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Abstract

Let {X1, ..., Xn} be a random sample from a continuous distribution F defined on
the k−dimensional Euclidean space Rk, for some k ≥ 1. In many statistical applica-
tions we are interested in statistical properties of a function q(X1, ..., Xm) of m ≥ 1
observations. Frees (1994, J. Amer. Stat. Assoc.) considered estimating the density
function g associated with the distribution function

G(t) = P
(
h(X1, ..., Xm) ≤ t

)
using the kernel method. In many applications, though, the functions of interest are
non-negative where the usual symmetric kernels applied in the kernel density estimation
are not appropriate. This paper adapts the alternative density estimator developed in
Chaubey and Sen (1996, Statistics and Decisions) by smoothing the so called empirical
kernel distribution function:

Gn(t) =

(
n

m

)−1 ∑
(n,m)

1
(
h(Xi1 , Xi2 , ..., Xim) ≤ t

)
,

where 1(A) denotes the indicator of A and
∑
(n,m)

denotes sum over all possible
(
n
m

)
combinations. Applications and asymptotic properties of the alternative estimator are
investigated.
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1 Introduction and Background

Let {Xi, i ≥ 1} be a sequence of independent and identically distributed random vectors
(i.i.d.r.v) with a distribution function (d.f.) F defined on the k−dimensional Euclidean
space Rk, for some k ≥ 1. Consider a functional θ(F ) of the d.f. F, for which there exists a
function h : Rk×m → R, such that

θ(F ) = Eh(X1, X2, ..., Xm)

=

∫
Rk×m

h(x1, x2, ..., xm)dF (x1)...dF (xm), (1.1)

for every F belonging to a class F0 of d.f.’s on Rk. Without loss of generality, the function
q(.) is assumed to be symmetric in its m arguments. If m(≥ 1) is the minimal sample size
for which equation (1.1) holds, then h(x1, ..., xm) is called the kernel of the U-statistic and
m the degree of θ(F ). An optimal (symmetric) estimator of θ(F ) is the U−statistic [viz.,
Hoeffding (1948)]

Un = Un(X1, X2, ..., Xn) =

(
n

m

)−1 ∑
(n,m)

h(Xi1 , Xi2 , ..., Xim), (1.2)

where the sum
∑
(n,m)

denotes the sum taken over all subsets 1 ≤ i1 < i2 < ... < im ≤ n

of {1, 2, ..., n}. The readers may be referred to the texts by Serfling (1980) and Sen (1981)
for basic theoretical results on U− statistics whereas, the text by Lee (1990) provides an
excellent introductory source.

Let us define the function G on R for a given function h : Rk×m → R, as

G(t) = P
(
h(X1, ..., Xm) ≤ t

)
(1.3)

then we can clearly write

θ(F ) =

∫
tdG(t),

which is a linear functional of G, called as the kernel distribution function for kernel h. A
more flexible functional covering nonlinear cases, (such as densities and quantiles) may be
considered as a general functional of G, denoted by θ∗(G). In this set up, the von Mises’
(1947) functional estimator θ(Fn) may be replaced by θ∗(Gn), where

Gn(t) =

(
n

m

)−1 ∑
(n,m)

1
(
h(Xi1 , Xi2 , ..., Xim) ≤ t

)
, (1.4)

where 1(A) denotes the indicator of A. Note that Gn(t) is also a U−statistic, with h replaced
by q :

q(x1, x2, ..., xm; t) = 1
(
h(x1, x2, ..., xm) ≤ t

)
, (1.5)
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which depends on an additional parameter t.
A large class of problems of estimation of functionals θ∗(G) are concerned with kernels

which depend on some real parameter t ∈ R, such as the kernel q in Eq. (1.5). Some
important examples are given below.

Example 1.1: Wilcoxon score statistic [see Sen (1963) and Hodges and Lehman (1963)]
is given by

θ̂ = median
{1
2
(Xi +Xj), 1 ≤ i < j ≤ n

}
.

This statistic corresponds to G−1
n (1/2) where

G−1
n (u) = inf{x : Gn(x) ≥ u}, 0 ≤ u ≤ 1

is the generalized inverse of Gn, and h(x, y) = (1/2)(x+ y).

Example 1.2: Gastwirth’s (1973) modification of Gini’s Coeeficient. Gini’s coeffi-
cient [see Sen (1986)] is used as a measure of income inequality defined as

η =
E(|X1 −X2|)
E(|X1 +X2|)

.

Gastwirth proposed a modification

η∗ = E

{
|X1 −X2|
|X1 +X2|

}
,

which corresponds to considering

h(x, y) = |x− y|/|x+ y|,

where both x, y > 0.

Example 1.3: Reliability of m out of n components in series and parallel [see
Ghosh, Mukhopadhyay and Sen (1997), §13.3] are related with the kernels hs and hP respec-
tively, given by:

hS(x1, x2, ..., xm; t) = 1
(
min(x1, x2, ..., xk) > t

)
, (1.6)

hP (x1, x2, ..., xm; t) = 1
(
max(x1, x2, ..., xk) > t

)
. (1.7)

Example 1.4: Generalized Gini Mean Difference Generalized Gini mean difference is
given by

gs = E|X1 −X2|s, s > 0 (1.8)

which corresponds to the kernel
h(x, y) = |x− y|s.
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Example 1.5: In many applications interest lies in quantiles of the kernel distribution
function (k.d.f.) [see Sen (1983)] G(t). For example, Bickel and Lehman (1979) consider,
median corresponding to the k.d.f. for h(x, y) = |x− y| as a measure of the spread of F, and
Choudhury and Serfling (1988) consider a U− quantile in the regression context, where, the
kernel is given by h((x1, y1), (x2, y2)) = (y2 − y1)/(x2 − x1).

Example 1.6: Liu’s (1990) simplicial depth function for x ∈ Rp is defined by

Dn(x) =

(
n

p+ 1

)−1 ∑
(n,(p+1))

1(x ∈ [S(Xi1 , Xi2 , ..., Xip+1)]), (1.9)

where S(x1, x2, ..., xp+1) denotes the p−dimensional simplex determined by the points x1, x2, ..., xp+1

and 1(A) denotes the indicator function of the set A. Obviously, Dn(x) is a U− statistics
indexed by x ∈ Rp with

h(x1, ..., xp+1; x) = 1(x ∈ [S(x1, x2, ..., xp+1)]).

Other measures of depth can also be cast in this set up. [see e.g., Zuo and Serfling (2000)].

Example 1.7: “Ley Hunting”. Silverman and Brown (1978) propose the following statis-
tic for testing randomness against some collinearties in the data;

Tn(ϵ) =

(
n

3

)−1 ∑
(n,3)

1(α(Xi, Xj, Xk) > π − ϵ).

Example 1.8: Correlation-Dimension. Grassberger and Proccacia (1983) propose esti-

mating the correlation dimension of a dynamical system by considering the statistic,

Cn(r) =
2

n(n− 1)

∑
1≤i<j≤n

1(∥Xi −Xj∥ ≤ r).

Here, also, the kernel function is of the general form h(x, y; t).
In all these examples, the U−statistic

Un = Un(t) =

(
n

m

)−1 ∑
(n,m)

h(Xi1 , Xi2 , ..., Xim ; t),

is a random function of the real parameter t, rather than a random variable. We will denote

U(t) =

∫
Rk×m

h(x1, x2, ..., xm; t)dF (x1)...dF (xm),
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and consider the following process,

Wn(t) =
√
n(Un(t)− U(t)),

which is called the empirical process of U-statistics structure.
Wn(t) can be regarded as a generalization of the classical empirical process. Construct

the empirical distribution Gn from the set of all random vectors

{(Xi1 , ..., Xim) : 1 ≤ i1 < i2 < ... < im ≤ n},

i.e.

Gn :=

(
n

m

)−1 ∑
(n,m)

δ(Xi1
,Xi2

,...,Xim ),

where δ(Xi1
,Xi2

,...,Xim ) puts mass 1 on the m−tuple (Xi1 , Xi2 , ..., Xim). Let G = F×F× ...×F.
Then the empirical process of U− statistics structure is the process

Wn(t) =
√
n

∫
Rk×m

h(x1, x2, ..., xm; t)d(Gn −G)

=
√
n

(n

m

)−1 ∑
(n,m)

h(Xi1 , Xi2 , ..., Xim , t)− U(t)

 .

If Xi ∈ R and h(x; t) = 1(x ≤ t), then Wn(t) is the ordinary empirical process. Silverman
(1983) studied the weak-convergence of such processes whereas independently, Sen (1983)
considered these processes corresponding to kernels of the type as given in Eq. (1.5) and
obtained weak and strong convergence using martingale methods. These processes have been
further studied by Serfling (1984), Dehling, Denker and Philipp (1987), Helmers, Janssen
and Serfling (1988), Nolan and Pollard (1987,1988), Schneemeier (1993), Arcones and Giné
(1993), Arcones (1993, 1996) and many others.

In this paper, we are concerned with the kernels of the form given in (1.5) and interested
in estimating

θ(F ) = G(t) =

∫
1
(
h(x1, ..., xm) ≤ t

)
dF (x1)...dF (xm)

or functionals of F expressed as regular functionals of G, ı.e.

θf (G) =

∫
fdG, f ∈ F .

Or, we may want to estimate a non-regular functional of G such as the density g(t) =

(d/dt)G(t) or quantile function θ(F ) = QH(u) =
∫ 1

0
G−1dµθ, for some finite signed Borel

measure µθ. Estimation of G(t) and associated quantiles are of specific interest in many
applications, such as in examples 1.1, 1.3, 1.5 and 1.7. Frees (1994) considered smooth
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kernel estimator of the density g(t). He cites many areas of applications, including reliability
and actuarial science. A large subclass of these applications concerns with the situation
where the kernel function for the U− statistic is non-negative. This may happen because
the random variables involved are non-negative, such as in insurance claims (see Chaubey,
Garrido and Trudeau (1987)) or the kernel h may represent some sort of metric which is
necessarily non-negative. In fact in all three examples explored in detail in Frees’ paper, the
kernal function happens to be non-negative. Hence, we are going to pay special consideration
to this case here. The natural estimator of θ(F ) given by Gn(t) is another U− statistic as
explained earlier. It is proved in Sen (1983) [see also Helmers, Janssen and Serfling (1988)]
that

sup
x∈R

|Gn(t)−G(t)| → 0 a.s. as n → ∞.

but Gn is not smooth, whereas G may be absolutely continuous with density h with respect
to Lebesgue measure. Hence, interest lies in its its smooth version. Following Chaubey et
al. (2012), we propose a smooth estimator of G(t) as

G̃n(t) =

∫
Gn(x)dKn,t(x), (1.10)

where Kn,t represents a distribution function, continuous in t such that

(i)

∫
xdKn,t(x) = t, (ii) lim

n→∞

∫
(x− t)2dKn,t(x) = 0.

It can be easily shown that the proposed smooth estimator is also almost sure consistent
and moreover,

sup
t∈R

|G̃n(t)−G(t)| ≤ sup
t∈R

|Gn(t)−G(t)|

Furthermore,
∫
|d(Gn −G)| → 0 in probability implies that |θf (G̃n)− θf (G)| → 0 in proba-

bility for all uniformly bounded functions f [see Radulović and Wegakamp (2003)].
The plan of the paper is as follows. In Section 2, we present a general class of smooth

estimators of G(t) derived from Gn(t). This method has an important feature that it can
incorporate the support of the density effectively and may avoid the boundary value problem
in general. As a special case, it provides the popular kernel method of smoothing. For specific
examples of estimating densities on bounded support we may refer to Bouezmarni and Rolin
(2003), Chaubey and Sen (1996), Bagai and Prakasa Rao (1996) and Babu, Chaubey and
Canty (2002). Here we generalize the method given in Chaubey and Sen (1996), proposed
for smooth estimation of density and distribution functions for non-negative data. Section
3 considers the special case of the non-negative kernels, where we adapt the method in
Chaubey and Sen (1996) that uses Poisson weights for smoothing Gn as an estimator of
G(t). Sections 4 and 5 study some asymptotic properties of the new estimator and Section
6 presents some applications to some well-known examples. Finally, Section 7 presents a
summary and some additional remarks.
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2 A General Smooth Estimator of the Kernel Distri-

bution Function

The following theorem is key to the motivation of the proposal in this paper.

Theorem 2.1 (Lemma 1, §VII.1, Feller 1965). Let u be any bounded and continuous
function. Let Kn,t be a distribution function (continuous in t) with mean t and variance δ2n
then we have for δn → 0

ũ(t) =

∫ ∞

−∞
u(x)dKn,t(x) → u(t). (2.1)

The convergence extends to the entire range if u(t) is monotone.

Replacing u(.) by Gn(.) that is bounded but not continuous, in the above theorem moti-
vates the following smooth estimator of G(t),

G̃n(t) =

∫ ∞

−∞
Gn(x)dKn,t(x) (2.2)

Chaubey et al. (2012) have recently used this general approach for estimating the den-
sity and distribution function in the context of survival analysis and established the strong
convergence property. We can establish the same in the context of the kernel distribution
function G(t), using the Glivenko-Cantelli type result established in Sen (1983) for Gn(t).

Theorem 2.2 If δ ≡ δ(n, t) → 0 for every fixed t as n → ∞ we have

sup
t

|G̃n(t)−G(t)| a.s.→ 0 (2.3)

as n → ∞.

Proof: We have

|G̃n(t)−G(t)| ≤ |G̃n(t)− G̃(t)|+ |G̃∗(t)−G(t)|. (2.4)

Also for every t

|G̃n(t)− G̃(t)| ≤ max
x

|Gn(t)−G(t)|
∫ ∞

−∞
dKn,t(x). (2.5)

From Sen (1983) Eq. (2.2) [see also Helmers, Janssen and Serfling (1988)] we have
supt |G̃n(t)−G(t)| → 0, a.s. as n → ∞. Hence, the result follows.

Remark 2.1 Technically, Kn,t can have any support but it may be prudent to choose it
so that it has the same support as the random variable under consideration; because this
will rid of the problem of the estimator assigning positive mass to undesired regions. This
approach was adapted in Babu, Chaubey and Canty (2002) using Bernstein polynomials for
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estimating the density and distribution function with support [0, 1] and by Chaubey and Sen
(1996) for random variables with support [0,∞), which is considered later in more detail.
Remark 2.2 For G̃n(t) to be a proper distribution function, Kn,t must be decreasing function
of t. This can be easily demonstrated for the ordinary empirical distribution function (i.e.
m = 1, h(x, t) = 1(x ≤ t).) One can write G̃n(t) as

G̃n(t) =
n∑

i=1

∫ x(i+1):n

xi:n

i

n
dKn,t(x) (2.6)

=
n∑

i=1

i

n

(
Kn,t(x(i+1):n)−Kn,t(xi:n)

)
(2.7)

= 1− 1

n

n∑
i=1

Kn,t(xi:n), (2.8)

xi:n denotes the ith order statistic from (x1, x2, ..., xn). A smooth estimator of the density
function g(t) as derived from this expression becomes,

g̃n(t) =
dG̃n(t)

dt
= − 1

n

n∑
i=1

d

dt
Kn,t(Xi)., (2.9)

which shows that Kn,t(x) must be a decreasing function of t.
Remark 2.3 The representation given by Eq. (2.9) can also be used to have another look
at the popular kernel estimator as follows. Let Kn,t(.) be given by

Kn,t(x) = K

(
x− t

δn

)
,

which has mean t and variance δ2n, where K(.) is a distribution function with mean zero and
variance 1. Then, the estimator g̃n(t) becomes

g̃n(t) =
1

nδn

n∑
i=1

k

(
Xi − t

δn

)
,

which is the well known kernel estimator with kernel k(x) = d
dx
K(x) and window width,

which has been vigorously studied in literature. It has been studied in the context of the
present paper by Frees (1984), hence we will concentrate more on non- negative U− func-
tionals.

3 Smooth Estimator of the Kernel Distribution and

Density Function for Nonnegative Support

If the kernel function h is defined on R+, then we use the following lemma which is a special

case of theorem (2.1), where Kn,t is obtained by attaching a probability pk(tλn) = e−λnt (λnt)k

k!

to the point k/λn).
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Theorem 3.1 (Lemma 1, §VII.1, Feller 1965) Let u(t) be a bounded function on [0,∞),
then the function ũ(t) defined by

ũ(t) = e−λnt

∞∑
j=0

u

(
k

λn

)
(λnt)

j

j!
(3.1)

converges uniformly to u(x) in any finite sub-interval of [0,∞), as λ → ∞. This convergence
extends to the whole interval if the function u(x) is monotone.

Since, Gn(x) is bounded and monotone, we hope to adopt the above lemma in a stochastic
set-up, i.e. using Gn(x) in place of u(x). This motivates the following estimator of G(t)

G̃n(t) =
∞∑
j=0

pj(tλn)Gn(j/λn), x ∈ R+, (3.2)

where,

pj(µ) = e−µ (µ)
j

j!
, j = 0, 1, 2, ... (3.3)

By allowing {λn} to be possibly stochastic, e.g., λn = max(X1, ...
Xn) = Xn:n and noting that Gn(·) is itself a random function, we gather from (3.2) that G̃n

is generally a stochastic convex combination of Hn(·). With this choice of λn, the infinite
sum in Eq. (3.2) is actually finite, since, in this case, Sn(j/λn) = 0, for j ≥ n. where,
Sn(x) = 1 − Gn(x). In general also, for any choice of λn, let n∗ = [λnXn:n], then again,
Sn(j/λn) = 0, for j ≥ n∗. In the finite sum the weights do not add to unity, and due to this
reason, Chaubey and Sen (1996) considered truncated weights. However, in the following
exposition we will dispense with un-truncated weights.

The estimator G̃n(t), is infinitely differentiable and therefore, it provides a very smooth
estimator of the kernel distribution function G(t). Moreover, it is a proper distribution func-
tion as can be easily demonstrated. First, it is clear that 0 ≤ G̃n(t) ≤ 1. Next, we show
below that it is monotone. To see this define

Pj(t) =
∞∑
i=j

pi(t), j = 0, 1, 2, .... (3.4)

then we can write

G̃n(t) =
∞∑
k=1

Pj(tλn)anj, (3.5)

where

anj = Gn

(
j

λn

)
−Gn

(
j − 1

λn

)
, j = 1, 2, ... . (3.6)
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Now, since, Gn(.) is non-decreasing, anj ≥ 0 for all j ≥ 1. Furthermore, since for an integer
α > 0

e−x

α∑
j=0

xj

j!
=

1

Γ(α + 1)

∫ ∞

x

e−yyαdy, (3.7)

we can write

Pj(λnt) =
1

Γ(j)

∫ λnt

0

e−yyj−1dy, (3.8)

and it becomes clear that Pj(λnt) is increasing in t.
Recently, Chaubey, et al. (2012) have used a generalization of the Hille’s Lemma as

given in Feller (1968) (Chapter V, pp. 229) where the discrete weights have been replaced
by non-negative density functions satisfying some regularity properties. In this paper we
will deal only with Poisson weights; the alternative method of generating weights from a
continuous asymmetric distribution will be discussed elsewhere.

Since, G̃n(t), is a proper smooth distribution function, we propose the following smooth
estimator of the density function h(x);

g̃n(t) = (d/dt)G̃n(t)

= λn

n∗∑
j=0

pj(tλn) [Gn((j + 1)/λn)−Gn(j)/λn)] , t ∈ R+. (3.9)

In the following section we prove the asymptotic properties of the resulting smooth pro-
cesses.

4 Asymptotic Properties of G̃n(.)

For a given (non-degenrate) U statistic with kernel h of order m, denoted by Uh
n , define a

stochastic process
{Uh

n − Pmh;h ∈ H}, (4.1)

where the random variables X1, ..., Xn are defined on the probability space (S,S, P ), and
Pmh denotes the expectation as in (1.1). Arcones and Giné (1993) provide necessary and
sufficient conditions for limit theorems for general U−processes as given above. For the class
of functions, F1 = {q(X1, ..., Xm) = I[h(X1, ..., Xm) ≤ x], x ∈ R}, we have

sup
F1

|U q
n − Pmq| = sup

t∈R
|Gn(t)−G(t)|.

Hence, using their theorem 3.6 (see also their example 3.10), since indicator functions are
totally bounded, we get,
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Theorem 4.1
sup
x∈R

|Gn(t)−G(t)| → 0 a.s as n → ∞. (4.2)

The above theorem aids in proving the following theorem about the smooth estimator
G̃n(t).

Theorem 4.2 Let λn be a sequence of positive constants converging to ∞ as n → ∞, then

sup
x∈R

|G̃n(t)−G(t)| → 0 almost sure as n → ∞. (4.3)

Proof: Consider

G̃(t) =
∞∑
j=0

pj(tλn)G(j/λn), (4.4)

then we note that by Hille’s theorem,

sup
t∈R+

|G̃(t)−G(t)| → 0 as n → ∞. (4.5)

Furthermore,
|G̃n(t)−G(t)| ≤ |G̃n(t)− G̃(t)|+ |G̃(t)−G(t)| (4.6)

Also for every x
|G̃n(t)− G̃(t)| ≤ max

t
|Gn(t)−G(t)|, (4.7)

converges to zero using theorem 3.1, we claim from Eq. (4.6) and Eq. (4.5) that

sup
t

|G̃n(t)−G(t)| → 0, a.s.,

the result follows.

Remark 4.1: Convergence of |Gn(t) − G(t)| in the sup norm may also be demonstrated
in a simpler way by adhering to the reverse sub martingale property of U−statistics (see
Lee (1990), Chap. 3, Theorem 3.or Sen (1981), Theorem 3.2.1). For every t > 0, Gn(t) is
nondegenerate, however for t ≤ 0, Gn(t) = 0 Therefore, we can not use this theorem directly.
Note, however, that for any t ∈ (0, t∗), t∗ > 0 using martingale convergence theorem for
nondegenarate bounded kernels, we have

lim
n→∞

sup
0<t≤t∗

|Gn(t)−G(t)| = 0, a.s..

For, x = 0, we have Gn(0) = G(0) = 0, hence, the convergence in the above equation can
be extended to the compact set [0, x∗]. Further, since,

|Gn(t)−G(t)| = |Sn(t)− S(t)|,
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and both Sn(t) and S(t) are decreasing functions (to 0) for any given ϵ > 0, there exists Xϵ,
such that S(t) < ϵ/2 as well as Sn(t) < ϵ/2 for all t > tϵ, i.e.,

|Gn(t)−G(t)| < ϵ for all t > tϵ.

Since, ϵ is arbitrary, this implies that

sup
t∈R+

|Gn(t)−G(t)| → 0 a.s. as n → ∞.

Remark 4.2: The above theorem just proves the almost convergence of the smooth esti-
mator. To get an idea about the rate of convergence, we may use the result in Silverman
(1976) or Sen (1983) and conclude that

sup
t∈R+

|G̃n(t)−G(t)| = Op(n
−1/2).

This rate can be improved due the result of Dehling et al. (1987) (see their Corollary 2), we
have with probability 1, as n → ∞,

sup
t∈R+

|G̃n(t)−G(t)| = O

(
(log log n)1/2

n1/2

)
. (4.8)

Note also that the above rate is better than that reported in Sen (1981), we claim that the
same (or better) rate holds for the smoothed estimator, because

sup
t∈R+

|G̃n(t)−G(t)| = sup
t∈R+

|
∫

(Gn(y)−G(y))dPλnt(y)|

≤ sup
t∈R+

|Gn(t)−G(t)|,

where Pλnt denotes the measure induced by the Poisson-weights. Because of the fact that

the process
{
√
n(Gn(t)−G(t)), t ∈ R+} → Gaussian,

(see Theorem 4.10 of Arcones and Giné (1983)), we can claim that

Theorem 4.3 For λn → ∞, as n → ∞, we have

{
√
n(G̃n(t)−G(t)), t ∈ R+} → Gaussian.

Remark 4.3: The above theorem may also be established using a result parallel to that
established in Chaubey and Sen (1996) using Bahadur-Kiefer representation for U-quantiles
(see Choudhury and Serfling (1988)) as given below. For λn → ∞, n−1λn → 0 as n → ∞,

sup
t∈R+

|G̃n(t)−Gn(t)| = O(n−3/4(log n)3/4),

that implies
√
n(G̃n(t) − Gn(t)) → 0 a.s. as n → ∞ and the asymptotic normality of√

n(G̃n(t)−G(t)), consequently follows from that of
√
n(Gn(t)−G(t)), since

√
n(G̃n(t)−G(t)) =

√
n(G̃n(t)−Gn(t)) +

√
n(Gn(t)−G(t)).
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5 Asymptotic Properties of g̃n(.)

We can claim almost sure convergence of the derived density estimator as well, however, the
rate at which λn → ∞ has to be controlled. We can establish the following.

Theorem 5.1 Assume that g(x) is bounded and absolutely continuous. Also, let g(x) admit
a bounded derivative g′(·) a.e. on R+ and let λn → ∞ such that n−1/2λn → 0, then we have

∥g̃n − g∥ → 0 a.s . as n → ∞. (5.1)

Proof: First, note S̃n(t) = 1 − Gn(t) is non–increasing in t ∈ R+, and g̃n(t) is continuous
a.e. thus, for every η > 0, there exists a c(= cη < ∞), such that

S̃n(t)− S̃n(t+ y) < η a.s., ∀ x ≥ c, y ≥ 0. (5.2)

Since, the left hand side of (5.2) is equal to
∫ t+y

t
g̃n(u)du, a direct application of the first

mean value theorem (of calculus) yields that by choosing y such that η/y is small, as n → ∞,

g̃n(t) ≤ η′ a.s. for every x ≥ c, (5.3)

where η′ → 0 as η → 0. Also, repeating the same argument with S(x), we have h(x) <
η′, ∀x ≥ c. Consequently, we have sup{|f̃n(x)− f(x)| : x ≥ c} ≤ 2η′, a.s. as n → ∞. Thus
to prove (5.1), it suffices to show that

sup{|g̃n(t)− g∗n(t)| : 0 ≤ t ≤ c} → 0 a.s., as n → ∞. (5.4)

To see this, for any x : 0 ≤ x ≤ c, consider the function g∗n(t) defined by

g∗n(t) = λn

∞∑
j=0

pj(tλn) (G((j + 1)/λn)−G(j/λn)) . (5.5)

First we see by expanding G((j + 1)/λn) in a Taylor series, that

g∗n(t) =
∞∑
j=0

pj(tλn)
[
g(j/λn) +O(λ−1

n )
]
= g̃(t) +O(λ−1

n ), (5.6)

hence, by the use of the Hille’s theorem

|g∗n(t)− g(t)| → 0 a.s. as n → ∞. (5.7)

Next, we see that,

|g̃n(t)− g(t)| ≤ |g̃n(t)− g∗n(t)|+ |g∗n(t)− g(t)|
≤ sup |Gn(t)−G(t)|λn + |g∗n(t)− g(t)|. (5.8)

Now the result follows using (5.7), (4.8) and the condition on λn given in the theorem.

The following theorem establishes the asymptotic normality of g̃n(t). We would like to
remark that the asymptotic limit is same as that achieved by using the kernel method of
density estimation as investigated in Frees (1994).
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Theorem 5.2 Assume that g(t) is bounded and absolutely continuous. Also, let g(t) admit
a bounded derivative g′(·) a.e. on R+ and let λn → ∞ such that n1/2λ−1

n → 0. Further let

G1(x; t) = P [g(x,X2, ..., Xm) ≤ t|X1 = x]

and assume that g1(x; t) =
d
dt
G1(x; t) exists and is bounded with E[g1(X1; t)] < ∞, then we

have √
n(g̃n(t)− g(t)) →D N(0,m2ξ1) (5.9)

where
ξ1 = Var(g1(X1)).

Proof: The basic step of the proof is the following theorem on the asymptotic distribution
of a general U-statistic [see Theorem 12.3, van der Vaart (1998), pp. 162], where h(.) the
general kernel of the U− statistic for estimating θ ≡ θ(F ).

Theorem: If Eh2(X1, ..., Xm) < ∞ then
√
n(U − θ − Û)

P→ 0, where Û is the projection of
U − θ onto the set of all statistics of the form

∑n
i=1 gi(Xi), that is given by

Û =
n∑

i=1

E(U − θ|Xi) =
n∑

i=1

m

n
h1(Xi),

where
h1(x) = Eh(x,X2, ..., Xm)− θ.

Consequently,
√
n(U − θ) →D N(0,m2Varh1(X1)).

Using this result and realizing that g̃n(t) is of a U−statistic structure, we can claim that

√
n(g̃n(t)− g∗n(t)) →D N(0,m2σ2),

where

σ2 = lim
n→∞

Varλn

∞∑
k=0

pk(λnt)P [g(X1, ..., Xm) ∈ (k/λn, (k + 1)/λn]|X1],

and

g∗n(t) = λn

∞∑
j=0

pj(tλn) [G((j + 1)/λn)−G(j)/λn)] .

Defining G1(x; t) = P [g(X1, ..., Xm) ≤ t|X1 = x] as the conditional distribution function of
g given X1 = x and the corresponding density by G1(x; t) = (d/dt)G1(x; t), we have

∞∑
k=0

pk(λnt)P

[
g(X1, ..., Xm) ∈

( k

λn

,
k + 1

λn

]
|X1

]
=

∞∑
k=0

pk(λnt)[H1(G1;
k + 1

λn

)−G1(X1;
k

λn

)]

= (1/λn)
∞∑
k=0

pk(λnt)g1(X1;
k

λn

) +O(1/λ2
n)
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Next, it is easy to see that we show that

g∗n(t) = g̃(t) +O(1/λn). (5.10)

Further we can show that
g̃(t) = g(t) +O(n−1 log n). (5.11)

Using (5.11) we have

σ2 = Var(g1(X1; t))

and using (5.10) we find that since n1/2λ−1
n → 0

√
n(g̃n(t)− g∗n(t)) →D √

n(g̃n(t)− g(t))

and the result stated in the theorem follows.

Remark 5.1. Similar properties as studied for Gn(t) hold for the von-Mises’ differentiable
functional estimator of G(t) given by

GnV (t) =
1

nm

n∑
i1=1

n∑
i2=1

...
n∑

im=1

I[h(Xi1 , ..., Xim) ≤ t].

As commented in Frees (1994), “the choice between the two estimators depend on the ap-
plication on hand.” Jones and Sheather (1991) provide arguments in favor of GnV (t) for
estimating integrated squared density derivative, however, Frees (1994) considers the use of
Gn(t) more appropriate in studying the distribution of spatial statistics.

Remark 5.2. It is clear that for the density estimation here a large number of computations
may be required. To circumvent the problem of such large scale computations, we may use
the idea described in Blom (1976) that is described in Frees (1994). This involves choosing
a positive integer B = B(n) such that B → ∞ as n → ∞. Based on the observed sample,
B independent draws are made and for b = 1, ..., B, m draws are made without replacement
to get the observations (X∗b

1 , ..., X∗b
m ). The proposed estimator of G(t) is given by

GnR(t) =
1

R

B∑
b=1

I[h(X∗b
1 , ..., X∗b

m ) ≤ t]
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6 Examples

6.1 Redwood Locations

This example concerns the density of locations of 62 redwood seedlings in a unit square as re-
ported in Diggle (1983). The data is now freely available in R-package statspat Reference.
It is commonly believed that the locations are not randomly scattered over the unit square
as it is apparent from Figure 1. It was recommended in Diggle (1983) to examine the
distribution of the interpoint distances in order to evaluate the degree of spatial random-
ness. Frees (1994) used kernel density estimator based on the

(
62

2=1,891

)
interpoint distances,

d((x1, y1), (x2, y2)) = ((x1 − x2)
2 + (y1 − y2)

2)1/2 that is superimposed on the corresponding
histogram in Figure 2, labeled as hard line curve. This curve was compared to the reference
distribution g0(t) given by Bartlett (1964) as depicted in Figure 3:

g0(t) =

{
(2t)(π − 4t+ t2) for 0 ≤ t ≤ 1,

(2t)(−2− t2 + 4(t2 − 1)1/2 + 2sin−1(2t−22− 1) for 1 < t ≤
√
2

The kernel density estimator shows a clear departure from the reference distribution,
however, it shows stretching below zero that is not a desirable feature as the distances are
nonnegative. On the other hand, the estimator based on Poisson weights produces almost the
same estimator, except that the undesirable feature near zero is removed. It is natural to ask
if the Poisson weights based estimator is consistent. One can see g̃n(0) = λnGn(1/λn) that
approximates the density g(t) near zero and is not necessarily zero unless 1/λn is smaller
than the min(g(Xi1 , ..., Xim) over all possible combinations 1 ≤ i1 < i2 < ... < im ≤ n.
We have selected λn = 180, a choice obtained by trial and error,so as to be close to the
kernel estimator. Alternatively, data based optimal value of the smoothing parameter may
be obtained using the cross-validation as explored in Chaubey and Sen (2009). It is clear
that the density estimator is in sharp contrast to the reference distribution, however it may
not be visually as clear by comparing the distribution functions.

6.2 Inter State Centroid Distances

Inter-population distances are of interest in geographical studies in order to quantify the
separation between two populations. Frees (1994) fitted the kernel density estimator and
concluded the log-normal shape commonly assumed in disciplines studying with population
movements. We collected the data on centroids of 51 US states from MAPTECH

http://www.maptechnavigation.com/ website and a SAS program was used to compute
the geodesic distance between the pairwise centroids. The histogram along with the kernel
density estimator and Poisson weights based estimator are given in Figure 4. It is surprising
to see that the density does not resemble lognormal as claimed in Frees (1994). In any case
for the present data, the kernel density estimator is not adequate at all. In trying to allocate
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Figure 1: Scatterplot of the Locations of 62 Redwood Seedlings, Rescaled to Unit Square

Density Estimators for Redwood Seedlings Interdistances
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Figure 2: Histogram of 1,891 Interpoint Distances of 62 Redwood Seedlings Locations. Ker-
nel Density Estimator and the New Estimator are Superimposed on the Histogram
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Figure 3: Bartlett’s Reference Density of Interpoint Distances on a Unit Square

some density below zero, it completely distorts the picture, where as the proposed estimator
adequately picks the high mass near zero.

6.3 Convolution of Insurance Claims

Frees (1994) considered estimating the densities of m convolutions for m = 2, 3, 4 and 5 of
insurance claims collected from 33 female patients to illustrate the effect of an additional
expected claim. We reproduce these along with the estimator studied in this paper in
Figures 6, 7, 8 and 9. For reference purpose, the original 33 claims are plotted in Figure
5. As expected the bimodal nature of the original distribution flattens a bit. In practice,
the risk manager can use these figures with the best guess for expected number of claims.
Through all these figures, the the new estimator emerges as correcting the boundary bias
of the kernel estimator near lower tail. In case the observations are far from zero, the two
methods seem to provide almost identical shapes. The kernel estimator does not integrate
to unity that can be corrected through various methods (see Silverman (1976)), however the
new estimator takes care of this in a natural way.
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Density Estimators for 1275 Intercentroid Distances
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Figure 4: Histogram of 1275 Intercentroid Distances of 51 States

7 Summary and Concluding Remarks

Here we have considered the use of Poisson weights in smoothing the kernel distribution
function for non-negative kernels. This simple method has the same asymptotic properties
as the kernel method that may be inappropriate for the non-negative kernel involved in the
U-statistic. This shortcoming is naturally taken care of the new-estimator. Where as the
kernel estimator may give an impression of a unimodal density due to its nature to stretch
in the direction of negative values, the new estimator may be able to capture the peak of
the density properly near zero. Another alternative that has been recently investigated by
Chaubey et al. (2012), namely that of using asymmetric kernels in the context of density
estimation of non-negative random variables, can be also adapted in the present context.
This method however has to be specifically tailored to provide correct behaviour near zero
for the densities which may not be zero near zero and therefore requires two smoothing
parameters. The Poisson estimator does not have this difficulty and the determination of
the single smoothing parameter can be easily handled using modern optimising software as
discussed in Chaubey and Sen (2009) in the context of density estimation for the i.i.d. setup.
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Figure 5: 1989 Hospital Charges for 33 Female Patients
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Figure 6: Distribution of Sum of Two Claims of Hospital Charges
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Figure 7: Distribution of Sum of Three Claims of Hospital Charges
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Figure 8: Distribution of Sum of Four Claims of Hospital Charges
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Figure 9: Distribution of Sum of Five Claims of Hospital Charges
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33-40, Academia, Prague.

[7] Bouezmarni, T. and Rolin, J.-M. (2003). Consistency of the beta kernel density function
estimator. The Canadian Journal of Statistics 31, 89-98.

22



[8] Chaubey, Y.P., Garrido, J. and Trudeau, S. (1998). On the computation of aggregate
claims distribution: Some new approximations. Insurance: Mathematics and Economics
23, 215-230.

[9] Chaubey, Y.P. and Sen, P.K. (1996). On smooth estimation of survival and density
functions. Statistics and Decisions 14, 1-22.

[10] Chaubey, Y.P. and Sen, P.K. (2009). On the selection of the smoothing parameter in
poisson smoothing of histogram estimator: Computational aspects. Pakistan Jour. Stat.
25, 385–401.

[11] Chaubey, Y. P., Li, J., Sen, A. and Sen, P.K. (2002). A new smooth density estimator
for non-negative random variables. Jour. Ind. Statist. Assoc. 50, 83–104.

[12] Choudhury, J. and Serfling, R. (1988). Generalized order statistics, Bahadur repre-
sentations, and sequential fixed-width confidence intervals. J. Statist. Plann. Inf. 19,
269–282.

[13] Dehling, H., Denker, M. and Philipp, W. (1987). The almost sure invariance principle
for the empirical process of U-statistic structure. Annales de l’Inststitute Henri Poincaré
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[25] Radulović, D. and Wegakamp, M. (2003). Necessary and sufficient conditions for weak
convergence of smooth empirical processes. Statistics and Probability Letters 61, 321-
336.

[26] Schneemeier, W. (1993). Weak convergence and Glivenko-Cantelli results for weighted
empirical U− processes. The Annals of Statistics 21, 1170-1184.

[27] Sen, P.K. (1963). On the estimation of relative potency in dilution (-direct) assays by
distribution free methods. Biometrics 19,532- 552.

[28] Sen, P.K. (1981). Sequential Nonparametrics: Invariance Principles and Statistical In-
ference. John Wiley & Sons, New York.

[29] Sen, P.K. (1983). On the limiting behaviour of empirical kernel distribution function.
Calcutta Statist. Assoc. Bul.32,1-8.

[30] Sen, P.K. (1986). The Gini coefficient and poverty indexes: some reconciliations. Journal
of American Statistical Assiociation 81, 1050-1057.

[31] Serfling, R.J. (1980). Approximation Theorems of Mathematical Statistics. John Wiley
& Sons, New York.

[32] Serfling, R.J. (1984). Generalized L−, M− and R− statistics. Annals of Statistics 12,
76-86.

[33] Silverman, B.W. (1976). Limit theorems for dissociated random variables. Adv. App.
Prob. 8 806-819.

[34] Silverman, B.W. (1983). Convergence of a class of empirical distributions functions of
dependent random variables. Ann. Prob. 11745-751.

[35] Silverman, B.W. and Brown, T. C. (1978). Short distances, flat triangles and Poisson
limits J. Appl. Prob. 15 815-825.

[36] Zuo, Y. and Serfling, R. (2000). General notions of statistical depth function. Ann.
Statist. 28, 461-482.

24


