
QUANTITATIVELY-OPTIMAL COMMUNICATION

PROTOCOLS FOR DECENTRALIZED SUPERVISORY

CONTROL OF DISCRETE-EVENT SYSTEMS

Md Waselul Haque Sadid

A thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Doctor of Philosophy

Concordia University

Montréal, Québec, Canada

April 2014

c© Md Waselul Haque Sadid, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/211517114?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Mr. Md Waselul Haque Sadid

Entitled: Quantitatively-Optimal Communication Protocols for

Decentralized Supervisory Control of Discrete-Event

Systems

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Electrical and Computer Engineering)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

Dr. X, Chair

Dr. John Thistle, External Examiner

Dr. Shahin Hashtrudi Zad, Thesis Supervisor

Dr. Laurie Ricker, Thesis Supervisor

Dr. Khashayar Khorasani, Examiner

Dr. Amir Aghdam, Examiner

Dr. Mingyuan Chen, Examiner

Approved

Chair of Department or Graduate Program Director

20

Dr. C. Trueman, Dean

Faculty of Engineering and Computer Science

Abstract

Quantitatively-Optimal Communication Protocols for Decentralized

Supervisory Control of Discrete-Event Systems

Md Waselul Haque Sadid, Ph.D.

Concordia University, 2014

In this thesis, decentralized supervisory control problems which cannot be solved without

some communication among the controllers are studied. Recent work has focused on finding

minimal communication sets (events or state information) required to satisfy the specifica-

tions. A quantitative analysis for the decentralized supervisory control and communication

problem is pursued through which an optimal communication strategy is obtained. Find-

ing an optimal strategy for a controller in the decentralized control setting is challenging

because the best strategy depends on the choices of other controllers, all of whom are also

trying to optimize their own strategies. A locally-optimal strategy is one that minimizes the

cost of the communication protocol for each controller. Two important solution concepts

in game theory, namely Nash equilibrium and Pareto optimality, are used to analyze opti-

mal interactions in multi-agent systems. These concepts are adapted for the decentralized

supervisory control and communication problem.

A communication protocol may help to realize the exact control solution in decentralized

supervisory control problem; however, the cost may be high. In certain circumstances, it

can be advantageous, from a cost perspective, to reduce communication, but incur a penalty

for synthesizing an approximate control solution. An exploration of the trade-off between

the cost and accuracy of a decentralized discrete-event control solution with synchronously

communicating controllers in a multi-objective optimization problem is presented. A widely-

used evolutionary algorithm (NSGA-II) is adapted to examine the set of Pareto-optimal

solutions that arise for this family of decentralized discrete-event systems (DES).

iii

The decentralized control problem is synthesized first by considering synchronous com-

munication among the controllers. In practice, there are non-negligible delays in commu-

nication channels which lead to undesirable effects on controller decisions. Recent work

on modeling communication delay between controllers only considers the case when all ob-

servations are communicated. When this condition is relaxed, it may still be possible to

formulate communicating decentralized controllers that can solve the control problem with

reduced communications. Instead of synthesizing reduced communication protocols under

bounded delay, a procedure is developed for testing protocols designed for synchronous

communications (where not all observations are communicated) for their robustness under

conditions when only an upper bound for channel delay is known.

Finally a decentralized discrete-event control problem is defined in timed DES (TDES)

with known upper-bound for communication delay. It is shown that the TDES control

problem with bounded delay communication can be converted to an equivalent problem

with no delay in communication. The latter problem can be solved using the algorithms

proposed for untimed DES with synchronous communication.

iv

Dedicated

To

My Parents

v

Acknowledgments

I would like to express my deep gratitude to my academic supervisors, Dr. L. Ricker

and Dr. S. Hashtrudi Zad for their guidance, support and enthusiasm throughout my

research work. I am greatly indebted to them for their erudite supervision, construc-

tive criticism and invaluable advice during the time of my research. Their suggestions,

comments and encouragement at all stages of my work have made it possible to com-

plete this research. I would also like to remember late Dr. P. Gohari whose initial

guidance and support built my research interest in this area.

I would like to express my thanks to all of the committee members for their valu-

able feedback on my thesis during my Ph.D. proposal and seminar. Their comments,

questions and suggestions have been very useful to improve my research work. I also

like to extend my special thanks to the external examiner for his valuable comments

and suggestions.

I would like to convey my sincere thanks to my colleagues of Rajshahi University

of Engineering and Technology for their cordial cooperation throughout this work. I

also like to thank Dr. Mahmudul Hasan to help for implementing NSGA-II algorithm.

I cannot thank my parents, parents-in-law, brothers and sisters enough for their

moral support and inspiration, which always act as a driving force behind me. Lastly

and most importantly, I would like to thank my wife for her support, encouragement

and care during all these years.

vi

Contents

List of Figures xi

List of Tables xiv

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Statement . 3

1.3 Objectives . 4

1.4 Assumptions and Limitations . 6

1.5 Literature Review . 6

1.5.1 Quantitative Optimal Control in DES 6

1.5.2 Communication in Decentralized DES 8

1.5.3 Optimal Synchronous Communication 9

1.5.4 Communication with Delay 10

1.5.5 Multi-Objective Optimization 11

1.5.6 Evolutionary Algorithms . 13

1.5.7 Timed DES (TDES) . 14

1.6 Contributions of the Thesis . 14

1.7 Outline of the Thesis . 16

vii

2 Background 17

2.1 Supervisory Control of DES . 17

2.1.1 Quantitative Analysis of DES 22

2.2 Supervisory Control of Decentralized DES 23

2.3 Synchronous (Zero-Delay) Communication 27

2.4 Supervisory Control of TDES . 35

2.5 Nash Equilibriun and Pareto Optimality 38

2.6 Multi-Objective Optimization . 40

3 Equilibria for Communication in Decentralized DES 43

3.1 Nash Equilibrium for Communication Protocols 46

3.1.1 Nash Equilibrium for Two Communicating Controllers 50

3.1.2 Nash Equilibrium for More Than Two Controllers 56

3.2 Pareto Optimality for Communication Protocols 60

4 Multi-Objective Optimization for Decentralized DES 64

4.1 Multi-Objective Optimization: Decentralized Control with Communi-

cation . 65

4.1.1 Control Cost Function . 66

4.1.2 Communication Cost Function 67

4.2 Objective Functions and Multi-Objective Optimization Problems in DES 68

4.2.1 Optimization w.r.t. the Cost Functions of Each Controller . . 69

4.2.2 Evolutionary Algorithms Applied to Decentralized DES 69

4.2.3 Optimization w.r.t. the Cost Functions of All Controllers . . . 80

4.2.4 Optimization w.r.t. the Global Cost Functions 81

5 Robustness of a Synchronous Communication Protocol 88

5.1 Robust Synchronous Communication with Delay 89

viii

5.1.1 Modeling Communicating Controllers 91

5.1.2 Rational Transducer for Delayed Messages 93

5.1.3 Known and Fixed Delay . 94

5.1.4 Finite and Bounded Delay . 97

5.2 Verifying Robust Synchronous Communication Under Conditions of

Delay . 100

5.2.1 Incorporating τ into the Behavior of the Uncontrolled System 101

5.2.2 Incorporating Message Delay and τ into the Behavior of the

Controllers . 102

5.2.3 Building U1 and U2 . 103

6 Decentralized TDES Control with Communication 109

6.1 Control and Communication Problem in TDES 110

6.1.1 Decentralized Control Law with Communication 112

6.2 Conversion to an Equivalent Problem with Synchronous Communication115

6.2.1 Building Vτ . 123

7 Conclusions and Future Work 128

7.1 Concluding Remarks . 128

7.2 Future Research Directions . 130

7.2.1 Synthesizing Optimal Communication Protocol with Fixed and

Bounded Delay . 130

7.2.2 Multi-Objective Optimization in Control with Communication

under Bounded Delay . 130

7.2.3 Synthesizing TDES Control Solutions 131

7.2.4 Synthesizing Asynchronous Communication for

Distributed System . 131

ix

7.2.5 Real-World Applications . 132

Bibliography 133

x

List of Figures

1.1 Basic architecture of a DES. 2

1.2 Communication between controllers in decentralized DES architecture. 8

2.1 A finite-state automaton representing a DES. 20

2.2 Decentralized DES architecture. 24

2.3 Communication between controllers in decentralized DES architecture. 27

2.4 Automaton U for the ongoing example with Figure 2.1. Marked tran-

sition is denoted by dashed line. Potential communication transitions

are indicated in blue. 33

2.5 A finite-state automaton representing ATG. 36

2.6 A finite-state automaton representing TTG of Figure 2.5. 37

3.1 Robot navigation to explore a fixed area. 44

3.2 The automaton model for (a) R1; (b) R2. 45

3.3 A joint ML (all transitions) and MK (only solid line transitions). . . . 53

3.4 Automaton U for the example shown in Figure 3.3. The marked tran-

sition is denoted with a thick dashed line, where no controller can take

the correct control decision. 55

3.5 A communication occurs from (1, 5, 1) to (2, 6, 2), shown in blue color.

Then Controller 2 takes correct control decision through the transition

((3, 6, 3),〈σ, σ, σ〉,(4, 7, 4)). 56

3.6 A finite-state automaton for Example 3.2. 58

xi

4.1 Pareto fronts of rank 1,2,3 for Controller 1 after 100 generations. . . . 77

4.2 Pareto fronts of rank 1,2,3 for Controller 2 after 85 generations. . . . 79

4.3 Pareto fronts of rank 1,2,3 for both controllers after 200 generations. . 84

4.4 Convergence of Pareto front for Problem 4 in 200 generations. 85

4.5 No. of solutions occupied in Rank 1 and 2 for Problem 4 in different

generation. 87

5.1 A joint ML (all transitions) and MK (only solid line transitions). . . . 90

5.2 M!?
1 , M!?

2 and M!?
3 with φ from Example 5.1. 92

5.3 Transducer T0(d), with initial state underlined. 94

5.4 An automaton that generates L(M!?
1 ◦ T0(1)) for Example 5.1. 94

5.5 Transducer T1(k), with initial state underlined. 95

5.6 M1(= 1) for Controller 1 from Example 5.1 when d = 1. 96

5.7 Transducer T2(k), with initial state underlined. 98

5.8 Building of M1(≤ 2) for a bounded delay of 2 w.r.t. Controller 1. . . 99

5.9 M τ
L for ML in Figure 5.1, where one event per clock cycle occurs. . . 102

5.10 A portion of U2(d, φ) = M τ
L ×S Mτ

1(≤ 2) ×S Mτ
2(≤ 2) ×S Mτ

3(≤ 2)

(initial state is underlined for readability). 107

5.11 A portion of U2(d, φ) with bad transitions highlighted in blue (top)

(5τ , 6′, 6, 6)
〈σ,σ,σ,σ〉−−−−−→ (7, 8′′, 8, 8) where no controller can take the correct

control decision and (bottom) (6τ , 5′′?, 5, 5)
〈σ,σ,σ,σ〉−−−−−→ (8, 7, 7, 7) where all

controllers incorrectly believe that σ should be disabled. 108

6.1 A TDES model with a communication channel between controllers 1

and 2. 111

6.2 Mact is the collection of all transitions, and MK,act is the collection of

only solid-line transitions. 114

6.3 TTG of Mact shown in Figure 6.2. 114

xii

6.4 Block diagram shows information flow of the decentralized control

problem in TDES (a) with a delayed communication of upper-bound d

between controllers 1 and 2, and (b) with synchronous communication

between Controllers 1′ and 2. 115

6.5 ATG Cd
σ. 116

6.6 An ATG with Na = 2. 117

6.7 (a) Cd
a and (b) Cd

c . 120

6.8 A portion of TTG of the extended plant, Mext. 121

6.9 A portion of Vτ : a marked transition is highlighted in red where no

controller i ∈ Ic(σ) can take the correct control decision. 126

6.10 A communication occurs from (5, 5, 5) to (9, 5, 9), shown in blue. Con-

troller 2 then takes correct control decision through the transition

((13, 13, 13),〈σ, σ, σ〉,(14, 14, 14)). 126

xiii

List of Tables

3.1 Communication cost of two controllers for the decentralized DES shown

in Figure 3.1, appears as communication cost of Controller 1, Commu-

nication cost of Controller 2. 62

4.1 Non-dominated solutions of Controller 1. 77

4.2 Non-dominated solutions of Controller 2. 79

4.3 Non-dominated solutions of both controllers for Problem 4.2. 81

4.4 Non-dominated solutions of both controllers for Problem 6.2. 83

xiv

Chapter 1

Introduction

Discrete-event systems (DES) are used to model systems whose dynamics can be

described by transitions among a set of finite states. These models, for instance,

can be used in the analysis and design of the sequences of (high-level) commands in

many control systems. In the supervisory control of DES, the objective is to design a

controller to restrict the system behaviour to a set of design specifications. The basic

architecture of a DES is shown in Figure 1.1.

In decentralized DES control problems, a set of controllers, each of which only

controls and observes part of the system, must collectively achieve the given specifi-

cation. In the basic problem of decentralized DES control, no communication among

the controllers is assumed. We consider the class of decentralized DES control prob-

lems in which the information about the system is distributed among the controllers

in such a way that the problem cannot be solved without some degree of communi-

cation among them. The communications take place at a cost and we would like to

characterize the minimal cost communication.

1

Figure 1.1: Basic architecture of a DES.

1.1 Motivation

In the synthesis of solutions for the decentralized control and communication problem,

we want to compare different control and communication options and choose one with

a minimal cost. Existing approaches do not give a total ordering on the controlled

behaviour due to the lack of measure on the system states or events. So we are

interested in a quantitative analysis of decentralized DES control and communication

problems to permit us to compare different communication protocols that allow the

controllers to achieve the control objectives.

The decentralized supervisory control and communication problem deals with mul-

tiple controllers that interact with each other as multi-agent systems. There has been

increasing interest in the use of game theory for quantitative analysis of multi-agent

systems. Many studies in multi-agent systems have analyzed multi-agent interac-

tions, especially those involving negotiation and co-ordination. In most multi-agent

systems, the overall outcome depends critically on the choices made by all agents.

To optimize the outcome, an agent takes into account the decisions that other agents

take and assumes they act so as to optimize their own outcome. Game theory is a

way of formalizing and analyzing such concerns. Hence, the concept of game theory

can be adapted for this class of control problems.

2

In the synthesis of synchronous or zero-delay communication protocols, it is as-

sumed that communication occurs with zero-delay among the controllers. But, in

practice, non-negligible delays occur in the communication channel may adversely

affect the local controllers’ decisions. Hence, we are interested in extending our anal-

ysis to the problem of decentralized supervisory control under such communication

delays.

1.2 Problem Statement

In the supervisory control of DES, the goal is to synthesize a control policy for an

uncontrolled system that must satisfy a given specification. The decentralized DES

control and communication problem is concerned with cases in which the control

objectives are not satisfied in the absence of communication among the controllers.

In these problems, the optimality of communication is a major issue [4, 36, 55, 56].

Most of the existing approaches do not use a quantitative measure, rather, they use a

logical notion of optimality. Without a quantitative metric, it is not always possible

to compare different protocols.

Sometimes communication that solves the control problem may be prohibitively

expensive. Therefore, we may have to sacrifice the exact control solution for a cheaper

communication policy. Hence, we need to optimize the cost of a communication

protocol and that of the control objective simultaneously, giving rise to a multi-

objective optimization problem [50].

In real-life problems, the communication exchange among the controllers is af-

fected by communication delays. Hence, we may verify how resilient a communication

protocol designed based on zero-delay assumption is under the condition of such delay.

Finally, we are interested in extending the decentralized control and communication

problem to timed DES (TDES) models by including a timing feature. This would

3

result in a direct procedure for designing communication protocols that take commu-

nication delay into account at the design stage. A TDES differs from untimed DES

by including the time bounds of event occurrence, which are defined by tick events

synchronized by a global clock. Hence, optimal communication policy in TDES model

can be synthesized using the approach developed for the untimed model.

1.3 Objectives

In decentralized control and communication problems, we seek communication proto-

cols that not only allow for a solution to the control problem, but also have minimal

cost. We use quantitative analysis using the cost functions adapted from those used

in centralized DES [24,49].

• We are interested in exploring two key concepts of distributed optimality in

game theory, Nash equilibrium and Pareto optimality. These will give us differ-

ent ways of evaluating solutions in decentralized supervisory control problems

with communication. Specifically, they provide a mathematical means of exam-

ining the interactions of independent controllers in the decentralized case. We

design the controllers to communicate and cooperate with each other to solve a

control problem and synthesize synchronous communication protocols for this

class of problems. An algorithm for calculating Nash equilibrium of multi-agent

systems has been adapted for the quantitative analysis of communication pro-

tocols in these problems. We also consider that a protocol must be coherent. A

communication protocol is coherent if, when a controller communicates after its

partial observation and the received messages from other controllers through a

sequence s, it also communicates after observing all sequences that are consid-

ered to be observationally equivalent to s.

4

• When communication occurs with a large cost, there may be a cost advantage

to realizing only part of the specification, instead of realizing the entire specifi-

cation with a costly communication protocol. In that case, we incur a penalty

for synthesizing an approximate control solution. To that end, we want to in-

vestigate the trade-off between the cost of an exact control solution achieved

with communication and that of an approximate solution where penalties are

assessed for settling for sublanguage of the specification, with a cheaper commu-

nication policy. We are interested in a widely-used concept of Pareto-optimality

for the multi-objective optimization problem in decentralized DES.

• We will extend our work to consider the robustness of zero-delay synchronous

communication when operated under bounded delay. Starting with a commu-

nication protocol that solves the control problem with zero delay, we want to

verify if this protocol is robust enough to withstand timing effects associated

with a more realistic communication network and the timing characteristics of

the plant.

• Finally, we will examine the decentralized control problem in TDES with a

bounded but unknown delay in the communication channel. Since synchronous

communication protocols are synthesized for decentralized untimed DES con-

trol problem, communication protocols can be synthesized for TDES control

problem with bounded delay communication by converting it to an equivalent

problem with zero-delay in the communication, but with time bounds on mes-

sage sending, assuming that the tick events are observable to all controllers.

5

1.4 Assumptions and Limitations

We consider that the system we deal with satisfies the notion of observability: because

of this, we can always find a communication protocol to solve the control problem, if

(in the worst case) all observations are communicated to all controllers. We assume

that there is no communication loss in the network, so that no message sent by a

controller is lost in the communication channel. The communication happens in first-

in-first-out basis. Initially, we also assume that communication occurs without delay

in the decentralized DES control and communication problem. This assumption is

relaxed when we deal with the control problem with bounded delay communication.

We assume that the set of controllers has perfect information about the system model

that they must control. Their local view is built from a known model of the complete

system. Uncertainty in the system model is beyond the scope of the thesis.

1.5 Literature Review

This literature review includes works on quantitative optimal centralized control of

DES, minimal communication and communication delay in decentralized DES, multi-

objective optimization, and TDES.

1.5.1 Quantitative Optimal Control in DES

Quantitative optimal control has been examined from the perspective of centralized

discrete-event control using various cost models [8, 18, 24, 49]. Costs are assigned to

control decisions and the goal is to synthesize a controller with an overall minimal cost

with respect to the control strategy. An alternate technique for measuring the cost

of centralized control was introduced in [34]. Although not developed with control

theory applications in mind, a new class of quantitative languages (based on weighted

6

automata) has also been proposed in [7]. In most cases, two cost functions are defined

that are used to realize the quantitative performance of a language: the event cost

function and the control cost function [24, 49]. The event cost is associated with an

event executed by the system, and the control cost is associated with the disabling of

an event by the controller. These functions are used to induce a cost on the sequences

generated by the system. A sequence cost is simply the summation of costs of those

events belong to the sequence. The control cost is associated with the events that

are disabled by a controller through a sequence. The event cost can only be reduced

by increasing the control cost. Thus there is a trade-off between the control cost and

control objectives which sets up an optimization problem.

A centralized partial observation problem is considered in [52] where the authors

propose an algorithm to approximate an optimal observation policy. A cost is in-

curred when identifying an occurrence of an observable event, and the objective is to

minimize the total cost incurred by the controller.

In problems that finding an exact solution results in exponential time complexity,

language measure has significant role to play in the search for an approximate solution.

A signed real measure of regular languages is introduced in [8, 34]. This measure

formalizes the synthesis of the supervisory control systems in finite state automata

(which recognize regular languages). This measure is considered for quantitative

evaluation of every sequence of the system. It makes an exact quantitative comparison

of the controlled system under different controllers. The cost of disabling events

can also be considered for the performance measure of supervised sublanguages. A

controller can easily be obtained by considering the event disabling cost but with

slightly lower performance [33]. The optimal control problem is to find a sublanguage

that has the minimum worst-case behaviour among all sublanguages and is finite.

7

1.5.2 Communication in Decentralized DES

The decentralized control of DES was introduced in [9, 41]. In the absence of com-

munication, an exact control solution may not be achievable. Communication was

first incorporated into the model of decentralized DES content in [57]. There the

focus is on the introduction of a minimal amount of communication so that the exact

control solution is achieved. A basic architecture of communicating controllers in

decentralized DES is shown in Figure 1.2.

. . .

. . .

Figure 1.2: Communication between controllers in decentralized DES architecture.

Communication in a decentralized supervisory control system has been considered

with a variety of models [4, 23, 35, 36, 56, 57]. If an event takes the system outside

of the specification and there is at least one controller that can disable that event,

then the system is co-observable and we can synthesize decentralized controllers that

correctly reach the control objective. When the system is not co-observable, i.e., no

controllers can distinguish a behaviour in the specification from behaviours outside

of the specification, it may still be possible to find a correct control decision if the

8

controllers communicate with each other. A controller can communicate either state

estimates or an observation of an event to other controllers. In [4, 38, 57], observable

events are not directly communicated by a controller, rather, the state estimate based

on the sender’s local observation is communicated. In [4], the authors introduce a

strategy for synthesizing a decentralized communication policy where communication

is postponed as long as possible along a sequence that is about to leave the specifica-

tion. In the context of this model, the resulting communication protocol is deemed

optimal. Also communication is performed via a broadcast. In [23], a slightly different

strategy is presented: the protocol design for non co-observable desired behaviours is

reduced to the synthesis of communicating decentralized controllers in the presence

of ideal communication channels.

The equilibrium of asymmetric communication policies for decentralized diagnosis

of discrete-event systems was examined in [5]. Nash equilibrium for communication

between two diagnosers was computed assuming a uniform cost for communication.

The asymmetry arises from imposition of the constraint that only one diagnoser had

the ability to communicate. In contrast, the format for communication in [4] allows

any controller to initiate communication.

1.5.3 Optimal Synchronous Communication

The prevailing definition of minimal communication is set-theoretic: remove any one

of the communications from the protocol and either the control problem cannot be

solved or the notion of coherency is violated. Although there is no control or diagnosis

objective in [40], the authors describe a locally-optimal communication protocol for a

two-agent system based on a set-theoretic definition of minimality. Here each agent

needs to distinguish each state from every other state. The computational complexity

of the algorithm is exponential in time, but an approximate solution can be developed

9

in polynomial time. A generalization of the approach is described for decentralized

control problems in [56]. Both approaches are limited to acyclic systems. The issue

of optimality arises when cycles are involved.

A greedy algorithm is developed in [35] for minimal communication. In [36], find-

ing a globally-optimal communication policy is reduced to an optimization problem

over a set of Markov chains. The difference in the definition of minimality provides

the motivation for finding a quantitative measure. Quantitative measures are cru-

cial in order to compare communication protocols. Two significant aspects of this

finite-state model are the identification of violations of co-observability and the pres-

ence, by construction, of potential communications. Such violations are called illegal

configurations and a communication protocol is synthesized by selecting communica-

tion transitions that allow the system to avoid reaching an illegal configuration. The

protocol(s) with a minimal cost is then easily determined.

1.5.4 Communication with Delay

Decentralized control problem with delayed communication has been studied in [16,

51,53]. The delay in the communication is defined as the number of events that occur

in the system before the reception of the message by other controllers. Delays can be

either bounded or unbounded. Since the length of the delay is unpredictable in the

real-life problems, k-bounded delay communication is a natural model for communi-

cation with delay. When the delay is bounded by a given constant k, the system can

execute at most k events between the transmission and the reception of a message.

Every problem solved by decentralized controllers with k-bounded delay communi-

cation can also be solved by (k − 1)-bounded delay communication, but the reverse

is not true [54]. In the unbounded delay communication, any number of events can

10

be executed between the transmission of a message and its reception. When com-

munication occurs with delay, either bounded or unbounded, existing approaches of

communication protocols only consider the case when all observations are communi-

cated among decentralized controllers [16, 54], diagnosers [30] or prognosicators [51].

Checking the existence of controllers for unbounded delay communication is unde-

cidable, even when all observations are communicated, but a related problem with

bounded delay communication is decidable [54].

A distributed diagnosis problem under bounded delay communication has been

formulated in [30] where a failure can be diagnosed by a local diagnoser based on its

own observation as well as the communication received from other diagnosers with

k-bounded delay. In a similar prognosis problem [51], local prognosicators exchange

their observations over a bounded delay communication channel to capture the con-

dition under which any failure can be predicted by some local prognosicators prior to

its occurrence. In these methods, it is also assumed that each prognosicator transmits

all of its observations to other prognosicators.

In [16], each decentralized controller manipulates a different set of events: commu-

nication events, which uniquely corresponds to a system event. For each observation

of system event, the corresponding communication event (message) is broadcast to

all other agents. A network of sequential processes communicating with each other

is identified in [22]. They also assume an upper bound k for the delay such that if a

process executes k events without receiving any message from the other process, then

it never receives any message from that process.

1.5.5 Multi-Objective Optimization

Multi-objective optimization deals with the problems that require the optimization

of several possibly competing criteria. In principle, multi-objective optimization is

11

different from single-objective optimization. One can define and obtain the best

solution in the single objective optimization problem, i.e., the globally minimal or

maximal depending on the optimization problem [3, 50]. But there may not exist

a single best solution in the multi-objective optimization problem. In general, the

objectives are in conflict in such a way that no single solution optimizes all the

objectives simultaneously. Therefore, we are interested in finding a set of solutions

with the property that no objectives can be improved without worsening any other

objectives. These are optimal in the sense that no one is better than the others

considering all objective functions, and they are known as Pareto-optimal solutions

or non-dominated solutions [10, 17, 59].

Optimal decentralized control in the absence of communication was studied in [27],

using Nash equilibrium as the optimization criterion. The maximal solutions of a set

of controllers is obtained for decentralized supervisory control from a set-theoretic

perspective. The solutions are based on the set of languages of the controlled system.

The notion of fictitious play is employed to find quantitatively decentralized con-

trol strategies as an optimization of intruder/detection problem in [52]. The approach

will detect the presence of interference which may damage the system, so that it can

prevent an intruder from reaching to the undesirable states. A terminal cost is as-

signed in the analysis which guarantees a positive measure for the sequences reaching

desirable states, and a negative measure for those ending in the undesirable states.

The terminal cost is combined with the event cost in determining the quantitative

analysis. As detailed in [12], the execution cost to optimize fault-tolerant systems

and the quality of service are taken into account as multi-criteria optimization in

synthesizing a discrete controller. We are interested in a class of decentralized control

problems, where we want to optimize two objective functions: communication cost

12

and control cost, introducing a multi-objective optimization problem to decentral-

ized DES. Evolutionary algorithms are well-suited for optimization problems when

(i) exhaustive search is computationally prohibitive, and (ii) there are multiple ob-

jectives to optimize. So, we examine our multi-objective optimization problem using

evolutionary algorithms [3].

1.5.6 Evolutionary Algorithms

Evolutionary algorithms are search methods that simulate the process of natural

selection using the concept of “survival of the fittest”. An initial population of possible

solutions are considered, and a measure of their fitness determines whether a member

of the population will be involved in the formulation of the next generation of the

population. Just as in natural adaptation, over a period of many generations, a

population of solutions evolve that are “closer” to an optimal solution than their

predecessors. Some of the well-known evolutionary algorithms are Pareto-archived

evolution strategy (PAES) [17], strength Pareto evolutionary algorithm (SPEA) [59,

61], non-dominated sorting genetic algorithm (NSGA) [10,11]. Most work in the area

of evolutionary multi-objective optimization has concentrated on the approximation

of the Pareto set. Knowles and Cornes [17] suggested an multi-objective optimization

evolutionary algorithm using an evolution strategy in their PAES. An archive of non-

dominated solutions is maintained to persist the diversity. An elitist multi-objective

evolutionary algorithm is proposed based on a systematic comparison of different

solutions in [42]. Zitzler and Thiele [61] suggested an elitist multi-criteria evolutionary

algorithm using the concept of non-domination in their SPEA. A fast elitist multi-

objective evolutionary algorithm is developed by modifying NSGA, which outperforms

most of the other evolutionary algorithms [10]. A multi-criteria optimization problem

has been introduced by [1] to determine simultaneous maxima of a set of real functions

13

over some domain, where they also use the concept of Pareto optimality. For multi-

objective optimization problem in decentralized DES, we use NSGA-II (a modified

version of NSGA), which has already proven useful for a diverse range of control

problems (e.g., [15, 58]).

1.5.7 Timed DES (TDES)

The supervisory control framework that describes the system behaviour in TDES

was developed in [6], and extended to decentralized architectures in [26]. A model

allowing asynchronous communication between controllers in a TDES is presented

in [39], where a timing constraint is incorporated to an event with respect to another

event to define how many clock ticks have elapsed between these two events. In [28],

the decentralized supervisory control problem in untimed DES is extended to a new

structure in TDES. In contrast, we are interested in recasting the decentralized control

and communication in synthesizing a controller in decentralized TDES with a bounded

but unknown delay.

1.6 Contributions of the Thesis

The contributions of the thesis are as follows:

1. Quantitative analysis in synthesizing an optimal communication protocol for

the control and communication problem in decentralized control of DES. In

contrast to existing work, the communication protocol is locally-optimal, which

minimizes the communication cost for each controller.

• Synthesizing a communication protocol in decentralized DES is cast as a

natural-form game.

14

• For finding optimal solutions, an existing algorithm calculating Nash equi-

librium is used. The algorithm is modified by adding a step to the algo-

rithm to ensure the final solution is observationally-equivalent(see Defini-

tion 2.7). To the best of our knowledge, this has not been done before.

2. The trade-off between the cost of exact control solution with costly commu-

nication protocol and an approximate solution with cheaper communication

protocol is studied, where penalties are assessed for not achieving the exact

control solution. This sets up a multi-objective optimization problem.

• To obtain the optimal solutions (Pareto-front) of the multi-objective op-

timization problem, a widely-used evolutionary algorithm, NSGA-II, is

adapted by adding a step to the algorithm to ensure the final communica-

tion protocols and control policies are observationally-equivalent.

3. A method is developed to verify the robustness of a synchronous communication

protocol under conditions of (i) fixed delay, (ii) unknown but bounded delay.

• Rational transducers have been designed for propagating the delay of mes-

sages.

• A product automaton is introduced to verify the robustness of a syn-

chronous communication protocol under the conditions mentioned above.

4. A control and communication problem in decentralized TDES with unknown

but bounded delay communication has been studied.

• It is shown that the problem can be converted to an equivalent problem

with synchronous communication.

15

• The solution of TDES problem with synchronous communication is ob-

tained using the approach of synthesizing synchronous communication pro-

tocol in untimed DES.

• A product automaton has been defined to detect violations of co-observability

in TDES.

1.7 Outline of the Thesis

The rest of this thesis is organized as follows. Background definitions and results rel-

evant to this research are described in Chapter 2. Minimal communication in decen-

tralized DES is explored in Chapter 3. Two game theory concepts of Nash equilibrium

and Pareto optimality are used to find minimal cost communication protocols. The

concept of Pareto optimality has been used for multi-objective optimization problem

in decentralized DES, and is presented in Chapter 4. The use of an existing evolu-

tionary algorithm to solve the decentralized DES control and communication problem

is discussed and shown that when the problem is solved, a set of Pareto-optimal so-

lutions is obtained. Chapter 5 contains an examination of robustness of synchronous

communication protocols under a fixed and bounded but unknown delay. Chapter

6 formalizes a decentralized control problem with a known upper-bound delay com-

munication using TDES models. The TDES control problem with an unknown but

bounded delay is converted to an equivalent problem with zero-delay communication.

Chapter 7 concludes the thesis with a summary and an outline of future research.

16

Chapter 2

Background

This chapter introduces the relevant background from the theory of supervisory con-

trol of DES, as developed by [31], and the decentralized architecture [41]. It also

reviews the concepts of Nash Equilibrium and Pareto optimality from game theory,

and multi-objective optimization problems.

2.1 Supervisory Control of DES

We employ the supervisory control framework of [31,32] which is concerned with the

behaviour of a DES requiring control, assuming the desired system behavior (speci-

fication) is given as regular language over an alphabet Σ. We denote the behaviors

of the DES plant and the design specification by regular languages L and K, respec-

tively. In the theory of supervisory control of DES, a centralized controller keeps

the system in K by issuing control directives to prevent the system from performing

behaviour in L \K, the set of sequences in L that are not in K. The controller issues

a control decision (e.g., enable or disable an event) in response to sequence (generated

from L) and the control objective is reached when correct pattern of control decisions

are issued to keep the system in K.

17

A finite-state automaton is a five-tuple

ML = (Q,Σ, TL, q0, Qm),

where Q is a finite set of states ; Σ is a finite alphabet of symbols called events;

TL ⊆ Q × Σ × Q is the transition relation; q0 ∈ Q is the initial state; and Qm ⊆ Q

is a set of marked states. We will write q1
σ−→ q2 if there is a transition labeled σ

from state q1 to state q2 (i.e., (q1, σ, q2) ∈ TL). We can compose transitions and write

q1
σ1σ2...σm−−−−−→ qr if there is a sequence of events σ1σ2 . . . σm ∈ Σ∗ that begins in state q1

and ends in state qr, where Σ∗ is called the Kleene closure of Σ. An empty sequence

is denoted by ε, where ε ∈ Σ∗.

For all sequences s, t ∈ Σ∗, we say that t is a prefix of s if ∃w ∈ Σ∗ such that

s = tw. If L ⊆ Σ∗, then the prefix-closure of L, consisting of all prefixes of sequences

of L, is defined as L :={s ∈ Σ∗|∃s′ ∈ Σ∗ such that ss′ ∈ L}. If L is prefix-closed,

then L = L. Unless specifically mentioned, we work exclusively with prefix-closed

languages.

We begin with some basic concepts from control theory as applied to finite-state

automata. The language generated by an automaton is defined as its closed behaviour,

and the marked behaviour is the subset of sequences of the language, which end at

the marked states of automaton.

Definition 2.1. The closed behaviour of ML, denoted by L, is defined as:

L := {s ∈ Σ∗|(∃q1 ∈ Q)q0
s−→ q1}.

Definition 2.2. The marked behaviour of ML, denoted by Lm, is defined as:

Lm := {s ∈ L|(∃q1 ∈ Q)q0
s−→ q1 ∧ q1 ∈ F}.

18

The supervisory control problem assumes disjoint partitions of the elements of Σ

based on the set of controllable events Σc and the set of uncontrollable events Σuc

(i.e., Σ = Σc � Σuc). By assumption, the supervisor may prevent only controllable

events from occurring (i.e., only controllable events can be disabled), and uncontrolled

events are considered to be permanently enabled, as they cannot be prevented from

occurring. We want to synthesize a supervisor or controller such that the uncontrolled

system, under the control decisions of the controller, performs only behaviour in a

given specification language K ⊆ L (with a corresponding automaton MK ML).

Thus a controller, upon detecting that a behaviour in L \K is about to occur, will

disable controllable events that take the system from K to L \K. A language K is

controllable if no behaviour in the system exits the specification via an uncontrollable

event.

Definition 2.3. The language K is said to be controllable [31,32] w.r.t. L and Σuc

iff

KΣuc ∩ L ⊆ K.

Another aspect of the control problem involves the notion of partial observation.

Only a subset of the events Σ is observed by a controller, so Σ can be partitioned

into the disjoint sets of observable events Σo and unobservable events Σuo (i.e., Σ =

Σo � Σuo). A controller’s view of the system behaviour is modeled by a natural

projection π : Σ∗ → Σ∗
o. This operator removes those events σ from a sequence in Σ∗

that are not found in Σo :

π(σ) =

⎧⎪⎪⎨
⎪⎪⎩
σ, if σ ∈ Σo;

ε, otherwise.

19

The above definition can be extended to sequences as follows: π(ε) = ε, and

∀s ∈ Σ∗, ∀σ ∈ Σ, π(sσ) = π(s)π(σ). The inverse projection of π is a mapping

π−1 : Σ∗
o → 2Σ

∗
such that for s′ ∈ Σ∗

o, π
−1(s′) = {u ∈ Σ∗ | π(u) = s′}. For readability,

we use the notation [s] to refer to π−1[π(s)].

Based only on the partial view of a sequence, if the controller can make the correct

control decision, i.e., determine when the system leaves K via a controllable event,

then K is called observable.

Definition 2.4. A language K is said to be observable [20] w.r.t. L, π, and Σc iff

(∀s ∈ K)(∀σ ∈ Σc) sσ ∈ L \K ⇒ [s]σ ∩K = ∅. (2.1)

1

2

5

3

6

4

7

σ

σ

Figure 2.1: A finite-state automaton representing a DES.

Example 2.1. A DES is shown in Figure 2.1. Suppose that L is the language gener-

ated by the DES and let K, the design specification, be the language generated by only

solid line transitions. Let Σc = Σo = {a, b, σ}. The system leaves the specification

via a controllable event σ; therefore K is controllable. Now consider two sequences

s = ba and s′ = ab. Here π(s) �= π(s′) since π(s) = ab and π(s′) = ba. That means

two sequences are distinguishable to the controller based on observations. In case the

sequence ab is generated, the controller can disable σ. Hence, K is observable. �

A supervisory control or controller for the system can be defined as a function

from the projection of closed behaviour of the system to the power set of Σ as

20

Γ : π(L) → 2Σ. It defines the set of events that should be enabled based on the

controller’s partial view of the system behaviour. The control decision for a sequence

s ∈ L is Γ(π(s)). While the elements in Σc are enabled or disabled by the controller

according to the specification, all uncontrollable events that are eligible to occur

should remain enabled. Without loss of generality, we assume that all events in Σuc

are enabled:

(∀s ∈ L)Γ(π(s)) = {γ ∈ Pwr(Σ) | γ ⊇ Σuc}.

Let Γ/ML denote the systemML under the supervision of Γ. The closed behaviour

of Γ/ML is defined as a language L(Γ/ML) ⊆ L such that

(i) ε ∈ L(Γ/ML), and

(ii)(∀s ∈ L(Γ/ML))(∀σ ∈ Γ(s)) sσ ∈ L ⇒ sσ ∈ L(Γ/ML).

The marked behaviour of Γ/ML is

Lm(Γ/ML) = L(Γ/ML) ∩ Lm.

Theorem 1. There exists a controller Γ for the system ML such that Γ/ML is non-

blocking and the closed behaviour of Γ/ML is limited to the specification K (i.e.,

L(Γ/ML) = K) iff

(i) K is controllable w.r.t. L and Σuc,

(ii) K is observable w.r.t. L, π and Σc, and

(iii) K is Lm-closed [32].

A controlled system is represented by a set of sublanguages of the unsupervised

21

(open loop) system, which is, in general, partially ordered. Our interest lies in quan-

titative measures which provide total ordering on respective performances of the sub-

languages.

2.1.1 Quantitative Analysis of DES

A cost function may be considered for control actions on DES. Two cost functions are

introduced in [24,49] for the quantitative analysis of a supervised system. In the basic

setup, a finite (to be explained later) cost is considered for all legal sequences s ∈ K

and an infinite cost is applied when an illegal sequence s �∈ K occurs. It is assumed

that unobservable events are uncontrollable, Σuo ⊆ Σuc, which implies that Σc ⊆ Σo.

The event cost function is defined by ce : Σ → R+, the cost incurred for executing an

event. This is extended to a sequence s ∈ Σ∗ by adding the respective event costs

of the sequence. Hence, ce(s) =
m∑
i=1

ce(σi) for s = σ1...σm. The event cost is further

extended to a sublanguage K by the summation of costs of all possible sequences in

K as ce(K) =
∑
s∈K

ce(s). The control cost function is defined as cc : Σ → R+∪{0,∞}.

An infinite cost is incurred for all σ ∈ Σuc. The control cost is associated with the

events that must be disabled to keep the system within the desired behaviour. The

cost of a sequence in a controlled system is obtained by adding the event costs in the

sequence with the control costs of the events that are disabled on the way to remain

in the desired behaviour. Initially a one-stage cost function is defined for an event

σ ∈ Γ(s), for s ∈ Σ∗, as a function c : Σ∗ × Γ× Σ → R ∪ {0,∞}, such that

c(ε,Γ(ε), σ) = ce(σ) +
∑

σ′∈L\Γ(ε)

cc(σ
′),

22

which is extended to s = σ1σ2 . . . σm ∈ L as

c(s,Γ(s), σm) =

c(ε,Γ(ε), σ1) + c(σ1,Γ(σ1), σ2) + . . .+ c(σ1 . . . σm−1,Γ(σ1 . . . σm−1), σm).

The purpose of quantitative analysis is to remove the sequences with high event

costs, which is accompanied by rising control costs. Thus, the trade-off in the opti-

mization problem finds a balance between the cost function and the control objective.

The concept of language measure is introduced in [34], which ensures a total or-

dering on the controlled behaviours under different controllers. A partially observable

system is considered for the quantitative analysis of a language in [8]. A signed real

measure is constructed for a sublanguage of a system as a function μ : Pwr(L) → R,

where R = (−∞,∞). Relative to μ, a sublanguage can be classified as null, positive

and negative sublanguages. When a sublanguage ends in a marked state with a se-

quence s ∈ K, μ is positive, otherwise it is negative. Here a characteristic function

is defined which assigns a signed real weight [-1, 1] to a sequence, based on whether

it ends with behaviours lie in or outside of the specification. A cost function for a

sequence s ∈ L can be obtained by the product of respective costs formed on the state

from which the events of the sequence are generated. It makes an exact quantitative

comparison of the controlled system under different controllers.

2.2 Supervisory Control of Decentralized DES

The decentralized supervisory control problem [9,41] considers the synthesis of n ≥ 2

controllers that cooperatively intend to keep the system in K by issuing control

decisions to prevent the system from performing behaviour in L \ K. Here we use

I = {1, . . . , n} as an index set for the decentralized controllers. The ability to achieve

23

a correct control policy relies on the existence of at least one controller that can make

the correct control decision to keep the system within K.

The basic decentralized control architecture is shown in Figure 2.2. In this setup,

each local controller makes decision based on its own observation. The decisions of

local controllers are fused to determine the global control decision. A conjunctive

fusion rule (∧) is applied to determine whether an event σ ∈ Σ is globally enabled

after a sequence s ∈ L. In the context of the decentralized supervisory control

problem, Σ is partitioned into two sets for each controller i ∈ I: controllable events

Σc,i and uncontrollable events Σuc,i : = Σ\Σc,i. The overall set of controllable events

is Σc :=
⋃
i=1

Σc,i. Let Ic(σ) = {i ∈ I|σ ∈ Σc,i} be the set of controllers that control

event σ. We will also partition TL based on controllability status of the events, as

Tc,i = {(q, σ, q′) ∈ TL | σ ∈ Σc,i}, and Tuc,i = TL \ Tc,i.

Figure 2.2: Decentralized DES architecture.

Each controller i ∈ I also has a set of observable events, denoted by Σo,i, and

unobservable events Σuo,i = Σ\Σo,i. Similarly, the set of transitions TL is partitioned

as To,i = {(q, σ, q′) ∈ TL | σ ∈ Σo,i} and Tuo,i = TL \ To,i. To formally capture

the notion of partial observation in decentralized supervisory control problems, the

24

natural projection is extended to each controller i ∈ I as πi : Σ
∗ → Σ∗

o,i. Thus for

s = σ1σ2 . . . σm ∈ Σ∗, the partial observation πi(s) will contain only those events

σ ∈ Σo,i:

πi(σ) =

⎧⎪⎪⎨
⎪⎪⎩
σ, if σ ∈ Σo,i;

ε, otherwise,

which is extended to sequences as follows: πi(ε) = ε, and ∀s ∈ Σ∗, ∀σ ∈ Σ, πi(sσ) =

πi(s)πi(σ). The inverse projection of πi is a mapping π−1
i : Σ∗

o,i → 2Σ
∗
such that for

s′ ∈ Σ∗
o,i, π

−1
i (s′) = {u ∈ Σ∗ | πi(u) = s′}. As before, we use the notation [s]i to refer

to π−1
i [πi(s)].

When a global control decision is made, there may exist at least one decentralized

controller that can take a correct control decision (i.e., determine that sσ ∈ L\K)

based on its partial observation of a sequence, by disabling a controllable event

through which the sequence leaves the specification K. In that case, K is called

co-observable.

Definition 2.5. A language K is co-observable [41] w.r.t. L, Σo,i, and Σc,i (i ∈ I)

iff

(∀s ∈ K)(∀σ ∈ Σc) sσ ∈ L\K ⇒ (∃i ∈ Ic(σ)) [s]iσ ∩K = ∅.

When it is clear from the context, we just say that K is co-observable. Also note that

when I = {1}, co-observability reduces to observability (Definition 2.1).

Example 2.2. Continuing with Example 2.1, let n = 2 and suppose that Σo,1= {a, σ},

and Σo,2= {b, σ}. Further, let Ic(σ) = {1, 2}. Consider s = ba and s′ = ab. Note

25

that K is not co-observable since π1(s) = π1(s
′) = a, and π2(s) = π2(s

′) = b. Hence,

(∀i ∈ Ic(σ)) πi(s) = πi(s
′) and, thus, no single controller can take the correct control

decision regarding σ. �

A decentralized control law for controller i is a mapping Γi : πi(L) → Pwr(Σ)

that defines the set of events that controller i believes should be enabled based on

its partial view of the system behaviour. While controller i can choose to enable or

disable events in Σc,i, as in the centralized case, all events in Σuc,i must be enabled.

(∀i ∈ I)(∀s ∈ L) Γi(πi(s)) = {γ ∈ Pwr(Σ) | γ ⊇ Σuc,i}.

To find a solution to the decentralized control problem, we want to find controllers

Γi (∀i ∈ I) such that ∀s ∈ K:

(∀σ ∈ (Σ)) sσ ∈ K ⇒ ∃σ ∈
⋂
i∈I

Γi(πi(s)) and

(∀σ ∈ Σc) sσ ∈ L \K ⇒ ∃σ �∈
⋂
i∈I

Γi(πi(s)).

That means, an event σ must be enabled after a sequence s by all supervisors if

sσ ∈ K. Otherwise, it is disabled by at least one controller. From the results of [41],

such supervisors exist if the specification K is co-observable, controllable, and Lm-

closed.

When K is not co-observable, it may still be possible to find a control solution

by introducing communication between decentralized controllers, so that with the

additional information provided through the content of received messages, all the

correct control decisions can be taken.

26

2.3 Synchronous (Zero-Delay) Communication

There are a variety of strategies for introducing communication between decentral-

ized controllers: sending messages as early as possible [38], as late as possible [4] or

possibilities in-between [37]. Strategies are further distinguished by the content of the

messages sent: state-estimates [4, 38, 57], event occurrences [37, 56], and information

related to control decisions [23]. Figure 2.3 shows controllers communicating with

each other in decentralized DES.

The synthesis of communication protocols requires additional information pro-

vided through the content of received messages, denoted here by Σ?
i ⊆ Σo\Σo,i so

that at least one controller can take the correct control decision after receiving the

communicated information.

Figure 2.3: Communication between controllers in decentralized DES architecture.

Let us consider the strategy of [36] to identify a communication protocol. The set

of messages sent from one controller to another is derived from a set of communication

27

transitions, denoted here by T !
i =

⋃
j∈I

T !
i,j ⊆ To,i, where T !

i,j identifies transitions that

are coming from controller i to j on at least one system trajectory. The goal is to allow

the controllers to make the correct control decisions not just based on their partial

observation of the system, but also taking into account the information received

from other communicating controllers. There are many options for choosing when

communication should occur: each controller/sender can communicate everything it

observes followed by subsequent refinement based on information it has received from

the others [16,30,51,54]; or specific events/transitions can be identified by the sender

as providing useful information to a receiver [35,36,56]. While it is assumed that the

protocol is identified as a set of specific transitions to incorporate this into K, we

will replace (q, σ, q′) ∈ T !
i,j by σ in controller i’s of K. We define the content of the

message as Σ!
i = {σ ∈ Σo,i|∃(q, σ, q′) ∈ T !

i}.

Definition 2.6. Consider a set of communication transitions for controller i, T !
i =

T !
i,1∪ . . .∪T !

i,n. A communication protocol between i and j, φi,j : K → Σ!
i∪{ε}

(j ∈ I\{i}), is defined as follows:

(∀s ∈ K) (∀σ ∈ Σ), if q0
s−→ q′

σ−→ q′′ ∈ TL, then

φi,j(sσ) =

⎧⎪⎪⎨
⎪⎪⎩
σ, if (q′, σ, q′′) ∈ T !

i,j,

ε, otherwise.

Hence, φi = 〈φi,1, . . . , φi,n〉}. Then for every i ∈ I, the set of communication

protocols for controller i is Φi = {φi|φi = 〈φi,1, . . . , φi,n〉}. The overall set of

communication protocols is then defined as Φ = (Φi)i∈I . �

The most recent information that a controller has about a sequence is defined as

ψi : L → Σo,i ∪ (
⋃

j∈I\{i}

Σo,j). When sσ ∈ L occurs, each controller i keeps track of

28

communication it receives about sσ along with its own observations of sσ.

ψi(sσ) =

⎧⎪⎪⎨
⎪⎪⎩
σ, if σ ∈ Σo,i or (σ /∈ Σo,i and ∃j ∈ I s.t. φj,i(sσ) �= ε);

ε, otherwise.

The natural projection πi is extended to π?
i : L → (Σo,i ∪Σ?

i)
∗ to include received

messages as follows:

π?
i (ε) = ε,

π?
i (s) = ψi(σ1)ψi(σ1σ2) . . . ψi(σ1 . . . σm) for s = σ1 . . . σm.

Finally, communication must occur in an observationally-equivalent manner, i.e.,

the same message should be sent after the occurrence of all sequences that have the

same extended natural projection.

Definition 2.7. A communication protocol φi,j is coherent1 if

(∀s, s′ ∈ L)(∀i ∈ I) π?
i (s) = π?

i (s
′) ⇒ (∀j ∈ I \ {i}) φi,j(s) = φi,j(s

′).

When K is not co-observable, there may exists a controller i that can make the

correct control decision (i.e., determine that sσ ∈ L\K) based on its partial observa-

tion of the system behaviour and the information received through the communication

protocol φi (i ∈ I).

Definition 2.8. We say that K is communication observable w.r.t. L, π?
i , Σc,i

1In the discrete-event system literature, this property is referred to as feasibility, but we will use
this word in the sequel as it has a particular meaning in the context of finding Nash equilibrium
points.

29

and φi (i ∈ I) iff

(∀s ∈ K)(∀σ ∈ Σc) sσ ∈ L \K ⇒ (∃i ∈ Ic(σ)) [s]?iσ ∩K = ∅.

When it is clear from the context, we just say thatK is communication observable.

We extend the decentralized control law to a communicating controller i as follows

Γ?
i : π

?
i (L) → Pwr(Σ). To find a solution to the decentralized control problem with

synchronous communication protocols φ = {φi,j} for all controllers i, j ∈ I, we have

to find Γ?
i (∀i ∈ I) such that ∀s ∈ K:

(∀σ ∈ (Σc ∪ Σuc)) sσ ∈ K ⇒ σ ∈
⋂
i∈I

Γ?
i (π

?
i (s)),

(∀σ ∈ Σc) sσ ∈ L \K ⇒ σ �∈
⋂

i∈Ic(σ)

Γ?
i (π

?
i (s)).

It is already shown in [41] that we can find such Γi if K is co-observable, controllable,

and Lm-closed.

The decentralized control and (synchronous) communication problem (DCCP) is

formally described below.

Problem 2.1. Consider two regular languages K, L defined over a common alphabet

Σ, controllable events Σc,1, ...,Σc,n⊆ Σ, observable events Σo,1, . . . ,Σo,n ⊆ Σ, and a set

of communication transitions T !
1, . . . , T

!
n (for i ∈ I), where K ⊆ L ⊆ Σ∗ is observable

w.r.t. L,Σo,Σc and controllable w.r.t. L,Σuc, but is not co-observable w.r.t. L,

Σo,i, Σc,i. Construct communication protocols (φi)i∈I , such that K is communication

observable.

We can synthesize communicating controllers when K is communication observ-

able w.r.t. L, π?
i , Σc,i (i ∈ I) and (φi)i∈I .

Example 2.3. In the ongoing Example 2.1, let the set of communication transitions

30

for Controller 1 be T !
1,2 = {(1,a,2), (5,a,6)} (i.e., Σ?

2 = {a}) and for Controller 2

be T !
2,1 = {(1,b,5), (2,b,3)} (i.e., Σ?

1 = {b}). Hence, we have the following coherent

communication protocol φ = (φ1;φ2):

φ1 : φ1,2(ba) = φ1,2(a) = a,

(∀s ∈ L \ {ba,a})φ1,2(s) = ε;

φ2 : φ2,1(b) = φ2,1(ab) = b,

(∀s ∈ L \ {b,ab})φ2,1(s) = ε.

While π1(ab) = π1(ba), by extending controller 1’s information to Σo,1 ∪Σ?
1 via φ, we

have π?
1(ab) = ab whereas now π?

1(ba) = ba. Thus K is communication observable

w.r.t. L, π?
i , Σc,i and φi (i ∈ I). �

A violation of co-observability can be detected by a product automaton U [36].

A special product is used to compose more than one automaton, which is called

synchronized composition.

Synchronized composition of automata: The synchronized composition, denoted

by×S , is defined as follows. Assume that we havem finite-state automataM1, . . . ,Mm,

where Mj = (Qj,Σj, Tj, q0,j, Fj), for j = 1, 2, . . . ,m, where self-loops of ε are added

to every state qj ∈ Qj, for j ∈ {1, . . . ,m}, to facilitate the composition. Then

M = M1 ×S M2 ×S . . .×S Mn = (QS ,ΣS , TS , 〈q0,1, q0,2, . . . , q0,n〉, FS),

where QS ⊆ Q1 × Q2 × . . . × Qn; ΣS ⊆ Σ1 × Σ2 × . . . × Σn; TS ⊆ QS × ΣS × QS ;

and FS ⊆ F1 × F2 × . . . × Fn. The state set QS is a set of state vectors of the form

qS = (q1, . . . , qn) and we will occasionally refer to the jth component of qS as qS(j),

31

where j ∈ {1, . . .m}. We can think of these automata as running concurrently, and,

thus, there is some synchronization of events in each of the alphabets. A transition

(qS , σS , q
′
S) ∈ TS , where qS = (q, q1, . . . , qn) and q′S = (q′, q′1, . . . , q

′
n) with transition

label σS = 〈σS(0), . . . , σS(n)〉, iff (qj, σ(j), q
′
j) ∈ Tj, for j ∈ {1, . . . ,m}.

The U -structure is constructed by composition of ML with n copies of MK .

U = (X,ΣU , TU , x0, FU) = ML ×S Πn
i=1(MK)i (2.2)

The alphabet of ΣU is a set of vector labels from [2]. We have two types of labels,

corresponding to the occurrence and observation of an event in Σo (and thus Σo,i)

and events that are not officially observed, i.e., events in Σuo,i and Σ \ Σo. Let

Io(σ) = {i ∈ I | σ ∈ Σo,i}. We build the following set of labels for ΣU : for all σ ∈ Σo,

	(0) = σ and for all i ∈ Io(σ), 	(i) = σ, and for all j ∈ I \ Io(σ), 	(j) = ε; for all

σ ∈ Σ \ Σo,i, 	(i) = σ and for all j �= i ∈ I, 	(j) = ε; for all σ ∈ Σ \ Σo, 	(0) = σ and

for all i ∈ I, 	(i) = ε.

A transition (x, 	, x′) ∈ TU , where x = (q, q1, . . . , qn) and x′ = (q′, q′1, . . . , q
′
n) with

label 	 = 〈	(0), . . . , 	(n)〉 iff (q, 	(0), q′) ∈ TL, and for all i ∈ I, (qi, 	(i), q
′
i) ∈ TK .

The set of marked transitions is defined as follows:

FU = {(x, 	, x′) | ((x(0), 	(0), x′(0)) ∈ TL \ TK ∧

∀i ∈ Ic((0)) : (x(i), 	(i), x
′(i)) ∈ TK)}.

Example 2.4. The U-structure of the ongoing example is shown in Fig 2.4. It has

42 states, 8 labels, and 66 transitions.

The set of atoms for this example is A = {〈a, a, ε〉, 〈ε, ε, a〉, 〈b, ε, b〉, 〈ε, b, ε〉, 〈σ, σ, σ〉}.

Since a is not an event observable to Controller 2, we have the label 	 = 〈ε, ε, a〉 ∈ A.

32

1,
1,
1

2,
2,
1

〈a
,a
,ε
〉

5,
1,
5

〈b
,ε
,b
〉

1,
1,
2

〈ε
,ε

,a
〉

1,
5,
1

〈ε
, b
, ε
〉

2,
2,
2

〈a
,a
,ε
〉

〈ε
,ε

,a
〉

〈a
,a
,a
〉

5,
5,
5

〈b
, b
, b
〉

〈b
,ε
,b
〉

〈ε
, b
, ε
〉

1,
5,
2

〈ε
, b
, ε
〉

〈ε
,ε

,a
〉

〈ε, b, a〉

6,
2,
5

〈a,a,ε〉

3,
2,
5

〈b,ε,b〉

3,
3,
5

〈b
, b
, b
〉

〈ε
,
b
,
ε
〉

2,
3,
1

〈ε
,
b
,
ε
〉

〈b,ε,b〉

2,
3,
2

〈ε
,
b
,
a
〉

〈ε
,ε

,a
〉

〈ε
,
b
,
ε
〉

3,
2,
3

〈b
,ε

,b
〉

3,
3,
3

〈b
,b
,b
〉

〈b
,ε

,b
〉

〈ε
,
b
,
ε
〉

4,
4,
4〈σ
,σ

,σ
〉

3,
2,
6

〈ε,
ε,
a〉

3,
3,
6

〈ε
,
b
,
ε
〉

〈ε,
ε,
a〉

〈ε
,
b
,
a
〉

4,
4,
7

〈σ
,σ

,σ
〉

5,
1,
3

〈b
,ε

,b
〉

6,
2,
3

〈a
,a
,ε
〉

5,
5,
3

〈b
,ε

,b
〉

〈ε
, b
, ε
〉

〈b, b, b〉

6,
3,
3

〈ε
,
b
,
ε
〉 7,
4,
4

〈σ
,σ

,σ
〉

6,
6,
3

〈a
,a
,ε
〉 7,
7,
4

〈σ
,σ

,σ
〉

2,
6,
1

〈a
, a
, ε
〉

2,
6,
2

〈a,a,a〉

〈ε
,ε

,a
〉

〈a
, a
, ε
〉

3,
6,
3

〈b
,ε
,b
〉 4,
7,
4

〈σ
,σ

,σ
〉

6,
6,
5

〈a
, a
, ε
〉6,
2,
6

〈a
,a

,a
〉

〈ε
,
ε
,
a
〉

5,
1,
6

〈ε
,
ε
,
a
〉

〈a,a,ε〉

5,
5,
6

〈ε
,
ε
,
a
〉

〈ε
, b
, ε
〉

〈ε
,
b
,
a
〉

5,
5,
5

〈a
, a
, a
〉

〈a
, a
, ε
〉

〈ε
,
ε
,
a
〉

7,
7,
7

〈σ
,σ

,σ
〉

6,
3,
5

〈ε,
b,
ε〉

6,
3,
6

〈ε
,
b
,
a
〉

〈ε
,
ε
,
a
〉 〈ε,

b,
ε〉

7,
4,
7〈σ
,σ

,σ
〉

3,
6,
6

〈b
, ε
, b
〉

3,
6,
6〈ε
,
ε
,
a
〉

4,
7,
7〈σ
,σ

,σ
〉

Figure 2.4: Automaton U for the ongoing example with Figure 2.1. Marked transition
is denoted by dashed line. Potential communication transitions are indicated in blue.

33

We interpret this as follows: Controller 2 has no idea whether or not a has just oc-

curred in the plant (i.e., �(0) = ε), but it guesses that a could have occurred (i.e.,

�(2) = a) and it makes no assumptions about the observations of Controller 1 (i.e.,

�(1) = ε). But a is observable to Controller 1, so we have the label �′ = 〈a, a, ε〉 ∈ A.

This means that a has occurred in the plant (i.e., �′(0) = a) and its occurrence was

observed by Controller 1 (i.e., �′(1) = a); however, the event was not observed by

Controller 2 (i.e., �′(2) = ε). Finally, ΣU = A ∪ {〈a, a, a〉, 〈b, b, b〉, 〈ε, b, a〉}.
In the example, F U = {(3, 6, 6) 〈σ,σ,σ〉−−−−→ (4, 7, 7)}. Let this marked transition be

denoted by ζ, whose label is denoted by �ζ and which is reached via (1, 1, 1)
w�−→

(3, 6, 6). We use w to identify the way in which ζ corresponds to a violation of co-

observability. The true system trajectory is the sequence formed by w(0)�ζ(0), namely

ba, which is in L \ K. Both controllers control σ, so we examine w(1)�ζ(1) and

w(2)�ζ(2) to see what each controller considers possible sequences if w(0)�ζ(0) had

occurred in the system. In this case, w(1)�ζ(1) = w(2)�ζ(2) = abσ ∈ K. Hence, the

transition (3, 6, 6)
〈σ,σ,σ〉−−−−→ (4, 7, 7) is marked because σ must be disabled according to

ML whereas both controllers believe that σ should be enabled.

We can also illustrate the set of communications, shown in blue color in the U
structure, which makes the system co-observable. For example, Controller 1 commu-

nicates the occurrence of a to Controller 2 ((1, 5, 1), 〈a, a, a〉, (2, 6, 2)). In that case,

the transitions ((1, 5, 1), 〈ε, ε, a〉, (1, 5, 2)) and ((1, 5, 2), 〈a, a, ε〉, (2, 6, 2)) are pruned

from the U . The reception of a forces Controller 2 to follow the plant behavior, and

avoid to reach to the marked transition. Hence Controller 2 takes correct control

decision with communication received from Controller 1.

In synthesizing synchronous communication, no delay is assumed in the commu-

nication. But, in reality, communication occurs with some delay. In that case, we

can consider time bounds for the occurrence of events which inspire to use TDES.

34

2.4 Supervisory Control of TDES

Classical DES are concerned with the order of occurrences of events in the system.

The exact time at which each event occurs is unimportant. In many applications,

however, the exact time each event occurs is important. We use the supervisory

control framework of [6] that describes the system behaviour of a TDES, denoted

here by Lτ . We start with an automaton to model a TDES:

Mact = (A,Σact, Tact, a0, Am).

The components of Mact are defined in the usual way, except that states are now

called activities. Here A is a finite set of activities ; Σact is the alphabet of event

labels; Tact ⊆ A × Σact × A is the transition relation; a0 is the initial activity; and

Am ⊆ A is a set of marked activities. Two maps are defined for each event in Σact:

(1) a lower bound l : Σact → N and (2) an upper bound u : Σact → N ∪ {∞}. Each

σ ∈ Σact can occur in the interval [l(σ), u(σ)], where l(σ) is the lower or minimum

delay after which σ can occur, and u(σ) is the upper or hard deadline before which σ

must occur. It is required that (∀σ ∈ Σact)l(σ) ≤ u(σ). A TDES can be fully specified

by (Mact, l, u), where time is implicitly modeled. The transition graph associated with

Mact is called an activity transition graph (ATG).

While Mact has a compact representation, it is converted to an automaton M τ

before a supervisory control or communication protocol is designed. The automaton

M τ describing the timed system is a five-tuple

M τ = (Q,Στ , T τ , q0, Qm),

where time is explicitly modeled. Here Q is a finite set of states; Στ is a finite set of

events; T τ ⊆ Q×Στ ×Q is the transition relation; q0 is the initial state; and Qm ⊆ Q

35

1

2

3

4
[2,3]

[2,3]

Figure 2.5: A finite-state automaton representing ATG.

is a set of marked states. The set of events is composed of Στ = Σact ∪ {τ}, where τ

denotes the passage of one unit of time. We assume that we have a global digital clock

for measuring time. The transition graph of M τ is called a timed transition graph

(TTG). The specification, denoted by Kτ ⊆ Lτ , describes the desired behaviour of

the system.

Example 2.5. The example illustrates how a system is represented by an ATG and

a TTG. In ATG given in Figure 2.5, Σact = {a, b, c}; A = Am = {1, 2, 3, 4}; a0 = 1.

The lower and upper time bounds of a are 2 and 3 respectively. Time bounds are

omitted of σ ∈ Σact, when l(σ) = 0 and u(σ) = ∞. The events can occur anytime

between the lower and upper time bounds in TTG. Next we convert the ATG to the

corresponding TTG, shown in Figure 2.6 which describes the occurrence of a and b

with respect to clock ticks.

In the context of decentralized TDES, Στ is partitioned into three subsets for each

controller i ∈ I. The set of controllable events and uncontrollable events are Σc,i and

Σuc,i as before, and a set of forcible events denoted by Σf,i that a controller can force

to happen before time progresses. The overall set of forcible events, Σf = ∪n
i=1Σf,i,

and the set of controllers for which σ is forcible is If (σ) = {i ∈ I | σ ∈ Σf,i}. We will

also partition T τ accordingly.

36

1

2

1A

3

2A

1B

2B

1C

2C

4
τ τ

τ τ

τ

τ

τ

τ

Figure 2.6: A finite-state automaton representing TTG of Figure 2.5.

Definition 2.9. A language Kτ is controllable w.r.t. Lτ and Σuc in TDES [26] iff

(∀s ∈ Kτ)(∀σ ∈ Σuc)sσ ∈ Lτ ⇒ sσ ∈ Kτ .

We also consider the notion of partial observation in TDES, which can be formally

described by a natural projection as πτ
i : Στ∗ → Σ∗

o,i. The inverse projection πτ−1

i :

Σ∗
o,i → 2Σ

τ∗
is defined for s′ ∈ Σ∗

o,i as πτ−1

i (s′) = {u ∈ Στ∗ | πτ
i (u) = s′}. Note that

τ ∈ Σo,i for all i ∈ I.

Definition 2.10. Kτ is co-observable w.r.t. Lτ , Σo,i, and Σc,i (i ∈ I) in TDES [26]

iff

(∀s ∈ Kτ)(∀σ ∈ Σc)sσ ∈ Lτ\Kτ ⇒ (∃i ∈ Ic(σ))[s]
τ
i σ ∩Kτ = ∅.

A decentralized control law for controller i in TDES is defined as a map Γτ
i :

πτ
i (L

τ) → Pwr(Στ) × Pwr(Σf,i), such that for a sequence s ∈ πτ
i (L

τ), Γτ
i (s) :=

37

(Γτ
e,i(s),Γ

τ
f,i(s)), where Γτ

e,i(s) = {γ ∈ Στ |γ ⊇ Σuc,i}, and Γτ
f,i(s) = {γ ∈ Στ |γ ∈ Σf,i}

[26]. Γτ
e,i(s) defines the set of events that are enabled by controller i and Γτ

f,i(s)

denotes the set of events that are forced to occur by controller i after observation

πτ
i (s). The event τ has a double role in the control map: when there are forcible

events present, it is treated as a controllable event and can be preempted; when

no forcible event is present, it is treated as an uncontrollable event. In that case,

τ ∈ Γτ
e,i(s) if (� ∃σ ∈ Σf,i)sσ ∈ Lτ .

2.5 Nash Equilibriun and Pareto Optimality

Equilibrium is a key idea in calculating optimal strategies for multi-agent systems.

A multi-agent system in game theory models competition (or cooperation) among

the agents. To optimize the outcome, an agent takes into account the decisions that

other agents take and assumes they act so as to optimize their own outcome. Nash

equilibrium and Pareto optimality, two important concepts in game theory, are used

to find equilibria among multiple agents. They are used to analyze the outcome of

the strategic interaction of multiple agent systems. A Nash equilibrium is a collection

of strategies, one for each agent in the system, such that if all other agents adhere

to their strategies, an agent’s recommended strategy is strictly better than any other

strategy it could execute.

For a system with N agents, let A = A1 × . . .×An, where Ai is a set of strategies

of agent i. Let ui : A → R denote a real-valued cost function for agent i. Consider

the problem of optimizing (minimizing) the cost functions ui. A set of strategies

a∗ = (a∗1, . . . , a
∗
n) ∈ A is a Nash equilibrium, if

(∀i ∈ N)(∀ai ∈ Ai) ui(a
∗
i , a

∗
i) ≤ ui(ai, a

∗
i),

38

where a i denotes the set of strategies {ak|k ∈ N and k �= i}. Intuitively, a Nash

equilibrium represents each agent’s best response to the strategies of the other agents.

The concept of Nash equilibrium is used for decentralized DES in [27]. A controller

S∗ is supremal if for all controllers S that solve the supervisory control problem

L(S/ML) ⊆ L(S∗/ML). The closed loop behaviours generated by the controllers is

analogous to the cost function of a game. However, the resulting controllers are only

partially ordered and incomparable because of the underlying optimality definition.

Various numerical methods for calculating Nash equilibrium have been proposed.

For two-player games, the Lemke-Howson algorithm [19] is still the best-known among

the combinatorial algorithms. Other algorithms to calculate a sample Nash equilib-

rium point for such two-player games include [19,29,47]. Finding a Nash equilibrium

is an NP-hard problem. The Lemke-Howson algorithm to find a sample Nash equilib-

rium is based on linear programming and is exponential in time. In [29], a heuristic

approach is presented for finding a sample Nash equilibrium in normal-form games.

The algorithm is based on the support space and a notion of dominated actions that

are pruned from the search space. The support specifies the subset of available actions

that are assigned positive probability. The search space is ordered according to the

support size profiles. In two-player games, the algorithm chooses the support sizes

favoring those that are balanced and small. Then the algorithm prunes the search

space by the conditional dominance, which instantiates each players’ support. An

action is conditionally dominated given a profile of sets of available actions of the

remaining players, if the utility function of this player can be improved by choosing a

different action. Two algorithms are proposed using the backtracking approach, one

for two-player games and the other for n-player games, with n > 2.

On the other hand, Pareto optimality is a measure of efficiency. A set of strategies,

one for each agent in the system, is Pareto-optimal if there is no other strategies that

39

make at least one agent strictly better off with making all other agents at least as

well off [48]. A strategy a∗ = (a∗1, . . . , a
∗
n) ∈ A is Pareto-optimal if there is no other

strategies a = (a1, . . . , an) such that

(∀i ∈ N) ui(ai, a i) ≤ ui(a
∗
i , a

∗
i).

When an agent gains by changing a strategy without worsening any other agent,

this is called Pareto improvement. When a solution is Pareto-optimal, no further

improvement in one cost function is possible without worsening another. In DES, we

are interested in optimizing the communication cost of a controller (agent) considering

the communication cost of all other controllers.

Pareto-optimal solutions do not necessarily form a Nash equilibrium or vice versa.

The concept of Pareto optimality is widely-used in multi-objective optimization [14,

61]. A Pareto-optimal solution is not necessarily unique and we have to consider a

Pareto-optimal set. This set forms the Pareto front, and constitutes a complete set

of solutions for multi-objective optimization problem.

2.6 Multi-Objective Optimization

Multi-objective optimization deals with solving problems having multiple, often con-

flicting objectives. These problems arise naturally in most of the fields of science,

engineering and business. A multi-objective optimization problem can be formally de-

fined in terms of m decision variables x1, . . . , xm and n objective functions f1, . . . , fn:

min y = (f1(x), ..., fn(x))

subject to x = (x1, ..., xm) ∈ X

y = (y1, ..., yn) ∈ Y,

40

where x is decision vector, y is objective vector, X is the decision space and Y is the

objective space. A solution x1 is said to be dominated by another solution x2, if x1

is not better than x2 in all objective functions, and x1 is strictly worse than x2 in at

least one objective function, i.e.,

(∃i ∈ {1, . . . , n}) fi(x2) < fi(x1) and

(∀j �= i) fj(x2) ≤ fj(x1).

A solution is Pareto-optimal when no other solution dominates it.

There are different ways to approach a multi-objective optimization problem: (1)

aggregating approaches, (2) population-based non-Pareto approaches, and (3) Pareto-

based approaches [14]. Aggregating approaches combine the objectives into a single

one, and are advantageous to produce a single objective optimization problem. Some

of the popular aggregating approaches are the weighted-sum approach, target vector

optimization, and the method of goal attainment.

Population-based non-Pareto approaches are able to find a set of different non-

dominated solutions concurrently. The search is guided in different directions at the

same time by modifying the selection criterion to generate multiple non-dominated

solutions. But non-Pareto approaches are often sensitive to the non convexity of

Pareto-optimal sets. Non-Pareto algorithms often use the method of multiple linear

combinations.

Pareto-based approaches explicitly use the concept of Pareto optimality to se-

lect individuals for the next generation. Most work in the area of multi-objective

optimization has concentrated on the approximation of the Pareto set [60]. But gen-

erating the Pareto set is computationally expensive and is often infeasible. A number

of stochastic search strategies, like evolutionary algorithms, Tabu search, simulated

annealing have been developed, but these do not yield exact solutions, rather, they

41

find a good approximation. Evolutionary algorithms are seem to be mostly suitable

for multi-objective optimization problems, because they process a set of solutions of

the problem in parallel.

42

Chapter 3

Equilibria for Communication in

Decentralized DES

Previous investigations for optimal communication policies consider set-theoretic def-

initions of optimality [4, 35], and quantitative approach for globally-optimal commu-

nication protocols [36]. Finding optimal communication strategies for a controller in

a decentralized control setting is challenging because the best strategy depends on

the choices of other controllers, all of whom are also trying to optimize their own

strategies. We are interested in applying the concepts from game theory to investi-

gate the locally-optimal communication policies. Applications of game theory try to

find equilibria, where each player of the game chooses a strategy that is unlikely to

change. More specifically, a game is in equilibrium if no player can improve its out-

come unilaterally in the game. In this chapter, optimal strategies are considered that

minimize the cost of the communication protocol for each controller. An example

where communication among the controllers is necessary is given in the following.

Example 3.1. Let us consider a problem in the space science where a number of

robots navigate to explore an area of a planet. The area map is divided into square

43

Figure 3.1: Robot navigation to explore a fixed area.

blocks, where the robots can move from one block to another, either horizontally (left-

right), or vertically (up-down). Each movement is represented by a transition, and

each transition occurs at a cost. The transition cost in one direction may be higher

than the other direction, e.g., if the surface is steep in one direction, then the robots

need more energy to move than in the other direction. In general, we can divide

the area into m × m square blocks. Suppose there are n robots to explore the area,

and more than n target states where the robots want to reach. Furthermore, suppose

an antenna is placed in a block, which must be activated by one robot. The robot

movements are subject to the following constraints:

• no two robots can occupy the same block at any time, and

• no two robots activate the antenna through the same navigation.

For simplicity, in this example, we consider a 3×3 map (m = 3) and n = 2 robots,

shown in Figure 3.1. The automaton for each robot is shown in Figure 3.2. Each

square block is represented as a state, and the movement from one block to another,

either horizontally or vertically, is represented by a transition. We do not consider

44

Figure 3.2: The automaton model for (a) R1; (b) R2.

all possible transitions to simplify the problem. The robots are denoted by R1 and R2,

having 3 target states (7, 8, 9) to reach.

An event xyi ∈ Σi corresponds to a transition from state x to state y by Ri.

Suppose the antenna is placed in Block 6, and antenna activation is represented by

a common event 660, which is observable and controllable by both robot controller.

All other events are locally controllable (e.g., Ri controls only events that end in i).

Similarly, the events are locally observable (e.g., Ri observes only events that end in

i). On the way to the target states, only one robot activates the antenna. No two

robots activate it at the same time, because they cannot occupy state 6 at the same

time according to the first constraint.

45

Robot R1 and R2 start from state 1 and 3 respectively, and their target states are

7,8 and 9. The system behavior L is generated by the synchronous product of R1||R2.

The corresponding automaton ML has 81 states and 234 transitions. According to

the first constraint noted above, they cannot be in the same state at the same time,

so that (1, 1), (2, 2), . . ., (9, 9) are illegal states in ML. The specification automaton

MK is a subautomaton of ML, minus the illegal states from ML and the transitions

associated with these states.

The robots have a map of the area, but no robot knows about the position of other

robot. As we will see later, if R1 reaches state 7 as its target state, then R2 must

be informed about the position of R1, so that R2 can move to end up in either state

8 or 9. Similarly R1 should be informed about the position of R2. To avoid the

situation when both R1 and R2 are at the same state, it is necessary that both robots

communicate with each other about their position throughout the navigation. The

example will be explored next chapter where we solve a multi-objective optimization

problem to examine the trade-offs between communication and control costs.

3.1 Nash Equilibrium for Communication Proto-

cols

The result in this section is predicated on the fact that we can express the decen-

tralized control and synchronous communication problem as a normal-form game.

In a normal-form game, each player has a finite set of strategies. Further, strategies

are associated with a payoff function. That means, the normal-form representation

specifies the players’ strategy spaces and their payoff functions.

Definition 3.1. (From [29]) A (finite, n-person) normal-form game is a tuple (N,A, u),

where:

46

• N is a finite set of n players, indexed by i;

• A = A1 × . . .×An, where Ai is a finite set of actions available to player i, each

vector a = 〈a1, ..., an〉 ∈ A is called an action profile;

• u = (u1, ..., un) where ui : A → R is a real-valued cost function for player i.

�

We consider a decentralized discrete-event control and communication problem

where

• I is a finite set of n controllers, indexed by i;

• Φ = Φ1 × . . .×Φn, where Φi is a finite set of communication protocols for con-

troller i, and φ = 〈φ1, . . . , φn〉 ∈ Φ is an action profile with φi = 〈φi,1, . . . , φi,n〉,
φi,j : K → Σ!

i ∪ {ε}; and

• u = (u1, ..., un) where ui : Φ → R is a real-valued cost function for each controller

i.

In this chapter and the next, we assume that the DES plant can be modeled

as an acyclic automaton. Since the language of an acyclic automaton is finite, the

set of actions (communication protocols) is also finite. The decentralized control

and communication problem DCCP (Problem 2.1) augmented with a cost function is

described below.

Problem 3.1. Consider two regular languages K, L defined over a common alphabet

Σ, where K ⊆ L ⊆ Σ∗ is observable w.r.t. L,Σo,Σc and controllable w.r.t. L,Σuc, but

is not co-observable. Given a set of communication protocols Φ = Φ1 × . . .×Φn with

a cost function ui : Φ → R for each i ∈ I, find a communication protocol φ ∈ Φ, such

that φ solves DCCP and for every i ∈ I and for every communication protocol φ′ ∈ Φ

solving DCCP that is obtained from φ by replacing φi with φ′
i, ui(φi, φ i) ≤ ui(φ

′
i, φ i).

47

Note that φ i is the set of all communication protocols {φk | k ∈ I\{i}}. Similarly,

Φ i denotes the set {Φk | k ∈ I\{i}}.
Nash equilibrium is a widely-used solution approach in game theory of predicting

the outcome of strategic interactions among the players. It defines a non-cooperative

multiple objective optimization strategy, where each agent optimizes its own crite-

rion given that all other criteria of other agents are fixed. In other words, a Nash

equilibrium is a collection of strategies, one for each agent in the system, where each

agent knows the equilibrium strategies of the other agents, and no agent can gain

anything independently by only changing its strategy. Intuitively, a Nash equilibrium

represents each agent’s best response to the strategies of the other agents.

We assume a uniform cost for communication to simplify the verification (i.e.,

same cost for every message). The cost for a communication is defined as a mapping

ui : Φi(K) → R such that (∀s ∈ K) (∀σ ∈ Σ),

ui(φi,j(sσ)) =

⎧⎪⎪⎨
⎪⎪⎩
Cσ, if (q0

s−→ q′
σ−→ q) ∈ TL and (q′, σ, q) ∈ T !

i ;

0, otherwise,

where Cσ is the cost to communicate σ.

Then the total communication cost for all s ∈ K controller i is
∑
s∈K

ui(φi,j(s)).

We take all communications sent by controller i over all sequences s ∈ K and add

the cost to get the total communication cost. For acyclic systems, this corresponds

to finding protocols that have an overall minimal number of communications. In an

alternative way, we can calculate the cost for each sequence s ∈ K and take the

maximum communication cost among the sequences.

We focus on two ways in which a controller can choose its communication pro-

tocol: (i) select a single communication protocol for a controller and execute it; (ii)

48

randomize over the set of available protocols for a controller according to some prob-

ability distribution. The former case is called a pure strategy, while the latter case is

called a mixed strategy.

A mixed strategy for a controller specifies the probability distribution used to

select the protocol that a controller will use to solve the control problem. The

probability distribution for a controller i is denoted by Pi : Φi → [0, 1], such that
∑
φi∈Φi

Pi(φi) = 1.

Definition 3.2. (Adapted from [29].) The support of a mixed strategy is the set of

all communication protocols φi ∈ Φi such that Pi(φi) > 0.

A pure strategy is a special type of mixed strategy when the support is a single

communication protocol.

We can now define Nash equilibrium in the context of Problem 3.1 [43].

Definition 3.3. A communication protocol φ∗ = 〈 φ∗
1, . . ., φ

∗
n 〉 is a Nash equilibrium

for decentralized supervisory control problem if

• for all i ∈ I, ui(φ
∗
i , φ

∗
i) ≤ ui(φi, φ

∗
i) for every communication protocol φi ∈

Φi;

• φ∗ = (φ∗
i , φ

∗
i) and (φi, φ

∗
i) are coherent; and

• φ∗ and (φi, φ
∗

i) solve Problem 2.1.

Note that each controller plays its best response to the other controllers simultane-

ously. That means Nash equilibrium seeks a least-costly best response communication

protocol for each controller i ∈ I.

Theorem 3.2 (Adapted from [25]). Every normal-form game has at least one Nash

equilibrium.

49

Therefore, we have the following result.

Theorem 3.3. A decentralized discrete-event control and communication problem has

at least one Nash equilibrium.

Proof. Since a decentralized discrete-event control and communication problem can

be recast as a normal-form game, the result follows from Theorem 3.1.

3.1.1 Nash Equilibrium for Two Communicating Controllers

In [29], a novel approach to finding a sample Nash equilibrium for normal-form games

is presented. This algorithm, called SEM (Support-Enumeration Method), introduces

heuristics based on the space of supports and a notion of dominated actions that are

pruned from the search space. It may still be the case that an exponential number

of iterations are required to find a sample Nash equilibrium, but as noted in the

literature [29], when tested on large sets of random games, SEM outperformed the

standard algorithms because of the heuristics used to refine the search space.

In the acyclic case, the brute force approach would examine 2To,ipossibilities of

communication protocols for each controller i. In the cyclic case, we use the size

of the power set of the finite transition set of U (discussed in Section 2.3) as an

upper-bound. We will use this set of communication protocols as input to the Nash

equilibrium algorithm and establish that we have (i) made the protocols coherent;

(ii) selected a set of protocols such that the control problem can be solved; and (iii)

submitted the now-coherent set of protocols to ensure that we have a feasible solution

w.r.t. criteria for finding a Nash equilibrium.

The search for a sample Nash equilibrium requires a lexicographic ordering on

the sizes of the supports of prospective solutions. For instance, if we identify sets

of transitions that range in size from 1 (a single transition) to k1 that controller 1

could communicate to controller 2 that would allow the latter controller to make all

50

of its correct control decisions, then the support size profile for controller 1 will be

1, 2, 3, . . . , k1. We also include the possibility that no communication occurs. Assume

that we have a similar range for controller 2 (i.e., 0 to k2). To check all the sup-

port size profiles of the two controllers, we must check all possible pairs (x1, x2) ∈
{0, 1, . . . , k1} × {0, 1, . . . , k2}. To ensure that balanced supports are examined first,

the lexicographic ordering is based on the increasing order of the difference between

the support sizes, and in the event of a tie, followed by the increasing order of the

sum of the support sizes. Note that this approach ensures that all support sizes are

considered and that the search for an equilibrium does not overlook any part of the

valid solution space.

Another innovation of the approach of [29] is the elimination of solutions that will

never be Nash equilibrium points, because the estimated utility function is always

dominated by other solutions. Because we are seeking a minimal-cost communication

protocol, we want to eliminate solutions that have larger cost than other solutions.

Definition 3.4. A coherent communication protocol φi ∈ Φi is conditionally domi-

nated given the sets of available (coherent) protocols Φ̂ i ⊆ Φ i for the remaining con-

trollers, if there exists φ′
i ∈ Φi such that for any φ i ∈ Φ̂ i, ui(φi, φ i) > ui(φ

′
i, φ i) > 0.

We assume that when determining conditional domination, all communication

protocols are coherent, or are made coherent for the purpose of testing conditional

domination.

In adapting SEM for the decentralized communication and control problem, Al-

gorithm 3.1 contains two additional steps: since we initially consider φ that are not

coherent, we must make the prospective communication protocols coherent (where

coherent versions of φ are denoted by ϕ) (Line 7) and a check to ensure that the pro-

tocols being considered for Nash equilibrium actually solve the control problem (Line

8). In the worst case, there are an exponential number of supports (in the number of

51

Algorithm 3.1 SEM for DES (n=2)

1: for all support size profiles x = (x1, x2) sorted in increasing order |x1 − x2|, and
in the event of a tie, sorted in increasing order by x1 + x2 do

2: Φx1 = {〈φ1,1, φ1,2〉 ∈ Φ1 | |φ1,2| = x1}
3: Φ′

2 ← {φ2 ∈ Φ2 not conditionally dominated, given Φx1}
4: if ∀φ1 ∈ Φx1 , φ1 is not conditionally dominated, given Φ′

2 then
5: Φx2 = {〈φ2,1, φ2,2〉 ∈ Φ′

2 | |φ2,1| = x2}
6: if ∀φ1 ∈ Φx1 , φ1 is not conditionally dominated, given Φx2 then
7: Φ ← {(ϕ1, ϕ2) | (ϕ1, ϕ2) ← coherent (φ1, φ2), (φ1, φ2) ∈ Φx1 × Φx2}
8: Φ ← Φ \ {(ϕ1, ϕ2) | ϕ does not solve the control problem}
9: if Program 3.1 is satisfiable for Φ then
10: return found NE φ∗

11: end if
12: end if
13: end if
14: end for

possible communication protocols) and thus, Algorithm 3.1 has exponential running

time.

We also need a feasibility program to determine whether or not a potential solution

is a true Nash equilibrium. A standard feasibility program from [29], adapted for our

notation, is described by Program 3.1. The input is a set of coherent communication

protocols that solve Problem 3.1 and the output is a protocol φ that satisfies Nash

equilibrium. The first two constraints ensure that the controller has no preference for

one protocol over another within the input set and it must not prefer a protocol that is

not part of the input set. The third and fourth constraints check that the protocols in

the input set are chosen with a non-zero probability, whereas any protocols outside of

the input set are chosen with zero probability. The last constraint simply determines

that there is a valid probability distribution over the communication protocols.

Note that, the structure on which we will reason about communication is isomor-

phic to the plant automaton in the case of acyclic systems and isomorphic to the

U -structure defined in [36] in the case of cyclic systems.

52

Program 3.1 Feasibility Program TGS (Test Given Supports)

Input: Φ = Φ1 × . . .× Φn

Output: φ is a Nash equilibrium if there exist both φ = (φ1, . . . , φn) and v =
(v1, . . . , vn) such that:

1: ∀i ∈ I, φi ∈ Φi :
∑

φ i∈Φ i

P(φ i)ui(φi, φ i) = vi

2: ∀i ∈ I, φi /∈ Φi :
∑

φ i∈Φ i

P(φ i)ui(φi, φ i) ≥ vi

3: ∀i ∈ I, φi ∈ Φi : Pi(φi) ≥ 0
4: ∀i ∈ I, φi /∈ Φi : Pi(φi) = 0

5: ∀i ∈ I :
∑
φi∈Φi

Pi(φi) = 1

2

5

3

6

4

7

a

b

b

c

σ

a

c

σ

Figure 3.3: A joint ML (all transitions) and MK (only solid line transitions).

Example 3.2. We illustrate Algorithm 3.1 using the automaton in Figure 3.3. Sup-

pose that L is the language generated by the collection of all transitions, and K is the

language generated by transitions with solid lines. Let Σo,1 = {a}, Σo,2 = {b} and

Σc,1 = {a, σ}, Σc,2 = {b, σ}. Note that K is not co-observable as there is no con-

troller that controls σ that can distinguish between abσ and baσ or between abcabσ

and bacbaσ.

The input to Algorithm 3.1 w.r.t. the transition relation: Φ1 = {〈∅, ∅〉, 〈∅, {(1, a, 2)}〉,
〈∅, {(5, a, 6)}〉, 〈∅,{(1, a, 2), (5, a, 6)}〉} and Φ2 = {〈∅, ∅〉, {〈{(1, b, 5)}, ∅〉, 〈{(2, b, 3)}, ∅〉,
〈{(1, b, 5), (2, b, 3)}, ∅}〉. No controller sends a message to itself, so that φi,i = ∅ for

i ∈ I.

The smallest support size for Φ1 is 0, corresponding to controller 1 sending no

53

information at all to controller 2, whereas the largest support size is 2, when controller

1 communicates all of its observations to controller 2. Similarly, the smallest and

largest support sizes for Φ2 are 0 and 2. Thus, we begin by searching profiles where

x = (0, 0), followed by x = (1, 1), x = (2, 2), x = (0, 1), x = (1, 0), x = (1, 2),

x = (2, 1), x = (0, 2) and x = (2, 0). We will ignore the case when x = (0, 0) as this

is the situation when no communication occurs. By assumption, the communication

protocol corresponding to this situation, Φ = (〈∅, ∅〉, 〈∅, ∅〉), does not solve the control

problem.

Iteration 1: x = (1,1). Line 2: Φx1 = {〈∅, {(1, a, 2)}〉, 〈∅, {(5, a, 6)}〉}.
Line 3: We can then determine the set Φ′

2 by calculating those elements of Φ2

that are not conditionally dominated by the elements of Φx1. No elements of Φ2

are conditionally dominated by the elements of Φx1, thus Φ′
2 = Φ2. Note that condi-

tional domination is tested based on coherent communication policies. We temporarily

transform elements of Φ2 and Φx1 so that they satisfy coherency. For example, when

φ1 = 〈∅, {(5, a, 6)}〉 and φ2 = 〈{(2, b, 3)}, ∅〉, first make φ2 coherent w.r.t. φ1, so that

φ2 becomes 〈{(1, b, 5), (2, b, 3)}, ∅〉 and now φ1 is already coherent w.r.t. the coherent

φ2. Line 4: No elements of Φx1 are conditionally dominated given Φ′
2. Line 5: Φx2 =

{〈{(1, b, 5)}, ∅〉, 〈{(2, b, 3)}, ∅〉}. Line 6: None of the elements of Φx1 are condition-

ally dominated by the elements of Φx2. Line 7: Φ contains the following coherent

communication protocols:

• (〈∅, {(1, a, 2)}〉, 〈{(1, b, 5)}, ∅〉),

• (〈∅, {(1, a, 2), (5, a, 6)}〉, 〈{(2, b, 3)}, ∅〉),

• (〈∅, {(5, a, 6)}〉, 〈{(1, b, 5), (2, b, 3)}, ∅〉).

54

(1,1,1) (2,2,1) (3,2,5) (3,2,6) (3,3,6)

(3,1,6)(3,5,6)(1,5,6)(1,5,1)(2,6,1)

(3,6,5) (3,6,6) (4,7,7)

〈a,a,ε〉 〈b,ε,b〉 〈ε,ε,a〉 〈ε,b,ε〉

〈ε,c,ε〉

〈ε,b,ε〉〈c,ε,ε〉〈ε,ε,c〉〈a,a,ε〉

〈b,ε,b〉

〈ε,ε,a〉 〈σ ,σ ,σ〉

Figure 3.4: Automaton U for the example shown in Figure 3.3. The marked transition
is denoted with a thick dashed line, where no controller can take the correct control
decision.

Line 8: Each element of Φ solves the control problem. Line 9: Since each con-

troller has three choices that are equally likely, let Pi(φi) =
1
3
for each φi ∈ Φi. Pro-

gram TGS returns the Nash equilibrium communication protocol φ∗ = (〈∅, {(1, a, 2)}〉,
〈{(1, b, 5)}, ∅〉).

The set of communications that makes the system co-observable can be illus-

trated from the U structure. A part of U -structure is shown in Figure 3.4. The set

of alphabets for the example is ΣU = {〈a, a, ε〉, 〈ε, ε, a〉, 〈b, ε, b〉, 〈ε, b, ε〉, 〈c, ε, ε〉,
〈ε, c, ε〉, 〈ε, ε, c〉, 〈σ, σ, σ〉, 〈a, a, a〉, 〈b, b, b〉, 〈ε, b, a〉}. In the U -structure, F U =

{(3, 6, 6) 〈σ,σ,σ〉−−−−→ (4, 7, 7)}, shown as dashed line in Figure 3.4. The transition (3, 6, 6)

〈σ,σ,σ〉−−−−→ (4, 7, 7) is marked because σ must be disabled according to ML whereas both

controllers believe that σ should be enabled. An occurrence of communication in U is

shown in Figure 3.5 (highlighted in blue color). Here Controller 1 communicates the

occurrence of a to Controller 2 ((1, 5, 1), 〈a, a, a〉, (2, 6, 2)). In that case, the transi-

tions ((1, 5, 1), 〈ε, ε, a〉, (1, 5, 2)) and ((1, 5, 2), 〈a, a, ε〉, (2, 6, 2)) are pruned from the

U . Controller 2 will follow the plant behavior with the reception of a from Controller

1. That means Controller 2 believes that σ should be disabled, and it takes correct

control decision regarding σ through the transition ((3, 6, 3), 〈σ, σ, σ〉, (4, 7, 4)).

55

(1,1,1) (2,2,1) (3,2,5) (3,2,6) (3,3,6)

(3,1,6)(3,5,6)(1,5,6)(1,5,1)(1,5,2)

(2,6,2) (3,6,3) (4,7,4)

〈a,a,ε〉 〈b,ε,b〉 〈ε,ε,a〉 〈ε,b,ε〉

〈ε,c,ε〉

〈ε,b,ε〉〈c,ε,ε〉〈ε,ε,c〉〈ε,ε,a〉

〈a,a,a〉
〈a,a,ε〉

〈b,ε,b〉 〈σ ,σ ,σ〉

Figure 3.5: A communication occurs from (1, 5, 1) to (2, 6, 2), shown in blue
color. Then Controller 2 takes correct control decision through the transition
((3, 6, 3),〈σ, σ, σ〉,(4, 7, 4)).

3.1.2 Nash Equilibrium for More Than Two Controllers

Algorithm 3.2 is a modification of Algorithm 3.1 to accommodate the case of more

than two controllers. One subtle difference in Algorithm 3.2 is the change in the or-

dering of the support sizes: sorted first by size and then by balance. The justification

for this decision comes from [29]: when there are more than two players (controllers),

balance is not as important a criterion when finding a sample Nash equilibrium. Ad-

ditionally, the algorithm relies on recursive backtracking (Procedure 1) to explore the

search space.

Algorithm 3.2 SEM for DES when n > 2

1: for all x = (x1, . . . , xn) sorted in increasing order of first
∑
i∈I

xi followed by

maxi,k∈I(|xi − xk|) do
2: ∀i Φ′

i ← ∅ // uninstantiated supports

3: ∀i Dxi
← {φi ∈ Φi |

∑
k∈I

|φi,k| = xi} // domain of supports

4: if RecursiveBacktracking(Φ′, Dx, 1) returns NE φ∗ then
5: return φ∗

6: end if
7: end for

56

Procedure 1 RecursiveBacktracking

Input: Φ′ = Φ′
1 × . . .× Φ′

n; Dx = (Dx1 , . . . , Dxn); i
Output: Nash equilibrum φ∗ or failure
1: if i = n+ 1 then
2: Φ′ ← {(ϕ1, . . . , ϕn) | (ϕ1, . . . ϕn) ← coherent(φ1,. . . , φn), ∀φi ∈

∏
i∈I

Φ′
i}

3: Φ′ ← Φ′ \ {(ϕ1, . . . , ϕn) | ϕ does not solve the control problem}
4: if Program 3.1 is satisfiable for Φ′ then
5: return found NE φ∗

6: else
7: return failure
8: end if
9: else
10: Φ′

i ← Dxi

11: Dxi
← ∅

12: if IRDCP(Φ′
1, . . . ,Φ

′
i, Dxi+1

, . . . , Dxn) succeeds then
13: if RecursiveBacktracking(Φ′, Dx, i+ 1) returns NE φ∗ then
14: return found NE φ∗

15: end if
16: end if
17: end if
18: return failure

57

For the case of more than two controllers, it is slightly more complicated to re-

move dominated communication protocols. The input to Procedure 2 (line 11 in

Procedure 1) is now the set of domains for support of each controller. When the

support for a controller is instantiated, the domain contains only the instantiated

support. For all other controllers, the domain contains the supports of size xi that

were not previously eliminated by earlier calls to this procedure.

Procedure 2 Iterated Removal of Dominated Communication Protocols (IRDCP)

Input: Dx = (Dx1 , . . . , Dxn)
Output: Updated domains or failure
1: repeat
2: dominated← false
3: for all i ∈ I do
4: for all φi ∈ Dxi

do
5: for all φ′

i ∈ Φi do
6: if φi is conditionally dominated by φ′

i given D xi
then

7: Dxi
← Dxi

\ {φi}
8: dominated← true
9: if Dxi

= ∅ then
10: return failure
11: end if
12: end if
13: end for
14: end for
15: end for
16: until dominated = false
17: return Dx

σ

σ

Figure 3.6: A finite-state automaton for Example 3.2.

Example 3.3. We illustrate Algorithm 3.2 using the automaton in Figure 3.6. As the

previous examples, let L be the language generated by the collection of all transitions,

58

and K be the language of only the solid-line transitions. Suppose that Σo,1 = {a},

Σo,2 = {b}, and Σo,3 = {c}, while Σc,1 = {a, σ}, Σc,2 = {b, σ}, and Σc,3 = {c, σ}. K is

not co-observable since none of the controllers can make the correct control decisions

regarding σ.

The support sizes for each controller ranges from 0 to 2, thus when checking the

possible support sizes there are 16 possibilities, beginning with x = (0, 0, 0), which we

have previously indicated we would ignore, and ending with x = (2, 2, 2). The first

three supports (all with a cumulative sum of 1 and a max difference of 1) to examine

are of size (1, 0, 0), (0, 1, 0) and (0, 0, 1). We will begin with (0, 1, 0).

Algorithm 2, iteration 1: x = (0, 1, 0). Line 2: Φ′
1 = Φ′

2 = Φ′
3 = ∅. Line

3: Dx1 = {〈∅, ∅, ∅〉}, Dx2 = {〈{(0, b, 1)}, ∅, ∅〉, 〈{(2, b, 4)}, ∅, ∅〉, 〈∅, ∅, {(0, b, 1)}〉,

〈∅, ∅, {(2, b, 4)}〉}, Dx3 = {〈∅, ∅, ∅〉}. Line 4: Call to Procedure 1 with Φ′, Dx and 1.

Procedure 1, call for i = 1. Line 9: Φ′
1 = {〈∅, ∅, ∅〉}. Line 10: Dx1 = ∅. Line

11: Call to Procedure 2 with Φ′
1, Dx2 and Dx3.

Procedure 2, call for Dx1 = {〈∅, ∅, ∅〉}, Dx2 = {〈{(0, b, 1)}, ∅, ∅〉, 〈{(2, b, 4)},

∅, ∅〉, 〈∅, ∅, {(0, b, 1)}〉, 〈∅, ∅, {(2, b, 4)}〉, Dx3 = {〈∅, ∅, ∅〉}. For all three iterations

of Lines 4 - 10, no communication protocols are removed from the three domains.

The vector Dx is returned unchanged.

Procedure 1, return to line 11. Line 12: Recursive call to Procedure 1 with

Φ′, Dx and 2.

When i =2 and 3, no communication protocols are removed by these procedure

calls. Then make the recursive call to Procedure 1 with Φ′, Dx and 4.

Procedure 1, call for i = 4. Line 2: At this point, there are six different

possible communication protocols: {〈∅, ∅, ∅〉} × {〈{(0, b, 1)}, ∅, ∅〉, 〈{(2, b, 4)}, ∅, ∅〉,

〈∅, ∅, {(0, b, 1)}〉, 〈∅, ∅, {(2, b, 4)}〉} ×{〈∅, ∅, ∅〉}. When we make these combinations

coherent, Φ′ contains two unique protocols:

59

• (〈∅, ∅, ∅〉, 〈{(0, b, 1), (2, b, 4)}, ∅, ∅〉, 〈∅, ∅, ∅〉),

• (〈∅, ∅, ∅〉, 〈∅, ∅, {(0, b, 1), (2, b, 4)}〉, 〈∅, ∅, ∅〉).

Line 3: Only one of these communication protocols solves the control problem, so now

Φ′ = {(〈∅, ∅, ∅〉, 〈{(0, b, 1), (2, b, 4)}, ∅, ∅〉, 〈∅, ∅, ∅〉)}. Line 4: Call to Program 1 with

Φ′ returns NE φ∗ = {(〈∅, ∅, ∅〉, 〈{(0, b, 1), (2, b, 4), ∅, ∅}〉, 〈∅, ∅, ∅〉)}. This is a pure

strategy.

The algorithms for finding sample Nash equilibrium for communication proto-

cols produce locally-optimal solutions. Both algorithms terminate when a first Nash

equilibrium point is found.

3.2 Pareto Optimality for Communication Proto-

cols

Pareto optimality is another important concept in game theory. When a strategy

is Pareto-efficient or Pareto-optimal, no player can be better off without making at

least one player worse off w.r.t the payoff function. We use the same cost function

as of Nash equilibrium, and then we define Pareto optimality in decentralized DES

according to the formulation of a normal-form game as below.

Definition 3.5. A communication protocol φ∗ = (φ∗
1, . . .,φ

∗
n) is Pareto-optimal in

decentralized supervisory control problem if there exists no other communication pro-

tocol φ= (φ1, . . .,φn) such that

ui(φi, φ i) ≤ ui(φ
∗
i , φ

∗
i) for all i ∈ I, (3.1)

with at least one inequality strict, subject to the communication protocols Φ∗ and Φ

being coherent and solve Problem 2.1.

60

�

In other words, a communication protocol φ∗ is Pareto-optimal if

• (∀i ∈ I)ui(φi, φ
∗

i) ≤ ui(φ
∗
i , φ

∗
i) ⇒ (∃j ∈ I)uj(φj, φ

∗
j) ≥ uj(φ

∗
j , φ

∗
j);

• φ∗, (φi, φ
∗

i), and (φj, φ
∗

j) are coherent; and

• φ∗, (φi, φ
∗

i), and (φj, φ
∗

j) solve Problem 2.1.

While Nash equilibrium are also Pareto-optimal in some problems, they do not

necessarily coincide in decentralized control and communication problem. We con-

sider Example 3.1 to show that Nash equilibrium does not imply Pareto optimality

in the decentralized control and communication problem. Using the cost functions

defined in the example, the communication cost for both controllers are shown in

Table 3.1. Note that when a controller communicates an event σ after a sequence

s, it must also communicate σ after all sequences s′ indistinguishable to s (due to

coherency). Then we consider this to be a single communication and therefore a

unit cost is incurred. An infinite cost is assumed if the communication protocols

are not coherent or they do not solve the control problem. For example, for the

communication protocol (〈∅, {(1, a, 2), (5, a, 6)}〉 , 〈∅, ∅〉), Controller 1 communicates

both of its observations through the sequences s = ab and s′ = ba, but Controller

2 communicates nothing. Since there is no communication from Controller 2, s and

s′ are indistinguishable to Controller 1. So that it seems to be a single communi-

cation to Controller 1, and a unit cost is incurred. For the communication protocol

(〈{(1, b, 5)}, ∅〉 , 〈∅, {(1, a, 2), (5, a, 6)}〉), Controller 2 also communicates b through s′.

In that case, s and s′ are no longer indistinguishable to Controller 1 and a cost of 2

is incurred.

61

Table 3.1: Communication cost of two controllers for the decentralized DES shown
in Figure 3.1, appears as communication cost of Controller 1, Communication cost of
Controller 2.

Φ2

�������������Φ1 〈∅, ∅〉 〈{(1, b, 5)}, ∅〉 〈{(2, b, 3)}, ∅〉 〈{(1, b, 5), (2, b, 3)}, ∅〉
〈∅, ∅〉 ∞,∞ ∞,∞ ∞,∞ 0,1

〈∅, {(1, a, 2)}〉 ∞,∞ 1,1 ∞,∞ 1,2
〈∅, {(5, a, 6)}〉 ∞,∞ ∞,∞ ∞,∞ 1,1

〈∅, {(1, a, 2), (5, a, 6)}〉 1,0 2,1 1,1 2,2

With the cost functions defined above, it is straightforward to see that not all

Nash equilibrium points are Pareto-optimal. We have three Nash equilibrium points:

• (〈∅, {(1, a, 2), (5, a, 6)}〉, 〈∅, ∅〉),

• (〈∅, ∅〉, 〈{(1, b, 5), (2, b, 3)}, ∅〉),

• (〈∅, {(1, a, 2)}〉, 〈{(1, b, 5)}, ∅〉).

Among the solutions, the first two are Pareto-optimal. The last point is not Pareto-

optimal according to Definition 3.5, because if Controller 1 changes its communication

from {(1, a, 2)} to ∅ (or Controller 2 changes it communication from {(1, b, 5)} to ∅),

the cost function is improved from (1, 1) to (0, 1) (or (1, 0)). Hence, the inequality of

Equation 3.1 is strict for at least one controller.

We use both Nash equilibrium and Pareto-optimal solutions to analyze the out-

come of strategic interaction among several controllers. When more than one con-

troller communicates with another to make a local decision in a decentralized DES

control problem, each controller takes into account the decision of other controllers.

Nash equilibrium and Pareto-optimal are also used for multi-objective optimization

problems. Many real-life problems contain multiple conflicting objectives. For exam-

ple, we may want to adjust the energy usage of several mobile robots so that they

will arrive to a previously-identified place at a specified time. This cannot be solved

62

by locally-optimal methods because there could be several local optima which are

not promising solutions. The objectives are in conflict with each other if an improve-

ment in one objective deteriorates the other objective. Therefore, Pareto-optimal is

widely used in solving such type of problems. In the next chapter, we will use the

concept of Pareto-optimal solution to solve multi-objective optimization problem in

decentralized DES.

63

Chapter 4

Multi-Objective Optimization for

Decentralized DES

When incorporating communication into the decentralized control problem, there

may be a cost advantage to synthesizing only part of the specification, instead of

realizing the entire specification with a costly communication protocol. Hence we

want to investigate the trade-off between the cost of an exact control solution achieved

with communication and an approximate solution, where penalties are assessed for

achieving a sublanguage of a desired controllable and observable specification, with

a possibly cheaper communication policy. To that end we are interested in a class of

quantitative decentralized discrete-event control problems where we have more than

one function or objective to optimize simultaneously, which leads to a multi-objective

optimization problem [50].

Evolutionary algorithms are well-suited for addressing multi-objective optimiza-

tion problems, since they are based on biological processes which are inherently multi-

objective [3]. They are found to be highly effective in finding a set of promising so-

lutions. They converge very fast to the set of optimal solutions because of ease of

implementation. Each iteration of an evolutionary algorithm involves a competitive

64

selection that eliminates poor solutions. Existing good solutions are combined with

the new potential solutions for the next iteration. An initial population of possible

solutions are considered, and a measure of their fitness determines whether a mem-

ber of the population will be involved in the formulation of the next generation of

the population. Just as in natural adaptation, over a period of many generations,

a population of solutions evolves that is “closer” to an optimal solution than their

predecessors. We use a modified version of the Non-dominated Sorting Genetic Algo-

rithm (NSGA-II) [10], which has already proven useful for a diverse range of control

problems (e.g., [15, 58]).

4.1 Multi-Objective Optimization: Decentralized

Control with Communication

A multi-objective optimization problem is characterized by the requirement to opti-

mize multiple competing objectives. For a decentralized DES control and communi-

cation problem, we have two objectives: (i) the cost of a control law; and (ii) the cost

of a communication policy. Ideally, we would like the joint decisions of the controllers

in the presence of the full communication protocol to allow exactly the specification

K to occur; however, in the presence of a costly communication protocol, it might be

more efficient to allow some subset of K to occur. But it may be the case that the

penalty for disabling certain sequences within K is more expensive than the commu-

nication required to enable the same sequences. We are interested in a quantitative

analysis of the trade-off between the cost of imperfectly controlling the system by

removing some (potentially costly) communications and the cost of taking the exact

control solution with the full communication protocol.

65

4.1.1 Control Cost Function

We adapt the centralized control cost function of [49] to the case of the control cost

function for a decentralized controller i ∈ I. We consider three basic costs that

controller i ∈ I can incur to control a system:

• We assume that there is a basic cost for a transition, which can be considered

to be the cost to enable the transition, denoted by ei : T → R+ ∪ {0}.

• There is a cost to disable a transition that would otherwise take the system out

of K, di : T → R+ ∪ {0,∞}.

• Since our control objective is to have the fusion of Γ?
i (for i ∈ I) allow exactly

K to occur, when a transition is disabled that would otherwise keep the system

in K, the cost to disable is incurred, plus an additional penalty is assessed:

pKi ∈ R+ ∪ {0}.

We assume that a disablement (and any associated penalty) or an enablement cost

lies in the range of [0,∞). When controller i tries to disable an uncontrollable event

σ ∈ Σ\Σc,i, a penalty of ∞ is levied. Recall, when that controller i is not sure

whether or not the system leaves K via a controllable transition, the default decision

is to enable the transition. In this case, although controller i does not know the

correct control decision, the cost incurred is that of enablement. Because we will

consider only control laws that under the full communication protocol Φ keep the

system within K, it is not possible that all controllers enable a transition that takes

the system out of K.

The control cost vi : Γ
?
i × K × T → R+ ∪ {0,∞} describes the cost incurred by

controller i for the occurrence of transition (q, σ, q′) ∈ T after the sequence s ∈ K

66

such that q0
s−→ q

σ−→ q′:

vi(Γ
?
i , s, (q, σ, q

′)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ei(q, σ, q
′), if (q, σ, q′) ∈ Γ?

i (π
?
i (s));

di(q, σ, q
′), if (q, σ, q′) �∈ Γ?

i (π
?
i (s)) and

[s]?iσ ∩ K̄ = ∅;

di(q, σ, q
′) + pKi , if (q, σ, q′) �∈ Γ?

i (π
?
i (s)) and

[s]?iσ ∩ K̄ ⊆ K̄;

∞, otherwise.

(4.1)

When controller i enables a transition after s ∈ K according to its control law,

the basic enablement cost is incurred. It incurs only a disable cost if it disables

a transition which takes the system outside K, otherwise a penalty is imposed in

addition to disable the transition if it keeps the system in K.

The total control cost for all s ∈ K for controller i ∈ I is then

Vi(Γ
?
i , K, T) =

∑
s∈K

∑
(q,σ,q′)∈T

vi(Γ
?
i , s, (q, σ, q

′)).

Similar to Chapter 3, we study finite languages, i.e., acyclic automata. Therefore,

the total control cost is finite.

4.1.2 Communication Cost Function

Each decentralized controller i has a communication protocol φi = 〈φi,1, . . ., φi,j, . . .,

φi,n〉. We assume that a basic cost for communication is incurred each time controller

i sends a message to controller j, denoted by comi : T → R+ ∪ {0}. The cost of

controller i’s communication protocol ui : Φi × K × T → R+ ∪ {0} assumes that a

cost is incurred only when a communication is sent by controller i through a sequence

67

s = s′σ ∈ Σ∗ with q0
s′−→ q

σ−→ q′:

ui(Φi, s, (q, σ, q
′)) =

⎧⎪⎪⎨
⎪⎪⎩
comi(σ), if (∃j ∈ I) φi,j(π

?
i (s)) = σ;

0, otherwise.

It is possible that two identical messages sent by different controllers incur different

local costs. There is no cost for the reception of a message and it may be the case

that the cost for a point-to-point communication differs from that of a broadcast. For

simplicity, we assume that when controller i communicates the same message to more

than one controller, a single cost is incurred, regardless of the number of recipients.

The communication cost for all s ∈ K for controller i ∈ I is then

Ui(Φi, K, T) =
∑
s∈K

∑
(q,σ,q′)∈T

ui(Φi, s, (q, σ, q
′)).

The communication cost could include, for instance, the required power consumption,

bandwidth or CPU time.

4.2 Objective Functions and Multi-Objective Op-

timization Problems in DES

To ensure that the objective functions are defined across the same domain, we adjust

the definition of Ui and Vi accordingly, so that both functions are defined over Γ?
i ×

Φi×K×T . We define the following two objective functions for our first two problems.

Objective 1. The first objective function is the cost of the control decisions each

controller i ∈ I makes for its observation of K:

O1,i(Γ
?
i ,Φi, K, T) = Vi(Γ

?
i ,Φi, K, T).

68

Objective 2. The second objective function is the cost of the communication protocol

that each controller uses to assist the other controllers in reaching the control objective

for K:

O2,i(Γ
?
i ,Φi, K, T) = Ui(Γ

?
i ,Φi, K, T).

4.2.1 Optimization w.r.t. the Cost Functions of Each Con-

troller

We consider an optimization problem with a finite set of control laws Γ?
i , and a finite

set of communication protocols Φi. In this problem, each decentralized controller i

must optimize the cost of its local control law vi and the cost of its local communica-

tion policy ui. Note that the costs considered here are associated with a controller’s

local decision regarding the occurrence of a transition, and not for the eventual fusion

of the control decisions [44].

Problem 4.1. Given two regular languages K, L defined over a common alphabet Σ,

where K ⊆ L. Find Γ?
i and Φi (∀i ∈ I) to

min
Γ?
i×Φi

fi(Γ
?
i ,Φi, K, T) = [O1,i(Γ

?
i ,Φi, K, T), O2,i(Γ

?
i ,Φi, K, T)]T , (4.2)

subject to ∅ ⊂ ∩n
i=1Γ

?
i (π

?
i (K)) ⊆ K, and Γ? = 〈Γ?

1, . . ., Γ?
n〉,Φ = 〈Φ1, . . .,Φn〉

are coherent.

4.2.2 Evolutionary Algorithms Applied to Decentralized DES

Evolutionary algorithms are used for solving multi-objective optimization problems.

The idea of such algorithms is the following: beginning with an initial population

of possible solutions, each solution is assigned a fitness value indicating its quality.

69

The fitness value determines which solutions will be selected for breeding the next

generation. These candidates are mutated and combined to produce new “children”

candidate solutions. The evolutionary process continues until either an optimal set

of solutions is determined or a pre-determined number of generations is exceeded.

There may not exist a single best solution in the multi-objective optimization

problem. Instead, evolutionary algorithms define a set of best solutions for these

problems. The class of evolutionary algorithms that we are using produces a Pareto

front of the candidate solutions. Solutions that comprise the front are said to be

Pareto-optimal or non-dominated.

Most evolutionary multi-objective optimization approaches such as strength Pareto

evolutionary algorithm (SPEA) [59], non-dominated sorting genetic algorithms (NSGA-

II) [10], and the Pareto-archived evolution strategy (PAES) [17] use the concept of

domination. We solve Problem 4.1 by applying the evolutionary algorithm NSGA-

II [10]. Unlike some of the other approaches, NSGA-II keeps an archive of the best

b solutions generated so far: all children of generation k compete for membership

in generation k + 1 with generation k. In this way, good solutions from a previous

generation are preserved. The algorithm also features a strong fitness assignment

procedure for each solution, based on the number of solutions dominated by it and it

is dominated by. The main algorithms required to implement NSGA-II are presented

in [21]. Here we describe how the algorithms work.

We create an initial population of pairs of possible control laws and communica-

tion protocols 〈Γi,Φi〉. In accordance with NSGA-II, each member of the population

is assigned a fitness value, calculated w.r.t. the values of the two objective functions.

From the initial population, candidate members for the Pareto front are calculated:

those members of the population that are non-dominated. The next generation is

calculated following a “breeding” process of elements from the preceding generation.

70

Algorithm 4.1 NSGA-II Algorithm

1: P ← {P1, . . . , Pm} // Build initial population
2: AssessFitness(P) // Compute the objective values for P
3: R ← 〈. . .〉 Pareto front ranks of P
4: for each front rank Ri ∈ R do
5: Compute Sparsities of Individuals in Ri

6: end for
7: BestFront ← Pareto Front of P
8: repeat
9: W ← Breed(P) // use Algorithm 4.5 for selection (typically with tournament

size of 2)
10: AssessFitness(W) // Compute the objective values for W
11: W ← W ∪ P
12: P ← ∅
13: R ← Compute Pareto front ranks of W
14: BestFront ← Pareto f of W
15: for each front rank Ri ∈ R do
16: Compute Sparsities of Individuals in 〈Ri〉
17: if ||P ||+ ||Ri|| ≥ m then
18: P ← P ∪ the Sparsest m−||P || individuals in Ri, breaking ties arbitrarily;
19: break from the for loop
20: else
21: P ← P ∪Ri

22: end if
23: end for
24: until BestFront is the ideal Pareto front or we have run out of time
25: for each individual pi ∈ BestFront do

26: Γi ← {(δ1, . . . , δn) | (δ1, . . . , δn) ← coherent(γ1, . . . , γn), γi ∈
∏
i∈I

Γi} // Make

the control actions coherent
27: Φi ← {(ϕ1, . . . , ϕn) | (ϕ1, . . . ϕn) ← coherent(φ1,. . . , φn), φi ∈

∏
i∈I

Φi} // Make

the communication protocol coherent
28: P ′ ← P \ {〈δ1, ϕ1〉 , . . . , 〈δn, ϕn〉 | 〈δ, ϕ〉 does not solve the control problem}

// Ensure all individuals in the BestFront solve the control problem
29: end for
30: return BestFront

71

Coherency of potential control and communication solutions is determined during

breeding. Those members of the previous and current population with the best fit-

ness values are then ranked and reorganized into a new candidate set for the Pareto

front. An archive of non-dominated solutions will maintain the diversity. This process

continues until either we exceed the number of pre-specified generations or the ideal

Pareto front is found.

In adapting NSGA-II for the decentralized control and communication problem,

Algorithm 4.1 contains few additional steps. Since the control decisions and com-

munication protocols are not coherent in the initial population, we must make them

coherent to satisfy the constraints of Problem 4.1. We make the prospective control

decisions coherent in Line 23 (where coherent versions of γ are denoted by δ). Sim-

ilarly we make the prospective communication protocols coherent (where coherent

versions of φ are denoted by ϕ) (Line 24). We also check to ensure that the solutions

being considered for Pareto-optimal actually solve the control problem (Line 25).

The individuals in population P are ranked according to the level of non-domination

using Algorithms 4.2 and 4.3. Each solution is compared with every other solution in

the population to find whether it is dominated. The solutions which are not domi-

nated by any other solutions are ranked as first front. The same procedure is repeated

to find the individuals of the subsequent fronts. We then define sparsity to assign a

distance measure of individuals in the same Pareto front using Algorithm 4.4.

Algorithm 4.5 uses sparsity to find the crowding distance of each solution in the

Pareto front. It guides the selection process of the algorithm towards a uniformly

spread out Pareto-optimal front. The algorithm defines a tournament selection which

breaks ties in the Pareto front rank using sparsity. We prefer to select an individual

with a lower rank when the individuals are in different fronts. Otherwise, if two

individuals belong to the same front, then we prefer one with more sparsity (which is

72

Algorithm 4.2 Computing a Pareto Non-Dominated Front

1: G ← {G1, . . . , Gm} // Group of individuals to compute the front among:often
the population

2: O ← {O1, . . . , On} // objectives to assess with
3: F ← ∅ // The front
4: for each individual Gi ∈ G do
5: F ← F ∪ {Gi} // Assume Gi will be in the front
6: for each individual Fj ∈ F other than Gi do
7: if Fj Pareto dominates Gi given O then
8: F ← F − {Gi} // Gi will not stay in the front
9: break from inner for loop
10: else
11: if Gi Pareto dominates Fj given O then
12: F ← F − {Fj} // An existing front member knocked out
13: end if
14: end if
15: end for
16: end for
17: return F

Algorithm 4.3 Front Rank Assignment by Non-Dominated Sorting

1: P ← Population
2: O ← {O1, . . . , On} // objectives to assess with
3: P ′ ← P // Gradually remove individuals from P ′

4: R ← 〈〉 // Initially empty ordered vector of Pareto Front Ranks
5: i ← 1
6: repeat
7: Ri ⇐ Pareto non-dominated front of P ′ using O
8: for each individual A ∈ Ri do
9: ParetoFrontRank(A) ← i
10: P ′ ← P ′ − {A} // Remove the current front from P ′

11: end for
12: i ← i+ 1
13: until P ′ is empty
14: return R

73

Algorithm 4.4 Sparsity Assignment Algorithm

1: R ← 〈. . .〉 // provided Pareto front ranks of individuals
2: O ← 〈O1, . . . , On〉 // objectives to assess with
3: Range(Oi) // function providing the range (max - min) of possible values for a

given objective Oi

4: for each Pareto front rank F ∈ R do
5: for each individual Fj ∈ F do
6: Sparsity(Fj) ← 0
7: end for
8: for each objective Oi ∈ O do
9: F ′ ← F sorted by ObjectiveValue given objective Oi

10: Sparsity(F ′
1) ← ∞

11: Sparsity(F ′
||F ||) ← ∞ // Each end is really sparse.

12: for j ← 2 to ||F ′|| − 1 do

13: Sparsity(F ′
j) ← Sparsity(F ′

j) +
ObjValue(Oi, F

′
j+1)− ObjValue(Oi, F

′
j−1)

Range(Oi+1)
14: end for
15: end for
16: end for
17: return R with Sparsities assigned

Algorithm 4.5 Non-Dominated Sorting Lexicographic Tournament Selection With
Sparsity

1: P ← Population with Pareto front ranks assigned
2: Best ← individual picked at random from P with replacement
3: t ← tournament size, t ≥ 1
4: for i ← 2 to t do
5: Next ← individual picked at random from P with replacement
6: if ParetoFrontRank(Next) < ParetoFrontRank(Best) then
7: // Lower ranks are better.
8: Best← Next
9: else
10: if ParetoFrontRank (Next) = ParetoFrontRank (Best) then
11: if Sparsity(Next) > Sparsity(Best) then
12: // Higher sparsities are better
13: Best ← Next
14: end if
15: end if
16: end if
17: end for
18: return Best

74

located in a region with a fewer number of solutions).

Note that at the conclusion of the algorithm, we have a set of optimal solutions

from which to choose. In particular, solutions to Problem 4.1 provide Pareto-optimal

costs with respect to communicating controller i. Thus, the designer is free to choose a

solution that favours one controller over another, based on the Pareto fronts produced

for each controller.

Definition 4.1. (Γ?
i ,Φi) is Pareto-optimal for controller i iff

min
Γ?
i×Φi

fi(Γ
?
i ,Φi, K, T) = [O1,i(Γ

?
i ,Φi, K, T), O2,i(Γ

?
i ,Φi, K, T)]T .

Example 4.1. We consider Example 3.1 discussed in Chapter and impose the fol-

lowing cost functions. Three basic costs are assigned for the control cost function:

e1(q, σ, q
′) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

50, if q ∈ {1, 2, 3};

100, if q ∈ {4, 5, 6};

150, if q ∈ {7, 9};

(4.3)

e2(q, σ, q
′) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

100, if q ∈ {1, 2, 3};

150, if q ∈ {4, 5, 6};

200, if q ∈ {7, 9};

(4.4)

d1(q, σ, q
′) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

500, if q ∈ {1, 2, 3};

450, if q ∈ {4, 5, 6};

400, if q ∈ {7, 9};

(4.5)

75

d2(q, σ, q
′) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

550, if q ∈ {1, 2, 3};

500, if q ∈ {4, 5, 6};

450, if q ∈ {7, 9};

(4.6)

and

pK1 = pK2 = 106. (4.7)

The cost of a communication is defined below.

com1(q, σ, q
′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

50, if q ∈ {1, 2, 3, 4, 6};

500, if q ∈ {5};

10000, if q ∈ {7};

900, if q ∈ {9}.

(4.8)

com2(q, σ, q
′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

50, if q ∈ {1, 2, 3, 4, 6};

500, if q ∈ {5};

700, if q ∈ {7};

20000, if q ∈ {9}.

(4.9)

Additionally, a cost of 100 is assigned for activating the antenna in State 6 for

both controllers.

We illustrate Algorithm NSGA-II for R1||R2. The initial size of the population

P is 40 and the algorithm was run for 125 generations. The first three ranks of the

76

Figure 4.1: Pareto fronts of rank 1,2,3 for Controller 1 after 100 generations.

Table 4.1: Non-dominated solutions of Controller 1.

u∗
1(·) v∗1(·) u2(·) v2(·)
0 16,900 127,100 7,039,000

500 16,750 107,600 5,041,200
900 16,500 127,100 6,040,200
1,400 16,100 127,600 7,039,750
3,200 15,850 127,600 7,039,750
10,000 15,800 127,100 6,040,200

77

Pareto front for Controller 1 are shown in Figure 4.1. The non-dominated solutions

for Controller 1 (the solutions in the front of rank 1) are shown in Table 4.1, which

represents the best compromises for Robot 1. Since it gives the best solutions for Con-

troller 1, the cost functions are indicated as u∗
1(·) and v∗1(·) for the communication

cost and control cost of Controller 1. In particular, the six Pareto-optimal solutions

offer a variety of possible costs for a communication policy for Controller 1, ranging

from a cost of 0 up to a cost of 10,000. It is interesting to note that when Con-

troller 1 communicates nothing to Controller 2, the control cost is 16,900. When the

communication cost increases to 500, the control cost decreases by less than 1%, but

when the communication cost increases to 1400, the control cost decreases by 4.7%.

More interestingly, Controller 2 activates the antenna more times than Controller 1.

This is because Robot 2 starts in closer to the antenna than Robot 1. On the other

hand, since there is a cost to activating the antenna and we are optimizing the cost for

Controller 1, it avoids activating the antenna to minimize its cost. The result shows

that Controller 2 communicates more, since we only optimize the cost of Controller

1. The control actions are also more expensive for Controller 2 due to the fact that

it receives less communication from Controller 1. Thus both the communication cost

and control cost of Controller 2 are much higher.

The algorithm converges to the set of Pareto-optimal solutions after 85 generations

for Controller 2. The first three ranks of the Pareto front for Controller 2 are shown

in Figure 4.2. The non-dominated solutions for Controller 2 (the solutions in the

front of rank 1) are shown in Table 4.2, which are the best compromises for Robot

2. Again, it is interesting to examine the Pareto-optimal solutions for Controller 2:

when it communicates nothing, the control cost is 23,150. When the communication

cost increases to 500, the control cost decreases by 2%. When the communication cost

increases more, the control cost does not go down significantly. Also it is interesting to

78

Figure 4.2: Pareto fronts of rank 1,2,3 for Controller 2 after 85 generations.

see that Controller 1 activates the antenna here more times than Controller 2. Since

we are optimizing the cost for Controller 2, it minimizes the cost by not activating

the antenna. As before, the communication cost and control cost of Controller 1 is

much higher in that case, because Controller 1 communicates more, but receives less

from Controller 2.

Table 4.2: Non-dominated solutions of Controller 2.

u1(·) v1(·) u∗
2(·) v∗2(·)

47,500 4,030,700 0 23,150
47,000 5,030,650 500 22,750
48,400 5,030,650 1,200 22,700
48,400 7,029,250 1700 22,600
47,500 7,029,800 21,700 22,150

79

4.2.3 Optimization w.r.t. the Cost Functions of All Con-

trollers

We are given a finite set of control laws Γ?
i , and a finite set of communication protocols

Φi for all i ∈ I. Here we want to optimize the control cost and communication

cost functions of all controllers. One such problem is given below with the cost

functions defined as for the previous problem. The control cost and communication

cost functions of all controllers are considered here as an objective function.

Problem 4.2. Given two regular languages K, L over a common alphabet Σ, where

K ⊆ L. Find Γ?
i and Φi (∀i ∈ I) to

min
Γ?
1×Φ1×...×Γ?

n×Φn

f(Γ?
i ,Φi, K, T) = [O1,1(Γ

?
1,Φ1, K, T), O2,1(Γ

?
1,Φ1, K, T), . . . ,

O1,n(Γ
?
n,Φn, K, T), O2,n(Γ

?
n,Φn, K, T)]T ,

subject to ∅ ⊂ ∩n
i=1Γ

?
i (π

?
i (K)) ⊆ K, and Γ? = 〈Γ?

1, . . ., Γ?
n〉,Φ = 〈Φ1, . . .,Φn〉

are coherent.

Definition 4.2. (Γ?
i ,Φi) (∀i ∈ I) is Pareto-optimal iff

min
Γ?
1×Φ1×...×Γ?

n×Φn

f(Γ?
i ,Φi, K, T) = [O1,1(Γ

?
1,Φ1, K, T), O2,1(Γ

?
1,Φ1, K, T), . . .,

O1,n(Γ
?
n,Φn, K, T), O2,n(Γ

?
n,Φn, K, T)]T .

Example 4.2. We use the same cost functions as for the previous example. We also

consider the same initial size of the population as 40, but the algorithm was run for

200 generations. The non-dominated solutions w.r.t. both controllers (the solutions in

the front of rank 1) are shown in Table 4.3, which represents the best compromises for

both robots w.r.t. their communication cost and control cost functions. In particular,

the five Pareto-optimal solutions offer a variety of possible costs for communication

policies and control actions for both controllers. The communication cost and control

80

Table 4.3: Non-dominated solutions of both controllers for Problem 4.2.

u∗
1(·) v∗1(·) u∗

2(·) v∗2(·)
0 21,200 0 29,150
0 19,450 500 28,650

900 19,800 0 29,150
900 18,850 500 29,100

12,300 18,850 21,200 29,050

cost range from 0 to 12,300 and from 18,850 to 22,200 respectively for Controller 1,

while for Controller 2 they range from 0 to 21,200 and 28,650 to 29,150 respectively.

When the communication cost for Controller 1 increases from 0 to 12,300, the con-

trol cost goes down by 11.1%. On the other hand, the control cost for Controller 2

decreases by only 0.40% when the communication cost increases from 0 to 21,200. In

the absence of communication, both controllers exhibit the highest control cost. But

when Controller 1 communicates with a cost of 900, the overall control cost decreases

by 2.7%, and when Controller 2 communicates with a cost of 500, the overall control

cost decreases by 4.5%. When communication cost for both controllers are maximum,

the overall control cost goes down by only 5%. The antenna is activated more times

by Controller 2. This can be justified by noting that Controller 2 starts closer to State

6, where the antenna is placed.

4.2.4 Optimization w.r.t. the Global Cost Functions

We consider the cost functions from a global perspective here. We take the fusion

of the control decisions made by all controllers for the occurrence of a transition.

The fusion rule is conjunctive. Thus a transition is enabled if all controllers take

the decision of enablement. In that case, we sum up the enable cost incurred by all

controllers. The transition is disabled if any controller takes a decision to disable it,

81

and we take the minimal disable cost among the controllers who disable the transition.

The global control cost for the occurrence of a transition (q, σ, q′) ∈ T after the

sequence s ∈ K such that q0
s−→ q

σ−→ q′, is defined according to the control cost defined

in Equation 4.1:

v(Γ?, s, (q, σ, q′)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
i ei(q, σ, q

′), if (q, σ, q′) ∈ Γ?(π?(s));

mini(di(q, σ, q
′)), if (q, σ, q′) �∈ Γ?(π?(s)) and

∩i∈I[s]σ ∩ K̄ = ∅;

mini(di(q, σ, q
′) + pKi), if (q, σ, q′) �∈ Γ?(π?(s)) and

∩i∈I[s]σ ∩ K̄ ⊆ K̄;

∞, otherwise.

The total control cost is then V (Γ?, K, T) =
∑
s∈K

∑
(q,σ,q′)∈T

v(Γ?, s, (q, σ, q′)).

Similarly the global communication cost takes communications into account sent

by all controllers and sum up the cost incurred by each controller. Then we have the

following two objective functions.

Objective 3. The first objective function is the global control cost for the decisions

made by all controllers i ∈ I for their observation of K:

O1(Γ
?,Φ, K, T) = V (Γ?,Φ, K, T).

Objective 4. The second objective function is the global communication cost for the

communication protocol used by all controllers to assist other controllers in reaching

the control objective for K. The global communication cost is defined as U(Φ, K, T)

82

Table 4.4: Non-dominated solutions of both controllers for Problem 6.2.

u1(·) v1(·) u2(·) v2(·) (u1 + u2)
∗(·) (v1 + v2)

∗(·)
0 24,750 0 30,850 0 55,600
500 23,650 0 28,850 500 52,500
900 21,750 0 27,700 900 49,450
1,900 21,150 500 28,050 2,400 49,200
3,300 21,250 0 27,850 3,300 49,100
3,300 20,900 500 27,350 3,800 48,250
12,400 20,100 1,400 26,700 13,800 46,800

=
∑
i

Ui(Φi, K, T). Hence the objective function is

O2(Γ
?,Φ, K, T) = U(Γ?,Φ, K, T).

Problem 4.3. Given two regular languages K, L over a common alphabet Σ, where

K ⊆ L. Find Γ?
i and Φi (∀i ∈ I) to

min
Γ?,Φ

f(Γ?,Φ, K, T) = [O1(Γ
?,Φ, K, T),

O2(Γ
?,Φ, K, T)]T ,

subject to ∅ ⊂ ∩n
i=1Γ

?
i (π

?
i (K)) ⊆ K, and Γ? = 〈Γ?

1, . . ., Γ?
n〉,Φ = 〈Φ1, . . .,Φn〉

are coherent.

Definition 4.3. (Γ?
i ,Φi) (∀i ∈ I) is Pareto-optimal iff

min
Γ?,Φ

f(Γ?,Φ, K, T) = [O1(Γ
?,Φ, K, T), O2(Γ

?,Φ, K, T)]T .

Example 4.3. In this example, as before, we have two objectives: the control costs for

both controllers, and the communication costs for both controllers. We again use the

same cost functions defined in Equations 4.3−4.9, and also run the algorithm for 200

generations with an initial population size of 40. The first three ranks of the Pareto

83

Figure 4.3: Pareto fronts of rank 1,2,3 for both controllers after 200 generations.

front w.r.t. the communication cost and control cost of both controllers are shown in

Figure 4.3. The non-dominated solutions for both controllers are shown in Table 4.4,

which represents the best compromises w.r.t. the total communication and control

costs of Robot 1 and 2. We have seven Pareto-optimal solutions in this example,

which gives a wide variety of possible costs for control actions and communication

policies for both controllers. The communication cost and control cost range from 0 to

13,800 and from 46,800 to 55,600 respectively w.r.t. both controllers. In the absence

of communication between the controllers, the controllers incur the highest control

cost. When the communication cost increases to 500, the control cost decreases by

6%, whereas the control cost goes down by 16% when the communication cost goes

up to 13,800. When controllers communicate all observations, the solution becomes

equivalent to centralized supervision. The control cost is the lowest in that case.

84

Figure 4.4: Convergence of Pareto front for Problem 4 in 200 generations.

How the solutions converge to the set of Pareto front is shown in Figure 4.4 for

Problem 4.3. With the increased number of generations, the algorithm chooses bet-

ter solutions w.r.t. the cost functions. For instance after 150 generations, the cost

of the solutions (in the form of communication cost, and control cost) in the Pareto

front of rank 1 are (0, 55700), (500, 54100), (1400, 53450), (1800, 52650), (2600, 51750),

(3300, 49700), (6000, 49500), (8000, 49200), (16200, 48400), (36200, 48000) and (46200,

47950) where the cost of the Pareto front solutions after 200 generations are (0, 55600),

(500, 52500), (900, 49450), (2400, 49200), (3300, 49100), (3800, 48250) and (13800,

46800). Figure 4.5 shows how many solutions are in the first two Pareto fronts in

different generations. Initially the Pareto fronts with rank 1, 2 have 7 and 4 solutions

respectively. After 100 generations they occupy 25 and 15 solutions, and after 200

generations they finally have 7 and 12 solutions respectively. It is interesting that

first two ranks are present and make up most of the solutions between 50 and 150

85

generations.

Ultimately, we use NSGA-II as an initial guide to aid in the selection of Pareto-

optimal communication and control policies for decentralized DES. For instance, there

may be compelling physical arguments to insist that one decentralized site assumes

the bulk of the communication during the operation of system tasks, despite the

site incurring a high communication cost (w.r.t. other sites). Similarly, we may be

willing for some degree of approximation on one or more sites to reduce the cost

of communication to achieve a precise control decision, or we may want to reduce

the total communication cost incurred by all controllers. Modeling the trade-off

between the cost functions as an optimization problem gives us a better selection of

quantitatively optimal solutions, from which to choose communication and control

policies for this class of decentralized DES control problems.

86

F
ig
u
re

4.
5:

N
o.

of
so
lu
ti
on

s
o
cc
u
p
ie
d
in

R
an

k
1
an

d
2
fo
r
P
ro
b
le
m

4
in

d
iff
er
en
t
ge
n
er
at
io
n
.

87

Chapter 5

Robustness of a Synchronous

Communication Protocol

Synchronous communication protocols are synthesized in various models including

[4, 37, 38, 56, 57]. Given a synchronous communication protocol that is designed to

solve the decentralized control and communication problem with zero delay, we want

to verify if the protocol is robust enough to withstand timing delays associated with

a more realistic communication network. Hence instead of directly synthesizing com-

munication protocols under bounded and not necessarily fixed delay, we examine syn-

chronous communication protocols (where not all observations are communicated) for

their robustness under conditions when only the upper-bound for the delay is known.

Ideally we would prefer the control actions taken by the controllers in presence of a

communication protocol with delay result in the same closed-loop closed behaviour

K.

88

5.1 Robust Synchronous Communication with De-

lay

We are interested in determining how robust a synchronous communication protocol

is in the face of delay in the communication channels. There are two circumstances

in which a controller that took the correct control decision with zero delay is now

prevented from taking the correct control decision when its received messages are

delayed. It may be the case that the late arrival of a message results in an incorrect

estimate of the system behavior so that the controller can no longer definitively dis-

tinguish a sequence in L \ K from one in K. Or the message may arrive after the

control decision has to be taken, in which case the information simply arrives too late

and the correct decision cannot be made. Note that, we do not limit our study to the

robustness of optimal synchronous communication policies. Rather, we only insist

that the protocol allows the controllers to solve the control problem correctly, how-

ever, we are assuming that the protocols that we are examining may represent some

sort of reduced communication from the “communicate every observation” strategy.

We start with Example 3.2 for n = 3 controllers, where a synchronous communication

protocol solves the control problem.

Example 5.1. We are given ML (plant) and MK (design specification) as shown in

the following figure. Suppose that Σo,1= {a}, Σo,2= {b}, and Σo,3 = {c}. Further, let

Ic(σ) = {1, 2, 3}. Consider s = bca and s′ = abc. Note that K is not co-observable

w.r.t. Σo,i since for all i ∈ Ic(σ), πi(s) = πi(s
′) and, thus, no single controller

can take the correct control decision regarding σ. There are many different sets of

communication transitions that give rise to synchronous communication protocols that

will solve this problem (short of communicating all observations). We will examine

the communication protocol constructed from the following sets of communication

89

σ

σ

Figure 5.1: A joint ML (all transitions) and MK (only solid line transitions).

transitions T !
1,3 = {(0,a,2), (3,a,5)} (i.e., Σ?

3 = {a}) and T !
2,1 = {(0,b,1), (2,b,4)}

(i.e., Σ?
1 = {b}), to be the only non-empty sets of communication transitions. This

gives rise to the following coherent communication protocol φ = (φ1;φ2;φ3):

φ1 : (∀s ∈ L)φ1,2(s) = ε,

φ1,3(bca) = φ1,3(a) = a,

(∀s ∈ L \ {bca,a})φ1,3(s) = ε;

φ2 : φ2,1(b) = φ2,1(ab) = b,

(∀s ∈ L \ {b,ab})φ2,1(s) = ε,

(∀s ∈ L)φ2,3(s) = ε;

φ3 : (∀s ∈ L)φ3,1(s) = φ3,2(s) = ε.

While π1(s) = π1(s
′), by extending controller 1’s information to Σo,1 ∪ Σ?

1 via φ, we

have π?
1(s) = ba whereas now π?

1(s
′) = ab. Similarly, controller 3 can also distinguish

s from s′ after receiving its messages. Thus K is communication observable w.r.t. L,

Σo,i ∪ Σ?
i , Σc,i and φi (i ∈ I). �

We will examine two cases involving delay: (i) when the (finite) delay is known

exactly and never varies throughout the runs of the system; (ii) when the delay is

unknown, but bounded.

90

5.1.1 Modeling Communicating Controllers

Unlike the synthesis of synchronous communication protocols, when considering the

effect of delayed communication, we need to distinguish between the observation trig-

gering a message, the sent message and the received message [45,46]. In particular, for

an event occurrence σ in the plant, the corresponding sent message by one controller

is denoted by !σ, and the received message by another controller is ?σ. Hence, we

introduce the notation for the event corresponding to a sent message for controller i

as follows:

Σ!
i := {!σ | ∃(q, σ, q′) ∈ T !

i}.

We similarly use the following notation for received messages:

Σ?
i := {?σ | ∃(q, σ, q′) ∈ T ?

i }.

We assume, however, that the content of the message is simply the event σ. Ad-

ditionally, we treat the events in Σ!
i and Σ?

i as private events for controller i (i.e.,

unobservable to all others including the uncontrolled system).

We describe a two-step process to transform ML (for each controller i ∈ I) so

that the sender of a message can distinguish between the observation of an event

and the sending of a message regarding the occurrence of that event and the delayed

reception of a message is encoded. We begin by incorporating events from Σ! and Σ?

into a copy of the specification automaton, which we denote by M!?
i . In particular,

for σ ∈ Σ?
i , we replace σ with ?σ, and similarly for events in Σ!

i. The augmented

automaton is defined as follows:

M!?
i = (Q,Σ ∪ Σ!

i ∪ Σ?
i , T

!?
Ki
, q0, F

!?),

91

0

1

2

3

4

5

6

7

8

?b

!a

c

?b

!a

c

σ

σ

(a) M !?
1

0

1

2

3

4

5

6

7

8

!b

a

c

!b

a

c

σ

σ

(b) M !?
2

0

1

2

3

4

5

6

7

8

b

?a

c

b

?a

c

σ

σ

(c) M !?
3

Figure 5.2: M!?
1 , M!?

2 and M!?
3 with φ from Example 5.1.

92

where T !?
Ki

is the updated transition relation after incorporating information from Σ!

and Σ?; and an additional set of transitions recording illegal transitions w.r.t. K,

F !? := {(q, σ, q′) ∈ TL \ TK}.

We illustrate our strategy using Example 5.1 (see Figure 5.2) where the effects of

T !
1,3 and T !

2,1, in addition to T ?
3 = {(0,a,2), (3,a,5)} and T ?

1 = {(0,b,1), (2,b,4)}, have

been directly incorporated into M!?
1 , M!?

2 and M!?
3 .

5.1.2 Rational Transducer for Delayed Messages

We need a way to transform the controller’s view so that it reflects the delayed arrival

of messages. Note that the behavior of the plant is not affected by the introduction of

a communication protocol; it is each controller’s perception of the plant behavior that

is adjusted when messages are delayed. In that case, we define a rational transducer,

which is a generalized finite automaton where the transition function has a domain

consisting of a pair of states and a sequence. It allows the propagation of the delayed

messages, whether we are concerned with fixed or bounded delay.

Formally, our first transducer T0(d), which takes the language generated by M!?
i

as input, is defined as follows: T0(d) = (QT ,ΣT ,Γ, q
T
0 , E), where QT is the finite state

set; the input alphabet ΣT := Σ∪Σ!
i∪Σ?

i ; the output alphabet Γ := Σ∪Σ!
i∪Σ?

i∪{(d)};

qT0 is the initial state; and the transition relation E : QT × Σ∗
T × QT → Γ∗. As an

example, consider Figure 5.3. Starting from the top of the figure, the first transition

takes an instruction to send a message, i.e., !σ, and separates the occurrence of the

event (i.e., σ) from the sending of the message that the event occurred (i.e., !σ).

Continuing in a clockwise direction, the next transition of T0(d) takes an input to

receive a message (i.e., ?σ), separates it from the occurrence of the event (i.e., σ), but

prepends to the content of the message a delay of d, i.e, ?(d)σ. The final transition

just processes events in Σ, performing no transformation to the input whatsoever.

93

0∀σ ∈ Σ : σ/σ

∀σ ∈ Σ
! :!σ/σ !σ

∀σ ∈ Σ
? :?σ/σ?(d)σ

Figure 5.3: Transducer T0(d), with initial state underlined.

Note that this transducer is used simply to demonstrate the events corresponding

to received messages in the language of M!?
i with a temporary event label that,

depending on the context, indicates either the exact delay or the upper-bound of the

delay. Figure 5.4 shows an automaton that generates L(M!?
1 ◦ T0(1)) for Example 5.1

with d = 1.

!

?

?

!
?(1)

! ?(1)

! σ

σ

Figure 5.4: An automaton that generates L(M!?
1 ◦ T0(1)) for Example 5.1.

5.1.3 Known and Fixed Delay

A synchronous communication protocol is robust under a fixed delay d if all the correct

control decisions can be taken, even when messages are received exactly d clock cycles

late.

We must transform the M!?
i , where necessary, to reflect the delayed reception of

the messages for the exact delay d. We use an additional transducer for this.

The next transducer that we require, denoted by T1(k) and shown in Figure 5.5,

performs the deterministic propagation of a delayed message reception, where k rep-

resents a counter for the remaining delay. It takes as input the language generated

by M!?
i ◦T0(d) and outputs the propagation of a message by one position in the input

94

string. We assume that the initial value for this transducer is k = d. In particular,

starting from the left-hand side of Figure 5.5, the first self-loop does nothing to events

not involved in the communication protocol; continuing in a clockwise direction, the

next self-loop does nothing to sent message events; and the final self-loop propagates

the received message by one position and the counter k is decremented. Note that

when k = 1, we interpret ?(0)σ as “σ is communicated with a delay of 0” and we

write this as simply ?σ.

0∀σ ∈ Σ : σ/σ

∀σ ∈ Σ
! :!σ/!σ

∀σ ∈ Σ
? :?(k)σ .α/α.?(k−1)σ

Figure 5.5: Transducer T1(k), with initial state underlined.

We are interested in an automaton, denoted by Mi(= d), that generates the

following language:

L(M!?
i ◦ T0(d) ◦ T1(d) ◦ T1(d− 1) ◦ . . . ◦ T1(1)), (5.1)

where d is the fixed delay. We want to ensure that this structure generates a regular

language. M1(= 1) is shown in Figure 5.6 for Example 5.1 with d = 1. Because both

T0(d) and T1(k) are finite transducers, we refer to the following result:

Theorem 5.1. [Adapted from [13]] The composition of two finite transducers is also

a finite transducer.

Therefore, we have the following result.

Theorem 5.2. The language generated by Mi(= d) is a regular language.

Proof. Since T0(d)◦T1(d)◦T1(d−1)◦. . .◦T1(1) is the composition of finite transducers,

by Theorem 5.1, Mi(= d) is a finite transducer and, thus, by the definition of finite

transducers, generates a regular language.

95

!

?

?

!

!

!

?

σ

σ̇

Figure 5.6: M1(= 1) for Controller 1 from Example 5.1 when d = 1.

We denote the language ofMi(= d) as L?
i (d) (orK

?
i (d), depending on the context).

This language reflects the fact that received messages have been displaced from the

synchronous communication protocol by exactly d positions. Note that when d = 0,

we can use the transducer T0 to generate L?
i (0) = L, and similarly K?

i (0) = K. When

relevant, we will refer to this pair of languages as simply L(0) and K(0). Similarly

a sequence s ∈ L has been adjusted by a controller as s(d) with a fixed delay d. We

can now formally define what it means for a synchronous communication protocol to

be robust under conditions of a fixed delay.

Definition 5.1. A synchronous communication protocol φ = (φi)i∈I for K ⊆ L,

where K is communication observable w.r.t. L, π?
i ,Σc,i (i ∈ I) is robust w.r.t.

fixed delay d ∈ N∗ if

(∀s ∈ K)(∀σ ∈ Σc)sσ ∈ L \K ⇒

∃i ∈ Ic(σ) : [s(d)]?iσ ∩K?
i (d) = ∅ ⇔ [s]?iσ ∩K = ∅, and

(∀s ∈ K)(∀σ ∈ Σc)sσ ∈ K ⇒

∀i ∈ Ic(σ) : [s(d)]?iσ ∩K?
i (d) �= ∅ ⇔ [s]?iσ ∩K �= ∅.

�

We want to verify that if there exists an i ∈ Ic(σ) that can distinguish an illegal

sequence s(d)σ in L?
i (d) \K?

i (d) (or a legal sequence s(d)σ in K?
i (d)), then it can also

96

verify if sσ is in L \K (or in K) with 0 delay.

We formally state the robustness problem for a synchronous communication pro-

tocol φ under conditions of a fixed delay d.

Problem 5.1. Consider two regular languages K,L defined over a common alphabet

Σ, with controllable events Σc,1, . . ., Σc,n ⊆ Σ, observable events Σo,1, . . ., Σo,n ⊆

Σ, a set of messages T !
1, . . . , T

!
n (for i ∈ I). We assume that K ⊆ L ⊆ Σ∗ is con-

trollable w.r.t. L,Σuc, observable w.r.t. L, π,Σc and communication observable w.r.t.

L, π?
i ,Σc,i (i ∈ I). Determine whether φ = (φi)i∈I is robust w.r.t. a fixed delay d.

5.1.4 Finite and Bounded Delay

A synchronous communication protocol is robust under a bounded delay [1..d] if mes-

sages received by controller i, anywhere up to d clock cycles late, continue to allow

the correct control decisions to be taken. The significant difference for this problem

is that we have no idea how long the delay is in the communication channel: we know

only the upper-bound for the delay. That is, our model must take into account that

the delay for each message can range between 1 and d.

While we will utilize transducer T0(d) to identify the effect of the synchronous com-

munication protocol φ on the uncontrolled system, we need an additional transducer,

T2(k), to perform the non-deterministic propagation of a delayed message reception.

The transducer is shown in Figure 5.7. From the top of the figure, the first transition

does not change labels in Σ! and the second transition clockwise is identical to that

used in T1(k). The next transition performs part of the non-deterministic propaga-

tion of ?σ and adds the immediate (i.e., zero delay) reception of a message. The final

transition makes no changes to events in Σ.

Again, we are interested in an automaton, denoted by Mi(≤ d), that generates

97

0∀σ ∈ Σ : σ/σ

∀σ ∈ Σ
! :!σ/!σ

∀σ ∈ Σ
? :?(k)σ .α/α.?σ

∀σ ∈ Σ
? :?(k)σ .α/α.?(k−1)σ

Figure 5.7: Transducer T2(k), with initial state underlined.

the following language

L(M!?
i ◦ T0(d) ◦ T2(d) ◦ T2(d− 1) ◦ . . . ◦ T2(1)),

where d is the upper-bound of the delay. We denote the language of Mi(≤ d) as

L?
i (≤ d) (or K?

i (≤ d), depending on the context). Similarly as defined in the case of

a fixed delay, a sequence s ∈ L has been adjusted by a controller as s(≤ d) with a

bounded delay [1..d].

One important assumption we make is that there can be no loops of communi-

cation events in our original system. Here Mi(≤ d) should be a finite transducer to

ensure that we are generating a regular language. When communication occurs in a

loop, the delay becomes infinite. This leads to an unbounded transducer T ∗
2 (k), in

which case we are no longer working with a regular language.

Theorem 5.3. The language generated by Mi(≤ d) is a regular language.

Proof. Since M!?
i ◦ T0(d) ◦ T2(d) ◦ . . . ◦ T2(1) is a composition of finite transducers,

it follows from Theorem 5.1 that Mi(≤ d) is a finite transducer, which generates a

regular language.

We illustrate the result of these transducer compositions in Figure 5.8 for a

bounded delay of 2 from Figure 5.2(a).

When we consider communication with a bounded delay [1..d], we must check to

see if the correct control decisions can be made for any delays between 1 and d.

98

0

1

2! 2 4

1? 3

4?

3! 5

6

7

8

b

a

?(2)b

!a b ?(2)b

c a !a

c

σ

σ

(a) An automaton that generates L(M!?
1 ◦ T0(2)).

0

1 1?

2! 2

3′

3

3′? 3′!

3!

4 4?

5′

5

6′ 6′?

6

7′

7

8′

8

3′′! 5′′ 5′′? 7′′

8′′ 8′′?

b

a

c

?b

c

!a b

?b

a

a !a

a !a

c

?b
c

σ

σ

?b

σ

σ

σ

!a ?b σ

?b

(b) M1(≤ 2).

Figure 5.8: Building of M1(≤ 2) for a bounded delay of 2 w.r.t. Controller 1.

99

Definition 5.2. A synchronous communication protocol φ = (φi)i∈I for K ⊆ L,

where K is communication observable w.r.t. L, π?
i ,Σc,i (i ∈ I) is robust w.r.t.

bounded delay [1..d] if

(∀s ∈ K)(∀σ ∈ Σc)sσ ∈ L \K ⇒

∃i ∈ Ic(σ) : [s(≤ d)]?iσ ∩K?
i (≤ d) = ∅ ⇔ [s]?iσ ∩K = ∅, and

(∀s ∈ K)(∀σ ∈ Σc)sσ ∈ K ⇒

∀i ∈ Ic(σ) : [s(≤ d)]?iσ ∩K?
i (≤ d) �= ∅ ⇔ [s]?iσ ∩K �= ∅.

�

Problem 5.2. Consider two regular languages K,L defined over a common alphabet

Σ, with controllable events Σc,1, . . ., Σc,n ⊆ Σ, observable events Σo,1, . . ., Σo,n ⊆
Σ, a set of messages T !

1, . . . , T
!
n (for i ∈ I). We assume that K ⊆ L ⊆ Σ∗ is con-

trollable w.r.t. L,Σuc, observable w.r.t. L, π,Σc and communication observable w.r.t.

L, π?
i ,Σc,i (i ∈ I). Determine whether φ = (φi)i∈I is robust w.r.t. a bounded delay

[1..d].

In the next section, we present a finite-state structure that we use to verify ro-

bustness of a synchronous communication protocol under both types of delay.

5.2 Verifying Robust Synchronous Communication

Under Conditions of Delay

We want to build a finite structure with which we can determine the robustness of a

given synchronous communication protocol φ. We want to have a way of indicating

that delay has occurred without using a fully timed model. Although we are not

explicitly modeling time, we assume that the uncontrolled system and the controllers

100

all have access to a global clock. To that end, we will use a special event τ to mark

the end of a clock cycle. Next we update ML and Mi(= d), respectively Mi(≤ d),

by incorporating τ into the transition relation. Note that the verification strategy

for robustness of communication protocols under fixed delay or bounded delay is

the same; however, we use Mi(=d) when verifying the former, and Mi(≤ d) when

verifying the latter.

5.2.1 Incorporating τ into the Behavior of the Uncontrolled

System

We begin with ML = (Q,Σ, TL, q0, F
T), the automaton model of L with no timing

information. We use τ to indicate how many events occur within a clock cycle. It

will be of considerable use to learn if the uncontrolled system generates events faster

than the controllers can inform each other of relevant observations, under a given

communication protocol and a bounded delay. Formally we have

M τ
L = (Q ∪Qτ ,Σ ∪ {τ}, T τ

L , q0, Qm),

where the event τ is placed at the end of a sequence of events that occur during a

clock cycle; Qτ are the additional states needed to incorporate the τ events into ML;

and T τ
L is the updated transition relation.

In Figure 5.9, τ events have been added to ML from Figure 5.1 to indicate that

one event in Σ occurs within each clock cycle.

101

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

σ

τ

σ

τ

τ

Figure 5.9: M τ
L for ML in Figure 5.1, where one event per clock cycle occurs.

5.2.2 Incorporating Message Delay and τ into the Behavior

of the Controllers

To facilitate the construction of our finite-state structure, we must update Mi(= d),

respectively Mi(≤ d), (i ∈ I) to reflect the effect of a clock cycle (noted by the τ

event) and the idea that, for a receiver, messages may arrive with delay. We denote

the augmented automata by Mτ
i (= d) and Mτ

i (≤ d), respectively.

The controllers are (unaware of and) unconcerned with the timing details of the

plant, assumed to be designed based on the untimed behavior of the plant. Therefore,

we simply add self-loops of τ at each state in Mi(= d), respectively Mi(≤ d), with

the exception that all sub-sequences of the form m!m must occur within a single

clock cycle. This represents the idea that a message is sent immediately after an

observation is made: the delay we are modeling is that between the sending and

the reception of a message. Thus to update Mi(≤ d) to Mτ
i (≤ d), for i ∈ I, (see

Figure 5.8(b)), we would add self-loops of τ at every state except states 2!, 3!, 3
′!,

3
′′!, where we assume a message is sent in the same clock cycle as the observation

that triggers the communication. We will also associate with each component, a set

B!?τ
i := {(q, σ, q′) ∈ TL \ TK}, the set of transitions recording illegal transitions w.r.t.

K.

102

5.2.3 Building U1 and U2

We build an automaton U1, built with synchronized composition, to verify the ro-

bustness of φ w.r.t. a fixed delay d as follows.

U1(d, φ) = (X,A, T U , x0, B) = M τ
L ×S Mτ

1(= d)×S . . .×S Mτ
n(= d).

Further, we build a second automaton U2, also via synchronized composition, to verify

the robustness of φ w.r.t. a delay in the range [0..d] as follows.

U2(d, φ) = (X,A, T U , x0, B) = M τ
L ×S Mτ

1(≤ d)×S . . .×S Mτ
n(≤ d).

Prior to taking either of the products, we add selfloops of ε at each state of all of the

components.

The alphabet of Um(d, φ) (m ∈ {1, 2}) is similar to the set of vector labels defined

in 2.2. In addition, the events in Σ?
i and Σ!

i are considered to be private (i.e., not

part of the system behavior), so that the labels associated with events in these sets

are generated as follows: for all ?σ ∈ Σ?
i (equivalently for Σ!

i) �(i) =?σ, otherwise for

all r ∈ I \ {i}, �(r) = ε. Finally, we have a label for τ : for all i ∈ 0, . . . , n, �(i) = τ .

We will denote this as −→τ since it is an event on which all components synchronize.

A transition (x, �, x′) ∈ T U , where x = (q, q1, . . . , qn) and x′ = (q′, q′1, . . . , q
′
n) with

label � = 〈�(0), . . . , �(n)〉 iff (q, �(0), q′) ∈ T τ
L , and for all i ∈ I, (qi, �(i), q

′
i) ∈ T !?τ

i ,

where T !?τ
i is the transition system for Mτ

m(= d), respectively, Mτ
m(≤ d).

We define the set of “bad” transitions as follows:

B = {(x, �, x′) |

((x(0), �(0), x′(0)) ∈ TL \ TK ∧ ∀i ∈ Ic(�(0)) : (x(i), �(i), x
′(i)) ∈ T !?τ

i) ∨

((x(0), �(0), x′(0)) ∈ TK ∧ ∃i ∈ Ic(�(0)) : (x(i), �(i), x
′(i)) �∈ T !?τ

i)}.

103

A transition (x, �, x′) is in B if either (1) this encodes a transition where event �(0)

should be disabled in L and ∀i ∈ Ic(�(0)) the controllers believe that �(0) should

be enabled; or (2) this encodes a transition where event �(0) should be enabled but

∃i ∈ Ic(�(0)) mistakenly believe that �(0) should be disabled.

The set of events corresponding to received messages now have a special form

Σ?
i ([0,∞)) such that each event ?(τσ)σ has a counter that increases with every τ

event. Here τσ counts the number of τ events before receiving the event ?σ. Note that

to avoid the construction of an infinite-state Um, we annotate the received messages

after taking the product to construct Um, m ∈ {1, 2}.
To provide a sense of the construction of U2(d, φ), Figure 5.10 contains a portion

of U2(d, φ) for our example. In particular, notice how M τ
L and each of the copies of

Mτ
i , for i ∈ I, synchronize on τ and that we annotate a received message with its

counter τσ.

Theorem 5.4. B = ∅ in U1(d, φ) ⇔ φ is robust w.r.t. fixed delay d.

Proof. Follows the proof of Theorem 5.5. (See below.)

Theorem 5.5. B = ∅ in U2(d, φ) ⇔ φ is robust w.r.t. delay [1..d].

Proof. (⇒) Suppose that B = ∅ but φ is not robust w.r.t. [1..d]. By definition, there

exists s ∈ K and σ ∈ Σc such that sσ ∈ L \K and there exists d > 0 (∀i ∈ Ic(σ)) :

∃s′i(d) ∈ K?
i (≤ d) such that s′i(d)σ ∈ [s(≤ d)]?iσ ∩ K?

i (≤ d), or sσ ∈ K and there

exists d > 0 (∃i ∈ Ic(σ)) : ∃s′i(d) ∈ [s(≤ d)]?i such that [s(≤ d)]?iσ ∩K?
i (≤ d) = ∅. So

we need to consider the following two cases.

Case 1: In M τ
L, we have q0

s−→ q
σ−→ q′ ∈ T τ

L , where (q, σ, q′) ∈ TL \ TK and in

Mτ
i (≤ d) we have q0

s′i(d)−−→ qi
σ−→ q′i ∈ T !?τ

i , for all i ∈ Ic(σ).

From the construction of U2(d, φ), we know that (∀i ∈ Ic(σ)) π?
i (s) = π?

i (s
′
i(d)).

Thus there exists a trace in U2(d, φ) such that x0
w−→ x, where w(0) = s and w(i) =

104

s′i(d), for all i ∈ Ic(σ). In addition, we have (x, �, x′) ∈ T U where x(0) = q, �(0) = σ,

x′(0) = q′ and x(i) = qi, �(i) = σ, x′(i) = q′i. By the definition of B, we have

(x, �, x′) ∈ B, thereby reaching a contradiction.

Case 2: In M τ
L, we have q0

s−→ q
σ−→ q′ ∈ TL, where (q, σ, q′) ∈ TK and ∃i ∈ Ic(σ),

we have q0
s′i(d)−−→ qi

σ−→ q′i �∈ T !?τ
i in Mτ

i (≤ d).

In U2(d, φ), there exists a trace such that x0
w−→ x, where w(0) = s and w(i) = s′i(d),

for all i ∈ Ic(σ). We also have (x, �, x′) ∈ T U where s�(0) ∈ K, but s′i(d)l(i) �∈ K?
i (d)

with x(0) = q, �(0) = σ, x′(0) = q′ and x(i) = qi, �(i) = σ, x′(i) = q′i. Then

(x(i), l(i), x′(i)) �∈ T !?τ
i . By the definition of B, we have (x, �, x′) ∈ B, arriving at a

contradiction.

(⇐) Suppose that B �= ∅ but φ is robust w.r.t. [1..d]. Let (x, �, x′) ∈ B. By

definition, we have two cases to consider:

Case 1: By definition, (x(0), �(0), x′(0)) ∈ TL \ TK and ∀i ∈ Ic(�(0)), (x(i), �(i),

x′(i)) ∈ TKi
and �(i) = �(0). Let w = �1�2 . . . �|w| ∈ A∗ such that x0

w−→ x ∈ T U .

Let s = w(0) and ∀i ∈ Ic(�(0)), there exists d > 0 such that s′i(d) = w(i). Since

x0
w−→ x

�−→ x′ ∈ T U , we have s�(0) ∈ L \ K and s′i(d)�(i) ∈ K?
i (d), ∀i ∈ Ic(σ).

The only labels on which s and s′i synchronize are those of the form � = 〈�(0) =

γ, . . . , �(i) = γ, . . .〉 in which γ ∈ Σo and γ ∈ Σo,i, therefore π?
i (s) = π?

i (s
′
i(d)). Thus

we have s′i(d)�(i) ∈ [s]?i �(i)∩K?
i (d), arriving at a contradiction that φ is robust w.r.t.

[1..d].

Case 2:(x(0), �(0), x′(0)) ∈ TK and ∃i ∈ Ic(σ), (x(i), �(i), x
′(i)) �∈ T !?τ

i and �(i) =

�(0). Let there be a trace as before x0
w−→ x ∈ T U , where s = w(0), and there

exists d > 0 such that s′i(d) = w(i) for i ∈ Ic(�(0)). We have s�(0) ∈ K, since

x0
w−→ x

�−→ x′ ∈ TK , but ∃i ∈ Ic(�(0)) such that s′i(d)�(i) �∈ K?
i (d). Therefore

s′i(d)�(i) ∩K?
i (d) = ∅, contradicts our assumption that φ is robust w.r.t. [1..d].

The two types of bad transitions are illustrated in Figure 5.11. In the top portion

105

of the figure, the transition (5τ , 6′, 6, 6)
〈σ,σ,σ,σ〉−−−−−→ (7, 8′′, 8, 8) is marked because σ must

be disabled according to ML (colored here in red) whereas all the controllers in Ic(σ)

believe that σ should be enabled (colored in green). Under a synchronous communi-

cation protocol, controller 1 would have received the information that b occurred with

zero delay, thus being able to take the correct control decision about σ; however, when

the message is delayed, in this case the delay is τ = 2 clock cycles, as evident from

the event label ?b(2) that occurs after the marked transition, controller 1 cannot take

the correct control decision. Another bad transition (6τ , 5′′?, 5, 5)
〈σ,σ,σ,σ〉−−−−−→ (8, 7, 7, 7),

in the bottom of the figure, causes the opposite problem. With a synchronous com-

munication policy, controller 3 would know immediately when a occurs; however in

this case, controller 3 cannot distinguish between a message arriving with 0 delay and

one with a delay of 2. Thus it mistakenly believes that it is issuing a control decision

for σ after bca instead of the actual sequence that has occurred, namely abc.

Our strategy verifies the robustness of all synchronous communication protocols

under conditions of fixed or finitely-bounded delay, not just optimal communica-

tion protocols. We do, though, assume that the original communication protocol

does not require the communication of all observations. Verifying delay-robustness

of previously-synthesized synchronous communication protocols is easily achieved by

adapting existing techniques for verifying properties of decentralized discrete-event

systems. This seems simpler than directly synthesizing communication protocols

w.r.t. a fixed or a finitely-bounded delay. Since the communication protocol is al-

ready synthesized for zero delay, and thus we have communicating controllers, it is

simpler to verify the robustness of a communication protocol rather than synthesize

a new protocol and a set of new communicating controllers.

106

F
ig
u
re

5.
10
:
A

p
or
ti
on

of
U 2

(d
,φ

)
=

M
τ L
× S

M
τ 1
(≤

2)
× S

M
τ 2
(≤

2)
× S

M
τ 3
(≤

2)
(i
n
it
ia
l
st
at
e
is
u
n
d
er
li
n
ed

fo
r
re
ad

ab
il
it
y
).

107

(0,0,0,0) (0,0,0,2) (0,0,2,2) (1,0,2!,2) (1,0,4,2)

(1τ ,0,4,2)(1τ ,0,6,2)(1τ ,0,6,4)(3,0,6,6)

(3τ ,0,6,6) (5,2!,6,6) (5,2,6,6) (5,4,6,6) (5,6’,6,6)

(5τ ,6’,6,6)(7,8”,8,8)(7,8”?,8,8)

〈ε,ε,ε,a〉 〈ε,ε ,a,ε〉 〈b,ε,b,ε〉 〈ε ,ε, !b,ε〉

−→
τ

〈ε,ε ,c,ε〉〈ε,ε,ε,b〉〈c,ε,ε,c〉

−→
τ

〈a,a,ε,ε〉 〈ε, !a,ε,ε〉 〈ε,b,ε,ε〉 〈ε,c,ε ,ε〉

−→
τ

〈σ ,σ ,σ ,σ〉

〈ε ,?b(2),ε,ε〉

(0,0,0,0)

(0,0,0,1) (0,1,0,1) (0,3’,0,1) (2,3”!,0,1) (2,5”,0,1)

(2τ ,5”,0,1)(4,5”,1!,1)(4,5”,1,1)(4,5”,3,1)(4,5”,5,1)

(4τ ,5”,5,1) (6,5”,5,3) (6,5”,5,5)

(6τ ,5”,5,5) (6τ ,5”?,5,5) (8,7,7,7)

〈ε,ε,ε,b〉

〈ε,b,ε,ε〉 〈ε,c,ε ,ε〉 〈a,a,ε,ε〉 〈ε, !a,ε,ε〉

−→
τ

〈b,ε,b,ε〉〈ε,ε, !b,ε〉〈ε,ε ,c,ε〉〈ε,ε,a,ε〉

−→
τ

〈c,ε,ε,c〉 〈ε,ε,ε,a〉

−→
τ

〈ε,?b(2),ε,ε〉

〈σ ,σ ,σ ,σ〉

Figure 5.11: A portion of U2(d, φ) with bad transitions highlighted in blue (top)

(5τ , 6′, 6, 6)
〈σ,σ,σ,σ〉−−−−−→ (7, 8′′, 8, 8) where no controller can take the correct control de-

cision and (bottom) (6τ , 5′′?, 5, 5)
〈σ,σ,σ,σ〉−−−−−→ (8, 7, 7, 7) where all controllers incorrectly

believe that σ should be disabled.

108

Chapter 6

Decentralized TDES Control with

Communication

Untimed DES models are concerned with whether each event occurs at the logical or-

der in the plant. The exact time at which each event occurs is not explicitly modeled.

In many applications, however, the exact time that each event occurs is important.

This chapter deals with the decentralized supervisory control and communication

problem in timed DES (TDES), in which the passage of time is modeled using a tick

event.

Synchronous communication protocols have been synthesized for untimed decen-

tralized discrete-event control problems where controllers transmit their information

through a zero-delay communication channel. But, in practice, communication occurs

with some delay in the channel. Since the only difference between a TDES and an un-

timed DES is the occurrence of tick events, the same approach for untimed DES can

be used to synthesize a communication protocol in a TDES with synchronous (instan-

taneous) communication. Motivated by the above observation, instead of synthesizing

communication protocols for decentralized TDES control problems with bounded de-

lay communication, in this chapter we will discuss a procedure for converting the

109

problem to an equivalent TDES control problem with (zero-delay) synchronous com-

munication, and synthesize communication protocols for the converted problem. The

proposed approach is developed for acyclic TDES.

6.1 Control and Communication Problem in TDES

In reality, communication occurs with some delay among the controllers. We con-

sider a channel with a delay of known upper-bound d in the communication. In

delayed communication with upper-bound d, at most d tick events can occur in the

plant between sending a message by one controller and the reception of that message

by another controller. Timing information of the occurrence of an event has to be

captured in a useful way in the model of TDES.

We assume that controllers send messages through communication channels (not

necessarily FIFO)1. To that end, we start with a TDES model shown in Figure 6.1.

In the system, we have a plant (Mact) and a communication channel (Cd). For brevity,
throughout this chapter, we will assume there are only two controllers and that only

Controller 1 can communicate to Controller 2.

The automaton for representing the plant is modeled as an activity transition

graph (ATG):

Mact = (A,Σact, Tact, a0, Am).

Mact is assumed to be acyclic. Let Σ = Σact ∪ {τ}, and L be the closed behaviour of

the corresponding TTG.

We assume that when communicating an event observation, Controller 1 time

stamps the event and transmits the number of tick events passed (since the initial

state) when the event occurred in the plant.

1As an example, communication using a computer network using TCP/IP protocol is not neces-
sarily FIFO

110

Figure 6.1: A TDES model with a communication channel between controllers 1 and
2.

Definition 6.1. A communication protocol for Controller 1 φ1,2 : L→ ((Σo,1−
Σo,2)× N)) ∪ {ε} is defined as follows.

(∀s ∈ L) (∀σ ∈ Σ) such that sσ ∈ L

φ1,2(sσ) =

⎧⎪⎪⎨
⎪⎪⎩
〈σ, τsσ〉, if σ ∈ Σo,1 \ Σo,2 and sσ ∈ L1,2 ⊆ L,

ε, otherwise.

Here L1,2 ⊆ L is the set of sequences after which Controller 1 communicates to

Controller 2, and τsσ is the number of tick events through the sequence sσ before σ

occurs.

We want communication to occur in an observationally-equivalent manner.

Definition 6.2. In TDES with a delay of upper-bound d in the communication, a

communication protocol φ1,2 is coherent if for all sequences s, s′ ∈ L,

π1(s) = π1(s
′)⇒ φ1,2(s) = φ1,2(s

′),

where π1 is the natural projection π1 : Σ∗ → Σ∗
o,1. It must be the case that the

111

same communication occurs after all sequences that result in the same observation in

Controller 1.

Let Σ? = {?σ|σ ∈ Σo,1−Σo,2} be the set of message delivery labels. Once a message

is received by Controller 2, given the time stamp and the current time, Controller

2 can determine the delay experienced by the message in the channel. Therefore,

without loss of generality, we assume that Controller 2 receives the event with the

delay experienced. Hence, the set of “message delivery events” is Σ?× [0, d]. Now the

plant Mact and channel Cd can be viewed as the system-to-be-controlled with event

set Σtot = Σ∪ (Σ?× [0, d]). The natural projection πΣ : Σ∗
tot → Σ∗ is later considered

which removes those events from sequences in Σ∗
tot that do not belong to the plant

behaviour.

6.1.1 Decentralized Control Law with Communication

In decentralized TDES, each controller decides which events are enabled and which are

forced to occur after each sequence based on its own observation and the messages

received from other controllers. Then a decentralized control law, with a delay of

upper-bound d in the communication channel for controller 1, is a mapping

Γ1 : π1(L)→ Pwr(Σ)× Pwr(Σf,1),

which defines the set of events that Controller 1 believes should be enabled and the

set of events forced to occur based on its partial view. According to the definition,

we have two components of Γ1 as (Γe,1,Γf,1), where

(∀i ∈ I)(∀s ∈ L) Γe,1(π1(s)) = {γ ∈ Σ | γ ⊇ Σuc,1}.

Γf,1 defines the set of events to be forced by Controller 1 after its partial observation.

112

As discussed in Section 6.1, Controller 2 makes decisions based on its partial

observations and “message delivery events”. The natural projection modeling these

observations is π?
2: Σ

∗
tot → (Σo,2 ∪ (Σ?× [0, d]))∗. Now, the control map for Controller

2 is

Γ2 : Σ
∗
tot → Pwr(Σtot)× Pwr(Σf,2),

subject to the condition that observationally-equivalent sequences in Σ∗
tot must result

in the same control decision.

The decentralized control and communication problem in TDES with known

upper-bound delay in the communication channel is described as follows.

Problem 6.1. Consider two regular languages K, L over a common alphabet Σ.

Assume K ⊆ L is controllable w.r.t. L, Σuc, observable w.r.t. L, π : Σ∗ → (Σo,1 ∪
Σo,2)

∗ and Σc, but not co-observable w.r.t. L, πi and Σc,i (i = {1, 2}). Suppose there

is a communication channel with a delay of upper-bound d for transmitting messages

from Controller 1 to 2. Construct a coherent communication protocol φ1,2, such that

πΣ(L(Γ1 ∧ Γ2/Mtot)) ⊆ K, where Mtot refers to the DES to be controlled (plant and

communication channel).

Example 6.1. The ATG model of the plant and the specification is shown in Mact

in Figure 6.2. The corresponding TTG is shown in Figure 6.3. In the TTG, 3 tick

events occur between States 3 and 3τ , and 7 and 7τ , which is denoted as τ (3). Suppose

the legal behaviour can also be modeled by the ATG with solid activities only. Let

I = {1, 2}, Σo,1 = Σc,1 = {a,c}, Σo,2 = Σc,2 = {b, σ} and Ic(σ) = {2}. Consider s =

τaτbττττcτσ, and s′ = ττbτaτττcτσ. Note that K is not co-observable, since π2(s)

= π2(s
′) = ττbτττττσ. In the next section, we will discuss a solution to this problem

assuming communication channel with delay bounded by 2 ticks.

113

Figure 6.2: Mact is the collection of all transitions, and MK,act is the collection of only
solid-line transitions.

1

1
τ

2 6

2
τ

6
τ

3 7

3
τ

7
τ

4 8

3 7

4
τ

8
τ

5 9

τ

τ

τ
τ

τ

τ

τ
3

τ
3

τ τ

τ τ

σ

τ

σ

τ

τ τ

Figure 6.3: TTG of Mact shown in Figure 6.2.

114

6.2 Conversion to an Equivalent Problem with Syn-

chronous Communication

In this section, we describe a procedure for converting Problem 6.1 posed in the

previous section, which involved control and communication over a channel with

bounded delay, to an equivalent problem of control and synchronous communication.

The resulting problem can be solved using various procedures such as those discussed

in Chapters 3 and 4.

Figure 6.4: Block diagram shows information flow of the decentralized control problem
in TDES (a) with a delayed communication of upper-bound d between controllers 1
and 2, and (b) with synchronous communication between Controllers 1′ and 2.

The problem and the converted version are displayed in Figure 6.4(a) and (b).

In the original problem, Controller 1 based on its communication policy transmits

some events from Σo,1 − Σo,2 over the communication channel Cd. An event σ ∈
Σo,1−Σo,2 transmitted over the channel is delivered in between 0 and d clock ticks. As

before, ?σ denotes the delivery of σ (i.e., reception by Controller 2). In the converted

115

problem (Figure 6.4(b)), the transmission of events over the communication channel

is modeled using an ATG Cdact. Cdact models the transmission of every occurrence of

events in Σo,1 − Σo,2. Construction of Cdact will be discussed shortly. Controller 1

similar to the original problem based on its observations enables or disables certain

events in the plant. The transmission of some its observation to Controller 2 is done

by a dummy controller 1′. Controller 1′ makes all observations that Controller 1

can, in addition to “delivery” events ?σ ∈ Σ?. Thus Σo,1′=Σo,1 ∪ Σ?. Controller 1′

based on its communication policy (to be designed) transmits certain events ?σ ∈ Σ?

synchronously (instantaneously) over a fictitious communication channel Csync.
Next we consider how Cdact can be constructed. Cdact models the generation of all

?σ ∈ Σ?. For each ?σ ∈ Σ?, we construct an ATG shown in Figure 6.5.

� �

Figure 6.5: ATG Cdσ.

We let lσ and uσ be the lower and upper time bounds of σ ∈ Σo,1 − Σo,2 (in case

of remote events [lσ,∞)). Note that the lower and upper time bounds of “message

delivery” events are 0 and channel upper bound delay d. Thus the ATG ||{Cdσ|σ ∈
Σo,1 − Σo,2} models the generation of events σ and delivery events ?σ.

Remark: The above procedure allows for one instance of transmission for every

σ ∈ Σo,1 − Σo,2. For σ ∈ Σo,1 − Σo,2, we define

Nσ = max of the number of σ in every sequence of activities in Mact.

Since by assumption, Mact is acyclic, Nσ is finite. If Nσ > 1, in the process of

building Cdact, the successive occurrences of σ are labeled starting from 1 up to Nσ. An

example is shown in Figure 6.6, where a can occur up to Na = 2, and all occurrences

of a are labeled according to the order of occurrence. In building Cdact, each labeled

version of σ will be treated as unique event. So for Figure 6.6, we construct Cda1 and

116

Cda2 . Once Cdact is built, the labels will be removed. �

Figure 6.6: An ATG with Na = 2.

In the converted problem (Figure 6.4(b)), the system-to-be-controlled is modeled

by the extended ATG Mact,ext = Mact||Cdact and the objective is to design control

policies for Controller 1 and 2, and communication policy for Controller 1′.

Let Mext be the TTG obtained for the extended system from the ATG Mact,ext.

As mentioned in Section 6.1, the transmitted events in the original problem is time-

stamped and that is equivalent to Controller 2 receiving the information about the

delay each message experiences in the channel. To include this information in the

converted problem, in Mext for every ?σ transition, we replace ?σ as the label with

(?σ, nσ), where nσ is the number of ticks between occurrence of σ (that resulted in

“delivery” event ?σ) and ?σ. Thus the event set ofMext becomes Σtot = Σ∪(Σ?×[0, d])
(as defined previously in Section 6.1).

Let the closed behaviour of Mext be denoted by Lext and the specification be Kext

= π−1
Σ (K). The communication protocol φ1′,2 is a map φ1′,2 : Lext → (Σ?×[0, d])∪{ε}.
We want the communication to occur in an observationally-equivalent manner.

Since in the original problem, communication decisions were based on the local ob-

servations of Controller 1, in the converted problem that must be the case too. In

other words, similar to Definition 6.2, two sequences are considered equivalent if they

result in the same observation for Controller 1 (not Controller 1′, otherwise Controller

1′ would know the delay experienced in the channel by each message which is of course

117

unknown before transmission).

Definition 6.3. In the converted problem, a communication protocol Φ1′,2 is coher-

ent if for all sequences s, s′ ∈ Lext,

π1,ext(s) = π1,ext(s
′)⇒ φ1′,2(s) = φ1′,2(s

′),

where π1,ext is the natural projection π1,ext: Σ
∗
tot → Σ∗

o,1.

In the converted problem, Kext is communication observable if there exists a set

of controllers that can take correct control decision based on its observation and the

information received from the dummy controller.

Definition 6.4. Kext is communication observable w.r.t. Lext, Σo,1, Σo,2 ∪ Σ?,

Σc,i (i ∈ {1, 2}), and φ1′,2 iff

(∀s ∈ Kext)(∀σ ∈ Σc) sσ ∈ Lext \Kext ⇒ (∃i ∈ {1, 2}) [s]?iσ ∩Kext = ∅.

A decentralized control law in TDES with synchronous communication is defined

as a mapping for Controller 1:

Γ1 : π1,ext(Lext)→ Pwr(Σext)× Pwr(Σf,1),

which defines the set of events to be enabled and the set of events forced to occur

by controller 1, based on its partial observation. As before, Γ1 is decomposed as

(Γe,1,Γf,1), where

(∀s ∈ Lext) Γe,1(π1,ext(s)) = {γ ∈ Pwr(Σext)|γ ⊇ Σuc,1}.

Γf,1 defines the set of events to be forced by controller 1 after its partial observation.

118

As before, Controller 2 makes decisions based on its partial observations and

“message delivery events”. The control map for Controller 2 is

Γ2 : Σ
∗
tot → Pwr(Σext)× Pwr(Σf,2),

subject to the condition that observationally-equivalent sequences in Σ∗
tot must result

in the same control decision.

We consider in the above equation that the “message delivery events” are incor-

porated in Mext with delay ≤ d and the message is received without any delay in the

fictitious communication channel. For example, if a message δ ∈ Σo,1\Σo,2 is sent

after a sequence s ∈ Lext by Controller 1 to Controller 2 with a delay of upper-bound

2, then there exists s′ ∈ Σ∗
tot containing up to 2 tick events such that controller 2

receives ?δ ∈ Σ? after ss′. In Mext, the received message ?δ is added after ss′. Since

there is no delay in the communication, controller 2 receives ?δ instantaneously after

ss′ occurs.

The decentralized control and communication problem in TDES with synchronous

communication is described below.

Problem 6.2. Given two regular languages Kext, Lext over a common alphabet Σtot,

where Kext ⊆ Lext is observable w.r.t. Lext, π and Σc, but not co-observable w.r.t.

Lext, πi and Σc,i (i = {1, 2}). Construct a coherent communication protocol φ1′,2, such

that Kext is communication observable w.r.t. Lext, Σo,1, Σo,2 ∪ Σ?, Σc,i, (i = {1, 2})
and φ1′,2.

For Problem 6.1 and 6.2, the set of observable events Σo,i, and controllable events

Σc,i are the same for all i ∈ I. Similarly a received message, ?σ ∈ Σ? is observable to

Controller 2 in both problems. For instance, if σ ∈ φ1,2, this means that Controller

1 communicates the occurrence of event σ to Controller 2, then the corresponding

119

“message delivery event” is received by Controller 2, i.e., ?σ ∈ Σ?. The received

messages are also observable to the corresponding dummy Controller 1′ in Problem

6.2, but the dummy controller is not able to disable or force any event.

Example 6.1 (continued). Next we consider Cdact and the extended plant

Mact,ext.

The ATG models for events in Σo,1 − Σo,2 = {a, c} are given in Figure 6.7.

Figure 6.7: (a) Cda and (b) Cdc .

Finally Cdact = Cda ||Cdc and Mact,ext = Mact||Cdact. Mact,ext has 24 states and 36 tran-

sitions. Let Mext denote the TTG of Mact,ext. Part of Mext is shown in Figure 6.8. In

Mext, each delivery message ?a is replaced with (?a, nd), where nd is the delay in clock

ticks from the generation of a to occurrence of ?a. We consider no forcible events in

the plant, so that τ is uncontrollable in that case. While Mext is the collection of all

transitions, MK,ext is the collection of only solid-line transitions. Let consider s1 =

τaττb?aττττcττ (with a communication delay of 2), s2 = τaτ?aτb ττττcττ (with a

communication delay of 1), and s′1 = τττbτaτ?aτττcτ , s′2 = τττbτaτ?aτττcτ . Here

Kext is not co-observable w.r.t. Lext and Σo,2, since π2(s1) = π2(s
′
1) = τττbττττττ

and π2(s2) = π2(s
′
2) = τττbττττττ , i.e., Controller 2 cannot take correct control

decision regarding σ.

The set of observable events for dummy controllers are Σo,1′ = {?a, ?c}. We

120

1

2

3

4

15

16

5 17

6

18

7

19

9

20
8

21

10

22

11

23

12

24

13

25

14

τ τ

τ τ

? τ

τ

?

τ
?

τ

τ

?

τ

?

?

τ
3

τ
3

?

τ

τ

?

τ

σ

τ

σ

τ

τ

τ

Figure 6.8: A portion of TTG of the extended plant, Mext.

121

consider a corresponding communication protocol

φ1′,2 =

⎧⎪⎪⎨
⎪⎪⎩
?a, if s ends in ?a,

ε, otherwise,

where a dummy controller 1′ sends ?a to Controller 2 through a synchronous commu-

nication channel.

This is equivalent to

φ1,2 =

⎧⎪⎪⎨
⎪⎪⎩
?a, if s ends in a,

ε, otherwise.

Then, π2(s1) = τεττb 〈?a, 2〉 ττττεττ �= π2(s
′
1) = τττbτετ 〈?a, 1〉 τττετ . Note the

time stamp allows us to know that in s1, event a occurred before b.

Similarly π2(s2) = τετ 〈?a, 1〉 τbττττεττ �= π2(s
′
2) = τττbτετ 〈?a, 1〉 τττετ . It can

be verified that Kext is communication observable w.r.t. Lext, Σo,2∪Σ?, Σc,2 and Φ1′,2.

The following proposition shows that a solution for Problem 6.2 gives a solution

for Problem 6.1 and vice versa.

Proposition 6.1. πΣ(L(Γ1 ∧ Γ2/Mtot)) ⊆ K with φ1,2 iff Kext is communication

observable w.r.t. Lext, Σo,1, Σo,2 ∪ Σ?, Σc,i, (i ∈ {1, 2}) and φ1′,2.

Proof. (⇒) Suppose that πΣ(L(Γ1 ∧ Γ2/Mtot)) ⊆ K with φ1,2. Then (∀s ∈ L),

(∀σ ∈ Σc), sσ ∈ L\K, there exists i ∈ {1, 2} that can take correct control decision.

That means controller i disables σ after the sequence s ∈ L with the communica-

tion protocol φ1,2 and any delay not longer than d. Hence, there exists no s′ ∈ K

observationally equivalent to sσ.

In Mext, the received messages ?σ ∈ Σ? are incorporated with all possible delays

between 0 and d. So for a sequence s ∈ L with φ1,2 and any delay not longer than

122

d such that [s1]?i ∈ Lext, there exists a corresponding sequence s1 ∈ Lext with φ1′,2.

Since there exists no s′ ∈ L observationally equivalent to sσ, we conclude that there

exists no s′1 ∈ Lext such that s′1 ∈ Kext and [s1]?iσ = s′1 with φ1′,2. That means

[s1]?iσ ∩Kext = ∅. Then Kext is communication observable w.r.t. Lext, Σo,1, Σo,2 ∪Σ?,

Σc,i, (i ∈ {1, 2}) and φ1′,2.

(⇐) Suppose that Kext is communication observable, then (∀s ∈ Lext), (∀σ ∈ Σc),

sσ ∈ Lext\Kext ⇒ (∃i ∈ {1, 2}). [s]?iσ ∩Kext = ∅. That means controller i disables σ

after the sequence s ∈ Lext with the communication protocol φ1′,2. Hence there exists

no s′ ∈ Lext such that s′ ∈ Kext and [s]?iσ = s′.

To synthesize communication protocols in ML, the communication messages are

received through a sequence s with a delay between 0 and d. Since the received

messages are already incorporated in Mext, there exists a corresponding sequence

s1 ∈ L (with φ1,2 and a bounded delay [0..d]) of s ∈ Lext (with φ1′,2). Since there exists

no s′ ∈ Lext, there also exists no s′1 ∈ L such that s′1 ∈ K and s′1 is observationally

equivalent to s1σ for either controllers with φ1,2 and a delay between 0 and d.

Finally as explained in the next section we construct a product automaton, de-

noted by Vτ , similar to U1 and U2 of the previous chapter. Vτ finds the violations

of co-observability in the extended plant with synchronous communication in TDES

and to specify the communication protocol.

6.2.1 Building Vτ

The automaton Vτ is generated by composing Mext with n = 2 versions of (MK,ext)i,

one for each controller i ∈ I = {1, 2}:

Vτ = (Z,ΣV , TV , z0, FV) = Mext ×S Πn
i=1(MK,ext)i.

123

The alphabet of Vτ is similar to the set of vector labels defined in Um(m ∈ {1, 2}) in
the previous chapter.

A transition (z, l, z′) ∈ TV , where z = (q, q1, . . . , qn) and z′ = (q′, q′1, . . . , q
′
n) with

label l = 〈l(0), l(1), . . . , l(n)〉 iff (q, l(0), q′) ∈ Text, and also for all i ∈ I, (qi, l(i), q
′
i) ∈

TK,ext.

The set of marked transitions is defined as follows:

FV = {(z, l, z′) ∈ TV |

((z(0), l(0), z′(0)) ∈ Text\TK,ext ∧ ∀i ∈ Ic(l(0)) : (z(i), l(i), z
′(i)) ∈ TK,ext)}

This means a marked transition in Vτ defines a situation where an event σ ∈
Lext\Kext must be disabled, but all controllers believe that σ should be enabled.

Thus, a marked transition encodes a violation of co-observability.

We assume that each controller has prior knowledge about the communication:

(i) only the “message delivery events” are being communicated, and (ii) Controller 2

receives a message ?σ from a dummy controller 1′ if σ ∈ Σo,1\Σo,2. A communication

may occur in Vτ , when a “message delivery event” ?σ ∈ Σ? occurs in the plant, i.e.,

�(0) =?σ and for all i ∈ I, �(i) = ε; and in the consecutive transition ∃j ∈ I such

that �(j) =?σ, and �(0) = ε, ∀i ∈ I\{j}, �(i) = ε. Then there is a communication

sent by a dummy controller 1′ (where ?σ ∈ Σ?) to controller 2, defined by a transition

where �(0) =?σ, �(2) =?σ and �(1) = ε. In that case, if controller 1′ makes a decision

to communicate the occurrence of ?σ ∈ Σ? to controller 2, the previous transitions

that ensures the communication are pruned from Vτ .

Lemma 1. FV = ∅ iff Kext is communication observable w.r.t. Lext, Σo,1, Σo,2 ∪ Σ?,

Σc,i, (i ∈ I), φ1′,2.

Proof. (⇒) Suppose that FV = ∅, but Kext is not communication observable w.r.t.

124

Lext, Σo,1, Σo,2 ∪Σ?, Σc,i (i ∈ I), φ1′,2. By definition, there exists s ∈ Kext and σ ∈ Σc

such that sσ ∈ Lext \ Kext and there exists s′ ∈ Kext such that (∀i ∈ {1, 2})s′σ ∈
[s]?iσ ∩Kext.

In Mext, we have q0
s−→ q

σ−→ q′ ∈ Text, where (q, σ, q′) ∈ Text \ TK,ext and in each

MK,ext, we have q0
s′−→ qi

σ−→ q′i ∈ TK,ext, for all i ∈ {1, 2}.
From the construction of Vτ , we know that (∀i ∈ {1, 2}) πi(s) = πi(s

′). Thus

there exists a trace in Vτ such that z0
w−→ z, where w(0) = s and for all i ∈ {1, 2},

∃s′ ∈ Kext . w(i) = s′. In addition, we have (z, �, z′) ∈ TV where z(0) = q, �(0) = σ,

z′(0) = q′ and z(i) = qi, �(i) = σ, z′(i) = q′i. By the definition of FV , we have

(z, �, z′) ∈ FV , thereby reaching a contradiction.

(⇐) Suppose that Kext is communication observable w.r.t. Lext, Σo,1, Σo,2 ∪ Σ?,

Σc,i (i ∈ I), φ1′,2, but FV �= ∅.
By the definition, (z(0), �(0), z′(0)) ∈ Text \ TK,ext and ∀i ∈ Ic(�(0)), (z(i), �(i),

z′(i)) ∈ TK,ext and �(i) = �(0). Let w = �1�2 . . . �|w| ∈ Σ∗
V such that z0

w−→ z ∈ TV .

Let s = w(0) and there exists s′ ∈ Kext for all i ∈ Ic(�(0)) such that s′ = w(i). Since

z0
w−→ z

�−→ z′ ∈ TV , we have s�(0) ∈ Lext \ Kext and s′�(i) ∈ Kext, ∀i ∈ Ic(�(0)).

The only labels on which s and s′ synchronize are those of the form � = 〈�(0) =

γ, . . . , �(i) = γ, . . .〉 in which γ ∈ Σo and γ ∈ Σo,i, therefore πi(s) = πi(s
′). Thus we

have s′�(i) ∈ [s]?i �(i) ∩ Kext, arriving at a contradiction that Kext is communication

observable w.r.t. Lext, Σo,1, Σo,2 ∪ Σ?, Σc,i (i ∈ I), φ1′,2.

A portion of Vτ is shown in Figure 6.9, where an example of marked transitions for

the ongoing example is illustrated. The transition ((13, 13, 24), 〈σ, σ, σ〉, (14, 14, 25))
is marked because σ must be disabled according to Mext (colored here in red), whereas

all the controllers in Ic(σ) believe that σ should be enabled (colored in green). So

that Kext is not communication observable w.r.t. Lext, Σo,1, Σo,2 ∪ Σ?, Σc,i, (i ∈ I)

and φ1′,2.

125

(1,1,1) (2,2,2) (3,3,2) (4,4,2) (5,4,15)

(5,5,15)(8,8,16)(9,5,16)(9,9,16)(9,9,17)

(9,9,20) (10,10,21) (11,11,21) (11,11,22)

(13,13,24)(14,14,25)

−→
τ 〈a,a,ε〉 −→

τ 〈b,ε,b〉

〈ε,b,ε〉

−→
τ〈?a,ε,ε〉〈ε,?a,ε〉〈ε ,ε,a〉

〈ε,ε ,?a〉

−→
τ 〈c,c,ε〉 〈ε,ε ,c〉

−→
τ

〈σ ,σ ,σ〉

Figure 6.9: A portion of Vτ : a marked transition is highlighted in red where no
controller i ∈ Ic(σ) can take the correct control decision.

A communication occurs in Vτ is shown in Figure 6.10 (highlighted in blue color).

Here Controller 1′ communicates the occurrence of ?a to Controller 2 ((5, 5, 5), 〈?σ, ε, ?σ〉,
(9, 5, 9)). In that case, the transitions ((5, 5, 5), 〈?σ, ε, ε〉, (9, 5, 5)) and ((9, 5, 5),

〈ε, ε, ?σ〉, (9, 5, 9)) are pruned from the Vτ . The reception of ?a forces Controller 2

to follow the plant behavior. Hence Controller 2 believes that σ should be disabled

(colored in red), and it takes correct control decision regarding σ through the transi-

tion ((13, 13, 13), 〈σ, σ, σ〉, (14, 14, 14)). Then Kext is communication observable w.r.t.

Lext, Σo,2 ∪ Σ?, Σc,i i = {1, 2} and φ1′,2.

(1,1,1) (2,2,2) (3,3,2) (3,3,3) (4,4,4)

(5,4,5)(5,5,5)

(9,5,5)

(9,5,9)(9,9,9)

(10,10,10) (11,11,12) (11,11,11) (13,13,13) (14,14,14)

−→
τ 〈a,a,ε〉 〈ε,ε,a〉 −→

τ

〈b,ε,b〉

〈ε,b,ε〉

〈?a,ε,ε〉

〈?a,ε,?a〉

〈ε,ε,?a〉

〈ε ,?a,ε〉

−→
τ

〈c,c,ε〉 〈ε,ε,c〉 −→
τ 〈σ ,σ ,σ〉

Figure 6.10: A communication occurs from (5, 5, 5) to (9, 5, 9), shown in
blue. Controller 2 then takes correct control decision through the transition
((13, 13, 13),〈σ, σ, σ〉,(14, 14, 14)).

When tick events are observable to the controllers, a TDES is similar to the

126

corresponding untimed DES from the behavioural perspective. Hence, we convert

the timed decentralized supervisory control problem with bounded-delay communi-

cation to an equivalent problem with synchronous communication, and synthesize the

controllers using the approach modeled for synthesizing synchronous communication

protocols in untimed DES.

127

Chapter 7

Conclusions and Future Work

This chapter summarizes research contributions. It concludes with some future re-

search directions.

7.1 Concluding Remarks

We perform quantitative analysis for the decentralized discrete-event control and com-

munication problem by finding locally-optimal communication policies. An optimal

strategy is one that minimizes the cost of the communication protocol for each con-

troller. Communication policies in decentralized DES have been initially examined

in the context of Nash equilibrium. A recent algorithm for efficiently calculating a

Nash equilibrium point for multi-agent systems in a game-theoretic setting is adapted

for the problem of incorporating communication into decentralized discrete-event sys-

tems. We present two algorithms for exploring Nash equilibrium in the decentralized

DES control problem: one for two controllers, and the other for more than two con-

trollers.

We also extend our analysis to Pareto optimality, which is typically used when

there are multiple objectives to optimize. The trade-off between the cost and the

128

accuracy of a decentralized discrete-event control solution with synchronously com-

municating controllers was explored as a multi-objective optimization problem. We

examine a class of problems where communication is necessary to achieve the ex-

act control solution. However, in some circumstances, it may be advantageous to

reduce communication from a cost perspective, but incur a penalty for synthesiz-

ing an approximate control solution. A widely-used evolutionary algorithm, namely

non-dominated sorting genetic algorithm (NSGA-II), is adapted to examine the set

of Pareto-optimal solutions that arise for this family of decentralized discrete-event

systems.

Synchronous communication in untimed decentralized supervisory control prob-

lems has been explored in the previous model, where controllers communicate with

each other without delay via a communication channel. In reality, delays in com-

munication play a significant role in controllers’ decisions, when some events may

occur in the plant between sending a message by one controller and receiving that

message by another controller. For this reason, we extend our work to the case of

communication channels with bounded delay. Instead of synthesizing communication

protocols w.r.t. a fixed or a bounded (but not necessarily fixed) delay communica-

tion, first we verify the robustness of synchronous communication protocols that are

already synthesized for supervisory control problems. We do not limit our study to

just optimal communication protocols and assume that the given protocol does not

necessarily communicate all of their observations to all the other controllers.

Finally, we consider direct solution of decentralized control and communication

with bounded delay using timed discrete event models. The communication delay

was illustrated by a special tick event, denoted by τ . We assumed that a global

digital clock is available to the controllers. To solve the problem, we show that it can

be converted to an equivalent problem with synchronous communication for which

129

solution can be synthesized using the same procedure for solving decentralized control

and communication problems in untimed DES.

7.2 Future Research Directions

The following directions are suggested for research on optimal solutions to the decen-

tralized DES control and communication problem.

7.2.1 Synthesizing Optimal Communication Protocol with

Fixed and Bounded Delay

The synthesis of optimal communication protocols for either fixed or bounded delay

can be done with minor adaptations to the robustness techniques outlined in Chapter

5. However, when a synchronous communication protocol is not robust with a fixed

delay or a known upper-bounded delay, it will be a valuable research to optimize

communication protocols under the condition of fixed and bounded delay in commu-

nication. For the quantitative analysis, one may impose a cost as a penalty for certain

delay. In addition, it would be interesting to apply the concepts of game theory to

optimize the communication protocol with bounded delay communication.

7.2.2 Multi-Objective Optimization in Control with Commu-

nication under Bounded Delay

We may update the cost functions defined in case of synchronous communication to

cope with the effect of delay in making the control decisions. In a similar fashion, the

multi-objective optimization problem can be defined in decentralized DES by taking

the communication delay into account. Then we may apply the same concept of

Pareto-optimal solution and adapt an evolutionary algorithm to solve the problem.

130

It would also be interesting to apply our strategy to a practical application, such as

smart grid or smart buildings.

7.2.3 Synthesizing TDES Control Solutions

It might be an interesting research topic for synthesizing communication protocols

and the communicating controllers for supervisory control problems in TDES. The

quantitative analysis can be done using a similar approach to that of untimed DES.

Since τ is only used to represent a clock tick, one may incur a cost of zero for this

event. In addition, it would be feasible to adjust the algorithms for synchronous

communication protocols in untimed DES, so that the protocols will also work in a

TDES. It would be also interesting to extend our work to cyclic systems, since our

research was restricted to acyclic systems for TDES models.

7.2.4 Synthesizing Asynchronous Communication for

Distributed System

An interesting research topic is the synthesis of truly asynchronous communication

protocols for distributed architectures. It would be more realistic to consider a local

clock for each controller. We may measure the exact time when an event occurs in

the plant, similarly the local clock measures the time when a controller observes an

event. We assume that when an event is transmitted by a controller, it is sent in

the same clock cycle as the controller observes it. When the message is received by

another controller, it also counts the exact time of receiving the message. Then we

need to find out how many events occur in the plant between sending an event by one

controller and receiving that event by another controller. Hence, a communication

protocol has to be synthesized with an unknown delay to solve the problem. It might

be a good idea to adapt the algorithms of finding optimal synchronous communication

131

protocols to synthesize optimal asynchronous communication protocols.

7.2.5 Real-World Applications

We may use NSGA-II algorithm to small real-world application. It would be interest-

ing to implement the algorithms to find Nash equilibrium and Pareto optimality for

some practical applications. In addition, it would be useful to apply the our results

on delay-robustness of a synchronous communication protocol and solutions to the

control problem using TDES models to real-world applications.

132

Bibliography

[1] S. Alexandra. A note on global Pareto optimality in multicriteria optimization

problems. Nonlinear Analysis, 69:1321–1324, 2008.

[2] A. Arnold. Finite Transition Systems. Prentice-Hall, 1994.

[3] T. Back. Evolutionary Algorithms in Theory and Practice: Evolution Strategies,

Evolutionary Programming, Genetic Algorithms. Oxford University Press, 1996.

[4] G. Barrett and S. Lafortune. Decentralized supervisory control with communi-

cating controllers. IEEE Transactions on Automatic Control, 45(9):1620–1638,

2000.

[5] R.K. Boel and J.H. van Schuppen. Decentralized failure diagnosis for discrete-

event systems with costly communication between diagnosers. In Proceedings of

International Workshop on Discrete-Event Systems (WODES), pages 175–181,

Saragoza, Spain, 2002.

[6] B.A. Brandin and W.M. Wonham. Supervisory control of timed discrete-event

systems. IEEE Transactions on Automatic Control, 39(2):329–342, 1994.

[7] K. Chatterjee, L. Doyen, and T.A. Henzinger. Quantitative languages. ACM

Transactions on Computational Logic, 11(4), 2010.

133

[8] I. Chattopadhyay and A. Ray. A language measure for partially observed discrete

event systems. International Journal of Control, 79(9):1074–1086, September

2006.

[9] R. Cieslak, C. Desclaux, A.S. Fawaz, and P. Varaiya. Supervisory control of

discrete-event processes with partial observations. IEEE Transactions on Auto-

matic Control, 33(3):249–260, 1988.

[10] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated

sorting genetic algorithm for multi-objective optimization: NSGA - II. IEEE

Transactions on Evolutionary Computation, 6(2):182–197, 2002.

[11] K. Deb and N. Srinivas. Multi-objective function optimization using non-

dominated sorting genetic algorithm. Evolutionary Computation, 2(3):221–248,

1995.

[12] E. Dumitrescu, A. Girault, H. Marchand, and E. Rutten. Multicriteria optimal

reconfiguration of fault-tolerant real-time tasks. Proceedings of WODES, pages

366–373, 2010.

[13] C.C. Elgot and J.E. Mezei. On relations defined by generalized finite automata.

IBM Journal of Research and Development, 9(1):47–68, 1965.

[14] C.M. Fonseca and P.J. Fleming. Multiobjective optimization and multiple con-

straint handling with evolutionary algorithms-part II: Application example.

IEEE Transactions on Systems, Man, and Cybernetics: Part A: Systems and

Humans, pages 38–47, 1998.

[15] A. Gambier and E. Badreddin. Multi-objective optimal control: An overview.

In Proceedings of 16th IEEE International Conference on Control Applications,

pages 170–175, Singapore, 2007.

134

[16] K. Hiraishi. On solvability of a decentralized supervisory control problem

with communication. IEEE Transactions on Automatic Control, 54(3):468–480,

March 2009.

[17] J. Knowles and D. Corne. The Pareto archived evolution strategy: A new baseline

algorithm for multiobjective optimization. In Proceedings of the 1999 Congress

on Evolutionary Computation, pages 98–105, New Jersey, 1999.

[18] R. Kumar and V.K. Garg. Optimal supervisory control of discrete event dynam-

ical systems. SIAM Journal of Applied Mathematics, 33:419–439, 1995.

[19] C. Lemke and J. Howson. Equilibrium points of bi matrix games. SIAM Journal

of Applied Mathematics, 12(2):413–423, 1964.

[20] F. Lin and W. Wonham. On observability of discrete-event systems. Information

Sciences, 44(3):173–198, 1988.

[21] S. Luke. Essentials of Metaheuristics. Lulu, 2009, Available at

http://cs.gmu.edu/ sean/book/metaheuristics/.

[22] P. Madhusudan, P.S. Thiagarajan, and Shaofa Yang. The MSO theory of con-

nectedly communicating processes. Lecture Notes in Computer Science, Springer,

3821:201–212, 2005.

[23] A. Mannani and P. Gohari. Decentralized supervisory control of discrete-event

systems over communication networks. IEEE Transactions on Automatic Con-

trol, 53(2):547–559, 2008.

[24] H. Marchand, O. Boivineau, and S. Lafortune. On optimal control of a class of

partially-observed discrete event systems. Automatica, 38(11):1935–1943, Octo-

ber 2002.

135

[25] J. Nash. Equilibrium points in n-person games. In Proceedings of National

Academy of Sciences, volume 36, pages 48–49, 1950.

[26] M. Nomura and S. Takai. Decentralized supervisory control of timed discrete

event systems. IEICE Transactions on Fundamentals, E94-A(12), 2802–2809

2011.

[27] A. Overkamp and J.H. van Schuppen. Maximal solutions in decentralized super-

visory control. SIAM Journal of Control and Optimization, 39:492–511, 2000.

[28] S.J. Park and H.L. Cho. Time-coobservability in the decentralized supervisory

control of timed discrete event systems. Journal of Institute of Control, Robotics

and Systems, 15(4):396–399, April 2009.

[29] R. Porter, E. Nudelman, and Y. Shoham. Simple search methods for finding a

Nash equilibrium. Games and Economic Behavior, 63(2):642–662, 2008.

[30] W. Qiu and R. Kumar. Distributed diagnosis under bounded-delay commu-

nication of immediately forwarded local observations. IEEE Transactions on

Systems, Man, and Cybernetics: Part A: Systems and Humans, 38(3):628–643,

2008.

[31] P.J. Ramadge and W. Wonham. Supervisory control of a class of discrete event

processes. SIAM Journal of Control Optimization, 25(1):206–230, 1987.

[32] P.J. Ramadge and W. Wonham. The control of discrete-event systems. In Pro-

ceedings of IEEE, volume 77, pages 81–98, 1989.

[33] A. Ray, J. Fu, and C. Lagoa. Optimal supervisory control of finite state au-

tomata. International Journal of Control, 77(12):1083–1100, July 2004.

136

[34] A. Ray, A. Surana, and S. Phoha. A language measure for supervisory control.

Applied Mathematics Letters, 16:985–991, February 2003.

[35] S.L. Ricker. Knowledge and communication in decentralized discrete-event con-

trol. PhD Dissertation, Queen’s University, December 1999.

[36] S.L. Ricker. Asymptotic minimal communication for decentralized discrete-event

control. In Proceedings of International Workshop on Discrete-Event Systems

(WODES), pages 486–491, Goteburg, Sweden, 2008.

[37] S.L. Ricker and B. Caillaud. Mind the gap: Expanding communication options

in decentralized discrete-event control. Automatica, 47:2364–2372, 2011.

[38] S.L. Ricker and K. Rudie. Incorporating communication and knowledge into

decentralized discrete-event systems. In Proceedings of IEEE Conference on De-

cision and Control, pages 1326–1332, Phoenix, AZ, 1999.

[39] S.L. Ricker and J. van Schuppen. Asynchronous communication in timed

discrete-event systems. Proceedings of ACC, pages 305–306, December 2001.

[40] K. Rudie, S. Lafortune, and F. Lin. Minimal communication in a distributed

discrete-event system. IEEE Transactions on Automatic Control, 48(6):1965–

1970, June 2003.

[41] K. Rudie andW. Wonham. Think globally, act locally: Decentralized supervisory

control. IEEE Transactions on Automatic Control, 37(11), November 1992.

[42] R. Rudolph. Evolutionary search under partially ordered sets. Technical report,

CI-67/99, Department of Computer Science, University of Dortmund, 1999.

137

[43] W.H. Sadid, S.L. Ricker, and S. Hashtrudi-Zad. Nash equilibrium for com-

munication protocols in decentralized discrete-event systems. pages 3384–3389,

Baltimore, MD, June 2010.

[44] W.H. Sadid, S.L. Ricker, and S. Hashtrudi-Zad. Multiobjective optimization

in control with communication for decentralized discrete-event systems. pages

372–377, Orlando, FL, December 2011.

[45] W.H. Sadid, S.L. Ricker, and S. Hashtrudi-Zad. Robustness of synchronous

communication protocols with bounded delay for decentralized discrete-event

control. pages 181–186, Guadalajara, Mexico, October 2012.

[46] W.H. Sadid, S.L. Ricker, and S. Hashtrudi-Zad. Robustness of synchronous com-

munication protocols with delay for decentralized discrete-event control. Submit-

ted for journal publication, 2013.

[47] T. Sandholm, A. Gilpin, and V. Conitzer. Mixed-integer programming methods

for finding Nash equilibria. In Proceedings of AAAI Conference, pages 495–501,

Pittsburgh, PA, 2005.

[48] Y. Sawaragi, H. Nakayama, and T. Tanino. Theory of Multiobjective Optimiza-

tion. Academic Press, Orlando, 1985.

[49] R. Sengupta and S. Lafortune. An optimal control theory for discrete event

systems. SIAM Journal of Control Optimization, 36(2):488–541, March 1998.

[50] R.E. Steuer. Multiple Criteria Optimization: Theory, Computation and Appli-

cation. John Wiley, New York, 1986.

[51] S. Takai and R. Kumar. Distributed prognosis of discrete event systems under

bounded delay communications. Proceedings of CDC, pages 1235–1240, 2009.

138

[52] David P.L. Thorsley. Applications of stochastic techniques to partially observed

discrete event systems. PhD Dissertation, University of Michigan, 2006.

[53] S. Tripakis. Decentralized control of discrete event systems with bounded or

unbounded delay communication. IEEE Transactions on Automatic Control,

49(9):1489–1501, September 2004.

[54] S. Tripakis. Undecidable problems of decentralized observation and control on

regular languages. Information Processing Letters, 90:21–28, 2004.

[55] J.H. van Schuppen. Decentralized control with communication between con-

trollers. Unsolved Problems in Mathematical Systems and Control Theory, pages

144–150, 2004.

[56] W. Wang, S. Lafortune, and F. Lin. Minimization of communication of event

occurrences in acyclic discrete event systems. IEEE Transactions on Automatic

Control, 53(9):2197–2202, 2008.

[57] K.C. Wong and J.H. van Schuppen. Decentralized supervisory control of discrete-

event systems with communication. In Proceedings of International Workshop

on Discrete-Event Systems, pages 284–289, Edinburgh, 1996.

[58] P. Woźniak. Multi-objective control systems design with criteria reduction. Lec-

ture Notes in Computer Science, Springer, 6457:583–587, 2010.

[59] E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary

algorithms: Empirical results. Evolutionary Computation, 8(2):173–195, 2000.

[60] E. Zitzler, M. Laumanns, and S. Bleuler. A Tutorial on Evolutionary Multiob-

jective Optimization. Lecture Notes in Economics and Mathematical Systems.

Springer, 2004.

139

[61] E. Zitzler and L. Thiele. Multiobjective optimization using evolutionary algo-

rithms: A comparative case study and the strength Pareto approach. IEEE

Transcations on Evolutionary Computation, 3(4):257–271, 1999.

140

