
AUTOMATIC DATA MIGRATION INTO THE CLOUD

Kushal Mehra

A thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Applied Science

(Software Engineering)

Concordia University

Montréal, Québec, Canada

January 2014

c© Kushal Mehra, 2014

Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Kushal Mehra

Entitled: Automatic Data Migration into the Cloud

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Software Engineering)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

Chair

Dr. T. Popa

Examiner

Dr. T. Eavis

Examiner

Dr. N. Shiri

Supervisor

Dr. Y. Yan

Co-supervisor

Dr. D. Lemire

Approved by

Chair of Department or Graduate Program Director

Dr. Christopher W. Trueman, Interim Dean

Faculty of Engineering and Computer Science

Date

Abstract

Automatic Data Migration into the Cloud

Kushal Mehra

Relational databases have been used for decades to store data. Using scale up, rela-

tional databases require a bigger and bigger server with more CPUs, more memory,

and more disk storage to keep all the tables to support more concurrent users. How-

ever, big servers tend to be highly complex, proprietary, and disproportionately ex-

pensive, unlike the low-cost, commodity hardware. Therefore, it becomes important

to store data efficiently and compute with massive amount of data, providing high

scalability, providing high performance and availability at low costs. This leads to

the invention of cloud databases, for instance NoSQL databases. NoSQL databases

have many advantages such as reading and writing data quickly, supporting massive

storage and low cost. The scaling approach in cloud databases is scale out, which

is used to add multiple servers, and the data structure of storage is in the form of

key-value pairs. However, it can be a challenge for enterprises to migrate existing

relational databases to highly scalable NoSQL databases on clouds.

iii

In this thesis, we propose an automatic data migration model which will assist

enterprises to migrate their relational databases efficiently and transparently to the

cloud databases. We propose four migration methods to migrate data in four different

ways. Each migration method is independent of the others and stores the migrated

relational database in different formats in the cloud database.

We design a system to implement the automatic data migration model. As a

proof of concept, we successfully migrated a relational database from Microsoft SQL

Server to a cloud database Amazon SimpleDB using four different migration meth-

ods. Furthermore, we have conducted extensive experiments on Amazon SimpleDB

to evaluate the performance of our model in terms of computational time, storage

cost, sharding and redundancy. Based on these experiments and detailed analysis of

each migration method, our system allows enterprises to determine which method is

suitable for their data migration. Furthermore, our experimental evaluation shows

that our solution is promising and can migrate data from the relational databases to

the cloud databases.

iv

Acknowledgments

With immense gratitude , I acknowledge my advisors, Professors, Dr. Yan and Dr.

Lemire for providing continuous support, mentoring, guidance over the course of my

master’s study. I heartily thank my advisors for helping me to complete this work.

I am very thankful to Dr. Lemire for being such a wonderful mentor, for guiding

me and providing me with in-depth feedback on various aspects of my work. Dr.

Yan’s guidance and mentoring has helped me improve on various aspects, such as

ability to critically evaluate my own work, the ability to find insights into the big

problems and hence finding a solution for those problems.

I am also thankful to all my friends during my master’s program. Special thanks

go to Min Chen and Jing Li, for the funny and wonderful moments we shared in the

lab. I greatly thank Min Chen, PhD student, for helping me understand difficult

aspects of my work and in writing my thesis.

Most importantly, I have immense gratitude for my family, for providing me with

an amount of great support guidance and sacrifice during the harder times. My

v

father and mother are the main source of my inspiration and motivation. My sisters,

Karuna and Gayatri, are my first teachers in my life and their continuous guidance

and support has helped me achieve my goals. I don’t have enogh words to thank my

parents and my sisters .

vi

Contents

List of Figures xii

List of Tables xv

1 Introduction 1

1.1 Cloud Computing . 1

1.2 Motivations and Challenges . 2

1.3 Thesis Overview . 7

1.4 Contributions and Impact . 9

1.5 Organization . 10

2 The State of the Art 11

2.1 Background of Distributed Database Systems 11

2.2 Cloud Data Management . 13

2.2.1 Key-value Storage . 14

vii

2.2.2 Structure Selection . 16

2.2.2.1 Data Models . 16

2.2.2.2 Data Replication and Fault Tolerance 17

2.2.3 Data Distribution . 18

2.3 Data Migration Methods and Characteristics 18

2.3.1 Relational-Cloud Mapping . 19

2.3.2 Data Migration Methods . 20

2.3.2.1 Technical Models . 21

2.3.2.2 Process based Models 26

2.3.3 Data Migration Levels . 30

2.4 Summary . 32

3 Data Migration Methods 33

3.1 Design Principles . 34

3.2 Problem Description . 35

3.3 Amazon SimpleDB . 38

3.4 Characteristics of Cloud Databases 40

3.5 Data Migration Methods . 42

3.5.1 Existing Migration Methods 42

3.5.2 Definition of Variables . 44

3.5.3 Mapping Strategies . 46

viii

3.6 Migration Methods . 53

3.6.1 Type 1 Migration . 54

3.6.2 Type 2 Migration . 55

3.6.3 Type 3 Migration . 56

3.6.4 Type 4 Migration . 57

3.7 Joins . 59

3.7.1 Join in Type 1 and Type 2 . 59

3.7.2 Join in Type 3 . 61

3.7.3 Join in Type 4 . 63

3.8 Sharding . 64

3.9 Redundancy . 65

3.10 Comparison of Migration Methods . 67

4 Data Migration Model 69

4.1 Architecture of the Migration Model 70

4.2 Implementation Details . 72

4.2.1 Business Layer . 73

4.2.2 Data Access Layer . 73

4.2.3 GUID Generation and Conversion of Data 75

4.2.4 Graphical User Interface . 76

4.2.5 Schema Mapping . 80

ix

4.3 Data Migration Objectives . 81

4.4 Limitations . 82

5 Experiments 84

5.1 Type 1 Migration Experiment . 86

5.1.1 Join . 88

5.2 Type 2 Migration Experiment . 89

5.2.1 Join . 91

5.3 Type 3 Migration Experiment . 92

5.3.1 Join . 94

5.4 Type 4 Migration Experiment . 94

5.4.1 Join . 97

5.5 Code Generation . 98

6 Performance Evaluation 101

6.1 Experiment Setup . 101

6.2 Performance Model . 102

6.2.1 Computational Time . 102

6.2.2 Storage Cost . 104

7 Conclusion and Future Directions 108

7.1 Conclusion . 108

x

7.2 Future Direction . 109

Bibliography 111

xi

List of Figures

1 The classic software stack of web application [32] 4

2 Global DM forecast and overruns 2007–2012 [25] 7

3 Data sharding takes large databases and breaks them down into smaller

databases. 13

4 The two schema conversion strategies [23] 22

5 Data migration model [1] . 23

6 Generic migration architecture [21] 24

7 The Data migration approach [3] . 25

8 Process model [37]. 26

9 Business concept and technical relation [37] 27

10 Migration scenarios on business, conceptual and technical levels [37] . 27

11 Data migration solution is a cyclical process [40] 29

12 Dimension triangle [20] . 30

13 Relational database schema used in the experiments 37

xii

14 SimpleDB customer structure [7] . 38

15 Mapping Strategy One . 47

16 Mapping Strategy Two . 49

17 Mapping Strategy Three . 52

18 Migration Strategies - Migration Methods Relationship 54

19 Join in Type1 or Type 2 . 60

20 Type 1 Data Migration . 62

21 Join in Type 3 . 63

22 Join in Type 4 . 64

23 Comparison of Migration Methods . 67

24 Relational-Cloud Migration . 70

25 Authentication Amazon SimpleDB 77

26 Database selection . 78

27 Display tables . 78

28 Schema display . 79

29 Relational schema used in the experiments 85

30 Type 1 conversion . 86

31 Type 1 tool interface . 87

32 Type 1 SimpleDB interface . 88

33 Type 2 conversion . 90

xiii

34 Type 2 interface . 91

35 Type 3 conversion . 92

36 Type 3 interface . 93

37 Type 4 migrated schema . 95

38 Type 4 interface . 96

39 Type 4 SimpleDB interface . 97

40 Code generation interface . 99

41 Select, Insert, Delete and Update code generation. 100

42 Performance model . 102

43 Computational time of fetching records 103

44 Storage cost of 10GB data . 106

45 Storage cost of 25GB data . 107

xiv

List of Tables

1 Global DM budget forecast leading 3 industry sectors in $m: 2007–2012

[25] . 7

2 Data migration methodology levels [20] 30

3 Relational database and SimpleDB equivalence 39

4 SimpleDB vs Relational Database . 40

5 Cloud databases Characteristics . 41

6 Type 1 join . 89

7 Type 2 join . 92

8 Type 3 join . 94

9 Type 4 join . 97

10 Average Computation time (milliseconds) in different approaches . . . 104

xv

Chapter 1

Introduction

1.1 Cloud Computing

Cloud Computing has emerged as a ubiquitous paradigm where infrastructure and

solutions are provided as a service. The cloud computing market is continuously

growing. Analysts estimate the global cloud computing market is worth billions of

dollars [24]. The major features of cloud computing are: pay-per-use, i.e., does not

have an upfront cost and completely based on as usage; elasticity ability to scale up

resources, and on demand capacity.

There are three cloud models which are popular. Infrastructure as a Service (IaaS),

1

in which infrastructure (CPU, storage, network, etc.) is provided as a service. Ama-

zon web services (http://aws.amazon.com/) and Rackspace (http://www.rackspace.com/)-

are IaaS provider examples. Platform as a Service (PaaS) provides a custom platform

to build cloud applications. Then, the application is deployed in the cloud and can be

scaled. Microsoft Azure (http://www.microsoft.com/windowsazure/), Google App

Engine (http://code.google.com/appengine/), Force.com (http://www.force.com/),

and Facebook’s developer platform (https://developers.facebook.com/) are examples

of PaaS providers. In the Software as a Service (SaaS) model, cloud operators install

the application in the cloud, and cloud users access the software from the cloud. Sales-

force.com (http://www.salesforce.com/), Google Apps for Business and Enterprises

(http://www.google.com/apps/intl/en/business/index.html), and Microsoft Dynam-

ics CRM (http://crm.dynamics.com/en-us/home) are examples of SaaS providers.

1.2 Motivations and Challenges

Data is critical and central to every application. Big organizations are collecting

data at different possible levels, resulting in massive and evergrowing data reposito-

ries. Therefore, database management systems (DBMS) become critical components

for handling and manipulating data. Cloud computing provide a number of advan-

tages for the deployment of data intensive applications. One is pricing (pay-as-use)

and another is unlimited throughput by adding servers as load increases. Relational

2

database management systems (RDBMS) are examples of online transaction process-

ing (OLTP) database systems. Some of the important features of RDBMS are:

• Data Consistency: working concurrently and performing transactions, changing

the system from one consistent state to another state.

• Rich Functionality: handling diverse applications using a relational data model

and declarative query language.

• Durability: ensures persistency of data even in the case of power failure, system

crashes.

Supporting transaction is a key feature of the RDBMS which leads to increased use

of RDBMS. Although RDBMS is widely adopted and used by large organizations,

RDMS is not suitable for cloud [38]. The reason is that scaling on demand and

providing high availability is difficult in case of failures.

Consider a web application stack in Figure 1 [32]. The client’s request passed

through the load balancer to the machine which comprises of web server and the

application server. The application server takes care of application logic (e.g., in C#

with embedded SQL) and the web server handles HTTP requests. Queries and data

storage are handled by the DB Server. Most applications start with a small set of

servers. With an increase in the number of clients and requests except the database

server, all the different layers in the stack can be scaled easily by adding more servers

3

Figure 1: The classic software stack of web application [32]

to distribute the load across a larger number of servers. If the database server is

overloaded, the only other option is to buy a bigger machine. A bigger machine that

acts as the database server is costly. Therefore, the above architecture has limitations

in terms of cost and scalability.

To scale, there are two approaches: scaling up and scaling out.

• Scaling up: This approach uses multiple processors that share the same mem-

ory space. They are typically used in enterprise infrastructures to scale up

databases. However, scaling up is not preferred in cloud because the cost of

hardware increases non-linearly, which is undesirable.

• Scale out: This approach involves adding multiple machines and is the preferred

4

approach in the cloud. Scaling out reduces the overall system cost and provides

pay–per-use pricing. RDBMS cannot be scaled out because of expensive dis-

tributed synchronization.

Many large organizations are looking forward to large scale operation and they

depend upon a system called key-value pair, which is an architecture that is easy

to scale out. Google’s Big-table [9], Yahoo!’s PNUTS [12], Amazon’s Dynamo [14]

are examples. The data in these systems are distributed geographically in the form

of key-value pairs. These key-value pairs can be scaled out to large servers and can

provide low latency and high availability. The major problem with these systems

is their lack of transaction guarantees. RDBMS provides strong consistency but is

limited in its ability to scale out, while the form of key-value pairs provides scale out,

but lacks support for transaction processing.

With the continuous growth of the Internet, databases need to store and process

data efficiently. Moreover, databases need to provide high performance while reading

and writing. Relational databases are challenged much, and appear inadequate in

large scale operations and concurrent applications [22]. This leads to the development

of NoSQL databases.

With many advantages of NoSQL databases such as wanting high performance

during reading and writing, some enterprises seek to migrate their massive relational

databases to NoSQL databases. The process of transferring data between storage

5

types, formats, or computer systems is called data migration [44]. The technology

used in developing the software becomes obsolete in a number of years due to the

continuous evolution of IT [15]. A new version of a product requires updating of the

old data model and moving the client data from their present data model to the data

model used by the new version. Hence, the product requires data migration.

Thakar et al. [42] and Chanchary et al. [27] migrated a large relational database to

cloud database. [42], shows that it is impossible to migrate even smaller data without

changing the schema and the settings (e.g., the inability to migrate a spatial indexing

library and several other user-defined functions and stored procedures). Both Thakar

et al. [42] and Chanchary et al. [27] lack a migration model. Moreover, the data

model of a relational database and NoSQL database are completely different.

Howard et al. [25] estimated that the data migration market would reach $906

million by 2012, as compared to $562 million in 2007. This shows a great demand in

the requirement of data migration. Figure 2 presents the estimated data migration

market [25] .

Banking, diversified financials and utilities are the sectors predicted to drive most

of the spend on a global basis as shown in Table 1 [25].

In order to manage complex data migration processes, methods and models with

different phases and activities need to be identified. Such methods should be ap-

plicable in practice and help software companies provide complete data migration

6

Figure 2: Global DM forecast and overruns 2007–2012 [25]

solutions.

Table 1: Global DM budget forecast leading 3 industry sectors in $m: 2007–2012 [25]
Industry Sector 2007 2008 2009 2010 2011 2012
Banking 783 862 948 1043 1147 1262
Diversified Financials 414 456 502 552 607 668
Utilities 296 325 358 394 433 476

1.3 Thesis Overview

The overarching goal of this thesis is to propose a model, methods, and paradigms to

develop a system which migrates relational databases to cloud databases. This thesis

proposes four diverse methods to migrate the relational databases to cloud databases.

Each method is independent of the others.

7

• Type 1: complete relational database to one domain.

• Type 2: multiple tables to one domain.

• Type 3: a table to one domain.

• Type 4: normalization to denormalization and tables to domain

Cloud databases such as Amazon SimpleDB consists of domains. The domain

corresponds to a database table. Type 1 Migration Method migrates all the tables

in a relational database to a domain in the cloud database. Presently, the limit

of a domain in Amazon SimpleDB is 10GB. Therefore, Type 1 can only migrate a

relational database of size up to 10GB. Type 2 and Type 4 migration methods migrate

tables in the relational databases to a domain where users frequently perform joins.

Denormalization is defined as the process used to optimize the read performance of

a database by adding redundant data or by grouping data [45]. Type 4 Migration

Method denormalizes the tables and then migrates the data, whereas Type 2 migrates

normalized database. Type 3 Migration Method migrates a table in a relational

database to a domain in the cloud database. Each Migration Method migrates the

whole relational database to cloud database. Join in relational databases combine

records from two or more tables but cloud databases lack joins in order to have high

performance and scalability. The thesis provides a way of handling joins in each

approach. Finally, we propose an interface which generates code with respect to

8

cloud API and helps in code re-factoring during application migration to the cloud.

In this thesis, we use Amazon SimpleDB as an example. The other NoSQL

databases can be studied in the same way.

1.4 Contributions and Impact

We propose an automatic data migration model to migrate relational databases to

the cloud. We present the mechanism for automatic data migration and discuss in

detail each component and its significance. We present four different approaches of

data migration from relational databases to cloud databases. We present the join

functionality in cloud database. Finally we present an interface which generates

code automatically with respect to cloud API and helps in code re-factoring during

application migration to the cloud.

We have developed a prototype for all four techniques to demonstrate feasibility

of ideas and techniques proposed for migrating a relational database to the cloud. A

detailed analysis of each Migration Method allows enterprises to make a decision as

to which method is more suitable for migration based on insights from this thesis.

9

1.5 Organization

In Chapter 2 we review the state of the art in scalable and distributed database system

and study previous work. Chapter 3 presents the design principles and formulates

the problem for data migration. We propose four migration strategies. Chapter

4 presents a data migration model and discusses each component of the model in

detail. Chapter 5 presents the experimental evaluation of the model. Chapter 6

presents a performance evaluation of our model. Finally, Chapter 7 concludes the

thesis, provides some future directions, and presents some open challenges.

10

Chapter 2

The State of the Art

This chapter presents the state of the art regarding the topic of data migration. First,

we present the background of distributed systems. Then, we present the definition and

characteristics of the data migration process. Different data migration methods are

presented. The methods are categorized into technical and process based throughout

the existing literature.

2.1 Background of Distributed Database Systems

Distributed DBMSs (DDBMS) such as R* [34] and SDD-1 [39] and Parallel DBMSs

(PDBMS) such as Gamma [16] and Grace [19] are early attempts at providing scalable

database systems. DDBMS and PDBMS are used for managing databases whose

storage is distributed over a network of computers. The PDBMS allows updates but

11

it is mainly used for analytics, while DDBMS are primarily designed and intensively

used for updates.

DDBMS is limited due to the overhead of distributed transactions. Two reasons

which limit transactions are:

• Higher response time: transactions are distributed across high latency networks,

resulting in higher response times, spanning across multiple database servers.

• Limited availability of systems: guaranteeing transactions in the presence of

failures limited the availability of these systems.

Apart from these reasons, there are some other concerns which prevent widely

acceptance of distributed database systems. This leads to scaling up the DBMSs

rather than using distributed database systems.

One approach to scale up DBMS is data sharding. Database sharding provides a

method for scalability across independent servers, each with their own CPU, memory

and disk. Examples of such systems are Oracle Real Application Clusters [8], Oracle

Rdb (formerly DEC Rdb) [35], and IBM DB2 data sharing [30].

The basic concept behind sharding is taking a large database, and breaking it into

a number of smaller databases across servers. Figure 3 presents database sharding.

Some advantages of data sharding are:

• Smaller databases are easier to manage.

12

Figure 3: Data sharding takes large databases and breaks them down into smaller
databases.

• Smaller databases are faster.

• Data sharding can reduce cost.

2.2 Cloud Data Management

Many Internet companies such as Google, Yahoo! and Amazon, face the challenges

of handling millions of concurrent users. This leads to the development of key-value

storages such as Google’s Bigtable [10], Yahoo!’s PNUTS [11], and Amazon’s Dynamo

[14]. Key-value scales out to millions of commodity servers, replicating data across

geography, and ensuring high availability of user data in case of failures.

13

2.2.1 Key-value Storage

Bigtable [10] is designed to scale up to petabytes of data across thousands of machines.

Bigtable has achieved the following goals:

• Wide applicability

• Scalability

• High performance

• High availability

Bigtable is used by a large number of google products and projects, such as Google

Analytics, Google Finance, Orkut, Personalized Search, Writely, and Google Earth.

A Bigtable cluster has a set of servers that serve the data. Each such server is

known as a tablet server, which takes care of parts of the tables each called as a tablet.

A tablet is semantically represented as a key range and physically represented as a

set of Sorted Strings Tables (SSTables). A tablet forms a unit of distribution. Data

is maintained into three dimensions: rows, columns, and timestamps. Data from the

tables is persistently stored in the Google File System (GFS) [10] which is used to

store data from the tables and provides scalable, consistent, fault-tolerant storage.

Master and chubby cluster [4] are used to handle communication and synchronization

between servers and meta-data management.

14

PNUTS [11] is designed by Yahoo! with a primary goal of providing read access

among geographically distributed users. Data is organized in the form of attributes

having record values. PNUTS performs explicit replication across different data cen-

ters. Yahoo! Message Broker (YMB) is responsible for handling replication of data.

PNUTS uses centrally managed databases, processing the updates. Updates are first

written in the master database and then replicated geographically. PNUTS uses

asynchronous replication to ensure low latency updates.

Dynamo [14] has been the underlying storage technology to support the core

services in Amazon’s e-commerce business. It is able to scale even in busy shopping

days to handle large amount of loads. Dynamo does not replicate data implicitly,

instead it replicates explicitly. Updates can be done to any of the replicas. Data is

partitioned and replicated using consistent hashing [31], and consistency is facilitated

by object versioning [33]. Dynamo uses a quorum of servers to handle and serve

write and read requests. ACID guarantees make poor availabilities, acknowledged by

academic and industry [18]. Dynamo does not provide any isolation guarantees, and

Dynamo only supports eventual replica consistency [43].

Amazon SimpleDB is a highly available and flexible non-relational data store that

offloads the work of database administration. It is able to scale to handle a large

amount of loads. SimpleDB architecture is characterized as a combination of parti-

tioning and replication. Amazon SimpleDB is optimized to provide high availability

15

and flexibility. Amazon SimpleDB automatically manages infrastructure provision-

ing, hardware and software maintenance, replication and indexing of data items, and

performance tuning. SimpleDB does not provide any isolation guarantees and sup-

ports only eventual replica consistency [2].

2.2.2 Structure Selection

Although diverse databases that have key-value storages have one overarching goal,

they have fundamental differences with respect to their design. Cooper et al. [13]

describes the performance of different databases. We now discuss differences in design

and the implications of the different databases.

2.2.2.1 Data Models

Key-value stores are distinguished by their data models. A Bigtable is a sparse,

distributed, multidimensional sorted map. The map is indexed by a timestamp,

column key, row key. Each value is an uninterpreted array of bytes [10]. Amazon

SimpleDB stores key-value pairs in the Amazon Web Services (AWS). The entire

table is represented as the domain. Each row is known as an item and every row has

a unique identifier. PNUTS provides a flat row-like structure which resembles the

relational model.

16

Key-value storage systems are different from RDMS when the failure of one com-

ponent leads to system unavailability. The data manipulation in key-value pairs is

done on the single node only. This leads to key-value pairs which can scale to a billion

values with horizontal partition. The failure of data which is being served is limited

to failure node only. Rest nodes can serve the request independently.

2.2.2.2 Data Replication and Fault Tolerance

Key-value storage systems replicate data in many commodity servers which ensure

high availability and low latency. Yahoo! Message Broker (YMB) provides fault

tolerance and replication in PNUTS. The response message is sent to the client once

data is replicated. Fault tolerance is handled by Yahoo! Message Broker (YMB) using

logs and guaranteed delivery, and replication of data. If one of the master nodes gets

down or fails, another master node will be selected automatically.

Amazon SimpleDB uses asynchronous based replication. Amazon SimpleDB sup-

ports two types of read consistency:

• Eventually Consistent Reads (Default): An eventually consistent read might

not reflect the results of a recently completed write. Repeating a read after a

short time should return the updated data [2].

• Consistent Reads: A consistent read returns a result that reflects all writes that

received a successful response prior to the read [2].

17

In case of failure, if one node gets down or fails, other nodes will handle requests.

In Bigtable data, replication is handled by the Google File System (GFS). GFS

replicate all the data geographically, and provides strong and consistent replication

storage. The write logs are saved in Bigtable and allow data to be recovered in case

of server failure. Once a tablet server failure is detected by the master, the master

will replace the failed server with another tablet server.

2.2.3 Data Distribution

All system data is distributed over the servers. Amazon SimpleDB supports hash

partition. PNUTS deals with hash and range partition while Bigtable supports range

partition.

2.3 Data Migration Methods and Characteristics

Data migration is studied widely but there are only a few publications which provide

the meaning of data migration. Most authors define data migration as process of one

aspect. This section will cover some definitions in the literature.

Matthes & Schulz [37] describes data migration as, “Tool-supported one-time

process which aims at migrating formatted data from a source structure to a target

data structure whereas both structures differ on conceptual and/or physical levels.”

Drumm et al. [17] defines data migration as, “The task of transforming and

18

integrating data originating from one or multiple legacy applications or databases

into a new one.”The data needs to be extracted from the source, transformed and

loaded into the target during the data migration process.

Haller [20] defines data migration as the process of migrating data out of one

schema to a new schema. The new schema and exiting schema can have completely

different structures.

Data migration refers to two important aspects:

• the restructuring of data

• the actual transfer of data from source to target

The restructuring of data is discussed by Sockut & Goldberg [41] in early 1979. They

view about restructuring as changing logical and physical structures of data. They

described this process as restructuring and reformatting.

2.3.1 Relational-Cloud Mapping

Calil et al. [5] proposed SimpleSQL, a relational layer over Amazon SimpleDB, which

implements relational-cloud mapping. However, the relational-cloud mapping does

not migrate the relational databases to the cloud databases. SimpleSQL provides an

access layer over Amazon SimpleDB that converts a SQL request to SimpleDB API

19

and returns data in a relational format. Amazon SimpleDB is a famous document-

oriented cloud database. Calil et al. [5] provides four traditional manipulation oper-

ations: INSERT, UPDATE, DELETE and SELECT. SimpleSQL supports complex

queries. SimpleSQL performs the following steps to perform joins:

• Split: the command is split into simple SELECTs, i.e., SELECTs without JOIN;

• Access: each individual SELECT command is submitted to SimpleDB;

• Transform: the resulting set of each individual command is transformed to the

relational schema;

• Join: the transformed tables are combined to generate the resulting table ac-

cording to the join condition.

2.3.2 Data Migration Methods

In this section we study the literature of on data migration models. Idu [26] catego-

rized migration models into two types:

• The Technical Model: This is technical based data migration. This method

addresses how practically data migration can be done. It emphasizes on the

development of technical solutions to migrate databases.

• The Process based Model: This migration model involves the management of

20

various phases of data migration. The migration model also manages the de-

velopment of technical solutions.

Firstly, we present technical models followed by process based models .

2.3.2.1 Technical Models

1. Schema Conversion

Hainaut et al. [23] define schema conversion as a process of extracting the source

physical schema from the legacy application system of the underlying database

source physical schema (SPS) and transforming it into a target physical schema

for the target Data Management Systems (DMS). They provide two migration

strategies at the database layer.

• Physical schema conversion: it simulates the structure of the legacy system

into the target DMS.

• Conceptual schema conversion: the complete semantics of the legacy data-

base are retrieved and represented in the conceptual schema (CS). Then

schema refinement and data structure conceptualization is performed to

develop a new database.

Mapping is used to define the transformations that are required to migrate the

data. Two types of mapping can be defined: Structural mapping which modifies

21

the schema, and instance mapping which explains the transfer of source data

into the target. Figure 4 represents both schemas [23].

Figure 4: The two schema conversion strategies [23]

2. Meta-Modeling Approach

Jeusfeld and Johnen [29] present a meta-model method for relational database

migration. According to this method, source and target DMS are well known.

Mapping is created between the source and the target system. A meta model

of the source data model and target model is developed as an interlink between

the two and then migration is done.

Jahnke and Wadsack [28] present a two-phase process of migration. In the first

phase, logical schema is gathered from the source database. The second phase

22

involves converting a logical schema into conceptual schema. This conceptual

schema forms a mapping between the source and the target DMS and thus

executes the data migration.

Maatuk et al. [36] discuss three approaches to database conversion. The first

approach is for handling data stored in RDBs through OO/XML interfaces. The

second approach is connecting an existing RDBs to different database systems.

The final approach is migrating RDB into the target system. Figure 5 presents

their model of migration [1].

Figure 5: Data migration model [1]

3. Extract Transform Load

Haller [21] presents a migration model known as ETL. The extraction step

extracts data and copies it to a different server. It filters data needed to be

migrated. The transformation step involves the matching of the schema from

23

the old system and the target system. If a schema differs, then restructuring of

schema needs to be done. Once the transformation is completed, data is loaded

into the target system. This completes the migration from the source to the

destination. Figure 6 illustrates the ETL model [21].

Figure 6: Generic migration architecture [21]

4. Integrated Model

Bordbar et al. [3] proposes an integrated model for data migration, closely

related to the software development of the target system. This approach pro-

vides access to a relational database and performs data migration. The data

migration is performed with the help of a model generator by providing the

source and target models as inputs. The generator creates a model represen-

tation of the annotated UML model as an input to generic database adapter

and upgrader generator. Generic database adapter acts as a database access

layer and exploits the information in the model by generating necessary SQL

24

queries. Upgrader generator generates upgrader program API by taking an old

model representation, a new model representation, and an auxiliary property

file. Finally, the upgrader program API is used for database cloning, schema

evolution, and data migration.

Figure 7: The Data migration approach [3]

The integrated model is presented in Figure 7 [3].

25

2.3.2.2 Process based Models

1. Process model

Matthes et al. [37] presents an iterative and incremental process model of

fourteen phases as given in Figure 8 [37].

Figure 8: Process model [37].

The first phase, call for tender and bidding, indicates whether a migration

project is an internal project or from outside sources. The second phase, strat-

egy and pre-analysis, explains the project scope and migration road map. These

phases determine what data is to be migrated and the business concept tables

and attributes to be migrated. The technical and business view is depicted in

Figure 9 [37].

26

Figure 9: Business concept and technical relation [37]

Two scenarios are encountered between the source and the target systems.

Firstly, source and target systems have different technical implementations.

Secondly they may have a different business concept implementation. Both

scenarios are depicted in Figure 10 [37].

Figure 10: Migration scenarios on business, conceptual and technical levels [37]

The third phase is more technical to support the migration. Complex programs

and source databases are used in this stage.

27

The next four phases consist of the implementation of the data migration pro-

gram. Data unloading means extracting the relevant data from the source.

Then it involves analysis of the structures of tables and attributes that need to

be migrated. Source data cleansing means filtering and improving data qual-

ity. Finally, data transformation refers to continuously improving the rules and

logic of the methods that migrate data from source to destination. The next

six phases consist of testing overall data migration process. Testing is catego-

rized into two types. Migration run testing which processes activities of data

migration. This involves integration testing. The testing focus on the overall

performance of the process. The second type is data validation. Validation

refers to consistent testing, completeness and type correspondence. A report is

prepared and used in the next iteration in order to solve any issues between the

source and the target system.

The last three phases perform the final data migration. These stages make sure

that testing has been achieved in previous phases before migration on the live

data. At last, the target system is loaded with data.

2. The Cyclical Process Model

Russom [40] proposes a cyclic process for data migration. The development

model is iterative and has five phases with a preliminary phase. The first phase

is solution pre-design. This phase deals with requirement gathering, developing

28

a project plan, timeline and data profiling. Solution design, the second phase

refers to the splitting of data migration tasks based on their dependencies.

Figure 11: Data migration solution is a cyclical process [40]
.

The third phase, data modeling, refers to the building of the target database.

The next phase, data mapping, maps the legacy system attributes to the target

system attributes. In the fifth phase, solution development, uses mapping to

migrate the data from source to target system using migration programs. The

final stage is solution testing which involves an amount of data required to

develop a solution and test it. The model is depicted in Figure 11 [40].

29

2.3.3 Data Migration Levels

Haller [20] provides different levels of methodologies for different migration projects.

Table 2 [20] depicts the level from top to bottom.

Table 2: Data migration methodology levels [20]
Level Examples
Project Management Critical Path method, Expected Return

of Investment of Projects
IT Project Management Rational Unified Process
Data Migration Management Key Performance Indicators,
and Controlling Butterfly Approach
Real Life IT View Deployment
Data migration Tools and Architecture SAP solution, Butterfly Approach
Lab View Implementation in PL/SQL

Figure 12: Dimension triangle [20]
.

Haller [20] groups all data migration tasks into three dimensions and forms the

migration triangle. These three dimensions provide priorities during data migra-

tion. Figure 12 depicts dimension triangle [20]. The delivery dimension consists of

three parts:

30

• Migration-Migration-Integration (MIG/MIG-integration) makes sure different

mappings are running together.

• Migration-Customization-Integration (MIG/CUS-integration or MIG/WF-inte-

gration): it ensures that workflow, domain value tables and data migration work

to integrate with each other.

• Data Set Completeness: it ensures migration completes on time and is tested.

Similarly, quality assurance has three tasks :

• Test Case and Testing: it involves running test cases for successful data migra-

tion.

• Reconciliation: it refers to make sure that all data is migrated successfully.

• Failure Reduction: it refers to fixing any issues involved in the above two cases.

The third dimension mapping also has three parts:

• Business Object Identification: it involves picking and identifying a business

that is required to be migrated.

• Business Object Completeness: it migrates all business objects as identified in

the above tasks.

• Attribute Completeness: it migrates complete information about business ob-

jects.

31

2.4 Summary

In this chapter, we studied the topic of data migration. We reviewed the background

of distributed systems. Finally, we studied different technical and process based data

migration methods.

32

Chapter 3

Data Migration Methods

Data migration methods play an important role in the architecture of data migration

from a relational database to a cloud database, because it decides whether the mi-

gration procedure migrates data successfully. In this chapter, we propose four data

migration methods based on three mapping strategies. From the many different fa-

mous cloud service providers are available,e.g., Amazon, Microsoft, Oracle, we choose

Amazon service as our target system and Amazon SimpleDB as our target database.

The analysis method developed in this thesis can be used for developing migration

techniques on other NoSQL databases as well.

Firstly, we present building up principles of RDBMS and key-value storage. In

section 3.2, we discuss problems faced by the relational database. Section 3.3 covers

basic terminology, structure and characteristics of Amazon SimpleDB. In Section 3.4,

33

we discuss characteristics of cloud databases. In Section 3.5.2, we give the definition

of variables as a basis for the theoretical analysis of our data migration methods. In

Section 3.5.3, we define three mapping strategies. Based on these mapping strategies,

we propose four migration methods. The formulation of four migration methods as

well as illustrative examples for these methods is given in Section 3.6. In Section

3.7, we present joins functionality in each migration method. In Section 3.10, we

compare different migration methods and provide recommendation for when to use

each migration method.

3.1 Design Principles

Although RDMBS and key-value pairs based cloud DBMS have different architec-

tures, they are widely used for storing bulk data. Some of the common design prin-

ciples are carried forward in designing DBMS for cloud platforms. The following are

design principles:

• Incremental Scalability : These systems scale out to one storage node. Op-

erations to a single node allow execution of the operations without the need

for distributed synchronization. This makes other nodes work during failure

without affecting others.

• Symmetry: Every node has the same responsibility. No node performs any

34

extra task as compared to another node.

• Synchronization: These systems limit the distributed synchronization and are

used only when needed.

3.2 Problem Description

Relational databases support shared-everything architecture. Using a scale up ap-

proach, relational databases require a bigger and bigger server with more CPUs,

more memory, and more disk storage to ensure that all the tables can support more

concurrent users or store more data. However, big servers tend to be highly com-

plex, proprietary, and disproportionately expensive, unlike the low-cost, commodity

hardware. Therefore, it becomes important to store data efficiently and compute the

massive amount of data, providing high scalability, and providing high performance

and availability at low costs. This leads to the invention of NoSQL databases which

scale out efficiently and store large amount of data in the form of key-value pairs.

Key-value storages use a cluster of physical or virtual servers to support database

operations and store data. To scale, additional servers are added to the cluster,

database operations and the data are spread across the larger cluster. Some of the

disadvantages of RDBMS are:

• Scale Out Transaction: RDBMS suffers due to the costly operation of scaling

35

out and providing transactions at the same time.

• Administrative Overhead: it becomes difficult to manage large RDMBS in-

stallations with a large number of partitions. This is the biggest overhead of

administration because doing a partition is difficult. To do this, it is required

to make the data offline, complete the needed partition, and then bring it back

online.

• Static partition: as partition and mapping are done to one node only, whenever

a node fails or a load increases to capacity, the database needs to repartition

which is highly complex and results in down time. This is highly inefficient in

the banking system and online shopping websites.

• Modification: whenever partition is done, the application needs to modify again,

in order to adjust.

Enterprises and legacy systems suffered from above drawbacks of RDBMS. These

systems require migration of their relational databases onto the cloud databases and

migration and integration of applications with cloud databases. Key-value pairs pro-

vide efficient solutions to overcome these issues.

In this thesis, we propose four data migration methods which will assist en-

terprises to migrate their relational databases efficiently and transparently to cloud

databases.

36

We use a relational database for an online bookstore application to evaluate

our Data Migration Methods and perform an experimental evaluation. The sample

database consists of thirteen tables and sample data. We use Amazon SimpleDB

as our cloud database and Microsoft SQL Server as our relational database for

performing experiments. Figure 13 presents an online bookstore schema.

Figure 13: Relational database schema used in the experiments

37

3.3 Amazon SimpleDB

SimpleDB is a web service which provides structured data storage in the cloud, sup-

ported and backed by clusters of Amazon-managed database servers. The data is

stored securely in the cloud and has no schema. The data is stored as key-value

pairs. SimpleDB is an Amazon solution for handling data that follow document-

oriented model [6]. It acts as a service and replication of data is done geographically

depending upon the region selected during setup.

SimpleDB is composed of domains, items, attributes and values. SimpleDB looks

like a spreadsheet that contains structured data. Figure 14 provides an overview of

the SimpleDB structure [7].

Figure 14: SimpleDB customer structure [7]

• Domain: The entire customer table is represented as the domain customer in

SimpleDB as shown in Figure 14. Each domain consists of a set of items. Data

stored in a domain can be retrieved and modified by making a query against

38

the domain. The user can have up to 250 domains and every domain can grow

up to 10GB.

• Item: Every customer is identified by a unique Customer ID. Items are similar

to rows in a database table. Each item is uniquely identified and contains data

in the form of key-value attributes. The item name is similar to the primary

key in a database table which identifies each item uniquely.

• Attributes: Attributes are synonymous with columns in database tables. Each

customer attributes in Figure 14 is associated with value. A name, an address,

and a phone number are three attributes of customer domain. Each item in

SimpleDB can have an array of items. The customer can have multiple phone

numbers and all phone numbers can be stored as multi-value attributes.

• Values: Every customer attribute is associated with a value. The customer’s

first name is an attribute and John is a value in the Customer domain.

Table 3 summarizes the equivalence relation between the Amazon SimpleDB and

the database table.

Table 3: Relational database and SimpleDB equivalence
Relational Database SimpleDB
Table Domain
Row Item
Column Attribute
Value Value(s)

39

Table 4 shows a comparison between SimpleDB and Relational Database.

Table 4: SimpleDB vs Relational Database
Relational Database SimpleDB
Tables are organized in databases No Databases, all domains

are loose in AWS account
Schemas to define table structure No predefined structure, variable attributes
Tables, records and column Domain, items and attributes
Columns have only one value Attributes have multiple values
Define indexes manually All attributes are automatically indexed
Data is normalized Data is not always normalized
joins are used to denormalize No joins,

either duplication or multiple queries
Transactions are used to Eventual consistency,
guarantee consistency consistent read, conditional put

and conditional delete

In this section we have given an overview of Amazon SimpleDB. Also we have

discussed a data model of Amazon SimpleDB which distinguishes it from relational

database. In the next section we present characteristics of cloud databases which

distinguish them from relational databases.

3.4 Characteristics of Cloud Databases

This section gives an overview of some distinguishing characteristics which separate

cloud databases from relational databases.

• No Normalization: Cloud databases do not follow any normalization forms,

and tend to be completely de-normalized. This provides a lot flexibility in the

40

model without having normalization and enables the user to use multi-value

attribute property or store multi-attribute data in the form of arrays.

• No Joins: Cloud databases do not support cross domain queries or cross table

queries,sacrificing complex queries and join functionality as compared to a re-

lational database. Cloud databases provide the ability to store multi values for

an attribute or key and to some extent avoids the necessity of joins. The joins

are avoided in the cloud databases in order to achieve high performance.

• Schemaless: Cloud databases does not support any schema. There is no need

to maintain a schema and migrate the schema to a new version. Cloud databases

stores data in the form of key-value pairs.

• String Type: SimpleDB stores all data as an UTF-8 string. As a result,

SimpleDB creates an indexing on the data and retrieves data quickly. Other

cloud databases support JSON types.

Table 5 presents some of the cloud databases that have the same data model and

characteristics.

Table 5: Cloud databases Characteristics
Cloud Database No Normalization No Joins Schemaless Data type

Amazon SimpleDB � � � String
MongoDB � � � JSON types
CouchDB � � � JSON types

Oracle NoSQL � � � Binary,
JSON types

41

3.5 Data Migration Methods

It is challenging to migrate the relational databases to the cloud databases as the

structure and schema of the both databases is completely different.

3.5.1 Existing Migration Methods

The existing data migration models as explained in Chapter 2 are not sufficient to

migrate the relational databases to the cloud databases:

• Thakar et al. [42], migrated a (large) science database to Amazon EC2 and

Microsoft SQL Azure but lacks a migration strategy.

• Calil et al. [5] proposed a SimpleSQL, a relational layer over Amazon SimpleDB,

which implements relational-cloud mapping. The relational-cloud mapping does

not migrate relational databases to cloud databases. The following reasons make

a SimpleSQL not sufficient for a cloud database:

1. Migration Strategy: SimpleSQL does not provide a data migration strategy

to migrate the relational database to the Amazon SimpleDB. Instead, the

SimpleSQL provides an access layer over Amazon SimpleDB that converts

the SQL request to the SimpleDB. Our Data Migration Methods provide

different ways of migrating the relational databases to the cloud databases.

42

2. Sharding: SimpleSQL maps the data to one domain only in Amazon Sim-

pleDB. It does not consider queries to other domains. Hence, once the

domain crosses the limit of 10GB, query performances will decrease and it

may take more time to return back the result. Hence, the user has limited

sharding capability. Our system provides the sharding of data by migrat-

ing data in different domains depending upon the semantics. Hence, the

database can scale out easily.

3. Application adaptation: SimpleSQL provides an access layer over Amazon

SimpleDB that converts the SQL request to the SimpleDB. However, the

SimpleSQL has limited capabilities. It provides an extra layer which in-

creases query time to fetch data from the SimpleDB. Hence, it deteriorates

the application performance. We propose an interface which will assist the

developer to generate code automatically. This includes the basic usage of

select, insert, delete and update queries. Therefore, applications can easily

adapt to the migrated database without lacking in query performance.

4. Joins: SimpleSQL supports complex queries limited to one domain only.

We provide a way of handling joins at the application level. Our differ-

ent migration strategies support a different way of handling joins. Fur-

thermore, we make use of the multi-value attribute property of Amazon

SimpleDB and make the joins easier.

43

We propose four different data migration methods to migrate data from the re-

lational databases to the cloud databases. Our data migration methods convert the

data, preserve the schema of the relational databases, and overcome all the above

challenges.

3.5.2 Definition of Variables

In this section, we give the definition of variables needed for the theoretical analysis

of our data migration methods.

We denote a relational database by RDB. The list ST of variables associated

with RDB is defined as follows:

• ST (RDB) = {Tk|1 ≤ k ≤ nST} is a set of tables in RDB where Tk is the kth

table of RDB and nST is the number of tables.

• C(Tk) = {cTkj |1 ≤ j ≤ nC} is a set of column names, corresponding to a set of

columns of Tk and nC is the number of column names, i.e.columns of Tk.

• R(Tk) = {rTki |1 ≤ i ≤ nR} is a set of records of Tk where nR is the number of

records of Tk.

• rTki = (vTki1 , . . . , v
Tk
i|C(Tk)|) is a tuple of values vTkij (1 ≤ j ≤ |C(Tk)|) where vTkij

represents the value at the ith record and the jth column of table Tk. |C(Tk)| is

the number of columns of Tk.

44

• Ql is the l
th request from a user to select a set of tables in RDB. The selected

set of tables will be migrated to one domain in a cloud database.

• QT (Ql) = {Tk|Tk ∈ ST (RDB), where Tk is requested by Ql} is a set of tables

requested by Ql and some of the tables Tk have a primary-foreign key relation-

ship.

• QC(Ql, Tk) = {cTkj |cTkj ∈ C(Tk), where c
Tk
j is requested by Ql} is a set of col-

umn names of Tk requested by Ql.

Accordingly, we denote a cloud NoSQL database by NOSQLDB. The list of

variables associated with NOSQLDB are defined as follows:

• SD(NOSQLDB) = {Dh|1 ≤ h ≤ nSD} is a set of domains in NOSQLDB

where nSD is the number of domains.

• S ⊆ SD(NOSQLDB) is a subset of domains in NOSQLDB.

• M(Dh) = {mh
p |1 ≤ p ≤ nh} is a set of items and nh is the number of items in

Dh.

• mh
p = ((namehp , GUID

h
p), (c

Tk1
j1
, v

Tk1
i1j1

), . . . , (c
Tkn
jn
, v

Tkn
injn

)) is the pth item of Dh rep-

resented as a tuple of key-value pairs where

– (namehp , GUID
h
p) is the first key-value pair fixed formh

p to uniquely identify

mh
p , where GUID

h
p is a globally unique identifier of item mh

p and namehp is

45

the attribute name of GUIDh
p .

– (c
Tkh
jh
, v

Tkh
ihjh

) (1 ≤ h ≤ n) is a key-value pair of a column name and a

corresponding value in Tkh.

• Πattributelistσ(Dh) are the set of key-value pairs in the attribute list of domain

Dh such that :

– The attribute list is a set of keys, i.e., c1, . . . , cm where ci(1 ≤ i ≤ m) is a

key exists in an item of M(Dh).

– Πc1 , . . . ,cm (Dh) = {((c1, v1), . . . , (cm, vm))|∃mh
p ∈ M(Dh), (cj , vj)(1 ≤ j ≤

m)} is a key value pair in mh
p .

– σ is a condition that is applied to test each itemmh
p in domain Dh.The con-

dition is an expression built from =, <,>,≤,≥,∧,∨,¬. The conditional

operator refines the Πattributelistσ(Dh) result.

• CQ = Πattributelistσψ(Dh) is a cloud query where ψ is a “where ”notation in the

query. The CQ must have at least one condition in ψ.

3.5.3 Mapping Strategies

In order to make data migration suitable for different sizes of relation databases

and flexible with the users’ requirements, we propose three mapping strategies when

mapping tables in a RDB to domains in a CDB.

46

Definition 1 Mapping Strategy One (MS1) is a mapping strategy that maps a

table Tk ∈ ST (RDB) to a domain Dh ∈ SD(NOSQLDB), denoted Tk
MS1
−→ Dh, such

that:

• For all rTki = (vTki1 , . . . , v
Tk
i|C(Tk)|) ∈ R(Tk), there exists

mh
p = ((namehp , GUID

h
p), (c

Tk
1 , v

Tk
i1), . . . , (c

Tk
|C(Tk)|, v

Tk
i|C(Tk)|))

where |C(Tk)| is the number of columns of Tk.

• The number of items of Dh equals the number of records of Tk, i.e.|M(Dh)|

= |R(Tk)|.

Mapping Strategy One maps a table Tk in a RDB to a domainDh in aNOSQLDB

with the strategy that a record rTki of Tk corresponds to an itemmh
p ofDh. An example

to explain Mapping Strategy One is given in Example 1.

1
1
Tc

 1
2
Tc

1
11
Tv 1

12
Tv

1
21
Tv 1

22
Tv

(, (,),(,))

(,(,),(,))

Table “tbl_author”

MS1

D1

((name,879456214), (Author_id,101), (Author_name ,Tom))

((name,987561478), (Author_id,102),(Author_name ,Tagore))

Domain “do_author”

T1

(

((

MS1

Table “tbl_author”

M

Author_id Author_name
101 Tom

102 Tagore

Figure 15: Mapping Strategy One

47

Example 1 Consider a relational database (RDB) “ Bookstore”and a cloud data-

base (NOSQLDB) “ Amazon SimpleDB”. “Bookstore”has a table “tbl autho-

r”as shown in the bottom left of Figure 15. After applying Mapping Strategy One on

table “tbl author”, domain “do author”is created in “Amazon SimpleDB”as a

mapping of table “tbl author”and the data in table “tbl author”is migrated to yhe

domain “do author”as shown in the bottom right of Figure 15. Also, correspon-

dences between the definitions and tables/domains are presented in Figure 15.

Definition 2 Mapping Strategy Two (MS2) is a mapping strategy that maps

a set of tables QT (Ql) ⊆ ST (RDB) to a domain Dh ∈ SD(NOSQLDB), denoted

QT (Ql)
MS2
−→ Dh, such that:

• For all Tk ∈ QT (Ql) and r
k
i = (vTki1 , . . . , v

Tk
i|C(Tk)|) ∈ R(Tk), there exists

mh
p = ((namehp , GUID

h
p), (c

Tk
1 , v

Tk
i1), . . . , (c

Tk
|C(Tk)|, v

Tk
i|C(Tk)|))

where |C(Tk)| is the number of columns of Tk.

• The number of items of Dh is the summation of records of tables in Ql, i.e.

|M(Dh)| =
∑

Tk∈QT (Ql)
|R(Tk)|.

According to a user’s request, Ql, Mapping Strategy Two maps a set of tables

QT (Ql) in a RDB to a domain Dh in a NOSQLDB with the strategy that a record

rTki of Tk ∈ QT (Ql) corresponds to an itemmh
p ofDh. An example to explain Mapping

Strategy Two is given in Example 2.

48

Customer_id Customer_phone
101 4879875621

102 8945623657

1
3m

1
2m

Customer_id Customer_name
101 Jack

102 Lee

(),(1
1

1
1 GUIDname , (1

1
Tc , 1

11
Tv),(1

2
Tc , 1

12
Tv))

(),(1
2

1
2 GUIDname ,(1

1
Tc , 1

21
Tv),(1

2
Tc , 1

22
Tv))

(),(1
3

1
3 GUIDname ,(2

1
Tc , 2

11
Tv),(2

2
Tc , 2

12
Tv))

(),(1
4

1
4 GUIDname ,(2

1
Tc , 2

21
Tv),(2

2
Tc , 2

22
Tv))

Table “tbl_customer”

T1

MS2

D1

(name,879456214) (Customer_id,101) (Customer _name ,Jack)

(name,987561478) (Customer _id,102) (Customer _name ,Lee)

(name,789456214) (Customer _id,101) (Customer _phone ,4879875621)

(name,789456217) (Customer _id,102) (Customer _phone , 8945623657)

Domain “do_customer”

T2

Table “tbl_customer_contact_info”

1
1
Tc 1

2
Tc

1
11
Tv 1

12
Tv

1
21
Tv 1

22
Tv

2
1
Tc 2

2
Tc

2
11
Tv 2

12
Tv

2
21
Tv 2

22
Tv

MS2
1
1m

1
1
Tr
1
2
Tr 2

2
Tr

2
1
Tr+

+

1
4m

Figure 16: Mapping Strategy Two

Example 2 Consider a relational database (RDB) “ Bookstore”and a cloud data-

base (NOSQLDB) “Amazon SimpleDB”. A user requests Q1 has two tables

“tbl customer”and “tbl customer contact info”to be migrated to “Amazon S-

impleDB”together. We assume each customer has only one phone number in the

table “tbl customer contact info”. Applying Mapping Strategy Two, a new do-

main “do customer”is created and the data in both tables “tbl customer”and

“tbl customer contact info”are migrated into this domain. The mapping produced

is presented in Figure 16.

Mapping Strategy Two regards each table independently and migrates the data

to a domain table by table. However, we can take advantage of the primary key

49

and foreign key relations between tables in a relational database to make a mapping

strategy. Hence, we define a virtual table that can be obtained from a set of requested

tables. We call it a virtual table because this table does not exist in a relational

database and is only generated for a temporary use.

Definition 3 For given RDB and Ql, a joined table T�
Ql

is generated and T�
Ql

satis-

fies:

• The column names of the joined table is the union of column names of all tables

in QT (Ql), i.e.C(T
�
Ql
) = ∪Tk∈QT (Ql)QC(Ql, Tk).

• Suppose T ∗
Ql

∈ QT (Ql) is the table with a primary key in the request Ql and the

table has a foreign key relationship with other tables. For all r
T ∗
Ql
i = (v

T ∗
Ql
i1 , . . . , v

T ∗
Ql

i|C(T ∗
Ql

)|) ∈

R(T ∗
Ql
), there exists

r
T�
Ql
i = (v

T�
Ql
i1 , . . . , v

T�
Ql
in) ∈ R(T�

Ql
)

where

– The number of columns equals the number of the union of columns of all

tables in QT (Ql), i.e.n = |C(T�
Ql
)|

– for 1 ≤ j ≤ n,

50

v
T�
Ql
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

1 v
T ∗
Ql

ij′ , if c
T�
Ql
j = c

T ∗
Ql

j′ ∈ C(T ∗
Ql
);

2 {vTki′j′|∀i′, vTki′j′′ = v
T ∗
Ql

ij′′′ where c
Tk
j′′ = c

T ∗
Ql

j′′′ ∧ cT
∗
Ql

j′′′ is

the primary key of T ∗
Ql
}, if cT

�
Ql
j = vTkj′ ∈ C(Tk)

where Tk ∈ QT (Ql)− {T ∗
Ql
}.

• The number of records of the joined table T�
Ql

equals the number of records of

table T ∗
Ql
, i.e.|R(T�

Ql
)| = |R(T ∗

Ql
)|.

Based on the definition of T�
Ql
, we propose Mapping Strategy Three.

Definition 4 Mapping Strategy Three(MS3) is a mapping strategy that maps a

set of tables QT (Ql) ⊆ ST (RDB) to a domain Dh ∈ SD(NOSQLDB) through a

joined table T�
Ql
, denoted QT (Ql)

MS3
−→
T�
Ql

Dh, such that:

• For all rki = (v
T�
Ql
i1 , . . . , v

T�
Ql

i|C(T�
Ql

)|) ∈ R(T�
Ql
), there exists

mh
p = ((namehp , GUID

h
p), (c

T�
Ql

1 , v
T�
Ql
i1), . . . , (c

T�
Ql

|C(T�
Ql

)|, v
T�
Ql

i|C(T�
Ql

)|))

where |C(T�
Ql
)| is the number of columns of T�

Ql
.

51

• The number of items of Dh equals the number of records of T�
Ql
, i.e.|M(Dh)|

= |R(T�
Ql
)|.

The Mapping Strategy Three makes use of the primary key and foreign key relations

between tables to map a set of tables requested by the users in a domain. An example

to explain Mapping Strategy Three is given in Example 3.

(),(1
1

1
1 GUIDname , (1

1
QTc , 1

11
QTv),(1

2
QTc , 1

12
QTv),(1

3
QTc , 1

13
QTv , 1

13' QTv
))

(),(1
2

1
2 GUIDname ,(1

1
QTc , 1

21
QTv),(1

2
QTc , 1

22
QTv),(1

3
QTc , 1

23
QTv , 1'

23
QTv))

Table “tbl_customer”

T1

MS3

D1

Domain “do_customer”

T2

Table “tbl_customer_contact_info”

1
1
Tc

 1
2
Tc

1
11
Tv 1

12
Tv

1
21
Tv 1

22
Tv

2
1
Tc

 2
2
Tc

2
11
Tv 2

12
Tv

2
21
Tv 2

22
Tv

Customer_id Customer_phone
101 4879875621

102 8945623657

101 4587123654

102 8794561235 MS3

1
1m

1
2m

1
1
Tr

1
2
Tr

2
2
Tr

2
1
Tr

+

+

Customer_id Customer_name
101 Jack

102 Lee

Customer_id Customer_name Customer_phone
101 Jack 4879875621

4587123654
102 Lee 8945623657

8794561235

1
1
QTc 1

2
QTc 1

3
QTc

1
11
QTv

1
12
QTv 1

13
QTv 1

13' QTv

1
21
QTv 1

22
QTv 1

23
QTv 1'

23
QTv

1Q
T

1
1

QTr

1QTr

(name,
879456214)

(Customer_id,
101)

(Customer_name
,Jack)

(Customer_phone,
{4879875621,
4587123654})

(name,
987561478)

(Customer_id,
102)

(Customer_name
,Lee)

(Customer_phone,
{8945623657,
8794561235})

Column Customer_id in Table

1

“tbl_customer” is a primary key.

Figure 17: Mapping Strategy Three

52

Example 3 Consider a relational database (RDB) “ Bookstore”and a cloud data-

base (NOSQLDB) “Amazon SimpleDB”. A user requests Q1 two tables “tbl cu-

stomer”and “tbl customer contact info”to be migrated to “Amazon Simp-

leDB”together. Since the primary key “Customer id”of table “tbl customer”is

the foreign key of table “tbl customer contact info”, a temporary table T�
Q1

is gen-

erated. Applying Mapping Strategy Three, a new domain “do customer”is created

and the data in both tables “tbl customer”and “tbl customer contact info”are

migrated into this domain. The mapping produce is presented in Figure 17.

3.6 Migration Methods

Making use of three mapping strategies, i.e.MS1, MS2, and MS3, we propose four

migration methods, i.e.Type 1 Migration, Type 2 Migration, Type 3 Migration, and

Type 4 Migration. Figure 18 presents the relationship between mapping strategies

and data migration methods. Type 1 migration method uses migration strategy 2

(MS2). Type 2 migration method uses migration strategy 2 (MS2) and migration

strategy 1 (MS1). Type 3 migration method uses migration strategy 1 (MS1). Type

4 migration method uses migration strategy 3 (MS3) and migration strategy 1 (MS1).

The four data migration methods are proposed depending upon our analysis of the

characteristics of both the cloud database and the relational database. There could

be more possible data migration methods beyond our consideration for migrating

53

relational databases to cloud databases. For example, in Type 4 Migration Method,

we do not denormalize and migrate data of tables whose primary key is composed

of more than one column, which cause more redundancies and make data migration

complicated.

MS1

MS2

MS3

Type3

Type4

Type2

Type1

Mapping Strategies

Migration Methods

Figure 18: Migration Strategies - Migration Methods Relationship

3.6.1 Type 1 Migration

Making use of Mapping Strategy Two, Type 1 Migration migrates all the tables in a

relational database to a domain in a cloud database. Example 4 gives an example of

Type 1 Migration.

Definition 5 For given RDB and NOSQLDB, Type 1 Migration migrates all

the data from a relational database (RDB) to one domain Dh in a cloud database

(NOSQLDB), i.e.ST (RDB)
MS2
−→ Dh, such that there is only one domain in a cloud

54

database (NOSQLDB), i.e.|SD(NOSQLDB)| = 1.

Example 4 Consider a relational database (RDB) “Bookstore”and a cloud dat-

abase (NOSQLDB) “Amazon SimpleDB”. “ Bookstore”has only two tables

“tbl customer”and “tbl customer contact info”as shown in Example 2. A user

requests this two tables can be migrated to “Amazon SimpleDB”together, i.e.

QC(Q1) = ST (RDB) = {“tbl customer”, “tbl customer contact info”}. After

applying Type 1 Migration to “Bookstore”, “Amazon SimpleDB”contains one

and only one domain “do customer”as show in Figure 16.

3.6.2 Type 2 Migration

Making use of both Mapping Strategy One and Mapping Strategy Two, Type 2

Migration migrates the set of tables included in one request to one domain.The other

single table and their data is migrated to another single domain in cloud database.

Example 5 gives an example of Type 2 Migration.

Definition 6 For given RDB, NOSQLDB and a set of requests {Q1, . . . , Qn},

Type 2 Migration migrates the data from a relational database (RDB) to a cloud

database (NOSQLDB) such that

• For all Ql ∈ {Q1, . . . , Qn} there exists one and only one domain

Dh ∈ SD(NOSQLDB) such that QT (Ql)
MS2
−→ Dh.

55

• For all Tk ∈ ST (RDB) −∑n
l=1QT (Ql) there exists one and only one domain

Dh ∈ SD(NOSQLDB) such that Tk
MS1
−→ Dh.

• The number of domains in NOSQLDB equals the number of requests plus the

number of tables in RDB that are not requested by any request, i.e.

|SD(NOSQLDB)| = n+ |ST (RDB)−∑n
l=1QT (Ql)|.

Example 5 Consider a relational database (RDB) “Bookstore”and a cloud dat-

abase (NOSQLDB) “Amazon SimpleDB”. “Bookstore”has three tables two of

which, “tbl customer”and “tbl customer contact info”, are as shown in Fig-

ure 16 and the left table “tbl author”is shown in Figure 15. As shown in Figure

16, “tbl customer”and “tbl customer contact info”are migrated into domain

“do customer”, denoted D1, using Mapping Strategy Two. As shown in Figure

15, table “tbl author”is migrated into domain “do author”, denoted D2, using

Mapping Strategy One. After migration, “Amazon SimpleDB”only contains two

domains D1 and D2.

3.6.3 Type 3 Migration

Making use of Mapping Strategy One, Type 3 Migration migrates each table in a

relational database to a domain in a cloud database. Example 6 gives an example of

Type 3 Migration.

56

Definition 7 For given RDB and NOSQLDB, Type 3 Migration migrates the

data from a relational database (RDB) to a cloud database(NOSQLDB) such that

• For all Tk ∈ ST (RDB), there exists one and only one Dh ∈ SD(NOSQLDB)

such that Tk
MS1
−→ Dh.

• The number of domains in NOSQLDB equals the number of tables in RDB,

i.e.

|SD(NOSQLDB)| = |ST (RDB)|.

Example 6 Consider a relational database (RDB) “Bookstore”and a cloud data-

base (NOSQLDB) “Amazon SimpleDB”. “Bookstore”has only one table “tb-

l author”as shown in Figure 15. Applying Mapping Strategy One, table “tbl aut-

hor”is migrated into domain “do author”. Figure 15 also shows the migration pro-

cess. After migration, “Amazon SimpleDB”has only one domain “do author”.

3.6.4 Type 4 Migration

Denormalization is defined as the process to optimize the read performance of a

database by adding redundant data or by grouping data [45]. This migration first

denormalizes the relational database based on the semantics. Once semantics are

provided by the user, it will automatically denormalize the database and then migrate

the data to cloud database. The denormalization process is important and will utilize

57

the multi-value attribute property of Amazon SimpleDB and migrate data in the form

of arrays. The multi-value attributes will provide join functionality in SimpleDB.

Normally, denormalized tables have a primary-foreign key relationship. Example 7

gives an example to explain Type 4 migration process.

Definition 8 For given RDB, NOSQLDB and a set of requests {Q1, . . . , Qn},

Type 4 Migration migrates the data from a relational database (RDB) to a cloud

database (NOSQLDB) such that

• For all Ql ∈ {Q1, . . . , Qn} there exists one and only one domain

Dh ∈ SD(NOSQLDB) such that QT (Ql)
MS3
−→
T�
Ql

Dh.

• For all Tk ∈ ST (RDB) −∑n
l=1QT (Ql) there exists one and only one domain

Dh ∈ SD(NOSQLDB) such that Tk
MS1
−→ Dh.

• The number of domains in NOSQLDB equals the number of requests plus the

number of tables in RDB that are not requested by any request, i.e.

|SD(NOSQLDB)| = n+ |ST (RDB)−∑n
l=1QT (Ql)|.

Example 7 Consider a relational database (RDB) “Bookstore”and a cloud data-

base (NOSQLDB) “Amazon SimpleDB”. “Bookstore”has three tables two of

which, “tbl customer”and “tbl customer contact info”, are shown in Figure

17 and the left table “tbl author”is shown in Figure 15. As shown in Figure 17,

58

“tbl customer”and “tbl customer contact info”are migrated into domain “do c-

ustomer”, denoted D1, using Mapping Strategy Three. As shown in Figure 15, ta-

ble “tbl author”is migrated into domain “do author”, denoted D2, using Mapping

Strategy One. After migration, “Amazon SimpleDB”only contains two domains

D1 and D2.

3.7 Joins

Cloud databases does not support the concept of joins. In this section, we formalize

the joins in the four migration methods.

3.7.1 Join in Type 1 and Type 2

Definition 9 After migrating data from RDB to NOSQLDB using Type 1 or Type

2 migration methods. J�(S) = {CQl|l >= 2} is a join consisting of a set of cloud

queries to S in NOSQLDB where S contains only one domain, i.e., |S| = 1.

In Type 1 or Type 2 migration methods, a join is performed to one domain only

because the data of the tables where the user is likely to make joins is migrated to

one domain only. In the Type 1 migration method, whole database data is migrated

to one domain. In the Type 2 migration method, the data of the tables where user

like to make joins is migrated to one domain. The join is performed by making

simultaneous queries to a domain in the cloud database.

59

As shown in Example 5, the domain “do customer”is formed by merging ta-

bles “tbl customer”and “tbl customer contact info”. The join to the domain

“do customer”is shown in Figure 19. The “Q1”and “Q2”are two queries to the

cloud and their symbol representation is presented in “Table: Symbols corre-

sponding to queries”in Figure 19. “Table: Join Representation” in Figure 19

presents the join representation and result of the queries. Developers can exploit data

at the application level.

Q1: Select Customer_id, Customer_name from “do_customer” where Customer_id=‘101’
Q2: Select Customer_id, Customer_phone from “do_customer” where Customer_id=‘101’

Query Attribute list φ σ Dh

Q1 Customer_id, Customer_name where Customer_id=‘101’ do_customer

Q2 Customer_id, Customer_phone where Customer_id=‘101’

do_customer

CQ1 (Customer_id,101),
(Customer_name,Jack)

CQ2 (Customer_id,101),
(Customer_phone,4879875624)

Table: Symbols corresponding to queries

Table: Join Representation

Figure 19: Join in Type1 or Type 2

60

3.7.2 Join in Type 3

Definition 10 After migrating data from RDB to NOSQLDB using Type 3 migra-

tion method. J�(S) = {CQl|l >= 2} is a join consisting of a set of cloud queries to

S in NOSQLDB where S contains more than one domain, i.e., |S| > 1.

Figure 20 presents the two tables “tbl author”and “tbl author book”. Making

use of Mapping Strategy One, Type 3 Migration migrates each table in a relational

database to a domain in a cloud database. The table “tbl author”corresponds to

a domain “do author”and the table “tbl author book”corresponds to a domain

“do author book”.

61

Figure 20: Type 1 Data Migration

In Type 3, the join is performed by querying the multiple domain and exploiting

the data at the application level. As shown in Figure 21, the join is performed by

query the domain “do author”and “do author book”. Figure 21 illustrates the

join functionality. The “Q1”and “Q2”are two queries to the cloud and their sym-

bol representation is presented in “Table: Symbols corresponding to queries”.

“Table: Join Representation”in Figure 21 presents the join representation and

the result of the queries. Developers can exploit data at the application level.

62

Q1: Select Author_id, Author_name from “do_author” where Author_id=‘101’
Q2: Select Author_id, Author_Book from “do_author_book” where Author_id =‘101’

 Query Attribute list φ σ Dh

Q1 Author_id, Author_name where Author_id=‘101’

do_author

Q2 Author_id, Author_Book where Author_id=‘101’

do_author_book

CQ1 (Author_id,101),
(Author_name,Tom)

CQ2 (Author_id,101),
(Author_Book,The life)

Table: Join Representation

Table: Symbols corresponding to queries

Figure 21: Join in Type 3

3.7.3 Join in Type 4

Definition 11 After migrating data from RDB to NOSQLDB using Type 4 migra-

tion method. J�(S) = {CQl|l >= 1} is a join consisting of a cloud query or set of

queries to S in NOSQLDB where S contains only one domain, i.e., |S| = 1.

In the Type 4 migration method, the join is performed to one domain only because

the data of the tables where the user is likely to make joins is migrated to one domain

only. The data is in the denormalized form.

As shown in Example 7, the domain “do customer”is formed by merging ta-

bles “tbl customer”and “tbl customer contact info”. The join to the domain

“do customer”is shown in Figure 22.

63

Q1: Select Customer_id,Customer_name,Customer_phone from “do_customer” where
Customer_id=‘101’

 Query Attribute list φ σ Dh

Q1 Customer_id, Customer_name,
Customer_phone

where Customer_id=‘101’ do_customer

CQ1 (Customer_id,101), (Customer_name,Jack)
,(Customer_Phone,(4879875621,4587123654)

Table: Symbols corresponding to queries

Table: Join Representation

Figure 22: Join in Type 4

The “Q1”is a query to the cloud. The symbol representation is presented in

“Table: Symbols corresponding to queries”. “Table: Join Representa-

tion”in Figure 22 presents the join representation and results of the query. Developers

can exploit the data at the application level.

3.8 Sharding

As the data size increases, a single domain may not be sufficient to store the data nor

provide an adequate read and write throughput. In this case, we need to shard the

data. Sharding is the process of storing data records across multiple domains in Sim-

pleDB. Sharding is important for scaling up in SimpleDB. Every domain has limited

throughput, so it becomes important to spread the data across multiple domains.

64

The Type 1 Migration method migrates a relational database to a domain in

the cloud database. Therefore, the cloud database can have only one domain. As

a result, the Type 1 Migration Method does not support sharding. The read and

write throughput in the Type 1 Migration method may decrease as domain reaches

its capacity.

The Type 2, Type 3 and Type 4 Migration methods migrate the tables of a

relational database to the domains in the cloud database. Therefore, the Type 2, Type

3 and Type 4 Migration Methods support sharding. Hence, it is easy to scale domains

in the Type 2, Type 3 and Type 4 Migration Methods. So, rather than storing all

the data in one SimpleDB domain, we recommend splitting domains up into smaller

number of chunks to increase the throughput and get a high performance. Sharding

data across domains decreases query time, but it increases box usage. Box usage

is directly related to the cost of querying the data. Hence, performance-improving

measures result in a higher bill.

3.9 Redundancy

Data redundancy is the superfluity of data. In computer data storage system, data

redundancy is a common issue. The major disadvantages of data redundancy are:

• Increases the size of the database

65

• Causes data inconsistency

• Decreases efficiency of the database

• May cause data corruption

Type 1 Migration migrates all the tables in a relational database to a domain

in the cloud database. The tables migrated in a domain may have redundant data.

The Type 2 Migration migrates tables which have primary-foreign key relationship

to a domain in the cloud database. Therefore, the Type 2 Migration method stores

data in the redundant form. This redundant form causes inconsistency. The query

to a domain in the Type 1 Migration method and the Type 2 Migration method may

bring back the result in a redundant form. As a result, the query time for a domain

in the Type 1 Migration method and the Type 2 Migration method may increase.

This leads to a decrease in the efficiency of the domain.

The Type 3 Migration migrates each table in a relational database to a domain

in a cloud database. Each table in a relational database is in its normalized form.

Therefore, normalized data is migrated to a domain in the cloud database. Hence,

Type 3 Migration method stores consistent data and is not redundant. In the Type

4 Migration method, the relational database is migrated in denormalized form. The

denomalization process uses the multi-value attributes property of a cloud database

and then migrates data in the form of arrays. Therefore, storing the data in the multi-

value attribute form decreases the redundancy and stores the data in the consistent

66

form. As a result, the query time for a domain in the Type 4 Migration decreases.

3.10 Comparison of Migration Methods

we compare our different migration methods and provide recommendations is for

when to use these methods. Figure 23 presents a comparison of different migration

methods.

Figure 23: Comparison of Migration Methods

A software developer or enterprises should use the Type 1 Migration Method when

the database size should not increase more than 10GB. A domain in Amazon Sim-

pleDB can only store data up to 10GB. However, if the size of the relational databases

67

increases more than 10GB, we recommend the software developer or enterprises must

use the Type 2, Type 3 or Type 4 Migration methods. Moreover, the Type 2, Type

3 and Type 4 Migration methods support sharding. Therefore, the Type 2, Type

3 or Type 4 Migration methods provide high scalability. The Type 2 and Type 4

Migration limit the joins to only one domain. We recommend the use of the Type 4

Migration method over Type 2 Migration method because Type 4 Migration Method

denormalizes the data. By denormalizing, the Type 4 Migration method saves the

renting cost and makes the joins easier as compared to the Type 2 Migration method.

The Type 2 Migration is useful when there is no need for data denormalization. The

Type 3 Migration Method is useful when the user needs the same structure of the

data in the cloud database as is needed in the relational database.

68

Chapter 4

Data Migration Model

To realize our data migration methods, we propose an Automatic Data Migration

model. This model uses four migration methods as an important component of our

migration system to migrate data in four different ways.

In Section 4.1, we propose an Automatic Data Migration model. The system

Migrates the relational database into the NoSQL cloud database. In Section 4.2, we

discuss each component of our model in detail. In Section 4.3, we present objectives

of the migration model. Finally, in Section 4.4, we present the limitations of our

model.

69

4.1 Architecture of the Migration Model

Figure 24 presents the architecture of the automatic data migration model. The

model migrates the relational databases to the cloud databases.

Source
Database

Business Layer
 Data Access Layer

Cloud
Database

Sql Server
Data Access Layer

 Schema Mapping

Database

to
Domain

Column to
Attribute

Many

Tables to
Domains

Column to
Attribute

Table to
Domain

Column to
Attribute

Normalization to
Denormalization &
 Tables to Domain

Column to
Attribute

Conversion
of Data

Graphical
User

Interface

Guid
Generation

 Data Type
Conversion

Inserting
D

ata into
database

Retrieve Database
Schema

R
et

ri
ev

e
D

at
a

fr
om

 d
at

ab
as

e

Cloud Server
Data Access Layer

Type1 Type 2 Type 3 Type4

Figure 24: Relational-Cloud Migration

The model maps the data between the source system and the target system. The

model migrates data from one system to another system automatically whenever it

is required. Only semantic knowledge is required at some point.

70

The model first loads all available relational databases. Depending upon the se-

lected database, it loads all the tables, and schema, and provides the relationship

between the tables. The relationship refers to the primary-foreign key relationship.

The user can see all the available tables in the present database. The user has com-

plete control over the data migration process through the user interface. The model

automatically fetches the underlined schema, and data from the source database and

migrate this data to target system (aka Amazon SimpleDB.).

The model is composed of many specialized modules that interact with each other

during migration and maintain a continuous flow of data. The main modules of the

model are:

• Business Layer

• Data Access Layer

• Schema Mapping

• Conversion of Data

• Guid Generation

All the modules are controlled by the user interface.

71

4.2 Implementation Details

The implementation of the data migration model supports the migration of data from

a source to a destination without having prior semantic knowledge of the structure of

the data. As we are migrating a relational database to a cloud database, our source

system can be Oracle, MySQL or Microsoft SQL Server. Any system which has a

relational database can act our source system. Our destination system is a cloud

database which supports key-value pairs. In this thesis, we migrate relational data

to Amazon SimpleDB.

We use the Microsoft SQL Server to store our relational database. To imple-

ment our model, we use Microsoft .Net Framework 3.5, Microsoft IIS 7.0 and Microsoft

SQL Server 2008 R2. We use Amazon web service SDK for Microsoft Visual Studio.

We use the C# library of SimpleDB to perform all necessary action for migrating the

data.

The migration system makes use of inbuilt Microsoft libraries to fetch the data

from the Microsoft SQL Server in the data table. After that, it converts data in the

form of key-value pairs. The key-value is the basic data structure supported by Ama-

zon SimpleDB. Amazon SimpleDB identifies every item (row in table) with a unique

id which is known as an itemname. In order to make each item uniquely identified,

we generate a globally unique identifier (GUID) for every item to be inserted. Before

inserting an item into Amazon Simpledb, key-value pairs are converted into string

72

data type because Amazon SimpleDB recognizes data in the form of strings only.

Finally, the data is inserted into SimpleDB.

In the following section, we discuss each component of our model in detail.

4.2.1 Business Layer

The business layer store variables required by the application while moving from one

graphical user interface to another graphical user interface. The current processing

database, and tables information is maintained by the business layer. Each interface

is linked to a previous interface for displaying the tables, and the databases and

other information related to the database. The business layer also stores the Amazon

SimpleDB secret key and the access key behind the scenes so that users do not need

to input access keys again and again. By providing a business layer, the model is

more interactive, user friendly, and flexible and decreases complication.

4.2.2 Data Access Layer

A data access layer (DAL) is a layer which provides simplified access to the data

stored in persistent storage of the source database. In this case, our source database

is the Microsoft SQL Server. In the following section we present two data access

layers:

• (Microsoft/Oracle/Mysql) Data Access Layer: This access layer forms a basis

73

of the model. The layer accesses various databases available in the system. It

fetches the underlying schemas for the tables. During the migration it fetches

the data from the respective table and transfers the data to the cloud server

data access layer. The layer uses standard data table provided by the Microsoft

.Net Framework to store data.

The layer automatically tests the connection with the server. It automatically

opens and closes the connection with the server. Once the model is connected

to a particular server, it automatically fetches the underlying databases, tables

and data from the server. The layer also handles exceptions which may be

generated during migration.

• The cloud Server Data Access Layer: The Amazon SimpleDB service provides

small groups of API calls that supports the process of data migration from

relational databases. Every cloud service provider provides its own API for

data access. The methods used by us from Amazon SimpleDB are:

– PutAttributes: Provides core concepts of inserting data into Amazon Sim-

pleDB.

– BatchPutAttributes: Provides a concept of inserting bulk data inside Ama-

zon SimpleDB. It can insert up to twenty five items at one time.

– ListDomains: Lists all the domains (table) that are available in Amazon

74

SimpleDB.

– CreateDomain: Provides a way of creating domains (table) in the Amazon

SimpleDB.

The (Microsoft/Oracle/Mysql) data Access layer retrieves databases, tables, schemas

and transfers table data and schemas to the cloud server data access layer. The cloud

server data access layer inserts the data retrieved by the (Microsoft/Oracle/Mysql)

data access layer into Amazon SimpleDB.

4.2.3 GUID Generation and Conversion of Data

By running Amazon SimpleDB instance, we are inserting relational data into Sim-

pleDB. The items are similar to the rows in the database table. Each item identifies

a single object and has data for a single item in the form of key-value attributes.

Each item is recognized by a unique key or an identifier, a primary key in a database

table. In order to insert the data into a cloud server, we generate a globally unique

identifier (GUID), for every item (row, in traditional terminology). This removes the

chances of duplication and prevents us from getting exceptions during migration and

makes the migration process smooth.

SimpleDB stores all the data as an UTF-8 string. Thus it becomes easy for Sim-

pleDB to automatically index the data and retrieve the data quickly. All other kinds

of data types such as numbers, and dates must be converted into strings. Developers

75

must ensure the correct encoding of the data, before storing data into SimpleDB. In

Figure 24, module Data Type Conversion converts all the data types into string

and ensures that every key value inserted into SimpleDB is of a string type.

4.2.4 Graphical User Interface

The user interface controls all the modules indirectly. The user interface plays a vital

role in migration. It performs many functions.

1. Authentication of the source and the target database: In order to connect to

SimpleDB, the migration model must receive the following information from

the user:

• Access Key: Access key of the user to its SimpleDB account.

• Secret Access Key: Secret access key of the user to its SimpleDB account.

The above keys are required to connect to Amazon SimpleDB. Amazon Sim-

pleDB automatically opens and closes the connection. The interface is depicted

in Figure 25.

76

Figure 25: Authentication Amazon SimpleDB

Similarly, the source system provides authentication. Once authentication is

done, the system proceeds to the next interface.

2. Display and Selection of Database: After authentication is done with the source

and target system, the interface will display existing databases in the system.

The interface is presented in Figure 26.

77

Figure 26: Database selection

3. Display of Tables: Once the source database to be migrated is selected, then

interface displays available tables from the database. The user can select and

migrate tables or tables data to the cloud database. Figure 27 presents the

interface.

Figure 27: Display tables

78

In Figure 27, column “table nam”represents the name of the tables present in

the database. Users can select tables or tables data that need to migrate.

4. Display of Schema: In Type 4, Normalization to Denormalization and Tables to

Domain migration method display schema of tables. This enables user to select

only those columns that need to be migrated. This type typically involves

combining columns from different tables and migrating columns and their data

to a single domain. Figure 28 presents the interface.

Figure 28: Schema display

79

In Figure 28, section “Tables”represents a list of tables that are present in the

database. Section “Reference Tables”displays tables which are referenced by

tables in the “Tables”section. Section “Select Columns”displays the schema of

selected tables.

5. Display Migration Result : This displays a message to user that “Data is mi-

grated successfully ”.

4.2.5 Schema Mapping

The schema mapping component is used to create mapping rules between the source

and the target system. These rules are according to the users specifications. Our

system supports two types of mapping:

• Table-Domain Mapping

• Column-Attribute Mapping

The “Domain”in Amazon SimpleDB is similar to “Table”in relational database.

“Attribute”in the Amazon SimpleDB is similar to “Column”in the relational database.

In the Type 1, Type 2 and Type 3 migration methods, columns are implicitly mapped

to attributes in Amazon SimpleDB.

80

In the Type 4 migration method, the columns are explicitly mapped to attributes

in Amazon SimpleDB. During the migration process, these columns will be automat-

ically converted into attributes in the target database.

The Table-Domain Mapping maps the tables in the relational database to domains

in the Amazon SimpleDB. In the Type 1, Type 2 and Type 4 migration methods,

the user needs to input the domain name. The Type 3 migration method supports

implicit conversion of the name of tables to the name of domains. Once the migration

process starts, it will automatically map tables and columns of the relational database

to domains and attributes respectively.

The rule mapping module allows the user to manage the rules created. Before

data migration, the user can validate created rules and proceed with or without all

the rules. The user interface gives the option to the user to change the mapping

before the actual migration process starts.

4.3 Data Migration Objectives

Our approach to data migration serves the following objectives:

• Robust and User-Friendly: A majority of the data migration process is auto-

matically done. DBA and developers require semantic knowledge for interac-

tion. This makes the data migration process user friendly with few inputs from

the user. Because most of the process is automatic, this speeds up the data

81

migration from the source to the destination database. In this process of mi-

gration, the developers are not required to have knowledge of the underlying

object-relational mapping every time.

• Flexibility: Our model presents different ways of migrating data. This gives

flexibility to the organizations to migrate their large data sets. The user can

select any of the approaches depending on the feasibility, the flexibility, and the

size of data to be migrated in the cloud database.

4.4 Limitations

In this thesis, we present a system to automate the data migration from relational

databases to cloud databases. The limitations of the model are:

• Stored Procedure: Stored procedures are pre-compiled objects stored in the

database. Stored procedure is also a batch which is stored under a name and it

is executed as a single unit. Because cloud databases does not provide stored

procedure functionality, we cannot migrate existing stored procedures of rela-

tional databases to cloud databases.

• User-defined Function: User-defined function is a T-SQL routine that returns

a value. Because cloud databases does not provide any User-defined function

functionality, we cannot migrate existing functions of the database to the cloud

82

database.

• Triggers: Triggers are a code block that are comprised of set of T-SQL state-

ments that are executed (fired) in response to an event such as Insert, Delete

or Update statements on a table. Trigger can also be considered to be special

type of a stored procedure that gets fired automatically in an event. Because

cloud databases do not provide any triggers functionality, we cannot migrate

existing triggers of the databases to the cloud databases.

83

Chapter 5

Experiments

In order to evaluate our model, we perform experiments to migrate the relational

database to the cloud database (SimpleDB). In this chapter, we present the experi-

mental results of our migration model.

We based our experiments on a relational database of the “online bookstore”ap-

plication. The sample database consists of thirteen tables and sample data. The

experiments are processed in the following environment:

• Dell Inspirion N5110

• Intel Core i3 processor

• 6GB DDR3 1066mHz RAM

• 10Mbps ADSL2 internet connection

84

Figure 29: Relational schema used in the experiments

85

Figure 29 presents the online bookstore schema that was used.

5.1 Type 1 Migration Experiment

Figure 30: Type 1 conversion

The Type 1 migration process involves migrating the whole relational database

to a single domain Amazon SimpleDB (cloud). It refers to migrating entire data

86

from all the tables in a relational database to a single domain of Amazon SimpleDB.

Because the old system and the new system have different object models, this results

in different database schemata.

Suppose we create a new domain in SimpleDB as “Bookstore”, all data will be

migrated to this domain in the form of key-value pairs. Figure 30 depicts the migrated

database in the domain “Bookstore”. Figure 31 shows the interface in which users

can select all tables and enter user defined domain name.

Figure 31: Type 1 tool interface

The migrated domain and sample data are presented in Figure 32.

87

Figure 32: Type 1 SimpleDB interface

5.1.1 Join

SimpleDB does not support the concept of a join. We provide an example to handle

a join in a Type 1 migration. Developers can make simultaneous queries to domains

and exploit data at the design time.

Example 8 Suppose we need to fetch data from the tables tbl Author and tbl au-

thor Contact Info for a particular Author id. Table 5 compares and handles join

functionality in relational database and SimpleDB.

88

Table 6: Type 1 join
RDBMS SimpleDB
Select Author Fname, Author lname, Select Author Fname,
Author dateofbirth, Author Gender, Author lname, Author dateofbirth,
Author phone info FROM tbl Author Author Gender
JOIN tbl author Contact Info from Bookstore where Author id
ON tbl Author.Author id = ’A1’
= tbl author Contact Info.Author id Select Author phone info
WHERE FROM Bookstore
tbl author Contact Info.Author id = ’A1’ where Author id = ’A1’

5.2 Type 2 Migration Experiment

In this migration, we migrate data of relevant tables on which users are likely to make

joins in one domain in SimpleDB. Most of the tables where the user performs joins

have primary-foreign key relationships. The other tables are migrated as “Table-

Domain ”and the column as “Column-Attribute”in Amazon SimpleDB.

In the online bookstore schema, the tables data of “tbl Author”, “tbl author a-

ddress info”and “tbl author Contact info”are migrated to one domain, say, “a-

uthor data”. Similarly, customer data of tables “tbl customers”, “ tbl custom-

ers emailid”, “tbl customers address”and “tbl customers address”are com-

bined to one domain, say, “Customer normalised”. All other tables and their

data are migrated as individual domains in SimpleDB. Figure 33 presents a Type 2

migration.

89

Amazon SimpleDB

Figure 33: Type 2 conversion

Figure 34 shows the interface in which the user can select relevant tables and enter

a user defined domain name. Data and schemas are automatically transferred to Sim-

pleDB. The interface shows migration of all customer data in domain “Customer n-

ormalised”.

90

Figure 34: Type 2 interface

5.2.1 Join

The following example handles join in Type 2 migration. Developers can make simul-

taneous queries to the domain and exploit data at the design time.

Example 9 Suppose we need to fetch data from the tables “tbl Author”and “tbl a-

uthor Contact Info”for a particular Author id. Table 8 compares and handles join

functionality in the relational databases and in the SimpleDB.

91

Table 7: Type 2 join
RDBMS SimpleDB
Select Author Fname, Author lname, Select Author Fname,
Author dateofbirth, Author Gender, Author lname, Author dateofbirth,
Author phone info FROM tbl Author Author Gender
JOIN tbl author Contact Info from author data where Author id
ON tbl Author.Author id = ’A1’
= tbl author Contact Info.Author id Select Author phone info
WHERE FROM author data
tbl author Contact Info.Author id = ’A1’ where Author id = ’A1’

5.3 Type 3 Migration Experiment

Amazon SimpleDB

Figure 35: Type 3 conversion

In this approach, each table is mapped to a single domain of SimpleDB and the

column is mapped to an attribute of SimpleDB. Once the migration process starts,

the tables and data will automatically map to the cloud database.

92

In the “online bookstore”schema, every single table is mapped to a single do-

main and the data is migrated into the respective domain. Figure 35 presents the

Type 3 migration.

Figure 36 shows an interface in which the user can select all the tables. Data and

schemas are automatically transferred to SimpleDB.

Figure 36: Type 3 interface

93

5.3.1 Join

The following example handles a join in Type 3 migration. The developer can make

simultaneous queries to different domains and exploit data at the design time.

Example 10 Suppose we need to fetch data from the tables “ tbl Author”and “

tbl author Contact Info”for a particular Author id. Table 7 compares and han-

dles join functionality in relational database and SimpleDB.

Table 8: Type 3 join
RDBMS SimpleDB
Select Author Fname, Author lname, Select Author Fname,
Author dateofbirth, Author Gender, Author lname, Author dateofbirth,
Author phone info FROM tbl Author Author Gender
JOIN tbl author Contact Info from tbl Author where Author id
ON tbl Author.Author id = ’A1’
= tbl author Contact Info.Author id Select Author phone info
WHERE FROM tbl author Contact Info
tbl author Contact Info.Author id = ’A1’ where Author id = ’A1’

5.4 Type 4 Migration Experiment

First, the migration denormalizes the relational database based on the semantics.

Once semantics are provided by the user, it will automatically denormalize the database

and migrate the data to cloud database. The denormalization process is important

and this will utilize the multi-value attribute property of Amazon SimpleDB and

migrate data in the form of arrays.

94

Domain
author_denormalized_data

Author_id
Author_Fname
Author_lname
Author_dateofbirth
Author_Gender
Author_address
Author_phone_info

 Customer_id
Customer_Fname
Customer_lname
Customer_emailid
Customer_phone
Customer_address

Domain
Customer_denormalized

Domain
tbl_books
Domain

tbl_order_item

Domain
tbl_books_categories

Domain
tbl_contacts_ref

Domain
tbl_ref_Contact_types

Domain
tbl_orders

SimpleDB

Figure 37: Type 4 migrated schema

In “Bookstore”schema, table columns of “tbl author address info”and “t-

bl author Contact info”are combined to “tbl author ”and form a denormalized

domain, say “author denormalized data ”with column “Author phone info”

and “tbl author address info”forming multi-value attributes in SimpleDB.

Similarly, table columns of “tbl customers emailid”, “tbl customers addres-

s”and “tbl customers address”are combined to “tbl customers”to form a denor-

malized domain, say “Customer denormalized”. All other tables and their data

are migrated as individual domains in SimpleDB. Figure 37 depicts the migrated

database schema.

95

Figure 38 presents an interface in which user can select tables and columns based

on semantics. Data and schemas will automatically transfer to SimpleDB.

Figure 38: Type 4 interface

The migrated domain is presented in Figure 39.

96

Figure 39: Type 4 SimpleDB interface

5.4.1 Join

The following example handles join in Type 4 migration.

Example 11 Suppose we need to fetch data from the tables ”tbl Author“and ”t-

bl author Contact Info“for a particular Author id. Table 8 compares and handles

a join functionality in the relational database and SimpleDB.

Table 9: Type 4 join
RDBMS SimpleDB
Select Author Fname, Author lname, SELECT * FROM
Author dateofbirth, Author Gender, author denormalized data
Author phone info FROM tbl Author WHERE Author id = ’A1’
JOIN tbl author Contact Info
ON tbl Author.Author id
= tbl author Contact Info.Author id
WHERE
tbl author Contact Info.Author id = ’A1’

97

5.5 Code Generation

We propose an interface which will assist the developer to generate code automatically.

This includes the basic usage of Select, Insert, Delete and Update queries. The

interface requires following inputs:

• Domain Name: The user needs to select a domain against which user will make

queries.

• Item Name: The user needs to input an item name in case of Delete, Insert and

Update queries.

• Method Name: The user needs to input a method name and if required, the

user can provide parameters to the methods as well.

• Attribute and Attribute Value: The attribute name is similar to the column

name. As SimpleDB does not have any schema, the user needs to input at-

tributes with its value.

Once the user provides the inputs and clicks on the designated button, code will

be generated using C# API of Amazon SimpleDB. This will help the developer by di-

rectly using the code in their migrated application. Moreover, it will assist a developer

to understand and query against the domains in SimpleDB.

Figure 40 present a code generation interface.

98

Figure 40: Code generation interface

Suppose firstly, we need to fetch Author id, Author Fname from “author den-

ormalized data”domain presented in the Type 4 Migration approach. Secondly we

need to perform Delete, Update and Insert operations on the domain “author deno-

rmalized data”having attributes Author id, Author Fname. Once the user clicks

on the desired button, the respective code is generated. The user can directly use this

code in the “Data Access Layer”of its application. This code will greatly assist the

user while migrating application code from the relational database to the Amazon

SimpleDB.

Figure 41 presents a sample code for Select, Insert, Delete and Update operations.

99

fn_Select(Int a, String b)
{
AmazonSimpleDB simpleDB = new AmazonSimpleDBClient
(Secret key,Acesscode);
SelectRequest request = new SelectRequest();
request.SelectExpression ="Select Author_id,Author_Fname from
author_denormalized_data";
var data = simpleDB.Select(request).SelectResult;
}

Select Code

fn_Insert(Int a, String b)
{
AmazonSimpleDB simpleDB = new AmazonSimpleDBClient(Secret
key, Acesscode);
PutAttributesRequest request = new PutAttributesRequest();
request.DomainName="author_denormalized_data";
request.ItemName=15;
 RequestAttr[] userData = new RequestAttr[]
{
new Attr().WithName("Author_id").WithValue("A3"),
new Attr().WithName("Author_Fname").WithValue("TagoreNath")
};

request.WithAttribute("userData ");
simpleDB.PutAttributes(request);
}

Insert Code

fn_updatet(Int a, String b)
{
AmazonSimpleDB simpleDB =new
AmazonSimpleDBClient((Secret key, Acesscode);
PutAttributesRequest request = new PutAttributesRequest();
request.DomainName="author_denormalized_data";
request.ItemName=15;
 RequestAttr[] userData = new RequestAttr[]
{
new
Attr().WithName("Author_id").WithValue("A3").WithReplac
e(true),
new
Attr().WithName("Author_Fname").WithValue("TagoreNath
").WithReplace(true)
};

request.WithAttribute("userData ");
simpleDB.PutAttributes(request);
}

Update Code

Delete Code
fn_Delete(Int a, String b)
{
AmazonSimpleDB simpleDB = new AmazonSimpleDBClient(Secret
key, Acesscode);
DeleteAttributesRequest request = new DeleteAttributesRequest();
request.DomainName="author_denormalized_data";
request.ItemName=15;
request.WithAttribute(new
Attr().WithName("Author_id").WithValue("A3")
new Attr().WithName("Author_Fname").WithValue("TagoreNath")
);
simpleDB.DeleteAttributes(request);
}

Figure 41: Select, Insert, Delete and Update code generation.

100

Chapter 6

Performance Evaluation

In this chapter, we empirically analyze the computation cost of different migration

strategies. We propose a “performance model”to evaluate different migration

methods. The “performance model”consists of computational time, and storage

costs.

6.1 Experiment Setup

In order to evaluate the performance of our protocol, we use a laptop equipped with

an Intel i3 processor at 2.20GHz and 6GB of RAM running on windows 7 Home

Premium. The upload speed is at an average 22Mbps and the download speed is at an

average 19Mbps. We used a virtual machine (VM) running SQL Server on Amazon

Elastic Cloud Compute (EC2) as the cloud with a micro instance. The Amazon

101

SimpleDB charges based on the amount of machine capacity used to complete the

particular request (e.g., SELECT, GET, PUT), normalized to the hourly capacity of

a circa 2007 1.7GHz Xeon processor. All the experiments are done under the same

conditions.

6.2 Performance Model

The performance model consists of computational time and storage cost. Figure 42

presents our “performance model”.

Computation Time

Storage Cost

Figure 42: Performance model

6.2.1 Computational Time

We evaluate the average computation time of fetching 25 records, 50 records and

100 records in different migration methods from Amazon SimpleDB. We fetch the

same attribute-value pairs in all the different approaches to evaluate computational

time in each migration method. We execute the queries four times to fetch the same

number of the records. Figure 43 presents the result of fetching the different number

of records.

102

0

100

200

300

400

500

600

700

800

900

25 50 100

Ti
m

e
(m

ill
ise

co
nd

s)

No of Records

Type1 Type2 Type3 Type4 Relational

Type 1, 586

Type 2, 649

Type 3, 835

Type 4, 692

Relational , 800

Figure 43: Computational time of fetching records

We use the online Bookstore schema as presented in Figure 13 to fetch these

records. Upon a request from an authorized user, the Amazon SimpleDB returns

back the result. As shown in Figure 43, the average computation time varies from

171 to 735 ms upon requesting data in the Type 1 Migration Method when the

number of records changes from 25 to 100. In the Type 2 Migration Method, the

average computation time varies from 441 ms to 649 ms when the number of records

changes from 25 to 100. The average computation time in the Type 3 Migration

Method varies from 537 ms to 835 ms. In the Type 4 Migration Method, the average

computation time varies from 455 to 692 ms on fetching 25 to 100 records. The

Type 1 Migration Method took the least amount of time while the Type 3 Migration

Method took the maximum time. This happens because in the Type 1 Migration

Method, data is fetched from only one domain and in the Type 3 Migration Method,

103

data is fetched from multiple domains. The Type 3 Migration Method queries the

records from different domains at the same time. The Type 2 Migration Method

and Type 4 Migration Method have nearly the same time because in both types,

relevant tables are combined to form one domain based on semantics. The records

are fetched from one domain in which multiple tables are combined and from other

domains as well. This restricts the query to only one domain and increases the

performance and decreases the query time. We also fetch the same number of records

from the Amazon RDS of SQL Server to compare the results with our migration

methods. Figure 43 shows that the average Computation time of fetching records in

Type1, Type2 and Type4 approaches is less as compared to fetching the records in

the relational database. The average computation time of fetching records in Type3

method and in a relational database is nearly same.

Table 10: Average Computation time (milliseconds) in different approaches
Number of Records Type 1 Type 2 Type 3 Type 4

25 171 441 537 455
50 443 470 693 536
100 586 649 835 692

6.2.2 Storage Cost

Every request made to SimpleDB returns a BoxUsage value as a part of the response

message. This response message includes the usage of system resources by specific

operations. BoxUsage is a measure of machine hour usage by making requests to

104

SimpleDB. The charges are applied to the hourly capacity of a 2007 1.7 GHz Xeon

processor.

The cost of renting storage space in SimpleDB is divided into three categories.

• Structure Data: Structure data consists of a number of items, the average

number of attributes per item and the total size of attribute values stored by a

domain.

• Machine Utilization: This consists of the number of batchputs, the average

number of items per batchput, the number of gets and the number of simple

selects made to the domain.

• Data Transfer: Data transfer consists of data transfer out and data transfer in

from the domains.

First, we calculate renting 10 GB of space in each migration method of migrating

relational database “online Bookstore schema”as presented in figure 29. Each

table has an average of 5 columns.

105

Type1, 20.97 Type2, 20.97 Type3, 20.97

Type4, 11.33

0

5

10

15

20

25

Pr
ic

e
($

)

Renting 10GB Space

Figure 44: Storage cost of 10GB data

Figure 44 presents the cost of renting 10GB of data in SimpleDB. The Type 1

Migration Method supports storing data up to 10GB because one domain can only

extend up to 10GB. The Type 1, Type 2 and Type 3 data migration methods cost the

same amount of $20.97, while the Type 4 Migration Method costs $11.33. The Type 4

Migration costs less because the machine utilization in terms of number of batchputs,

average number of items per batchput decreases. Also, storing of structural data in

terms of numbers of items decreases. Both machine utilization and storing structured

data reduce the overall cost.

As the data increases beyond 10GB, Type 1 migration does not provide support.

Figure 45 presents the result of renting storage of 25GB data.

106

Type2, 48 Type3, 47.25

Type4, 36.8

0

10

20

30

40

50

60

Pr
ic

e
($

)

Renting 25GB Space

Figure 45: Storage cost of 25GB data

The Type 2 Migration Method and the Type 3 Migration Method cost the nearly

same as $48 and the Type 4 Migration Method costs $36.8. Our results shows that

storing data saves costs in the Type 4 Migration Method as compare to other data

migration methods. The cost of renting Amazon RDS of SQL Server is costly as

compare to Amazon SimpleDB.

107

Chapter 7

Conclusion and Future Directions

7.1 Conclusion

Over the last decade, cloud has been a successful paradigm for web applications. The

popularity of cloud computing is increasing and emerging as a billion-dollar industry.

DBMSs store and serve data for an application, hence data becomes critical and

central to a web application.

The overarching goal of this thesis is to propose a model, methods and paradigms

to develop a system which migrates relational databases to cloud databases. This

thesis provides techniques and a model which will help software industries to migrate

their existing relational databases and data models to the cloud. We propose four

diverse methods to migrate relational databases to cloud databases:

108

• Type 1: complete relational database to one domain.

• Type 2: multiple tables to one domain.

• Type 3: A table to one domain.

• Type 4: normalization to denormalization and tables to domain

Each method is independent of the other. Joins in relational databases combine

records from two or more tables but cloud databases lacks joins. This thesis also

provides a way of handling joins in each approach. Finally, we propose an interface

which generates code with respect to cloud API and helps in code re-factoring during

application migration to the cloud. The interface will assist the developer to generate

code which includes the usage of basic Select, Insert, Delete and Update queries. This

code will assist greatly while migrating application code from relational databases to

Amazon SimpleDB.

7.2 Future Direction

Apart from the advantages of this model, it also has limitations. Firstly, stored

procedures are not supported by cloud databases (SimpleDB), so we cannot migrate

existing stored procedures of the databases to the cloud database. Our future research

will focus on migrating the stored procedures from relational databases, if any support

is provided by cloud databases. Secondly, the cloud database does not provide any

109

support for user-defined functions and triggers, so we cannot migrate existing func-

tions and triggers of relational databases to cloud databases. Our future research will

focus on migrating the user-defined functions and triggers from relational databases,

if any support is provided by cloud databases.

110

Bibliography

[1] M. Abdelsalam, A. Akhtar, and N. Rossiter. A framework for relational

database migration. http://computing.unn.ac.uk/staff/cgma2/papers/

RDBM.pdf. Retrieved July 23, 2013.

[2] Amazon. Amazon simpledb. http://aws.amazon.com/simpledb/. Retrieved

June 28, 2013.

[3] B. Bordbar, D. Draheim, M. Horn, I. Schulz, and G. Weber. Integrated model-

based software development, data access, and data migration. In Model Driven

Engineering Languages and Systems, pages 382–396. Springer, 2005.

[4] M. Burrows. The chubby lock service for loosely-coupled distributed systems. In

Proceedings of the 7th symposium on Operating systems design and implementa-

tion, pages 335–350. USENIX Association, 2006.

[5] Andre Calil and Ronaldo dos Santos Mello. Simplesql: a relational layer for

simpledb. In Advances in Databases and Information Systems, pages 99–110.

111

Springer, 2012.

[6] R. Cattell. Scalable sql and nosql data stores. ACM SIGMOD Record, 39(4):12–

27, 2011.

[7] P. Chaganti and R. Helms. Amazon SimpleDB Developer Guide. Packt Publish-

ing Ltd, 2010.

[8] S. Chandrasekaran and R. Bamford. Shared cache-the future of parallel

databases. In Proceedings of the 19th International Conference on Data En-

gineering (ICDE’03), volume 1063, pages 17–00, 2003.

[9] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,

T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed storage system

for structured data. In Proceedings of the 7th conference on usenix symposium on

operating systems design and implementation - volume 7, pages 205–218, 2006.

[10] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,

T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed storage system

for structured data. ACM Transactions on Computer Systems (TOCS), 26(2):4,

2008.

[11] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon,

H. Jacobsen, N. Puz, D. Weaver, and R. Yerneni. Pnuts: Yahoo!’s hosted data

serving platform. Proceedings of the VLDB Endowment, 1(2):1277–1288, 2008.

112

[12] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.-

A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni. Pnuts: Yahoo!’s hosted data

serving platform. Proceedings VLDB Endow., 1(2):1277–1288, August 2008.

[13] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Bench-

marking cloud serving systems with ycsb. In Proceedings of the 1st ACM sym-

posium on Cloud computing, pages 143–154. ACM, 2010.

[14] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: amazon’s

highly available key-value store. In Proceedings of twenty-first ACM SIGOPS

symposium on Operating systems principles, SOSP ’07, pages 205–220, New York,

NY, USA, 2007. ACM.

[15] C. Dede. The evolution of information technology: Implications for curriculum.

Educational Leadership, 7(1):23–26, 1989.

[16] D. J. DeWitt, R. H. Gerber, G. Graefe, M. Heytens, K. Kumar, and M. Mura-

likrishna. A High Performance Dataflow Database Machine. Computer Science

Department, University of Wisconsin, 1986.

[17] C. Drumm, M. Schmitt, H. Do, and E. Rahm. Quickmig: automatic schema

113

matching for data migration projects. In Proceedings of the sixteenth ACM con-

ference on Conference on information and knowledge management, pages 107–

116. ACM, 2007.

[18] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier. Cluster-

based scalable network services. In ACM SIGOPS Operating Systems Review,

volume 31, pages 78–91. ACM, 1997.

[19] S. Fushimi, M. Kitsuregawa, and H. Tanaka. An overview of the system software

of a parallel relational database machine grace. In Proc. Intl. Conf. on Very

Large Databases, 1986.

[20] K. Haller. Data migration project management and standard software–

experiences in avaloq implementation projects. In Data Warehousing Conference-

DW2008: Synergien durch Integration und Informationslogistik, pages 391–406,

2008.

[21] K. Haller. Towards the industrialization of data migration: Concepts and pat-

terns for standard software implementation projects. In Advanced Information

Systems Engineering, pages 63–78. Springer, 2009.

[22] Jing Han, E Haihong, Guan Le, and Jian Du. Survey on nosql database. In Per-

vasive computing and applications (ICPCA), 2011 6th international conference

on, pages 363–366. IEEE, 2011.

114

[23] J. Henrard, M. Hick, P. Thiran, and J. Hainaut. Strategies for data reengineering.

In Reverse Engineering, 2002. Proceedings. Ninth Working Conference on, pages

211–220. IEEE, 2002.

[24] A. R. Hickey. Cloud computing market hot, but how hot? estimates are all

over the map. http://www.forbes.com/sites/joemckendrick/2012/02/

13/cloud-computing-market-hot-but-how-hot-estimates-are-all-over-

the-map/. Retrieved July 23, 2013.

[25] P. Howard and C. Potter. Bloor research: Data migration in the global

2000 - research, forecasts and survey results. http://www.techrepublic.

com/whitepapers/bloor-research-data-migration-in-the-global-2000-

research-forecasts-and-survey-results/322625.Retrieved March, 2013.

[26] Andrei Idu. Data migration for data intensive software products. 2012.

[27] S. Islam. Data migration: Connecting databases in the cloud. The Second

International Conference on Communications and Information Technology, 2012.

[28] J. H. Jahnke and J. Wadsack. Varlet: Human-centered tool support for database

reengineering. In Proc. of Workshop on Software-Reengineering, 1999.

[29] M. A. Jeusfeld and U.A. Johnen. An executable meta model for re-engineering

of database schemas. Springer, 1994.

115

[30] J. W. Josten, C. Mohan, I. Narang, and J. Z. Teng. Db2’s use of the coupling

facility for data sharing. IBM Systems Journal, 36(2):327–351, 1997.

[31] D. Kargerand, E. Leighton, T. Panigrahy, R. Levine, and D. Lewin. Consis-

tent hashing and random trees: Distributed caching protocols for relieving hot

spots on the world wide web. In Proceedings of the twenty-ninth annual ACM

symposium on Theory of computing, pages 654–663. ACM, 1997.

[32] D. Kossmann, T. Kraska, and S. Loesing. An evaluation of alternative archi-

tectures for transaction processing in the cloud. In Proceedings of the 2010

ACM SIGMOD International Conference on Management of data, pages 579–

590, 2010.

[33] L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 21(7):558–565, 1978.

[34] B. G. Lindsay, L. M. Haas, C. Mohan, F. P. Wilms, and A. R. Yost. Computation

and communication in r*: A distributed database manager. ACM Transactions

on Computer Systems (TOCS), 2(1):24–38, 1984.

[35] D. B. Lomet, R. Anderson, T. K. Rengarajan, and P. Spiro. How the Rdb/VMS

data sharing system became fast. Citeseer, 1992.

116

[36] A. Maatuk, A. Ali, and N. Rossiter. Relational database migration: A perspec-

tive. In Database and Expert Systems Applications, pages 676–683. Springer,

2008.

[37] F. Matthes and C. Schulz. Towards an integrated data migration process model.

Software Engineering for Business Information Systems (sebis), 2012.

[38] R. Rawson and J. Gray. Hbase at hadoop world nyc. http://bit.ly/HBase_

HWNYC09. Retrieved November 19, 2012.

[39] J. Rothnie, B. James, P. A. Bernstein, S. Fox, N. Goodman, M. Hammer, A. T.

Landers, C. Reeve, D. W. Shipman, and E. Wong. Introduction to a system for

distributed databases (sdd-1). ACM Transactions on Database Systems (TODS),

5(1):1–17, 1980.

[40] P. Russom. Best practices in data migration. Renton/USA, 2006.

[41] H. G. Sockut and P. R. Goldberg. Database reorganization—principles and

practice. ACM Computing Surveys (CSUR), 11(4):371–395, 1979.

[42] A. Thakar and A. Szalay. Migrating a (large) science database to the cloud.

In Proceedings of the 19th ACM International Symposium on High Performance

Distributed Computing, HPDC ’10, pages 430–434, New York, NY, USA, 2010.

ACM.

117

[43] W. Vogels. Eventually consistent. Communications of the ACM, 52(1):40–44,

2009.

[44] Wikipedia. Data migration. http://www.en.wikipedia.org/wiki/Data_

migration. Retrieved June 26, 2013.

[45] Wikipedia. Denormalization. http://www.en.wikipedia.org/wiki/

Denormalization. Retrieved August 29, 2013.

118

