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ABSTRACT 

Ride Vibration and Compaction Dynamics of Vibratory Soil Compactors 

Ario Kordestani, Eng. 

This study explores the ride dynamics of typical North-American vibratory soil 

compactors via analytical and experimental methods. In-plane ride dynamic models of 

the vehicle are formulated to evaluate ride vibration responses of the vehicle in the transit 

mode on undeformable terrain surfaces with the roller vibrator off. An in-plane dynamic 

model is also formulated to study the compaction mode dynamics at lower speeds on 

elasto-plastic soil subject to roller induced vibration. Field measurements were conducted 

to characterize the ride vibration environments during the two modes of operations. 

The ride dynamic models of the soil compactor are thus analyzed to study its whole-body 

vibration environment while operating on undeformable random terrain surfaces. The 

modeling of the equipment in compaction mode of operation, however, gives insight over 

the efficiency of the compactor as a tool aimed to perform compaction of soil layers by 

plastic deformation (compression). The ride vibration environment of the vehicle and its 

compaction capability is subsequently assessed using the ISO-2631-1 (1997) guidelines 

and commonly accepted compaction criteria, respectively. The validity of the proposed 

model is demonstrated by comparing the model responses with the measured data. 

Comprehensive parametric analyses were subsequently performed to study the influences 

of variations in various design and operating parameters on the ride quality and the 

compaction efficiency of the mobile equipment. The results of the study are utilized to 

propose desirable design and operating parameters of the vibratory soil compactor for 

enhancement of its ride vibration environment and compaction performance. 
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CHAPTER 1 – INTRODUCTION AND LITERATURE 
REVIEW 

1.1. Introduction 

Construction equipments are a category of heavy equipments or industrial vehicles 

dedicated to civil application. The work presented in this dissertation concerns a special 

type of construction equipment, the soil compactors. A soil compactor is essentially a 

vibratory roller used for compaction of soils and road base layers. These articulated 

vehicles are designed with a vibratory drum (roller) as front unit linked to a single-axle 

tractor with off road capabilities as the rear unit. Soil compactors are mainly used in road 

building to compact the base grade of paved roads and streets or the core of dirt roads. 

Since the production of the first commercial vibratory rollers about 50 years ago, 

considerable efforts have been made to improve the compaction efficiency and safety of 

the equipment. Operation of such vehicles on unpaved terrains causes comprehensive 

magnitudes of ride vibration transmitted to the operators. The exposure to such vibration 

may impose adverse effects on the driver’s health and safety. The ride vibration 

characteristic of the vehicle, however, has gained only minimal importance in the design 

of compactors. Traditionally, soil compactors have been seen as tools or equipments 

rather than vehicles and thereby lesser emphasis is placed on the ride dynamics and the 

effects on the operator. Owing to the increasing demand for operator comfort and 

concerns related to adverse health effects of vibration exposure, the future designs or 

design modifications are expected to emphasize the need for dynamic characteristics that 

allow safe and comfortable operation under the designated tasks. These would necessitate 

enhanced knowledge of dynamic properties and performances of the compactors. 
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The soil compactors are designed with intentional mass unbalances within the rolling 

drum to achieve efficient vibratory compaction of soils. The vehicle comprises a tire axle 

and a vibrating drum on the other axle (by opposition to a typical asphalt compactor 

employing drums as both axles) which results in asymmetric loading, and thereby 

considerable magnitudes of fore-aft and pitch motions of the chassis and the operator 

station, in addition to the vertical motions arising from interactions of the wheels and the 

rigid drum with the terrain. 

Construction equipment tires are typically large and soft, which tend to attenuate the 

terrain-induced vibrations and shocks. Furthermore, these vehicles do not employ 

primary suspension at the wheels. The soil compactors rear axle is directly bolted to the 

vehicle frame, while the drum is supported through elastic mounts, which help suppress 

only high frequency vibration and noise. The light damping due to tires and natural 

rubber mounts, thus, yields high magnitude resonant vibration. The implementation of 

suspended operator station (cab) and seat is thus becoming increasingly popular, 

particularly in Europe, for reducing the vibration levels transmitted to the operator. In 

majority of the vehicles, the operator station is fastened to the frame through stiff rubber 

mounts, while a seat suspension could attenuate vibrations only in the vertical direction. 

The low frequency vibration arising from drum/terrain and wheel/terrain interactions are 

thus transmitted to the operator through the seat, which in the vast majority of vehicles in 

North America is limited to a polyurethane foam cushion. The vibration environment of 

such vehicles could thus be characterized by that of the resonance of a lightly damped 

system formed by the unsuspended vehicle and the tires. 
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The prolonged occupational exposure to low frequency Whole-Body Vibration (WBV) 

has been associated with increased risk of disorders in the lumbar spine and the 

connected nervous system (Seidel, 1993; Wikström, 1993; Griffin, 1990). These findings 

have also been supported by the reported epidemiologic studies, which suggest a strong 

association between the WBV exposure and the low back pain among the occupational 

vehicle drivers (Bongers, Boshuizen, Hulshof, & Koemeester, 1988; Bernard, 1997; 

Bovenzi & Hulshof, 1998; Bovenzi, et al., 2006). A field survey of heavy mobile 

equipments, including the vibratory compactors, defined the ranges of weighted root 

mean square (rms) accelerations (aw) in vertical direction (Dupuis & Zerlett, 1987), and 

established that aw lies in the 0.3 to 1.7 m/s2 range for compactors. The study, however, 

did not attempt a distinction between the lighter utility compactors (less than 5 tons in 

weight), the heavier asphalt compactors (tandem-drums above 5 tons) or the more 

powerful soil compactors (single-drum above 5 tons). The study highlighted the fact that 

compactor operators could be exposed to levels of whole-body vibration in excess of 

what is considered to be safe by International Standards Organisation for an eight-hour 

working day (ISO 2631-1, 1997). 

In Europe, where a constant pressure for almost two decades (Kittusamy & Buchholzb, 

2004), not only through regulations but also from the users, has persuaded the 

manufacturers to offer equipment featuring improved operator comfort (Kittusamy N. , 

2003), the measurements of whole-body vibration (WBV) have been performed on 16 

machines between 1997 and 2005. The highest axis vibration values were reported jointly 

by INRS and RMS Vibration Test Laboratory (Griffin, et al., 2006) for the soil 

compactors. The average values were in the order of 0.6 m/s2, which exceeded the 
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“exposure action level” of 0.5 m/s2 defined by the European Directive ( EN 2002/44/EC, 

2002). The studies also reported the vibration levels of the worst machine as 1.2 m/s2, 

which is beyond the European Directive defined “exposure limit level” of 1.15 m/s2 

(Daniere, et al., 1987; Boulanger, Donati, & Galmiche, 1996; Griffin, et al., 2006). 

Studies in USA performed mesurements on a Caterpillar CS-433B soil compactor and 

suggested WBV, characterized by vector summation of those measured along the 

vertical, fore-aft and lateral axes, in the order of 2.5 m/s2 (Beck, et al., 2004). A recent 

Canadian study performed on 3 soil compactors in Ontario revealed WBV  in vertical 

direction of an average of 0.91 m/s2, while the worst machine revealed vertical vibration 

magnitude of 1.3 m/s2 (Cann, Salmoni, Vi, & Eger, 2003). 

The WBV environment of mobile equipment is in general strongly influenced by many 

design and operating factors (Donati, 2002). In case of vibratory compactors, the WBV 

environment is most significantly influenced by the mode of operation. In the transit 

mode, the vehicle vibration responses are attributable to the interactions of the pneumatic 

tires and the rigid drum with mostly undeformable terrain, and to occasional drum-hop. 

In the compaction mode, the interaction of the vibratory drum with deformable soil and 

drum hop motions, account for the major sources of vehicle vibration. The soil 

compactors are generally designed with elastic vibration isolation mounts between the 

drum and the chassis (vehicle main body), and between the operator cabin/platform and 

the chassis. Such mounts, generally provide attenuation of only high frequency vibration 

(Bertrand, Brzezinski, & Rocques, 1994). Some of the models, however, include a low 

natural frequency vertical suspension at the seat to limit the transmission of vertical 

vibration to the operator. The soil compactors may thus be considered as unsuspended 
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vehicles, with the exception of a suspension seat. The vibration arising from the above 

sources are thus mostly transmitted to the operator-station. The nature of WBV 

transmitted to drivers of various off-road vehicles have been extensively characterized in 

terms of frequencies of predominant vibration and frequency-weighted vibration 

magnitudes in order to assess potential health and safety risks (Daniere, et al., 1987; 

Boulanger, Donati, & Galmiche, 1996; Paddan & Griffin, 2002). 

The interactions of drum/tire with the unpaved surfaces, coupled with the drum vibrator 

are known to impose severe levels of WBV. Considering that the health risks posed by 

WBV are related to exposure level and exposure duration, apart from the posture related 

factors, it is vital to control the levels of vibration for reducing the health and safety risks 

among the exposed operators. A number of approaches may be considered to reduce the 

exposure levels, such as implementation of adequately tuned suspension seat, operator 

station vibration isolation, wheel suspension and drum mounts. The design of such 

suspensions, however, necessitates total characterization of vibration properties of such 

vehicles under most representative operating conditions. Only a few studies have reported 

vibration levels of soil compactors, which were limited to measurements along the 

vertical direction alone at the operator seat level for the purpose of exposure assessments. 

Such measurements would thus be considered valid for the particular seat considered in 

the study. Moreover, the studies did not consider the equipments that are most commonly 

used in North America. 

This thesis investigates the ride vibration properties of single-drum soil compactors 

during the transit and compaction tasks through field-measurements and analytical 
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methods. The reported results could be effectively applied for the design/selection of 

adequate secondary suspensions. 

1.2. Literature Review 

The analyses and assessments of ride vibration of compactors encompasses several 

challenges associated with mechanical characterisation of the vehicle, the drum with 

rotating eccentric masses, the drum- and tire-soil interactions, dynamic properties of the 

soil, assessment of vibration levels, etc. The reported studies in the related subjects are 

thus reviewed and briefly summarised in the following sections in order to build adequate 

background and formulate the scope of the study. 

1.2.1. Assessment of Vehicle Ride Vibration Response 

A number of standardised approaches have been proposed for assessment of ride 

vibration comfort vibration. Among these methods recommended by the International 

Organization for Standardization (ISO 2631-1, 1997), the British standard (BS 6841, 

1987), the Society of German Engineers guideline (VDI 2057, 1987) and the Average 

Absorbed Power (AAP) method (Els, 2005) have been most widely used. Presently, the 

assessment guidelines in Europe mostly follow the directive 2002/44/EC ( EN 

2002/44/EC, 2002) that defines the limits on human occupational exposure to vibrations. 

Verein Deutscher Ingenieure (VDI), the Society of German Engineers was the first to 

release a method for ride comfort assessment (VDI, 1963). The method was based on 

empirical results from a large population of individuals exposed to sinusoidal vibrations 

of various frequencies and intensities. The VDI guideline defines a ride comfort index (  
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factor) based on the frequency-weighted rms acceleration and provides a range of value 

to assess the ride comfort as subjectively perceived by humans (Hohl, 1984). The current 

guideline (VDI 2057, 1987) has adopted the tolerance curves released within an earlier 

version of the equivalent ISO standard (ISO 2631, 1978). In the vertical direction, the  

values are determined from rms vertical acceleration	 , as: 

10 ;  for 1 4  

20 	;  for 4 8	  

160 	;  for 8 80	  
(1.1) 

where  is the vibration frequency. 

The Average Absorbed Power (AAP) guideline was developed by the US Army in 1966 

(Pradko & Lee, 1966). It is based on the human body elastic behaviour. Under vibrations 

the human body exhibits reaction forces as a function of the motions, which are 

expressed in terms of dissipated energy or absorbed power. The power ( ) absorbed 

by the exposed body is computed using empirical relations in the 1 and 80 Hz frequency 

range, given by: 

.  

(1.2) 

Where  is the weighting factor and  the rms acceleration corresponding to 

frequency	 . 
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The British Standard (BS 6841, 1987) defines a frequency weighting in the 0.5–80 Hz 

frequency range and the concept of vibration dose value ( ) to assess exposure to high 

intensity vibration or shock motions. Different weight functions are defined for each axis 

of vibration in order to determine their specific ride value. The	 	and  values are 

computed as follows: 

1
	 	

(1.3) 

Where  is the measured acceleration along a given axis and 	  is the exposure 

duration considered. 

Although the above-mentioned standardised methods continue to be used in some 

applications, the assessments of WBV exposure have mostly converged to the current 

equivalent and concurrent ISO standard (ISO 2631-1, 1997). The first part of this 

standard defines methods for measurement of periodic, random and transient WBV in the 

frequency range of 0.5–80 Hz, for assessment of health, comfort and perception, and in 

the 0.1–0.5 Hz range for assessing probability of motion sickness. The evaluation is 

based on frequency-weighted rms accelerations, while different frequency-weightings are 

defined for the evaluation of different effects. The different weighting functions are also 

defined for vibration along individual axes, which include  for vertical, 	  for lateral 

and longitudinal, and  for rotational vibrations (roll, pitch and yaw), as shown in 

Figure 1-1. The frequency-weights suggest a critical frequency range of 0.5–2 Hz for the 

horizontal and rotational vibration exposure, and 4–10 Hz for the vertical vibration. The 

frequency weighted rms acceleration along a particular axis is computed from: 
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.

(1.4) 

Where 	is the frequency-weighted rms acceleration due to vibration along axis	 , 

	is the weighting factor and  the rms acceleration along axis	 , 

corresponding to center frequency	  (third-octave bands), with , ,  referring to the 

appropriate weighting function. The standard provides guidance for assessing the 

vibration comfort and human perception, and health effects in terms of a health caution 

guidance zone. The standard also recommends that the exposure be expressed by VDV, 

when the vibration comprises shock components. A vibration signal is judged to 

encompass shock components, when crest factor of vibration (ratio of instantaneous peak 

value of the frequency-weighted acceleration signal to its rms value) exceeds 9. 

The assessment of vibration comfort considers translational vibrations that occur in all 

three axes on the seat pan, while the vibration total value is computed as the vector sum 

of vibration in orthogonal coordinates (x, y and z) with identical unit multiplying factors 

( 1) for each coordinate. In cases where the rotational vibrations are of considerable 

magnitude, the total rotational vibration value is also computed in a similar manner with 

different multiplying factors for each coordinate. For assessment of health effects, each 

axis of translational vibration is considered independently, applying higher weighting 

( 1.4) for the horizontal vibration components. The axis featuring the highest 

weighted acceleration is retained. When vibration in one axis is not dominant, the vector 

sum acceleration, could serve to assess of health effects. 
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Figure 1-1: Weighting functions	 , 		  and	  defined for assessment of 
vertical, horizontal and rotational vibration (ISO 2631-1, 1997) 

A Directive of the European Parliament on the minimum health and safety requirements 

regarding the exposure of workers to the risks arising from physical agents (vibration) 

was adopted in July 2002, and subsequently implemented in July 2005. It sets minimum 

standards for controlling the risks of whole-body vibration (WBV) exposure in terms of 

an “action value” beyond which the employer is required to take appropriate actions to 

control WBV exposure levels, and a “limit value” above which the workers must not be 

exposed (Griffin, et al., 2006). The directive defines the eight-hour equivalent, 8  

exposure action value of 0.5 m/s² (alternatively VDV of 9.1 m/s1.75), and a limit value of 

1.15 m/s² (alternatively VDV of 21 m/s1.75). The eight-hour equivalent 8  exposure is 

defined as the equivalent exposure to continuous acceleration over an eight-hour work 

period. Determination of 8  does not require the measurements over a continuous 

duration of 8 hours; it can be estimated from the measurements performed over a shorter 

period	 , such that (Weber, 2008): 
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8  

(1.5) 

Where  is the weighted rms acceleration over the measurement duration or the total 

duration of exposure during one work day and  is the reference duration of 8 hours. 

The WBV exposure of seated operators is measured in terms of weighted rms 

accelerations  along the three orthogonal axes (ISO 2631-1, 1997), and the appropriate 

health assessment multiplying factors ( 1.4 and	 1) are applied. The 

highest of the frequency-weighted accelerations (1.4 	, 1.4 	or	 ) or the vector 

sum could be applied to determine  and	 8 . The VDV values may also be applied in 

a similar manner to obtain an estimate of	 8 . In situations, where the daily exposure 

encompasses different levels of vibration encountered during different activities, the daily 

exposure is estimated from: 

8
1

(1.6) 

where  is the weighted rms acceleration of the ith activity and  is its period of 

exposure;  is the number of activities representing the daily exposure. 

The EU directive suggests that the exposure level may be limited to values below the 

action level by either limiting the exposure duration or the acceleration magnitude. The 

first approach, however, has severe economic consequences, while the latter method 

poses considerable challenge in the design of the vibration attenuation mechanisms. 
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1.2.2. Modelling of Roller-Soil Interaction 

The ride vibrations of a soil compactor arise from two primary sources: (i) vehicle 

undeformable terrain interactions; (ii) interactions of the vibratory roller with the 

deformable soil, the material to compact. The vibration behaviour may thus be 

characterised by two distinct tasks associated with the transit mode involving low 

frequency vibration due to tire- and drum-terrain interactions and the compaction mode 

involving relatively higher frequency vibration attributed to the vibratory roller drum 

interactions with soils. The compaction mode vibrations are primarily associated with soil 

compaction by means of an eccentric mass ( ) rotating around the axis of the drum, as 

shown in Figure 1-2. The magnitudes and frequencies of such vibration are selected to 

the design and operating speed of the vibrator, and the elasto-plastic properties of the soil. 

 
(a) 

 
(b) 

Figure 1-2: (a) Rotating mass vibrator mechanism (Anderegg, von Felten, & 
Kaufmann, 2006); and (b) rotary exciter by Bomag (Kloubert, 2004) 

The studies on soil compactors have evolved into a wide-range of models for 

characterizing the elasto-plastic properties of the soils. A number of lumped-parameter 

and finite element models have been developed to predict the propagation of the 

compaction forces in the soil and the distribution of the stress in different soil layers 

(Farzaneh, 1983; Pietzsch & Poppy, 1992; Anderegg, 2000; Erdmann, Adam, & Kopf, 

2006). While the finite-element models are most adequate for estimating the three-
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dimensional stress distribution in the soil, the lumped-parameter models have been 

considered sufficiently accurate for analysis of in-plane or one-dimensional propagation 

of the compaction force and the drum-soil interaction (Pietzsch & Poppy, 1992; Adam & 

Kopf, 2000; Krober, Floss, & Wallrath, 2001; Anderegg & Kaufmann, 2004). 

 

Figure 1-3: (a) Schematic of a vibratory soil compactor; and (b) A 
two-degrees-of-freedom soil - compactor model (Yoo & Selig, 1979) 

The compactions models, invariably, consider the time variant properties of the soil. 

During a constant speed operation, the soil is deformed in the immediate vicinity of the 

drum-soil contact patch, and the compactor continuously interacts with the new or 

undeformed soil during a given compaction pass. Consequently, the observed force-

deformation response of the soil exhibits closed-loop behaviour for every complete 

rotation of the eccentric mass. In its simplest form, the drum-soil interaction is 

characterised by a two-degree-of-freedom (DOF) model, as shown in Figure 1-3 where 

the soil under compaction is represented by its equivalent stiffness ∗ and viscous 

damping	 . The closed-loop force-deflection behaviour of the soil is significantly 

different from a stationary loading case (Figure 1-4 a), where the same soil elements 
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sustain the applied force and thus accumulation of soil deformation with the repetition of 

loading cycles. (Yoo & Selig, 1979). The compaction during forward motion, however, 

yields very different deformation behaviour as the drum interacts with undeformed soil 

during its rotation (Figure 1-4 b). 

 

Figure 1-4: Force-deflection characteristics of (a) stationary; and (b) 
moving soil elements by the drum (Yoo & Selig, 1979) 

Furthermore, the force-deflection properties of soil tend to vary under repeated 

compaction passes, since each pass of the vibratory drum alters the density and stress-

strain properties of the soil elements. The soil may exhibit elastic and elastic-plastic 

deformation during a given compaction pass. The closed-loop force-deformation 

characteristics of the soil, during a given compaction pass, is often described by an 

indicator diagram representing the soil contact force  as function of the drum vertical 
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displacement	 .(Sandström, 1994; Thurner, 2001; Floss & Kloubert, 2000). Figure 1-5 

(a) illustrates the reaction force – drum displacement characteristics obtained during three 

consecutive passes of the compactor. The hysteretic force – deflection characteristics 

have been described in terms of the responses under loading and unloading, as seen in 

Figure 1-5 (b). 

 
(a) 

 
(c) 

 
(b) 

Figure 1-5: (a) Typical reaction force-drum displacement properties during repeated passes 
of the roller (Floss & Kloubert, 2000); (b) Reaction force-drum displacement under drum 

loading and unloading(Krober, Floss, & Wallrath, 2001); and (c) Typical force-
displacement indicator diagrams for the 1st, 3rd and 6th passes of the compaction illustrating 

variations in the reaction force in the loading and unloading phases (Kloubert, 2004) 

During the loading phase, the stress-strain properties of the soil exhibit both the elastic 

and plastic effects. Dominantly elastic energy however, is returned to the drum. During 

the unloading phase, while the remaining energy is effectively transferred into 

compaction and partly is attributed to radiation losses (material damping being 

negligible). Owing to the symmetric geometry of cylindrical drum, the plastic effects are 

noticeably quasi-linear, while the elastic effects are significantly non-linear (Adam & 
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Kopf, 2000; Thurner, 2001). The drum would lose contact with the soil, when the 

magnitude of total soil reaction force, comprising dynamic and static components, during 

unloading equals zero as the soil cannot exert any tension on the drum. A condition for 

retaining the drum-soil contact was established as (Anderegg & Kaufmann, 2004): 

	 2 ∗  
(1.7) 

where 	  is the total vertical soil reaction force with dynamic and static components, 

 is the drum mass and 	∗ 	 is the effective vehicle frame mass supported by the drum. 

Table 1-1: Operating conditions and motion behaviours of a vibratory roller drum, 
and applicability of Continuous Compaction Control (Adam & Kopf, 2000) 

 

It has been suggested that the magnitude of the soil reaction force after the initial pass 

may become sufficiently important to cause partial lifting of the drum from soil (Floss & 

Kloubert, 2000). The magnitude of the reaction force and the duration of the loss of 

contact during a cycle, however, differ considerably over subsequent passes, as seen in 

Figure 1-5 (c), which lead to highly non-linear unloading behaviour (Anderegg & Wehrli, 

1995). A few studies have also characterised the unloading behaviour in the frequency 
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domain suggesting the occurrence of harmonics of the excitation frequency (Mooney, 

Gorman, & Gonzalez, 2005; Tateyama, Ashida, Fukagawa, & Takahashi, 2006; 

Scherocman, Rakowski, & Uchiyama, 2007). Figure 1-6 illustrates the three elementary 

vibration states of vibrating drum during the unloading cycle (Andereg, 2000). The 

oscillations exhibit single harmonic component in the vicinity of the excitation frequency 

under continuous contact of the drum with the soil. After the first passes of compaction, a 

denser and consequently stiffer soil results in partial drum uplift. The motion occurs at 

the multiples of the excitation frequency, as seen in Figure 1-6 (b). Continued 

compaction of soil leads to higher density and soil stiffness, which has been associated 

with “double jumping” of the drum (sub-harmonic motion of the drum at half the 

excitation frequency as seen in Figure 1-6 (c)), rocking (a 180° phase lag between the 

sub-harmonics of the right and left sides of the drum) and ultimately a chaotic motion of 

the drum (Adam & Kopf, 2000; Anderegg & Kaufmann, 2004). These also suggested 

considerably high magnitudes of reaction force occurring at ½ the excitation frequency in 

addition to those at its multiples. These motions are further summarised in Table 1-1. 

The partial loss of contact, corresponding to the partial drum uplift operating condition, 

has been considered as the most efficient drum behaviour for soil compaction (Andereg, 

2000). Double jumping and rocking motions, however, should be typically avoided since 

they cause rapid machine wear and limit machine manoeuvrability (Adam & Kopf, 2000; 

Rinehart & Mooney, 2008). Furthermore, the associated high magnitude loading at a 

lower frequency also tends to loosen the top layer of the soil (Anderegg & Kaufmann, 

2004). Consequently, the parameters of the compactor vibrator are modified during the 

final compaction passes in order to avoid double jumping and rocking motions. Typically 
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the nominal vibrator amplitude 	 (eccentric moment	 	 , with  being the 

eccentricity) is decreased and the excitation frequency  (vibrator rotational velocity	 ) 

may be increased either manually by the operator or automatically by the new 

Continuous Compaction Control systems (also referred to as “Intelligent Compaction”). 

 

Figure 1-6: Oscillating motions of the drum during loading and unloading 
phases illustrating the harmonic components (Anderegg & Kaufmann, 2004) 

The elasto-plastic behaviour of the soil observed during the loading and unloading phases 

of a compaction cycle have been effectively characterized by visco-elastic models of the 

soil in several studies (Pietzsch & Poppy, 1992; Anderegg & Wehrli, 1995; Adam & 

Kopf, 2000). The soil in some of these models is characterized by a linear stiffness  

describing the plastic behavior in series with the visco-elastic properties of the soil. 
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Figure 1-7 illustrates the idealization of the elasto-plastic properties of the soil, as 

reported in some studies (Adam & Kopf, 2000; Thurner, 2001), for analysing the one-

dimensional soil compaction and propagation of the compaction force. 
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Figure 1-7: Elasto-plastic model of the soil: (a) loading phase with elasto-
plastic behaviour; and (b) unloading phase with elastic behaviour 

1.2.3. Vehicle Models 

Ride dynamics of soil compactors have received only little attention. However, the wide 

range of models developed for various off-road vehicles could be applied to study the 

ride vibration characteristics of soil compactors. 

The most commonly studied off-road mobile equipment, in the context of ride vibration, 

is perhaps the agricultural tractor. The earlier analytical models of the tractor were 

relatively simple linear Multi-Body Systems (Stayner, Hilton, & Moran, 1975), which 

were effectively applied in predicting the vehicle ride vibration levels under the defined 

ground surface profiles (Dale, 1978). The combination of an agricultural tractor and a 

trailer in a MBS ride model created an interesting articulated off-road vehicle model for 
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frequency response calculations and resulted in vibration levels higher than those of the 

tractor alone. This was primarily attributed to increased tractor pitch motion (Crolla, 

1980). The coupled nature of the vibration modes of the unsuspended off-road vehicles 

further motivated the developments in multi-DOF two and three dimensional vehicle 

models and characterizations of suspension and low inflation-pressure tyres (Peng & 

Lines, 1997). The analytical ride dynamic models of the unsuspended tractor could also 

be applied to the compactor, when an appropriate drum-soil interaction model is 

integrated. 

For the soil compactors, the modeling efforts have mostly focused on the roller drum - 

soil interactions and the soil compaction models in order to enhance the compaction 

efficiency of the vehicles. In such models, the vehicle is represented by an equivalent 

rigid body mass supported by the vibratory drum in contact with the deformable soil 

(Yoo & Selig, 1979; Andereg, 2000; Popa & Nicoara, 2002; Mooney, Gorman, & 

Gonzalez, 2005). This aspect of the modeling of compactors was reviewed in the 

previous sub-section. The first published attempt for modeling a compactor as a two-axle 

vehicle was made by building 3-D model in the MBS software SYMOS (Bertrand, 

Brzezinski, & Rocques, 1994) to explore the ride performance potential of a cab 

suspension. In this model, depicted in Figure 1-8 the compactor was represented by five 

rigid bodies including those of the rear-frame with its rigid wheel axle, the front frame, 

the vibratory drum, the engine group and the operator-station or cab. The model also 

defined soil forces acting on the drum by considering linear stiffness and damping 

properties of the soil. 
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The nonlinearities arising due to partial up-lift of the drum and even the double-jump of 

the drum under interaction with most severe soil parameters (soil of higher density) were 

also incorporated. The vehicle was assumed moving at constant low speed on graded 

soils; subsequently the compaction forces were simulated assuming the vehicle as static 

equipment continuously interacting with undeformed soil during the considered 

compaction pass. Furthermore, the analysis was limited to pitch plane dynamics alone, 

although the model was formulated in three dimensions. The validity or applicability of 

the vehicle model was not explored in the transit mode at higher speed with vibrator off, 

while operating on undeformable terrain. The study recommended a soft cab suspension 

with its natural modes occurring well below the double-jump frequency near 15 Hz. 

 

Figure 1-8: MBS model of a soil compactor (Bertrand, Brzezinski, & Rocques, 1994) 

Recent efforts on modelling of compactors have focussed on path planning, automation 

and on-board compaction indicators (Guillo, Gautier, & Froumentin, 1999; Andereg, 

2000; Delclos, Vandanjon, F., & M., 2001; Krober, Floss, & Wallrath, 2001; Kloubert, 

2004). These studies also evaluate the rolling resistance and the motion resistances during 

compaction (Corcoran & Fernandez, 2001). Although these studies primarily focused on 
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the dynamics of the asphalt compaction by double-drum compactors (also called tandem 

rollers), the proposed modelling techniques would be equally applicable to single drum 

soil compactors. 

 

Figure 1-9: plane model by OSYRIS for estimating the degree of compaction by 
monitoring the resistive effort (Delclos, Vandanjon, Peyret, & Gautier, 2001) 

A study indicated by the European project OSYRIS (Open System for Road Information 

Support) proposed a modelling techniques based upon various on-board measurements 

and a dynamic model of the machine (Delclos, Vandanjon, Peyret, & Gautier, 2001). 

Figure 1-9 illustrates the modelling concept of the study, which was primarily focused on 

the compaction effectiveness of the vehicle through analyses of motion resistance due to 

compacting materials. A horizontal plane kinematic model was also built incorporating 

the kinematic analysis of the articulated-frame steered vehicle as a mobile robot. The 

vehicle was represented by the kinematic chains as seen in Figure 1-10 (Guillo, Gautier, 

& Boyer, 1999), and its parameters were identified through solution of an over-

determined linear system obtained from sampling of the dynamic model along a known 
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trajectory. The analyses identified drum slip in the horizontal plane as a major issue, 

which necessitates further developments in the 3-D modeling of the drum-soil contact 

(Lemaire, Vandanjon, & Gautier, 2003; Lemaire, Vandanjon, & Gautier, 2005). It was 

further suggested that the integration of the drum-soil contact model with the kinematic 

model of the vehicle would make the model more robust for motion planning as an effort 

toward road construction automation (Lemaire C.-E. , Vandanjon, Gautier, & Peyret, 

2002). 

 

Figure 1-10: Kinematic model of a double-drum compactor as an articulated 
mechanical system (Lemaire C.-E. , Vandanjon, Gautier, & Peyret, 2002) 

The above models considered the compactor as an articulated linkage mechanism, while 

the modeling efforts were mostly oriented toward estimating the contact forces between 

the compactor drums and the material (Lemaire C.-E. , Vandanjon, Gautier, & Lemaire, 

2006 ). Although the models had been initially developed in the horizontal plane and later 

extended to include the vertical dynamics of the machine, the analyses or assessments of 

ride vibration characteristics were not attempted. 
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1.2.4. Suspension Design 

Although a number of primary and secondary suspension designs have been developed 

for different wheeled off-road vehicles (Claar, Sheth, Buchele, & Marley, 1980; Crolla & 

MacLaurin, 1985; Hansson, 1996; Hansson, 2002), the implementations of such designs 

in soil compactors have been mostly limited to the low natural frequency vertical seat 

suspension. The suspension seats are designed with low natural frequency, in the order of 

1.5 Hz, to attenuate terrain-induced ride vibration in the vertical axis alone, while the 

suspension travel is generally limited to ±5 cm by introducing elastic end-stops (Wu & 

Griffin, 1996; Wu & Griffin, 1998; Wu, Rakheja, & Boileau, 1999). The vehicle 

interaction with rough jobsite terrains may cause the suspension to exceed its free travel 

and transmit high intensity vibration or shock motions to the operator due to repeated 

end-stop impacts. Apart from the suspension seat, the low frequency terrain-induced 

translational and rotational vibrations are mostly transmitted to the operator through the 

relatively stiff cab and drum mounts. A number of rubber springs or hydro-pneumatic 

struts-based suspended axles have been developed for articulated dump trucks, and 

agricultural tractors (Bartlett & Brown, 1995), which may be applicable in soil 

compactors. The implementation of an axle suspension, however, is associated with many 

complexities, and would result in major design modifications. Furthermore, an axle 

suspension would alter the pitch and roll dynamics of the vehicle that may affect the 

compaction efficiency in an adverse manner. Above all, the axle suspension must be 

designed to yield low natural frequency of the vehicle, which would yield larger rattle 

space requirements and relative motion of the sprung frame. 
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1.2.5. Characterizations of the terrain roughness 

The ride vibration responses of vehicles are strongly influenced by the terrain roughness 

apart from the various design and operating factors. Consequently, considerable efforts 

have been made in characterizing the roughness properties of roads and various off-road 

terrains such as pasture and plumed fields (Wong, 2001). The vibratory compactors are 

involved in transit operations over a substantial portion of the daily work hours. These 

include the vehicle motion to a jobsite and transit from one compaction zone to another 

within a jobsite. The transit mode is generally associated with relatively higher speeds (in 

the order of 10 km/h). The vehicle interaction with relatively rough terrains induces 

significant magnitudes of low frequency vibration. 

 

Figure 1-11: Spatial PSD of different road surface 
irregularities and their classification ( ISO 8608, 1995) 
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The surface elevation is profiled by means of vehicle mounted devices. Most mechanical 

profiling devices consist of rolling rigid wheels that are loaded or towed at low speeds 

(Bekker, 1969). The reported studies have expressed the ground surface profile in terms 

of the Power Spectral Density (PSD) of its elevation as a function of spatial frequency 

(ISO 8608, 1995; Wong, 2001). 

The spatial PSD of the surface profile  is generally expressed as a function of the 

spatial frequency	 . For off-road terrains, the spatial spectral density is related to the 

spatial frequency  as: 

 
(1.8) 

where  is a constant and the exponent  ranges from 1.6 to 3.8 (Wong, 2001). ISO has 

also classified irregularities of road surfaces ( ISO 8608, 1995). The spatial PSD of the 

road profile  is defined over the different spatial frequency ranges as: 

Ω Ω Ω
Ω ; for Ω Ω  

Ω Ω Ω
Ω ; for Ω Ω  

(1.9) 

The resulting classification plot is illustrated in Figure 1-11. Where there is a defined 

range of transition value  at a transition spatial frequency, 1
2 	(cycle/m) 

for different classes of road, and  and 	  are the constant exponents. The roughness 

properties of different roads have been classified on the basis of the magnitude of 

roughness, while the classification ranges from very good (A) to very rough (H), as 

shown in Figure 1-11. 



 

27 
 

1.3. Scope and objectives of the thesis 

From the review of the literature, it is evident that ride vibration dynamics of soil 

compactors has received very little attention, while it may have significant impact on the 

derivers’ perception of comfort, and health and safety. The primary goal of this work is to 

contribute towards enhancement of whole-body vibration environment of vibratory soil 

compactors used in the road building sector, in order to minimize the health and safety 

risks among the operators of such equipment, while preserving the essential compaction 

efficiency. The proposed thesis is concerned with the primary task of modeling and 

characterization of the vibration environment of soil compactors models most commonly 

used in North America, under a range of most representative operating conditions, and to 

provide guidance on selection of suspension seat and other potentially promising 

vibration mitigation concepts. The thesis research is particularly focused on development 

of vehicle models to predict its ride vibration during compaction and transit modes of 

operation, while field measurements are designed for characterization of vibration 

environment under simulated tasks. The proposed models could be applied for design of 

primary as well as secondary suspensions for enhancement of WBV environment. The 

models may also be applied to seek modifications of design and operating factors, namely 

be retrofitting of secondary suspensions, alternate drum and operator station mounts. 

The specific objectives of the dissertation research include: 

 Development of an in-plane multi-body dynamic model of a soil compactor 

incorporating non-linear drum - soil interactions during vibratory compaction; 
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 Development of a ride-dynamic model of the vehicle incorporating tire-and drum-

terrain interactions; 

 Characterisation of the vibratory environments of soil compactors during 

compaction and transit modes of operation; 

 Identification of roughness properties of equivalent undeformable terrains; 

 Analysis of ride vibration properties of the vehicle and role of various design and 

operating factors for identifying avenues for reducing the WBV exposure of the 

operators 

1.4. Layout of the Thesis 

In CHAPTER 2, the compactor configuration adopted for this study and its specific 

properties are emphasised and justified. Ride models based on simplified yet credible 

mathematical formulations of subsystems are developed. The subsystem models of the 

vehicle frame, the suspended cab and the operator’s seat as well as the subsystem model 

of the vibratory drum - deformable soil interaction, are detailed successively. The 

integration of the vibratory drum – deformable soil interaction into the developed ride 

models leads to a dynamic model of the equipment in compaction mode of operation. 

In CHAPTER 3, field measurement protocol and instrumentation are described and 

followed by data analysis of the dynamic response of the vehicle in normal operations. 

These include passes over graded soils of various degrees of compaction and transit on 

random terrains. Measured data are presented in frequency domain. 
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In CHAPTER 4, ride and compaction models developed are validated with respect to the 

field measurement data and furthermore, in the particular case of compaction modelling, 

with respect to reported data. 

In CHAPTER 5, the ride quality of compactors is evaluated based on ISO guidelines 

(ISO 2631-1, 1997) for different operating conditions. A parametric sensitivity analysis 

meant to study the influence of several design parameters is carried out. The compaction 

efficiency of the equipment is also evaluated, mostly based on the plastic deformation 

(compression) of the soil obtained by simulation. Similar sensitivity analysis highlighting 

the influence of operating and design parameters is carried out. The results are discussed 

and design changes proposed for enhanced ride quality. 

Conclusions are summarised in CHAPTER 6 which also presents avenues relevant for 

future studies.  



 

30 
 

CHAPTER 2 – DEVELOPMENT OF ANALYTICAL 
MODELS OF THE VIBRATORY COMPACTOR 

2.1. Introduction 

The lumped-parameter and multi-body dynamic models of different off-road vehicles 

have been widely reported to study the influences of various designs and operating 

factors on the transmitted vibration and to seek designs of primary and secondary 

suspension systems (Laib, 1995; Soliman, 1995; Peng & Lines, 1997; Lehtonen, 2005). 

Such efforts for soil compactors, however, have been limited to only a few kinematic and 

dynamic models for motion planning of the compaction tasks (Guillo, Gautier, & Boyer, 

1999; Lemaire C.-E. , Vandanjon, Gautier, & Peyret, 2002). A dynamic model of a soil 

compactor incorporating the drum vibrator and tire/drum-soil interactions could yield 

considerable insight into factors affecting the transmission of vibration to the operator, 

and the soil compaction efficiency. Furthermore, such a model could serve as an essential 

tool for the design and tuning of primary and secondary suspensions for the vehicle. 

From preliminary measurements, it was concluded that the soil compactor vibrations are 

mostly attributed to the vertical, pitch, roll, lateral and longitudinal vibration modes. This 

suggests the need for developing a three dimensional vehicle model. This study, however, 

is limited to the analysis of the in-plane vibration along the vertical and pitch axis. The 

modeling effort may thus be considered as a preliminary work on characterization and 

analysis of ride vibration behaviour of a soil compactor. The in-plane models, however, 

are considered sufficient to study the vibration along the most important axes. 
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This chapter presents the formulation of in-plane dynamic models of soil compactors to 

predict the ride vibration responses during the transit and compaction modes of operation, 

respectively. The transit mode model is formulated considering the rigid steel drum as an 

extension of the terrain, point contact of the tire with the undeformable terrain surface, 

and linear visco-elastic properties of the cab and drum mounts. The compaction mode 

model considers the compaction of the deformable soil together with the eccentric mass-

driven drum vibratory system. The major simplifying assumption and excitation due to 

soil/terrain roughness properties are described together with the methods of analyses. 

2.2. Development of soil compactor model – Transit Mode 

The ride vibration responses of a soil compactor arising from the interactions of the 

pneumatic tire and the rigid drum with undeformable terrain are strongly influenced by 

the weights and dimensions of the vehicle, in addition to many other design and operating 

conditions (Dynapac, 2000). In this thesis only planar dynamics of the vehicle are 

investigated. Three different pitch-plane models of the vehicle of varying degrees-of-

freedom (DOF) are formulated to investigate different dynamic response aspects in a 

systematic manner. These include: (i) a two-DOF pitch plane model to investigate the 

primary bounce and pitch ride dynamic responses of the vehicle body supported on rear 

axle tires and the front drum suspension; (ii) a Seven-DOF model incorporating the 

engine group and the operator-station (cab or platform) supported on elastic mounts and 

an unsuspended seat (cushion); and (iii) a comprehensive 12-DOF model additionally 

comprising an idealized rear axle suspension and a two-DOF suspension seat. All the 

three models are formulated assuming linear stiffness and damping properties of the 
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mounts and the rear axle tires, and consider the weights and dimensions of the vehicles 

chosen for the field measurements studies (CHAPTER 3). The contribution due to 

articulated-frame steering to the ride vibration responses, however, is assumed negligible. 

2.2.1. Two-DOF vehicle model 

The soil compactor in the pitch plane, in the simplest form, may be represented by a two-

DOF dynamic model comprising the primary vertical and pitch motions of the vehicle. 

The mass and moment of inertia of the vehicle body are significantly higher than those of 

the engine group and the cab. The vehicle can thus be represented by an equivalent single 

rigid body comprising the masses and moments of inertia of the unsprung body, cab and 

the engine group. The equivalent single rigid body is isolated from the ground by means 

of a pair of tires at the rear and drum suspension at the front; the drum being mounted 

onto the front frame through a number of rubber mounts, as shown in Figure 2-1. 

 

Figure 2-1: The vibratory drum with rubber mounts on the 
drum drive (left) and on the drum bearing bracket (right) 
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Figure 2-2: Two DOF model of the soil compactor 

The rubber mounts are considered to serve as the front suspension in the simplified two-

DOF model, as shown in Figure 2-2. The equivalent mass ( ∗ ), pitch mass moment of 

inertia ( ∗) and the coordinates of the center of mass (c.g.) are computed from the 

distributions of the cabin and engine group masses, as illustrated in Figure 2-3, such that: 

∗  

∗ ∗ ∗

∗ ∗

∗ ∗  
(2.1) 

In the above equations	 ,  and  are the masses due to actual vehicle body, cabin 

and engine group, respectively, and	 ,  and  are the respective pitch moments of 

inertia. The lengths	 ,	 ,  and  are distances of the rear-axle tires, the drum, engine 

group c.g. and the cab c.g. from the body c.g., respectively. ,  and  are the vertical 

distances of the body c.g. from the ground, and the cab and engine group c.g. from the 

body c.g., respectively. The longitudinal and vertical locations of equivalent vehicle mass 

( ∗ ) c.g. are described by ∗ and	 ∗ , which are derived as follows: 
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∗
∗  

∗
∗  

(2.2) 

The equations of motion of the simplified two-DOF model are derived as: 

∗ 0 

∗ ∗ ∗ 0 
(2.3) 

 

Figure 2-3: The two-DOF bounce/pitch model of a soil compactor 
illustrating the distribution of the cabin and the engine group masses 

Assuming linear vertical stiffness and damping properties of the tires ( ,	 ) and the 

drum mounts ( , ), the forces developed by the tire ( ) and the drum mounts ( ) 

are derived from: 
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	 ∗ ∗  

	 ∗ ∗  
(2.4) 

In the above equations,  and  define the vertical and pitch DOF of the model, and 

 and  define the elevations of the terrain surface at the drum- and tire-terrain 

interfaces, respectively. 

 

Figure 2-4: Seven-DOF pitch plane ride dynamic model of a soil compactor 

2.2.2. Seven-DOF vehicle model 

The simplified two-DOF can provide the bounce and pitch mode frequencies of the 

vehicle in a convenient manner, while it cannot describe the cab motions encountered by 

the operator. The contributions of the cab mounts, and engine mounts and vibration can 
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be adequately incorporated through formulation of a seven-DOF model, as shown in 

Figure 2-4 . The model incorporates the vertical and pitch motions of the vehicle body 

(  ,	 ), cab mass (  ,	 ), engine mass (  ,	 ) and the operator mass ( ), while the 

engine excitation is represented by the moment	 . The engine and cab mounts, as 

well as the seat cushion, are represented by vertical linear stiffness and damping. 

The equations of motion of the vehicle model are expressed as: 

0 

	 0 

0 

	 	 0	

	  

	 0 

	

0 
(2.5) 

Where  and  are the vertical forces due to engine and cab mounts, where ,  

refers to the front and rear mounts and	  the vertical forces due to seat cushion. 

Assuming linear stiffness ( , 	  and	 ) and damping ( ,	  and	 ) coefficients of 

the mounts and the cushion, these forces are expressed as: 
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(2.6) 

and 

	 	

	 	 	 	 	  

	

	 	 	 	 	  

 
(2.7) 

In the above equations,  and  are the longitudinal distances of the front and rear 

engine mounts, respectively, from the engine mass c.g. . In a similar manner,	  ,	 	and 

	  are the respective distances of front and rear cab/platform mounts, and seat with 

respect to the cab mass c.g. , as seen in Figure 2-4. The forces developed by the linear tire 

and drum mounts,  and	 , are described by Eq. (2.4), where ∗  and	 ∗ . 

2.2.3. Twelve-DOF vehicle model 

The simplified two- and seven-DOF models, presented in the previous sections, consider 

negligible contributions of the shear properties of the mounts, which could lead to 

horizontal motion of the cabin, vehicle body and the engine mass. These models do not 
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permit the analysis of potential benefits of a suspension seat and a possible primary 

suspension at the rear axle. Consequently, a more detailed model is formulated with an 

objective to investigate potential ride performance benefits of a suspension seat and an 

axle suspension, which are assumed to possess linear properties, with the rear wheels 

considered as unsprung mass ( ). The visco-elastic properties of the drum mounts are 

represented by lumped linear stiffness and damping constants in the vertical ( ,	 ) and 

longitudinal ( ,	 ) modes, as shown in Figure 2-6. In a similar manner, the shear 

properties of the engine and cab mounts are represented by linear stiffness ( ,	 ) and 

damping ( ,	 ) in the longitudinal direction. The tire interaction with the terrain 

surface in the shear direction is modeled by linear stiffness ( ) and damping ( ) 

elements, while the axle suspension is represented by its linear vertical stiffness and 

damping elements ( ,	 ). The rear axle suspension representation by the vertical spring 

and damping elements is supported by an independent suspension design proposed by 

Timothy (Cashin, 2007) and shown in Figure 2-5. 

 
Figure 2-5: Pictorial view of an independent axle suspension for 

construction equipment (Timoney Mobility Systems) 
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The DOFs of the model include: the vertical, pitch and longitudinal motions of the 

vehicle body ( , , ), cabin ( , , ) and the engine group ( , , ); vertical 

motion of rear wheels mass  ( ); and vertical motion of the suspension seat mass 

( ) and the operator mass ( ). Axle suspension is assumed to be constrained along the 

vertical axis, and the longitudinal motion of the wheels  is assumed to be equal to	 . 

As for the previous models, the rigid drum is considered as an extension of the terrain. 

The heights	 ,	  and	  are the distances between the axle centre, tire-soil contact and 

the drum centre from the body c.g., respectively. Similarly,  and  are the vertical 

distances of the cab and engine mass c.g. from their isolation mounts, respectively. 

 

Figure 2-6: The twelve-DOF pitch-plane model of the soil compactor 
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The visco-elastic properties of the seat suspension are represented by lumped linear 

stiffness and damping constants in the vertical ( ,	 ) modes, as are represented the 

elastic properties of the seat stops ( ) and the seat friction damping ( ) as shown in 

Figure 2-7. 

 

Figure 2-7: suspension seat model 

The vertical forces due to the seat suspension ( ) and cushion ( ) are derived from: 

	 	 	 	 	  

with    	 	
1;					 	 	 0
1;					 	 	 0

 

and    
1;	| 	 	 | 	
0; 																																				

 

 
(2.8) 

In the above equations  is the seat suspension half travel, as seen in Figure 2-7. 
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The nonlinear suspension seat model could be approximated by a simplified linear model 

(Allen, 1978), as illustrated by the twelve-DOF idealisation of the compactor depicted in 

Figure 2-6, in order to drive a system of linear coupled differential equations of motion 

for the vehicle model. This yields the vertical force due to the seat suspension as: 

≅  
(2.9) 

The equations of motion of the vehicle model are derived using the Lagrange’s energy 

method and summarized below. 

Suspension Seat and Occupant: 

0 0 
(2.10) 

Cabin: 

0 

	 	 	 	 0 

	 	 	 0 
(2.11) 

Engine Group: 

0 

	 	 	 0 

	 	 	  
(2.12) 
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Vehicle Body: 

0

	 	 	 	 	 	 0	

	 	

	 	 	 	 	

	 	 	 	 0	
(2.13) 

Rear Axle: 

0
(2.14) 

where  and  are the longitudinal forces due to tires and drum mounts. These forces 

are expressed as: 

 

	 ; 

 

with	  
(2.15) 

The vertical forces developed by the tires ( ), the axle suspension ( ) and the drum 

mounts ( ) are derived from:  

	  

	 	  

	 ; 

 

 

with	  
(2.16) 
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The longitudinal forces developed by the engine ( ) and cab mounts ( ) are derived 

from:  

	

	 	 	 	 	  
(2.17) 

	

	 	 	 	 	 	  
(2.18) 

The vertical forces due to engine and cab mounts,  and	 , where ,  refers to the 

front and rear mounts, are described by Eq. (2.6) and Eq. (2.7). 

The system of linear coupled differential equations of motion for the vehicle models can 

be represented in the matrix form as: 

 
(2.19) 

Where	 ,  and  are ( ) mass, damping and stiffness matrices, respectively; 

 is the number of DOF and  is the ( 1  forcing vector. 

2.3. Development of soil compactor model–Compaction Mode 

In the compaction mode, the terrain can no longer be considered undeformable. The 

vibration responses of a soil compactor arising from the interaction of the rigid vibratory 

drum with elasto-plastic soils are strongly influenced by the nature and grade of the soil 

as well as its moisture content in addition to many other widely-studied road design and 

construction parameters (Quibel & Corte, 1994; Terzaghi, Peck, & Mesri, 1996; Akanda, 
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1999; Lay, 2009). The stress-strain properties of the soils have been extensively 

investigated analytically and experimentally (Kabré, 1991; Quibel & Corte, 1994; Valeux 

& Feistenauer, 1995; Adam & Kopf, 2000). A number of studies have also proposed the 

lumped-parameter and finite element models of the soils for predicting propagation of the 

loading forces applied at the soil surface (Farzaneh, 1983; Pietzsch & Poppy, 1992, 

Anderegg, 2000; Erdmann, Adam, & Kopf, 2006). The models based on the finite-

element method have been shown to be more appropriate for predicting stress 

distributions in three dimensions, while the lumped parameters describing the elasto-

plastic properties of the soil are considered adequate for study of one-dimensional 

compaction, which is considered well-suited for the in-plane vehicle model in this study. 

The soil compaction and the drum-soil interactions are thus characterized by formulating 

a simple elasto-plastic model of the soil to drive the equations of motion of the vehicle. In 

the modeling process, the vibratory drum and the soil are considered to form a closed-

loop system (Thurner, 2001; Krober, Floss, & Wallrath, 2001; Anderegg & Kaufmann, 

2004). The soil may be considered to behave as an elastic-plastic medium during initial 

loading by the drum (Pietzsch & Poppy, 1992; Adam & Kopf, 2000). The propagation of 

the drum forces to the soil tends to enhance the density of the soil (Yoo & Selig, 1979; 

Quibel & Corte, 1994; Adam & Kopf, 2000). In the initial passes, the soil thus poses 

elasto-plastic reaction forces in the compression axis. The soil behaviour tends to become 

increasingly elastic as the compaction process progresses, with subsequent compactor 

passes, as a result of the increased soil density. The denser, thus stiffer, soil poses a 

greater demand on the drum forces. The dynamic behaviour of a vibratory compactor is 

thus determined by the properties of both the vehicle and the soil, and the interaction 
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between the two. The drum-soil model is subsequently integrated into the planar 

vehicular models, developed in the previous section, to study the dynamic responses of 

the vehicle in the compaction phase. 

2.3.1. Single-DOF drum - soil compaction model 

In this study, a drum-soil interaction model is formulated considering the vertical 

dynamics of the drum alone coupled with a visco-elastic model describing the elasto-

plastic behaviour of the soil. The resulting model could be described by a third-order 

differential equation. 

 

Figure 2-8: model of the vibratory drum with elasto-plastic soil interaction 

The drum-soil model is formulated assuming constant stiffness and damping properties of 

the elasto-plastic soil model. The contributions of the drum cylindrical geometry and its 

penetration into the soil to variations in the soil stiffness and damping properties are 

assumed negligible. A simple model of the vibratory drum coupled to the main body 
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through its rubber mounts (drum suspension) is depicted in Figure 2-8. The drum mounts 

are represented by their effective stiffness and damping constants along the vertical 

( ,	 ) and the horizontal ( ,	 ) axes, as shown. The model features an unbalance 

mass that constitutes its vibrator to generate forced vibration or dynamic loading of the 

soil at frequencies around 30 Hz. The soil is dynamically modeled as being the 

juxtaposition of a linearly plastic zone embedded in a wider and deeper visco-elastic 

body (Pietzsch & Poppy, 1992; Adam & Kopf, 2000; Thurner, 2001). 

When the vibratory drum is in contact with the elasto-plastic soil, the equation of motion 

of the drum can be expressed as: 

 
(2.20) 

Where  is the vertical force developed due to the drum mounts, as described by Eq. 

(2.16) and 	is the dynamic force developed by the surface layer of the soil due to its 

plastic deformation, given by: 

 
(2.21) 

Where  is the idealized stiffness associated with the soil plastic behaviour ( → ∞ 

when the soil is unloaded) and  is the soil elastic deformation. The propagation of the 

above soil force, attributed to the plastic deformation yields elasto-plastic deformation of 

the subsequent layers of the soil. From the elasto-plastic soil model, shown in Figure 2-8, 

the force due to soil can also be expressed as: 

 
(2.22) 
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where  and  are the elastic stiffness and damping properties of the soil model 

shown in Figure 2-8.  

Eq. (2.21) and (2.22) yield following relationship between the soil deformation and the 

drum motion,	 : 

 
(2.23) 

Also  in Eq. (2.20), is the vertical projection of the centrifugal force  developed 

by the rotating eccentric mass	 , given by: 

 with 	 	  
(2.24) 

where  is the angular frequency of the vibrator, and	  is the eccentricity of the rotating 

mass. Considering the static equilibrium as the reference point for the vertical 

displacement coordinates of the model, the portion of the total vehicle mass supported at 

the drum - soil interface (front axle static load)  is balanced by the soil force due to its 

static compression, such that: 

∗ ; where ∗  

(2.25) 

The total compaction or soil reaction force 	  is thus the sum of the front axle static 

load and the soil dynamic force	 , such that: 

 
(2.26) 

The elastic-plastic behaviour of the soil has been described (Adam & Kopf, 2000) by a 

plasticity parameter	 : 
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(2.27) 

The parameter  varies between 0 and 1, where 1 refers to an ideal elastic behaviour 

that is achieved as	 → ∞. The value	 0 refers to purely plastic property 

characterised by	 0, which also qualifies the loss of contact between the drum and 

the soil. The motion of the vibratory drum on a soil patch of given density (compaction 

level) may exhibit, over each cycle of the drum vibrator, two or more often three distinct 

phases, which are described below:  

i. Soil compression, dynamic “loading” ( 	 0	and	 0): the soil possesses 

finite plastic stiffness and elastic stiffness values	 	and	 , which may vary 

with the degree of compaction of the soil and changes in the soil density. As the 

machine performs repeated passes of compaction over the given soil, both and 

 increase following a trend that leads to higher value of	 . The soil becomes 

more elastic due to propagation of the dynamic force to the subsequent layers of 

the soil (Adam & Kopf, 2000). 

ii. Soil recovery, “unloading” ( 	 0	and	 0): The soil recovers only the 

elastic deformation as the drum moves upward i.e. → ∞.  

iii. Loss of drum-soil contact, “drum-hop” ( 	 0): the soil - drum link is broken 

as the soil cannot exert any tension on the drum, thus	 0. This phase appears 

in the compaction cycle as soon as the soil has reached a certain elementary level 

of compaction. It is actually a behaviour sought for a better compacting in soil 

applications (Anderegg, 2000; Briaud & Seo, 2003). 
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The time differentiation of Eq. (2.20) can be written as: 

 
(2.28) 

where  is proposed as the damping to plasticity ratio, given by: 

 

(2.29) 

The summation of Eq. (2.20) and (2.28) yields the following third order differential 

equation in coupled motion of the drum  and the soil	 	: 

 
(2.30) 

Pre-multiplying Eq. (2.23) by	 , yields: 

 
(2.31) 

The above two equations yield a third-order differential equation in  alone: 

	  
(2.32) 

Substituting for  from Eq. (2.16) and  from (2.24), the previous is rewritten as: 

	 	 	

	

	 	  
(2.33) 



 

50 
 

The above equation relates the motions of the drum and the vehicle body to the vibratory 

excitation of the drum and elasto-plastic soil properties. 

2.3.2. Integration of the compaction model to the vehicle models 

The vehicle compaction model is built by assembling the previously described drum-soil 

model characterized by a 3rd order differential equation of motion and the ride dynamic 

model of the vehicle. The soil compaction tends to cause predominant vibration in the 

vicinity of the angular frequency of the rotating mass (near 30 Hz), as observed in 

preliminary field measurements. Since this vibration frequency is effectively attenuated 

by the -weighting filter, the integration was performed for the seven-DOF ride model 

described in section 2.2.2. The integration of the drum-soil model introduces an 

additional DOF, leading the general coordinate vector	 , as: 

; 8 

where “	′	” designates the transpose of the vector. The governing equations of motion 

may be expressed in the matrix form by a set of third-order differential equations as: 

 
(2.34) 

where	 ,	 	 ,	  and  are ( ) matrices of the vehicle and soil parameters, 

and  is the ( 1) vector containing time derivatives of the excitation forces. In 

compaction mode, terrain elevations ( ,	 ) are marginal, since soil compaction is 

performed on previously graded layers of construction material and surfaces at very low 

speed (near 3 km/h), and their contribution is considered negligible since it would yield 
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considerably lower magnitudes of low-frequency vibration when compared to the 

predominant vibration in the vicinity of the angular frequency of the rotating mass. 

As described earlier, the drum-soil interactions constitute three distinct phases, namely: 

 The loading phase of the elasto-plastic soil as the drum moves downward (sinkage 

and shearing) into the elasto-plastic soil; 

 The unloading phase of the soil as the drum moves upward while retaining 

contact with the soil as it recovers (soil elasticity); and 

 The phase in which the drum potentially looses contact with the soil towards the 

end of the unloading phase when the soil is considered to have recovered its 

elastic deformation, while the drum continues its upward motion. 

The coefficient matrices	 , ,	  and  in Eq. (2.34) are determined 

corresponding to each of the above three phases of drum-soil interactions. These 

coefficient matrices comprise the ( 1 1) mass, damping and stiffness ,	  

and  matrices, and the vector  includes	 . 

Loading Phase 

In the loading phase, the drum moves downward in the vertical direction and a 

compressive load is applied to the soil. Figure 2-9 illustrates the loading action of the 

compactor drum while moving downward into an elasto-plastic patch of the soil. This 

phase is characterised by both elastic and plastic deformations of the soil leading to soil 

compaction. The total force imparted on the soil and the necessary conditions for this 

loading phase are given by: 



 

52 
 

	 0;  and  0 

The third-order differeantial equation describing the motion of the drum, presented in 

Eq.(2.33), is arranged in the following manner: 

	

	 	

	 	  
(2.35) 
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Figure 2-9: Drum-soil interaction model corresponding to elasto-plastic 
deformation of the soil under downward motion of the drum 

The reaction force due to soil,	 	 , is derived as: 

	  
(2.36) 

Upon substituting for the forces due to drum mounts and excitation, the above equation 

may be expressed as: 
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(2.37) 

The remaining equations of motion of the coupled drum-soil-vehicle model are identical 

to those presented in Eq. (2.5) to (2.7) and Eq. (2.19). Subsequently, the coefficient 

matrices	 , ,	  and  are formulated as: 

; ; 

0
; and                   

0
0 0

. 

where ,	  and  are ( 1 1) mass, damping and stiffness matrices, 

respectively derived for the ( 1)-DOF ride dynamic model and	 , , 

	 	and	 	are ( 1 1) or (1 1) vectors containing the drum mounts and 

soil properties, given by: 

0
0
0
0
0

; 
0
0
0
0
0

; 

0 0 0 0 0 ; 

and    0 0 0 0 0 . 

The forcing vector  in Eq. (2.34), in a similar manner is formulated as: 
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where	  is the ( 1 1) forcing vector derived for the ( 1)-DOF ride model. 

The equations of motion of the vehicle model, described in the matrix form in Eq. (2.34), 

comprise 1 second-order linear differential equations and a nonlinear third-order 

differential equation. The system of equations may also be expressed by  third-order 

differential 	equations by taking the time derivatives of the equations of motion described 

in Eq. (2.19), resulting in: 

 
(2.38) 

Where , 	,	  and	  are ( ) matrices of the system parameters and 

	is the ( 1) forcing vector, given by: 

0 0
; ; 

; 
0

0
;                 and 

cos sin
. 

Unloading Phase 

In the unloading phase of the soil, the drum moves upward while a contact between the 

drum and soil surface is retained. Figure 2-10 illustrates the action of the drum moving 

upward permitting the relaxation of the previously loaded soil. In this phase the soil 
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recovers its elastic deformation, while the plastic deformation represents the soil 

compaction. The soil stiffness associated with its plastic behaviour ( ) is thus assumed 

infinite. The soil reaction force and the necessary conditions for this phase are given by: 

	 0;  and  0 

As → ∞, the plasticity factor	 → 1	and the soil damping to plasticity ratio	 → 0; 

The equation of motion of the drum Eq. (2.35), thus reduces to the form of a second-

order differential equation: 

	 	

 
(2.39) 
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Figure 2-10: Drum-soil interaction model corresponding to soil relaxation under 
upward motion of the drum 

The reaction force due to the soil ( 	 ) is identical to that derived under the loading 

phase, presented in Eq. (2.36) and (2.37). The equations of motion of the coupled soil-

drum-vehicle model are then described in the following matrix form: 
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(2.40) 

Where the ( ) coefficient matrices	 	 , 	 	and	 , and ( 1) excitation 

vector 	are defined as follows:	 

; ; 

0
0

;        and 
	 sin

. 

With the ( 1 1), 	and	  vectors being: 

0
0
0
0
0

; and 
0
0
0
0
0

. 

The equations of motion of the coupled model in this phase of drum-soil interaction could 

also be written in the state variable form as:	 

0 0
 

(2.41) 

Drum-Hop Phase 

In this phase, the drum with its continued upward motion tends to lose contact with the 

soil surface. Figure 2-11 illustartes the drum-soil interaction model involving loss of 

contact between the drum and the soil surface. This condition arises when the drum 



 

57 
 

continues its motion upward at the end of the unloading phase as the soil reaches its full 

elastic recovery. The resulting soil reaction force thus vanishes, defining the necessary 

condition for this phase of drum-soil interaction: 

	 0 

Furthermore, the soil stiffness associated with its plastic behaviour vanishes ( 0), 

which yields 0. The drum-soil contact being now broken, the front axle static load is 

not balanced by any static reaction force of the soil. The gravity component of the forcing 

function ( 	  is now to be considered in the equation of motion for the drum, 

presented in Eq. (2.35), which reduces to: 

	

 
(2.42) 
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Figure 2-11: Model corresponding to drum-hop, the drum continuing its motion 
upward at the end of the unloading phase as the soil reaches its full elastic recovery 
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The equations of motion of the drum-vehicle system in this phase are described in the 

matrix form as in Eq. (2.40), where the ( ) coefficient matrices and the ( 1) 

excitation vector are given by: 

; ; 

0
0

;  and 
sin

. 

With the ( 1 1), 	and	  vectors being: 

0
0
0
0
0

; and 
0
0
0
0
0

. 

2.4. Summary 

A vibratory soil compactor exhibits distinctly different dynamic behaviour in the transit 

and the compaction operating modes due to different excitations during the two 

operations. Two types of in-plane dynamic models of the vehicle are thus formulated to 

describe its ride vibration responses in the transit and compaction modes. For the transit 

mode, three different ride dynamic models of varying complexities are presented for 

further analysis of the vibration responses to excitations arising from randomly 

distributed roughness of the undeformable terrains. The compaction model is formulated 

by integrating the drum-soil interaction model to a ride dynamic model. The drum-soil 
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interaction model involves elasto-plastic soil model under three different interaction 

phases: (i) soil loading phase, (ii) soil unloading phase; and (iii) the drum-hop phase. The 

excitations and methods of solution are presented in CHAPTER 4, together with the 

model validations on the basis of the measured responses presented in the next chapter. 
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CHAPTER 3 – Field Measurements of Ride Vibrations 

3.1. Introduction 

The ride vibration environments of off-road vehicles and operators’ exposure to whole-

body vibration (WBV) are generally assessed through field measurements under 

representative operating conditions, (Daniere, et al., 1987; Boulanger, Donati, & 

Galmiche, 1996; Paddan & Griffin, 2002; Cann, Salmoni, Vi, & Eger, 2003; Beck, 

Bloswick, & Sesek, 2004). Such assessments, however, are considered valid under the 

operating conditions considered during the field measurements. The results attained from 

field measurements, generally exhibit considerable variability among the repeated 

measures. This is particularly applicable for off-rad vehicles that may operate on widely 

varying terrains at different speeds and load conditions. The field measurements, 

however, are vital for characterizing the vibration behaviour of the vehicle and 

verification of the analytical ride dynamic models. The performance analysis of an off-

road vehicle system or a subsystem design concept through simulation of an analytical 

model necessitates thorough understanding and field characterization of the system 

properties under reasonably known excitation. The validity of the ride dynamic models, 

presented in section 2.2, is vital to gain confidence and to develop a reliable design tool 

for seeking effective design of vibration isolators. 

Furthermore, the analytical model to be proposed has been formulated to describe the 

pitch-plane ride dynamics, assuming negligible roll and lateral motion. A few reported 

studies on the vibration properties of compactors (Boulanger, Donati, & Galmiche, 1996) 

and similar 2-axle articulated-steer construction equipment (Bovenzi, et al., 2006) 
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however, have shown considerable magnitude of lateral vibration. The field assessments 

are therefore considered essential to assess the WBV exposure and the environments in 

all the important axes.  

This chapter discusses the field measurements performed on soil compactors including 

the methodology, data acquisition and analysis, and ride vibration responses of the 

candidate vehicles.  

3.2. Field Test Program 

Field measurements were undertaken to characterize the whole-body vibration properties 

of soil compactors under two distinct operating modes: (i) transit mode (vibration off) on 

un-deformable surfaces at quasi-constant forward speeds; (ii) compaction mode 

(vibration on) on elasto-plastic graded soils at quasi-constant forward speed. The 

operators of soil compactors are trained to vary vibrator settings such as nominal 

amplitude and frequency (if several available) during the compaction process. These 

drum vibrator variations cause considerable change in the vibration properties and may 

pose complexities in interpretations of the measured data. Consequently, the experiments 

were performed under controlled conditions (speed and vibration amplitude) on the test 

courses at the manufacturer’s site. The experiments involved two different vehicles. The 

descriptions of test vehicles and the test program are presented in the following sections. 

3.2.1. Description of Test Vehicles 

Two typical soil compactors were selected through consultations with the most important 

road building contractor in Quebec (Sintra of the Colas group), a leading global 
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manufacturer of road building equipment and the Quebec research institute of 

occupational health and safety (IRSST). The gross weight of these machines was in the 

range of 10 tons, which represents the greatest population of this type of equipment in 

North America. The selected machines were 10-ton class soil compactors powered by an 

in-line 4 or 6 cylinder engines. Both the vehicles were equipped with an open platform 

featuring an operator seat without a vertical suspension. Figure 3-1 presents a pictorial 

view and a schematic illustration of soil compactors equipped with a cabin and an open 

platform, respectively. The vehicles comprise a drum on the front axle and pneumatic 

tires on the rear axle. The drum features a vibratory system based on rotating eccentric 

masses. It is mounted to the front frame (vehicle body) though a number of rubber-

mounts, while the cabin / open-platform and the engine group are supported on the rear 

frame (vehicle body) through four rubber mounts. The equipment can generate at least 

two so called nominal amplitudes of vibration by varying the eccentric moment within 

the drum group. 

 

 

Figure 3-1: (a) A pictorial view of a cabin equipped; and (b) a schematic illustration 
of an open platform equipped vibratory compactors 

(a) (b) 
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3.2.2. Description of the Program 

A soil compactor may be considered to comprise four primary bodies for characterization 

of its vibration properties. These include: 

a) Operator-seat subsystem for characterization of whole-body vibration (WBV) 

exposure of the operator, and attenuation of vertical vibration by the seat; 

b) Operator station (cabin or open platform), whose motions generally characterize 

the vibration transmission properties of the vehicle and its mounts; Considering 

that the seat mostly alters the transmission of the vertical vibration alone, the 

horizontal and angular vibration of the cabin/platform structure can fully 

characterize the vibration exposure along these axes; 

c) Vehicle body comprising the front frame, rear frame and rear axle (rigidly bolted 

to the rear frame) and supporting the engine. Its motions characterize the 

transmission of drum-terrain and tire-terrain dynamic interactions to the vehicle 

body; and 

d) Drum with the rotary eccentric mass characterizes the primary excitation during 

the compaction mode together with the dynamic drum-soil interaction in transit 

mode. 

The soil compactor can thus be represented by a multi-body system illustrated in Figure 

3-2, which comprises the above-mentioned four rigid bodies in addition to the engine 

mounted on the chassis through rubber mounts. The figure also illustrates the rotating 

eccentric mass within the drum, which is mounted to the main body through elastic 

mounts. The rear axle is represented as rigidly connected to the vehicle body and 
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supported by the fore-aft and vertical visco-elastic properties of the tires. The field test 

program was designed to measure the vibration responses of each of the bodies in order 

to fully characterize the ride vibration properties of the vehicles. 

 

Figure 3-2: Multi-body schematic diagram of a typical soil compactor 

The field measurements were performed at the manufacturer’s test facility that offered 

the desired courses for simulated transit and compaction tasks. In the compaction mode, 

the vehicles were operated on levelled deformable soils. The vehicles were operated 

forward and backward at a quasi-constant speed of 3 km/h. Compactions were performed 

on selected soils of different densities featuring different levels of soil stiffness, at two 

different nominal amplitudes of vibration. It should be noted that the compactor vibrator 

consists of two nominal amplitude settings, denoted as “low” and “high”. The majority of 

the compaction runs, however, were performed with the vibrator set at high amplitude but 

several runs were also performed with the vibrator set at low amplitude. Each compaction 
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run corresponding to low and high amplitude settings on the selected soil was repeated a 

few times, depending upon the weather condition and deformability of the surface. 

In transit mode, compactors were driven on tracks longer than 100 m on a non-

deformable road surface. The vibrator was set to the “off” position. The road surface was 

judged to be “average”. Figure 3-3 illustrates the layouts of the transit and compaction 

tracks. 

 

Figure 3-3: Illustration of the test tracks used in the transit and compaction modes 

Apart from the transit on the tracks, the transient responses of the vehicles were also 

measured while operating over discrete obstacles. For this purpose, a discrete obstacle 

was synthesized by 5 cm × 10 cm wooden planks placed on the road surface. The vehicle 

was driven over the planks in the forward and reverse modes and the responses were 

acquired to measure the fundamental mode frequencies. Both these transit modes were 

Transit 
courses 

Compaction 
courses 
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conducted at two constant speeds (6 and 10 km/h) and each test was repeated at least 3 

times. 

Table 3-1: Test runs for the 6-cylinder compactor 

Run # Operation Soil Density 
Vibrator 

amplitude 
Approximate 
Speed (km/h) 

Driving 
Direction 

1 Transit #1 Non-deformable Off 10 Forward
2 Engine idling #1 Non-deformable Off 0 N/A
3 Compaction/humid soil #3 Low density High 3 Forward
4 Compaction/humid soil #3 Low density High 3 Backward
5 Compaction/humid soil #1 Low density High 3 Forward
6 Compaction/humid soil #1 Low density High 3 Backward
7 Compaction/humid soil #2 Low density High 3 Forward
8 Compaction/humid soil #2 Low density High 3 Backward
9 Transit #2 Non-deformable Off 10 Forward
10 Compaction / gravel Very high density High 3 Forward
11 Compaction / gravel Very high density Low 3 Backward
12 Transit over obstacles Non-deformable Off 10 Forward
13 Transit over obstacles Non-deformable Off 10 Backward
14 Transit over obstacles Non-deformable Off 6 Forward
15 Transit over obstacles Non-deformable Off 6 Backward
16 Transit #3 Non-deformable Off 10 Forward
17 Compaction/ dry soil #1 Over-compacted High 3 Forward
18 Compaction/ dry soil #1 High-density High 3 Forward
19 Compaction/ dry soil #1 High-density High 3 Backward
20 Compaction/ dry soil #1 Over-compacted High 3 Backward
21 Engine idling #2 Non-deformable Off 0 N/A
22 Compaction/ dry soil #2 Over-compacted Low 3 Forward
23 Compaction/ dry soil #2 High-density Low 3 Forward
24 Compaction/ dry soil #2 High-density High 3 Backward
25 Compaction/ dry soil #2 Over-compacted High 3 Backward
26 Engine idling #3 Non-deformable Off 0 N/A
27 Transit #4 Non-deformable Off 10 Forward

 

The test program involved a total of 27 and 23 runs with the two compactors, which are 

denoted by “6-cylinder compactor” and “4-cylinder compactor”, respectively. These also 

included runs with engine idling for verifications of the sensors signals. Table 3-1 and 

Table 3-2 summarize the various runs and the corresponding conditions such as operating 

mode, ground type, vibrator setting, speed and direction of transit. 
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Table 3-2: Test runs for the 4-cylinder compactor 

Run # Operation Soil Density 
Vibrator 

Amplitude
Approximate 
Speed (km/h) 

Driving 
Direction 

1 Compaction / gravel Very high density High 3 Forward
2 Compaction / gravel Very high density Low 3 Backward
3 Transit #1 Non-deformable Off 10 Forward
4 Transit #2 Non-deformable Off 10 Forward
5 Compaction/humid soil #1 Low density High 3 Forward
6 Compaction/humid soil #1 Low density High 3 Backward
7 Compaction/humid soil #2 Low density High 3 Forward
8 Compaction/humid soil #2 Low density Low 3 Backward
9 Transit #3 Non-deformable Off 10 Forward
10 Transit over obstacles Non-deformable Off 10 Forward
11 Transit over obstacles Non-deformable Off 10 Backward
12 Transit over obstacles Non-deformable Off 6 Forward
13 Transit over obstacles Non-deformable Off 6 Backward
14 Transit #4 Non-deformable Off 10 Forward
15 Compaction/ dry soil #1 Over-compacted High 3 Forward
16 Compaction/ dry soil #1 High-density High 3 Forward
17 Compaction/ dry soil #1 High-density High 3 Backward
18 Compaction/ dry soil #1 Over-compacted High 3 Backward
19 Compaction/ dry soil #2 Over-compacted Low 3 Forward
20 Compaction/ dry soil #2 High-density Low 3 Forward
21 Compaction/ dry soil #2 High-density High 3 Backward
22 Compaction/ dry soil #2 Over-compacted High 3 Backward
23 Transit #5 Non-deformable Off 10 Forward

 

3.2.3. Instrumentation 

Each test vehicle was instrumented to measure the vibration of the responses of the four 

primary bodies, namely the seat, operator station, drum, and the vehicle body. In the 

current design, soil compactors wheel axles are rigidly bolted to the rear-frame; the 

vertical vibrations of the rear frame at the axle location were acquired. The sensors 

employed at different locations are summarized below: 

 A 3-axis seat accelerometer per ISO recommendations (ISO 2631-1, 1997) was 

installed on the seat cushion for measurements of fore-aft (x), lateral (y) and vertical 
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vibrations at the operator / seat interface. For this purpose, the seat pad was designed 

with a micro-accelerometer (ADXL05JH 5g). Figure 3-4 illustrates the seat 

accelerometer mounted on the seat cushion. It needs to be emphasized that the 

vibration measured at the seat could not be generalized since these vehicles can as 

well employ genuine or “after-market” suspension seats. 

 

Figure 3-4: Seat accelerometer 

 A 3-axis gyro coupled with a 3-axis accelerometer (IMU400CC) was installed on the 

platform floor near the operator seat to measure the translational and rotational 

vibration of the operator-station structure. 

 A 3-axis gyro together with a 3-axis (IMU400CC) accelerometer attached to the rear 

frame, close to the center of mass of the vehicle body for measurements of 

translational and rotational vibration of the vehicle body.  

 A 3-axis accelerometer (Crossbow CXL4GP3) was mounted on the rear frame above 

the bolted joint of the rigid axle, although the vertical acceleration only was acquired, 

since the horizental vibrations were expexted to be similar to that of the vehicle body. 
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 A 3-axis accelerometer (PCB Piezotronics) was attached to the drum-propelling side 

(hydrostatic transmission) of the front frame in-plane with the drum axis for 

measurements of translational vibrations transmitted by the drum to the front frame 

through the elastic mounts. Figure 3-5 illustrates the location of this accelerometer. It 

should be noted that only x- and z-axis acceleration signals of the front frame were 

acquired. 

 And a 3-axis accelerometer (PCB Piezotronics) was also attached to the vibrator 

motor bracket of the drum to measure the drum radial accelerations along the x- and 

z-axis. Figure 3-6 illustrates the location of this accelerometer. 

 

Figure 3-5: Front frame accelerometer Figure 3-6: Drum group accelerometer 

The signals from the PCB accelerometers were conditioned using the signal 

conditioner/amplifier, while those from the gyros and micro-accelerometers (ADXL and 

Crossbow) were directly acquired in a multi-channel data recorder (TEAC). It should be 

noted that the gyros provided the measures of the angular velocities, which were 

subsequently differentiated during data analysis tasks to derive the angular accelerations. 
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Each sensor was calibrated in the laboratory prior to their installations. Table 3-3 

summarizes the location, ranges and sensitivities of various sensors together with the 

coordinate measured. 

Table 3-3: Specifications of the sensors and their locations 

Channel Measurand Sensor Sensitivity Range Gain Comments

1 Drum X  PCB Piezotronics 50g 95.7mV/g 5V 1 vib motor plate

2 Drum Z PCB Piezotronics 50g 99.0mV/g 5V 1 vib motor plate

3 Front frame X PCB Piezotronics 50g 100.8mV/g 5V 1 drum propel side

4 Front frame Z PCB Piezotronics 50g 96.3mV/g 5V 1 drum propel side

5 Body X Crossbow CXL10GP3 10g 0.200V/g 5V 1 close to hitch

6 Body Y Crossbow CXL10GP3 10g 0.204V/g 5V 1 close to hitch

7 Body Z Crossbow CXL10GP3 10g 0.197V/g 5V 1 close to hitch

8 Platform X Crossbow CXL10GP3 10g 0.201V/g 5V 1 close to cab c.g.

9 Platform Y Crossbow CXL10GP3 10g 0.204V/g 5V 1 close to cab c.g.

10 Platform Z Crossbow CXL10GP3 10g  0.204V/g 5V 1 close to cab c.g.

20 Body roll IMU400CC-200 200°/sec 0.782V/rad/s 4V 1 close to hitch

12 Body pitch IMU400CC-200 200°/sec 0.782V/rad/s 4V 1 close to hitch

13 Body yaw IMU400CC-200 200°/sec 0.782V/rad/s 4V 1 close to hitch

14 Platform roll  IMU400CC-100 100 °/sec 1.565V/rad/s 4V 1 close to cab c.g.

15 Platform pitch  IMU400CC-100 100 °/sec 1.565V/rad/s 4V 1 close to cab c.g.

16 Platform yaw IMU400CC-100 100 °/sec 1.565V/rad/s 4V 1 close to cab c.g.

17 Seat X ADXL05JH 5g 0.551V/g 5V 1 seat pad

18 Seat Y ADXL05JH 5g 0.565V/g 5V 1 seat pad

19 Seat Z ADXL05JH 5g 0.485V/g 5V 1 seat pad

21 Axle Z Crossbow CXL4GP3 4g 0.500V/g 5V 1 Frame over axle

22 AUDIO micro - - - - 
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3.3. Data Analysis Method 

The acquired data segments for each machine (4 or 6 cylinder) were grouped for each 

operation including the transit, compaction of lower density soil and compaction of 

higher density soil. Each operation comprised between 3 to 6 data segments of varying 

lengths as summarized below: 

 4-cylinder machine in transit mode (10 km/h): 5 segments of 120 seconds each 

 6-cylinder machine in transit mode (10 km/h): 4 segments of 120 seconds each 

 4-cylinder machine in compaction (high density): 3 segments of 60 seconds each 

 6-cylinder machine in compaction (high density): 3 segments of 60 seconds each 

 4-cylinder machine in compaction (low density): 3 segments of 120 seconds each 

 6-cylinder machine in compaction (low density): 6 segments of 120 seconds each 

The vast majority of compaction runs employed high amplitude unbalance excitation. 

The measured analog data were processed through a 0.7 Hz cut-off frequency high-pass 

filter to eliminate the signal bias, if any, and digitised using Brüel & Kjær PULSE 

Analyser Platform. The data were subsequently analyzed using different analysers, 

namely: 

i. Time capture analyser to study the transient responses to discrete obstacles; 

ii. Fast Fourier Transform (FFT) analyser to derive the vibration spectra in terms of 

power spectral density (PSD) ; and 

iii. Constant Percentage Bandwidth (CPB) analyser to derive the rms acceleration 

spectra and the overall rms acceleration values. 
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Figure 3-7: Time history of vertical acceleration measured at the main body of the 
4-cylinder compactor during forward transit over the discrete obstacles at 10 km/h 

 

The time history of each signal was recorded through the Time capture analyzer. As an 

example, Figure 3-7 illustrates the transient vertical acceleration response measured at the 

main body of the 4-cylinder machine in the transit mode over discrete obstacles. The 

transient measured data were acquired with vehicle traversing over two discrete 

obstacles. Two distinct oscillations in the figures correspond to each of the oscillations. 

The second oscillation, near	 	 10	 , exhibits vertical vehicle vibration caused by the 

interactions of the drum and the rear axle tire with one of the obstacles. This particular 

segment was zoomed to identify the fundamental natural frequencies of the vehicle 

corresponding to the bounce and pitch modes of the vehicle. The measured data revealed 
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a distinct frequency near 4.8 Hz, which was believed to correspond to the vertical, pitch 

or a coupled vertical/pitch mode of the vehicle. 

 

Figure 3-8: PSD of the vertical acceleration measured at the vehicle-body of the 4-
cylinder compactor during 5 transit runs at a forward speed of 10 km/h 

 

FFT analyzer processed each data segment at a sampling rate of 256 with a resolution of 

0.125 Hz over a range of 100 Hz. The analysis also utilized a 75% overlap and a Hanning 

time-weighting function. The CPB analyzer was configured to one-third-octave bands 

with center frequencies of the lower and upper bands of 0.5 Hz and 100 Hz, respectively. 

The acquired data were analyzed to derive the acceleration spectra corresponding to each 

test compactor in each segment corresponding to the different operating modes 

considered. The results were obtained in terms of PSD and ⅓-octave band rms values of 

accelerations along all the translational and rotational axes. The results attained for the 

related segments or repeated trails for each operating mode were grouped and averaged. 

The repeated measures for each operation generally revealed good repeatability in the 
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resulting acceleration spectra. As an example, Figure 3-8 illustrates comparisons of 

vertical acceleration PSD measured at the vehicle body of the 4-cylinder compactor over 

five different transits at a forward speed near 10 km/h. the comparison suggests good 

repeatability of the runs particularly in predominant frequencies of vibration, while 

considerable deviation in the magnitude are also evident. These are attributable to local 

road roughness variation and possible variations in the actual speed. The data obtained 

during different runs of each operation were subsequently grouped and presented by their 

mean, minimum and maximum PSD magnitudes. The resulting envelop spectra could be 

applied for model verification, vibration dosage assessments and design or turning of 

second suspension at the operator-station and seat. 

 

3.4. Ranges of measured responses  

The measured data were analyzed to describe the ranges of acceleration response along 

each axis corresponding to each mode of operation. The yaw acceleration responses of 

both the vehicles were found to be quite small and therefore not presented in the 

dissertation. The ranges of acceleration grouped for each mode of operation are discussed 

below for both the machines considered in the study. 

 

3.4.1. In compaction mode on lower density soil 

The soil compaction is invariably preformed at very low speeds (nearly 3 km/h). The 

resulting whole body vibration amplitudes caused by tire/drum –terrain interactions 
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would thus be expected to be small. The unbalance vibrator, however, tends to introduce 

high magnitude acceleration at a relatively higher frequency near 30 Hz. The frequency 

weighting defined in ISO-2631-1 tend to greatly suppress the contribution due to such 

higher frequency vibration. The vehicle vibration during compaction, particularly 

involving low density soil or low amplitude vibrator operation, may thus not be of 

concern in view of the risks associated with vibration exposure of the operator. 

 

Figure 3-9 illustrates the ranges of vertical vibration measured at the operator seat, 

operator-station and the vehicle body of the two machines, respectively while performing 

low density soil compaction tasks. The results clearly show a sharp high magnitude peak 

near 30 Hz, irrespective of the location of the measurement and the machine. The 

acceleration spectra also reveal peaks at frequencies multiples of the fundamental 

unbalance frequency of 30Hz. These are clearly evident in the spectra of vibration 

measured at the operator-station floor and at the vehicle body near 15, 60 and 90 Hz. The 

results in general exhibit low magnitude vertical vibration in the low frequency range 

(<15 Hz) to which human body is known to be more sensitive (Griffin M. J., 1990). The 

spectra exhibit a number of peaks in the lower frequency range, which would be of 

primary interest in study of WBV exposure of the operator, if the magnitudes of vibration 

were of concern. The peaks and the corresponding frequencies in the low frequency 

range, however, relate to particular vehicle vibration modes, while the peak magnitudes 

would be expected to be more prominent during the transit operations. These frequencies 

are thus examined and discussed on the basis of the transit mode of operation responses 

in the following section. 
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The results also show that magnitudes of vehicle vibration in the low frequency range are 

higher for the 6-cylinder machine compared to the 4-cylinder machine. Furthermore, the 

drum mounts and operator-station mounts tend to attenuate the high frequency vibration 

caused by the vibrator. The longitudinal and lateral vibration of the vehicles measured at 

the vehicle body, operator-station and seat, also show relatively low magnitude vibration 

in the lower frequency range, and high magnitude peaks corresponding to the vibrator 

motion, as seen in Figure 3-10 and Figure 3-11. For the 6-cylinder machine, the operator-

station and the drum mounts appear to be more efficient in reducing the translational 

vibration (along all the three axis) transmitted to the operator-station floor compared to 

the 4-cylinder machine. This is most likely attributed to differences in inertial and mass 

distribution properties of the two vehicles. 

 

The roll and pitch vibration of both the vehicles are also quite low in the low frequency 

ranges, as shown in Figure 3-12 and Figure 3-13, respectively. Both the roll and pitch 

accelerations, however, tend to increase with frequency at frequencies above 7 Hz. This 

was initially believed to be caused by integration of the velocity signal that may comprise 

slight dc offset. A further examination of the velocity signals, however, revealed 

negligible dc offset. The increasing acceleration at high frequencies however, 

corresponds to only low levels of displacements that are most likely attributed to the 

bending and torsion of the frames and the operator-station structure. 
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(a) (b) 

Figure 3-9: PSD of vertical acceleration measured at the vehicle body, the operator-
station floor and the seat during compaction of low density soil (vibrator set at “high 

amplitude”): (a) 4-cylinder machine; (b) 6-cylinder machine 
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(a) (b) 

Figure 3-10: PSD of longitudinal acceleration measured at the vehicle body, the 
operator-station floor and the seat during compaction of low density soil (vibrator 

set at “high amplitude”): (a) 4-cylinder machine; (b) 6-cylinder machine 
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(a) (b) 

Figure 3-11: PSD of lateral acceleration measured at the vehicle body, the operator-
station floor and the seat during compaction of low density soil (vibrator set at “high 

amplitude”): (a) 4-cylinder machine; (b) 6-cylinder machine 
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(a) (b) 

Figure 3-12: PSD of roll acceleration measured at the vehicle body and the 
operator-station floor during compaction of low density soil (vibrator set at “high 

amplitude”): (a) 4-cylinder machine; (b) 6-cylinder machine 
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(a) (b) 

Figure 3-13: PSD of pitch acceleration measured at the vehicle body and the 
operator-station floor during compaction of low density soil (vibrator set at “high 

amplitude”): (a) 4-cylinder machine; (b) 6-cylinder machine 
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3.4.2. In compaction mode on higher density soil 

The compaction of higher density soil causes greater interactions of the drum and the tire 

with the terrain due to greater stiffness of the soil. This operation may also yield hopping 

of the drum under certain conditions (Pietzsch & Poppy, 1992; Adam & Kopf, 2000; 

Andereg, 2000) leading to higher magnitudes of transmitted vibration. The magnitudes of 

low frequency vibration along the z, x and y-axis are thus higher than those observed 

under low density soil compaction, as evident from the spectra in Figure 3-15, Figure 

3-16 and Figure 3-17, respectively. The spectral components of low frequency vibration, 

however, are quite similar to those observed under low density soil compaction. The 

compaction of higher density soil tends to emphasize the peaks corresponding to 15 Hz 

(one-half the frequency of the rotating unbalance), as seen in the figures. This is believed 

to be caused by the hopping motion of the drum on the relatively hard soil. The 

magnitudes of longitudinal and lateral vibration near 15 Hz tend to be higher than those 

observed at the fundamental frequency of approximately 30 Hz. The hopping motion of 

the drum may also contribute to excitations of some of the low frequency modes. The 

magnitudes of low frequency vibration peaks in the 1.4 – 6.5 Hz, 12-17 Hz and 18.4 – 

19.9 Hz are thus higher than those observed in Figure 3-9 to Figure 3-11. Similar trends 

are also observed in the PSD of the roll and pitch accelerations of the vehicle body and 

the operator-station as seen in Figure 3-18 and Figure 3-19, respectively. 
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(a) (b) 

Figure 3-15: PSD of vertical acceleration measured at the vehicle body, operator-
station floor and the seat during compaction of high density soil (vibrator set at 

“high amplitude”): (a) 4-cylinder machine; (b) 6-cylinder machine 
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(a) (b) 

Figure 3-16: PSD of longitudinal acceleration measured at the vehicle body, 
operator-station floor and the seat during compaction of high density soil (vibrator 

set at “high amplitude”): (a) 4-cylinder machine; (b) 6-cylinder machine 
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(a) (b) 

Figure 3-17: PSD of lateral acceleration measured at the vehicle body, operator-
station floor and the seat during compaction of high density soil (vibrator set at 

“high amplitude”): (a) 4-cylinder machine; (b) 6-cylinder machine 
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(a) (b) 

Figure 3-18: PSD of roll acceleration measured at the vehicle body and the 
operator-station floor during compaction of high density soil (vibrator set at “high 

amplitude”): (a) 4-cylinder machine; (b) 6-cylinder machine 
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(a) (b) 

Figure 3-19: PSD of pitch acceleration measured at the vehicle body and the 
operator-station floor during compaction of high density soil (vibrator set at “high 

amplitude”): (a) 4-cylinder machine; (b) 6-cylinder machine 
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3.4.3. In transit mode 

In the transit mode of operation, the vehicle operates with the vibrator turned off. The 

vibration behaviour of the vehicle is mostly determined by the drum/wheel interactions 

with the road surface. Furthermore, the vehicle speed is significantly higher than that in 

the compaction, which would yield considerably higher magnitudes of vibration, 

particularly in the low frequency range. The ranges of measured vibration spectra in this 

case are thus used to identify the range of frequencies of dominant vibration and the 

probable corresponding modes. These frequencies of dominant vibration observed from 

the spectra of vibration encountered during the transit mode of operation were generally 

quite comparable with these observed in the data during the compaction modes. 

 

Figure 3-21 to Figure 3-25 illustrate the ranges of spectra of vertical (z), longitudinal (x), 

lateral (y), roll ( ) and pitch ( ) accelerations, respectively measured at the operator-

station floor and vehicle body of the two machines considered in the study. Figure 3-21 to 

Figure 3-23 also show the spectra of translational vibration measured at the seat. The 

results show considerably higher magnitudes of low frequency vibration in all the axes 

compared to those observed during the compaction modes. Furthermore, the high 

frequency vibrations attributed to the vibrator are not evident, although the results also 

show significant levels of high frequency vibration. These are attributable to bending and 

torsional deflections of vehicle and operator-station structures. The acceleration spectra 

show peaks in the 1.4-2.2, 2.9-3.6, 3.9-7.0, 12-17 and 18.4-19.9 Hz. These peaks can be 

generally observed from the responses along all the axes, while the corresponding 
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frequencies could be associated with particularly modes of vibration of the vehicle. 

Furthermore, the ranges of vibration frequencies observed from spectra of vibration of 

the two vehicles are quite comparable. 

 

The ranges of pitch plane vibration spectra (x, z and	 ) consistently reveal a distinct peak 

in the vicinity of 4.9 Hz. The magnitude of this peak is particularly pronounced in the 

pitch responses, but is also evident from the vertical and longitudinal acceleration spectra 

of the operator-station and the seat. This peak is thus believed to be attributed to the pitch 

vibration mode of the vehicle body. Considering that the mass and mass moment of the 

vehicle body are significantly larger than those of the operator-station and the engine, the 

participation of its pitch mode in the responses of the other bodies would be expected. 

 

The pitch plane vibration spectra also exhibit high magnitude peaks near 1.7 and 3.2 Hz 

in the vertical and fore-aft responses measured at the vehicle body. The operator-station 

pitch spectra exhibit large peak near 4 Hz, while the operator-station vertical vibration 

peaks near 5.5 Hz. The operator-station acceleration spectra also exhibit peak 

longitudinal acceleration in the 12-13 Hz range, although this could also be associated 

with coupled lateral/yaw modes as the operator-station sensor was mounted with some 

noticeable off-set from the vertical symmetry plane of the vehicle due to space 

constraints in the vicinity of the operator. The results clearly show coupled pitch plan 

vibration (x, z and	 ) with peaks occurring near 1.7, 3.2, 4, 4.9 and 5.5 Hz. From the 

observed peaks, it is believed that the frequencies 1.7, 3.2 and 4.9 Hz are associated with 
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the bounce, fore-aft and pitch modes of the vehicle body respectively. The operator-

station pitch and bounce modes are speculated to occur near 4 and 5.5 Hz. 

 

The measured acceleration spectra also show peaks at comparable frequencies in the 

bounce, roll and lateral axes suggesting the coupling in the roll plane. The vehicle body 

roll acceleration spectrum exhibits distinct peak near 3.4 Hz, which is also evident in the 

operator-station pitch roll response. The roll mode of the rear frame of the vehicle is thus 

believed to occur near this frequency. The roll acceleration spectra of the operator-station 

of both the vehicle also exhibit distinct peaks near 6.8 Hz and in the 12-13 Hz. These 

frequencies are attributed to the roll mode of the operator-station and its coupled 

lateral/yaw modes, respectively. Peaks near 2.2 and 3 Hz are also evident in the lateral 

acceleration spectra of the vehicle body. These peaks corresponding to its coupled 

lateral/yaw mode frequencies are also evident in the lateral acceleration spectra of the 

operator-station. 

 

The acceleration spectra also show peaks near 73 Hz, which seems to correspond to the 

second harmonic of engine speed of 2200 rpm. 
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(a) (b) 

Figure 3-21: PSD of vertical acceleration measured at the vehicle body, the 
operator-station floor and the seat during transit mode (speed≈10km/h): 

(a) 4-cylinder machine; (b) 6-cylinder machine 
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(a) (b) 

Figure 3-22: PSD of longitudinal acceleration measured at the vehicle body, 
the operator-station floor and the seat during transit mode (speed≈10km/h): 

(a) 4-cylinder machine; (b) 6-cylinder machine 
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(a) (b) 

Figure 3-23: PSD of lateral acceleration measured at the vehicle frame, the 
operator-station floor and the seat during transit mode (speed≈10km/h): 

(a) 4-cylinder machine; (b) 6-cylinder machine 
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(a) (b) 

Figure 3-24: PSD of roll acceleration measured at the vehicle body 
and the operator-station floor during transit mode (speed≈10km/h): 

(a) 4-cylinder machine; (b) 6-cylinder machine 
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(a) (b) 

Figure 3-25: PSD of pitch acceleration measured at the vehicle body 
and the operator-station floor during transit mode (speed≈10km/h): 

(a) 4-cylinder machine; (b) 6-cylinder machine 
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Table 3-4 summarizes the frequency ranges of the peaks observed from the ranges of 

measured acceleration spectra of both the machines and different operating modes 

(transit, compaction of low and high density soils). The table lists the frequency ranges 

observed from the vertical, fore-aft and pitch acceleration spectra, which appeared to be 

strongly coupled. The table also presents the overall frequency ranges of peaks observed 

in the ranges of measured acceleration spectra. Similarly Table 3-5 further lists the 

frequency ranges corresponding to the peaks observed in the spectra of vibration 

measured during different modes of operation together with the overall frequency ranges. 

The results suggest that a number of frequency ranges corresponding to vibration peaks 

observed during the compaction mode coincide with those observed in the transit mode. 

Table 3-4: Frequency ranges of PSD peaks in all operating modes for each signal 

Acceleration 
spectra 

Peaks corresponding to observed peaks (Hz) 

 1.5 ~ 2.1 3.0~ 3.5 3.9 ~ 6.5 14.0 ~ 14.5  27.3 ~ 29.4 73.2 ~ 73.3

 1.5 ~ 2.0  4.0 ~ 7.0 14.0 ~ 14.5 18.9 ~ 19.9 27.5~ 29.4 73.3 ~ 73.4

 1.5 ~ 1.9 2.9~ 3.5 4.0 ~ 5.5 12.3 ~ 14.5 18.4 ~ 19.9 27.5~ 29.5 73.3 ~ 73.4

 1.4 ~ 1.9  3.9 ~ 6.2 12.0 ~ 14.5 19.1 ~ 19.9 28.0 ~ 29.5  

 1.5 ~ 2.2  3.9 ~ 5.5 15.8 ~ 17.0  27.5 ~ 29.5 73.3 ~ 73.4

 1.4 ~ 1.9 2.9~ 3.6 3.9 ~ 6.2 15.6 ~ 16.5  27.5 ~ 28.1  

Overall Range 1.4 ~ 2.2 2.9~ 3.6 3.9 ~ 7.0 12.0 ~ 17.0 18.4 ~ 19.9 27.3 ~ 29.5 73.2 ~ 73.4

 

Table 3-5: Frequency ranges of PSD peaks for all signals in each operating mode 

PSD Peaks frequency range (Hz) 
Transit 1.4 ~ 2.2 2.9~ 3.6 3.9 ~ 7.0 12.0 ~ 17.0 18.4 ~ 19.9  73.3 ~ 73.4

Compaction 
(Low density) 

    19.1 ~ 19.9 27.3 ~ 29.5 73.2 ~ 73.3

Compaction 
(High density) 

  3.9 ~ 6.5 14.0 ~ 14.5 19.1 ~ 19.9 27.3 ~ 29.5 73.3 ~ 73.4

Overall Range 1.4 ~ 2.2 2.9~ 3.6 3.9 ~ 7.0 12.0 ~ 17.0 18.4 ~ 19.9 27.3 ~ 29.5 73.2 ~ 73.4



 

100 
 

3.5. Summary 

This chapter presented the measurements of ride vibration responses of two 10-ton 

compactors performing the transit and compaction tasks; the latter on low and high soil 

densities. The measured data were analysed to derive spectra of acceleration along the 

translational and rotational axis. Different runs performing the same tasks revealed good 

repeatability of the measurements. Various data segments corresponding to each mode of 

operation were thus grouped together to determine the mean and ranges of vibration 

spectra for both the vehicles. The ranges of resulting vibration spectra revealed strongly 

coupled motions in the pitch and roll planes, while the magnitudes of yaw motion were 

very small. The frequencies corresponding to the observed peaks in the acceleration 

spectra were identified and associated with probable vibration modes of vehicle. The 

range of acceleration spectra and the frequencies will be applied in the following chapter 

to examine the validity of the ride dynamic model of the vehicle. 
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CHAPTER 4 – METHODS OF ANALYSIS AND MODEL 
VALIDATIONS 

4.1. Introduction 

The differential equations of motion derived for the vehicle model for the transit and 

compaction modes of operation are solved for excitations arising from the road roughness 

and soil model, respectively. The evaluation of ride dynamics and compaction responses 

of the vehicle necessitates identifications of vehicle inertial and dimensional properties, 

and static and dynamic properties of the vehicle subsystems. Furthermore, it is essential 

to characterise the roughness properties of the road surface for ride response analysis in 

the transit mode, and the soil properties for analysis of compaction response. It is also 

vital to examine the validity of the model using the ranges of field measured responses 

presented in CHAPTER 3. The validated model could then serve as an important tool not 

only for assessment of WBV exposure under different operating conditions but also for 

design and/or tuning of primary and secondary suspensions. 

Although the field measured responses revealed comprehensive magnitudes of vibration 

in the vertical, for-aft, lateral, roll and pitch directions, the ride dynamic model developed 

in this study is limited to pitch-plane dynamics alone. Furthermore, the assumption of 

constant forward speed and lack of consideration of the tire- and drum-terrain shear mode 

properties does not permit accurate predictions of the fore-aft vibration response. The 

validity and applicability of the proposed model is thus limited to vertical and pitch ride 

vibration responses. The measured responses, however, suggest the need for development 
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in three-dimension ride dynamic model of the vehicle. The model presented in this study 

thus represents a preliminary effort in this direction. 

In this chapter, the measured data acquired at the drum is analysed to obtain estimate of 

the road profile. The linear ride dynamic models are subsequently analysed to evaluate 

the ride responses. The validity of the ride dynamic models is initially examined by 

comparing their natural frequencies with the dominant ride frequencies identified from 

the measured data of the vehicle in the transit mode. The ride models are further validated 

by comparing the vertical, longitudinal and pitch acceleration responses of the vehicle 

body, the operator-station, and the vertical and longitudinal responses at the operator-seat 

interface with the measured data presented in CHAPTER 3. The validity of the nonlinear 

compaction model is also examined by comparing, in a qualitative manner, the vibration 

response spectra of different bodies with the ranges of the field-measured responses, and 

the force – deflection response of the soil and the drum displacement response of the 

model with those reported in the published studies (Adam & Kopf, 2000; Floss & 

Kloubert, 2000; Krober, Floss, & Wallrath, 2001; Kloubert, 2004) which have been 

discussed in Section 1.2.2. The compaction model validity is further investigated with 

respect to the compaction characteristic of the soil using the trends reported in a few 

published studies (Anderegg & Kaufmann, 2004; Tateyama, Ashida, Fukagawa, & 

Takahashi, 2006; Scherocman, Rakowski, & Uchiyama, 2007; Akesson, 2008). 

4.2. Ride Response Analysis in the Transit Mode 

The ride dynamics of the compactor is of significance in the transit mode of operation 

due to its occurrence at relatively higher speeds. The ride dynamic responses of the 
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compactor model can be conveniently evaluated in the frequency domain to determine 

the ride acceleration responses of the operator station and the seat. Owing to the constant 

speed assumption and in-plane dynamics, the ride dynamic models can predict the ride 

response along the vertical and pitch axes alone, while the longitudinal acceleration at the 

driver’s location arising from vehicle pitch may also be estimated. In this study, the ride 

responses of the models are evaluated in terms of PSD and overall rms values of the 

accelerations of the vehicle body, operator-station and the seat along the vertical, pitch 

and longitudinal axes. The models are also analysed to determine the natural frequencies 

and the corresponding deflection modes, which are expected to yield some design 

guidance for the primary and secondary suspensions. 

The ride dynamic responses of road and off-road vehicles are known to strongly depend 

upon the terrain roughness and forward speed apart from the weights and dimensional, 

and suspension properties of the vehicle. It is thus-vital to identify the weights and 

dimensional, and suspension properties, and the terrain roughness. While the vehicle 

properties have been obtained from the manufacturer, the terrain roughness is 

characterised from the measured data, as discussed in the following subsections. 

4.2.1. Vehicle Model Parameters 

The parameters of the 4-cylinder and 6-cylinder soil compactors were obtained from the 

vehicle manufacturer. These included the weights and dimensional properties of the 

vehicle and its subsystem, stiffness and damping properties of the engine, operator-

station and the drum mounts, and the vibrator parameters. Some of these parameters are 
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summarized in Table 4-1. Very high stiffness was assumed for the seat suspension and 

the rear axle suspension, since these are not present in the test vehicles. 

Table 4-1: Vehicle Model Parameters 

Parameter 
6-cylinder 
compactor 

4-cylinder 
compactor 

Parameter
6-cylinder 
compactor 

4-cylinder 
compactor 

 3,300 kg 3,300 kg  3,000 kN/m 3,000 kN/m
 400 kg 400 kg  500 kN/m 500 kN/m 
 6,100 kg 5,700 kg ∞ ∞ 
 600 kg 470 kg    
 350 kg 350 kg  1,000 kN/m 800 kN/m 
 10 kg 10 kg  1,000 kN/m 800 kN/m 
 53 kg 53 kg    

    300 kN/m 300 kN/m 
 16,000 kg m2 14,000 kg m2  220 kN/m 220 kN/m 
 100 kg m2 65 kg m2 ∞ ∞ 
 80 kg m2 80 kg m2  22 kN/m 22 kN/m 

      
 22 kNs/m 22 kNs/m  1.6 m 1.5 m 
 4 kNs/m 4 kNs/m  1.3 m 1.4 m 

   1.2 m 1.4 m 
	  0.1 m 0.1 m  0.0 m -0.1 m 
	  0.9 m 0.9 m 0.0 m 0.0 m 

 

The parameters of the soil model, which serves as the primary input to the compaction 

model, are identified from the reported studies. They are summarised, together with the 

vibrator parameters, when covering the compaction model validation later in this chapter. 

4.2.2. Test-track profile 

The analysis of ride vibration properties of a vehicle necessitates characterization of the 

roughness properties of the tracks, apart from the reliable vehicle parameters. The surface 

roughness properties of various road and off-road tracks have been widely measured and 

expressed in terms of the spatial power spectral density of the terrain profile as a function 
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of its spatial frequency or the wavelength (Wong, 2001). The measured roughness 

profiles of various roads have also been grouped in order to characterize the average 

roughness of different roads classified by a relative ranking on the basis of roughness 

magnitudes. The International Standardization classification ( ISO 8608, 1995) presents 

the average spatial spectral density of roads ranked from A to H, where the road “A” 

relates to a very smooth road surface and “H” to a very rough road surface. The average 

road roughness properties, defined in the ISO document, however, may not correspond to 

those of a typical road in the entire range of wavelengths. Furthermore, it is quite difficult 

to assign a particular ranking, defined in the standard ( ISO 8608, 1995), to a given road 

on the basses of mere observations. It is thus desirable to characterize the roughness 

properties of the test track traversed by the vehicle. This is particularly important, where 

validity of a ride dynamic model needs to be investigated, as in the case of the present 

study. The test track used in the road measurements revealed considerable waviness in 

the surface but was generally observed to be smooth. It was thus expected to reveal 

greater magnitudes of low frequency components. 

In this study, the roughness properties of the test track used in field measurements are 

identified from the measured data. From the review of the published studies, it was 

evident that many road profile surveying techniques have been based on the principal of a 

rigid wheel rolling on the road at a low speed, while pulled by a vehicle (Bogdanoff, 

Kozin, & Cote, 1966; Bekker, 1969). A soil compactor is equipped with a rigid steel 

drum and it operates at relatively low speeds (maximum speed near 10 km/h). In the field 

measurements, the compactor drum was equipped with an accelerometer to capture the 

longitudinal and vertical motions of the drum. The measured vertical motion could be 
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used to establish the road profile provided a continuous drum-ground contact could be 

ensured. 

The measured drum acceleration data over various test segments were thus examined to 

ensure continuous drum-road contact. This condition was considered to be satisfied when 

the measured upward peak acceleration over the entire segment was inferior to 1g. The 

data acquired over majority of the tests revealed sufficiently long data sub-segments with 

peak acceleration less than 1g. The measured data over these sub-segments were thus 

considered to represent the acceleration of the drum due to road roughness alone. A total 

of 11 data sub-segments were extracted from the measured acceleration data, where each 

sub-segment was at least 30 s long. The acceleration data of the selected sub-segments 

were analysed to compute the PSD of the displacement, which were subsequently 

presented in the spatial domain using the quasi-constant forward speed, such that: 

 
(4.1) 

where  is the spatial power spectral density of the terrain profile in m3/cycle,  is 

the forward speed,  is the measured displacement temporal PSD at the drum and  

and  are the temporal and spatial frequencies, respectively. 

Figure 4-1 compares the mean spectral densities of the selected segments obtained for the 

two test vehicles (4 and 6 cylinder compactors). The results show comparable road 

profile for both the vehicles at spatial frequencies exceeding 0.4 cycle/m. The mean 
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spectra however, show notable differences at lower frequencies, which were believed to 

be partly attributed to changes in the lateral vehicle position with respect to the centerline 

of the track, and in part to possible variations in the forward speed, during transit over 

different segments. Furthermore, data segments selected for the two machines differed 

considerably. 

 

Figure 4-1: Comparison of mean spatial spectral density of the test track profile 
extracted from the measured drum responses of the 4- and 6-cylinder compactors 
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The mean of mean spatial PSDs was thus considered to describe the roughness profile of 

the test track used in the study. The spatial spectral density of various road profiles has 

been expressed by the following regression model: 

/ . ;

/ . ;
 

(4.2) 

where  , and the range of values of  has been defined for various roads 

classified by their roughness property ( ISO 8608, 1995). To have the test track profile in 

the ISO format with the same transition frequency		 , the mean of means spectrum 

was logarithmically linearised by determining the average logarithmic slopes as 3.0 

and	 4.0, and estimating the transition PSD value as	 4.0 10 	 / . 

The identified test track profile is compared with the standardized road profiles ( ISO 

8608, 1995) in Figure 4-2. The comparison suggests that the medium- and high-

frequency components of the road profile correspond to good to very good (C to A) 

roads, while the lower frequency components correspond to rougher roads (D to E). This 

also corroborated with the observation of the waviness of test track by the experimenters. 

Assuming constant vehicle velocity	 	 ⁄ , the spatial power spectral density is 

expressed by the temporal power spectral density of the ground surface profile 		in 

( / ): 

2
 

(4.3) 
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Figure 4-2: Mean of mean spatial PSDs of the road profile extracted from the 
measured drum responses of the 4- and 6-cylinder compactors 
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nonlinear compaction model is discussed in a subsequent section. The linear ride 

dynamic models are solved to determine the ride accelerations due to a given ground 

surface profile. The responses obtained under the identified test track profile are used to 

examine the model validity on the basis of the ranges of the field measured responses. 

The dominant ride frequencies of the ride dynamic models are also identified through 

free vibration analysis of the vehicle model. For this purpose, an eigenvalue eigenvector 

problem is formulated and solved to determine the frequencies of damped oscillations 

and the natural modes. The eigenvalue problem is formulated as: 

0 
(4.4) 

where  is the eigenvector,  are the eigenvalues, and 

0
 

(4.5) 

is the dynamic matrix. 

The above eigenvalue problem was solved using MATLAB. The natural frequencies  

and the frequencies of damped oscillation  were computed from the complex 

eigenvalues, 	 , such that: 

| |		; 								and ; 1, 2, 3, … ,  
(4.6) 

The damping ratios  associated with each mode were also determined from: 
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; 1, 2, 3, … ,  

(4.7) 

The deflection modes of the vehicle models were also identified from the eigenvectors. 

The frequencies corresponding to different modes were considered as the dominant ride 

frequencies, which are compared with those observed from the field measured data in 

section 3.4.3. 

The frequency response and responses to random road excitation of the ride dynamic 

models are obtained assuming constant forward speed, and the lag between the 

excitations at the drum and the rear axle tire. The lag  is related to the compactor 

wheelbase ( ) and the speed	 , such that 

 

(4.8) 

The frequency response characterization of the vehicle models could be derived assuming 

harmonic excitations at the drum and rear axle tires, such that: 

;  
(4.9) 

where  is the amplitude of harmonic excitation and  is the speed-dependent delay, as 

defined in Eq. (4.8). 

The linear equations of motion of the vehicle can thus be expressed as: 

 
(4.10) 
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where  and  are the forcing stiffness and damping matrices, respectively, and 

 is the excitation vector, comprising the vertical displacement excitations at the front 

drum and the rear axle wheel.  

The above equation may be solved to determine frequency response characteristics or the 

transmission of terrain-induced vibration to the vehicle different bodies, such that: 

 

(4.11) 

where  is the vibration transmissibility vector that defines the ratio of vertical and 

pitch vibration magnitudes of different model bodies (such as the vehicle body and 

operator-station) with respect to the vertical displacement excitation magnitude, . The 

frequency response characteristics of the vehicle could provide considerable insight into 

the dominant ride frequencies and the contributions due to various design and operating 

factors. It should be noted that the vibration responses of vehicles operating at low speeds 

invariably exhibit the wheelbase filtering effect, which is expected to influence the 

transmissibility responses and the frequencies of dominant responses (Sharp, 2002). 

The ride dynamic responses to a random terrain excitation are evaluated by considering 

both the identified spectral density of the road profile and reported road profiles ( ISO 

8608, 1995). The excitation to a two-axle vehicle can be defined considering the temporal 

PSD of the ground surface profile, as described in Eq.(4.3), and the lag between the two 

axles, as described in Eq. (4.8): 
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1
1

 

(4.12) 

where  defines the excitation displacement matrix. 

The displacement responses of the vehicle model to random road excitations can be 

derived from the frequency response function of the linear model, such that: 

∗ ′ 
(4.13) 

where  is  matrix of spectral densities of the response displacements, 

featuring non-complex diagonal elements, and  is the complex frequency 

response function of the ride dynamic model, which is derived from: 

 
(4.14) 

The superscripts “	∗	” and “	′	” in Eq. (4.13) denote the complex conjugate and the 

transpose, respectively. The non-complex acceleration responses of the vehicle model 

corresponding to the generalized coordinates are subsequently derived from: 

 
(4.15) 

Where  is the acceleration response vector. The acceleration responses at 

coordinates, other than the generalized coordinates (e.g. beneath the driver’s seat) are 

computed using the coordinate transformations. 
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4.4. Validation of the ride dynamic models 

The ride acceleration data for the test vehicles were gathered by means of sensors placed 

at selected locations. Although attempts were made to locate sensors near the centers of 

mass, considerable differences between the coordinates of the sensors and the respective 

mass centers were observed for many rigid bodies. Consequently, a coordinate 

transformation matrix  was formulated to determine the transfer function matrix 

 describing the acceleration response at the measurement locations, such that: 

 
(4.16) 

The acceleration responses of the model at the sensors location were subsequently 

determined from: 

	 ∗  
(4.17) 

where  is the vector of PSDs of acceleration responses of the model at the 

sensors locations. 

The above equations were solved for the 7-DOF bounce-pitch and a 12-DOF bounce-

pitch-fore/aft ride models. The 12-DOF ride model is the one detailed in CHAPTER 2, 

where the virtual axle suspension and the optional seat suspension were set with very 

high stiffness values, since these were not present in the test vehicles. The validity of the 

7-DOF and the 12-DOF vehicle ride models is examined by comparing their responses 

with the ranges of the field-measured data corresponding to the transit mode. 
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The models validity was also examined by comparing the resonant frequencies with the 

observed dominant ride frequencies. For this purpose, the eigenvalue problems were 

solved to determine the resonant frequencies and deflection modes of the ride dynamic 

models. The solution of eigenvalue problem for the simplified 2-DOF ride dynamic 

model revealed pitch and bounce mode frequencies near 1.6 and 4.8 Hz, respectively. 

These were also confirmed through the results attained for the 7- and 12-DOF models, 

which revealed these modes at 1.7 and 4.8 Hz for the vehicle body for the 4-cylinder 

compactor, and 1.6 and 4.8 Hz for the 6-cylinder vehicle. Table 4-2 and Table 4-3 

compare the natural frequencies and probable modes of the vehicle models with the 

dominant ride frequencies observed from the measured data for the 4- and 6- cylinder 

compactors respectively. 

Table 4-2: Comparisons of natural frequencies of the models with the 
observed dominant ride frequencies in the case of the 4-cyl compactor 

Mode Observed 
7-DOF 
Model 

12-DOF 
Model 

 bolted - ∞ 
 3.2 Hz - 3.3Hz 
 1.7 Hz 1.7 Hz 1.7 Hz 
 4.9 Hz 4.9 Hz 4.9 Hz 
 16.5 Hz - 16.3 Hz 
 8.5 Hz 9.1 Hz 8.8 Hz 
 9.5 Hz 9.8 Hz 9.8 Hz 
 - - 11.2 Hz 
 5.5–5.6 Hz 5.6 Hz 5.6 Hz 
 3.9 Hz 4.2 Hz 3.5 Hz 
 bolted - ∞ 
 6.15 Hz 6.1 Hz 6.1 Hz 
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Table 4-3: Comparisons of natural frequencies of the models with the 
observed dominant ride frequencies in the case of the 6-cyl compactor 

Mode Observed 
7-DOF 
Model 

12-DOF 
Model 

 bolted - ∞ 
 3.2 Hz - 3.3Hz 
 1.60 Hz 1.65 Hz 1.65 Hz 
 4.85 Hz 4.85 Hz 4.85 Hz 
 16.3 Hz - 17.0 Hz 
 8.5 Hz 8.2 Hz 8.1 Hz 
 13.7 Hz 13.4 Hz 12.9 Hz 
 - - 11.1 Hz 
 5.5–5.6 Hz 5.6 Hz 5.6 Hz 
 4.0 Hz 4.2 Hz 3.5 Hz 
 bolted - ∞ 
 6.15 Hz 6.1 Hz 6.1 Hz 

 

The Figure 4-3 and Figure 4-4 show the PSD of vertical accelerations measured at the 

seat, operator-station and vehicle body of the 4- and 6-cylinder vehicles, respectively. 

The PSDs of pitch accelerations of the operator-station and vehicle body of the two 

vehicles are presented in Figure 4-5 and Figure 4-6. Each figure illustrates the range of 

measured acceleration response together with the mean acceleration PSD. The bounce 

and pitch mode frequencies of the operator-station of the vehicle models, were identified 

near 5.6 and between 3.5 – 4.2 Hz, respectively, which correspond with those identified 

from the measurements: While the ranges of the measured data do not show clear peaks 

around these frequencies, significant acceleration levels could be observed at frequencies 

near 5.5 – 5.6 and 3.9 – 4.0 Hz. The measured responses also exhibit additional peaks at 

low frequencies, which were not observed from the eigenvalues. These frequencies were 

attributed to the couplings between vertical / pitch and the lateral and roll modes of the 

vehicle. As discussed in section 3.4.3, the measured data revealed noticeable roll 



 

117 
 

acceleration peaks of the main vehicle body near 3.4 – 3.6 Hz and 4.5 – 4.6 Hz, which 

were believed to be attributed to the rear-frame and the front-frame roll modes. The same 

field measurements also revealed peaks in the main vehicle body responses in the 

horizontal plane at about 2.1 – 2.2 Hz and 3.0 – 3.1 Hz, which are most likely due to 

coupled lateral and yaw modes of the vehicle. 

The PSDs of vertical and pitch acceleration responses of the 7-and 12-DOF vehicle 

models are compared with the ranges of the measured data in Figure 4-3 to Figure 4-6. 

The models responses generally exhibit trends similar to those observed in the measured 

data, although considerable differences in the magnitudes are also evident. The 

acceleration response of the models at the seat and the operator-station are generally 

significantly lower that the measured data at frequencies above 6 Hz and at frequencies 

below 1 Hz. The higher frequency responses are attributed to the operator-station 

structure bending and torsion modes, which were neglected in the lumped parameter 

models. Furthermore, the articulated steering hydraulic system is also expected to yield 

frequency components of the ride vibration. The higher magnitudes of measured data at 

lower frequencies could be partly caused by the dc shift in the acceleration signals. The 

measured signals were processed using a high-pass filter with cut-off frequency of 0.707 

Hz, which perhaps should have been relatively higher for a number of data segments that 

resulted in higher low frequency magnitudes. 

Apart from the above, the model responses exhibit distinct valleys near 2 and 8 Hz in the 

vertical acceleration responses, and many low magnitude peaks at higher frequencies. 

These are attributed to the wheelbase filtering effect that has been described in a number 

of reported studies (Best, 1984; Sharp, 2002; Cao, Rakheja, & Su, 2008).   
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(a) 

(b) 

(c) 

Figure 4-3: Comparison of vertical acceleration PSD responses of the 7- and 12-
DOF models with the measured acceleration PSD: (a) seat; (b) operator-station; and 

(c) vehicle body (4-cylinder compactor in transit mode; speed≈10km/h)

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.5 1 2 4 8 16

P
SD

 -
(m

/s
²)

²/
H

z

Frequency (Hz)

Seat Vertical Acceleration (4-cyl. compactor)

Min Mean Max 7 DOF 12 DOF

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.5 1 2 4 8 16

P
SD

 -
(m

/s
²)

²/
H

z

Frequency (Hz)

Cabin Vertical Acceleration (4-cyl. compactor)

Min Mean Max 7 DOF 12 DOF

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.5 1 2 4 8 16

P
SD

 -
(m

/s
²)

²/
H

z

Frequency (Hz)

Body Vertical Acceleration (4-cyl. compactor)

Min Mean Max 7 DOF 12 DOF



 

119 
 

(a) 

(b) 

(c) 

Figure 4-4: Comparison of vertical acceleration PSD responses of the 7- and 12-
DOF models with the measured acceleration PSD: (a) seat; (b) operator-station; and 

(c) vehicle body (6-cylinder compactor in transit mode; speed≈10km/h) 
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Despite these differences, the model responses correlate reasonably well with the ranges 

of the measured data in the frequency range of primary interest, namely below 6 Hz. This 

is evident from the comparisons of the vertical acceleration responses of both the vehicles 

presented in Figure 4-3 and Figure 4-4, and the pitch acceleration responses presented in 

Figure 4-5 and Figure 4-6. The results also show that both the 7- and 12-DOF ride 

dynamic models yield quite comparable bounce and pitch mode responses in the 

frequency ranges considered. 

 

(a) 

(b) 

Figure 4-5: Comparison of pitch acceleration PSD responses of the 7- and 12-DOF 
models with the ranges of the measured acceleration PSD: (a) operator-station; and 

(b) vehicle body (4-cylinder compactor in transit mode; speed≈10km/h)
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Figure 4-7 and Figure 4-8 compare the longitudinal acceleration responses of the two 

compactors, derived from the 7-DOF and 12-DOF ride dynamic models, with the ranges 

of the measured data. The figures show the longitudinal acceleration responses at the 

seat, operator-station floor and the vehicle body. It needs to be emphasized that the drum 

and tires interactions with the soil in the longitudinal shear mode contribute greatly to the 

longitudinal ride response. The modeling of the longitudinal mode interactions, however, 

is quite complex and thus ignored in the ride dynamic models.  

 

(a) 

(b) 

Figure 4-6: Comparison of pitch acceleration PSD responses of the 7- and 12-DOF 
models with the ranges of the measured acceleration PSD: (a) operator-station; and 

(b) vehicle body (6-cylinder compactor in transit mode; speed≈10km/h)
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The proposed ride dynamic models cannot yield accurate prediction of the longitudinal 

mode ride responses. The results shown in the figures merely reflect the contributions due 

to the pitch mode of the vehicle body and the operator-station masses. The magnitudes of 

acceleration of the model responses are thus considerably lower than those of the 

measured data. An examination of the video records of the test vehicle revealed a stick-

slip type longitudinal behaviour of the drum on the hard ground while in transit mode at a 

higher speed. The model responses, however, exhibit spectral components comparable to 

those of the measured data. Furthermore, the 12-DOF model yields higher longitudinal 

acceleration response compared to the 7-DOF model at lower frequencies, which is 

attributed to consideration of the longitudinal dynamics of the drum and the tires, while 

both models yield comparable responses at higher frequencies. 

Figure 4-9 and Figure 4-10 further illustrate the comparisons of PSDs of vertical 

acceleration responses of the front frame and the wheel-axle (rigidly bolted to the rear-

frame), respectively, derived from the models with the ranges of the measured data. 

These figures also show good agreements between the model and measured responses, 

except for the wheelbase filtering effect observed in the wheel-axle response.The wheel-

axle response exhibits peak around the first coupled bounce/pitch mode (1.6 – 1.7 Hz) 

and coupled lateral/yaw mode (2.1 – 2.2 Hz) of the vehicle body, while the front-frame 

surrounding the rigid roller drum shows dominant ride magnitude near the second 

coupled bounce/pitch mode (4.8 – 4.9 Hz) of the vehicle body and the operator-station 

bounce mode (5.5 – 5.6 Hz). The ride responses at the two axles differ most significantly 

and clearly show the effect of the first suspension stage in the form of soft tires at the 

rear-axle versus the relatively stiff drum mounts.  
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(a) 

(b) 

(c) 

Figure 4-7: Comparison of longitudinal acceleration PSD responses of the 7- and 12-
DOF models with the measured acceleration PSD: (a) seat; (b) operator-station; and 

(c) vehicle body (4-cylinder compactor in transit mode; speed≈10km/h)
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(a) 

(b) 

(c) 

Figure 4-8: Comparison of longitudinal acceleration PSD responses of the 7- and 12-
DOF models with the measured acceleration PSD: (a) seat; (b) operator-station; and 

(c) vehicle body (6-cylinder compactor in transit mode; speed≈10km/h)
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The ride dynamic responses of the model were further evaluated in terms of overall rms 

values of the longitudinal, vertical and pitch accelerations. The overall rms values were 

computed over the 0.5Hz and 20Hz frequency range for the purpose of model validation. 

The rms values of the acceleration responses of the two models are compared with those 

derived from the mean measured data in Table 4-4 and Table 4-5 for the 4- and 6- 

cylinder compactors, respectively. 

 

(a) 

(b) 

Figure 4-9: Comparison of vertical acceleration PSD responses of the 7- and 12-
DOF models with the ranges of the measured acceleration PSD: (a) front frame; and 

(b) axle (4-cylinder compactor in transit mode; speed≈10km/h) 
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The rms acceleration values of the measured data were extracted from the data segments 

where the peak drum acceleration was less than 1g. The values listed in the Table 4-4 and 

Table 4-5 may thus be lower than the mean values derived from the entire set of 

segments. The tables also present the percent deviations of the model response with 

respect to the measured values. The notations  and  refer to the fore-aft and vertical 

responses of the front frame (part of the main vehicle body), respectively. 

 

(a) 

(b) 

Figure 4-10: Comparison of vertical acceleration PSD responses of the 7- and 12-
DOF models with the ranges of the measured acceleration PSD: (a) front frame; and 

(b) axle (6-cylinder compactor in transit mode; speed≈10km/h) 
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The results in general suggest good correlations between the rms acceleration responses 

values of the model and the measured data in the vertical and pitch direction. 

Considerable discrepancy, however, is observed in the longitudinal acceleration values. 

Table 4-4: Measured and simulated overall rms acceleration responses of the 4-
cylinder 10-ton soil compactor in transit mode (10km/h) on sample test tracks 

Sensor Measured 
7-DOF 
Model 

Δ 
12-DOF 
Model 

Δ 

 0.74 0.62 17% 0.61 18% 
 0.50 0.35 29% 0.33 33% 
 0.41 0.35 14% 0.34 17% 
 0.78 0.60 23% 0.51 34% 
 0.58 0.54 7% 0.53 8% 

 0.30 0.24 20% 0.23 22% 
 0.70 0.44 38% 0.43 39% 
 0.44 0.03 93% 0.05 88% 
 0.25 0.04 86% 0.05 79% 
 0.37 0.10 75% 0.07 80% 
 0.42 0.14 67% 0.27 34% 

 

The results also show considerable difference in the rms values of the vertical operator-

station acceleration. The measured data resulted in considerably larger values of the 

operator-station vertical rms acceleration than that predicted by the model. This was 

believed to be caused by the contribution due to roll, and lateral motions of the operator-

station and the vehicle body. The roll acceleration spectra of both the operator-station and 

the vehicle body reveal significant roll vibration, as seen in Figure 3-24. Although, the 

longitudinal acceleration responses of both the models are significantly lower than the 

measured values, the longitudinal acceleration responses at seat is observed to be closer 

to that of the measured values, particular for the 12-DOF model. This can be attributed to 

consideration of the longitudinal properties of the operator-station and drum mounts in 



 

128 
 

the model. Furthermore, this suggests greater contribution of the operator-station pitch to 

the fore-aft motion at the seat. 

Table 4-5: Measured and simulated overall rms acceleration responses of the 6-
cylinder 10-ton soil compactor in transit mode (10km/h) on sample test tracks 

Sensor Measured 
7-DOF 
Model 

Δ 
12-DOF 
Model 

Δ 

 1.13 0.96 15% 0.95 17% 
 0.66 0.61 8% 0.54 18% 
 0.76 0.57 25% 0.54 29% 
 1.49 0.94 37% 0.80 47% 
 0.88 0.82 7% 0.80 10% 
 0.36 0.37 -3% 0.36 1% 
 0.74 0.64 13% 0.56 25% 
 0.63 0.05 93% 0.14 77% 
 0.29 0.05 81% 0.15 50% 
 0.49 0.14 72% 0.17 66% 
 0.54 0.20 63% 0.38 30% 

 

The comparison between the overall rms acceleration responses of the 7-DOF and the 12-

DOF yields to several conclusions: Although the additional sophistication of the 12-DOF, 

attempting to model the longitudinal behaviour of the vehicle does bring an insight into 

the longitudinal responses, the approximation in this aggregating modeling effort results 

in a general underestimating of these very same longitudinal responses magnitudes and 

furthermore, even contributes to some slight deterioration of the vertical and pitch 

responses. The 12-DOF modeling approach would be a good tool for identifying the 

resonance frequencies of the vehicle in the vertical plane but the simpler 7-DOF actually 

gives more accurate result when it comes to vertical and pitch responses magnitudes. 
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4.5. Response Characteristics during Compaction 

The validity of the proposed models in the compaction mode could be evaluated both in 

terms of drum-soil interaction in time domain and in terms of bounce and pitch responses 

of the main body or the operator-station (cabin) in the frequency domain. Since the 

excitation frequency due to vibratory compactor is significantly higher than the resonance 

frequencies of the vehicle model, the whole-body vibration due to rotating inertia would 

be expected to be in the negligible order. The attenuation of the compaction vibration 

exposure of the operator may thus be of minimal concern. The primary interest in 

developing a compaction model of the equipment thus lies in enhancing the fundamental 

knowledge on the drum interactions with the soil and for building a tool to identify 

desirable design and operating factors that may help achieve improved work 

(compaction) performance of the equipment. 

A review of the published studies revealed wide variations in the soil parameters (Krober, 

Floss, & Wallrath, 2001; Popa & Nicoara, 2002; Anderegg & Kaufmann, 2004; Mooney 

& Rinehart, 2007). The observed diversity in the soil model parameters was mostly 

attributed to the desired application and geographical location of a jobsite. The soil model 

parameters are known to vary considerably with the local soil properties such as density 

and cone index and the moisture content. Furthermore, the properties of deformable soil 

tend to change during the compaction tasks, particularly under repeated passes of the 

vehicle. Despite such variations and the wide ranges of the reported model parameters, 

the reported values are considered to serve as a reasonably good benchmark for the 

average soil conditions. Soil model parameters have been proposed on the basis of 
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measurements and simulation results (Adam & Kopf, 2000; Anderegg & Kaufmann, 

2004; Mooney, Gorman, & Gonzalez, 2005). These parameters are taken as the baseline 

simulation parameters in this study and summarized, alongside the parameters of the 

compactor vibrator considered, in Table 4-6. 

Table 4-6: Compaction Model Parameters 

 

4.6. Methods of Analysis (Compaction Response) 

The equations of motion of the compaction model, described in section 2.3.2, are solved 

to determine the soil deformation responses. The simulations are performed only for the 

most common 6-cylinder machine (parameters indicated in Table 4-1), since both the 

machines were equipped with identical drum, front frame and vibrators. A constant 

magnitude of unbalance excitation (5.7 kg.m) at 33 Hz (2000 rpm) was also considered 

for the simulation that was computed from the design data of the compactors. 

Parameter Symbol Value 

Drum static load   6100 kg 

Vibrator rotating mass  28.5 kg 

Vibrator mass eccentricity  0.20 m 

Vibrator frequency  33 Hz 

Vibrator centrifugal force  245 kN 

Static deflection of the soil  14.4 mm 2.7 mm 1.7 mm 

Soil plasticity parameter  0.34 0.72 0.87 

Soil plastic stiffness  6.44 MN/m 82.1 MN/m 283 MN/m 

Soil elastic stiffness  12.5 MN/m 31.9 MN/m 42.3 MN/m 

Soil damping  70 kNs/m 

Vehicle parameters 6-cylinder compactor (see Table 4-1) 
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It needs to be emphasized that the studies reporting the soil compaction by a rolling 

vibratory drum, have considered widely varying soil properties, to derive the soil 

compaction under repeated passes of the roller (Yoo & Selig, 1979; Pietzsch & Poppy, 

1992; Andereg, 2000; Tateyama, Ashida, Fukagawa, & Takahashi, 2006). These studies 

do not consider the dynamics of the vehicle, while the compaction is caused by an 

idealised axle load coupled with the unbalance excitation. The validity of the proposed 

compactor model for the compaction task could thus be examined only in the qualitative 

sense. The model simulations are performed for different soil properties, particularly the 

plasticity parameter ( ), which are considered to simulate the variations in soil properties 

over repeated passes or the density of different soils. It has been reported that  varies 

with repeated passes on a soil segment (Adam & Kopf, 2000). It is shown that plasticity 

of soil increases with number in passes and tends to saturate after certain number of 

passes, as shown in Figure 4-11. The reported variations in 	are considered to study the 

compaction response over repeated roller passes, although it is recognised that different 

soils and different compaction equipments would yield different patterns in variations 

in	 . Furthermore, the soil density is related to the number of passes performed (Quibel & 

Corte, 1994; Floss & Kloubert, 2000; Krober, Floss, & Wallrath, 2001). 

In this study, the simulations are performed to determine the force-deflection response of 

the soil by considering three different values of the plasticity parameter. These include: 

(i) 0.34, representing a soft soil or the soil properties during the initial passes; (ii) 

0.72, represents a medium-dense soil or the properties during intermediate passes; 

and (iii) 0.87, represents a dense soil or the soil properties during the final passes. 
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Figure 4-11: Measured plasticity parameter as function of compaction passes 
(Adam & Kopf, 2000) 

 

The vertical dynamics of the drum is expected to be strongly influenced by the soil 

properties. A continuous contact between the drum and the soil would be expected during 

initial passes, when the soil is relatively soft. The “partial up-lift” or hopping motion of 

the drum could be observed during intermediate and final passes due to the drum 

interaction with the dense soil. This phenomenon has been reported in a few studies 

(Pietzsch & Poppy, 1992; Adam & Kopf, 2000; Andereg, 2000). 

 

4.7. Compaction Simulation Results and Model Validation 

The simulations are performed to determine the soil deformation and the total compaction 

force imparted by the drum on the soil for the selected soil density or the chosen pass. 
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The soil deformation is determined from the relative displacement of the drum with 

respect to the vertical coordinate of the soil surface prior to compaction. The total 

compaction force is derived from the static roller weight and the force developed by the 

elasto-plastic soil model, as described in Eq. (2.26). Figure 4-12 to Figure 4-14 illustrate 

the time-histories of the steady-state soil deflection and compaction force for the three 

plasticity parameters (levels of compaction) considered in the study. The results exhibit 

most significant effects of the plasticity parameter and thereby the compaction response 

with increasing number of passes. The results also show elastic as well as plastic 

deformations of the soil, irrespective of the  value. The drum interactions with the soft 

soil ( 0.34) yield continuous contact with the ground, and result in the most 

significant soil deflection observed. This is representative of the soil deformation during 

the initial passes, where the magnitude of the compaction force is relatively small as seen 

in Figure 4-12 (b) and Figure 4-12 (c). The soil behaviour exhibits hysteretic properties, 

as seen from the force-deflection response shown in Figure 4-12 (c). The results further 

show oscillations in the deflection and the force responses at 33 Hz, the speed of the 

eccentric vibrator. The results suggest max soil deflection in the order of 18 mm, while 

the peak compaction force approaches 80 kN, which is approximately 30% of the 

centrifugal force due to the eccentric vibrator. 

The magnitude of the compaction force increases significantly in the subsequent passes, 

which is mostly attributed to increase in the soil density and stiffness property, as seen in 

Figure 4-13(b) for the medium-dense soil ( 0.72). The max deflection of the soil and 

its plastic deformation, however, decrease due to higher soil density, as seen in Figure 

4-13(a) and Figure 4-13(c). The peak compaction force approaches approximately 50% 
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of the centrifugal force. The greater force imparted on the denser soil surface causes 

intermittent hopping motion of the drum, as seen in the compaction force response and 

hysteresis loop of the soil response in Figure 4-13(b) and Figure 4-13(c). This permits 

certain relaxation of the soil during the unloading cycle as the compaction force 

diminishes. The results suggest max soil deflection in the order of 5 mm and plastic 

deformation in the order of 2.3 mm. For deformable soils this operating condition is 

considered as most efficient compaction (Andereg, 2000; Briaud & Seo, 2003), which 

may be attributed to impact caused by the roller as it regains the contact. 

A further increase in the soil density in the subsequent passes ( 0.87) causes most 

significant increase in the compaction force. The peak compaction force approaches the 

centrifugal force, which tends to cause more significant hopping motion and loss of 

drum-soil contact, as seen in Figure 4-14(a) and Figure 4-14(b). The greater soil stiffness 

tends to transfer portion of the compaction energy to the drum leading to “double-jump” 

or “rocking” motion of the drum, as seen in Figure 4-14(a). This phenomenon of “double-

jump” has been reported in a number of studies (Adam & Kopf, 2000; Anderegg & 

Kaufmann, 2004) as illustrated by Figure 4-15 depicting a case where the phenomenon is 

not much accentuated. The soil deflection and the compaction force responses thus 

exhibit an additional frequency component at 16.5 Hz. This is the sub-harmonic of the 

frequency associated with the eccentric vibrator, namely 33 Hz, and is due to “double-

jump” of the drum. The lower frequency response can be attributed to two different 

impacts during a cycle: a deep impact followed by a low magnitude impact, unlike a 

single impact observed for medium-dense soil. This results in a major and a minor 

hysteresis loop as seen in Figure 4-14(c). 
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Figure 4-12: Time-histories of drum displacement (a) and the total compaction force 
(b), and force-deflection properties of the soil (c). ( . ) 
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Figure 4-13: Time-histories of drum displacement (a) and the total compaction force 
(b), and force-deflection properties of the soil (c). ( . ) 
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Figure 4-14: Time-histories of drum displacement (a) and the total compaction force 
(b), and force-deflection properties of the soil (c). ( . ) 
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Owing to the considerably higher frequencies of drum displacement and the compaction 

forces, the magnitudes of resulting ride accelerations of the vehicle bodies are 

significantly small in the lower frequency range. Figure 4-16, as an example, illustrates 

the PSD of vertical acceleration responses of the operator-station, main vehicle body, and 

the drum. The results are presented for the adverse case of final vibratory passes on a 

high density soil ( 0.87), which clearly show the sub-harmonic spectral component of 

vibration attributed to the “double-jump” of the drum. The hopping motion of the drum 

together with the eccentric excitation cause very high acceleration of the drum, as seen in 

Figure 4-16(c). The acceleration response invariably shows dominant response near 16.5 

and 33 Hz, which is effectively attenuated by the drum and cab mounts as seen in Figure 

4-16(b) and Figure 4-16(a). 

 

Figure 4-15: Reported energy cycle illustrating the “double-jump” 
phenomenon (Adam & Kopf, 2000) 

The simulated force-deflection response of the soil and the drum displacement responses 

as depicted in Figure 4-12 to Figure 4-14 are qualitatively in good agreements with the 

reported trends (Adam & Kopf, 2000; Floss & Kloubert, 2000; Krober, Floss, & 

Wallrath, 2001; Kloubert, 2004) as illustrated in Figure 1-6 and in Table 1-1 as well as in 
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Figure 1-5 depicting the expected energy cycles. It may be noticed that reported energy 

cycles take the static drum/soil equilibrium position as the reference point for the drum 

displacement whereas in the present study the vertical coordinate of the soil surface prior 

to compaction constitutes the reference. The differences of shape that could be observed, 

in the transition zones between the different phases of the energy cycle, in the different 

works presented are due to the considered geometry of the drum/soil contact. In this 

study a point contact has been considered whereas a more precise cylindrical contact 

would result in a nonlinear elastic stiffness of the soil (Adam & Kopf, 2000). 

The simulated vibration response spectra of the operator-station, the vehicle body and the 

drum indicate good agreements with the mean of the related field-measured responses, 

for example for a high density soil as illustrated in Figure 4-16. They also agree with the 

reported trends depicting the forcing frequency harmonics and first sub-harmonic as seen 

in section 1.2.2 and illustrated in Figure 1-6. The forcing frequency harmonics in the 

measured response are lower compared to those of the simulations. This is due to the 

increase in the soil stiffness causing higher loading/resistance for the vibrator from the 

ground that would require higher engine power. The engine rpm drops below the nominal 

setting to supply higher torque and resulting power which results in a reduction in 

hydraulic oil flow and subsequently in vibrator motor rpm. In the illustrated example 

(Figure 4-16) the vibrator frequency has dropped from a nominal 33 Hz to 28.5 Hz. The 

presence of the sub-harmonics is justified by the “double-jump” occurring at high soil 

densities. It is to be noticed that both the simulation and the measured responses are 

based on usage of the highest available eccentric moment of the vibrator (the so called 

“high amplitude”). Furthermore, the simulation results do not feature the lower frequency 
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response spectra visible in the measured data as the compaction model did not include 

terrain profile input as in the ride models, the surface being graded prior to compaction. 

Yet, the measurement results tend to highlight lower frequency ride components that 

seem to arise from terrain deformation in process of compaction. 

 

 

 
Figure 4-16: measured and simulated PSD of the (a) operator-station; (b) the vehicle 

body; and (c) the drum during a vibratory pass on a high density soil ( . )
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4.8. Summary 

The simulation results present evident similarities with measured data although 

considerable deviations exist when it comes to longitudinal responses. These deviations 

could be attributed to various modeling simplification that in particular do not include 

any stick-slip phenomena at the contact between the drum and the hard ground when it 

comes to the vehicle operating in transit mode. Despite the observed deviations in 

longitudinal direction, the results in general suggest reasonably good validity of the 

model for predicting vertical and pitch ride responses of the vehicle. The model may thus 

be considered applicable for identifying desirable suspension design parameters for 

enhanced attenuation of the terrain-induced whole-body vibration. The non-linear time-

domain compaction model leads to results that are in compliance with the roller – soil 

behaviour published in the soil mechanics literature. The present work brings the novelty 

of a complete bounce-pitch model integrating the mobile equipment dynamics, as a 

multi-body system, into the compaction model.  
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CHAPTER 5 – SENSITIVITY ANALYSIS 

5.1. Introduction 

The dynamic responses of a soil compactor are related to many design factors and 

operating conditions, irrespective of the mode of operation. In the transit mode, the ride 

quality of the vehicle is of primary concern; while in the compaction mode, equipment’s 

compaction effectiveness is of interest. Both the ride quality and the compaction 

capability could be related to better choice of design factors and operating conditions. In 

This chapter, the validated models of the compactor are analysed to study the sensitivity 

of the ride responses and compaction properties to variations in different design and 

operating factors. The results are interpreted to explore different design concepts for 

enhancement of the vehicle performance. For the transit mode, the 12-DOF ride dynamic 

model of the 6-cylinder machine is employed for the sensitivity analysis. The compaction 

properties of the vehicle are evaluated using the 7-DOF vehicle dynamic model together 

with the third-order formulation of the drum-soil interaction, as described in section 

2.3.1. For the ride quality analysis, the stiffness properties of the axle and seat 

suspensions are considered to be very high in order to simulate the existing compactors 

that encompass un-suspended rear axle and often un-suspended operator seat. The effect 

of vehicle weight and its distribution however, is investigated by also considering the 

inertial properties of the 4-cylinder machine which exhibits lower weight and shorter rear 

frame. The results of the study are discussed in view of two distinct goals: (i) improving 

the vehicle ride quality (transit mode), and (ii) increasing the tool capability (compaction 

mode). 
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5.2. Analysis of Ride Quality in the Transit Mode 

The ride quality of the vehicle is expected to be influenced by a number of design 

parameters. Among these, the properties of drum and cab suspensions, vehicle weights 

and dimensions, suspension seat and additional primary suspension are considered to be 

of primary interests. In addition to these, the variations in operating conditions, such as 

vehicle speed and ground roughness, are also considered for the sensitivity analyses. The 

sensitivity of the ride quality to variations in selected design and operating parameters are 

evaluated using a set of performance measures, which are described below. 

5.2.1. Performance measures 

The ride quality of a vehicle has been directly related to acceleration due to vibration at 

the driver-seat interface. The vast majority of the small to medium size soil compactors 

used in North America are equipped with un-suspended operator seats and relatively stiff 

cab mounts. The vibration responses of the cab near the operator seat may thus be used to 

assess the vehicle ride performance. Furthermore, such levels could serve as the basis for 

tuning / design of an adequate suspension seat, particularly the vertical vibration levels. 

The International Standard (ISO 2631-1, 1997) recommends the use of frequency-

weighted rms accelerations at the operator’s station for assessing the human vibration 

perception and potential health risks. Consequently, the sensitivity analyses are initially 

performed on the basis of overall rms accelerations, which are computed over the 0.5Hz 

to 80Hz range: 
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.
 (5.1) 

Where 	is overall rms acceleration vector and	 		is the vector containing PSD 

of the response accelerations of the ride dynamic model. 

The frequency weighted overall rms accelerations are computed by applying the 

weighting filters recommended by the international standard (ISO 2631-1, 1997). For this 

purpose, the response acceleration PSD vector is expressed by the third-octave rms 

acceleration spectra (IEC 61260, 1995): 

 (5.2) 

Where 	is the rms acceleration magnitude corresponding to the center frequency 

	of the third-octave band, and 	and 	define the lower and upper limits of the 

frequency band	 	. 

The frequency-weighted spectra of rms accelerations  are determined by 

applying the frequency weightings which include for the vertical axis, 	for the 

horizontal ( 	and	 ) axis, and 	for the pitch axis (ISO 2631-1, 1997), such that: 

 
(5.3) 

Where 	is the vector of frequency-weighted rms accelerations, , defines 

the weighting factor corresponding to the one-third octave band center frequency	 	, with 

, ,  referring to the appropriate weighting function. The overall frequency-
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weighted rms acceleration over the 0.5 Hz and 80 Hz range is then computed from the 

following summation: 

 (5.4) 

Where 	defines the number of third-octave frequency bands considered. 

5.2.2. Influence of variations in operating conditions 

The sensitivity of the ride quality measures to variations in operating conditions is 

analysed by considering the variations in forward speed and the road roughness. While in 

transit the compactor is usually driven at relatively higher speeds. The maximum speed of 

most of the currently used compactors ranges from 9 to 12 km/h. A forward speed of 10 

km/h is thus chosen as the nominal speed during the transit operation. Considering the 

drive towards higher speeds, the analyses are performed considering a higher speed of 

15km/h, in addition to a lower speed of 5 km/h. The analyses are also performed by 

considering three different road roughness to study the influence of road excitations on 

the ride quality. The road roughness properties and model defined in the international 

standard ( ISO 8608, 1995), presented in Figure 1-11, were considered for the analysis. 

These included the class B, C and D roads denoted as “good”, “average” and “poor”, 

respectively. 

The 12-DOF ride dynamic model of the 6-cylinder compactor was analysed under 

different combinations of the three roads excitations and three different forward speeds 

(5, 10 and 15 km/h). The response acceleration spectra were subsequently expressed by 
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the overall rms and the frequency-weighted rms accelerations to assess the effects of 

variations in operating parameters. Table 5-1 summarises the influence of speed and the 

road roughness on both of the ride quality measures, in terms of cabin fore-aft, vertical 

and pitch accelerations. As expected, the magnitudes of weighted as well as un-weighted 

vibration along all the axes increase with speed and a deterioration of the road surface 

quality. The results also show that both the un-weighted and weighted vibration 

magnitudes along all the three axes increase substantially as the road roughness increases: 

The magnitudes of cabin vibration on the class C road are nearby twice those attained for 

the good quality road (class B). The magnitudes over the poor road (class D) tend to be 

nearly twice those obtained for the average road, irrespective of the vehicle speed. From 

the results, it may be concluded that the forward speeds of the vehicle traversing a rough 

road must be limited to limit the WBV exposure of the operator (and is often so by the 

operator her/himself). 

Table 5-1: Influence of variation in the operating conditions (road roughness and 
forward speed) on the acceleration responses of the operator- station 

Speed 
(km/h) 

Road 
surface 

Class B Class C Class D 

Axis       

5  

Fore-aft 0.20 0.08 0.39 0.17 0.79 0.34 

Vertical 1.35 1.36 2.70 2.73 5.41 5.46 

Pitch 0.81 0.22 1.62 0.43 3.24 0.87 

10 

Fore-aft 0.23 0.09 0.44 0.18 0.90 0.36 

Vertical 1.59 1.61 3.21 3.24 6.38 6.44 

Pitch 0.96 0.26 1.93 0.51 3.84 1.02 

15  

Fore-aft 0.23 0.13 0.46 0.25 0.93 0.50 

Vertical 1.76 1.77 3.51 3.54 7.02 7.09 

Pitch 1.05 0.28 2.10 0.57 4.21 1.13 
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The results further show that frequency-weighted rms acceleration magnitudes along the 

fore-aft and pitch axes are substantially smaller than the respective un-weighted values. 

The -weighted vertical acceleration magnitudes, however, tend to be slightly larger 

than the un-weighted values for the ranges of speed and road roughness conditions 

considered. This is attributed to the frequency characteristics of the -, - and -

weighting filters. The -weighting emphases the human perception of vibration in the 

vicinity of the vertical mode resonance of the seated body (around 5 Hz) and thus yields 

slight amplification of vibration around 5 Hz. Considering the vertical mode resonance of 

the cab near 5.5 Hz, the -weighted rms acceleration magnitude tends to be higher. The 

- and -weightings, on the other hand, tend to attenuate the vibration at frequencies 

above 2 Hz and thereby yield relatively lower values of the frequency weighted fore-aft 

and pitch accelerations. 

5.2.3. Influences of variations in design factors 

A systematic sensitivity analysis to variations in the design parameters could offer 

attractive design modification alternatives to enhance the ride performance of the 

compactor during the transit mode. In particular, different stages of vibration isolation in 

the vehicle could be subject to design modifications such as the suspension at the seat, 

cabin, and drum, and potentially at the rear axle. Such design modifications, however 

need to be further scrutinised in view of the performance measures related to the 

compaction, their feasibility and the design constraints. This is particularly true in the 

case of the compactor tires, which must be selected in consideration of various other 

design constraints such as traction, tire wear and ground pressure. 
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In this section, the sensitivity of the ride quality measures is investigated for the 10t-class 

6-cylinder machine operating at a speed of 10 km/h over a class C (“average”) road 

surface. The design parameters include the drum suspension, seat and cab suspensions, 

axle suspension and mass distribution (in which case the possibilities of a lighter 4-

cylinder rear unit and a heavier front unit are considered). 

 

Drum suspension 

As indicated in the previous chapters, the drum rubber mounts are the primary suspension 

of the compactor and contribute greatly to the dynamic response of the vehicle. Owing to 

symmetric properties of the drum mounts, the fore-aft and vertical stiffness of the mounts 

are varied identically. The analyses are performed by considering ± 25% variations in the 

mounts stiffness (  and	 ) about the nominal values (Table 5-2). Furthermore, an 

analysis is performed by considering the drum stiffness equal to the rear axle tires 

stiffness. The concept of such a drum suspension is discussed, while the equivalent 

stiffness is taken as 16% of the nominal drum suspension stiffness. The effects of 

variation in the damping properties of the mounts are also explored, although such 

modifications in the mounts require considerations of additional design constraints: The 

isolation mounts employed in the drum suspension are known to be of natural rubber, 

which offer low damping; The use of material with relatively high damping may lead to 

greater heat generation and subsequently rapid failure. In this section, the damping 

coefficients due to the drum mounts (  and	 ) are varied in proportion to the mounts 

stiffness. 
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Figure 5-1: A schematic of the drum pneumatic suspension (Domenighetti, 1985) 

 

Table 5-2 summarises the effects of variations in stiffness and damping coefficients of 

the drum suspension on the un-weighted and frequency weighted rms acceleration 

responses of the operator-station (cabin). The variation, 0.16 	 	/	 , would be 

considered to be too soft when applied to the rubber mounts, and would yield excessive 

deflection between the drum and the front-frame and thus rapid failure. Such a variation, 

however, could be realised by introducing a pneumatic element, such as tires, supporting 

the rigid drum shell on the outer periphery. This concept of a pneumatic-tire drum 

suspension was proposed by (Domenighetti, 1985) and is illustrated in Figure 5-1. The 

proposed concept was also implemented in a number of machines in the 80s in Europe by 

SIMESA and Hamm. The proposed design integrates automotive tires within the drum. 

The tires are clamped to the drum ribs at their periphery (unsprung side) while the wheel 

rim is coupled to the sprung frame. The chosen stiffness value of the suspension is 

comparable to that of the rear axle tires, while the damping coefficient in this case was 

also taken as that of the rear axle tires. 

Rigid drum shell Elastic element 

Clamps 

Drum shell 

Elastic element 

Drum drive 
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Table 5-2: Influence of variations in the drum suspension stiffness and damping on 
the rms acceleration responses of the model at the operator-station floor 

Drum mounts 0.16  ( ; ) 0.75 / 1.00 /  1.25 	 /  

Axis         

Fore-aft 0.24 0.12 0.40 0.18 0.44 0.18 0.52 0.18 

Vertical 0.82 0.59 2.57 2.49 3.21 3.24 3.73 3.82 

Pitch 0.69 0.31 2.00 0.57 1.93 0.51 1.88 0.48 

 

The results suggest that softer drum mounts would help reduce the fore-aft and vertical 

acceleration of the operator-station (cabin). A 25% reduction in the present design 

stiffness would result in nearly 20% reduction in vertical vibration magnitude at the 

operator-station. While the effect of mount stiffness on the fore-aft acceleration is very 

small, the pitch acceleration tends to increase slightly with softer mounts. This is 

attributable to the pitch dynamics of the vehicle suspended on soft tires only at the rear 

axle. A major design constraint, however, exists for the lower limit of the drum mounts. 

Softer rubber mounts would undergo higher deflections particularly under the drum 

torque (applied on approximately 60% of the mounts on one side of the drum), leading to 

rapid failure of the rubber mounts. A reduction in the drum mounts stiffness may thus not 

be considered feasible. The pneumatic tire drum suspension, however, could be an 

attractive alternative for reducing the transmitted vibration most significantly. The results 

suggest that the pneumatic tire suspension can reduce the frequency-weighted fore-aft, 

vertical and pitch rms acceleration to nearly 66%, 20% and 60% of those obtained with 

the current designs of rubber mounts. Due to increased displacements resulting from the 

softer suspension, the vibrator hydraulic motor would be mounted onto the sprung front-

frame and linked to the eccentric masses by means of universal joints. 
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Operator-station (Cabin) suspension 

The operator-station suspension constitutes a major vibration attenuation stage when the 

equipment is operated in compaction mode. The current suspensions comprise relatively 

stiff cab mounts that are considered to be quite effective in attenuating high frequency 

vibration encountered during the compaction mode. The cabin suspension, however, 

yield limited performance in attenuation of low frequency ride vibration. The candidate 

vehicle considered in this study revealed predominant vertical vibration of the operator's 

platform near 5.5 Hz, which is attributed to the vertical mode resonance of the cabin 

suspension. The human operator exhibits greatest sensitivity to vertical vibration in the 

vicinity of this frequency, as evidenced from the  filter characteristics (ISO-2631-1, 

1971). The current design of the operator-station suspension may thus be considered 

inadequate in limiting the exposure to WBV along the vertical axis. In this study, the 

stiffness due to the cab mounts (	  and	 , , ) are varied 25% and 50% of 

the nominal value. The variation in the damping coefficients are also considered to be 

proportional, as in the case of the drum suspension. The sensitivity analyses are 

performed assuming a constant forward speed of 10 km/h while traversing an average 

road surface (Class C). 

Table 5-3 summarises the effect of operator-station suspension parameters on the un-

weighted and frequency-weighted rms acceleration responses of the cabin. The results 

suggest that a softer platform suspension would be beneficial in limiting the vertical and 

pitch vibration. A 25% decrease in the present design stiffness yield nearly 10% 

reduction in the un-weighted longitudinal and vertical acceleration and nearly 25% 

reduction in the pitch acceleration. The soft mounts also yield lower vertical and pitch 
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mode frequencies of the platform, which would further affect the weighted acceleration 

values: A further analysis of the resulting response spectra revealed relatively lower 

bounce and pitch mode frequencies of the operator-station. The lower pitch frequency 

tends to emphasize the - weighting effect, when magnitude is greater at lower 

frequencies. The - weighting magnitude, on the other hand, is relatively higher in the 

4 - 8 Hz range. A slight reduction in the vertical mode frequency thus does not lead to 

substantial reduction in the frequency-weighted vertical acceleration. Consequently, the 

results show that a 25% reduction in the suspension parameter yields relatively smaller 

changes in the frequency-weighted acceleration, namely nearly 5% , 10% and 15% -

reduction in the fore-aft, vertical and pitch weighted acceleration, respectively. 

Table 5-3: Influence of variations in the operator-station suspension stiffness and 
damping on the rms acceleration responses of the model at its floor 

Axis 
Operator station mounts parameter / nominal value 

0.50 0.75 1.00 1.25 

        

Fore-aft 0.38 0.17 0.39 0.17 0.44 0.18 0.53 0.20 

Vertical 2.25 2.22 2.87 2.88 3.21 3.24 3.34 3.38 

Pitch 1.03 0.39 1.43 0.43 1.93 0.51 2.54 0.62 

 

A further reduction in the mounts stiffness would be beneficial in limiting the vertical 

acceleration, as seen in Table 5-3. A 50% reduction in the current suspension parameter 

yields nearly 30% reduction in both weighted and un-weighted vertical acceleration. The 

implementation of such soft rubber mount, however, will impose some challenges due to 

large mount deflection and limited clearance between the conventional operator station 
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and the main vehicle body. Alternate pneumatic or hydraulic mounts that can provide 

lower stiffness and higher damping would perhaps be more desirable for the cabin 

suspension. 

Suspension Seat 

The medium-size compactors, most widely used in North America, employ a cushioned 

seat without a suspension. The natural frequency of this seat ranges from 3 to 7 Hz, 

which would amplify the vertical vibration of the operator station dominant in the 1.5 to 2 

Hz (vehicle body vertical mode), 4 - 5 Hz (cab and vehicle body pitch modes), and near 

5.5Hz (cabin vertical mode). Alternatively, a suspension at the operator seat has been 

proven beneficial in limiting the transmission of vertical vibration in many road and off-

road vehicle (Rakheja & Sankar, 1984; Boileau, Emile, & Rakheja, 1990). The 

suspension seats are generally designed with low natural frequency, in the order of 1 to 2 

Hz, which would be most effective in attenuating the vertical vibration of the compactor. 

A suspension seat, however, offers limited suspension travel (in the order of 50 mm), 

and may lead to bump-stop impact when the vehicle operates on relatively rough terrain. 

A suspension at the seat is thus designed with adequate damping to limit the resonant 

oscillation. 

Table 5-4: Influence of variations in the seat suspension properties on the rms 
acceleration responses of the model at the operator-seat interface 

Axis 
Seat suspension properties 

Nominal (soft 
cushion seat) 

∗ 2 

_
∗ 0.4 

∗ 1.5 

_
∗ 0.3 

∗ 1 

_
∗ 	 0.2 

         
Vertical 2.72 2.65 1.78 1.58 1.35 1.15 0.88 0.78 
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In this study, the effect of a suspension seat on the vertical vibration of the operator is 

evaluated by considering different natural frequencies (1 to 2 Hz) and damping ratios (0.2 

to 0.4) of the suspension. The natural frequencies and damping ratios are estimated from 

the uncoupled 2-DOF suspension-seat-occupant model presented in section 2.2.3, such 

that: 

	
∗ 1

2
 (5.4) 

∗

2
 

(5.5) 

In the above equation, 	
∗  is the natural frequency and ∗ is the uncoupled damping ratio 

of the seat suspension.  and  are the masses due to seated operator and the 

suspension taken as 53.6 and 10.0 kg, respectively (Rakheja, Afework, & Sankar, 1994; 

Ma, Rakheja, & Su, 2008).  and  are the linear stiffness and damping due to 

suspension. 

Table 5-4 summarizes the influence of the seat suspension parameters on the weighted 

and un-weighted vertical acceleration magnitude of the human occupant mass. The table 

also presents the acceleration values obtained for an unsuspended seat comprising a softer 

cushion. The results confirm the expected benefit of a soft suspension. A typical 

suspension seat with natural frequency of 1.5 Hz and damping ration of 0.3 would yield 

nearly 50% reduction in un-weighted and 60% in weighted vertical acceleration at the 

human seat interface. Reduction in the natural frequency to 1 Hz would lead to nearly 
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70% reduction in the weighted acceleration value, but may induce intermittent shocks 

due to possible bump-stop impacts. 

Axle Suspension 

In soil compactors the rear axle is invariably rigidly bolted to the rear frame. Although a 

number of suspension-axles have evolved for various off-road vehicles employed in the 

construction sectors, the implementations in the compactors are yet to be explored. Many 

studies have illustrated the ride benefits of soft axle suspension (Crolla & MacLaurin, 

1985; Hansson, 2002; Lehtonen & Juhala, 2005; Rehnberg & Drugge, 2008). Such 

suspension, however, poses complex challenge in view of the rattle space requirement 

and reduced effective roll stiffness. Considering the high center of mass of the vehicle 

and high location of the operator, it is vital to limit the ride height of the vehicle and its 

roll motion. A relatively stiffer axle suspension is thus considered feasible for such 

vehicle. Consequently, the sensitivity analysis are performed by considering the axle 

suspension stiffness being 1 to 3 times the vertical stiffness of the tire, while the 

suspension damping was selected to achieve the uncoupled vertical mode damping ratio 

 of 0.2, which was estimated from: 

2 2

 
(5.6) 

Where  is the rear axle static load and  the rear axle unsprung mass (wheels),  is 

the axle suspension stiffness. 

Table 5-5 summarizes the influence of variations in the suspension stiffness on the fore-

aft, vertical and pitch acceleration responses of the operator-station. The table also lists 
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the un-weighted and weighted acceleration values of the conventional vehicle with 

unsuspended axle. The research show insignificant effect of the axle suspension with the 

selected range of parameter. Greater ride benefits may be realized by introducing 

considerably soft axle suspension, which would yield increased roll and lateral motions 

and reduced roll stability. The results thus do not justify the complex axle suspension 

implementations. Furthermore, soft tires would also involve greater compromises in view 

of traction, tire service life and roll motions, although these could yield benefits in 

reducing the vertical acceleration. 

Table 5-5: Influence of the introduction of a rear axle suspension on the unweighted 
and weighted rms acceleration responses of the model at the operator-station floor 

Axis 
Axle suspension properties 

Unsuspended 3.0  2.0  1.0  

        

Fore-aft 0.44 0.18 0.43 0.19 0.43 0.19 0.42 0.20 

Vertical 3.21 3.24 3.20 3.24 3.19 3.24 3.19 3.24 

Pitch 1.93 0.51 1.91 0.49 1.90 0.47 1.88 0.46 

 

Vehicle wheelbase 

Apart from the suspension parameters, the vehicle geometry and inertial properties may 

also affect the ride performance. Modification in such parameters, however, would 

involve complex compromises in various other performance measures such as 

gradeability, serviceability, traction, compaction performance, dimension envelop or 

material cost and more. In this study, the effect of such variations on the ride quality is 

assessed, while the variations are limited to somewhat practical ranges. The variation in 

the wheelbase of the vehicle could be realized by varying the longitudinal portion of the 
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wheel axle from the central articulation of the vehicle ( ). Varying the drum position 

from the articulation would not be feasible due to various design constraints such as drum 

size and the clearance required for the drum scrapers to clean dirt and mud accumulations 

on the drum. Furthermore the front-frame of the vehicle is designed to support the drum 

with minimum admissible leverage so as to minimize the structure deformation. In terms 

of vehicle design and component integration, varying  is nothing more than bolting the 

rigid axle closer or farther from central hitch of the articulation-steer vehicle. Such a 

variation, however, would alter the distribution of the chassis weight on the drum and the 

rear axle. The sensitivity analysis is limited 25% variation in  about the nominal 

value. This variation is equivalent to 13% variation in the wheelbase ( ). 

Table 5-6: Influence of variation in the axle position ( ) on the unweighted and 
weighted rms acceleration responses of the model at the operator-station floor 

Axle position 0.75   1.25	  

Wheelbase 
 

0.87   1.13	  

c.g. Coordinate 0.71 ∗  0.97 ∗  ∗  ∗  1.29 ∗  1.03 ∗  

      

A
xi

s 

Fore-aft 0.50 0.23 0.44 0.18 0.38 0.17 

Vertical 3.12 3.14 3.21 3.24 3.24 3.27 

Pitch 1.94 0.52 1.93 0.51 1.90 0.52 

 

Table 5-6 summarizes the effect of varying the axle location of the vehicle wheelbase on 

the weighted and un-weighted rms acceleration of the operator platform. The table also 

lists the resulting variation in the wheelbase and longitudinal coordinate of the mass 

center of the equivalent vehicle body ( ∗ ,	 ∗ ). The results suggest 13% variations in the 
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wheelbase and 29% variations in the center of gravity coardinate with respect to the 

axle location. The longitudinal coordinate of center of gravity with respect to drum, 

however, varies only 3%. Such variations suggest that an increase in  would yield a 

higher load on the drum and a lower vehicle weight on the rear axle. The results 

presented in Table 5-6 suggest only minimal effect of variation in  on the ride 

responses. A reduction in  yields slightly lower vertical acceleration, due to a higher 

load on the axle tire, but causes slightly greater fore-aft acceleration, due to increased 

vehicle pitch. 

Vehicle Inertias 

There are many design constraints that do not allow modifying the coordinate of the 

machine c.g. without modifying the distribution of the machine mass. The static load on 

the drum is of particular importance for preservation of compaction efficiency. Modern 

compactors are increasingly employing modular design approach enabling different 

motorisations and different drum loads. Such variations in the vehicle design affect the 

inertial property and mass distribution of the vehicle, as it was illustrated from the 

simplified 2-DOF model presented in section 2.2.1. 

In this study, the effect of vehicle mass/inertia and its distribution is investigated by 

considering the mass properties of the 4- and 6-cylinder machines, in addition to a 

heavier 6-cylinder. Three different configurations of the compactor with different vehicle 

mass distributions are considered for analysis: These configurations include the reference 

design (6-cylinder), a low-cost design (4-cylinder, shorter rear frame) and an added 

weight design (heavier front-frame for additional drum static load). These configurations 

are described below: 
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Configuration A: 2.5 cm thick and 2.13 m wide drum supported by the standard rear 

frame of a 6-cylinder engine compactor with standard front frame and open 

operator platform. 

Configuration B:  2.5 cm thick and 2.13 m wide drum supported by the shorter rear 

frame of a 4-cylinder engine compactor with standard front frame and open 

operator platform. 

Configuration C: 2.5 cm thick and 2.13 m wide drum supported on a standard rear frame 

of a 6-cylinder engine compactor with a heavier front frame and open 

operator platform. 

Each of the configuration yields differences in the total vehicle mass ( ), drum load 

( ), and the sprung mass supported on the drum. These parameters are summarized in 

Table 5-7 for the three configurations. All three configurations use the same vibratory 

drum. Depending upon the chosen vehicle configuration, the coordinate of the drum ( ∗ ) 

and the axle ( ∗ ) with respect to equivalent vehicle body c.g. also vary. Table 5-8 lists the 

variations in these coordinates of the selected configurations with respect to those of the 

baseline configuration ( ∗ , ∗ ). 

Table 5-7: Vehicle load and load distribution of three selected configurations 
of typical North-American soil compactors 

Configuration A B C 

Total mass ( ), kg 10,750 10,250 11,950 

Drum load ( ), kg 6,120 6,160 7,680 

Drum mass ( ), kg 3,280 3,280 3,280 

Sprung mass ( , kg 2,840 2,880 4,400 
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The results show that the heavier vehicle will pose considerably larger static load on the 

drum. Moreover, the 4-cylinder machine also places large static load on the drum. The 

results suggest that a higher drum static load, as realized for the heavier vehicle 

configuration, would yield 11% and 18% reduction in the un-weighted and weighted 

vertical acceleration magnitude, respectively. This suggests that a more pronounced 

weight shift toward the front axle (drum) that is supported on significantly stiffer mounts 

than the rear axle (tires) enhances the vertical ride quality. The drum suspension natural 

frequency decreases from about 5 Hz to 4.5 Hz, which is advantageous considering  

frequency weighting. The greater non-uniformity of the loads distributed on the front and 

rear axle, however, results in higher pitch motion of the vehicle. This is evident from the 

increasing pitch acceleration magnitude in Table 5-8. The results suggest nearly 5% and 

15% higher un-weighted and weighted pitch acceleration magnitude, when a greater 

portion of the vehicle mass is supported on the drum, as in the case of the heavier vehicle 

configuration. The beneficial effect of the higher drum load, however, is not evident for 

the 4-cylinder machine. This is attributed to lower total mass of the vehicle. A further 

analysis of the static loads of the vehicle revealed that the drum load of the 4-cylinder 

machine is only 40 kg higher than that of the baseline machine. 

Table 5-8: Influence of variation in the weight distribution on the unweighted and 
weighted rms acceleration responses of the model at the operator-station floor 

Equipment configuration 
A B C 

1.00 ∗  1.00 ∗  1.17 ∗  0.89 ∗  1.45 ∗  0.72 ∗  

Axis       

Fore-aft 0.44 0.18 0.46 0.18 0.36 0.19 

Vertical 3.21 3.24 3.21 3.24 2.85 2.68 

Pitch 1.93 0.51 1.97 0.53 2.08 0.61 
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5.3. Factors Affecting Compaction Performance 

In the compaction mode, the vehicle is subject to self exciting source of vibration arising 

from the drum internal unbalance. The total force imparted on the soil arises from the 

centrifugal force due to the rotating unbalance together with the static vehicle load 

supported on the drum. The mass unbalance and the eccentricity together with the 

rotational speed thus form the important design factor. The other factors that would affect 

the compaction include the weight of the drum (unsprung mass) and the weight 

distribution of the equipment (drum static load). Apart from these the unsprung/sprung 

mass ratio (function of drum weight and drum static load) may also affect the 

compaction. The soil plasticity parameter would be the primary operating condition that 

would affect the compaction performance. The vehicle speed is not considered as the 

contributory factor, since soil compaction tasks are invariably performed at very low 

speed, in the order of 3 km/h or less. 

The compaction performance of the vehicle can be best assessed in terms of variations in 

the soil density (Quibel & Corte, 1994; Briaud & Seo, 2003). The compaction model 

developed in the present work, however, is limited to the study of dynamic properties of 

the soil, and is not applicable to evaluate changes in the physical properties of soil such 

as modulus, density, moisture content and core index. Within the frame of the present 

modeling effort, the most relevant compaction performance measure would be the 

vertical plastic deformation of the soil,	 , under the vibratory drum action, during a 

given pass and for the soil plasticity parameter, . In the compaction multi-body 

simulation model, the drum displacement  is defined with respect to the static drum / 
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soil equilibrium position (Section 2.3.1). The total displacement of the rigid drum with 

respect to the initial soil surface prior to the compaction pass considered, can also be 

evaluated from summation of the dynamic displacement and soil static deflection, 

	 . The final value of the total displacement at the end of the soil unloading or 

recovery phase (as the drum moves up before a possible take off or immediate re-loading 

of the soil) would be of primary interest for determining the compaction effectiveness in 

terms of vertical plastic deformation of the soil. In case of the total recovery, attributed to 

total unloading caused by the drum-soil loss of contact (“partial uplift” of the drum), the 

total displacement ( 	 ) at the end of the soil unloading would approach 	  

for the given pass. In the event of immediate reloading of the soil that is characterized by 

“continuous contact” between the drum and the soil (Section 4.7), the total displacement 

( 	 ) at the end of the soil unloading is further reduced by additional soil 

recovery due to the remaining total force ( 	 ) exerted on the soil at the end of the 

unloading phase divided by the soil elastic stiffness	 . The vehicle model, developed in 

section 2.3, is employed to determine the effect of design parameters on the soil 

deformation response. It should be noted that the model incorporates the drum-soil 

interaction through the elasto-plastic soil model. 

The study of variations in the operating conditions is limited to varying the plasticity 

parameter  of the soil, ranging from 0 to 1. The soil stiffness, however, is increased with 

the compaction passes, which causes the soil to be more elastic (plastic stiffness 

increasing more significantly than the elastic stiffness) while the resulting plasticity 

parameter increases (Adam & Kopf, 2000). The maximum compaction, or otherwise 

expressed ideal elastic behaviour of the soil is characterised by	 1 as	 → ∞. Thus 
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varying the plasticity parameter permits the response analysis of the coupled soil-

compactor system under varying soil properties at different levels of compaction. It 

should be further noted that the primary objective of the soil-compaction model 

formulated in this study is determine the total compaction force and the soil deformation 

for a given soil property, while the forward motion of the vehicle at very low speed is not 

considered. In this desertion research, the influence of variations is selected design 

parameters and soil property is investigated in view of the compaction effectiveness, 

which is measured in terms of plastic deformation of the soil during a given pass. The 

results are discussed to enhance an understanding of the present design features on the 

compaction performance of the vehicle. The same three different configurations of the 

compactor with different vehicle mass distribution, as detailed in Table 5-7, are 

considered for analysis. All three configurations use the same vibratory drum. In the road 

building industry, vibratory compactors are usually characterized by their drum static 

load , nominal vibration amplitude , vibrator frequency , and the centrifugal force 

. These parameters cannot be directly related to individual design factors, except for 

the vibrator frequency, but arise from a combination of design factors. It is thus important 

to study the effects of the resulting design parameters, influencing the compaction 

performance, such as front axle (drum) static load, sprung mass supported by the drum, 

drum (unsprung) mass, vibrator eccentric moment and its frequency. 

5.3.1. Effect of Drum Load 

The drum load directly influences the compaction performance. In terms of machine 

design, the drum static load is a combination of (i) the unsprung mass  or mass of the 
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vibratory drum including the eccentric vibrator mass; and (ii) the sprung mass (

), which corresponds to the portion of the equipment mass supported by the drum/soil 

contact dynamically isolated from the vibratory drum by means of the drum suspension. 

Figure 5-2 illustrates the effect of drum load on the plastic soil deformation, 	 , for 

varying plasticity parameters of the soil ( ). The results show that the effect of drum load 

is strongly dependent upon the soil plasticity parameter, saying the degree of compaction 

or density of the soil. For low plasticity parameters (low density soil), a continuous drum 

/ soil contact condition is realized, irrespective of the drum load considered in the study. 

This condition yields greatest soil deformation, while a larger drum load (Configuration 

C) causes higher soil deformation. For intermediate to high plasticity ratios, the 

compaction yields to partial loss of contact between the soil and the drum, irrespective of 

the drum load. The compaction of soils with very high plasticity ratio (very high density 

soil) causes the drum to experience double-jumping condition, as observed earlier in 

Figure 4-14. This condition yields two plastic deformation values: a lower one attributed 

to the minor hysteresis loop (superficial impact) and a higher one corresponding to the 

major loading loop (deep impact). The double-jumping of the drum also yields irregular 

compaction. In order to avoid this double-jump phenomenon of the drum, the compaction 

task for high density soils is generally conducted under lower amplitude setting of the 

vibrator. The finishing stages of the compaction (final passes) are thus frequently 

performed at lower amplitudes. The results also show that, irrespective of the drum static 

load, the double-jumping occurs at the same level of soil compaction ( 0.835). 

The Figure also shows the regions of continuous contact, partial loss of contact and 

“double-jump” of the drum. The results clearly show that greater plastic deformation of 
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the soil could be achieved during the partial loss of contact or up-lift of the drum, 

irrespective of the drum load: For medium-density soils, the partial up-lift of the drum 

occurs under lighter drum load, which could yield higher plastic deformation. A higher 

drum static load, however, results in noticeably higher plastic deformation on softer soils, 

where all the machine configurations would operate under a continuous contact 

condition. It is also noted that all the three configurations yields comparable plastic 

deformation, as they get to the partial-lift condition. 

 

Figure 5-2: Effect of drum static load on the plastic deformation of soils as a 
function of the soil plasticity parameter ( ). 

The results also suggest that an increase in the sprung mass supported by the drum 

( ) would yield more effective compaction of the soil during the initial pass. A 

lower drum load, however, result in improved compaction of medium-density soils, when 

a partial up-lift of the drum occurs. Figure 5-3 further illustrates the influence of sprung 
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mass supported on the drum on the resulting plastic deformation of soil for different 

plasticity parameters. The results are presented for the sprung mass due to configurations 

A and C, which show the lowest (2,840 kg) and highest (4,400kg) sprung mass supported 

on the drum. As observed earlier, the drum operates in partial up-lift condition for soils of 

intermediate to high plasticity ratios and yields nearly constant deformation of the soil, 

irrespective of the available sprung mass. On the other hand, for low plasticity ratios, a 

higher sprung mass yields greater plastic deformation of the soil. The figure also shows 

that region of continuous and partial drum-soil contact. The results suggest that the region 

around the boundary between the two regions would be of primary interest for a plasticity 

ratio around 0.5. A heavier sprung mass could fall into the continuous contact region and 

achieve relatively less soil deformation than a lighter sprung mass that operate in the 

partial up-lift region, thereby offsetting some or all of the beneficial effect during 

previous pass (passes). Form the results, it is estimated that a sprung mass in the order of 

3,700 kg could yield a better compromise, which would also yield a drum static load in 

the order of 6,980 kg. In some particular applications involving compaction of medium-

dense materials or different grades of gravel, the initial plasticity parameter of the soil 

could be in the intermediate range (0.40 or higher). It would be desirable to target 

compaction passes in the partial up-lift operating condition, from the initial passes. This 

would ensure maximum plastic deformation during all the passes. This target condition 

could be realized with a relatively lower sprung mass in the order of 2,500 kg leading to a 

total drum static load of 5,780 kg. Apart from the sprung mass, the variation in the 

unsprung mass could also affect the dynamic behaviour of the vibratory drum, since it 



 

167 
 

would affect not only the drum static load but also the nominal amplitude of the drum. 

This effect is discussed in the following subsection. 

 

Figure 5-3: Effect of front-axle sprung mass on the plastic deformation of soils 

5.3.2. Effect of Nominal Amplitude 

From a dynamic standpoint, the primary compaction parameter of a vibratory compactor, 

as referred to in the industry, is the drum nominal amplitude	 	 (Quibel & Corte, 1994; 

Valeux & Feistenauer, 1995). In soil compaction, there has been a tendency to increase 

the compaction by increasing the nominal amplitude. The nominal amplitude has been 

defined and standardised (ISO 8811, 2000) by and for the construction equipment 

industry (CIMA, 1994). The rationale for defining nominal amplitude lies in the fact that 

it is practically difficult to predict the actual amplitude of compaction, which is not only a 

function of the equipment but also of the dynamic characteristics of the soil being 
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compacted, which itself is a function of many variables including the nature of material 

(particle size, shape, etc.), layer thickness, moisture content, etc. Furthermore, the 

dynamic characteristics of the soil being compacted will vary as its density increases with 

the number of passes. The concept of the nominal amplitude is based on the vibration 

behaviour of a single-degree-of-freedom (SDOF) system under an internal rotating 

unbalance. It considers the vibratory drum to be freely suspended in the air, as if the 

compactor body were lifted from the ground by means of solid supports. Furthermore, the 

damping due to natural rubber mounts constituting the drum suspension is assumed to be 

negligible. The drum with its suspension is thus idealized by an un-damped SDOF system 

subject to forced vibration due to its rotating unbalanced mass. The resulting amplitude of 

vibration | | is thus expressed as a function of the drum mass	 , its unbalance 

(vibrator) eccentric moment	 	  and the square of the ratio of the forced vibration 

frequency	  and its uncoupled natural frequency 	
∗ , such that: 

| |
1

1
	
∗

 
(5.7) 

With 

	
∗ 1

2
 

(5.8) 

The natural frequency of the freely suspended drum, however, is generally very small 

compared to the vibrator frequency for soil compaction, which yields the amplitude of 

drum as: 
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| | ≅  
(5.9) 

In terms of the sensitivity analysis, the nominal amplitude of vibration could be varied 

through variation in two design parameters: (i) the drum (unsprung) mass, ; and (ii) 

the vibrator eccentric moment 	 	 . The drum unsprung mass influences the drum static 

load, which affects the compaction performance of the compactor in a considerable 

manner, as described in section 5.3.1. 

 

Figure 5-4: Effect of drum unsprung mass on the plastic deformation of soils 

In order to study the effect of the unsprung mass alone on the compaction performances 

of the equipment, the drum shell thickness is varied from 15mm to 40mm for the 

reference 6-cylinder compactor, these variations yield variations in the drum unsprung 

mass and the drum static load of –350 kg to 650 kg. The eccentric moment and the 

frequency of the drum vibrator, however, remain unchanged. Figure 5-4 depicts the 
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plastic deformation achieved as a function of variations considered in the unsprung mass, 

for soils at different degrees of compaction. The values of plasticity parameter 

	considered correspond to the core of compaction passes, typically intermediate levels of 

soil stiffness/compaction. The three operation condition regions (continuous contact, 

partial up-lift and double-jump) appear in the figure, which are shown by shading. A 

lower unsprung mass tend to encounter double-jumps region, while a higher unsprung 

mass yields significantly smaller plastic deformation in the continuous contact region. An 

unsprung mass in the vicinity of 3,500	  appears to offer a better compromise, which is 

slightly higher than that of the current design. Furthermore, it should be noted that the 

compaction performance increases as drum unsprung mass decreases within the partial 

up-lift region. In addition, as the drum outer shell experiences wear by friction on 

abrasive soil, while in service, the resulting decrease in the drum unsprung mass would 

lead to a higher tendency toward double jumping during final compaction passes. 

Apart from the unsprung mass, the nominal amplitude of drum vibration is related to 

drum eccentric moment. The effect of this moment is evaluated for the standard machine 

(6-cylinder, standard front-frame), by varying the unbalance mass eccentricity e. The 

unbalanced mass,	 , however is held constant so as to retain the same total drum 

mass	 . Furthermore, the vibrator frequency is also held constant. The eccentricity is 

varied from 50% of the current design (corresponding to the “low amplitude” setting of 

the vibrator available on the compaction equipment) to 200% of the current design. The 

resulting eccentric moment would thus vary from 2.9 kgm to 8.6 kgm. 

Figure 5-5 depicts the plastic deformation achieved as a function of the vibrator eccentric 

moment for soils with different degrees of compaction. The figure also illustrates the 
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regions of continuous drum-soil contact and partial up-lift. As for the previous analysis, 

the ranges of plasticity parameter 	considered correspond to typical intermediate levels 

of soil stiffness/compaction. The results show that reducing the eccentric moment by 

50% (the “low amplitude” setting of the vibrator) leads systematically, in terms of 

operating conditions, to continuous drum/soil contact. An increase in the eccentric 

moment yields partial lift. Increasing the eccentric moment by 100%, however, does not 

transform the usual, sought after, partial up-lift condition into double-jumping. The 

results clearly show that the compaction performance (plastic deformation of the soil) 

increases with the eccentric moment. A tendency thus exists to increase the eccentric 

moment. However the eccentric moment is limited due to physical constraints and the 

corresponding increase in the centrifugal force would require oversized bearings. 

 

Figure 5-5: Effect of vibrator eccentric moment on the plastic deformation of soils 
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5.3.3. Effect of Vibrator Frequency 

The vibrator frequency has been the very first design parameter considered to define the 

compaction performance since the beginning of the vibratory compaction. Decades of 

field experience and research in soil mechanics (Quibel, Froumentin, & Morel, 1981; 

Valeux & Feistenauer, 1995; Dynapac, 2000) have converged toward a nearly 

standardized vibrator frequency of soil compactors around 30Hz for the highest eccentric 

moment (some machines are equipped with variable frequency settings). Increase in the 

vibrator frequency, however, is limited due to constraints imposed on the maximum 

centrifugal force due to the physical constraints on the size of the bearings. It may thus be 

less cost effective to increase the frequency beyond 35Hz.  

 

Figure 5-6: Effect of vibrator frequency on the plastic deformation of soils 
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In this study the impact of vibrator frequency on the compaction performances of the 

equipment is investigated by varying frequency from 26Hz to 35Hz. The drum 

(unsprung) mass and the unbalance (eccentric moment) are those of the standard 6-

cylinder machine and remain constant. Figure 5-6 depicts the plastic deformation 

achieved as a function of the vibrator frequency for soils at different degrees of 

compaction. The values of plasticity parameter 	considered are the same as for the 

sensitivity analysis of the eccentric moment and the drum mass. It can be noticed that an 

increase in the soil stiffness leads to a higher tendency towards double-jumping, 

irrespective of the vibrator frequency. A reduction in the vibrator frequency down to 

27Hz, however, yields in double-jumping arising at lower soil compaction level. This is 

an important fact as an increase in the soil stiffness causes higher loading/resistance for 

the vibrator from the ground that would require higher engine power and subsequently 

results in a decrease of the engine rpm, systems hydraulic flow and thus a decrease in the 

vibrator frequency. The drop in the vibrator frequency would be more probable for the 

less powerful 4-cylinder motorizations. A frequency setting close to the upper limit 

considered here (35 Hz) would thus seem to be adequate considering that other than the 

risk of double jumping the variation in vibrator frequency does not affect compaction 

performance greatly. The upper limit for frequency setting is governed by bearing size 

constraints due to the resulting increase in the centrifugal force. 



 

174 
 

5.3.4. Effect of Centrifugal Force 

The centrifugal force due to rotating eccentric mass could also affect the compaction 

performance, although it is directly related to the vibrator frequency and the eccentric 

moment, such that:  

2  
(5.5) 

The effect of both the design factors have been investigated and discussed in section 5.3.2 

and 5.3.3 (Figure 5-5 and Figure 5-6). The results have shown that an increase in both the 

performance and thus the centrifugal force would be justifiable in the context of 

enhanced soil compaction. Such increases, however, would be limited by the physical 

constraints of the drum design. 

5.4. Summary 

The simulation results present evident similarities with measured data although 

considerable variations in operating conditions and in design parameters have been 

introduced, both in transit mode and in compaction mode. 

In transit mode, the typical North-American soil compactor feature poor ride 

characteristics that would be hard to accept even though periods of transit of the vehicle 

are short in duration. If slight improvements could be expected by softening the operator 

station suspension, some noticeable improvement would be experienced by equipping the 

vehicle by suspension seats. Further investigations and analyses also led to the possibility 

of a major breakthrough based on an older European design of the 70s and 80s that 
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disappeared when its originator went bankrupted: The design involved a pneumatic tire 

suspension for the vibratory drum. 

In compaction mode of operation the efficiency of the vibratory tool was also analysed. It 

seems that the design of the tool has reached optimum levels in many design aspects. The 

only area where room for some potential improvement was discovered is the sprung mass 

supported by the front axle (drum). However, the sprung mass is a global parameter of 

the heavy equipment and is not limited to a particular part, but is also influenced by the 

vehicle mass distribution and wheelbase. In terms of design, variations in the sprung 

mass are highly constrained by other criteria such as gradeability, serviceability, 

dimensions envelop and material cost. 
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CHAPTER 6 – CONCLUSION AND RECOMMENDATION 
FOR FUTURE WORK 

This research dissertation permitted a better understanding of the ride and compaction 

dynamics of a soil compactor, which was achieved through modeling, testing, validation 

and analysis efforts. The results attained could be interpreted to formulate design 

guidance for enhancement of ride quality and compaction performance. In the present 

chapter, the highlights of the research work are summarized together with the major 

conclusions and some recommendations for future works. 

6.1. Highlights of the present work 

The ride and compaction dynamics of typical vibratory soil compactors were investigated 

experimentally and analytically. Two planar ride dynamic models of the vehicle a 7-

degrees-of-freedom bounce and pitch model and a 12 degrees-of-freedom bounce, pitch 

and fore-aft model, were formulated to study its ride vibration characteristics during the 

transit mode of operation at relatively higher speeds on undeformable terrain surfaces in 

the absence of the centrifugal force from the eccentric roller vibrator. These ride models 

considered the rigid roller drum as the extension of the terrain profile from which the rest 

of the vehicle was isolated by means of the drum suspension. In the compaction mode, a 

one-dimensional single DOF dynamic model of the vibratory roller drum interaction with 

deformable soil in the vertical direction was formulated in the form of a non-linear third 

order differential equation, the model nonlinearity arose from consideration of the elasto-

plastic behaviour of the compacted soil layer and variation in its effective stiffness when 

loaded and unloaded by the vibratory drum, and possible drum-hop. The non linear third 
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order equation describing the drum-soil interactions was integrated to the in-plane ride 

dynamic models to study its dynamic characteristics during compaction mode of the 

operation at very low speed on deformable soils in the presence of self-generated 

vibration due to the rotating centrifugal force from the eccentric roller vibrator. The ride 

dynamic responses of the vehicle during the transit mode of operation were obtained 

through analyses of both the linear models. The responses during the compaction mode of 

operation were obtained using only the bounce-pitch plane model (7-DOF) ride dynamic 

model together with the one dimensional vertical drum-soil interaction model. Both the 

ride and compaction models were limited to the pitch plane dynamics. The longitudinal 

shear interactions of the drum and terrain/soil, and the roll/lateral dynamics of the vehicle 

could not be evaluated. The non-linear compaction model, however, permitted the soil 

compaction responses for varying soil density. 

Extensive field measurement were conducted to quantify the whole-body ride vibration 

environment of two different compactors along the vertical, lateral, fore-aft , roll and 

pitch-axes, especially in the transit mode of operation. The elastic vibration isolation 

mounts between the drum and the chassis, and between the operator station (cabin) and 

the chassis, generally provided attenuation of higher frequency vibration arising from the 

drum vibrator in the compaction mode of operation. From the comparisons of the 

simulation responses and the measured data, it is shown that the models could effectively 

predict the low frequency vertical and pitch vibration environment, while further efforts 

in developing a comprehensive three-dimensional model would be desirable. Such a 

model, when adequately validated, could serve as an important design/assessment tool for 

design and tuning of the primary and secondary suspensions for enhancement of the 
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vehicle ride quality. The ride dynamic responses of the models showed very good 

agreements in their natural frequencies with the dominant ride frequencies observed from 

the measured data, and reasonably good agreements with measured vibration levels in the 

vertical and pitch axes. The compaction model showed very good agreements with the 

reported trends depicting the expected energy cycles and forcing frequency harmonics 

and sub-harmonic (when applicable). In the process of validating the ride dynamic model 

of the soil compactor in the transit mode, a method for estimating the track profile was 

formulated using the measured vibration of the rigid drum equipped vehicle. 

The proposed pitch-plane ride models of the vehicle were subsequently applied to study 

the beneficial effects of primary and secondary suspension concepts for enhancement of 

ride properties of the soil compactors during the transit mode. The proposed pitch-plane 

compaction model of the equipment also served to study the beneficial effects of different 

static and dynamic compaction parameters for increasing soil deformation under the 

equipment action in the compaction mode of operation. 

6.2. Major Conclusions 

The major conclusions drawn from the study are summarized below:  

(a) The whole body vibration levels of the vehicle in transit mode of operation were 

judged to be relatively high in accordance with the available assessment guidance (ISO 

2631-1, 1997 and EN 2002/44/EC, 2002), which could be attributed to relatively higher 

speed (10 km/h) used in the study. The simulation results suggested that a reduction in 

the speed to 5 km/h would not yield reduction in the vertical and pitch rms accelerations. 
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(b) The vertical and pitch ride vibration of the vehicle were predominant in the 1.5-6 Hz 

frequency range, which could be attributed to the vertical and pitch mode resonances of 

the vehicle body and the operator-station (cabin). Considering that the human body is 

most sensitive to horizontal and angular vibration in the 0.5 to 2 Hz frequency range and 

to vertical vibration in the 4–10 Hz range, the adequate selection of vibration isolation 

stages forms an important design task.  

(c) A soft drum suspension would yield most significant benefits in limiting the vertical 

and pitch acceleration vibrations of the operator-station. The design of a drum integrating 

a pneumatic tire could yield nearly 80% and 40% reductions in the frequency-weighted 

vertical and pitch accelerations, respectively, at the operator platform.  

(d) The use of a commercially available suspension seat (natural frequency in the order of 

1.5 Hz) would also reduce the operator exposure to frequency-weighted vertical 

acceleration by nearly 60%.  A further reduction in the natural frequency to 1 Hz would 

lead to nearly 70% reduction in the weighted acceleration value. A low frequency 

suspension seat, however, would require a relatively large suspension travel and space, 

and may induce intermittent shocks due to possible bump-stop impacts. 

(e) The variations in the platform suspension and the axle suspension concept resulted in 

only limited performance gains in terms of the ride vibration levels. A softer axle 

suspension, however, could provide enhanced ride quality at the expense of greater roll 

and thus the lateral motion of the occupant. The results suggest that the implementation 

of an axle suspension would not be justifiable for soil compactors. 
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(f) The most effective soil compaction could be achieved when the drum exhibit partial 

loss of contact with the soil. 

(g) The compaction performance of the vehicle is strongly related to the static drum load, 

drum mass (unsprung) and the vibrator eccentric moment. 

(h) An increase in the vibrator frequency resulted in lower double jumping tendencies 

during the final compaction passes, which could yield more uniform soil compaction. 

(i) An increase in the eccentric moment also resulted in enhanced soil compaction. The 

use of higher eccentric moment and the frequency would, however, yield considering 

higher centrifugal force and thus require oversized bearing and more expensive power 

plants.  

(j) From the simulation results attained, it is shown that a vibrator frequency of 33 Hz 

together with an eccentric moment that is 7% higher than that of the baseline machine 

considered, would offer a feasible combination in view of the soil compaction 

performance; In view of the static compaction parameters, the results suggest a sprung 

mass of about 3,700 kg supported by the drum together with the unsprung mass in the 

vicinity of 3,500 kg, would yield improved compaction. These represent a 30% and a 7% 

increases over the baseline 10-ton machine, respectively.  

6.3. Recommendations for future work 

Although the in-plane models developed in this study provided reasonable correlation 

with the measured data along the vertical and pitch axis, the models could not be applied 

to evaluate the fore-aft, lateral and roll vibration responses. The measured data revealed 
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comprehensive levels of lateral and fore-aft vibration. The models presented in this 

dissertation thus represent a preliminary effort towards assessment and control of whole-

body vibration levels of the vehicle. It is thus recommended to develop a three-

dimensional ride dynamic model by incorporating the lateral and roll degrees-of-freedom 

of the vehicle body, operator-station and the engine-group. Furthermore, the contribution 

due to articulated-frame steering to the ride vibration responses may be considered. 

Modeling the drum in the roll plane would also permit the consideration of the drum-soil 

interface by a line contact, which would permit the observation of the rocking motion and 

chaotic behaviour of the drum in addition to the double-jump behaviour observed in this 

study. 

Further efforts in modeling the drum-soil dynamics would be desirable to enhance the 

compaction analysis. In particular, the important contribution due to the non-linear soil 

elastic stiffness attributed mostly to the cylindrical geometry of the drum could be 

effectively investigated. Considering that the stiffness of the soil depends on the size of 

the contact surface loaded by the drum, and thus on the drum size, it would be more 

convenient to express the soil stiffness as a function of its modulus which is a direct 

indication of soil density for more efficient compaction analyses. A major step in 

enhancing the modeling of the vibratory compaction process, as described in the present 

work, would comprise the characterization of coupling between the plastic deformation 

obtained during a given compaction pass to the resulting plasticity parameter in order to 

simulate the deformation during a subsequent pass. This would enable the compaction 

performance analysis in a continuous manner, starting form the first to the final pass. 

Furthermore, the simulation of the compaction mode of operation could include vehicle 
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ride dynamics with terrain profile input arising from terrain deformation in process of 

compaction. 

Future work could also be directed towards the equipment design enhancement in 

enhancing the ride performance. In view of the excellent ride performance potentials of 

pneumatic drum suspension, it is recommended to undertake further investigation on 

realisation of such a design. The ride vibration responses of compactors differ most 

significantly with the mode of operation (transit and compaction): A cab suspension tends 

to amplify the low frequency transit mode vibration, while it effectively attenuates the 

higher frequency vibration of the compaction mode. It is thus suggested to explore a two-

stage cab suspension, where the normal stage would be tuned for the compaction mode, 

while the transit mode would require the second stage locked suspension. This dual 

setting operator-station suspension could have the actual shifting between the two 

settings controlled by the roller vibrator and / or speed range controller(s). It would be 

equally interesting to investigate semi-active cabin or seat suspensions using magneto-

rheological (MR) shock absorbers with damping characteristics continuously controlled 

to adapt to the modes of operation. 
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