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Abstract

Differentially Private Traffic Padding for Web Applications

Taher Azab

The wide adoption of Web applications in various sectors of our society, such as govern-

ment, finance, education, health care, media, etc., has implicitly introduced new security

challenges. Among such challenges are side channel attacks that may disclose private user

inputs from encrypted traffic. Such attacks might have a serious impact upon user privacy

in such applications. In this thesis, we propose a new concept and algorithms that can pre-

serve user privacy in Web applications. In order to achieve this, we define a new privacy

model based on a well known concept, namely, differential privacy. The intent is to make

padded traffic differentially private such that adversaries cannot infer private user inputs

even when they possess prior knowlege about such inputs. At the same time, we intent

to achieve a balance bewteen privacy and the incurred communication overhead. In order

to demonstrate the usefulness of our model, we implement the proposed algorithms and

conduct experiments based on data collected from well known Web applications.
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Chapter 1

Introduction

The popularity of Web applications is gaining a momentum in many sectors of our so-

ciety. Unlike desktop-based applications, Web-based applications require less client-side

resources and are easier to develop, deploy and maintain. It is due to the presence of Web

browsers on the majority of computers and mobile devices today, which makes it more

convenient for both users and service providers to adopt.

Furthermore, such Web applications may also pose new security threats. These threats

are result to the fact that Web applications rely on the distrusted Internet as a medium of

communication between their client and server sides. As most processing in Web appli-

cations is done on the server-side, sensitive data, such as personal emails, online banking

transactions and health records, are frequently transmitted through a network of insecure

machines.

Various existing security techniques at different levels of the network can provide pro-

tection to some extent. However, Web applications may still be vulnerable to novel secu-

rity attacks, considering the fact that such applications highly depend on the interactions

between the client and server sides. Such interactions are relying on the distrusted In-

ternet as the medium of communications. In particular, the recent work by Chen et al.

[14] demonstrates that highly sensitive data may be disclosed even if Web application traf-

fic is encrypted. Their work also shows that Web applications have serious user privacy
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breaches, as a consequence of the so-called side-channel attacks. These attacks are per-

petrated through employing unique patterns in the packet sizes and inter-arrival timing to

identify Web application states. By retrieving insights into those states, attackers can obtain

sensitive information about Web application users. Recently, Shamir et al. [25] have un-

earthed yet a critical vulnerability of the ubiquitous cryptosystem, namely RSA, through a

particular strain of side-channel attacks, acoustic cryptanalysis [4, 53, 7], which leverages

sounds emitted by electronic components. By utilizing this side-channel attack, they have

demonstrated that full 4096-bit RSA decryption keys can be obtained relatively quickly us-

ing normal tools, such as smart phones. This work has raised concerns over the building

blocks of the cyberspace and Internet which relies upon RSA to provide secure and pri-

vate communication channels. Hence, adversaries who can effectively utilize side-channel

attacks may pose as serious threats to the security and privacy of any entity connected

through the Internet.

Existing security techniques offer little protection against such side channel attacks. To

evade eavesdropping and side-channel attacks, Web applications mainly rely on encryption

schemes. The most popular approaches to add a layer of protection to Web application

communications include Hypertext Transfer Protocol Secure (HTTPS) and, for wireless

networks, various Wi-Fi encryption schemes. Different encryption schemes have been

proposed in the literature in order to mitigate the threat of an eavesdropper in a network,

and prevent him from being able to recover original traffic data.

In particular, for a Wi-Fi device to be able to communicate with a wireless access point,

an encryption scheme is needed to provide a private channel for such communications.

Wired Equivalent Privacy (WEP [1]) is an early Wi-Fi encryption schema. It aims at in-

troducing confidentiality in wireless networks. However, it was revealed to be flawed and

obsolete since it allows a potential attacker to infer encryption key and disclose encrypted

traffic [10]. Accordingly, Wi-Fi Protected Access protocols (WPA and WPA2 [1]) have

been introduced to overcome the inference of encryption key problem. However, such

protocols do not hide the size and timing of network packets, and therefore they are still
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vulnerable to side channels attacks addressed in this thesis. WPA uses Temporal Key In-

tegrity Protocol (TKIP [1]). The latter has a byte-level granularity since it uses RC4 cipher

schema [1]. WPA2 is based on Cipher-block Chaining Mode Protocol (CCMP). The latter

uses 128-bit Advanced Encryption Standard (AES) block cipher. CCMP has shown use-

fulness in securing WPA2, but misses rounding effect [1]. As a result, resulting ciphertext

has the same size of the plaintext [14].

In the case of HTTPS, the choice of ciphers is dependent upon each Website to select.

Packet sizes could be rounded up to a multiple of a block size in case a block cipher is

used, which can potentially prevent a side channel attack based on packet sizes. However,

only few Websites choose to use block cipher for encryption, correspondingly, so many

popular/important Websites that use the RC4 stream cipher. It is also shown that even when

block ciphers are used, the rounding effect is still very little or non existing at all. This is

due to the fact that distinction between traffic flows is too large. As result, an eavesdropper

can infer sensitive user information only by observing distinct traffic sizes. In the prevailing

of these facts, corroborating privacy and confidentiality of Wi-Fi communications between

clients and servers in untrusted environment like Internet, is of a paramount importance. In

this thesis, we propose a solution through traffic padding technique, that is compatible with

Wi-Fi encryption layer. In the sequel, we present a motivating example that puts forward

the essence of privacy problems in Web applications.

1.1 Motivating Example

Table 1 illustrates the interaction between users and a well known real world search engine,

where traffic packets are observed in terms of their size and direction. Owing to the fact that

this search engine provides the so-called auto-suggestion feature, such interaction happens

for every keystroke by the user. With each character of a user input typed into the search

engine, a b-byte packet is sent from the browser to the server; then two packets are received

from the server of sizes 54-byte (Acknowledgment) and s-byte (Suggestions), respectively.

Finally the browser sends back a 60-byte (Acknowledgment) packet back to the server.
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For the sake of simplicity, we are showing only the packets whose sizes may help to

identify user inputs, such as the s-byte packet which has a variable size depending on

the input, and the b-byte packet size. It is important to mention that b-byte packets size

increments with each input that the user adds. Evidently, an attacker can deduce which

input string the user entered based on observation of the traffic pattern sizes (s-bytes and

b-bytes), regardless of the encryption. In this work, we assume that an attacker can iden-

tify traffic related to Web applications by using techniques such as fingerprinting and de-

anonymizing [44]. We also assume that an attacker can map the identified traffic back to

user inputs.

User Input Observed traffic

a b1 → ← 54 ← 509 60→

cc b2 → ← 54 ← 502 60→

b2 +1→ ← 54 ← 473 60→

Table 1: User input example, and corresponding generated traffic

In addition to observations done on the traffic size, the more a potential attacker ob-

serves in terms of packets sequences, the easier for him to guess corresponding inputs. To

illustrate this, let us consider information collected from the interaction with the search

engine. Table 2 summarizes the different pairs input character and size for s-bytes packets.

Table 3 illustrates size values of the second keystroke, when two successive keystrokes of

inputs characters ’a’, ’b’, ’c’ and ’d’ are entered. Most first keystroke inputs have distinct

s-byte packet size. By combining observations done on two consecutive keystrokes, all

input strings can uniquely be identified.
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a b c d e f g h i

509 504 502 516 499 504 502 509 492

j k l m n o p q r

517 499 501 503 488 509 525 494 498

s t u v w x y z

488 494 503 522 516 491 502 501

Table 2: s Value for Each Char Entered as the First

Second keystroke

First keystroke a b c d

a 487 493 501 497

b 516 488 482 481

c 501 488 473 477

d 543 478 509 499

Table 3: s Value for Each Char Entered as the Second Keystroke

1.2 Proposed Solutions

A straightforward solution to mitigate the aforementioned side channel attacks is to pad

packets so that each input is no longer mapped to a unique size (e.g. random padding,

and rounding). However, as this solution provides the needed privacy against such attacks,

it might also result in prohibitive additional communication overhead (e.g. 21074% of

overhead for a well-known Web application [14]). Moreover, such approach typically

aims to maximize, but cannot guarantee the amount of privacy protection. In this thesis, we

adopt a different approach, mainly to guarantee a given level of privacy protection, based

on a clearly defined privacy model, while trying to minimize the incurred overhead.

There already exist some efforts on privacy preserving traffic padding [34, 33], which

aim to improve the aforementioned naive padding approaches by reducing the overhead
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incurred by such techniques and at the same time providing privacy guarantee to the traf-

fic padding outcome. The main limitations of those existing approaches is that they are

based on a so-called syntactic privacy model which is vulnerable to prior knowledge that

may be possessed by adversaries. In this thesis, we adopt the well known differential pri-

vacy model [19] in order to remove such a limitation. Considerable attention has been

drawn towards finding an approach to provide a privacy guarantee that is not affected by

prior adversarial knowledge. Differential privacy has emerged as the most widely accepted

solution [18, 22].

Differential privacy defines a new way to query different data sets while keeping min-

imal (within a certain limit) the chance of identifying any specific individual information

from the output. An observer has little evidence as to whether any specific individual is or

is not present in the database [27].

In the remainder of this thesis, we propose a solution to the above side channel attack

based on the concept of traffic padding (which is to add dummy bytes to packets to increase

their sizes such that the sizes corresponding to multiple potential user inputs will become

indistinguishable to an adversary) and differential privacy (which is to offer privacy protec-

tion even in the face of prior adversarial knowledge about possible user inputs). The main

challenge of our solution lies in the fact that existing methods of adding noises to query

results for achieving differential privacy cannot be directly applied to our case, because

traffic padding can only increase the sizes of packets, but not to decrease them. In other

words,as the noise is generated randomly from laplace distribution the generated noise can

be negative. Hence, we need to pad the packet with negative noise which is impossible.

A negative noise size added to the actual packet size may result in a negative packet size.

Therefore, in this thesis, after we have defined the basic differential privacy model for traf-

fic padding, we focus on designing a series of algorithms to deal with the issue of negative

noise sizes, and we evaluate their performance using data collected from real world Web

applications.
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1.3 Contributions

The main contributions of our research effort are summarized as follows:

- This is, to the best of our knowledge, the first work on differentially private traffic

padding.

- We tackle the traffic padding problem by using a differential privacy [19] approach,

in order to corroborate mitigation of side-channel attacks.

- We formalize traffic padding problem with Privacy Preserving Traffic Padding (PPTP)

model [33].

- We devise a concrete algorithm to implement a traffic padding solution.

- We provide solutions to the various limitations and practical issues of this algorithm

through a series of extensions to further improve its performance while ensuring the

desired level of differential privacy.

- We evaluate proposed algorithms using data collected from real world applications,

based on overhead metric, calibrating the amount of padding and trade-off between

delaying packets and usability of Web applications.

1.4 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 reviews necessary back-

ground information while Chapter 3 investigates related work. Chapter 4 provides our

methodologies including the models and algorithms. Chapter 5 describes our experimental

results. Chapter 6 concludes the thesis and gives future work.
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Chapter 2

Background

In order to cover the preliminaries of our topic, we provide in this chapter the necessary

background information. We first discuss the definition and concepts of Web applications,

then we review two related concepts, namely, traffic padding and differential privacy. We

explore each concept along with examples to facilitate their understanding.

2.1 Web Applications

The presence of the World Wide Web has changed the way we interact with each other. The

Internet is now being extensively used as an instrument to perform many activities of our

daily lives. This enormous collection of interlinked documents (i.e., web pages) provides an

unbelievably huge amount of information that helps us accomplish our tasks more quickly

and easily. On the other hand, software applications have been utilized to accelerate many

processes, which would take plenty of time to carry out manually. The rapid development

of the Internet and the World Wide Web has brought new opportunities as well as challenges

to software developers. As a result, a new term, Web applications, arises and completely

redefines the purposes of the World Wide Web. The architecture of Web applications has

been remarkably evolving in the last few years, from websites consisting of HTML pages

and simple interactions to large-scale n-tiered applications simultaneously serving millions

of users around the world [16].
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The meaning of the term Web application can vary within different contexts. In one

context, a Web application can reside mostly on the client-side (i.e., a web browser) and

utilize HTML and JavaScript to provide its functionality while keeping a minimum inter-

action with the web server. In another context, a complete system, which comprises of

multiple web servers, application servers and load-balancing servers along with complex

client-side software, is deployed to handle millions of requests concurrently. In the context

of this thesis, we adopt the following definition of a Web application: a stateful software

system, which utilizes the Hypertext Transfer Protocol (HTTP) as its communication proto-

col and consists of web servers and client-side software that is executed in web browsers.

The client-side software, which appears to end users as a web interface, accepts inputs

from users and provides services based on these inputs. Web applications greatly utilize

the client-server model for the ease of deployment. While traditional software applications

require a great effort for distribution and maintenance, deploying and updating Web appli-

cations are almost transparent to the end users. This is mainly due to the ubiquity of web

browsers, which are installed on most of consumer electronic devices ranging from PCs

and laptops to tablets and mobile phones. The client-server architecture of Web applica-

tions also leverages the advantage of the Internet to deliver services to a wide variety of

users through HTTP, regardless of their geographic locations.

However, because of the special characteristic of Web applications: they have to be

exposed to millions of users. For this reason the security of such application needs to be

revised thoroughly to protect the properties of the organizations providing the services as

well as the privacy of their end users. Even though a great deal of effort has been put into

this matter, there are still grey areas where adversaries can exploit to carry out malicious

activities, which may severely violate the privacy of users and damage the organization

reputation.
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2.2 Side Channel Information Leaks

The recent work by Chen et al. shows that highly sensitive data may be disclosed from

the encrypted traffic of many popular Web applications [14]. In this section, we briefly

summarize their main models and findings in order to motivate our further discussions.

In [14], side channel information refers to aforementioned attributes of encrypted traf-

fic, which can reveal information and insights about the communications. Such side chan-

nel vulnerabilities of encrypted communications is placing user data confidentiality at risk,

especially with the presence of Web applications’ unique features such as stateful commu-

nications [14].

Consider an online health Web application denoted as OnlineHealthA, where users use

it to store their health profiles by choosing an illness condition from a given list by the

application [14]. Based on the user choice, the Web application may cause the browser

to communicate with the server side of the application in order to update it’s state, which

enables the user to be able to see related information to the chosen illness. In this exam-

ple, communications between the client and server side of the application are protected by

HTTPS in order to protect user’s confidentiality, despite this the communication has several

observable attributes that can leak information about user’s selection, such as packet sizes

and timings [14].

In their recent work [14], Chen et al. show how an attacker can leverage the side channel

attacks to gain sensitive information and profile people’s actual online activities, even when

encryption is used ( HTTPS and WPA/WPA2 ). The work also describes the effectiveness

of such attacks in extracting sensitive user information when tested against very popular

and most relied on Web applications (OnlineHealthA, OnlineTaxA, OnlineInvestA, and

Google search engine) [14].

The distinct characteristics of Web applications rely on web flows as all the program

logic and program states. They have to be communicated between the server and client

side of the application. This makes Web applications vulnerable to eavesdropping which

calls for the need of protection whether it’s application layer like HTTPS or network layer
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like Wi-Fi encryptions. Through an ambiguity set reduction process the attacker tries to

learn more about encrypted web traffic that he observes [14].

To make our discussion more precise, we define some notions, where the set of program

states are denoted as S, a set that contains the application data on the browser and on the

server. The set of acceptable inputs by the application are denoted as Σ, this set describes

the user inputs or the backend databases. The transition of state from one to another, could

be described as one state receiving some input which triggers it to change into another state.

This can be modeled by the following equation:

δ : S × Σ→ S. (1)

When triggered by an input, and the application is at state S, it produces a set of web

flow vectors denoted as V , that is the result of interaction between the client and server side

of the application. Such web flows have some observable characteristics such as size of

packets and their number. To model the observation as function f , we use the following

equation :

f : S × Σ→ V. (2)

To denote a single web f lowvector, we use v; this vector is sequence of directional

packets that flow between the client and server side, e.g., a browser sends a packet of 50-

byte to the server then receives 1024-byte packet are denoted by (50⇒,1024⇐) [14].

After modeling the Web application, the objective of the adversary can be formalized

as follows. Consider application state to be st at any given time t. At state st the application

accepts an input. The input space is partitioned such that each partition brings the appli-

cation into unique state that is reachable from st , we call these partitions k semantically

disjoint sets. For example, different diseases are often grouped by the main symptoms and

causes in an online health system. Each K forces the system state into one set of states

St+1 ⊂ S.

To know the input set that the application receives in st as illustrated in Figure 1, an

attacker can do so by looking at n consecutive state transitions initiated by st , which triggers

the following sequence of vectors (vt , vt+1, vt+2, ... , vt+n−1). A recursive solution proves

11



to be possible by starting from s0, the attacker can infer sensitive inputs for the different

states of the Web application. The attacker does not know about the input in st , so the size

of the ambiguity set is k, when he observe the vector sequence vt , the attacker knows that

this vector can only be produced by transitions to a subset of St+1 denoted by Dt+1. This

leads the attacker to conclude that such input can only come from k/α sets of the input

space. The reduction factor of this state transition is α ∈ [1,k). The more observations the

attacker follows up (vt+1, vt+2, ... , vt+n−1), he can further reduce the new ambiguity set

Dt+1. This ratio of reduction can be denoted by β , such that β ∈ [1,∞). Finally the attacker

can recognize one of the k/(αβ ) input sets, that contains the actual input [14].

qt+1,2

qt+1,1

qt+1,3 … qt+1,k-1 qt+1,k

qt+2,2

qt+2,1

qt+2,3 qt+2,4 qt+2,5 qt+2,6

st

δ1

δ2 δ3 δk-1
k

δ

Dt+1

vt

vt+1

…

St+1

St+2 vt+2

vt+n-1

Figure 1: Ambiguity Set Reduction [14]

Moreover an attacker can infer information only relying on the distinct traffic sizes of

different web pages. As shown in Figure 2, sizes for JPEG, HTML, and Javascript are

collected from five different web pages. For different sizes the means (µ) and standard

deviations are calculated (σ ) [14].

OnlineHealthA is an online health system, that enables users to build their health profile

through different attributes like their conditions, procedures, and medications. Users can

also search doctors based on location and specialty. The system as shown in Figure 3 has

several tabs, which already can leak information since clicking on any of them generates

a web flow vector (1515 ± 1 ⇒, 266 ± 1 ⇒, 583 ± 1 ⇐, x⇐), where x equals 4855,

30154, 20567, 1773, 2757 and 2299, for Conditions, Medications, Allergies, Procedures,
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JPEG HTML cod e Javascript 

(In bytes) μ σ μ σ μ σ 
cnn.com 5385 7856 73192 25862 6453 6684 

health.state.pa.us 12235 7374 49917 10591 N/A N/A 

medicineNet.com 3931 2239 49313 14472 22530 28184

nlm.nih.gov 11918 48897 22581 15430 4934 5307 

WashingtonPost 

.com 
12037 15122 90353 35476 13413 36220

Figure 2: Size of objects for different web pages [14]

Test Results and Immunizations, respectively. Furthermore the auto-suggestion feature to

search for a condition or symptom happens to cause a lot of leaks. This leak is caused due

to the distinct web flow vector size that is triggered after each user input. In this case the

web flow vector has this form (253 ± 1⇒, 581⇐, x ⇐), where x represents the size of

the suggestion list very precisely and does not change for different users or under different

conditions [14].

On the other side, the web flow produced by each keystroke is affected by all the pre-

vious keystrokes. So the chance for the attacker to make an inference about the actual

keystrokes relies on α and β . There exist 26 x values corresponding to typing a character

from a to z as the first input. By examining collected values, it shows that all characters

have distinct x value except for the characters h and m. They have the same x value. In-

specting the second character input can even reveal more and provide a better reduction

factor α . For example to differentiate between the letters h and m, the attacker needs to

consider possible values corresponding to input characters ranging from ha to hz, and from

ma to mz, which turns out to be all distinct mapping to distinct x values except for ha and

ma. so the more inputs are considered the more reduced set of values we can map the inputs

to. This in turns makes it easier for the attacker to guess the user inputs [14].

Figure 4 describes another example of distinct attributes for different system states

that causes eventually information leaks. There are 2670 conditions in the OnlineHealthA
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Figure 3: Size of objects for different web pages [14]

system that are distributed among the characters. For example, Figure 3 shows a list of

conditions that start with W because the user has input W . Using this distribution in Figure

4, the reduction power is greatly increased [14].
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Figure 4: Size of objects for different web pages [14]

Another feature of the OnlineHealthA system, as shown in Figure 5, is Findadoctor.
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By entering location and selecting a doctors specialty from the available list, the user is

returned a list of results that matches his desired criteria. The location of the user is pre-

dictable based on his IP address. When the search is pressed it triggers the following web

flow vector (1507 ⇐, 270 ± 10 ⇐, 582 ± 1 ⇒, x ⇒). In this case x is within the range

[596, 1660] [14].

Specialty

City or zipcode

Figure 5: Size of objects for different web pages [14]

2.3 Traffic Padding

In the literature, the word padding is commonly used to represent the way of hiding the

true nature of traffic volume of web browsing. As it was proved in several existing work

[45, 14], monitoring the original data traffic volume can reveal the identity of the user as

well as linking him to a particular page he visited, as well as leaking important private in-

formation regarding the user activity. An example to such activities that could be exposed

by learning traffic sizes, is search activity on interactive search engines. Through examin-

ing the size of returned suggestions with every character the user inputs, the attacker can

know which query the user has searched. Thus, traffic padding is one of the solutions to

such side-channel attacks (we elaborate on such attacks in chapter 3). It is used to mask

distinguishable data blocks of varying sizes, by creating a uniformly sized (and thus indis-

tinguishable) data blocks [45].

Onion routing is a well known example that uses the traffic padding technique to protect

the privacy and confidentiality of data being sent. In its implementation, as presented

in [48], the onion proxy receives data from an application to be sent, then the received

data is padded to multiples of 128-byte sized blocks, which are then encrypted as they

propagate through the connection onion network which lead to indistinguishable blocks
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based on the size. Thus, an eavesdropper has no means of distinguishing data based on its

size, as he only can see data that is represented in uniform-sized cells (128 bytes).

Moreover padding was used in the literature to mitigate other various side channel

attacks, such as the VOIP attack (word spotting) in [51]. In that work the authors explore

the tradeoff between padding and accuracy of detecting a specific word based on size.

Padding the data to multiples of 128, 256, and 512 blocks, results in overheads of 8.81%,

16.5%, and 30.82%, respectively. The use of padding helped the authors to reduce the

accuracy of being able to search for a word corresponding to a specific data size. When

using padding to multiples of 128 bits, precision value was 0.16 with a recall value of 0.15,

and with 512 bit blocks precision value went down to 0.4 with a recall value of 0.04.

Example 1 Following the examples discussed in the previous section, in Table 4, we con-

sider an example for padding packets generated by an interactive search engine Web ap-

plication. The first and the last columns show the s value and corresponding input (the

second keystroke). The second column gives one option for padding the packets (although

not shown here, there certainly exist many other options). Specically, in that padding op-

tion, packets are padded to the maximum value such that their corresponding s values are

all identical. This is a natural solution since by padding we can only increase the packet

size, but not decrease it. Thus, for an eavesdropper the characters will no longer be distin-

guishable from each other based on their s values. However, this way of padding have a

high cost in case some packets were much smaller (ex: 300-bytes) than the maximum size

since it adds too much overhead to each packet.

As discussed in Example 1, it is notable that there can be a high cost and communication

overhead resulting from using this so-called ceiling padding mechanism for padding those

packets. Therefore, it is important to find a better way that provides the same effect, which

is to make all packets indistinguishable, while at the same time to reduce the overhead to a

practical level. Hence, the main objective of this thesis is to find a way of padding packets

that can provide the sufficient privacy protection while minimizing the padding cost and

overhead.
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sValue Padding (1st Keystroke) 2nd Keystroke

473 509 (c)c

477 509 (c)d

478 509 (d)b

499 509 (d)d

501 509 (c)a

509 509 (d)c

Table 4: Padding Example

2.4 Differential Privacy

Nowadays, it is becoming more and more common to have large databases of highly sensi-

tive information pertaining to different individuals. Potential leakage of such information

could violate individuals’ privacy, specially with the recent significant increase of usage for

these databases in different aspects of our daily life. For example, health systems, financial

institutions, search engines, and social networks, etc. all are in possession of huge chunks

of personal sensitive information. These organizations face a huge trade off between us-

ability and utility of this sensitive information on one hand (as at some point of time it

is needed to make available their data, whether it is for research purposes, legal pressure,

or social benefit; for example the medical research can benefit a lot by accessing medical

records of health systems/hospitals). On the other hand, they need to guarantee that indi-

vidual privacy is taken care of and not violated and protect the identities of all individuals

affiliated with their databases; for example accessing medical records without any private

setting can reveal what exact symptoms or disease a specific individual is suffering from

[49, 40].

On the other hand, protecting the privacy of individuals is an obligation of any data

owner according to many existing regulations. This implies that users’ sensitive data which

they have not chosen to reveal need to be kept private. However, due to the research po-

tential that this data can have, there is a need for researchers to be able to access such data
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in a certain way. Examples of using such data can be to help researchers to find statistical

correlations, such as correlating medical outcomes with risk factors or events; another use

is to help an organization to update its strategies through applying appropriate data min-

ing techniques to existing customer data; also the data can be used to publish aggregate

statistics [27].

Different attempts to release private data after its anonymization by eliminating obvious

identifiers (de-identification) from the data, have proven to fail in protecting individuals

privacy as it still leak information and links to specific individuals [27]. Even with no data

release, the work by A. Korolova [29] shows that internal data mining has caused Facebook

to leak users information through leveraging their advertising system.

Considerable attention was drawn towards finding an approach that addresses these pri-

vacy issues, and provides a privacy guarantee that is not affected by the attackers previous

knowledge. Hence, differential privacy has emerged from the previous work of Dinur et al.

[18], followed by the work of Dwork et al. [22], to provide a complete model for statistical

databases privacy. It has been widely accepted as a candidate to substitute the previously

proposed partition-based models for privacy preserving data publishing (PPDP).

Differential privacy defines a new way to query different data sets while keeping the

chances of identifying the any specific individual information from the output minimal

(within a certain limit). An observer has very little evidence about whether any specific

individual has, or has not, participated in the database, nor about what values has their data

took in this database [27].

Specifically, given any two databases (D,D′) that are identical except for any one

row/record (the row could also be different, or with an additional row in either of the

databases), this pair of databases is referred to as the neighboring databases. Assuming

that each row corresponds to one individual, so we have two neighboring databases, mean-

ing that they differ by only one individual participation. A differentially private function

K, is a function that selects its output by adding some random factor, such that the proba-

bility of any possible output of this function over any two neighboring databases is similar

enough [27].
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Differentially private mechanisms guarantees that changing a single record in the data

set can not affect the outputs to by much, by ensuring that the probability of getting any

one output should be the same for nearly identical input data sets. On the other hand, it

also aims to provide as accurate an output (answer) as possible, under the aforementioned

privacy constraint [28]. More formally, we have the following:

Definition 1 Differential Privacy [20] . A randomized function K provides ε-differential

privacy if for all neighboring datasets D and D′, and all S ∈ Range(K)

Pr[K(D) ∈ S] ≤ eε × Pr[K(D′) ∈ S], (3)

where ε ≥ 0, Pr is the probability, and the probability space in each case is over the

randomness of k.

A differentially private mechanism requires adding randomly generated noise to the

output, in order to provide a guarantee of differential privacy. The random noise must be

added according to the following property :

∀ z,z′ s.t. | z − z′ | = 1 : Pr[z] ≤ eεPr[z′] (4)

where z, z′ are any possible outcomes over the datasets D, D′, respectively. Moreover,

the sensitivity of f over two neighboring databases is defined as the maximum possible

difference in the output of f . This is the value that the noise should hide [20, 28] .

Definition 2 [21] For f : D→ Rd . The sensitivity of f is

∆ f = max
D, D′

|| f (D)− f (D′)||1 (5)

= max
D, D′

d

∑
i=1

| f (D)i− f (D′)i| (6)

THEOREM 1 [21] For f : D→ Rd, the mechanism K is considered differentially pri-

vate, if it adds independently generated noise with distribution Lap(∆ f/ε) to each of the d

output terms
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100 101 102 103 …999897…

Figure 6: noise based drawn from laplace distribution [20]

Example 2 Consider a counting query, the sensitivity of this query is 1 ( ∆ f = 1 ). Given

ε = ln 2 and the true answer to the query is 100. Referring to Figure 6, the true answer

to the query is 100. The distribution on the outputs (in grey) is centered at 100. The

distribution on outputs when the true answer is 101 is shown in orange.

One of the problems of that existing research on differential privacy is trying to address

is the magnitude of the added noise, as the less the noise gets the more accurate will be the

output of the mechanism, but at the same time privacy of individuals amongst the data set

must be guaranteed [18, 21]. Laplacian noise is used by the majority of the differentially

private mechanisms, the laplacian noise is applied to the output to ensure that it satisfy the

differential privacy conditions.

However, there exist two limitations to the use of laplacian noise in differentially private

mechanisms. First, adding Laplacian noise can result in having a negative output which can

sometimes be an invalid output, for example for count queries the count output can not be

negative. Second, due to the properties of the Laplace distribution, Laplacian noise is

unbounded, which could affect the released data making it too large. These two limitations

can have a huge negative impact on the data utility [28].

Differential privacy is achieved through adding some randomly generated noise drawn

from a laplace distribution (Laplacian noise) with a magnitude proportional to the sensitiv-

ity of the query being asked to the database.

Example 3 Consider two databases that represent the size of packet corresponding to each
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D

Char Size

c 15

a 10

t 25

D’

Char Size

c 15

a 10

r 20

Figure 7: Character vs Size as Databases

character, such traffic is generated by the server after querying a sequence of input char-

acters. where within this specific application the traffic corresponding to a given character

is always with the range {10 - 25}.

As shown in Figure 7, the two tables represent two databases of different words cat

and car. It shows as well the packet sizes associated with each. In this specific example,

the two words both start with the same two characters which in turn have the same sizes

as for both words. However for the last character each word has a different character t

and r, and each of the two characters corresponds to a unique size. For an eavesdropper

observing the traffic flow sizes and trying to infer what characters corresponds to the sizes

he is observing, if he knows the distribution of the different sizes and what character does

each of the sizes corresponds to (such information may be obtained by playing with the

application with different inputs and observing the size of packets), then it becomes feasible

to know what exact word has been the input that triggered such traffic. The ability of the

attacker to identify the inputs based on what the sizes of the traffic he observes is considered

a side channel information leak.

Looking at this problem from the perspective of differential privacy, we consider that

we have a pair of neighboring databases which are D and D′, as they are different in only

one row. In order to make these two databases differentially private, we should provide a

way to query these two tables/databases, such that an attacker seeing the results of query

f over D and the same query f over D′ could not tell the difference, or link the result to

either of the databases.

In order to be able to make the results of the two queries very close to each other, we
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need to calculate the sensitivity of a query f over the database D and D′, given that f

is able to release one character size at a time, one needs to compute the maximum dif-

ference/change that can happen to this result. In this example, the maximum change that

would be caused by changing one character is the difference between the maximum and the

minimum values it can have, wich is 15 in this specific application.

To achieve differential privacy in this case, the server needs to add some noise n to the

result r, where this noise should be drawn from a Laplace distribution with magnitude of

15 denoted as lap(15). The result can be represented by this equation : r = f(D)+ lap(15).

However, since both the noise and the final result may be negative, which does not make

sense in the context of traffic padding, such a naive application of the concept as applied

to traffic padding will not work. We address this issue in the remainder of this thesis.
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Chapter 3

Related Work

3.1 Privacy

Privacy preserving has been addressed by many researchers in various domains and has re-

ceived significant attention especially in the network and database domains. In this chapter,

we review some of the closely related work.

P. Samarati proposed an approach based on the definition of k-anonymity [41], which

illustrates how k-anonymity can be provided without violating the integrity and the truth-

fulness of the information released by using generalization and suppression techniques. P.

Samarati also introduced the concept of minimal generalizations to capture the property of

the release process to limit distorting the data to the amount needed to achieve k-anonymity.

Moreover an algorithm for the computation of such generalization is presented in the paper

with the discussion of possible policies to choose from amongst different minimal general-

izations.

V. Ciriani et al. focused their work on privacy protection in data mining [15]. Describ-

ing the concept of k-anonymity, V. Ciriani et al. illustrated different approaches for its en-

forcement, then discussed how the privacy requirements characterized by k-anonymity can

be violated in data mining and introducing possible approaches to ensure the k-anonymity

is satisfied in data mining.

For speaker recognition in encrypted voice streams, M. Backes et al. developed a new
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approach for unveiling the identity of speakers who participate in encrypted voice commu-

nication only by eavesdropping on the encrypted traffic [6]. They exploited the concept of

voice activity detection (VAD) which is widely used for reducing bandwidth by Recently,

showing that it creates patterns in the encrypted traffic then they show that these patterns

are speaker-characteristic.

K. Bauer et al. focused on privacy of the network protocols that encrypt the entire

wireless packets showing that even then these protocols neglect to hide identifying infor-

mation that is preserved within the wireless physical layer [8]. Furthermore, they exploited

this finding by proposing a technique that uses the commodity wireless hardware so that

packets are linked to their respective transmitters showing that it degrades user anonymity.

Privacy preserving in social networks has also been studied in many work. P. W. L.

Fong et al. worked on delineating the design space of privacy preserving techniques for

Facebook-style social network systems, and proposing a formal framework for policy anal-

ysis in such systems [24].

In an alternative work [17] G. Danezis et al. proposed a framework to preserve privacy

while maximizing the benefit of sharing information in a social network as well as making

use of cohesive social group concept from social network analysis. They showed as well

that k-anonymity can be used to guarantee privacy in such a real world social network.

Another framework [38] is also proposed by A. Narayanan et al. for analyzing privacy and

anonymity in social networks, where they have developed a new re-identification algorithm

to target anonymized social network graphs, this algorithm mainly based on the network

topology.

N. Cao et al. and C. Wang et al. have both focused on outsourced data privacy pre-

serving [12] [50]. The work of N. Cao et al. defined and solved the problem of privacy

preserving query over encrypted graph structured data in cloud computing (PPGQ) where

they also established a set of strict privacy requirements to create a real secure cloud data

utilization system. This work utilized the principle of filtering-and-verification, N. Cao et

al. also proposed some techniques to meet the challenge of supporting graph queries using

a secure inner product computation achieving with it various privacy requirements. The
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work of C. Wang et al. defined and solved the problem of effective yet secure ranked key-

word search over encrypted cloud data where in their solution they have used the existing

cryptographic primitive order preserving symmetric encryption (OPSE).

S. Nagaraja et al. proposed an algorithm [37] that leverages secure multiparty compu-

tation to design a privacy preserving variant of principal component analysis (PCA) that

limits information propagation across domains. This algorithm enables ISPs to preserve

their private traffic information while allowing them to cooperatively detect anomalies.

Focusing on Web applications, namely Location-Based services, I. Bilogrevic et al. ad-

dressed the problem of privacy in one of these services, which is the fair rendez-vous point

(FRVP) determination service [9]. They proposed two-privacy preserving algorithms for

the FRVP problem, furthermore they analyse and evaluate the privacy of such algorithms in

different scenarios as well as evaluating performance by implementing the two approaches

on Nokia mobile devices.

In the work [14] by S. Chen et al. they studied the side channel information leak in

Web applications traffic and showed that despite the encryption of this traffic information

leak is still a realistic and threatens user privacy. Chen et al analysed the traffic produced

by some top of the line Web applications showing that an eavesdropper can infer the user

queries and his state on the Web application despite HTTPS protection and WPA/WPA2

Wi-Fi encryption. Furthermore, they analysed the challenges of mitigating such threat in

Web application developments.

J. Sun et al. addressed the privacy of electronic health record (EHR) systems[43]. In

such systems, patients care about their protected health information (PHI) as it contains

highly confidential data that needs to be guaranteed proper use and disclosure, especially

in case the patient is physically incompetent to retrieve the controlled PHI for emergency

treatment. J. Sun et al. proposed a secure EHR system, namely Healthcare System for

Patient Privacy (HCPP). The HCPP system is based on cryptographic constructions and

existing wireless network infrastructures, allowing it to reliably provide privacy protection

to patients, as well as PHI retrieval in emergency situations for life-saving treatment. The
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HCPP system prevents PHI access to authorized physicians who can be traced and improp-

erly disclose PHI. The system supports as well efficient and private storage/retrieval of PHI

leveraging the support of wireless network access.

In the work of L. Sweeny et al [47] the authors introduced the k-anonymity privacy

preserving model as a solution the issue of preserving the privacy for data publishing, and

data sharing. Their k-anonymity model provides a scientific guarantee that the individual

who are the subjects of the data cannot be re-identified while preserving the usefulness

of the data in the same time. L. Sweeny provided a set of accompanying policies to the

k-anonymity model for deployment, which helps in mitigating re-identification attacks.

In the context of privacy preserving data publishing, and after the introduction of k-

anonymity concept as in the work of L. Sweeny, and the work of P.Samarati, more efforts

were directed towards the development of efficient privacy-preserving algorithms. We dis-

cuss such algorithms in the following two works of G. Aggarwal et al. [2] and K.LeFevre

et al [30]. respectively.

In the work [2] of G. Aggarwal et al., they analysed the problem of releasing k-anonymized

tables from a relational database containing personal records. They showed that the k-

anonymity problem is NP-hard then they proposed an O(k)-approximation algorithm for the

problem that provides improvements to previous best-known O(K log K)-approximation.

In another work K. LeFevre et al. proposed a framework for implementing one model

of k-anonymization [30] , called full-domain generalization. The model aims at mitigating

the risk of Joining attacks against published microdata and public databases. They also

introduced a set of algorithms that aims at producing minimal full-domain generalizations,

that performs faster than previous algorithms on real-life real databases. Another contribu-

tion of K. LeFevres work was providing a single taxonomy categorization previous models

and introducing new alternatives.

As an enhancement to the k-anonymity model, various new models were proposed. Fol-

lowing we will mention two of those latest work. A. Machanavajjhala et al. have proposed

the l-diversity model [36]. The main advantages of the l-diversity model is that firstly, it

guarantees more privacy and defends against attacker that has background knowledge, and
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secondly it solves a known k-anonymity problem where attacker can discover the values

of sensitive attributes that have little diversity. A. Machanavajjhala provided as well some

experimental analysis and evaluation of the proposed model showing that l-diversity model

is practical and can be implemented efficiently.

On the other side, N. Li et al. in their work [31] exposed a number of limitations that

exists in the previous l-diversity privacy model. To address these limitations and mitigate

them, N. Li proposed the t-closeness, which is a novel privacy notion that requires that the

distribution of any sensitive attribute in the overall table should be close to the distribution

of that attribute in any equivalence class. For measuring t-closeness requirement the authors

used Earth Mover Distance. The authors as well illustrated advantages of t-closeness over

previous models, and discussed the rationale for it.

Recently, differential privacy introduced by C. Dwork [19], has been widely accepted

as a strong privacy model for answering statistic queries. In her work, C. Dwork showed

that the formalization of Dalenius goal along the lines of semantic security is unachievable.

The proposed differential privacy is capable of capturing the increased to ones privacy that

happens when participating in a database. The differential privacy proposed techniques can

be used to achieve any desired level of privacy under this measure. One of the advantages

of the differential privacy, is that it can provide extremely accurate information about the

database while ensuring high levels of privacy.

3.2 Side Channel Attacks

Researchers have extensively studied various side channel attack leakages in the literature.

In this section, we discuss some of those work that are closely related to our research.

Timing attack is a popular side channel attack, where attacker depends on observing the

server response time to detect the system state. The work of [11], demonstrated how such

side channel attacks exists, by devising a timing attack against OpenSSL. The attacker may

extract private keys from an OpenSSL-based web server by measuring the amount of time

taken to respond to queries.

27



D. Asonov et al. were able to differentiate the sounds produced by keys on different

devices with a keyboard and recognizing the key pressed [4]. Their attack was employed

by using a neural network. In their work they have also proposed some hints on how to

design keyboards that would mitigate such attacks. A novel attack that was able to recover

95% of 10 minute input of english text was presented in the work of L. Zhuang et al. [53].

The attack is also based on sound patterns and it used a combination of standard machine

learning and speech recognition techniques, including cepstrum features, Hidden Markov

Models, linear classification, and feedback-based incremental learning.

Fingerprinting websites is another side channel attack that was studied by X. Gong et

al [26]. In the work they demonstrated how an attacker might find out which website a user

is accessing remotely without being able to directly observe traffic patterns by using a data

mining technique namely, k-nearest neighbor classification. X. Gong relied on exploiting

a queuing side channel in routers by sending probes from a far vantage point. The accu-

racy of such attack at fingerprinting the websites remotely was found out to be 80% after

experimenting.

T. Ristenpart et al. [39], using the Amazon EC2 service were able to show that it is

possible to map the internal cloud infrastructure. Furthermore they were also able to locate

a particular targeted VM, then given the fact that different VMs share the same physical

infrastructure T. Ristenpart et al. were able to instantiate new VMs until one shares the

same physical infrastructure with the targeted VM, then using this new co-resident VM to

launch cross-VM side channel attack to extract information out of the target machine.

Historiographer is a novel attack proposed by C. Castelluccia et al., which is able to

reconstruct the web search history of Google users [13]. Using a reconstruction technique,

the Historiographer is able to infer search history from observing google personalized sug-

gestions.

E. W. Felten et al, showed that a malicious website can detect some other unrelated

web page visited by the user by measuring the time the browser of the victim takes to

perform certain operations [23]. Since visiting a web page will cause the browser to build

some cache for this page, requesting some parts of this page can reveal whether this page
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was cached before and hence visited or not. In the paper, they also described a way of

preventing most of these attacks by reengineering web browsers.

T. S. Saponas et al. exposed a vulnerability in Slingbox Pro that causes information

leakage for encrypted streaming multimedia [42]. This exposure lead them to be able to

determine with high probability the title of the movie that a user is watching on Sling-

box by exploiting variable bitrate encoding schemes properties through the transmission

characteristics of the encrypted video.

Encryption is often proposed as a tool for protecting the privacy of World Wide Web

browsing. However, encryption-particularly as typically implemented in, or in concert with

popular Web browsers-does not hide all information about the encrypted plaintext. Specif-

ically, HTTP object count and sizes are often revealed (or at least incompletely concealed).

We investigate the identifiability of World Wide Web traffic based on this unconcealed in-

formation in a large sample of Web pages, and show that it suffices to identify a significant

fraction of them quite reliably. We also suggest some possible countermeasures against the

exposure of this kind of information and experimentally evaluate their effectiveness.

On the other hand, efforts have been made on developing techniques to mitigate the

threats of such information leakage. As web browsers does not hide all information about

the encrypted plaintext. In the work of Q. Sun et al. [45] several countermeasures are sug-

gested against the exposure of identification of encrypted web traffic like Padding, Mim-

icking and Morphing. The work also provides analysis on the cost of each countermeasure

with different parameters, as well as comparison between the various countermeasures.

X. Luo et al. proposed a novel browser-side system called HTTPOS, that prevents in-

ferring information from analysing the encrypted HTTP traffic and offers more scalability

and flexibility [35]. HTTPOS uses a suite of traffic transformation techniques that is com-

prehensive and configurable that allows the browser to defeat information leakage without

the need for any server-side manipulation.

A. Askarov et al. investigated techniques that mitigate timing side channel attacks

[3]. They introduced as well a set of time mitigators that delay output events enabling the

system to achieve any given bound on the timing channel leakage with sacrificing part of
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the system performance.

As virtualization in the cloud relies on physical co-residency, recent research have

demonstrated that attackers may be able to reach sensitive data through side channels across

virtual machines (VMs) that share common hardware. In their work [52] Y. Zhang et al.

present an approach to verify the physical isolation of VMs that indicates the exclusive use

of a physical machine for a given VM. The work is based on analyzing cache usage, where

side channel in the memory cache is used as a defensive and detection tool.

A. Aviram et al. proposed a new approach using provider-enforced deterministic exe-

cution to control and eliminate time channels within the same cloud domain [5]. Provider-

enforced determinism ensures that any tasks output will not leak any valuable timing infor-

mation.
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Chapter 4

Methodologies

As we have discussed in previous sections, encryption techniques used to protect network

traffic are prone to side channel attacks, and can cause sensitive information leakage. This

is due to both the poor security design of the used applications and bad choices of the

encryption techniques that, inspite of hiding the plaintext in the form of ciphertext, are

still preserving many unique attributes of the plaintext in the produced ciphertext. This

in turn can lead an attacker into gaining knowledge about what was intended to be secret

and protected. We have discussed how such attacks are possible in Chapter 1 and 2 even

when Web applications are protected by HTTPS and Wi-Fi encryption schemes like WEP

and WPA/WPA2. Hence, the need exists for a different approach that provides the needed

protection against such side channel leaks.

In this chapter, we present our approach that aim to address the traffic padding problem

in order to corroborate mitigation of side-channel attacks. This is achieved through devis-

ing algorithms that adopt the differential privacy approach cite[18]. Previous efforts have

been made to improve existing traffic padding techniques [34, 33, 14, 32, 46]. The efforts

aim mainly to reduce the overhead of the traffic padding of such techniques while main-

taining a robust privacy guarantee to the outcome traffic. In the approach, we propose a

novel differentially private traffic padding technique that ensure a stronger level of privacy

compared to the existing solutions. Meanwhile, the approach reduce the cost of overhead

in the traffic padding. The two objectives achieved in steps:
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• Formalizing traffic padding problem with Privacy Preserving Traffic Padding (PPTP)

model [31] in section 4.1

• Design two algorithm solutions for the purpose of preserving privacy and reducing

the overhead of the traffic padding. The introduced algorithms are discussed in details

together with deep analysis of the advantages and limitation. The following are the

category solutions :

– The packets splitting and padding algorithms that use packet splitting to address

the negative noise while the padding is dedicated for the positive nose. These

algorithms are introduced in Sections 4.2.2, 4.2.3, and 4.2.6.

– Packet grouping algorithms which mitigate negative of one packet by adding it

to the positive noise of the successive packet section 4.2.4 and 4.2.5.

The algorithms are presented in progressive order, to help the reader to follow the limi-

tation we face in each step that lead to the extension, until we reach our final solution.

4.1 The Model

In this section, we first present the traffic padding model including interaction between

client and server and the observation made by eavesdroppers in Section 4.1.1. Moreover,

the discussion of the privacy properties of our differentially private traffic padding model is

provided in Section 4.1.2. Finally, in Section 4.1.3 we define our distance and padding cost

metrics, which we will use to evaluate our proposed solutions by computing the produced

padding overhead. For refrence, background on traffic padding and differential privacy is

provided in subsection 2.3 , and 2.4 respectively.

4.1.1 Traffic Padding

There exist two main perspectives that have to be considered in order to be able to model the

traffic padding problem formally. First, the interaction between the user and the server that
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describes the user actions (e.g. keypress, mouse click. etc). To that end, the eavesdropper

aims at deducing these actions. Second, the observation made by the eavesdropper based

on the network traffic resulting from the interaction.

For instance, in table 1 the interaction is the user input (a & cc), while the observation

to these actions made by eavesdropper are represented by packet sizes. The challenge for

the eavesdropper is to infer the user input through observing packet sizes.

Moreover, the table 1 shows how the traffic generated changes based on the order of

occurrence of the input. For example, two different observed traffic sequences refer to

the same input character c. Such inter-dependent user actions (e.g. cc) are modeled as

an action-sequence. Eavesdropper maybe combine multiple observations to gain more in-

ference as we discuss in section 1.1. In the sequel, we provide formal definition of the

interaction in Definition 3.

Definition 3 (The interaction) In a given Web application we define :

- Action a : is a user input that causes traffic (keystroke or a mouse click).

- Action-sequence~a : is a sequence of consecutive actions, which can be keystrokes entered

into a search engine or series of mouse clicks through some menu items. ~a[i] will be used

to denote the ith action in~a

- Action-set Ai : is the collection of all the ith actions in a set of action-sequences

Example 4 Back to the table 1, there exist two action-sequences, a and cc, and there exist

also two action-sets A1 = {a,c} and A2 = {c}

Definition 4 models three observation concepts namely flow-vector, vector-sequence,

and vector-set. Note that a flow-vector is intended to only model those packets that may

contribute to identify an action. Also, each action is associated with a f low− vector. The

latter, consists of all the flows corresponding to a user action. Finally, unlike an action−set,

a vector− set is defined as a multiset, since it may contain duplicates(flows that may share

the same size).

Definition 4 (The observation) In a given Web application we define :

- Flow-vector v : is a the sequence of flows represented by integer as the packet size (traffic),
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it corresponds to an action a based on the packets it triggers.

- Vector-sequence ~v : is a sequence of consecutive flow-vectors, which is resulted by an

action-sequence~a, where |~v|=|~a|. ~v[i] will be used to denote the ith action in~v

- Vector-set Vi : is the collection of all the ith flow-vectors in a set of Vector-sequences,

which also corresponds to an Action-set.

Example 5 Following Example 1, there exist three flow-vectors v1 = 509, v2 = 502 and

v3 = 473 that corresponds to the actions a , c (as first keystroke) and c (as second keystroke).

There exist also two vector-sequences {v1} and {v2,v3}. Three vector-sets exists as well

V1 = {509,502}, and V2 = {473} corresponding to action-sets A1 and A2 from Example 1.

4.1.2 Privacy Properties

For simplicity, we first consider a simplified case where every action-sequence and flow-

vector are of length one. In the search engine context considering the simplified case, the

action-sequence and the flow vector are results of a user query that is consisting of one

character. This case is called the Single-Vector Single-Dimension (SVSD) case. In this

simplified case all actions are independent, and each action triggers only one single unique

packet that can be used to identify the action.

In this case, we can map a given vector-action sequence ~VA = {(v,a) : v ∈~v∧ a ∈~a}

to a table T (v,a) with three attributes, the flow-vector (equivalent to a flow of s-bytes),

the action-sequence (~a), and the actual key pressed corresponding to each ~a[i] which is the

sensitive value that can leak information about the actual key pressed.

Definition 5 Differentially private traffic . Given two ~VA sequences that are different

just in one (v,a), we define :

- padding as adding random noise n to each s in the flow-vector v ∈ VA, where this noise

is drawn from Laplace distribution

- we say that ~VA satisfies ε-differential privacy if
Pr[~v→ ~VA]

Pr[~v→ ~VA
′
]
≤ eε .

- the two different ~VA, in the differential privacy context will represent D and D’.
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Example 6 In the case of Figure 8, consider the database that logs observed traffic (Vector-

Sequence) and maps every flow-vector to the action that triggered this traffic. However, the

attacker cannot query the actual key pressed. In this one record case, the attacker can infer

information about the specific key that the user pressed just by comparing the results of the

query to those in ”table 2”. As it’s known that 491 bytes corresponds to pressing ’x’, while

502 corresponds to pressing ’y’.

To apply differential privacy on such case, we need to find the maximum difference

between the flow-vector of two rows. The maximum difference that can happen in this

database is to have the character smallest in size being changed to the one largest in

size, this maximum difference is called sensitivity (difference between two neighbouring

databases). After we have known that sensitive value, noise is drawn out of Laplace func-

tion distribution, with variance based on the sensitivity. The real data will be send together

(padded) with the noise to guarantee the privacy.

~VA

Action Flow-vector Key Pressed

~a[1] 491 bytes x

~VA’

Action Flow-vector Key Pressed

~a[1] 502 bytes y

Figure 8: Database / flow-vector with one record

Discussion It may appear that adopting differential privacy to solve the problem of

information leak is not a guarantee of information protection as opposed to encryption.

However we are considering only the cases where encryption is already proven to be prone

to side-channel attacks. To that respect, we believe that protection can be ameliorated using

an extra privacy layer added to the encryption. Practical approach for better confidentiality

on Web application can be achieved through hiding the user input among other possible

ones. Since the Web applications are easily accessible, an eavesdropper can inevitably

learn about sensitive user inputs.
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4.1.3 Distance and Cost Metrics

In order to be able to analyse our privacy model defined in Section 4.1.2, two metrics are

needed, distance and cost metrics. For the former, we measure the distance between two

different ~VA in terms of the packet size difference between the flow vector of each. For

the latter, we measure the cost of padding any given ~VA as the distance between the new

padded flow-vectors and the original ones, as formalized in Definition 6 and 7, respectively.

Definition 6 Distance. Given any two equal length vector-action sequences ~VA1 and ~VA2

we define the distance between~v1 ∈ ~VA1 and~v2 ∈ ~VA2 as :

dist(~v1,~v2) =
|~v1,2|

∑
i=1

(|~v1[i] − ~v2[i]|)

Definition 7 Padding Cost. Given vector-action sequence ~VA and its padded counterpart

~VA ′ we define the padding cost of ~VA as:

cost = dist(~v , ~v ′)

where~v ∈ ~VA and~v ′ ∈ ~VA ′

4.2 Algorithms

In this section, we design a group of algorithms for applying our model to web traffic such

that it satisfies our privacy requirement. Inspite of designing an exhaustive list of solutions,

our objective is to demonstrate the existence of different possibilities in approaching the

privacy preserving padding issue as we show in the following sections.

Discussion. Suppose that it were possible to add negative padding/noise value. The

noise can have a negative value since it is derived from Laplace distribution. On the other

hand, in the context of traffic padding, padded packets size can only be more than or equal

to the original size. Moreover, to be able to pad the packets to a size that comply to our

privacy model, the packets need to be padded in a way that keep the size of the padded

packet equal to the size of the original packet plus the generated random noise.
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As mentioned the possibility of having negative noises, means that the size of padded

packets becomes less than the original size. However, we can only increase a packet size

by padding, but not to decrease it. This emerge as one of the problems we try to tackle

in our algorithms, as it is impossible in reality to send a packet with negative size, such

packet cannot exist or be defined. Moreover, our effort deals with the negative noise while

trying to maintain the privacy model as close as possible to differential privacy one. This

allows us to provide traffic padding solution that guarantees the differential privacy of the

released information. In the following, we present a series of algorithms to address this

issue. We analyze the advantages and limitations of each algorithm, and then improve it in

later algorithms.

4.2.1 Naive Padding Algorithm

In this first algorithm, we demonstrate a naive approach to achieve a differentially private

traffic padding. However, the algorithm does not provide a complete solution due to inabil-

ity of handling the negative noise as we discuss below. Given a packet P, the packet have a

unique size size(P) amongst a range of other unique packet sizes, it means an observer can

distinguish between different packets just based on their observed size. In order to mitigate

this, we use padding to change the size of each packet. By doing so, the eavesdropper fails

to infer information about the original packet by looking only to the observed packet size.

For this padding to satisfy our privacy model, we pad the original packet with extra n bytes.

The n is derived from Laplace distribution.

Example 7 Given the following sequence of 3 packets and corresponding sequence of ran-

dom noises respectively are : [50,70,40] ,and [−10,40,−50]:

• First, packet to be sent will be of size (50)+(−10) = 40. Then only a packet of size

40 is sent and the rest is neglected.

• Second, packet to be sent will be of size (70)+(40) = 110. The packet will be padded

to reach size 110 and then sent.
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• Third, packet to be sent will be of size (40)+ (−50) = −10. The whole packet is

neglected, since we cannot send a packet with negative size.

Clearly, some limitations exist in this algorithm. The major limitation is the effect of

negative noise which leads to loss of data integrity. For instance, in the above example, in

the first packet we lose 10 bytes. Moreover, the whole packet can be neglect due to having

negative packet size as illustrated in third packet. In the following algorithms we address

this limitation.

4.2.2 Padding and Splitting Algorithm A

The padding and splitting algorithm (A) aims at finding a way to solve the problem of

information loss of the naive padding algorithm discussed in the previous subsection. The

algorithm starts similarly to the naive one; if n is positive, the packet is padded to the

size of size(P) + n; however, if n is of a negative size, then that size is removed from

size(P) and is buffered to be sent later; the value that is sent is of size size(P)+ n which

satisfies our privacy requirement. In case that size(P)+n < 0, then nothing is sent and the

whole packet is buffered to be sent later. This process is then repeated on the sequence of

upcoming packets until everything is sent. Algorithm 1 illustrates the padding and splitting

algorithm(A).

Example 8 Given the following packet and corresponding sequence of random noises :

[100] ,and [−20,−10,15]:

• the packet to be sent will be of size (100)+ (−20) = 80. Then only a packet of size

80 is sent and the rest is padded again.

• the rest of the packet adding to it noise (20)+(−10) = 10.Then only a packet of size

10 is sent and the rest is padded again.

• the rest of the packet adding to it noise (10)+ (15) = 25.Then a packet of size 25 is

sent and nothing remains to be padded again.
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Algorithm 1: Padding and splitting algorithm A

Data: Packet to be send P;

Data: Noise will be added to packet n;

1 if n is positive then

2 while size(P) < size(P)+n do

3 pad(P);

4 end

5 send(P);

6 else

7 if |n| < size(P) then

8 new Packet Pb = subpacket(P, size(P) - |n|);

9 new Packet Pb = P - Pa;

10 send(Pa);

11 algorithmA(Pb);

12 end

13 end

ACTION

Applying this algorithm to a packet P where size(P) = 100 as shown in Figure : 9,

the sequence of packets being sent is ( Pa, Pb1, Pb2); an attacker can see the traffic flow

which is ( 80, 10, 25 ); if the observer notices that this sequence is the response for one

user request, then the observer knows that the sum of this traffic sequence will be at the end

(size(P)+n = 115).

Now we can see that only the positive noise is what counts (100+15 = 115), because the

negative noise only causes part of the packet to be sent later. where the same results can be

achieved if only positive noise is chosen and negative noise is ignored.This will not satisfy

differential privacy as only the positive part of Laplace distribution is effective.

Assume that the smallest packet size that can be sent is 1. If the last number in the

observed sequence is the minimum size as follows, ( 80, 10, 1), then the attacker will know

for sure that the noise added for the last packet is 0, and in this case the real packet size can

be revealed by just calculating the sum of the sequence.
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P(100 bytes) Noise = -20

Pa(80 bytes) Pb(20 bytes)

Send

Add noise = -10

Pb1(10 bytes) Pb2(10 bytes)

Send

Add noise = 15

Pb2(25 bytes) Send

Figure 9: Padding and splitting algorithm A Example

Moreover, the closer the last number in the traffic is to the minimum packet size, the

easier it is to predict the original packet size. for example if the last number seen is 3 then

it can only be one of the following combinations 1+2, 2+1, or 3+0. Which can allow the

observer to eliminate a lot of the ambiguity.

Another limitation of this algorithm is that to we might need to send many padded

packets in order to be able to send data contained in the original one.

4.2.3 Padding and Splitting Algorithm B

In this version of the algorithm (B), we try to address one of the limitations of the previous

version, which is having to send too many padded packets to deliver the original data of

one packet. The algorithm starts with similar instructions. However, after splitting the

packet and sending the positive part, the remaining part is added to the next packet instead

of being sent by itself as a new packet. Thus it will save some of the overhead caused

by treating each packet part as a separate packet. Algorithm 2 describes the padding and

splitting algorithm(B).
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Algorithm 2: Padding and splitting algorithm B

Data: Packet to be send P;

Data: Noise will be added to packet n;

1 if n is positive then

2 while size(P) < size(P)+n do

3 pad(P);

4 end

5 send(P);

6 else

7 if |n| < size(P) then

8 new Packet Pa = subpacket(P, size(P) - |n|);

9 new Packet Pb = P - Pa;

10 send(Pa);

11 concatenate(Pb, next(P));

12 end

13 end

Example 9 As showing in Figure 10, given the following sequence of 2 packets and corre-

sponding sequence of random noises respectively are : [100,100] ,and [−20,10]:

• the first packet to be sent will be of size (100)+ (−20) = 80. Then only a packet of

size 80 is sent and the rest is added to the next packet.

• the second packet to be sent will be of size (100)+ (20)+ (10) = 130. The packet

will be concatenated with the remaining of the last packet which is 20, then it will be

padded with noise of size 10 and then sent.

Among the limitations of this method, if the noise is negative we have to guarantee

that its absolute value is less than the packet size , which is not always possible as the

noise is randomly chosen, and a resulting packet size with a negative value is possible (e.g.

n =−100, and size(P) = 10).

Also, adding the remaining part of the previous packet to the new one makes the added

value to each packet different than the noise drawn from Laplace, and hence it may not

always satisfy the differential privacy requirement.
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P(100 bytes) Noise = -20

Pa(80 bytes) Pb(20 bytes)

Send Pnew= Pb1+P’     
(120 bytes)

Add to the ne t pa ket P’ tes

Repeat steps to add noise again

Figure 10: Padding and splitting algorithm B Example

4.2.4 Packet Grouping Algorithm A

In the Packet grouping algorithm (A), we consider a sequence of m packets, for each packet

with a noise of size n to be added. Then for each packet if the final packet size ( size(P)+n

) is positive the packet will be sent directly. However if it is negative then the packet will

be not be sent and will be grouped with the next packet (which already have noise added to

it), until the total amount of noise is positive. In this case we have a chance of removing the

negative noise effect by waiting for the next positive noise to cancel it. Thus, we are able

to send the complete information without loss. Packet grouping algorithm (A), is described

in Algorithm 3.

Definition 8 (Packet Grouping) Consider a sequence of packets sizes: size(P1), size(P2),

..., size(Pm). If a noise is added to each of them according to differential privacy and

sensitivity of size(Pmax)− size(Pmin), regardless of the noise positive or negative. Then,

the new sizes size(P1)+n1, size(P2)+n2, ..., size(Pm)+nm will satisfy differential privacy.

Hence, the summation of any two of these values should also satisfy the privacy of the

packets.

Example 10 Given the following sequence of 3 packets (Figure 11) and corresponding

sequence of random noises respectively are : [100,80,120] ,and [−10,15,10]:
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Algorithm 3: Packet grouping algorithm A

Data: List packets to be send P1....Pm;

Data: Queue to save packets not send yet Queue;

1 totalNoise = 0;

2 foreach packet P do

3 n = generate noise();

4 totalNoise = totalNoise + n;

5 Queue.add(P);

6 if totalNoise >= 0 then

7 sendPackets(Queue, all, noise = totalNoise); // till the queue is empty

totalNoise = 0;

8 end

9 end

• the first packet to be sent will be concatenated with the next packet since the noise

(-10) is negative.

• the second packet to be sent will be the concatenation of 100 and 80 . since the total

of the noise for the two packets is positive (−10)+(15) = 5, a big packet will be sent

of size 100+80+5 = 185.

• the third packet to be sent will be of size (120)+ (10) = 130. Then only a packet of

size 130 is sent since noise is positive.

As negative noise is not really possible in padding, we wait until such negative noise

is cancelled by positive noise of the next packets since the mean of Laplace distribution is

around 0, and the probability of getting random positive equals that of getting a negative

one equals 0.5. Then we group the packets and send them together as a single big packet.

Although each group of packets is essentially a vector-action sequence ~VA, we are not

adding noises directly to this ~VA. Noises are added together for each group of packets.

This allows positive noise to reduce the effect its negative counterpart. In some cases an
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P1(100 bytes)
Noise1 = -10

Queue

P1

 Packets to be send {P1(100 bytes), P2(80 bytes), P3(120 bytes)}

• Total noise = -10 < 0

• Nothing to do

P2(80 bytes)
Noise2 = 15

P1  |  P2

• Total noise = 5 > 0

• Send all the data from queue

Empty

P3(120 bytes)
Noise3 = 10

P3
• Total noise = 10 > 0

• Send all the data from Queue

Empty

Figure 11: Packet grouping algorithm A Example

observer can still infer each padded packet size from the grouped sizes, but the padded sizes

in general satisfy our differential privacy requirement. That is, if it is safe to tell attackers

about any of these sizes size(P1)+n1,size(P2)+n2, ...,size(Pm)+nm then it is certainly

safe to tell them about any summation of these values.

Many limitations do exist with such an algorithm, Firstly, the utility loss due to group-

ing packets. Secondly, the attacker can always infer about the noises based on the above

reasoning; that is if he knows that two packets are grouped together he would know that

the first packet noise must be negative, and n1 +n2 ≥ 0.

Finally, the boundary problem limitation, which can happen if the observed grouped

packet size is twice the minimum packet size. then the attacker will know that both packets

have same size which is the minimum size and the total added noise for the two grouped
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together is equal to 0 (e.g. attacker see a grouped packet of size 2, there is only one

combination possible which is 1+1).

4.2.5 Packet Grouping Algorithm B

Packet delay is one of the problems in the previous algorithms. This delay effect happens

due to the surplus of negative noise compared to its positive counterpart. Packets are added

to the delay queue as long as the total summation of noise is negative. To tackle this prob-

lem we propose in this section algorithm (B) that is an extension to the previous algorithm.

The new algorithm deals with the increase of the delay queue size by sending a packet of

size Pmax as long as the summation of packet sizes in the queue is more than Pmax. After-

wards, the part that is sent is removed from the queue. At the end of the algorithm run, if

there still remains pending data in the queue, it will be fitted into packets of Pmax and sent

to the network. The rest of the algorithm remains as the previous algorithm (A). This mod-

ification ensures that the delay queue will never get too huge, and consequently the packets

will not be delayed for as long as before, even if the noise was always negative (Algorithm

4).

Example 11 Given the following sequence of 3 packets (Figure 12) and corresponding

sequence of random noises respectively are : [100,80,120] ,and [−20,15,10] and a Pmax =

120:

• the first packet added to the noise will be of size (100)+ (−20) = 80. Then nothing

is sent and 100 is added to the queue since the queue size is less than Pmax and noise

is negative.

• the second packet to be sent will be the concatenation of 100 and 80 . Since the total

noise = −5 is still negative nothing is sent and 80 is added to the queue. However,

the queue size = 180 is now bigger than Pmax, therefor, 120 bytes of the queue data

will be sent.

• the third packet to be sent will be the concatenation of 60 and 120 . The fact that
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Algorithm 4: Packet grouping algorithm B

Data: List packets to be send P1....Pm;

Data: Queue to save packets not send yet Queue;

1 totalNoise = 0;

2 Pmax : maxSize(P1....Pm);

3 foreach packet P do

4 n = generate noise();

5 totalNoise = totalNoise + n;

6 Queue.add(P);

7 if totalNoise >= 0 then

8 sendPackets(Queue, all, noise = totalNoise); // till the queue is empty

totalNoise = 0;

9 end

10 while size(Queue) >= Pmax do

11 sendPacket(Queue, Pmax);

12 subtract(Queue, Pmax);

13 end

14 end

total noise −20+15+10 = 5 is positive, all the data in the queue will be send and

the queue is emptied.

4.2.6 Packet Splitting and Merging Algorithm

This section shows how to deal with negative noise. As discussed previously, we pad the

packet with noise of a size that is randomly drawn out of Laplace distribution. This implies

that the probability of getting positive noise and that of getting negative noise are equal.

The question is of course how a negative noise can be realized. Hence, packet splitting

emerges as a strong candidate for solving the problem. In this section, we introduce a new
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P1(100 bytes)
Noise1 = -20

Queue

P1

 Packets to be send {P1(100 bytes), P2(80 bytes), P3(120 bytes)}    | Pmax = 120 bytes

• Total noise = -20 < 0

• Size(Queue) = 100 < Pmax

• Nothing to do

P2(80 bytes)
Noise2 = 15

P1  |  P2

• Total noise = -5 < 0

• Size(Queue) = 180 > Pmax

• Send 120 bytes from Queue

60 bytes from P2

P3(120 bytes)
Noise3 = 10

60 bytes from P2  |  P3
• Total noise = 5 > 0

• Send all the data from Queue

• Size(Queue) = 0 < Pmax

• Nothing to do

Empty

Figure 12: Packet grouping algorithm B Example

algorithm that utilizes packet splitting to achieve the needed privacy requirements. This

algorithm could be considered an evolution of the algorithms introduced in Section 4.2.2

and Section 4.2.3. The algorithm works by computing each time the size S that we have to

send which is always determined by as S = size(P)+n where P is the packet, n is the noise

randomly chosen from Laplace distribution. The value of S is then treated as the size of the

container that we will use to send information. Then the size S is compared to the size of

packet that needs to be sent. In case that the size of the packet is smaller than the size that

we have to send; the packet is then padded to reach that size. However, if the size of the

packet to be sent is bigger than S the packet is splitted into two parts one part is equal to

the size S, the other part is equal to the rest of the packet denoted by C (i.e. the carryover

amount of the packet) which is held and added to the next packet to be sent.
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As explained in Section 4.2.3, Algorithm 2 advantage over Algorithm 1 is adding the

packet carry resulting by negative traffic to the next coming packet. Algorithm 5 is similar

to Algorithm 2 in this part, however, the difference lies in how this carry is handled. For

instance in Algorithm 2 the carry is concatenated to the next packet then noise is added such

that the size to be sent is equal to the size of concatenated size plus the noise.However, in

this algorithm, regardless of the carry and size of concatenated packet, the size to be sent

is always equal to size(P)+ n. An illustrated example is given by Figure 13 to clarify the

idea.

P1(100 bytes)
Noise1 = -20

Queue

P1

 Packets to be send {P1(100 bytes), P2(80 bytes), P3(120 bytes)} 

• Bytes to be send = 80

• Send P1(first 80bytes)

• Carry from P1 = 20

P2(80 bytes)
Noise2 = 15

20 bytes from P1 |   P2

• Bytes to be send = 95
• Send ( 20 bytes from P1 + 

75 from P2)
5 bytes from P2

P3(120 bytes)
Noise3 = 10 5 bytes from P2  |  P3 • Bytes to be send = 130

• Send ( 5 bytes from P2 + P3 
+ 5 bytes noise

Empty

20 bytes from P1

• Carry from P2  = 5

Figure 13: Packet Splitting and Merging Example

Example 12 Given the following sequence of 3 packets (Figure 12) and corresponding

sequence of random noises respectively are : [100,80,120] ,and [−20,15,10] and a Pmax =

120:
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• the first packet added to the noise will be of size (100)+(−20) = 80. Then 80 bytes

of data will be send and 20 bytes will be save on the queue.

• the second packet added to the noise will be of size (80) + (15) = 95. Since the

carry from previous packet is 20 bytes, then the data that will be send is the carry

concatenated with 75 bytes from the second packets. As result, 5 bytes from second

packet will be save on the queue.

• the third packet added to the noise will be of size (120)+(10) = 130. Therefor, 130

bytes will be send including 5 bytes of the carry, 120 bytes the new packet, and 5

bytes as noise.
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Algorithm 5: Packet Splitting and Merging Algorithm - Part 1

Data: List packets to be send P1....Pm;

1 // C = the carry from previous packet.;

2 // S = size to be send;

3 C = null;

4 foreach packet P do

5 Px = concatenate(C, P);

6 //1- determine the size to be send

7 S = size(P) + n;

8 //2- prepare the data to be send

9 if size(Px) < S then

10 while size(Px) < S do

11 pad(Px);

12 end

13 else

14 if size(Px) == S then

15 send(Px);

16 else

17 // size(Px) >= S;

18 new Packet Pa = subpacket(Px, S);

19 C = Px - Pa; //will be process with the next packet

20 send(Pa);

21 end

22 end

23 end
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Algorithm 6: Packet Splitting and Merging Algorithm - Part 2

1 while size(C) >= Pmax do

2 new Packet Pa = subpacket(C, Pmax);

3 C = C - Pa;

4 send(Pa);

5 end

6 if size(C) > 0 then

7 pad(C, Pmax);

8 Send(C);

9 end

51



Chapter 5

Analysis and Evaluation

In this section, we first analyze some practical issues of our approach that was proposed in

the previous section. Further we present experimental results.

5.1 Analysis of Practical Issues

One limitation when padding using randomly selected noise, is that this noise can be neg-

ative. The designed algorithms shows possible ways to mitigate the effect of this negative

noise. However, one practical issue that remains, is when this negative noise happens at

the last packet to be sent. Due to this issue only one part of the packet can be sent, and

remains the other part of the packet that is delayed due to the negative noise. We refer to

this problem as the last packet problem.

Example 13 Given the following sequence of noises [5,−3,−1] , the result of applying

these noises respectively, will cause the delayed carry in this case to be of size 4. That is

the result of the negative noise accumulation with no positive noise following to cancel it

((−3)+(−1) = (−4)).
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5.1.1 Tradeoff Utility against Delay

Definition 9 (Utility) The utility is defined as the server ability to send packets without

delays, regardless the size of the carry that has been caused by previous negative noise

which will have to be added to the next packet to be sent.

Definition 10 (Delay) The Delay is the mechanism where packets are not sent at once after

padding, instead they are sent in groups where the carry can be shared amongst packets of

the same group with positive noise, this mechanism is used to mitigate some of the negative

noise that can be added to the next packets, the value of the delay is the number of packet

within one group that have to be sent together.

Example 14 Given a Web application that needs to send 5 packets [P1,P2,P3,P4,P5] , the

server will behave as follows :

• with Delay = 1, each packet will be sent without any wait for next packets

• with Delay = 2, packets will be sent in groups of 2, [P1,P2] will be sent together, then

[P3,P4], then [P5].

• with Delay = 3, packets will be sent in groups of 3, [P1,P2,P3], then [P4,P5].

• with Delay = 4, packets will be sent in groups of 4, [P1,P2,P3,P4], then [P5].

• with Delay >= 5, all packets will be sent together, [P1,P2,P3,P4,P5].

Delay can be used to regulate the negative noises with the positive noises before sending

packets. Revisiting Example 13, if delay value of 2 is used, the first two noise values 5 and

−3 can cancel each other resulting in total noise value of 2. The two corresponding packets

will be then padded with total size equal to this total noise value. The last packet is then

sent separately, as there are no more packets to be sent in this case.The resulting carry

will be of size (−1) instead of (−4). Using delay value of 2 lead to minimize the carry

value. Moreover, choosing a higher delay value (3 or more), causes total mitigation of the
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negative noise, as the total summation of the three noise values is positive. This leads to a

carry value equals to zero. Another effect of delay is the reduction of the total overhead,

the positive noise is used to mitigate the negative noise instead of adding more size to be

padded(e.g. First noise (5), was reduced to 2 after grouping it with the second noise (−3)).

For different Web applications, the choice can be made either to have less carry value

and total overhead by setting a delay value, or to have more utility and send packets with

less delay. Thus, it depends on the requirements of each specific application, and the dif-

ferent scenarios that needs to be handled. Consequently, there will be always a tradeoff

between the utility and the delay.

Now that we have discussed such a delay versus utility tradeoff through the examples,

we now revisit the previous Algorithm 5. Algorithm 7 describes how we extended Algo-

rithm 5 to add the delay factor with the needed modifications.

Therefore, the padding works in a similar way as in Algorithm 5, where the differences

lie in the way packets are sent, as we have introduced the delay factor here. Thus, on the

cost of utility, Algorithm 7 provides less overhead using the delay factor to compensate

partially the effect of the negative noise with the possible occurrence of positive noise of

the neighbouring packets.

5.1.2 Noise Limit Calibration

One of the improvements that can be made to the way noise is added in our algorithms, is to

find a way to control the noise. Since the laplace noise is not bounded, it can have any value

between−∞≤ noise≤∞. and when added to the packet size, it can give either negative or a

huge packet size both of which are not desirable. In order to control this, we set a minimum

and a maximum value Pmin and Pmax respectively, such that Pmin≤ (P+noise)≤Pmax which

implies that the packet size to be sent after adding the noise cannot be less than Pmin and

cannot be greater than Pmax.

Example 15 These are some examples of how noise calibration works given a packet of

size P = 30 where Pmin = 10 and Pmax = 50
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• n = 1000, ((P+n) = 1030)> (Pmax = 50) , (P+n) trimmed to be 50 , final n value

is limited to 20.

• n = −25, ((P+n) = 5) < (Pmin = 10) , (P+n) incremented to be 10 , final n value

is limited to -20.

• n = 19, ((P+n) = 49)< (Pmax = 50) , (P+n) does not need to be changed since it

lies within the limit.

Finally, the values of Pmin and Pmax do not have to be the same for all cases, it can be

adjusted based on each application/network limits and needs. For example, if an applica-

tion/network is not capable of sending more than 50 per packet, then the limit (Pmax) can be

set to this value to ensure that padded packet sizes will not exceed 50. Same adjustment can

be applied on Pmin if there is a specific value for the packet size that the application cannot

send less than. Furthermore, even if the application is capable of sending any packet size,

the limits could be set just to avoid too much overhead and improve the efficiency of the

padding process since the more difference there is between the maximum and the minimum

size more overhead will occur.

Discussion.Given the following standard differential privacy algorithm where f (D) is

a query over database D, n is a randomly drawn noise out of Laplace distribution with

variance equal to (∆ f ), and r is the result of adding the noise to the real output, then the

second equation should behold true.

f (D)+n→ r (7)

Pr[r→ D]

Pr[r→ D′]
≤ eε (8)

In the suggested splitting algorithm, there are three cases for the result r as follows,

f (n)+n = r



















r = Pmin if r < Pmin

r = r if Pmin ≤ r ≤ Pmax

r = Pmax if r > Pmax
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if Pmin ≤ r ≤ Pmax then it already satisfies the the differential privacy equation as the re-

sult has not been it changed. in the other two cases, if r < Pmin or if r > Pmax since

Pr[r<Pmin→D]
Pr[r<Pmin→D′] ≤ eε , and since r < Pmin is replaced by Pmin, then

Pr[Pmin→ D]

Pr[Pmin→ D′]
≤ eε (9)

same applies for r > Pmax.

Assume that with every r < Pmin, we will send a packet of size Pmin but with letting

everyone know the original padded size (r). then our algorithm will satisfy the differential

privacy. However if we hide r from the attacker and always show him only Pmin (similar

to naive solution) then his knowledge will decrease relatively. which means that we even

achieve more privacy than normal differential privacy by doing this, same applies for r >

Pmax as well. Hence the three possible cases satisfy the differential privacy equation.
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Algorithm 7: Packet Splitting and Merging with Delay Queue

Data: List packets to be send P1....Pm;

Data: Delay Queue to buffer packets DelayQueue;

Data: Delay value to buffer packets DelayValue;

1 C = null;

2 while more packets needs to be sent do

3 totalNoise = 0;

4 for DelayValue do

5 addToDelayQueue(P);

6 totalNoise = totalNoise + generateNoise();

7 end

8 sizeToSend = size(DelayQueue)+totalNoise; addToDelayQueue(C);

9 sendPackets(DelayQueue, sizeToSend)

10 if size(DelayQueue) ¿ sizeToSend then

11 C = C + DelayQueue - sizeToSend

12 else

13 C = 0;

14 end

15 end

16 while size(C) >= Pmax do

17 new Packet Pa = subpacket(C, Pmax);

18 C = C - Pa;

19 send(Pa);

20 end

21 if size(C) > 0 then

22 pad(C, Pmax);

23 Send(C);

24 end
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Algorithm 8: Packet Splitting and Merging With Noise Calibration - Part 1

Data: List packets to be send P1....Pm;

Data: Queue to save packets not send yet Queue;

1 // C = the carry from previous packet.;

2 // Smin is minimum allowed packet size.;

3 // Smax is maximum allowed packet size.;

4 // S = size to be send;

5 C = null;

6 foreach packet P do

7 Px = concatenate(C, P);

8 //1- determine the size to be send

9 S = size(P) + n;

10 if S < Smin then

11 S = Smin;

12 else

13 if S >= Smax then

14 S = Smax;

15 end

16 end

17 //2- prepare the data to be send

18 if size(Px) < S then

19 while size(Px) < S do

20 pad(Px);

21 end

22 else

23 if size(Px) == S then

24 send(Px);

25 else

26 // size(Px) >= S;

27 new Packet Pa = subpacket(Px, S);

28 C = Px - Pa; //will be process with the next packet

29 send(Pa);

30 end

31 end

32 end
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Algorithm 9: Packet Splitting and Merging With Noise Calibration- Part 2

1 while size(C) >= Smax do

2 new Packet Pa = subpacket(C, Smax);

3 C = C - Pa;

4 send(Pa);

5 end

6 if size(C) > 0 then

7 pad(C, Smax);

8 Send(C);

9 end
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5.1.3 Extending the example

In this scenario one database D will be considered, to be able to study the way noise is

added with our algorithm. Range of possible packet sizes is described as R where R is any

value between Smin→ 50 and Smax→ 70. Plast is padded to be of size Smax.

D

Action Flow-Vector Key Pressed

P1 68 p

P2 51 a

P3 70 c

P4 55 k

P5 53 e

P6 60 t

Table 5: The packets and their sizes

In the delay of 2 packets case, packets are sent in groups of two. Whenever a packet

needs to be sent, noise is added to this packet . but the packet is not sent till we have

a second packet. Same method is applied to add noise to the second packet and then if

possible some of the positive noise of one packet cancels the negative noise of the other.

Packets are sent as follows ([P1,P2], [P3,P4], [P5,P6]).

Packet P1 P2 P3 P4 P5 P6 Plast

Carry 0 18 0 0 5 0 10

PacketSize 68 51 70 55 53 60 0

Noise -20 40 30 -10 30 -15 60

EffictiveNoise -18 19 0 -5 17 -10 60

OverHead 0 1 0 0 12 0 60

Sent 50 70 70 50 70 50 70

Table 6: With no delay
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Packet P1 P2 P3 P4 P5 P6 Plast

Carry 0 18 0 0 5 0 0

PacketSize 68 51 70 55 53 60 0

Noise -20 40 30 -10 30 -15 0

EffictiveNoise -18 19 0 -5 17 -10 0

OverHead 1 0 2 0

Sent 50 70 70 50 70 50 0

Table 7: With Delay of 2 packets.

As we can see in the case of [P5,P6] , due to the delay the negative noise of P6 is

mitigated by positive noise of P5, and the carry will be 0 instead of 10.

5.1.4 Sensitivity Calibration

To further improve our mechanism (Algorithm 5), and to reduce the overhead, we can

manipulate the sensitive value of the query. Since the size of traffic resulting by executing

an action a depends on the order of this action in the action-sequence~a, which in turn means

that for each action-set Ai there exist a Pmax and Pmin, which means different sensitive value,

which can only be less than or equal to the sensitive value for all the possible packet sizes.

Using this new sensitive value that is specific to Ai will affect the noise magnitude leading

to less overhead.

Algorithm 10 is an extension to Algorithm 5, where the only difference is for the laplace

noise magnitude. In Algorithm 10 we have added the feature where epsilon depends on the

sensitive value of packets at this index. for example for the first packet the range is always

between[10 : 50] while for the second packet it is between [20 : 25]. This means the

sensitive value for the first packet is 40 while for the second packet is only 5. Thus the

magnitude of the laplace noise will be less for the second packet as there is not much noise

needed to cover the identity of the second packet. We leverage this to extend our previous

Algorithm 5 so that we can achieve less overhead without having to sacrifice more utility

of our web application.
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Example 16 Given a web application, the maximum packet size that the application can

send is equal to 500 while the minimum size is 100, so the sensitive value here for this

application is 400. But assuming it only sends a ~a of length 2 for each user, and if for all

a in A1 the minimum and the maximum values for~v corresponding to that action are 100,

= idx)and 200 respectively. This means that the sensitive value at this specific Action-set

is 100, same for A2 the the corresponding~v can have minimum and maximum size of 400,

and 500 respectively which sets the sensitive value at 100 as well.

This example shows how much the noise magnitude which depends on the sensitivity

could be reduced specifically to each different application and in response to each each

different action. This can save a lot of overhead.

5.2 Evaluation

We now present our experimental results. We collect testing vector-action sets from real-

world web applications, one popular search engine (where users’ searching keyword needs

to be protected) and one authoritative drug information system from a national institute

(where users’ possible health information need to be protected). Specially, for the search

engine, we collect flow-vectors with respect to query suggestion widget for all possible

combinations of four letters. For the drug information system, we collect the vector-action

set for all the drug information by mouse-selecting following the application’s three-level

tree-hierarchical navigation. Such data can be collected by acting as a normal user of the

applications without have to know internal details of the applications. Note that these data

are collected using separate programs whose efficiency is not our concern. We compare our

algorithms against packet-size rounding, and all experiments are conducted on a PC with

2.20GHz Duo CPU and 4GB memory.
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5.2.1 Communication Overhead

In the following experiments, we test the effect of different algorithm parameters, for both

grouping and splitting algorithms. For example the effect of delay, packet limit, and sen-

sitivity calibration. Also the effect of the privacy parameter epsilon is considered in the

experiment. For different algorithms, we show the average overhead percentage, where the

overhead is the extra amount of traffic (padding) that is added to the original word traffic

and is calculated using the cost and distance metrics of our privacy model in Section 4.1.3.

Through the experiments we consider average word traffic size of ”3550 byte” based on

the sizes generated from the collected Web applications data. One word corresponds to one

user query sent to the search engine application.

The percentage of delayed packets in grouping algorithms is shown in Figure 14. The

figure shows also that the percentage varies depending on the different algorithm settings.

Furthermore, there is a notable improvement to the grouping algorithm when coupled with

packet limit and sensitivity calibration. Packet limit appears to have most of the effect at

the lower epsilon values in reducing the percentage of packets that has to be delayed, while

the sensitivity calibration is more effective at higher epsilon values. However, the lowest

percentage of delayed packets we were able to reach was slightly more than 55%, which

means more than half the packets get delayed in the best case scenario of packet grouping.

Similarly, the number of delayed packets per word in grouping algorithms has a similar

trend to that of the total percentage of delayed packets as shown in Figure 15. Figure ??

shows how the average number of packets per packet group increases with higher epsilon

values. Packet limit shows higher number of packets per packet group compared to other

algorithm configurations where sensitivity calibration is the most efficient in this case.

Moreover the overhead in the grouping algorithms is compared against the average

packet size and the average word size. Consequently, figures 18 and 17 show the trend of

overhead percentage as the epsilon value changes. The trend as revealed by the figures,

demonstrates the decrease of the overhead. Specifically, at epsilon values higher than 10,

different grouping algorithms configurations shows very similar values of overhead. How-

ever for epsilon value lower than 10, algorithm configured with sensitivity calibration has
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the lowest overhead values.

In packet grouping algorithms, sensitivity calibration shows better results overall. Nonethe-

less, packet limit helps reduce the percentage of packets delayed, but it results in more

overhead at lower epsilon values. Figure 19 illustrates the effect of epsilon value changes

to the percentage of delayed packets, the percentage of overhead per average word size and

the average number of packets grouped together.

Regarding our designed splitting and merging algorithm explained in Section 4.2.6,

plethora of experiments were conducted to compute various aspects and trends of the al-

gorithm. In our experiment, different algorithm configurations were considered along with

different values of the privacy parameter epsilon, and the packet delay value.

Using different delay values namely, 0, 4, 9, and 14, the percentage of last packet

number is computed against epsilon values ranging from 0.1 up to 200, referring to Figure

20. The percentage of last packets decrease significantly with more delay applied, also

there is a slight improvement when the value of epsilon is incremented. Regardless that

improvement Figure 21 shows that the change in delay value does not have any effect on

the size of the last packets. Yet, the increase in epsilon values shows great improvement on

the same aspect.

The overhead percentage per word is reduced greately with the increment of the epsilon

values, and the increase of delay value shows effictive to lower the overhead even more as

shown in Figures 22 and 23. Logarithmic scale is used in the former figure as most of

the change happens at the smaller epsilon values. Moreover, Figures 24 and 25 illustrates

the general behaviour of packet splitting and merging algorithm regarding different aspects

such as the percentage of the overhead, number and size of the last packets.

Furthermore, Figures 26, 27 and 28 show how different splitting and merging algorithm

configurations can affect the outcome of the algorithm. The experiment are computed with

fixed packet delay value of 2 to enable us to manipulate other parameters. For instance

the relation between the overhead amount and the epsilon change is shown in Figure 28.

The figure shows also that sensitivity calibration with packet limit applied lead to lower

overhead values. It also is shown that the same configuration leads to lower last packet
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Figure 19: Trends in Grouping Algorithms
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numbers and sizes as shown in Figure 26 and 27, respectively.

Finally, our experimental results provides the strong evidence that our designed split-

ting and merging algorithm with its various configuration provides better overhead reduc-

tion for the problem of traffic padding compared to other existing solutions. Also, the

novel adoption of differential privacy in our model enables our algorithms to provide the

required privacy guarantees. After all, our solution provides as well the flexibility and the

adaptability of to the different application needs, as we proposed different configurations

and parameters that can be tailored to target the diverse utility needs.
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Figure 27: Percentage of last packet size per average word size for different configurations
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Figure 28: Percentage of overhead for different configurations
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Algorithm 10: Packet Splitting and Merging with Sensitivity Calibration - Part 1

Data: List packets to be send P1....Pm;

1 // C = the carry from previous packet.;

2 // S = size to be send;

3 // index is the index of the packet processed.

4 C = null;

5 foreach packet P do

6 n = generateSensitivityCalibratedNoise(index);

7 Px = concatenate(C, P);

8 //1- determine the size to be send

9 S = size(P) + n;

10 //2- prepare the data to be send

11 if size(Px) < S then

12 while size(Px) < S do

13 pad(Px);

14 end

15 else

16 if size(Px) == S then

17 send(Px);

18 else

19 // size(Px) >= S;

20 new Packet Pa = subpacket(Px, S);

21 C = Px - Pa; //will be process with the next packet

22 send(Pa);

23 end

24 end

25 end
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Algorithm 11: Packet Splitting and Merging with Sensitivity Calibration - Part 2

1 while size(C) >= Smax do

2 new Packet Pa = subpacket(C, Smax);

3 C = C - Pa;

4 send(Pa);

5 end

6 if size(C) > 0 then

7 pad(C, Smax);

8 Send(C);

9 end

82



Chapter 6

Conclusion

In this thesis, we concentrated on the study of differentially private traffic padding. Through-

out the thesis,

- We have demonstrated the effectiveness of side channel attacks on encrypted traffic

between users and Web applications.

- We have provided a first effort on modeling the privacy requirements using the dif-

ferential privacy concept.

- We have established a mapping between the traffic padding problem and the existing

differential privacy model.

- We provided a series of concrete algorithms to address the issue of negative noise

sizes, and other practical issues, such as the last packet challenge, in order to improve

the performance while ensuring differential privacy.

- We have evaluated the performance of our proposed algorithms using data collected

from real world applications.

Our future work will be directed toward the implementation of the proposed server-

side padding mechanisms using open source Web applications, by which we will be able

to better evaluate the server-side performance and the practicality of our solution, and to
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investigate the best approaches that simplify the maintenance of changing requirements and

application design.
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