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Abstract

In this article we introduce an extension of Chen’s (2000) family of distri-

butions given by Lehman alternatives [see Gupta et al. (1998)] that is shown to

present another alternative to the generalized Weibull and exponentiated Weibull

families for modeling survival data. The extension proposed here can be seen

as the extension to the Chen’s distribution as the exponentiated Weibull is to the

Weibull. A structural analysis of the density function in terms of tail classification

and extremes is carried out similar to that of generalized Weibull family carried

out in Mudholkar and Kollia (1994). The new model is also seen to fit well to

the flood data used in fitting the exponentiated Weibull model in Mudholkar and

Hutson (1996).

1 Introduction

In parametric modeling of a given set of random observations, Pearsonian family has

played an important role, as it includes many common distributions. Some other gen-

eralized families that have been later introduced include Johnson SB, or SU family
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of curves [see Johnson et al. (1994) for a review] and Tukey Lambda family [see

Friemer et al. (1988)]. These families serve as the basis of general modeling, how-

ever, for modeling survival data Weibull family of distributions [Weibull (1951)] is

widely used. This family is a simple generalization of the exponential family and of-

fers a simple alternative to modeling by gamma, lognormal and other commonly used

survival distributions. The Weibull density, however, may not produce bathtub hazard

rates that may be required for modeling in certain situations [see Rajarshi and Rajarshi

(1988) and Nadarajah (2009)]. As a result, many generalizations have been proposed

in literature; we refer the reader to the recent monograph by Murthy et al. (2003) for

a comprehensive account of distributions and related issues connected with Weibull

distribution.

In this paper our focus is on family of distributions given by Lehman alternatives

(called exponentiated type family by Nadarajah and Kotz (2006)) considered by Gupta

et al. (1998) where the generalization of a given cumulative distribution function (cdf)

F(t) is obtained by introduction of an additional parameter α > 0, as given by

Fα(t) = [F(t)]α . (1.1)

This approach has been used in Gupta and Kundu (1999) in proposing a general-

ized exponential family by considering F(x) to be an exponential distribution with a

threshold parameter. This provides distributions with increasing or decreasing hazard

rate depending on whether α < 1 or α > 1. On the other hand Mudholkar and Srivas-

tava (1993) proposed an exponentiated Weibull family by considering F(t) to be the

cdf of a Weibull distribution [see Nadarajah et al. (2013) for an extensive review of

the exponentiated Weibull distribution]. It was noted that the exponentiated Weibull

family is richer than the generalized exponential as it may provide bath tub shaped

hazard rates in addition to increasing and decreasing hazard rates.

It may be further noted that generalizations to a family of distributions may also be

obtained by suitably generalizing the corresponding quantile function, e.g. see Friemer

et al. (1988) for generalization of Tukey Lambda family and Mudholkar and Kollia

(1994) for generalized Weibull family. A detailed structural analysis of generalized
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Tukey Lambda family and that of generalized Weibull family and their closeness with

the Pearsonian family have been systematically investigated in Friemer et al. (1988)

and Mudholkar and Kollia (1994). It was observed in Mudholkar et al. (1996) that

the generalized Weibull family exhibits a variety of hazard shapes, i.e. increasing,

decreasing, bathtub and unimodal. This feature is also shared by the exponentiated

Weibull family [see Mudholkar and Srivastava (1993)]. As such these families find

effective applications in modelling survival data.

On the other hand, a simple two parameter distribution with bathtub shape or in-

creasing hazard rate has been proposed by Chen (2000). Its distribution function is

given by

FC(t) = 1− exp
[
λ
(

1− exp
(

tβ
))]

,(t > 0). (1.2)

Xie et al. (2002) extend this family by introduction of another parameter and

named it the extended-Weibull distribution, that is given by the distribution function

FXT G(t) = 1− exp
{

λσ
[

1− exp
(( t

σ

)β)]}
, t ≥ 0. (1.3)

The term ‘extended Weibull’ is used for the above family of distributions as it resem-

bles the Weibull family of distributions for large σ , since as σ → ∞,1−exp[(t/σ)β ]≈
−(t/σ)β . It is to be noted that the special case σ = 1 gives the distribution by Chen

(2000) introduced earlier. It also gives the distribution family proposed by Smith and

Bain (1975) when λ = 1/σ in order to model bathtub shaped failure rates given by

FSB(t) = 1− exp
{

1− exp
(( t

σ

)β)}
, t ≥ 0.. (1.4)

This family as well as the Chen’s family of distributions contain distributions with

increasing and bathtub shape failure rate depending whether β ≥ 1 or β < 1. This

family has been extended by Xie et al. (2002) and further studied by Tang et al. (2003).

It has been further extended by Pappas et al. (2012) recently, using the technique of

Marshall and Olkin (1997). For other recent generalized families, the reader is referred

to the recent articles by Bourguignon et al. (2014) [see also Zografos and Balakrishnan
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(2009) and Gurvich et al. (1997)].

In this article we introduce another extension of the Chen’s family (1.2) according

to Lehman alternatives (1.1), called the extended Chen (EC) family with the distribu-

tion function given by

FEC(t) =
(

1− exp
[
λ
(

1− exp
(

tβ
))])α

, (1.5)

where α > 0,β > 0,λ > 0 are the parameters of the distribution. This extension can

be seen as the extension to the Chen’s distribution as the exponentiated Weibull is to

the Weibull.

A structural analysis of the corresponding density function in terms of the tail clas-

sification and extremes is carried out similar to that of generalized Weibull family as

in Mudholkar and Kollia (1994). The new model is also seen to fit well to the standard

flood data used in fitting the exponentiated Weibull model in Mudholkar and Hutson

(1996).

Section 2 examines the density and tail shape classification depending on the pa-

rameters of the distribution along with an analysis of the corresponding hazard func-

tion. Section 3 presents an analysis of the corresponding hazard shapes and Section

4 provides an application of this distribution using flood data for the Floyd River at

James, Iowa that has been used in Mudholkar and Hustson (1996). We use maximum

likelihood method to estimate the parameters and give the confidence intervals for each

parameter by using the bootstrap method and the likelihood ratio test to test some hy-

potheses about the distribution. The empirical TTT transform is used to justify the

appropriateness of this distribution for the data used in the illustration.
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2 Density Function and Tail Shape Classification

To simplify the discussions, we let λ = 1. The general case can be dealt similarly. The

distribution function in this case becomes (where we have dropped the subscript ’EC’)

F(t) =
(

1− e1−etβ
)α

, (t > 0,α > 0,β > 0), (2.1)

and the corresponding probability density function (pdf) is given by

f (t) = αβ
(

1− e1−etβ
)α−1

e1+tβ−etβ
tβ−1, (t > 0,α > 0,β > 0). (2.2)

The general nature of the density function is summarized in the following proposi-

tion, proof of which will be relegated to the Appendix A.1.

Proposition 2.1. The density function corresponding to the distribution (1.5), when α
and β both are larger than 1, is unimodal, whereas, when both are smaller than 1,

the density function is decreasing; in other cases, we may get unimodal or decreasing

density function.

Some graphs of the density function for various values of α and β are provided in

Figures 2.1-2.6 for illustration.

2.1 Parzen’s Classification

The tail shapes may be classified [see Parzen (1979)] according to the limiting behavior

of the extreme values as given in the following definition.

Definition 2.1. Let X1:n and Xn:n denote the minimum and maximum, respectively in a

random sample of size n, from a population with d.f. F. If as n → ∞, anXn:n +bn con-

verges in law to respectively to Y−1/β ,−Y 1/β and − logY, where β > 0, and Y denotes

the standard exponential random variable, i.e., Pr[Y ≤ y] = 1−e−y,y> 0, then the cor-

responding population distribution F is said to have long, short and medium right tail

respectively. Similarly, if as n → ∞, anX1:n + bn converges in law to respectively to
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(a) α = 2, β = 5 (b) α = 0.2, β = 0.5

(c) α = 2, β = 0.2 (d) α = 0.2, β = 1.5

(e) α = 0.5, β = 6 (f) α = 2, β = 0.9

Figure 2.1: The density function curves
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−Y−1/β ,Y 1/β and logY, where β > 0, then the corresponding population distribution

F is said to have long, short and medium left tail, respectively.

The tail classification may be achieved by the quantile function expansion as given

in Friemer et al. (1989) for Tukey lambda family and generalized Weibull family. The

following lemma is helpful in establishing this classification for the new family.

Lemma 2.1. Let X1:n and Xn:n be the minimum and maximum of a random sample of

size n, respectively from the distribution (2.1) and letU1:n,and Un:n denote those from

the U(0,1) distribution, then we have

X1:n
L
= (U1:n)

1
αβ +OP(n

− 3
αβ ) (2.3)

and

Xn:n
L
=

(
log(1− log

1−Un:n

α
+Op(n−1)

)1/β
. (2.4)

Proof: It is easily seen that the quantile function for the distribution in (2.1) is given

by

Q(u) =
(

log(1− log(1−u1/α))
)1/β

. (2.5)

In order to study the probability law of the lower extreme, we expand Q(u) around

u = 0, and find that since, as u → 0,

log(1− log(1−u
1
α )) = u

1
α +O(u

3
α ). (2.6)

Next use the fact that X1:n = Q(U1:n) and nU1:n ∼ Y where Y has the exponential dis-

tribution with mean 1, to conclude the result in (2.3). In order to prove the result in

(2.4), we obtain a similar expansion for Q(u) around u = 1. Writing 1−u1/α as

1−u1/α =
u−1

α
(1+O(u−1)) (2.7)

we have

(
log(1− log(1−u1/α))

) 1
β
=

(
log(1− log

1−u
α

+O(u−1))
) 1

β
. (2.8)
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Now we use the fact that Xn:n = Q(Un:n) and n(1−U1:n)∼Y where Y has the exponen-

tial distribution with mean 1, to conclude the result in (2.4). This proves the lemma.

The following theorem gives the Parzen’s classification of the probability law stud-

ied in this article.

Theorem 2.1. Let X1:n and Xn:n be the minimum and maximum of a random sam-

ple of size n, respectively from the distribution (2.1), and let Y denote the standard

exponential random variable, i.e. Pr[Y ≤ y] = 1− e−y,y ≥ 0. Then as n → ∞, we have

n
1

αβ X1:n
L→ Y

1
αβ (2.9)

β (log(1+ logn))1− 1
β (1+ logn)Xn:n −β log(1+ logn)(1+ logn)− logα L→− logY.

(2.10)

From these results we conclude as per Def. 2.1, that the left tails of the distribution

are short and the right tails are medium.

Proof:

Eq. (2.9) follows by reexpressing (2.3) as

n
1

αβ X1:n
L
= (nU1:n)

1
αβ +OP(n

− 2
αβ ) (2.11)

and the fact that nU1:n
L→ Y as n → ∞. To prove (2.4), we need a finer analysis. From

Eq. (2.4), we note that as n → ∞,

Xn:n
L→
(

log(1+ logn− log
n(1−Un:n)

α
)

) 1
β
. (2.12)

Next to complete the proof, we use the well known result that if Yn
L→ Y as n → ∞,

then gn(Yn)
L→ g(Y ), provided gn(y)→ g(y) uniformly over all compact subsets. In the

present case, we consider

gn(y) =
(log(1+ logn− y))1/β − (log(1+ logn))1/β

1
β (log(1+ logn))

1
β −1

1
1+ logn

. (2.13)
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and Yn = log n(1−Un:n
α , and show that gn(y)→−y. We write

gn(y) =
(log(1+ logn− y))

1
β − (log(1+ logn))

1
β

1
β (log(1+ logn))

1
β −1 1

1+ logn

=
(log(1+ logn)+ log(1− y

1+ logn))
1
β

1
β (log(1+ logn))

1
β −1 1

1+ logn

− (log(1+ logn))
1
β

1
β (log(1+ logn))

1
β −1 1

1+ logn

=

1+
log(1− y

1+ logn
)

log(1+ logn)


1
β

−1

1
β

1
log(1+ logn)

1
1+ logn

For y in a compact set, there must exist a positive number M which makes |y| < M,

we can choose n , such that |y|
1+logn < 1, i.e. n > e|y|−1. Choose N = max(3,⌊eM−1⌋),

then for n ≥ N,

gn(y) =

1+ 1
β

log(1− y
1+ logn

)

log(1+ logn) +o

 log(1− y
1+ logn

)

log(1+ logn)

−1

1
β

1
log(1+ logn)

1
1+ logn

. (2.14)

This shows that

gn(y)≈
log(1− y

1+ logn)
1

1+ logn
→−y (n ≥ N) uniformly. (2.15)

And since Yn = log n(1−Un:n)
α converges to log Y

α = logY − logα in law, it follows from
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Eq. (2.12) that,

(log(1+ logn− log n(1−Un:n)
α ))

1
β − (log(1+ logn))

1
β

1
β (log(1+ logn))

1
β −1 1

1+ logn

L→ logα − logZ

that in turn implies

β (log(1+ logn))
1
β −1

(1+ logn)Yn:n −β log(1+ logn)(1+ logn)− logα L→− logZ.

(2.16)

This completes the proof of the theorem.

2.2 Extreme Spacing Classification

For a random sample of size n from the population of a random variable X the right

and left Extreme spacings (ES) are defined respectively as

Sn:n = Xn:n −Xn−1:n (2.17)

S1:n = X2:n −X1:n. (2.18)

The tail classification introduced earlier in terms of extreme value behavior is

somewhat crude as remarked in Schuster (1984), as many distributions such as nor-

mal and gamma distributions, with seemingly different tail behavior are classified as

having the medium right tail. Schuster (1984) proposed the following definition of tail

behavior based on the probability limit of Sn:n as n → ∞, to render further classifica-

tion of medium right tails, which seems quite appealing.Here we focus on the right

extreme spacings Sn:n since they are useful in refinement of the right tail classification

of a family of distributions. Similar definition holds for the left tail using S1:n.

Definition 2.2. If, as n → ∞, Sn:n converges in probability to 0, the right tail is ES

short. If Sn:n diverges in probability, then the right tail is ES long. It is ES medium, if

Sn:n remains bounded but non-zero in probability.

Schuster (1984) proposed a relationship between outlier proneness and the ES clas-
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sification. According to this relationship, a sample from a population with ES short

tail “will rarely have outliers” in that tail, ES medium tail populations “will occasion-

ally have moderate outliers” and those populations with ES long tail “will often have

extreme outliers”.

Friemer et al. (1989) show how the expansions of quantile functions may be used

to obtain the convergence in law results for extreme spacings. We begin by noting a

simple but useful observation in Friemer et al. (1989):

Proposition 2.2. If anXn:n + bn has a limiting distribution as n → ∞, then the high

probability magnitude of the length of the right tail of the distribution of X may be

estimated by

Sn:n = OP

(
1
an

)
. (2.19)

Next, we obtain the limiting distributions of extreme spacings for the new family

of densities based on the results of extreme value distribution presented in the previous

sections. We state the following lemma from Friemer et al. (1989) needed for this

purpose.

Lemma 2.2. [Friemer et al., 1989] Let U1:n ≤ U2:n ≤ ... ≤ Un:n denote the ordered

values in a random sample from the uniform(0,1) distribution, then as n → ∞, (n(1−
Un−1:n),n(1−Un:n)) converges in law to (Z,Y ), where (Z,Y ) has the joint pdf

fZ,Y (z,y) =

{
e−z if 0 ≤ y ≤ z,

0, otherwise
(2.20)

The following theorem gives the limiting distribution of the extreme spacings cor-

responding to the distribution in Eq. (2.1).

Theorem 2.2. For a random sample of size n from the family given in (2.2) and random

variable (Z,Y ) with joint p.d.f.

fZ,Y (z,y) =

{
e−z, if 0 ≤ y ≤ z,

0, otherelse
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as n → ∞
n

1
αβ S1:n

L→ Z
1

αβ −Y
1

αβ

and

(log(1+ logn))1− 1
β (1+ logn)Sn:n

L→ 1
β
(logZ − logY )

Proof:
Since Sn:n = Yn:n −Y(n−1):n and S1:n = Y2:n −Y1:n, using expansion of Q(u) as in

Theorem 2.1, we get the following results:

n
1

αβ S1:n
L→ Z

1
αβ −X

1
αβ , (2.21)

and

(log(1+ logn))1− 1
β (1+ logn)Sn:n

L→ 1
β
(logZ − logX). (2.22)

Corrolary 2.1. The left and right extreme spacings of a sample of size n from the

distribution in Eq. (2.2) satisfy:

S1:n = Op(n
− 1

αβ ), (2.23)

and

Sn:n = Op

(
(log(1+ logn))

1
β −1

1+ logn

)
. (2.24)

Remark 2.1. From the above Corollary, it can be seen that in Schuster’s terminol-

ogy, classically medium right tail of this distribution is always medium-short, and the

convergence rate of the extreme spacings depends on the value of β . For example, the

convergence is much faster for β > 1 than β < 1.

3 The Hazard Function Shapes

The hazard function (also known as the failure rate, hazard rate, or force of mor-

tality) h(t) is the ratio of the density function f (t) to the survival function R(t) =
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1−F(t), given by

h(t) =
f (t)
R(t)

. (3.1)

For the distribution, introduced in Eq. (2.1), the hazard function is given by:

h(t) =
αβ (1− e1−etβ

)α−1e1+tβ−etβ
tβ−1

1− (1− e1−etβ
)α

. (3.2)

The shape of the hazard function h(t) depends on the values of α and β as depicted in

the following proposition whose proof is relegated to Appendix A.2.

Proposition 3.1. The shapes of the hazard function corresponding to the distribution

given in Eq. (2.1) is given in the following table:

Table 3.1: Four types of hazard shapes
α β failure behavior
1 1 constant
< 1 < 1 bathtub
> 1 > 1 increasing
< 1 > 1 increasing or bathtub
> 1 < 1 increasing or bathtub
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Figures 2(a-e) depict different shapes of the hazard function for the cases: i) α >

1, β > 1, ii) α < 1, β < 1, iii) α > 1, β < 1 and αβ < 1, iv) α < 1, β > 1 and αβ < 1,

v) α < 1, β > 1 and αβ > 1 and vi) α > 1, β < 1 and αβ > 1. We note that when at

least one of the α,β is less than 1 and the other one is larger than 1, the correspond-

ing hazard function is increasing or bathtub shaped depending on whether αβ > 1 or

not. Thus we conjecture that h(t) is increasing if αβ < 1 and it is of bath tub shape if

αβ > 1.

4 An Application

The flood rate of rivers have important economic, social, political and engineering im-

plications. The modeling of flood data and analyses involving indications constitute an

important application of the extreme value theory. Mudholkar and Hutson (1996) used

the empirical TTT transform to demonstrate that exponential Weibull family provides

a practical model for the analysis of the flood data. Here we use the similar method to

examine the model introduced here for the flood data and compare it with the model

used by Mudholkar and Hutson (1996).

Table 4.1: The Consecutive Annual Flood Discharge Rates of the Floyd River at
James, Iowa

Year Flood Discharge in( f t3/s)
1935-1944 1460 4050 3570 2060 1300

1390 1720 6280 1360 7440
1945-1954 5320 1400 3240 2710 4520

4840 8320 13900 71500 6250
1955-1964 2260 318 1330 970 1920

15100 2870 20600 3810 726
1965-1973 7500 7170 2000 829 17300

4740 13400 2940 5660
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(a) α = 0.5, β = 0.5
(b) α = 2, β = 2

(c) α = 2, β = 0.3 (d) α = 5, β = 0.5

(e) α = 0.3, β = 2 (f) α = 0.6, β = 2

Figure 3.1: The hazard function curves
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4.1 Models Considered and Parameter Estimates

The Floyd River flood rate data for the years 1935-1973 are given in Table 5.1. An

exponentiated Weilbull model with the distribution function

FEW (t) = [1− exp(−(t/σ)β )]α , t ≥ 0

was used by Mudholkar and Hutson (1996) to demonstrate the application of their

model and for checking the exponentiality of the data.

In order to check if simpler models may be adequate for the data we will consider

three cases for the pdf corresponding to the distribution function (1.5):

i) λ = 1 ii) α = 1 and iii) full model; these will be referred to as models EC(i), EC(ii)

and EC(iii) respectively.

The standard maximum likelihood method is used estimating the parameters. The

maximization of the likelihood is obtained using the optim routine of R-package (with

the value of reltol set to 1e-20), as explicit solutions of the likelihood are not avail-

able. The likelihood function for the three cases are given below:

i) EC(i) model: In this case the probability density function is given by:

f (x) = αβ (1− e1−exβ
)α−1e1+xβ−exβ

xβ−1

and consequently the log-likelihood function is given by

ℓ(α ,β ) = n logα +n logβ +(α −1)
n

∑
i=1

log(1− e1−exβ
i
)+n+

n

∑
i=1

xβ
i −

n

∑
i=1

exβ
i

+(β −1)
n

∑
i=1

logxi

ii) EC(ii) model: The density in this case is given by

f (x) = −eλ (1−exβ
)(−λ )exβ

βxβ−1

= λβeλ (1−exβ
)+xβ

xβ−1
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Table 4.2: Parameter Estimates, Likelihood and AIC for Different Models

Model Parameter estimates log-likelihood AIC
EW α̂ = 0.2323, θ̂ = 77.9517, σ̂ = 4.2423 -376.3498 377.0355

EC(i) α̂ = 266.7735 β̂ = 0.08139 -376.3688 376.7021
EC(ii) β̂ = 0.1702, λ̂ = 0.01138 -387.7844 388.1177
EC(iii) α̂ = 387.3361, β̂ = 0.07797, λ̂ = 1.1326 -376.3624 377.0481

and the likelihood function is consequently given by

ℓ(λ ,β ) = n logλ +n logβ +nλ −λ
n

∑
i=1

exβ
i +

n

∑
i=1

xβ
i +(β −1)

n

∑
i=1

logxi.

iii) EC(iii) model: This is the case of unrestricted parameters and the full likelihood

for the unrestricted parameters is given under the pdf

f (x) = α(1− eλ (1−exβ
))α−1(−eλ (1−exβ

))(−λexβ
)βxβ−1

= αλβ (1− eλ (1−exβ
))α−1eλ (1−exβ

)+xβ
xβ−1

as

ℓ(α ,β ,λ ) = n logα +n logβ +n logλ +(α −1)
n

∑
i=1

log(1− eλ (1−exβ
i ))+nλ

−λ
n

∑
i=1

exβ
i +

n

∑
i=1

xβ
i +(β −1)

n

∑
i=1

logxi.

The estimators under various models along with the log-likelihood are summarized

in the table below.

The likelihood of the restricted Model (i) (with λ = 1) compares closely to the

full model however at the expense of an additional parameter, that is also close to the

likelihood given by the Mudholkar-Hutson exponentiated Weibull model. Hence, we

look at the Akaike information criterion (AIC) [see Burnham & Anderson (2002)] that

penalizes for additional parameters given by
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AIC =−log(likelihood)+
2k(k+1)
n− k−1

. (4.1)

The goodness of fit of a model based on the value of AIC is judged on the smaller

values of AIC, i.e. smaller is the AIC, better is the considered model. Thus according

to this criterion, the restricted Model 1 comes out to be best of the four models consid-

ered here; the three parameter new distribution provides almost the same AIC as the

one for the exponentiated Weibull model. Thus we might be interested in testing the

restrictions through a formal test of hypothesis. This can be done on a large sample

basis through likelihood ratio test that considers the statistic

Λ = 2(logL1 − logL2), (4.2)

where L1 is the maximized likelihood under the full model and L2 is that under the

reduced model (H0.) This statistic has a χ2 distribution under H0 with 1 degree of

freedom and the null hypothesis will be rejected for larger values of the test statistic.

Thus for model (i) we are in a situation for testing H0 : λ = 1 vs. H1 : λ ̸= 1. The

value of the test statistic in this case is Λ = 2(−376.362+ 376.369) = 0.014 that is

significantly lower than the right tail 5% value of χ2 with 1 degree of freedom that

equals 3.84. Hence model (i) is accepted in favor of λ = 1. On the other hand for

Model (ii), we test H0 : α = 1 vs. H1 : α ̸= 1. In this case the comparing the log-

likelihood of model (ii) and model (iii) we get Λ = 2(387.784− 376.362) = 22.844

that is significantly higher than 3.84 indicating that model (ii) should be rejected.

These conclusions are based on large sample theory but may also be validated us-

ing Bootstrap method [see Davison and Hinkley (1997)] that may be more appropriate

for smaller samples. Below we provide 95% BCa (bias-corrected and adjusted ) boot-

strap confidence intervals (CI) [see Efron and Tibshirani (1985)] based on B = 1000

replications from the full model:

95% CI for α: (4.223883, 1414.707)

95% CI for λ : (0.04455415, 1.680493)

95% CI for β : (0.05785784, 0.1090082)
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Based on the 95% CI for λ we accept the null hypothesis H0 : λ = 1, where as the

hypothesis H0 : α = 1 is rejected giving the same conclusions obtained using the large

sample theory.

4.2 Model Suitability Based on Scaled TTT Transform

It has become a common practice to examine the TTT (total time on test) transform

introduced by Barlow and Campo (1975) [see also Bergman and Klefsjö (1984, 1985)]

in order to judge the shape of the hazard function and closeness of the data distribution

with that of the model. Aarset (1987) proposed and illustrated the use of empirical

TTT-tranform for identifying bathtub failure rates. The scaled TTT transform of a

probability distribution with d.f. F(.) and quantile function Q(.) is:

ϕ(u) =
1
µ

∫ Q(u)

0
(1−F(t))dt. (4.3)

where µ is mean of the distribution F. For the exponential distribution, that has a

constant hazard function, ϕ(u) = u. If ϕ(u) is convex then the hazard function h(u) is

decreasing, and h(u) is increasing if ϕ(u) is concave. And If ϕ(u) is concave-convex

then h(u) is unimodal; and it is convex-concave if h(u) is bathtub shaped. In practice,

given a random sample x(1) ≤ x(2) · · · ≤ x(n) from F, the TTT transform of the fitted

model may be compared with the empirical TTT transform given as:

ϕn(i/n) =
∑i

j=1 x( j)+(n− i)x(i)
∑n

j=1 x( j)
. (4.4)

For the three cases considered in this paper, the quantile functions are:

(i) Q(u) = (log(1− log(1−u
1
α )))

1
β ,

(ii) Q(u) = (log(1− log(1−u)
λ

))
1
β
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and

(iii) Q(u) = (log(1− log(1−u
1
α )

λ
))

1
β .

respectively, and that for the exponentiated-Weibull is given by

Q(u) = σ [− log(1−u1/θ )]1/α ,0 ≤ u ≤ 1.

Figure 4.1 gives a graph of the empirical transform superimposed with those of the

fitted distributions for the four models considered in this paper. Note that the circles

represent the empirical transform.

We note that the model provided by the Chen’s distribution (α = 1) is not adequate

for this data, however, the modification with two parameters (λ = 1) fits almost as well

as the three parameter exponentiated Weibull model.

5 Conclusions

A new three-parameter lifetime distribution with bathtub shape or increasing failure

rate function is introduced in this paper. We mainly studied the properties of the den-

sity function, tail shapes, hazard function and extremes and extreme spacings of this

distribution in the similar method as the structural analysis of the Tukey lambda fam-

ily in Friemer et al. (1988), of the Weibull family by Mudholkar and Kollia (1994)

and Exponentiated-Weibull family by Mudholkar and Hutson (1996). The principal

applications are in survival, reliability and the extreme-value analysis. For the analysis

considered here, we consider λ = 1; for other values similar properties are postulated.

It is shown here using a commonly used data set that the new distribution fits as well as

the exponential Weibull distribution, that has been used earlier in the literature. We use

this data set to demonstrate tests of hypotheses using resampling confidence intervals,

for example the hypothesis λ = 1. Another use of this distribution is to test the com-

posite goodness-of-fit hypothesis of the distribution given by Chen (2000) by testing

α = 1. Introducing an additional shape parameter α may provide a better model than

Chen’s model as demonstrated for the Floyd River flood data.
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This distribution, just like exponentiated-Weibull distribution, is very useful in the

lifetime, reliability and extreme-value data analysis. Thus further research on inference

problems for this model may be of interest.

6 Appendix

A.1. Proof of Proposition 2.1

Let

z ≡ z(t) = etβ
.

Then f (t) = g(z), where

g(z) = αβ (1− e1−z)α−1e1−zz(logz)
β−1

β . (6.1)

It is seen that the derivative of g(z) is given by :

g′(z) = αβ{(1− e1−z)α−2(logz)
β−1

β −1e1−z[T1(z)+T2(z)+T3(z)]} (6.2)

where

T1(z) = (α −1)z logze1−z,

T2(z) = logz(1− e1−z)(1− z)

and

T3(z) = (1− e1−z)
β −1

β
.

Now we analyze the sign of each of the terms T1,T2 and T3. At first, consider the

case of z → ∞ (that is t → ∞). It can be easily seen that

limz→∞T1(z) = 0, limz→∞T2(z) =−∞
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and

limz→∞T3(z) =
β −1

β
.

Thus we conclude that for large z , g′(z)< 0 and hence as t → ∞, f (t) is decreas-

ing. Therefore, f (t) may be overall decreasing or unimodal. Now we consider four

cases where we can explicitly discuss the nature of f (t) for all t > 0.

Case I: (α < 1, β < 1)

If α < 1 and β < 1, then: Since,

T1(z)< 0 for all z > 1 or t > 0,

T2(z)< 0 for all z > 1 and

T3(z) < 0, it follows from Eq.(3.4), that g′(z) < 0 for all z > 1. That means g(z) is

decreasing or f (t) is strictly decreasing.

Case II: (α > 1, β > 1)

For this case, we show that f (t) is unimodal. Let:

Ψ(z) = (α −1)z logze1−z + logz(1− e1−z)(1− z)+(1− e1−z)
β −1

β

then

Ψ(z) = (α −1)z logze1−z +(1− e1−z)ψ(z)

where ψ(z) = logz− z logz+ β−1
β . We find that,

ψ ′(z) =
1
z
− logz− z

1
z

ψ ′′(z) =− 1
z2 −

1
z

It is obvious that ψ ′′(z)< 0 for z > 1. This implies that ψ ′(z) is decreasing function.

Hence; ψ ′(z)< ψ ′(1) = 0 ⇒ ψ(z) is a decreasing function. Since limz→∞ψ(z) =−∞,
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and ψ(1)= β−1
β > 0, there exists a z∗ such that ψ(z∗)= 0 and, 0<ψ(z)<ψ(1)= β−1

β
for 1< z< z∗. This implies Ψ(z)> 0 for 1< z< z∗. Further since, limz→∞g′(z)=−∞,

using the same argument, we find that there exists z∗∗ ≥ z∗, such that Ψ(z∗∗) = 0. This

provides that g(z) is unimodal or equivalently f (t) is unimodal.

Case III: (α < 1, β > 1)

Note that g′(z) has the same sign as Ψ(z). Since

Ψ(z) = (α −1)z logze1−z +(1− e1−z)ψ(z)

For α < 1; (α −1)z logze1−z < 0 for all z > 1.

Also, ψ(z) is decreasing function and ψ(z)< ψ(1) = β−1
β .

Let z∗ be such that ψ(z∗) = 0; then

For z > z∗; Ψ(z)< 0, hence;

g(z)↘ for z > z∗.

For z ≤ z∗,

Ψ(z)≥ 0 ⇔ α ≥ 1− (1− e1−z)ψ(z)
z logze1−z ∀z∗ ≥ z

⇔ α ≥ 1− supz≤z∗
(1− e1−z)ψ(z)

z logze1−z = 1−uz∗,say.

If α satisfies the above condition, then f (t) is unimodal, otherwise f (t) is decreas-

ing with t.

Case IV: (α > 1, β < 1)

This case is very similar to the case III. Maybe Ψ(z) is always non-positive, or at the

beginning, it is non-negative and eventually becomes non-positive. That means g(z) is

decreasing or unimodal. It is equivalent to saying f (t)may be decreasing or unimodal.

By the above analysis, it is clear that when α and β both are larger than 1, the

density function is unimodal, whereas, when both are smaller than 1, the density func-
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tion is decreasing; in other cases, we may get unimodal or decreasing density function

as summarized in Table 1.

A.2. Proof of Proposition 2.2

As in the previous section, we analyze h(t) in terms of z = etβ
, and consider

h(t) = r(z) =
αβ (1− e1−z)α−1ze1−z(logz)

β−1
β

1− (1− e1−z)α (6.3)

Now

r′(z) = αβ
ϕ1(z)(1− (1− e1−z))− (1− e1−z)α−1e1−zz(logz)

β−1
β ϕ2(z)

(1− (1− e1−z)α)2 ,

where

ϕ1(z) =
d((1− e1−z)α−1e1−zz(logz)

β−1
β )

dz

and

ϕ2(z) =
d
dz

(1− (1− e1−z)α).

It can be seen that

ϕ1(z) = (1− e1−z)α−2(logz)
β−1

β −1e1−zz logz((α −1)e1−z − (1− e1−z))

+(1− e1−z)α−2(logz)
β−1

β −1e1−z(1− e1−z)(logz+
β −1

β
) (6.4)

and ϕ2(z) = −α(1− e1−z)α−1e1−z. (6.5)

Then r′(z) can be written as:

r′(z) = ϕ3(z)ϕ4(z)
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where

ϕ3(z) = αβ
(1− e1−z)α−2(logz)

β−1
β −1e1−z

(1− (1− e1−z)α)2

and

ϕ4(z) = (z logz((α −1)e1−z − (1− e1−z))+(1− e1−z(logz+
β −1

β
))(1− (1− e1−z)α)

+(1− e1−z)ααze1−z logz.

It is very easy to see that ϕ3(z) is always greater than 0, so we need to consider ϕ4(z)

in detail. Write ϕ4(z) as

ϕ4(z) = (1− e1−z)G1(z)+G2(z),

where

G1(z) = (logz+
β −1

β
)(1− (1− e1−z)α)

and

G2(z) = z logz(αe1−z −1+(1− e1−z)α).

We find that when t → ∞(z → ∞):

limz→∞G1(z) = limz→∞αze1−z(logz)2

= 0 (6.6)

and

limz→∞G2(z) = limz→∞
2z logz

α(α −1)e2z−2

= 0. (6.7)

Further

G1(z)
z→∞
≈ logz(αe1−z − α(α −1)

2
(e1−z)2 +o((e1−z)2))
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G2(z)
z→∞≈ z logz(

α(α −1)
2

(e1−z)2 +o((e1−z)2))

and

limz→∞ze1−z = limz→∞
z

ez−1 = 0.

Thus G2(z) converges to zero at a faster rate than G1(z).

Suppose k(α) = αe1−z −1+(1− e1−z)α and e1−z = t, (0 < t < 1)

so that

k(α) = tα −1+(1− t)α ,

k′(α) = t +(1− t)α log(1− t),

k′′(α) = (1− t)α log(1− t) log(1− t) = (1− t)α(log(1− t))2 > 0.

and for α = 0,k(0) = 0, and for α = 1,k(1) = 0. Let k′(α) = 0, then α∗ = log
− t

log(1−t)
1−t ,

α = α∗ gives minima of k(α).

For further analysis of k(α) we need the following inequality:

1− t <− t
log(1− t)

< 1 (6.8)

The left hand side of the above inequality follows by considering the function

T (t) = (1− t) log(1− t)+ t and noting that

T (0) = 0

and

T ′(t) =− log(1− t)+
1− t
1− t

(−1)+1 =− log(1− t)> 0.

Thus we conclude that T (t) ↗, and T (t) > T (0) = 0, that is − t
log(1−t) > 1− t that

proves the left hand side of (6.8). To prove the right hand side of (6.8) consider g(t) =

log(1− t)+ t. We have

g(0) = 0,
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and

g′(t) =
−1

1− t
+1 < 0,

that implies that g(t)↘, and g(t) < g(0) = 0, that is − t
log(1−t) < 1 and the inequality

on the right hand side of (6.8) follows.

Now, we go back to consider the behavior of k(α). Since α∗ is the minimum value

of k(α)

k′(α)< 0, for(α < α∗)

and

k′(α)> 0, for(α > α∗)

Also when α > 1, k′(α)> 0 and k(1) = 0; i.e, for α > 1, k(α)↗, hence

k(α)> 0, for(α > 1)

and

k(α)< 0, for(0 < α < 1).

Thus we have four cases:

Case I: (α ≥ 1, β > 1)

When α ≥ 1, β > 1, ϕ4(z)> 0, so r(z) is increasing, that is h(t) is increasing.

Case II: (α > 1, β < 1)

When α > 1, β < 1, ϕ4(z)> 0, for all z or at the beginning, ϕ4(z)< 0, then it becomes

positive. In this case, therefore r(z) is increasing or bathtub, that is h(t) is increasing

or bathtub.

Case III: (α < 1, β > 1)

When α < 1, β > 1, ϕ4(z)> 0, for all z or at the beginning, ϕ4(z)< 0, then it becomes

positive. Hence r(z) is increasing or bathtub, that is h(t) is increasing or bathtub.
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Case IV: (α ≤ 1, β < 1)

When α ≤ 1, β < 1, at the beginning, if z< e
1−β

β ϕ4(z)< 0, and then for z> e
1−β

β ϕ4(z)>

0, hence r(z) is bathtub, that is h(t) is bathtub shaped.
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86. José Garrido and Jun Zhou, Credibility Theory for Generalized Linear
and Mixed Models, December 2006
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