for the ASYNC model.

5.3 Sensors with Orientation

In the previous section we showed that no algorithm for barrier coverage exists when

sensors are unoriented. In this section, we give an algorithm for barrier coverage for

oblivious oriented sensors in the ASYNC model. We assume sensors have limited
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c
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C1 s2 s2p−1

· · · · · ·s1 s2p s2p+1

s2(p+q)

C1 s2 s2p−1

· · · · · ·s1 s2p s2p+1

s2(p+q)

C5 s2 s2p−1

· · · · · ·s1 s2p s2p+1

s2(p+q)

C1 s2 s2p−1

· · · · · ·s1 s2p
s2p+1 s2(p+q)

C4 s2 s2p−1

· · · · · ·s1 s2p s2p+1

s2(p+q)

C1 s2 s2p−1

· · · · · ·s1 s2p s2p+1

s2(p+q)

C3 s2 s2p−1

· · · · · ·s1 s2p s2p+1

s2(p+q)

C1 s2 s2p−1

· · · · · ·s1 s2p s2p+1

s2(p+q)

C2 s2 s2p−1

Figure 5.5: Arrangement for proof of Theorem 5.1 (p, q ∈ N are chosen so that
p b = q c
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mobility, in particular, in any move, a sensor can move at most distance r. As per the

standard rigidity assumption in the literature, we assume that there is an (arbitrarily

small) fixed constant δ such that if the destination point is at most δ away, the sensor

will reach it. Otherwise, it moves at least δ towards the destination. This assumption

is necessary for termination of any algorithm for autonomous mobile robots, otherwise

there will be no guarantee that any robot ever reaches any chosen destination point.

Our algorithm for barrier coverage in this model is given below:

Algorithm 5.1 Oblivious algorithm for barrier coverage with ASYNC oriented sen-
sors

Every sensor si ∈ S in its Look-Compute-Move cycle does the following:
ε < r is a fixed positive (arbitrarily small) constant
if si−1 is not visible to si (there is a gap to its left) then
si moves distance r to the left.

else
a := 2r − dist(si−1, si) (amount of overlap with previous sensor’s range)
if dist(si, si+1) ≥ 2r (no overlap from right) and a > 0 then
si moves distance min(r − ε, a) to its right.

else
do nothing

end if
end if

We proceed to prove the correctness of the algorithm. Note that the concept of time

used in this section is more general than that used in the previous sections. In FSYNC

and SSYNC models, we had the concept of a global time step, whereas in the ASYNC

model sensors may be at different phases at any given time. Therefore when we talk

about a time t in the ASYNC model, every sensor may be in a different phase of its

Look-Compute-Move cycle at that time t. For example, if we consider a time t that is

the beginning of the Look phase of a particular sensor s, we cannot conclude anything

about the state of other sensors at that time t. We first show that the algorithm above

is collision-free and order-preserving. In the context of autonomous mobile robots,

a collision happens if two distinct robots move to exactly the same position. Since
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robots are identical with no id, from the time a collision of two robots happens,

they cannot be distinguished and will behave exactly the same if they have the same

activation schedule. Therefore a collision is fatal for a barrier coverage algorithm, as

for other distributed algorithms for autonomous mobile robots, and must be avoided.

Lemma 5.4. Algorithm 5.1 is a collision-free and order-preserving protocol.

Proof. Note that for any two sensors, in order for them to change order, there must

exist a time where they collide. Therefore we only need to show that the algorithm

is collision-free. For the sake of a contradiction assume that a collision happens. Let

t denote the first time that two sensors collide and let si and si+1 denote the two

sensors that collide. Let t′ with 0 ≤ t′ < t denote the last time where either si or

si+1 performed a Look before the collision and this Look lead to a Compute-Move of

a non-zero distance. The existence of t′ is essential for any collision. Since t is the

first time that two sensors collide, therefore xt′
i < xt′

i+1. Based on the positions of si

and si+1 at times t and t′, one of the following cases holds:

xt′
i ≤ xt

i = xt
i+1 ≤ xt′

i+1: First consider the case where dist(st
′
i , s

t′
i+1) ≥ 2r. Since after

this time si or si+1 will perform at most one Move each therefore xt
i ≤ xt′

i +r−ε

and xt
i+1 ≥ xt′

i+1 − r and therefore xt
i < xt

i+1 which contradicts the assumption

that xt
i = xt

i+1. Second consider the case where dist(st
′
i , s

t′
i+1) < 2r. Therefore

based on the Look at t′, neither si nor si+1 computes a Move of non-zero distance

towards xt
i that contradicts the assumption about t′.

xt′
i < xt′

i+1 < xt
i = xt

i+1: First consider the case where dist(st
′
i , s

t′
i+1) ≥ 2r. Therefore

xt′
i ≤ xt

i − 2r. However since at any Move to right, a sensor moves at most

r − ε therefore xt
i < xt′

i + r which contradicts xt
i ≥ xt′

i+1. Second consider the

case where dist(st
′
i , s

t′
i+1) < 2r. If si is in a Look phase at time t′ it does not

move right which contradicts xt′
i < xt

i. Therefore the last time si is in a Look
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phase, that leads to a Compute-Move of a non-zero distance, is before t′. Let

t′′ with t′′ < t′ denote the last Look of si that lead to a Compute-Move of a

non-zero distance before the collision. It is easy to see that xt
i ≤ xt′′

i + r− ε and

xt′′
i+1 ≥ xt′′

i +2r. Also since t′′ is the last Look of si before the collision, x
τ
i ≥ xt′′

i

at any time τ with t′′ ≤ τ ≤ t′. Now look at the location of si+1 after t′′. Since

si+1 moves left at most r in a Look-Compute-Move cycle only if there is a gap

on its left when it performs a Look, it is easy to see that xt′
i+1 > xt′′

i + r > xt
i

which contradicts our assumption.

xt
i = xt

i+1 < xt′
i < xt′

i+1: It is very similar to the previous case: First consider the case

where dist(st
′
i , s

t′
i+1) ≥ 2r. Therefore xt′

i+1 ≥ xt
i+1 + 2r. However since at any

Move to left, a sensor moves at most r therefore xt
i+1 ≥ xt′

i+1−r which contradicts

xt
i+1 < xt′

i . Second consider the case where dist(st
′
i , s

t′
i+1) < 2r. If si+1 is in a

Look phase at time t′ it does not move left which contradicts xt
i+1 < xt′

i+1.

Therefore the last time si+1 is in a Look phase, that leads to a Compute-Move

of a non-zero distance, is before t′. Let t′′ with t′′ < t′ denote the last Look of

si+1 that lead to a Compute-Move of a non-zero distance before the collision

. It is easy to see that xt
i+1 ≥ xt′′

i+1 − r and xt′′
i < xt′′

i+1 − 2r. Also since t′′

is the last Look of si+1 before the collision, xτ
i+1 ≤ xt′′

i+1 at any time τ with

t′′ ≤ τ ≤ t′. Now look at location of si after t
′′. Since si moves right at most

r − ε in a each Look-Compute-Move cycle given that there is no overlap on its

right when it performs a Look, it is easy to see that xt′
i < xt′′

i+1 − r ≤ xt
i+1 = xt

i

which contradicts our assumption.

Next we show that running Algorithm 5.1, there is a time after which no sensor

moves left, and after this time, the sensors provide contiguous coverage of [0, xn + r].

104



Lemma 5.5. Running Algorithm 5.1, for every sensor si ∈ S with 1 ≤ i ≤ n there

is a time ti such that si never moves left at any time after ti. Furthermore, there is

no coverage gap between s0 and si at any time after ti.

Proof. We prove the claim inductively. Clearly it is true for s0. Suppose there is a

time ti such that si never moves left at any time after ti, and there is no gap between

s0 and si at any time after ti. Consider any Look of si+1 after time ti. If there is a

gap between si and si+1, then si+1 moves at least δ towards si. Let ti+1 with ti+1 ≥ ti

be the first time that si+1 performs a Look and there is no gap between si and si+1.

If at this time there is an overlap with si, then si+1 moves right, but observe that this

Move can never create a gap between si and si+1 since si does not move left by the

inductive assumption, and si+1 moves right by at most the amount of the overlap.

It follows that after time ti+1, the sensor si+1 will never move left, and furthermore,

there is no gap between s0 and si+1.

The next lemma shows that if there is an overlap between two sensors si and si+1,

there comes a time when either there is an overlap between every two consecutive

sensors on the right of si−1 or si+1 moves right and removes the overlap completely.

Lemma 5.6. Running Algorithm 5.1, for every sensor si ∈ S with 0 ≤ i < n if there

is an overlap between si and si+1 at any time t with t ≥ tn, then there is a time t′

with t′ ≥ t where:

(a) si and si+1 are attached, or

(b) there is an overlap between every two consecutive sensors in {si, si+1, . . . , sn+1}.

Proof. We give an inductive proof. First assume that there is an overlap e between

sn−1 and sn at time t with t ≥ tn. Lemma 5.5 implies that sn−1 never moves left.

Also from the algorithm it is clear that sn−1 does not move right as long as there is an
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overlap between sn−1 and sn. Therefore the amount of the overlap between sn−1 and

sn does not increase before first decreasing to zero (attached position). Consider the

first time sn is activated: either there is an overlap between sn and sn+1 or sn moves

right and reduces the overlap by at least min(e, δ). Therefore there is a time t′ with

t′ ≥ t where either there is an overlap between sn and sn+1 (case (b)) or sn−1 and sn

become attached (case (a)). Second we show that if the lemma statement holds for

all sensors in {si, si+1, . . . , sn−1} for some 0 < i ≤ n − 1, then it also holds for si−1.

Imagine there is an overlap e between si−1 and si at some time t with t ≥ tn and

consider sensors si and si+1 at time t. One of the following cases holds:

(i) si and si+1 are attached: Lemma 5.5 implies that si and si+1 stay attached until

sensor si is activated. At this time, according to Algorithm 5.1, sensor si moves

right to reduces the overlap by at least min(e, δ).

(ii) there is an overlap between si and si+1: the inductive hypothesis implies that

there is a time t2 with t2 ≥ t where either there is an overlap between every two

consecutive sensors in {si, si+1, . . . , sn+1} which implies (b) for si−1 or sensor si

and si+1 become attached which is similar to (i).

In both cases after finite time either (b) holds true for si−1 or the overlap between

si−1 and si goes down by min(e, δ). Therefore it can be seen that there exists a time

t′ with t′ ≥ t where either si−1 and si are attached or there is an overlap between

every two consecutive sensors in {si−1, si, . . . , sn+1} and the lemma follows.

Next we show that regardless of the number of sensors, Algorithm 5.1 terminates:

Theorem 5.2. Let s1, s2, . . . , sn be n sensors with sensing range r initially placed

at arbitrary positions on a line segment with length L. If the sensors have the same

orientation and visibility radius of 2r, Algorithm 5.1 always terminates in the ASYNC
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model. Furthermore, if 2rn ≥ L the algorithm terminates with the barrier being fully

covered.

Proof. Lemma 5.5 implies that there is a time tn where there is no gap between sensors

in {s0, s1, . . . , sn}. Consider the two sensors s0 and s1: Lemma 5.5 and Lemma 5.6

imply that there exists at time t′0 with t′0 ≥ tn where either:

(a) s0 and s1 are attached: since no sensor moves left they stay attached at any time

after t′0, or

(b) there is an overlap between every two consecutive sensors in {s0, s1, . . . , sn+1}:
therefore the barrier is fully covered and no sensor moves at any time after t′0 and

the algorithm terminates at time t′0.

Inductively it can be seen that for any sensor si with 1 ≤ i ≤ n either si and si+1

become attached at time t′i or the algorithm terminates at time t′i.

Regardless of the number of sensors, at the time t′n, either every two consecu-

tive sensors are attached or there exists i with 0 ≤ i ≤ n where every two con-

secutive sensors in {s0, s1, . . . , si} are attached and every two consecutive sensors in

{si, si+1, . . . , sn+1} have an overlap. In both cases Algorithm 5.1 terminates. Further-

more if there are enough sensors to cover the entire barrier, both cases imply that the

barrier is fully covered.

5.4 Conclusions

In this chapter we considered distributed local algorithms for barrier coverage with

semi-synchronous and asynchronous sensors. We assumed that sensors have limited

visibility radius of 2r where r is the sensing radius of sensors. We showed that

if sensors are semi-synchronous and do not share a global orientation (unoriented
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sensors), no algorithm exists for the problem. Obviously the results also hold for

asynchronous sensors. In contrast, for the case where sensors have same orientation,

we gave an distributed algorithm that achieves barrier coverage even if all sensors

are asynchronous. Finally, the existence of algorithms for sensors that each have an

orientation that does not change through time, but do not necessarily agree on a

global orientation, remains open.
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Chapter 6

Multi-Round Random Deployment

Using Stationary Sensors1

In this chapter, we study the problem of barrier coverage when stationary sensors are

deployed randomly on the barrier. We define two natural classes of sensor deploy-

ment strategies: complete and partial deployments. In complete strategies, sensors

are deployed over the entire border in every round, while in partial strategies, the de-

ployment may be over only part of the border. For any complete deployment strategy,

we calculate the probability that a border is (k, w)-covered as a function of param-

eters such as the length of the border, the width of the intruder, and the sensing

range and density of deployed sensors. Simulation results show that our analysis is

tighter than that provided in [LZS+11]. Next we propose and study two specific de-

ployment strategies called Fixed-Density Complete Deployment, and Fixed-Density

Partial Deployment. For each strategy, we calculate the expected number of de-

ployment rounds and expected total number of sensors employed by the strategy to

achieve (k, w)-coverage. The number of rounds and total number of sensors are indeed

the two main factors determining the total cost of deployment. We propose a model

1Results of this chapter are also published in [ENO13]
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of total deployment cost and for each of the two studied strategies, we calculate the

density of deployment that minimizes the expected total deployment cost.

The rest of this chapter is organized as follows. In Section 6.1 we define our model

of the network. We study complete deployments and give a lower bound estimate of

the probability that the border is (k, w)-covered after each round in Section 6.2.

In Section 6.3 we propose two specific deployment strategies and and analyze their

expected cost. Section 6.4 contains our simulation results. Finally in Section 6.5 we

conclude our chapter and present directions for future work.

6.1 Network Model

We model a border of length l as an interval starting at 0 and ending at l. For

simplicity, we assume that there are initially k sensors deployed at point 0 and at

point l, the beginning and end of the border respectively. All other sensors are

deployed randomly on the border, possibly in multiple rounds. We model an intruder

with a line segment of width w. The position of the intruder is the center of this line

segment.

A sensor can detect intruders within its sensing range r. The sensing can be

defined more formally as follows: Let τ = 2r + w. A sensor at x ∈ � can detect an

intruder of width w at position p iff |p−x| ≤ τ
2
or equivalently p ∈ [x− τ

2
, x+ τ

2
]. We

now give the definition of (k, w)-coverage:

Definition 6.1. A point p is called (k, w)-covered if any intruder of width greater

or equal to w positioned at p is detected by at least k distinct sensors. A border

modeled by an interval [0, l] is (k, w)-covered if and only if every point on [0, l] is

(k, w)-covered.

We assume sensors are dispersed on some parts of the border in multiple rounds.
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We define a deployment interval as follows:

Definition 6.2. In a given round of deployment, an interval D ⊆ [0, l] is called a

deployment interval if and only if for every subinterval D′ ⊆ D, the probability that

a sensor is deployed on D′ is greater than zero and D is maximal.

A deployment strategy is called complete if in each deployment round, the entire

border [0, l] is a deployment interval and is called partial otherwise. In this chapter

we assume that sensors are always dispersed over deployment intervals according to

a Poisson distribution. We call the parameter of the Poisson distribution the density

of deployment. Since the parameter of the Poisson distribution according to which

sensors are dispersed can be different in every round, observe that there is an infinite

number of complete deployment strategies possible. Partial deployment strategies

can vary not only in the above parameters, but also in the deployment intervals used

in every round.

6.2 Probability of (k, w)-coverage for Complete de-

ployment Strategies

In this section we calculate the probability that a border is (k, w)-covered if sensors

are dispersed according to a Poisson distribution over the entire border in R rounds

with parameters λ1, λ2, . . . , λR respectively. Clearly, for complete strategies, if sensors

are dispersed in R rounds the distribution of the sensor positions is the same as if

they were deployed in a single round with parameter λ where λ =
∑R

i=1 λi

Consider a point p ∈ [0, l] and the interval I = [p − τ
2
, p + τ

2
]. It can be easily

seen that a sensor at x ∈ � covers p if and only if x ∈ I. It follows that a border

is (k, w)-covered if and only if for every point p on the border there are at least k

distinct sensors in [p− τ
2
, p+ τ

2
].
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Let Cp2
p1

denote the event that every point p with p1 +
τ
2
≤ p ≤ p2 − τ

2
is (k, w)-

covered. Therefore assuming there are k sensors at 0 and k sensors at l, the probability

that a border with length l is (k, w)-covered can be denoted as:

Pr
[
[0, l] is (k, w)-covered

]
= Pr

[
C l

0

]

Let xi and xj denote the positions of the i
th and jth sensors on the border respec-

tively. In the following we give a recursive approach for calculating C
xj
xi .

Lemma 6.1. Let xi ≤ xi+1 ≤ xi+2 ≤ . . . ≤ xj with j − i+1 > k denote the positions

of j − i+ 1 consecutive sensors on the border. Then:

Cxj
xi

= (xi+k − xi ≤ τ) ∩ Cxj
xi+1

Proof. It can be seen from the definition of C
xj
xi that:

Cxj
xi

= Cxi+1+τ
xi

∩ Cxj
xi+1

Therefore we just need to show that the event C
xi+1+τ
xi is equal to the event (xi+k−xi ≤

τ). First if xi+k−xi > τ then there are fewer than k sensors in [xi, xi+τ ] and therefore

xi +
τ
2
is not (k, w)-covered and C

xi+1+τ
xi does not occur. Second if C

xi+1+τ
xi does not

occur, then there must exist a point p such that p ∈ [xi +
τ
2
, xi+1 +

τ
2
] and p is not

k-covered. Note that p ≤ xi+1 +
τ
2
and therefore (xi, p− τ

2
) contains no sensor. Also

since p is not (k, w)-covered there are at most k−1 sensors in [p− τ
2
, p+ τ

2
]. Therefore

there are at most k − 1 sensors in (xi, p+
τ
2
] and

xi+k − xi > p+
τ

2
− xi ≥ τ

Therefore C
xi+1+τ
xi is the same as the event xi+k − xi ≤ τ and the statement of the
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lemma is proved.

Using symmetric arguments, we have the following:

Corollary 6.1.

Cxj
xi

= (xj − xj−k ≤ τ) ∩ Cxj−1
xi

(6.1)

It follows that for j − i+ 1 > k:

Pr
[
Cxj

xi

]
= Pr

[
(xi+k − xi ≤ τ) ∩ Cxj

xi+1

]
= Pr

[
xi+k − xi ≤ τ |Cxj

xi+1

]
Pr

[
Cxj

xi+1

]
(6.2)

The next lemma gives a lower bound on Pr
[
xi+k − xi ≤ τ |Cxj

xi+1

]
:

Lemma 6.2. Let xi ≤ xi+1 ≤ xi+2 ≤ . . . ≤ xj with j − i+1 > k denote the positions

of j−i+1 consecutive sensors on the border. Assume the distance between consecutive

sensors are iid exponential random variables. Then:

Pr
[
xi+k − xi ≤ τ |Cxj

xi+1

] ≥ Pr
[
xi+k − xi ≤ τ |xi+k − xi+1 ≤ τ

]

Proof. Let A, B and C denote three independent random variables with A ≥ 0 and

also let E denote any event. It can be seen that:

Pr
[
A ≤ B|E ∩ (A ≤ C

)
] ≥ Pr

[
A ≤ B|E]

(6.3)

We use this fact to prove our lemma. Corollary 6.1 implies that

Cxj
xi+1

= Cxj−1
xi+1

∩ (xj − xj−k ≤ τ)
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First we show that for any j − i > k + 1:

Pr
[
xi+k − xi ≤ τ |Cxj

xi+1

] ≥ Pr
[
xi+k − xi ≤ τ |Cxj−1

xi+1

]
(6.4)

Consider the case where j − i ≥ 2k and hence j − k ≥ i + k. Since the distances

between every two consecutive sensors are independent:

Pr
[
xi+k − xi ≤ τ |Cxj

xi+1

]
= Pr

[
xi+k − xi ≤ τ |Cxj−1

xi+1
∩ (xj − xj−k ≤ τ)

]
= Pr

[
xi+k − xi ≤ τ |Cxj−1

xi+1

]
(6.5)

Now consider the case where k + 1 < j − i < 2k. Let A = xi+k − xj−k, B =

τ − (xj−k − xi), C = τ − (xj − xi+k) and E = C
xj−1
xi+1 . Note that A, B and C are

independent, and A ≥ 0 therefore (6.3) implies:

Pr
[
xi+k − xi ≤ τ |Cxj

xi+1

]
= Pr

[
xi+k − xi ≤ τ |Cxj−1

xi+1
∩ (xj − xj−k ≤ τ)

]
≥ Pr

[
xi+k − xi ≤ τ |Cxj−1

xi+1

]
(6.6)

In both cases (6.4) holds true.

By repeatedly applying the argument in (6.4) we conclude for any integer j − i >

k + 1:

Pr
[
xi+k − xi ≤ τ |Cxj

xi+1

] ≥ Pr
[
xi+k − xi ≤ τ |Cxi+k+1

xi+1

]
(6.7)

Second we show that Pr
[
xi+k − pi+1 ≤ τ |Cxi+k+1

xi+1

] ≥ Pr
[
xi+k − pi+1 ≤ τ |xi+k −

xi+1 ≤ τ
]
. Note that C

xi+k+1
xi+1 = (xi+k+1 − xi+1 ≤ τ). Let E = (xi+k − xi+1 ≤ τ),

A = xi+k − xi+1, B = τ − (xi+1 − xi), and C = τ − (xi+k+1 − xi+k). Note that A, B

and C are independent, and A ≥ 0 therefore (6.3) implies:

Pr
[
xi+k − xi ≤ τ |Cxi+k+1

xi+1

] ≥ Pr
[
xi+k − xi ≤ τ |xi+k − xi+1 ≤ τ

]
(6.8)
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The lemma follows from (6.7) and (6.8).

From Eq. (6.2) and Lemma 6.2 we get for any j − i+ 1 > k:

Pr
[
Cxj

xi

] ≥ Pr
[
xi+k − xi ≤ τ |xi+k − xi+1 ≤ τ

]
Pr[Cxj

xi+1
] (6.9)

To calculate Pr
[
xi+k − xi ≤ τ |xi+k − xi+1 ≤ τ

]
note that xi+k − xi+1 is the sum of

k − 1 i.i.d. exponential random variables with parameter λ. Therefore xi+k − xi+1

has an Erlang distribution with shape parameter k − 1 and rate λ and:

Pr
[
xi+k − xi ≤ τ |xi+k − xi+1 ≤ τ

]
= Pr

[
xi+k − xi+1 ≤ τ − (xi+1 − xi)|xi+k − xi+1 ≤ τ

]

=

γ

(
k − 1, λ

(
τ − (xi+1 − xi)

))
γ(k − 1, λτ)

(6.10)

Eqs. (6.9) and (6.10) provide a recursive formula to calculate Pr[C
xj
xi ] when xi and

xj are positions of ith and jth sensors when j − i+ 1 > k.

Assuming that the distance between p1 and the leftmost sensor in [p1, p2] and

the distance between p2 and the rightmost sensor in [p1, p2] are also exponentially

distributed with parameter λ we use Eq. 6.9 as an approximation for Pr
[
Cp2

p1

]
.

Observe that for any pair of points (p1, p2), if sensors are dispersed along the entire

interval [p1, p2] the probability of coverage Pr
[
Cp2

p1

]
is a function of p2 − p1 and not

the absolute values of p1 or p2. Therefore, let p(l) denote the probability of a border

with length l being (k, w)-covered when sensors are dispersed with Poisson parameter

λ. Using (6.9) and (6.10) if l > τ and there are at least k sensors on l:

p(l) ≥
∫ τ

t=0

γ
(
k − 1, λ(τ − t)

)
γ(k − 1, λτ)

fd(t)p(l − t) dt (6.11)

115



where fd(t) = λe−λt is the distance between two consecutive sensors. Also p(l) = 0 if

l > τ and there are less than k sensors on l. Finally p(l) = 1 if l ≤ τ .

We use the recursive equation in (6.11) as an estimate for p(l) when l > τ with the

initial condition p(l) = 1 when l ≤ τ . We could not calculate a closed formula for p(l)

from (6.11). Instead we calculate the Laplace transform of p(l) and the values of p(l)

for different parameters λ can be calculated by numerical inverse Laplace transform.

Theorem 6.1. Let p(l) be the probability of a border of length l be (k, w)-covered

when sensors are deployed according to a Poisson distribution with parameter λ. The

Laplace transform of p(l) denoted by P (s) = L{p(l)} can be calculated as:

P (s) =
1−G(s) +

(
G(0)− 1

)
e−sτ

s
(
1−G(s)

) (6.12)

where

G(s) =

⎧⎪⎨
⎪⎩

−e−(s+λ)τλkf (k−2)(s)
γ(k−1,λτ)(s+λ)

+ λ
s+λ

k ≥ 2

−e−(s+λ)τ

s+λ
+ λ

s+λ
k = 1

(6.13)

and f(s) = esτ−1
s

.

Proof. Let g(t) =
γ
(
k−1,λ(τ−t)

)
λe−λt

γ(k−1,λτ)
when t ≤ τ and g(t) = 0 when t ≥ τ . Also let

G(s) = L{g(t)} denote the Laplace transform of g(t). We start by taking Laplace

transform of both sides of (6.11):

P (s) =

∫ τ

x=0

e−sxdx+

∫ ∞

x=τ

e−sx

∫ x

t=0

p(x− t)g(t)dtdx

=
1− e−sτ

s
+

∫ ∞

x=0

e−sx

∫ x

t=0

p(x− t)g(t) dt dx−
∫ τ

x=0

e−sx

∫ x

t=0

p(x− t)g(t) dt dx

=
1− e−sτ

s
+ P (s)G(s)−

∫ τ

t=0

g(t)

∫ τ

x=t

e−sxdxdt

=
1− e−sτ

s
+ P (s)G(s) +

e−sτG(0)−G(s)

s
(6.14)

Solving (6.14) for P (s) we get ( 6.12).
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Now we calculate G(s) as follows:

G(s) =
λ

γ(k − 1, λτ)
M(s′)|s′=s+λ (6.15)

where m(t) = γ
(
k − 1, λ(τ − t)

)
u(τ − t) u(t), M(s) = L{m(t)} and u(t) is the

Heaviside step function. Therefore:

M(s) =

∫ τ

t=0

e−stγ
(
k − 1, λ(τ − t)

)
dt (6.16)

Eq. 6.13 can be obtained by solving (6.16) and replacing in (6.15).

We have shown how to calculate p(l) = L−1 {P (s)} numerically.

6.2.1 Expected Minimum Number of Sensors for

(k, w)-Coverage

Given a border of length l and parameter k, let p(l, λ) denote the probability that

a border of length l is (k, w)-covered if sensors are randomly deployed with density

λ, and let η denote the minimum number of sensors that covers the entire border if

sensors are deployed one at a time. The expected value of η can be calculated as

follows:

E[η] = lim
λ→0+

∞∑
i=0

(
1− p(l, iλ)

)
λi

=

∫ ∞

λ=0

1− p(l, λ) dλ (6.17)

In the next section we use the value of E[η] to calculate the expected number of

sensors and rounds when more than one sensor is deployed in each round.
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6.3 Cost Analysis of Multi-Round Sensor Deploy-

ment

In this section we define a model for cost analysis of multi-round sensor deployment.

We present two strategies of sensor deployment and for each strategy based on our

cost model we calculate the total cost of deployment. Finally, for each strategy of

sensor deployment the Poisson parameter that minimizes the total cost is calculated

based on other problem parameters such as length of the border, sensing ranges of

sensors and width of the intruder.

First we define our cost model. Let N and R denote the total number of sensors

and number of necessary deployment rounds until the entire border is (k, w)-covered.

We assume that each round of deployment has a fixed cost Cr which is in addition to

the cost of deployed sensors in that round. Furthermore each sensor that is deployed

has a fixed cost Cn. We model the total cost of sensor deployment as:

Ctot = R ∗ Cr +N ∗ Cn (6.18)

Since we are concerned with random deployments, R and N are random variables.

One reasonable estimate of the total cost is its expected value (mean). Regardless of

the correlation between R and N , for any strategy of random deployment the average

total cost of deployment can be calculated as follows:

E[Ctot] = E[R]Cr + E[N ]Cn (6.19)

where E[Ctot], E[R], and E[N ] denote the expected values of Ctot, R and N respec-

tively.

In the following sections we present two different deployment strategies.
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6.3.1 Fixed-Density Complete Deployment

In this section, we propose a simple complete deployment strategy called Fixed-

Density Complete Deployment. According to this strategy, in each round, the de-

ployment interval is the entire border [0, l] and the same density of deployment is

utilized in every round. In other words, in every round, sensors are deployed on the

entire border with parameter λ until the border is entirely (k, w)-covered. This is a

realistic strategy if we cannot determine the exact location of the coverage gaps on the

border. Let NA and RA denote the total number of deployed sensors and the number

of deployment rounds until the border is fully covered. As stated in Section 6.2.1, let

η denote the minimum number of sensors that need to be deployed until the border

is covered (if one sensor is deployed at a time). Let ai denote the number of sensors

deployed in the ith round. Therefore ai with 1 ≤ i ≤ RA are i.i.d. Poisson random

variables with parameter λl and:

RA−1∑
i=1

ai < η ≤
RA∑
i=1

ai

The problem can be solved using results from discrete time renewal theory. In a

renewal process with Poisson inter-arrival times with parameter λl, RA is the number

of renewals until time η plus one and NA is η plus the excess time (time until next

arrival). The elementary renewal theorem implies that if η → ∞, the value of E[NA]

can be calculated as follows:

E[NA|η = n] = n+
λl

2
(6.20)

We use this as an estimate for E[NA|η = n] when n � λl. Then the estimate for
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E[RA|η = n] when n � λl can be expressed as:

E[RA|η = n] =
n

λl
+

1

2
(6.21)

Taking expected value from both sides of (6.21) and (6.20) we get:

E[RA] =
E[η]

λl
+

1

2
(6.22)

and

E[NA] = E[η] +
λl

2
(6.23)

Finally substituting from (6.22) and (6.23) into (6.19) we get our estimate for the

expected total cost:

E[Ctot] =

(
E[η]

λl
+

1

2

)
Cr +

(
E[η] +

λl

2

)
Cn (6.24)

where η is the minimum number of sensors that cover the border entirely if sensors

are deployed one at a time and is independent of the value of λ

To calculate the value λ∗ that minimizes the average total cost we equate the first

derivative of Eq. 6.24 with respect to λ to zero to obtain

λ∗ =
1

l

√
2E[η]Cr

Cn

(6.25)

6.3.2 Fixed-Density Partial Deployment

In the previous strategy in each round many sensors may be deployed on the portions

of the border which are already covered. This is inevitable if we cannot determine

the location of coverage gaps. However, if by some means, one can determine the

position of uncovered portions of the border after a round of deployment, a more
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efficient deployment can be done in the next round.

In this section, we assume one can determine the position of the gaps after each

round of deployment and propose a partial deployment strategy called Fixed-Density

Partial Deployment. For simplicity of analysis we assume that sensors are relabeled

according to their x-coordinates after each round. The deployment interval for any

round is specified as follows: For any two consecutive sensors at xi and xi+1 we say

[xi, xi+1] is a deployment interval in the next round if and only if xi+1 − xi > τ . In

addition, in every round, the deployment is done with the same density λ over the

specified deployment intervals for the round.

In the following theorem we show the relationship between our specified deploy-

ment intervals and coverage gaps:

Theorem 6.2. The interval [xi, xi+1] is a deployment interval if and only if there is

a point p ∈ [xi, xi+1] such that p is not (1, w)-covered.

Proof. First assume [xi, xi+1] is a deployment interval. Then, according to our specifi-

cations of a deployment interval, xi+1−xi > τ and hence the interval (xi+
τ
2
, xi+1− τ

2
)

is not empty. For any point p ∈ (xi+
τ
2
, xi+1− τ

2
) we have xi < p− τ

2
and p+ τ

2
< xi+1

therefore p is not (1, w)-covered.

Second assume point p ∈ [0, l] is not (1, w)-covered. Since there is one sensor at

0 and one sensor at l, therefore τ
2
< p < l − τ

2
. Let xi and xj denote the position of

rightmost sensor to the left of p− τ
2
and leftmost sensor to the right of p + τ

2
. Since

p is not (1, w)-covered, there is no sensor in [p − τ
2
, p + τ

2
] and therefore j = i + 1.

Also since xi < p − τ
2
and xi+1 > p + τ

2
therefore xi+1 − xi > τ and [xi, xi+1] is a

deployment interval.

Compare our strategy with the case where in a round of deployment sensors are

dispersed according to a Poisson distribution with parameter λ over the entire border.

For those sensors that fall in the deployment intervals they fall according to Poisson
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distribution with density λ. Also for any sensor s that falls in a non-deployment

interval since the distance of s to any coverage gap is bigger than τ
2
therefore it does

not cover any point in any coverage gap. Therefore if sensors are dispersed over the

entire border or only over the deployment interval the new coverage gaps have the

same distribution (both position and length). In fact the only difference between our

two strategies is the number of sensors used in each round (and therefore the total

number of sensors). We use this fact to calculate E[RB] and E[NB] as follows:

E[RB] = E[RA] =
E[η]

λl
+

1

2
(6.26)

Let D(i) denote the sum of length of deployment intervals after round i > 0

if sensors are dispersed on the entire border at each round. At any round i > 0

distances between two consecutive sensors are i.i.d. random variables with exponential

distribution with parameter λi. Let d(i) denote the distance between two consecutive

sensors at round i. Therefore:

E[D(i)] = l
E
[
�{d(i)>τ} ∗ d(i)

]
E
[
d(i)

]
= l ∗ (iλτ + 1)e−iλτ (6.27)

where �{d(i)>τ} is the indicator function of the event d(i) > τ .

Let bi denote the number of newly deployed sensors in round i > 0 on the deploy-

ment intervals from the previous round. The average total number of sensors E[NB]
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can be calculated as follows:

E[NB] =
∞∑
i=1

E[bi]

= lλ+
∞∑
i=1

λE[D(i)]

= lλ

(
1 +

∞∑
i=1

(iλτ + 1)e−iλτ

)

= lλ

(
λτe−λτ

(1− e−λτ )2
+

1

1− e−λτ

)
(6.28)

The minimum of E[Ctot] can be calculated numerically using the calculated E[RB]

and E[NB].

6.4 Simulation Results

In this section we present the results of our computer simulation using MATLAB.

The positions of sensors are generated according to a Poisson distribution in a given

interval. In the results each point is calculated as an average of 10000 simulations.

Figure 6.1 shows the probability of (k, w)-coverage as a function of the Poisson

parameter λ. We used the estimated lower bound in [LZS+11] as a benchmark to

compare with our results. Simulations confirm that our analysis provides a tighter

lower bound. As k grows, the difference between analysis and simulation results also

increases which is also observed in [LZS+11].

Figure 6.2 shows the expected number of dispersed sensors until the border is

(k, w)-covered as a function of λ. It can be seen that for sufficiently small values of

λ (λ ≤ 0.2) the simulation results are very close to our analytical estimate. As λ

increases, the difference between simulation results and analysis for E[NA] grows. It

can be seen that when λ > 0.7 the number of necessary sensors converges to λl. The
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Figure 6.1: Simulation results for the probability of (k, w)-coverage with complete
deployments. l = 5000, τ = 15.

explanation is that when λ → ∞ one round of deployment is necessary and sufficient

and therefore E[NA] → λl.

Figure 6.3 shows the expected number of deployment rounds in our complete de-

ployment strategy until the entire border is (k, w)-covered. As expected, the number

of needed rounds decreases as λ increases. Figure 6.4 shows the same simulation

results when the range of λ is in [0.14, 1.2]. Note that when 0.2 < λ < 0.8, a sim-

ilar pattern as for E[NB] is observed in simulation results which is harder to see in

Figure 6.3 due to the scaling.

For every pair of (Cr, Cn) the expected total cost of deployment as a function of λ

can be calculated using Eq.6.19. Dividing both sides of Eq. 6.19 by Cn and replacing

for E[R] and E[N ] from (6.23) and (6.22) one can get Ctot

Cn
as a function of λ and

Cr

Cn
. Figure 6.5 shows simulation results vs analysis for three different values of Cr

Cn
.

As explained before analysis is valid when λ is sufficiently small. It can be seen from

Eq. 6.25 when Cr

Cn
increases the λ∗ also increases. But the equations are valid only

if λ � E[η]
l
. As can be seen in the middle and right figures, the optimal density

calculated by simulations is getting farther from the value calculated analytically.
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Figure 6.2: Fixed-Density Complete Deployment: Expected number of dispersed
sensors until (1, w)-coverage is achieved. l = 5000 and τ = 15.
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Figure 6.3: Fixed-Density Complete Deployment: Expected number of rounds until
(1, w)-coverage is achieved. l = 5000 and τ = 15.
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Figure 6.6 shows the minimum total deployment costs Ctot

Cn
as a function of Cr

Cn
. For

the simulation results, for any fixed value of Cr

Cn
, different deployment densities were

tried, and the minimum cost over all values of deployment densities tried is plotted

in the graph. For analytical results, the optimal λ∗ is calculated from Eq. 6.25 and

the total cost is calculated by simulations using the mentioned deployment rate λ∗ in

each round. It can be seen that when Cr

Cn
is small the simulation results are close to

the analysis.
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Figure 6.6: Fixed Density Complete Deployment: comparing total cost given by
simulations and by analysis. For every Cr

Cn
optimal λ is calculated from Eq. 6.25

l = 5000, τ = 15

As seen in Figure 6.7, when Cr

Cn
is small, by using the optimal λ∗ obtained by our

analysis, the total cost estimate would be quite accurate. However, even when Cr

Cn
is

larger, the optimal cost as given by the analysis differs from the optimal cost obtained

via simulations by at most 11%. Thus, for all values of Cr

Cn
, prior to deployment, our

analytical model can be used to obtain a deployment rate that is close to optimal in

terms of cost.
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Figure 6.7: Fixed Density Complete Deployment: Percentage increase in total cost
using λ∗ given by analysis versus optimal cost given by simulations. l = 5000, τ = 15

In the subsequent simulations we study the partial deployment strategy. In Fig-

ure 6.8 the total number of sensors using the partial deployment strategy is calculated

as a function of density of deployed sensors in each round. It can be seen that the

simulation results match the analysis very closely. Note that in contrast to complete

deployment, the analytical results for the expected number of sensors using partial

deployment are valid for all values of λ.

Figure 6.9 compares the total number of necessary sensors with different deploy-

ment strategies: complete vs. partial deployment. It can be seen that partial de-

ployment always uses fewer number of sensors. This is expected, as in the partial

deployment in contrast to complete deployment, we only deploy sensors on the cov-

erage gaps. As λ increases (λ > 0.7), in both strategies, the total number of deployed

sensors converges to λl. The reason is that in both strategies when λ → ∞ one

round of deployment is necessary and sufficient and therefore the expected number
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Figure 6.8: Fixed Density Partial Deployment: Expected number of necessary sensors
for (1, w)-coverage. l = 5000 and τ = 15.

of sensors converges to λl

In Figure 6.10 the minimum expected total cost of the two deployment strategies

is compared. As mentioned before, in both strategies total number of rounds have

the same distribution. Since the partial strategy uses fewer sensors on average, the

total cost of partial deployment is expected to be lower. This is confirmed by the

simulation results.

6.5 Conclusions

In this chapter we analyzed the barrier coverage problem with multi-round sensor de-

ployment. We introduced two classes of multi-round deployment strategies: complete

and partial deployment. For complete strategies, we calculated the probability of a

border being (k, w)-covered as a function of length of the border, density of sensors,

sensing range of sensors and width of the intruder. We also defined a simple cost

model for evaluation of the total cost of a deployment strategy. Finally we stud-

ied two specific deployment strategies: Fixed-Density Complete and Fixed-Density
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Partial. For each strategy we calculated the expected total cost as a function of the

density of sensors in each round and estimated the optimal density that minimizes the

total expected cost. We performed extensive computer simulations to validate our

analysis. Our analysis of fixed-density partial deployment matches the simulation

results closely. Also the results for fixed-density complete deployment show that our

analytical model can always be used prior to deployment to obtain a deployment rate

that is close to optimal in terms of cost. In fact, in our simulations, when per-round

cost is at most two hundred times the per-sensor cost, the deployment rate given by

the analysis yields an optimal cost.

The deployment strategies that we introduced in this chapter can be extended to

minimize the expected total cost further. We only studied fixed density strategies,

where in every round, sensors are dispersed with the same density. One can consider

deployment strategies with different densities in each round. Also the analysis of our

partial deployment strategy for k > 1 is left as an open problem.
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Chapter 7

Conclusions and Future Directions

In this thesis we studied several problems on barrier coverage with wireless sensor

networks. We considered both centralized and distributed algorithms with sensors

with different capabilities. First we studied centralized algorithms for relocatable

sensors, where each sensor is capable of moving from an ad hoc initial position to a

final position where it remains afterward. The MinMax problem was shown to be

NP-complete when sensors with different ranges are initially located in the plane and

are allowed to move to arbitrary final positions. We considered a natural constraint

movement that we call perpendicular movement. Polytime algorithms are given for

the case where barriers are parallel and we showed that the problem is NP-complete

when there are two perpendicular barriers. Furthermore, polynomial time algorithms

are given for special cases of the problem. We also presented two approximation

algorithm for maximizing the sum of the lengths of covered segments of the barriers.

Then we considered the distributed algorithms for barrier coverage of a barrier

modelled with a single line segment. We assumed that sensors behave as autonomous

robots and have local information of the network. The results are highly dependent

on the time synchronization between sensors and whether sensors share some global
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information. We gave two polytime distributed algorithms that achieve barrier cover-

age if fully synchronous unoriented sensors are initially located on grid positions. Our

first algorithm takes O(n2) time and is oblivious while our second algorithm assumes

sensors with 2 bits of memory that can remember their previous actions and termi-

nates in linear time. We showed that no distributed algorithm for barrier coverage

exists when sensors are semi-synchronous and do not share a common orientation.

In contrast, we gave an algorithm for the case where sensors share the same orienta-

tion. Our algorithm achieves barrier coverage within finite time, even if all sensors

are asynchronous.

Finally, we considered the barrier coverage with stationary sensors and multi-

round random deployment. Sensors are assumed to be deployed uniformly at random

on a barrier modelled as a stripe. We presented two different sensor deployment

strategies and for each strategy we gave an estimate for the probability of barrier

coverage at the end of each round. The expected number of necessary rounds and

sensors to achieve barrier coverage is calculated for each strategy. The overall cost of

barrier deployment can be estimated as sum of the costs of sensors plus the cost of

deployment rounds. Using this metric for each of our deployment strategies, we cal-

culated the best parameters that give the minimum cost. We validated our analytical

results with extensive computer simulations.

Several directions can be suggested for future work. For centralized algorithms,

characterizing the situations when the feasibility of barrier coverage can be determined

in polynomial time remains an interesting open problem. Considering perpendicular

movement, existence of faster algorithms for parallel barriers is an open question.

Also the existence of better approximation algorithms as well as study of different

movement models are of interest. Furthermore, more realistic models where final

positions of sensors are not required to be on the barriers can be considered.
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For distributed algorithms, we considered three different existing timing models for

autonomous robots. However other models such as a model where sensors have almost

but not fully synchronized clocks, is suggested as a future direction. Also withing

existing timing models, there are still many open problems such as: Is there any

algorithm for barrier coverage with sensors that each have sense of orientation but do

not necessarily agree on a global orientation, in the semi-synchronous/asynchronous

models? Can our fully synchronous algorithms be extended for sensors that are not

necessarily on grid positions? How about algorithms that do not terminate, but

eventually sensors positions coverage to those in a covering assignment? What is the

average-case performance of the algorithms? Also the question whether a visibility

range larger than 2r can help with designing of algorithms for barrier coverage with

unoriented sensors in SSYNC model remains unanswered.

For barrier coverage with multi-round random deployment with stationary sensors,

we introduced two classes of deployment strategies but only analyzed one strategy

example from each class. Also we only considered the model where sensors are dis-

persed uniformly at random on the barrier. It would be of interest to study other

possible strategies as well as other random models.

Finally, investigating the applicability of the barrier coverage algorithms for solv-

ing area coverage is an interesting avenue for further research.
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