View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by Concordia University Research Repository

From Very Weak to Very Strong:
Analyzing Password-Strength Meters

Xavier de Carné de Carnavalet and Mohammad Mannan
Concordia Institute for Information Systems Engineering
Concordia University, Montreal, Canada
{x_decarn, mmannan } @ciise.concordia.ca

Abstract—Millions of users are exposed to password-strength
meters/checkers at highly popular web services that use user-
chosen passwords for authentication. Recent studies have found
evidence that some meters actually guide users to choose better
passwords—which is a fairly rare-bit of good news in password
research. However, these meters are mostly based on ad-hoc
design. At least, as we found, most vendors do not provide
any explanation of their design choices, sometimes making them
appear to be a black box. We analyze password meters deployed
in selected popular websites, by measuring the strength labels
assigned to common passwords from several password dictio-
naries. From this empirical analysis with millions of passwords,
we report prominent characteristics of meters as deployed at
popular websites. We shed light on how the server-end of some
meters functions, provide examples of highly inconsistent strength
outcomes for the same password in different meters, along with
examples of many weak passwords being labeled as strong or even
very strong. These weaknesses and inconsistencies may confuse
users in choosing a stronger password, and thus may weaken
the purpose of these meters. On the other hand, we believe these
findings may help improve existing meters, and possibly make
them an effective tool in the long run.

I. INTRODUCTION

Proactive password checkers have been around for decades;
for some earlier references, see e.g., Morris and Thomp-
son [20], Spafford [28], and Bishop and Klein [3]. Recently,
password checkers are being deployed as password-strength
meters on many websites to encourage users to choose strong
passwords. Password meters are generally represented as a
colored bar, indicating e.g., a weak password by a short red bar
or a strong password by a long green bar. They are also often
accompanied by a word qualifying password strength (e.g.,
weak, medium, strong), or sometimes the qualifying word
is found alone. We use the terms password-strength meters,
checkers, and meters interchangeably in this paper.

The presence of a password meter during password creation
has been shown to lead ordinary users towards more secure
passwords [29], [11]. However, strengths and weaknesses of
widely-deployed password meters have been scarcely studied

This article is an extended version of a paper to appear in NDSS2014 [9].

so far. Furnell [12] analyzes password meters from 10 popular
websites to understand their characteristics, by using a few test
passwords and stated password rules on the sites. Furnell also
reports several inconsistent behaviors of these meters during
password creation and reset, and in the feedback given to
users (or the lack thereof). Password checkers are generally
known to be less accurate than ideal entropy measurements;
see e.g., [8], [34]. One obvious reason is that measuring
entropy of user-chosen passwords is problematic, especially
with a rule-based metric; see e.g., the historic NIST metric [7],
and its weaknesses [34]. Better password checkers have been
proposed (e.g., [8], [30], [25], [15]), but we are unaware of
their deployment at any public website. We therefore focus on
analyzing meters as deployed at popular websites, especially
as these meters are guiding the password choice of millions
of users.

We evaluate the password meters of 11 prominent web
service providers, ranging from financial, email, cloud storage
to messaging services. Our target meters include: Apple,
Dropbox, Drupal, eBay, FedEx, Google, Microsoft, PayPal,
Skype, Twitter and Yahoo!. First, to understand these checkers,
we extract and analyze JavaScript code (with some obfuscated
sections) for eight services involving local/in-browser process-
ing. We also reverse-engineer, to some extent, the six services
involving server-side processing, which appear as black-boxes.
Then, for each meter, we take the relevant parts from the source
code (when available) and plug them into a custom dictionary-
attack algorithm written in JavaScript and/or PHP. We then
analyze how the meter behaves when presented with passwords
from publicly available dictionaries that are more likely to be
used by attackers and users alike. Some dictionaries come from
historical real-life passwords leaks. For each meter, we test
nearly four million passwords from 11 dictionaries (including
a special leet dictionary we created). We also optimize our
large-scale automated tests in a server-friendly way to avoid
unnecessary connections, and repeated evaluation of the same
password. At the end, we provide a close-approximation of
each meter’s scoring algorithm, weaknesses and strengths of
the algorithm, and a summary of scores as received by our test
dictionaries against the meter.

To measure the quality of a given password, checkers
usually employ one of the two methods: they either enforce
strong requirements, mostly regarding the length and character-
set complexity, or they try to detect weak patterns such as com-
mon words, repetitions and easy keyboard sequences. Some
checkers are implemented at client-end only, some at server-
end only and the rest are hybrid, i.e., include measurements

https://core.ac.uk/display/211517021?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

both at the server- and client-ends. We also analyze strengths
and limitations of these approaches.

Except Dropbox, no other meters in our test set provide
any publicly-available explanation of their design choices, or
the logic behind their strength assignment techniques. Often,
they produce divergent outcomes, even for otherwise obvious
passwords. Examples include: Passwordl (rated as very weak
by Dropbox, but very strong by Yahoo!), PaypalOl (poor
by Skype, but strong by PayPal), football#1 (very weak by
Dropbox, but perfect by Twitter). In fact, such anomalies
are quite common as we found in our analysis. Sometimes,
very weak passwords can be made to achieve a perfect score
by trivial changes (e.g., adding a special character or digit).
There are also major differences between the checkers in
terms of policy choices. For example, some checkers promote
the use of passphrases, while others may discourage or even
disallow such passwords. Some meters also do not mandate
any minimum score requirement (i.e., passwords with weak
scores can still be used). In fact, some meters are so weak
and incoherent (e.g., Yahoo!) that one may wonder what
purpose they may serve. Taking into consideration that some
of these meters are deployed by highly popular websites, we
anticipate inconsistencies in these meters would confuse users,
and eventually make the meters a far less effective tool.

Contributions.

1) METER CHARACTERIZATION. We systematically charac-
terize 13 password checkers from 11 widely-used web ser-
vices to understand their behaviors. For Microsoft, we test
three versions of their checker, two of which are not used
anymore. This characterization is particularly important for
checkers with a server-side component, which appears as
a black-box to users; no vendors in our study provide any
information about the design choices they made. Even for
client-side checkers, no analysis or justification is provided
(except Dropbox).

2) EMPIRICAL EVALUATION OF METERS. For each of the 13
meters, we used nearly four million unique passwords from
several password dictionaries (a total of 53 million test
instances, approximately). This is the largest such study
on password meters to the best of our knowledge.

3) METER WEAKNESSES. Weaknesses exposed by our tests
include: (a) Several meters label many common passwords
as of decent quality—varying their strengths from medium
to very strong; (b) Strength outcomes widely differ be-
tween meters, e.g., a password labeled as weak by one
meter, may be labeled as perfect by another meter; and
(c) Many passwords that are labeled as weak can be
trivially modified to bypass password requirements, and
even to achieve perfect scores. These weaknesses may
cause confusion and mislead users about the true strength
of their passwords. Compared to past studies, our analysis
reveals the extent of these weaknesses.

4) TEST TOOLS. We have implemented a web-based tool to
check results from different vendors for a given password.
In addition to making the inconsistencies of different
meters instantly evident, this tool can also help users
choose a password that may be rated as strong or better
by all the sites (from our test set), and thus increasing the
possibility of that password being effectively strong. Test
tools and password dictionaries as used in our evaluation

are available for further studies.

We first explain some common requirements and features
of the studied password checkers in Section II. In Section III,
we discuss issues related to our automated testing of a large
number of passwords against these meters. In Section IV,
we detail the dictionaries used in this study, including their
origin and characteristics, and some common modifications
we performed on them. We present the tested web services
and their respective results in Section V. In Section VI, we
further analyze our results and list some insights as gained
from this study. Section VII discusses more general concerns
related to our analysis. A few related studies are discussed in
Section VIII. Section IX concludes.

II. PASSWORD METERS OVERVIEW

Password-strength meters are usually embedded in a reg-
istration or password update page. During password creation,
the meters instantly evaluate changes made to the password
field, and output the strength of a given password. Below we
discuss different aspects of these meters as found in our test
websites. Some common requirements and features of different
meters are also summarized in Table I.

(a) Charset and length requirements. By default, some
checkers classify a given password as invalid or too short,
until a minimum length requirement is met; most meters also
enforce a maximum length. Some checkers require certain
character sets (charsets) to be included. Commonly distin-
guished charsets include: lower-case letters, upper-case letters,
digits, and symbols (also called special characters). Although
symbols are not always considered in the same way by all
checkers (e.g., only selected symbols are checked), we define
symbols as being any printable characters other than the first
three charsets. One particular symbol, the space character, may
be disallowed altogether, allowed as external characters (at the
start or end of a password), or as internal characters. Some
checkers also disallow identical consecutive characters (e.g., 3
or 4 characters for Apple and FedEx respectively).

(b) Strength scales and labels. Strength scales and labels
used by different checkers also vary. For example, both Skype
and PayPal have only 3 possible qualifications for the strength
of a password (Weak-Fair-Strong and Poor-Medium-Good re-
spectively), while Twitter has 6 (Too short-Obvious-Not secure
enough-Could be more secure-Okay-Perfect).

(¢) User information. Some checkers take into account envi-
ronment parameters related to the user, such as her real/account
name or email address. We let these parameters remain blank
during our automated tests, but manually checked different ser-
vices by completing their registration forms with user-specific
information. Ideally, a password that contains such information
should be regarded as weak (or at least be penalized in the
score calculation). However, password checkers we studied
vary significantly on how they react to user information in
a given password; more detail is provided in Section V.

(d) Types. Based on where the evaluation is performed, we
distinguish three main types of password checkers as follows.
Client-side: the checker is fully loaded when the website is
visited and checking is done locally only (e.g., Dropbox,
Drupal, FedEx, Microsoft, Twitter and Yahoo!); server-side:
the checker is fully implemented on server-side (e.g., eBay,

TABLE L

PASSWORD REQUIREMENTS AND CHARACTERISTICS OF DIFFERENT WEB SERVICES; SEE SECTION II FOR DETAILS. NOTATION USED UNDER

“MONOTONICITY”: REPRESENTS WHETHER ANY ADDITIONAL CHARACTER LEADS TO BETTER SCORING (NOT ACCOUNTING FOR USER INFORMATION
CHECK). “USER INFO”: O (NO USER INFORMATION IS USED FOR STRENGTH CHECK), AND © (SOME USER INFORMATION IS USED OR ALL BUT NOT FULLY
TAKEN INTO ACCOUNT). UNDER “CHARSET REQUIRED”, WE USE 1+ TO DENOTE “ONE OR MORE” CHARACTERS OF A GIVEN TYPE. THE “ENFORCEMENT”

COLUMN REPRESENTS THE MINIMUM STRENGTH REQUIRED BY EACH CHECKER FOR REGISTRATION COMPLETION: & (NO ENFORCEMENT); AND OTHER
LABELS AS DEFINED UNDER “STRENGTH SCALE”.

. Length limits . - . Space acceptance
Service Type Strength scale Ming Nax Charset required | Monotonicity | User info Egternal i)nternal Enforcement
Dropbox Very weak, Weak, So-so, Good, Great 6 72 %) No © v v %)
Drupal Weak, Fair, Good, Strong 6 128 %] Yes [} X v %]
FedEx Very weak, Weak, Medium, Strong, 3 35 1+ lower, 1+ Yes o % « Medium
R X Very strong upper, 1+ digit
Microsoft | CHent-side Weak, Medium, Strong, Best 1 — %] Yes O 4 v %]
Invalid/Too short, Obvious, Not secure
Twitter enough (NSE), Could be more secure 6 >1000 1% No © v v CMS
(CMS), Okay, Perfect
Yahoo! Weak, Strong, Very strong 6 32 %] Yes © 4 v Weak
eBay Invalid, Weak, Medium, Strong 6 20 any 2 charsets Yes © X Ve %]
Google . Weak, Fair, Good, Strong 8 100 %] No O X v Fair
Server-side
Skype Poor, Medium, Good 6 20 2 charsets or Yes o X X Medium
upper only
Apple Hybrid Weak, Moderate, Strong 8 32 u;;elr(,)“ﬁr! di;—it No © X Medium
PayPal Weak, Fair, Strong 8 20 any 2 charsets No @] X X Fair

1 Partially covered in the latest beta version (ver 8), as of Nov. 28, 2013
2 PayPal counts uppercase and lowercase letters as a single charset

Google and Skype); and hybrid: a combination of both (e.g.,
Apple and PayPal). This distinction leads us to different
approaches to automate our testing, as explained in Section III.

(e) Diversity. None of the 11 web services we evaluated use a
common meter. Instead, each service provides their own meter,
without any explanation of how the meter works, or how the
strength parameters are assigned. For client-side checkers, we
can learn about their design from code review, yet we still
do not know how different parameters are chosen. Dropbox
is the only exception, which has developed an apparently
carefully-engineered algorithm called zxcvbn [35]. Dropbox
also provides details of this meter and open-sourced it to
encourage further development.

(f) Entropy estimation and blacklists. Every checker’s
implicit goal is to determine whether a given password can be
easily found by an attacker. To this end, most employ a custom
“entropy” calculator, either explicitly or not, based on the
perceived complexity and length of the password. As discussed
in Section VI, the notion of entropy as used by different
checkers is far from being uniform, and certainly unrelated
to Shannon entropy. Thus, we employ the term entropy in an
informal manner, as interpreted by different meters. Password
features generally considered for entropy/score calculation by
different checkers include: length, charsets used, and known
patterns. Some checkers also compare a given password with a
dictionary of common passwords (as a blacklist), and severely
reduce their scoring if the password is blacklisted.

III. TEST AUTOMATION

For our evaluation, we tested nearly four million of pass-
words against each of the 13 checkers. In this section, we
discuss how we performed such large-scale automated tests.

Client-side checkers. For client-side checkers, we extract
the relevant JavaScript functions from a registration page,
and query them to get the strength score for each dictio-
nary password. Outputs are then stored for later analysis. To
identify the sometimes obfuscated part of the code, we use

the built-in debugger in Google Chrome. In particular, we set
breakpoints on DOM changes, i.e., when the password meter’s
outcome is updated. Such obfuscation may be the result of
code minification (e.g., removing comments, extra spaces,
and shrinking variable names). Fortunately, strength meters
generally involve simple logic, and remain understandable even
after such optimization. As some checkers are invoked with
key-press events, the use of a debugger also simplified locating
the relevant sections. We tested our dictionaries using Mozilla
Firefox, as it was capable of handling bigger dictionaries
without crashing (unlike Google Chrome). Speed of testing
varies from 7ms for a 500-word dictionary against a simple
meter (FedEx), to nearly 10min for a 2-million dictionary
against the most complex meter (Dropbox).

Server-side checkers. Server-side checkers directly send the
password to a server-side checker by an AJAX request without
checking them locally (except for minimum length). We test
server-side checkers using a PHP script with the cURL library!
for handling HTTPS requests to a server-side checker. The
checker’s URL is obtained from the JavaScript code and/or a
network capture. We use Google Chrome to set breakpoints
on AJAX calls to be pointed to the send () 2 call before its
execution. This enables us to inspect the stack, and deduce
how the call parameters are marshaled. We then prepare our
password test requests as such, and send them in batches.

To reduce the impact of our large volume of requests, we
leverage keep-alive connections, where requests are pipelined
through the same established connection for as long as the
server supports it. Typically, we tested more than 4 mil-
lion passwords for each service (the small overlap between
dictionaries was not stripped), and we could request up to
about 1000 passwords through one connection with Skype,
1500 with eBay, and unlimited with Google; as a result, the
number of connections dropped significantly. We also did not
parallelize the requests. On average, we tested our dictionaries
at a speed of 5 passwords per second against Skype, 10 against

Thttp://curl.haxx.se
Zhttp://www.w3.org/TR/XMLHttpRequest/#the-send()- method

http://curl.haxx.se
http://www.w3.org/TR/XMLHttpRequest/#the-send()-method

eBay, 64 against Google (2.5 against PayPal and 8 against
Apple for the server-side part of their checkers), generating a
maximum traffic of 5kB/s of upload and 10kB/s of download
per web service. To our surprise, we did not face any blocking
mechanisms during our tests.

Hybrid checkers. Hybrid checkers first perform a local check,
and then resort to a server-side checker (i.e., a dynamic
blacklist of passwords and associated rules). We combine
above mentioned techniques to identify client-side and server-
side parts of the checker. Our test script runs as a local
webpage, invoking the extracted client-side JavaScript checker.
When the checker wants to launch a request to a remote host,
which is inherently from another origin, we face restrictions
imposed by the same origin policy.® To allow client-side cross-
origin requests, the cross-origin resource sharing (CORS [36])
mechanism has been introduced and is currently implemented
in most browsers. To allow our local script as a valid ori-
gin, we implemented a simple proxy to insert the required
CORS header, Access-Control-Allow-Origin [36], in the
server’s response.

Our local proxy is problematic for keep-alive connections,
as it breaks the direct connection between the JavaScript
code and the remote server. We implemented a simple HTTP
server in the PHP script of the proxy that allows server
connection reuse across multiple client requests. The HTTP
server part waits for incoming connections and reads requests
on which only basic parsing occurs. We also chose to reuse the
XMLHttpRequest object to pipeline requests to our proxy from
the browser. In this configuration, we use a single connection
between the JavaScript code and the proxy, and we use the
same pipelining mechanism as for the server-side checkers
between the proxy and the remote server. Finally, because we
faced browser crashing for large dictionaries tested against
hybrid checkers, we needed to split these dictionaries into
smaller parts and to test them again separately. To prevent
duplicate blacklist checks against the server-side checker (as
we restart the test after a browser crash), we implement a cache
in our proxy which also speeds up the resume process.

IV. TESTED DICTIONARIES

Below, we provide details of the password dictionaries used
in our evaluation.

Overview and notes. Table II lists the 11 dictionaries we used,
including their sizes, and maximum, average and standard
deviation of their password length. Dictionary sources include:
password cracking tools (John the Ripper and Cain & Abel), a
list of 500 most commonly used passwords (Top500), an em-
bedded dictionary in the Conficker worm, and leaked databases
of plaintext or hashed passwords (RockYou and phpBB). We
mostly chose simple and well-known dictionaries (as opposed
to more complex ones, see e.g., [1], [2]), to evaluate checkers
against passwords that are reportedly used by many users. We
expected passwords from these non-targeted dictionaries would
be mostly rejected (or rated as weak) by the meters.

We trimmed passwords used from the leaked databases
by removing leading and trailing spaces, as several checkers
disallow such external spaces (see Table I); however, we kept
internal spaces. Four additional dictionaries are derived by

TABLE II. DICTIONARIES USED AGAINST PASSWORD CHECKERS; +M
REPRESENTS MANGLED VERSION OF A DICTIONARY; THE “LEET”
DICTIONARY IS CUSTOM-BUILT BY US.

Dictionary name Size (# words) lean‘h Al:f:;%e (Slglil;?;g
Top500 499 8 6.00 1.10
Cfkr 181 13 6.79 1.47
JR 3,545 13 6.22 1.40
C&A 306,706 24 9.27 2.77
RYS 562,987 49 7.41 1.64
phpBB 184,389 32 7.54 1.75
Top500+M 22,520 12 7.18 1.47
Cfkr+M 4,696 16 7.88 1.78
JIR+M 145,820 16 7.30 1.66
RY5+M 2,173,963 39 8.23 1.98
Leet 648,116 20 9.09 1.81

using well-known password mangling rules. As we noticed
that our main dictionaries did not specifically consider leet
transformations, we built a special leet dictionary using the
main dictionaries.

As a side note, many passwords in the source dictionaries
are related to insults, love and sex. We avoid mentioning
such words as example passwords. We also noticed poor
internationalization of dictionary passwords in general, where
most of them originate from English. One exception is the
RockYou dictionary, which contains some Spanish words
(possibly due to some RockYou users being originated from
Spanish-speaking countries). Finally, some leaked passwords
contained UTF-8-encoded words that were generally not han-
dled properly by the checkers (also some are malformed UTF-8
strings) [4]. Given their small number in our reduced version
of RockYou dictionary, we chose to ignore them.

Dictionaries sometimes overlap, especially when consid-
ering the inclusion of Top500, Cfkr and JtR among leaked
passwords, e.g., 494 passwords of Top500 are included in RYS5;
see Table III.

A. Cracking tool dictionaries

Top500. This dictionary was released in 2005 as the “Top
500 Worst Passwords of All Time” [5], and later revised as
Top 10,000 [6] passwords in 2011. We use the 500-word
version as a very basic dictionary. Passwords such as 123456,
password, gwerty and master can be found in it. Actually, a
“0” is duplicated in this list, making it have only 499 unique
passwords. Password composition: 91% lowercase letters only,
7% digits only, and 2% lowercase letters and digits.

Cfkr. The dictionary embedded in Conficker worm was used
to try to access other machines in the local network and
spread the infection. Simple words and numeric sequences are
mostly used; example passwords include: computer, 123123,
and mypassword.* Password composition: 52.5% lowercase
letters only, 29.8% digits only, 15.5% lowercase letters and
digits, and 2.2% mixed-case letters.

JtR. John the Ripper [22] is a very common password cracker
that comes with a dictionary of 3,546 passwords, from which
we removed an empty one. Simple words can be found in
this dictionary too; however, they are little more complex than
those in Top500, e.g., trustnol. Password composition: 82.79%

3http://www.w3.org/Security/wiki/Same_Origin_Policy.

4http://www.f— secure.com/v-descs/worm_w32_downadup_al.shtml

http://www.w3.org/Security/wiki/Same_Origin_Policy
http://www.f-secure.com/v-descs/worm_w32_downadup_al.shtml

TABLE IIL

DICTIONARY OVERLAPS (PERCENTAGE RELATIVE TO THE SIZE OF THE DICTIONARY FROM THE LEFT-MOST COLUMN)

Top500 | Cfkr JR C&A RY5 phpBB | Top500+M | Cfkr+M | JtR+M | RY5+M | Leet
Top500 - 6.61 84.37 | 89.18 99 95.99 0 0 22 0 0
Cfkr 18.23 - 45.86 | 46.41 93.92 86.74 2.76 0 3.87 1.66 0
JR 11.88 2.34 - 7334 | 95.99 85.08 6.21 0.59 0 0.82 0
C&A 0.15 0.03 0.85 - 8.59 4.03 0.06 ~0! 0.18 0.23 0
RYS5 0.09 0.03 0.6 4.68 - 7.73 1.22 0.11 4.86 0 ~0
phpBB 0.26 0.09 1.64 6.7 23.61 - 0.74 0.11 2.07 2.19 ~0
Top500+M 0 0.02 0.98 0.75 30.44 6.09 - 4.4 83.84 19.25 0
Cfkr+M 0 0 0.45 0.32 12.73 4.43 21.08 - 43.19 15.82 0
JIR+M 0.01 ~0 0 0.38 18.75 2.61 12.95 1.39 - 17.99 0.01
RY5+M 0 ~0 ~0 0.03 0 0.19 0.2 0.03 1.21 - 0.01
Leet 0 0 0 0 ~0 ~0 0 0 ~0 0.03 -

1 -0 means less than 0.01%

lowercase letters only, 8.12% lowercase letters and digits, 4.4%
mixed-case letters, and few other charset combinations.

C&A. Another password cracking tool, Cain & Abel [23]
comes with a 306,706-word dictionary that primarily consists
of long lowercase words (e.g., constantness, psychotechnolog-
ical). The composition of passwords is quite unique: 99.84%
lowercase letters only. The rest is shared among lowercase
letters and symbols (0.09%), lowercase letters and digits
(0.05%), few digits only, symbols only, and lowercase letters
with digits and symbols.

B. Real password database leaks

RYS5. RockYou.com is a gaming website that was subject to
an SQL injection attack in 2009, resulting in the leak of 32.6
million cleartext user passwords. This constitutes one of the
largest real user-chosen password databases as of today. There
are only 14.3 million unique passwords, which is still quite
large for our tests. We kept only the passwords that were
used at least 5 times, removed space-only passwords (7) and
duplicates arising from trimming (5). The resulting dictionary
has 562,987 words, of which 39.96% are lowercase letters
only, 36.39% lowercase letters and digits, 17.11% digits only,
1.93% uppercase letters only, and the rest consists of several
charset combinations.

phpBB. The phpBB.com forum was compromised in 2009
due to an old vulnerable third-party application, and the
database containing the hashed passwords was leaked and
mostly cracked afterwards. Due to the technical background
of users registered on this website, passwords tend to be a
little more sophisticated than trivial dictionaries. Password
composition: 41.24% lowercase letters only, 35.7% lowercase
letters and digits, 11.24% digits only, 4.82% mixed-cased
letters and digits, 2.68% mixed-case letters, and the rest is
made of different charset combinations.

C. Mangling

Users tend to modify a simple word by adding a digit or
symbol (often at the end), or changing a letter to uppercase
(often the first one), sometimes due to policy restrictions [8],
[18], [7]; for details on this wide-spread behavior, see e.g.,
Weir [32]. Password crackers accommodate such user behavior
through the use of mangling rules. These rules apply different
transformations such as capitalizing a word, prefixing and
suffixing with digits or symbols, reversing the word, and
some combinations of them. For example, password can be
transformed into Password, Passwordl, passwords and even
Drowssap. John the Ripper comes with several mangling rules

(25 in the wordlist mode), which can produce up to about 50
passwords from a single one.

We applied John the Ripper’s default ruleset (in the wordlist
mode) on Top500, Ctkr, and JtR dictionaries, generating an
average of 45, 26 and 41 passwords from each password in
these dictionaries, respectively. Derived dictionaries are called
Top500+M, Cfkr+M, JtR+M respectively. Original passwords
with digits or symbols are excluded by most rules, unless
otherwise specified. We chose not to test the mangled version
of C&A as it consists of 14.7 million passwords (too large
for our tests). Given that the original size of RYS is already
half a million passwords, mangling it with the full ruleset
would be similarly impractical. For this dictionary, we applied
only the 10 most common rules, as ordered in the ruleset and
simplified them to avoid redundancy. For example, instead of
adding all possible leading digits, we restricted this variation
to adding only “1”. We did the same for symbols. The
resulting dictionary is called RY5+M. The rules applied for
RY5 mangling are the following: (a) lowercase passwords
that are not; (b) capitalize; (c) pluralize; (d) suffix with “17;
(e) combine (a) and (d); (f) duplicate short words (6 characters
or less); (g) reverse the word; (h) prefix with “1”; (i) uppercase
alphanumerical passwords; and (j) suffix with “!”. Note that
although these rules are close to real users’ behavior, they are
compiled mostly in an ad-hoc manner (see e.g., Weir [32]). For
example, reversing a word is not common in practice, based
on Weir’s analysis of leaked password databases. At least,
John the Ripper’s rules represent what an average attacker is
empowered with.

D. Leet transformations

Leet is an alphabet based on visual equivalence between
letters and digits (or symbols). For example, the letter E is
close to a reversed 3, and S is close to a 5 or $. Such
transformations allow users to continue using simple words
as passwords, yet covering more charsets and easily bypass
policy restrictions [25]. Leet transformations are not covered
in our main dictionaries, apart from few exceptions; thus, we
built our own leet transformed dictionary to test the effect of
such transformations.

Our Leet dictionary is based on the passwords from
Top500, Cfkr, JtR, C&A, phpBB, the full RockYou dictio-
nary, along with the Top 10,000 dictionary, and a 37,141-
word version of the leaked MySpace password dictionary,’
obtaining 1,007,749 unique passwords. For each of them, we

SCollected from: http://www.skullsecurity.org/wiki/index.php/Passwords

http://www.skullsecurity.org/wiki/index.php/Passwords

first strip the leading and trailing digits and symbols, and then
convert it to lowercase (e.g., PassWord$0 becomes password).
Passwords that still contain digits or symbols are then dropped
(e.g., heredyou), so as to keep letter-only passwords. Passwords
that are less than 6-character long are also dropped, while 6-
character long ones are suffixed with a digit and a symbol
chosen at random, and 7-character passwords are only suffixed
with either a digit or a symbol. At this point, all passwords
are at least 8-character long, allowing us to pass all minimum
length requirements. Those longer than 20 characters are also
discarded. The dictionary was reduced to 648,116 words.

We then apply leet transformations starting from the end of
each password to mimic known user behaviors of selecting dig-
its and symbols towards the end of a password (see e.g., [32],
[13]). For these transformations, we also use a translation
map that combines leet rules from Dropbox and Microsoft
checkers. Password characters are transformed using this map
(if possible), by choosing at random when multiple variations
exist for the same character, and up to three transformations
per password. Thus, one leet password is generated from each
password, and only single character equivalents are considered
(e.g., we do not consider more complex transformations such
as V becoming double slashes: \ /). The resulting Leet dic-
tionary is composed of 77.56% 4-charset passwords, 18.66%
mixed-case letters and digits, 3.72% mixed-case letters and
symbols, and the rest of mixed-case letters only. Arguably,
this dictionary is not exhaustive; however, our goal is to check
how meters react against simple leet transformations. The
near-zero overlap between this dictionary and the leaked ones
(as in Table II) can be explained by the simple password
policies as used by RockYou and phpBB at the time of the
leaks. RockYou required only a 5-character password and even
disallowed symbol characters [13], while phpBB’s 9th most
popular password is /234, clearly indicating a lax password
policy. Thus, users did not need to come up with strategies
such as mangling and leet transformations.

V. METERS EVALUATION

For each password-strength meter evaluated, we present
their general behavior, analyze the way they operate and
discuss their strengths and weaknesses. Only Dropbox, Google,
eBay, Apple and FedEx are presented in this section. Evalua-
tion results of other meters are provided in Appendix A.

A. Dropbox

Dropbox has developed an client-side password strength
checker called zxcvbn [35], and open-sourced it to encourage
others to use and improve the checker. Fig. 1 summarizes our
results for Dropbox.

(a) Algorithm. Zxcvbn decomposes a given password into
patterns with possible overlaps, and then assigns each pat-
tern an estimated “entropy”. The final password entropy is
calculated as the sum of its constituent patterns’ entropy esti-
mates. The algorithm detects multiple ways of decomposing a
password, but keeps only the lowest of all possible entropy
summations as an underestimate. An interesting aspect of
this algorithm is the process of assigning entropy estimates
to a pattern. The following patterns are considered: spatial
combinations on a keyboard (e.g., qwerty, zxcvbn, qazxsw);
repeated and common semantic patterns (e.g., dates, years);

Top500 (T5)
Cfkr (CF)
JIR (JR)
C&A (CA)
RY5 (RY)
phpBB (PB)
Top500+M (TM)
Cfkr+M (CM)
JtR+M (JM)
RY5+M (RM)
Leet (LT)

OEOEOROEOBRDO

So-so

Fig. 1.

Dropbox checker password strength distribution

and natural character sequences (e.g., 123, gfedcba). These
patterns are considered weak altogether, and given a low
entropy count.

To restrict common passwords, a candidate password is
checked against five embedded, frequency-ordered dictionar-
ies: 7140 passwords from the Top 10000 password dictio-
nary [6]; 32544 English words from the Wikitionary project;®
1003 male, 3814 female names and 40582 surnames from the
2000 US Census. The presence of a subpart of the password in
a dictionary is not forbidden or directly penalized in contrast to
other password checkers involving a blacklist in our test. Such
a subpart is assigned an entropy value based on the average
number of trials that an attacker would have to perform,
considering the rank of the subpart in its dictionary.

If no pattern is found for a given subpart of the password,
it is considered a random string. The entropy of such string is
computed based on a simple brute-force attack. For example,
MySuperP4$$wORd is decomposed as my (5.3 bits of entropy
based on a dictionary attack), super (9.4 bits), and a trans-
formed password (about 5 bits; 1.58 for the leet transformation
and 3.45 for the uppercase), which are all found quickly in
the dictionaries; hence this password gets a “very weak” score
(entropy of 19.8 bits). On the contrary, the partially randomly
generated password P4$$wORATBuK9Ye6MZkdyx decomposes
as a transformed password and something that does not match
a dictionary word or pattern; hence, the latter part is considered
to be found only by a brute-force attack (92 bits of entropy),
granting the password a score labeled “great”.

Finally, the entropy is matched to a score by supposing
that a guess would take 0.01 second, and that an attacker can
distribute the load on 100 computers. Then, the average time
needed (in seconds) is computed as: 2°7#7°Py—1 x 0.01/100.
Thresholds are applied to map the average cracking time to
a strength in the following way: very weak if less than 102
seconds, weak if less than 10%, so-so if less than 10°, good if
less than 108, and great otherwise.

(b) User information. The first and last names and the email
address of a registering user are added to a new dictionary in
the algorithm to weaken the strength of a password containing
these user-specific registration items. The part of the password
that matches any registration item, even if transformed, is
assigned a very low entropy. It is given 1 bit if it matches the
first name, 1.58 for the last name, and 2 for the email address
(because of the rank in the dictionary). Additional bits are
assigned for transformations and uppercased letters. Overall,
a password reusing a registration item will be significantly

Shttp://en.wiktionary.org/wiki/Wiktionary:Frequency_lists

http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists

weakened. However, there is a programming error that allows
most users to bypass this filter, even unknowingly. If an item
contains an uppercase letter (a probable case for the names),
it will not be detected as a pattern, and thus a password with
such items will not be weakened accordingly.

(c) Strengths. Zxcvbn considers the composition of a pass-
word more thoroughly than all other checkers in our test,
resulting into a more realistic evaluation of the complexity of a
given password. In this regard, it is probably the best checker.
Zxcvbn also assigns good scores to a password composed of
multiple words, based on the assumption that having several
words together, even when taken from a known dictionary,
generally yields stronger passwords than (transformed) single-
word passwords.

(d) Weaknesses. The simple transformation of reversing the
character order in a word (as found in John the Ripper’s
default mangling rules), often generates “Great!” passwords
out of very simple dictionary words. For instance, ehcsroP (the
reverse of Porsche) or retupmoC (the reverse of Computer)
mangled from words found in the Top500 dictionary are
qualified as great. In addition, zxcvbn dictionaries include only
English words, and thus are unable to catch commonly used
words in other languages; e.g., Motdepasse is the French equiv-
alent of Password and is considered as great, and contrasefias
(Spanish equivalent in lowercase) is good. As for the keyboard
combinations, some design limitations fail to catch patterns
like la2s3d4f5g, tagged as great.

As zxcvbn promotes the use of passwords consisting of a
combination of common words such as correcthorsebatterysta-
ple,” many words from C&A are considered as good (9.4%), or
even great (5.5%), as they mostly consist of long words (often
a combination of simple words). Zxcvbn, however, fails for
some trivial passwords that are not listed in its internal dictio-
nary, e.g. from RYS5, evanescence, SEPULTURA (an American
rock band and a Brazilian heavy metal band, respectively) and
dolce&gabana (an Italian luxury industry fashion house) are
considered great. This highlights an important limitation of
fixed embedded dictionaries. Finally, it is interesting to note
that even though Dropbox made an effort to build a better-
than-average password-strength meter, they do not enforce a
minimum strength during the registration process, letting users
register with a possibly very weak password.

B. Google

Google also uses a fully server-side checker (similar to
eBay). Once the minimum requirement of 8 characters is met,
an AJAX query to the server-side checker is made. Unlike
eBay, the username and email address are not sent to the
checker. Fig. 2 summarizes our results for Google.

(a) Algorithm. Google’s checker is difficult to reverse-
engineer because of its inconsistent output at times. Consider
the following examples: festtest is weak and festtest0 is strong,
but testtest] is fair, testtest2 is good and festtest3 is strong
again. It is no surprise that a simple repetitive string, like
testtest, followed by a digit is considered weak, but generating
such a variety of scores for so minor changes is difficult to
comprehend. In addition, we found that fest/234 and Test1234
are weak, while TesT1234 is fair, TeSti234 is good, and

Thttps://www.xked.com/936/

o

S

e

o |

@

o |

©

o |

<

3

o e

SO gg.-;mm%
g 5388
gL

- >4 TSt
OELHOP
Good

Fig. 2. Google checker password strength distribution

TEst1234 and tEst1234 are strong. From these results, one can
approximate that a first letter uppercase is not as rewarding
as another letter being uppercased, and that a pattern of first
and last letter uppercase is labeled as intermediate. If this
approximation is true, then many commonly used patterns
would be penalized. However, Google’s checker is ranked first
and third in terms of yielding “strong” passwords from our
base and mangled dictionaries, respectively (see Section VI
for more comparison).

As we can find examples such as huntings being rated
as strong and rainbows as weak, it appears that a blacklist
check is run, although it is unclear whether any widely known
dictionaries are included in the list. Simple dictionaries like
Top500, JtR and Cfkr are too weak to pass the 8-character
requirement; however, mangled versions of these dictionaries
yield many strong passwords. We also noticed some jumps
between weak and strong strength scores by the addition of a
simple character, e.g., password0O and password0O+. This may
be due to an exact blacklist check that fails to recognize the
latter as a common word because of the extra character (+).

We also found that strength scores significantly vary with
time. When performing our tests (between June-July 2013),
we waited two weeks before testing the dictionaries again.
Overlapping passwords between dictionaries tested before and
after the two-week period, were qualified differently. A total of
1700 common passwords between JtR+M, RY5 and phpBB are
evaluated differently. Usually, the difference remains limited
to one strength level (better or worse). For example, overkill
went from weak to fair, canadacanada from fair to good,
and anythings from good to strong, while startrek4 went from
strong to good, Iloveyou5 from good to fair, and baseball! from
fair to weak. We again tested the dictionaries 5 weeks later,
and found that some of the passwords, which had their scores
changed in the second test, were reverted back to their original
ones (first test).

In another run of our experiments in November 2013, we
found that repeated tests of a password, e.g., a dozen times
in the same minute, can lead to different outcomes. These
fluctuations may indicate the use of a dynamic or adaptive
password checker. Irrespective of the nature of the checker,
users can barely make any sense of such fluctuations. Finally,
Google explicitly rejects any complex symbols or international
characters by mentioning that only “common punctuation” is
allowed (the candidate password’s strength drops down to too
short otherwise).

(b) Weaknesses. Simple dictionary passwords can easily reach
a good or strong strength. Examples include: access/4 in

https://www.xkcd.com/936/

Top500 (good) or Accessi14 when mangled (strong), slideshow
and samplel23 (good), and morecats (strong). Only a few pass-
words in our tests fall between weak and strong, and it is fairly
easy to slightly change a weak password to make it strong, e.g.,
by simply changing one letter to uppercase and/or adding a
leading digit or symbol. A typical example is database, which
is weak, but Database, database0 and database+ are strong.
However, for the weak password internet, Internet remains
weak, internetQ is fair and internet+ is strong.

Google’s registration form suffers from a hysteresis phe-
nomenon. When as password reaches 8 characters, it gets
evaluated for the first time (other than too short). Then, if
the user deletes the 8th character, the strength returns to too
short. However, if the user re-enters the same character again,
the strength doesn’t change and stays as too short. Hence, the
same 8-character password can be categorized as too short or
strong depending on how it is typed, e.g., typing R4m51sWd
then removing and adding back the last “d”.

C. eBay

eBay employs a server-side checker. Each input character
after the minimum length of 6 characters, triggers an AJAX
call to the server-side checker. This call also includes the user’s
email address and chosen user ID. The response provides the
password’s strength along with different messages for the user.
Fig. 3 summarizes our results for eBay.

(a) Algorithm. A password is considered as invalid and is not
sent to the server-side checker before it matches the length
requirement. (In July 2013, eBay introduced a “Too short”
feedback to replace the term invalid for short passwords.)
The checker requires passwords to cover any two charsets;
thus, many words from Top500, C&A and JtR are considered
invalid. As a side-effect, concatenation of simple words always
leads to weak passwords (in contrast to Dropbox).

Based on our tests, it seems that the server-side algorithm
is fairly simple but quite stringent on the number of charsets
used: a single-charset password is invalid, two is weak, three
is medium and four is strong. The password length becomes
irrelevant, once passed the minimum requirement (similar to
Drupal, see in appendix). To validate our observations, we
compared the results with a checker we built specifically to
apply the above policy only. We found that the results are
very similar. By examining the differences, we noticed that
eBay’s checker considers only ~!@#$ " &x—+ as symbols and
the remaining special characters do not influence the strength.
The server-side functionality is apparently equivalent to our
20-line JavaScript code. Also, passwords fully composed of
unrecognized symbols do not receive any strength score (e.g.,
for %()_{}, the checker returns an empty value).

(b) User information. eBay prevents a user from choosing
a password similar to her user ID, taking into account case
changes and few leet transformations as found in our test. For
example, having leettest as the user ID, the passwords LeetTest
L3ettest and LEETTEST are invalid; L33ttest and [EEtt3st are
medium; and LeetT3st+ is strong. In Table I, we rate eBay’s
checker as partially taking registration items into account, due
to the exclusion of a user’s real name from the check.

(c) Weaknesses. eBay does not consider any password as
strong from our test dictionaries except few passwords from
phpBB and RYS5, in which we can find few relatively simple

80 100
| |

355372

60
|

40

oY
cococoBbococoo

WhEL>HMSE S S H
FOPROKMLEOREA

Invalid

Strong

Fig. 3. eBay checker password strength distribution

passwords being labeled as strong, e.g., P@sswOrd, 0bIW@n,
sp3ciaL**, phpBB2! and pOpm@iL (found in the phpBB
dictionary). These are simple leet transformations of common
words with possibly leading special characters. Also, several
common passwords are categorized as of medium strength,
including, Luckyl, Abcl23 and Passwordl. Simply covering
all four charsets is also enough by design to get a strong score,
e.g., AAaal+, resulting high scores for our leet dictionary.

D. Apple

The client-side/in-browser part of Apple’s hybrid meter
first checks if a password meets the policy requirements: 8-
character long, has one lowercase, one uppercase, one digit,
and does not include more than two identical consecutive
characters. The password is then checked against a server-side
blacklist. Blacklisted passwords are disallowed, irrespective of
their strength as measured by the client-side checker. Fig. 4
summarizes our results for Apple. Note that we have created
an extra category to group blacklisted passwords, even if they
are categorized as moderate or strong.

(a) Client-side algorithm. The client-side part of the al-
gorithm is based on an increasing-only score, adjusted by
some rules with associated weights. The score is higher
if a password contains more characters (by ranges of 6-
7, 8-15 and 16+ characters). Having the following features
also cumulatively contributes to higher scores: at least an
uppercase letter; one or two digits; three digits or more; at
least a symbol; symbols separated by other characters (thus,
encouraging symbols inside a password rather than at the
ends); lower and uppercase letters; alpha-numerical characters;
and alpha-numerical-symbol characters. This algorithm clearly
encourages charset complexity. Similar to FedEx and eBay
checkers, Apple’s considers only ! @#$% " & ?_, ~ as symbols
(remaining special characters do not influence the strength but
are counted in the password length). Once a password passes
all requirements, it is at least tagged as “moderate”, hence
we report this strength in the enforcement column for Apple
in Table I (even though a password can be rated as “strong”
while not passing all requirements).

(b) Blacklist check. Apple does not provide any information
about the blacklist checker. However, it is apparent from our
results in Fig. 4 that the blacklist contains Top500, JtR and
C&A, albeit modified versions, which may explain the small
percentage of dictionary words that still passes the blacklist
check. This is also supported by some example passwords from

o
S 4
—
o]
(<5
o
©
o
< -
&
o | =
) 4‘]
©lb <
o coondBroooT
N A S S S S
HOPLUXABHOLMA

Blacklisted

Moderate Strong

Fig. 4. Apple checker password strength distribution

these dictionaries; e.g., a rather unusual password, Protransub-
stantiationl, taken and mangled from C&A, is blacklisted. It
appears that digits are removed from the dictionaries and only
core words are kept in the blacklist. Passwords that do not pass
the requirements during the client-side check, can still reach
a moderate or strong strength; such passwords when modified
to comply with the requirements, may then be blacklisted. For
example, Passwordl and Alb2c3d4 pass the client-side check,
as they are long enough and satisfy charsets requirements, but
fail the blacklist test (although they are labeled as moderate).

Many simple mangled passwords with the first letter up-
percase and a terminal digit are caught by the server-side
checker. For a given password, e.g., Franklinl23, apparently
the following steps are performed: the password is stripped
from trailing digits, giving Franklin, and is then checked
against a blacklist, disregarding its letter-case. For some base
words like Franklin, up to three trailing digits are stripped
during the blacklist check, but only one digit is removed for
words such as Adorable. This behavior seems to originate
from non-trivial rules that we cannot explain from our tests.
However, adding extra terminating digits, and/or starting digits,
easily bypasses the blacklist check.

(c) Strengths. Apple’s blacklist is the most comprehensive
one among our tested checkers, with known common password
dictionaries included in it. Also, while Apple imposes stringent
requirements for passwords to be accepted, all passwords
receive an evaluation score while being typed; thus, a user is
guided towards a better choice of characters from the beginning
of the password composition. (On the contrary, FedEx waits for
the requirements to be met first, before evaluating a password.)

(d) Weaknesses. Apple’s policy requires that passwords
should “not contain identical consecutive characters.”® How-
ever, in practice, this restriction is too weak to catch repetitive
patterns in some cases; e.g., P4sswOrd is blacklisted but
P4sswOrdP4sswOrd is labeled as strong. We also noticed that
the blacklist check response times vary significantly—ranging
from less than a second up to more than a minute. Very
few dictionary passwords are considered strong, even when
mangled. However, examples of strong passwords also include:
P@sswOrd!, P@55w0rd and Robot123! (mangled versions of
simple passwords). Finally, a strong password can be black-
listed as it is the case for Pa$$wOrd, which is a unique state
among other checkers.

Shttps://appleid.apple.com/cgi-bin/WebObjects/MyAppleld.woa/wa/
createAppleld

E. FedEx

FedEx allows its users to register an online account to facil-
itate simple services such as shipment handling and tracking.
Interestingly, FedEx’s password checker is quite stringent even
though FedEx hosts arguably far less sensitive information
compared to other services in our evaluation; see Fig. 5 for
summary results.

(a) Algorithm. The client-side checker is a simple 130-line
JavaScript program with an embedded 566-word dictionary.
Passwords containing any dictionary word is labeled as weak
or very weak. The checker is aware of leet transformations, and
normalizes a given password by reversing the transformation
(if found). The password is also converted to lowercase before
comparing it against the dictionary. These rules significantly
weaken many passwords such as P@35WOrD. Each strength
level has specific rules to be matched. A password is very weak
until it passes the basic requirements: 8 characters in length,
the use of characters from three charsets (lowercase, uppercase
and digit), and no three identical consecutive characters. The
password can reach a medium strength if it has at least 4 unique
characters and is not in the dictionary. The password becomes
strong when it has 9 characters or more, in addition to at least
6 unique characters. Very strong passwords must be at least
10 characters long and have at least 6 unique characters; or
9 characters long, 6 unique characters and have at least one
symbol. Only the characters ! @#$% "~ &2, ~ are considered in
the symbols set (remaining other characters do not influence
the strength but are counted in the password length). In contrast
to other checkers tested, the password strength is not shown
as a text label but only as a colored meter.

(b) Strengths. The apparently simple algorithm can actually
catch the majority of dictionary passwords in our test. Only a
few passwords from leaked dictionaries are rated as medium
or higher (0.42% for RYS and 3.4% for phpBB). However,
this achievement is partially due to stringent requirements such
as charset diversity covering the 3 charsets and length of 8§,
which may encourage users to turn to simple yet effective
leet/mangling transformations (see also Section VI-B).

(c) Weaknesses. Currently implemented leet transformations
exclude some common conversions (e.g., a <> 4). Also, adding
an extra character anywhere in the password defeats the
dictionary check, as the algorithm expects an exact match only
(equality test on lowercased strings). Hence, P@35WOrD! is
very strong, but P@Q$5WOrD is weak. Most entries from the
blacklist dictionary are also never used, as a blacklist check is
performed only on passwords that meet the minimum length
requirement (8 characters), but 383 (68%) of the dictionary
words are less than 8 characters long. Among the remaining
183 blacklisted words, three of them contain digits that are leet
de-transformed from the candidate password prior to checking
against the dictionary; e.g., the password /234Qwer (found in
the blacklist in lowercase) is first converted to [ze4gwer, which
in turn is not found in the dictionary and assigned a medium
score (instead of weak as possibly intended). The resulting
180-word blacklist is only able to catch 210 passwords (0.03%)
of our leet dictionary (rated as weak). Even the password
policy is more efficient against this dictionary as 3.8% of it
are rejected and tagged as very weak (lack of digits).

Also, a password not meeting the basic requirements (e.g.,
including characters from multiple charsets) cannot be better

https://appleid.apple.com/cgi-bin/WebObjects/MyAppleId.woa/wa/createAppleId
https://appleid.apple.com/cgi-bin/WebObjects/MyAppleId.woa/wa/createAppleId

AR S 5
HORURLEOREA

Weak

H 0EEMa>mE
a

Strong Very Strong

Fig. 5.

FedEx checker password strength distribution

than very weak, implying that long memorable passwords
(single-case passphrases) are denied in favor of more complex
ones. This effectively bans all non-mangled cracking dictionar-
ies. Among the mangled ones, although there is one rule that
includes a first letter uppercase and a leading digit, few pass-
words are long enough to be considered strong or very strong.

VI. RESULTS ANALYSIS

In this section, we further analyze our results and list some
insights as gained from this study.

A. Meters heterogeneity and inconsistencies

In general, each meter reacts differently to our dictionaries,
and strength results vary widely from one to another. For
example, Microsoft v2 and v3 checkers assign their best score
to only a very small fraction of our passwords, while Google
assigns its best score to almost 2.2 million of them (about
56%). For individual checkers, some simple dictionaries score
significantly higher than others, e.g., Top500 and JtR when
tested against Twitter. 75% of Top500 words are considered
obvious and the rest are too short; however, 58% of JtR
words are considered “Could be More Secure” (2 or 3 steps
up from Top500). As for individual passwords, probably one
of the most stunning result is Passwordl that receives the
widest panel of possible scores, ranging from very weak for
Dropbox to very strong for Yahoo!. It also receives three
different scores by Microsoft checkers (i.e., strong, weak and
medium chronologically). While our leet dictionary is mostly
considered strong by Microsoft v1, it becomes mainly weak
in v2, and finally medium in v3. Such inconsistent jumps
demonstrate the relativity of password strength even by the
same vendor at different times.

Some inconsistencies are particularly evident when a pass-
word passes the minimum requirements. For example, pass-
word$1 is correctly assigned very-weak by FedEx, but the
score jumps to very-strong when the first letter is uppercased.
Such modifications are normally considered very early in a
cracking algorithm; hence such a jump is unlikely to match
reality. Similarly, gwerty is tagged as weak by Yahoo!, while
gwertyl jumps to strong; password0 as weak and password0+
as strong by Google. Finally, as expected, a random password
+vI16#5{](is rated as strong by most checkers (or at least
medium by Microsoft v3 and eBay); surprisingly, FedEx
considers it as very-weak. These problems can be mostly
attributed to the stringent minimum requirements.

Password Multi-Checker

password$1
Services Strength scores

Apple Moderate 2/3
Dropbox Very Weak 1/5
Drupal Strong 4/4
eBay Medium 4/5
FedEx Very Weak 1/5
Google Fair 3/5
Microsoft (v1) Strong 3/4
Microsoft (v2) Medium 2/4
Microsoft (v3) Medium 2/4
PayPal Weak 2/4
Skype Poor 1/3
Twitter Perfect 6/6
Yahoo! Very Strong 4/4

Fig. 6. Password multi-checker output for password$1. A strength score of
“2/3” denotes the relative position (2) in a given strength scale (3).

One possible consequence of these heterogeneous behav-
iors is the confusion of users with regard to the security
of their passwords. When opposite strength values are given
for the same password by different services, users may not
understand the reason behind it, which may decrease their
trust and willingness to comply with password policies. It
may also encourage them to search for easy tricks to bypass
stringent restrictions rather than reconsidering their password.
Also, permissive meters may drive users to falsely assume their
weak password as strong, and provide only a false sense of
security (cf. Heijningen [13]), which in turn may encourage
users to reuse such weak passwords for other more sensitive
accounts. However, the real effects of wrong/incoherent meter
outcomes on users may be demonstrated only by a large-scale
user study.

Web-based password multi-checker. We combine the func-
tionalities of all tested checkers in a web-based password
multichecker that computes the strength of a given password
against all checkers in realtime; see Fig. 6 for a screenshot of
the tool. Inconsistencies (if exist) in password rating become
instantly evident from the output of a given password. This tool
can also be used to choose a password that is considered strong
by all meters, increasing the chances of that password being
effectively strong. Finding such passwords may also help users
select few strong passwords to reuse, but note that although
password reuse is a common practice, it is generally considered
bad for security. The tool is available at: https://madiba.encs.
concordia.ca/software/passwordchecker/index.php.

B. Targeted dictionary for FedEx

From the results in Fig. 5, it may appear that FedEx’s meter
is nearly optimal in detecting the most common passwords.
However, such results may be misleading as our dictionaries
are selected to uncover only the general weaknesses of widely-
used meters. A more targeted dictionary may reveal specific
weaknesses of a given meter. To evaluate this hypothesis, we
built a combined dictionary using words from Top500, JtR
and Cfkr. We then applied slightly more refined mangling

https://madiba.encs.concordia.ca/software/passwordchecker/index.php
https://madiba.encs.concordia.ca/software/passwordchecker/index.php

rules that are consistent with [32], [13], namely: (a) capitalize
and append a digit and a symbol; (b) capitalize and append
a symbol and a digit; (c) capitalize and append a symbol and
two digits; and (d) capitalize, append a symbol and a digit and
prefix with a digit. We then removed the passwords below 8
characters, resulting in a dictionary of 121,792 words (only
4 symbols and 4 digits are covered for simplicity). 60.9%
of this dictionary is now very-strong, 9.0% is strong, 29.7%
is medium, and the rest is very-weak (due to repetitions of
the same character). Thus, the FedEx checker is particularly
prone to qualify easy-to-crack mangled passwords as of decent
strength, as it cannot detect the core word anymore. One
evident weak point in the algorithm is the way a password
is searched in the dictionary, which checks for equality with
the entire password, rather than searching for dictionary words
as a substring of the password.

C. Comparison

In Section V, we provide results of individual meter
evaluation. Here, we compare the meters against each other.
As strength scales vary significantly in terms of labels and the
number of steps in each scale (see Table I), we simplified the
scales for our comparison. Fig. 7 and 8 show the percentage
of the dictionaries that are tagged with an above-average score
by the different web services, sorted by decreasing cumulative
percentages. To be conservative, we choose to count only
the scores labeled at least “Good”, “Strong” or “Perfect”.
Clearly, such scores should not be given to most of our test
set (possible exceptions could be the complex passwords from
leaked dictionaries).

In reality, Google, Drupal and Yahoo! assign decent scores
to passwords from our base dictionaries; see Fig. 7. Significant
percentages of Top500, Cfkr and JtR are qualified as good by
Drupal and Yahoo!, which are about 1.6%, 15.5%, and 12%
respectively for both checkers. Also, roughly 40% of RY5 and
45% of phpBB passwords are tagged as good by both Drupal
and Yahoo!. This similarity in the results possibly originates
from the simple design of their meters, which perform similar
checks. Google assigns good scores to 71.2% of C&A, 28.6%
of RY5 and 44.5% of phpBB. Other checkers mostly categorize
our base dictionaries as weak.

The mangled and leet dictionaries trigger more distinctive
behaviors. Drupal, Yahoo! and Google still provide high scores
with a minimum of 63% given to RY5+M and up to 100% to
Leet. Google also rates 100% of Leet as good or better. Leet
also completely bypasses Microsoft vl and PayPal. Overall, it
also scores significantly higher than other dictionaries against
FedEx, eBay, Twitter, Dropbox, Skype, Microsoft v2 and
Apple. Only Microsoft v3 is able to catch up to 98.9% of
this dictionary (due to the use of a very stringent policy).

D. International characters

We have not tested passwords with international characters
due to the lack of dictionaries with a considerable number of
such passwords. International characters are also usually not
properly handled for web passwords (see e.g., Bonneau and
Xu [4]). We briefly discuss how such characters are taken into
account for strength calculation by different checkers.

11

International characters, when allowed, are generally con-
sidered as part of the symbols charset (or “others” by Microsoft
v2). However, this charset is limited to specific symbols
for Apple, eBay, FedEx, Google, Microsoft, PayPal, Skype,
Twitter, and Yahoo! (that is, all except Dropbox and Drupal).
Google prevents the use of international characters altogether,
while Apple allows some of them below ASCII code 193 but
does not count them in the any charset.

As for character encoding, passwords in the tested
server-side and hybrid checkers are always encoded in UTF-8
prior to submission. This is because the registration pages
are rendered in UTF-8, and browsers usually reuse the
same encoding for form inputs by default [4]. Passwords
are also correctly escaped with percentage as part of the
URI encoding by eBay, Skype and Apple (Google disallows
non-ASCII characters altogether). However, PayPal shows an
interesting behavior in our tests: it sends the HTTP Content-
Type header application/x-www-form-urlencoded;
charset=UTF-8, meaning that a properly URI encoded
string is expected as POST data. However, no encoding
is performed and characters that require escaping are sent
in a raw format, e.g., search_str=myspacel&PQne) ! (4,
where the password is myspacel &PQne)!(4. The character &
interferes with the parsing of search_str argument and
the remaining of the password (PQne) ! (4) is dropped from
the check. Then, because myspacel is blacklisted, the entire
password is blacklisted. However, removing the ampersand
makes the entire password being evaluated, which in turn is
not blacklisted, and even tagged as strong. UTF-8 characters
are also sent in a raw format (the proper Content-Type should
be multipart/formdata in this case [4]). To get the same
output as the PayPal website, we carefully implemented this
buggy behavior in our tests and multichecker tool.

E. Implications of design choices

Client-side checkers as tested in our study can perform
either very stringently (e.g., FedEx, Microsoft v2), or very
loosely (e.g., Drupal). Server-side checkers may also behave
similarly (e.g., Skype vs. Google). Finally, hybrid checkers
behave mostly like client-side checkers with an additional
(albeit primitive) server-side blacklist mechanism. Apparently,
no specific checker type outperforms others. Nevertheless,
server-side checkers inherently obscure their design (although
it is unclear how these checkers are benefited by such a choice).
Along with hybrid checkers, a blacklist can be updated more
easily than if it is hard-coded in a JavaScript code. Most
checkers in our study are also quite simplistic: they do not
perform extended computation, but rather apply simple rules
with regard to password length and charset complexity, and
sometimes detect common password patterns. This remark also
stands for server-side checkers that would eventually mandate
a server’s computation power Dropbox is the only exception,
which uses a rather complex algorithm to analyze a given
password by decomposing it into distinguished patterns. It is
also the only checker able to rate our leet dictionary most
effectively, without depending on stringent policy requirements
(as opposed to Microsoft v2 and v3 checkers).

14.9%

Drupal Yahoo! Dropbox Microsoft

100%
100%
100%

| 99.79%

PayPal

E0ECOEO
o
®
>

R 3

FedEx Twitter Skype eBay

Comparison between services assigning decent scores to our base dictionaries (Microsoft is represented by its latest checker)

Top500+M
Cfkr+M
JtR+M
RY5+M
Leet

OoEROomED

54.8%
50.3%

37.2%

19.6%

0.9%
1.3%
1.1%

22 2R R 2 2
5 58 55388) S

0%

Drupal Yahoo! FedEx

Google

PayPal

Fig. 8.
F. Stringency bypass

Users may adopt simple mangling rules to bypass password
requirements and improve their password strength score [27].
However, all checkers (except Apple and Dropbox), apparently
disregard password mangling. Even trivial dictionaries when
mangled, easily yield better ranked passwords. For example,
Skype considers 10.5% of passwords as medium or better,
when we combine (Top500, C&A, Cfkr and JtR) dictionaries;
for the mangled version of the combined dictionary, the same
rating is resulted for 78% of passwords. This gap is even more
pronounced with Google, where only five passwords from the
combined dictionary are rated strong (0.002%), while tens of
thousands from the mangled version (26.8%) get the same
score. Our mangled dictionaries are built using only simple
rules (e.g., do not result in 4-charset passwords). Our leet-
transformed dictionary, which contains 4-charset passwords,
appears to be highly effective in bypassing password require-
ments and resulting high-score passwords; see Fig. 8.

G. Google checker hypothesis

Based on our test results, it is difficult to model Google’s
server-side checker. We explained discrepancies in Section V-B
by providing strange examples, where for a given charset
structure, a leading digit not only has an importance for the
charset diversity, but the value of the digit itself also appears
to be significant. We showed that testtestO is strong, while
testtest] is only fair. We also noticed that strength scores
fluctuate in time for no apparent reason. We speculate that
Google’s scoring algorithm might be based on a dynamic
mechanism (cf. password popularity [25]), which may explain
the change of strength for some passwords with time, and why
the particular value of digits is of importance in a password.

12

Twitter Microsoft

Dropbox

Skype Apple

Comparison between services assigning decent scores to our mangled and leet dictionaries (Microsoft is represented by its latest checker)

H. Password policies

Some password policies are explicitly stated (e.g., Apple
and FedEx), and others can be deduced from their algorithms
or outputs. However, policies as used for measuring strength
remain mostly unexplained to users. Differences in policies
are also the primary reason for the heterogeneity in strength
outcomes. Some checkers are very stringent, and assign scores
only when a given password covers at least 3 charsets (e.g.,
FedEx), or disallow the password to be submitted for blacklist
check unless it covers the required charsets and other possi-
ble requirements (e.g., Apple, PayPal), while other checkers
apparently promote the use of single-charset passphrases.
Policies also widely vary even between similar web services.
Interestingly, email providers such as Google and Yahoo! that
deal with a lot of personal information, apply a more lenient
policy than FedEx, which arguably hosts far less sensitive one.

VII. DISCUSSION

In this section, we discuss more general concerns related
to our analysis.

(a) Implications of online vs. offline attacks. The strength of
a password should represent the amount of effort an adversary
must employ to break the password (see e.g., [8]). When
mapping entropy or guessability to a strength score, in effect,
we estimate the time needed by an attacker for guessing
a particular password. However, such an estimate will be
very different depending on the type of password guessing
attack considered, i.e., online vs. offline (see e.g., [16]).
Few passwords per second may be guessed in an online
attack (before being rate-limited and/or facing CAPTCHA
challenges), while billions per second may be tested in an
offline attack. While it may be reasonable for web services
to consider only online attacks, history proved us time and
again that (hashed) password databases leak more frequently

than we may anticipate, and millions of hashed passwords may
be subjected to offline cracking. Thus, the large difference
in efficiency between online and offline attacks complicates
assigning password strengths. Web services should at least
explain to users what the assigned strength of a given password
may mean.

(b) Password leaks. Real-world password leaks’ complicate
design a reliable meter. A strong leaked password used by a
significant proportion of users, will most likely be integrated
into a general attack dictionary, and thus should be disallowed,
or at least be assigned a lower score. For checker designers,
tracking and incorporating all leaked password databases may
be infeasible in practice. Users also may be confused to
discover that their perfect password not even being allowed
after a while. Thus, considering password leaks, and the
increasing number of users creating new passwords, adaptive
and time-variant checkers (e.g., [8], [15]) may provide more
reliable strength outcome.

(c) Passphrases. Passphrases can offer decent entropy while
being easier to memorize for users [19], [26], as long as they
do not follow simple grammatical structures [24]. However,
most checkers, except Dropbox (and Twitter to some extent),
would rank passphrases at the lower-end in the strength scale.
Checkers basing their score on charset complexity (Drupal,
FedEx, Microsoft v1, Yahoo!, Apple, PayPal) always assign
low scores to passphrases. Other checkers (Apple, Microsoft
v2 and v3) do not grant their best scores unless more charsets
are used.

(d) Relative performance of our dictionaries. As dis-
cussed in Section IV-C and IV-D, the mangling rules and
leet transformations employed in our tests are not carefully
optimized or targeted as they would be by a determined
attacker (cf. [1], [2]). A better designed targeted dictionary may
prove significantly more effective against the meters, as evident
from our test against FedEx (see Section VI-B). We believe
that even if our base/mangled dictionaries are disallowed or
assigned reduced scores, users will try to creatively bypass
such restrictions with other simple patterns (cf. [18], [32]). In
this regard, our analysis is an underestimate as for how real
user-chosen passwords are evaluated by meters.

(e) Directions for better checkers. Several factors may
influence the design of an ideal password checker, includ-
ing: inherent patterns in user choice, dictionaries used in
cracking tools, exposure of large password databases, and
user-adaptation against password policies. Designing such a
checker would apparently require significant efforts. In terms
of password creation, one may wonder what choices would
remain for a regular user, if a checker prevents most logical
sequences and common/leaked passwords.

Checkers must analyze the structure of given passwords
to uncover common patterns, and thereby, more accurately
estimate resistance against cracking. Simple checkers that rely
solely on charset complexity with stringent length require-
ments, may mislead users about their password strength. Full-
charset random passwords are still the best way to satisfy all
the checkers, but that is a non-solution for most users due to
obvious usability/memorability issues. On the positive side, as
evident from our analysis, Dropbox’s rather simple checker is

9For an example collection of leaked password databases, see: http://
thepasswordproject.com/leaked_password_lists_and_dictionaries

13

quite effective in analyzing passwords, and is possibly a step
towards the right direction.

If popular web services were to change their password-
strength meter to a commonly-shared algorithm, part of the
confusion would be addressed. At least, new services that wish
to implement a meter, should not start the development of
yet another algorithm, but rather consider using or extending
zxcvbn [35].

As discussed, current password meters must address several
non-trivial challenges, including, finding patterns, coping with
popular local cultural references, and dealing with leaked pass-
words. Considering these challenges, with no proven academic
solution to follow, it is possibly too demanding to expect a
correct answer to: is a given password “perfect”? We believe
password meters can simplify such challenges by limiting their
primary goal only to detecting weak passwords, instead of
trying to distinguish a good, very good, or great password.
Meters can easily improve their detection of weak passwords
by leveraging known cracking techniques and common pass-
word dictionaries. In contrast, labeling user-chosen passwords
as perfect may often lead to errors (seemingly random pass-
words e.g., geadzcwrsfxvI331 or Ph’nglui mglw’nafh Cthulhu
R’lyeh wgah’nagl fhtagnl may not be as strong as they may

appear [1], [2]).

VIII. RELATED WORK

Below we discuss related work mostly from password
meter and password cracking areas.

In a recent user study, Ur et al. [29] tested the effects of 14
visually-different password meters on user-chosen password
creation. They found that meters indeed positively influence
user behavior and lead to better password quality in general.
Users tend to reconsider their entire password when a stringent
evaluation is given, rather than trying to bypass the checker.
Passwords created under such strict evaluation were signif-
icantly more resistant to guessing attacks. However, meters
with too strict policies generally annoyed users and made
them put less emphasis on satisfying the meters. We focus on
the algorithms behind several currently deployed meters, and
identify weaknesses that may negatively impact regular users.

In another user study, Egelman et al. [11] also reported pos-
itive influence of password meters. This study also considered
context-dependent variations in the effectiveness of meters, and
found that passwords for unimportant accounts are not much
influenced by the presence of a meter. The idea of a peer-
pressure meter design was also introduced, where a user is
given feedback on the strength of her password compared to
all other users of a particular service.

Furnell [12] analyzed password guidelines and policies of
10 major web services. The study primarily relied on stated
guidelines/policies, and used selective passwords to test their
implementation and enforcement. Several inconsistencies were
found, including: differences in meters/policies between ac-
count creation and password reset pages; the vagueness of rec-
ommendations given to users for password strengthening; and
the disconnect between stated password guidelines and effec-
tive password evaluation and enforcement. We provide a more
comprehensive analysis, by systematically testing widely-
deployed password meters against millions of passwords, and
uncovering several previously unknown weaknesses.

http://thepasswordproject.com/leaked_password_lists_and_dictionaries
http://thepasswordproject.com/leaked_password_lists_and_dictionaries

Castelluccia et al. [8] leverage the use of Markov models
to create an adaptive password-strength meter (APSM) for im-
proved strength accuracy. Strength is estimated by computing
the probability of occurrence of the n-grams that compose a
given password. The APSM design also addresses situations
where the n-gram database of a given service is leaked.
APSMs generate site-dependent strength outcomes, instead
of relying on a global metric. The n-gram database is also
updated with passwords from new users. To achieve good
strength accuracy, APSMs should be used at websites with
a large user base (e.g., at least 10,000).

Kelley et al. [17] studied password composition rules
by analyzing 12,000 user-chosen passwords under seven dif-
ferent policies, and reported that imposing only a longer
length requirement, yields better entropy than enforcing charset
complexity on smaller passwords. Memorability and usability
effects of composition policies are discussed in a separate
study [18]. Studied users tend to end a password with several
digits and a possible symbol, correlating with the observations
from past studies (e.g., Burr et al. [7] and Weir [32]). Such
known user behaviors validate the use of mangling rules in
password cracking.

In its community-enhanced version, John the Ripper [22]
offers a Markov cracking mode where statistics computed
over a given dictionary are used to guide a simple brute-
force attack; only the most probable passwords are tested. This
mode is based on the assumption that “people can remember
their passwords because there is a hidden Markov model
in the way they are generated” [22]. In fact, this mode is
an implementation of a 2005 proposal from Narayanan and
Shmatikov [21], which predicts the most probable character
to appear at a certain position, given the previous characters
of a password. The Markov mode in JtR is more suitable
for offline password cracking than generating a dictionary for
online checkers as it produces a very large number of candidate
passwords (e.g., in the range of billions). Therefore, we did not
consider using such dictionaries in our tests.

Diirmuth et al. [10] extend the work of Narayanan and
Shmatikov [21] to improve cracking performance. They also
explore the inclusion of users’ personal information (e.g.,
username, birthday, list of friends, education, work, siblings,
first name, last name, and location) in the cracking algorithm,
and found that such personal attributes further enhanced the
cracker’s performance.

Weir et al. [33] propose an algorithm for extracting pass-
word structures from a given training dictionary (e.g., of leaked
passwords), so as to infer which ones are the most common.
Base structures are in the form of a sequence of charsets with
associated lengths, e.g., L3D; for 3 letters followed by 1 digit.
In their proposed cracking algorithm, letter-only parts are filled
by searching for a word of the required size in a dictionary,
and other sets are filled in a decreasing order of probability
based on the derived statistics from training dictionaries.

Concurrent to our work, Veras et al. [30] leverage Natural
Language Processing (NLP) algorithms to analyze semantic
patterns in leaked passwords. They found that most passwords
in the RockYou dataset are semantically meaningful, con-
taining terminologies related to love, sex, profanity, animals,
alcohol and money. Their semantic-aware cracking technique

14

shows significantly better results than existing techniques, and
may also be used as a password-strength checker.

IX. CONCLUSION

Passwords are not going to disappear anytime soon and
users are likely to continue to choose weak ones because of
many factors, including the lack of motivation/feasibility to
choose stronger passwords (cf. [14]). Users may be forced to
choose stronger passwords by imposing stringent policies, at
the risk of user resentment. An apparent better approach is to
provide appropriate feedback to users on the quality of their
chosen passwords, with the hope that such feedback will influ-
ence choosing a better password, willingly. For this approach,
password-strength meters play a key role in providing feedback
and should do so in a consistent manner to avoid possible user
confusion. In our large-scale empirical analysis, it is evident
that the commonly-used meters are highly inconsistent, fail
to provide coherent feedback on user choices, and sometimes
provide strength measurements that are blatantly misleading.

We highlighted several weaknesses in currently deployed
meters, some of which are rather difficult to address (e.g.,
how to deal with leaked passwords). Designing an ideal meter
may require more time and effort; the number of academic
proposals in this area is also quite limited. However, most
meters in our study, which includes meters from several high-
profile web services (e.g., Google, Yahoo!, PayPal) are quite
simplistic in nature and apparently designed in an ad-hoc man-
ner, and bear no indication of any serious efforts from these
service providers. At least, the current meters should avoid
providing misleading strength outcomes, especially for weak
passwords. We hope that our results may influence popular web
services to rethink their meter design, and encourage industry
and academic researchers to join forces to make these meters
an effective tool against weak passwords.

ACKNOWLEDGMENT

We are grateful to anonymous NDSS2014 reviewers and
Jeremy Clark for their insightful suggestions and advice. We
also thank the members of Concordia’s Computer Security
Lab for their enthusiastic discussion on this topic. The second
author is supported in part by an NSERC Discovery Grant and
Concordia University Start-up Program.

REFERENCES
(11

ArsTechnica.com, “Anatomy of a hack: How crackers ransack
passwords like “qeadzcwrsfxv13317,” news article (May 27, 2013).
http://arstechnica.com/security/2013/05/

how-crackers-make-minced- meat-out-of- your-passwords/.

(21

, “How the Bible and YouTube are fueling the next frontier of
password cracking,” news article (Oct. 8, 2013). http://arstechnica.com/
security/2013/page/4/.

[3] M. Bishop and D. Klein, “Improving system security via proactive
password checking,” Computers & Security, vol. 14, no. 3, pp. 233—

249, May/June 1995.

J. Bonneau and R. Xu, “Character encoding issues for web passwords,”
in Web 2.0 Security & Privacy (W2SP’12), San Francisco, CA, USA,
May 2012.

M. Burnett, Perfect Password: Selection, Protection, Authentication.
Syngress, 2005, pp. 109-112, the password list is available at: http://
boingboing.net/2009/01/02/top-500-worst-passwo.html.

, 10,000 top passwords,” June 2011, https://xato.net/passwords/
more- top-worst-passwords/.

[4]

(51

(6]

http://arstechnica.com/security/2013/05/how-crackers-make-minced-meat-out-of-your-passwords/
http://arstechnica.com/security/2013/05/how-crackers-make-minced-meat-out-of-your-passwords/
http://arstechnica.com/security/2013/page/4/
http://arstechnica.com/security/2013/page/4/
http://boingboing.net/2009/01/02/top-500-worst-passwo.html
http://boingboing.net/2009/01/02/top-500-worst-passwo.html
https://xato.net/passwords/more-top-worst-passwords/
https://xato.net/passwords/more-top-worst-passwords/

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

(271

W. E. Burr, D. E. Dodson, and W. T. Polk, “Electronic authentication
guidelines. NIST Special Publication 800-63,” Apr. 2006, http://csrc.
nist.gov/publications/nistpubs/800-63/SP800-63V1_0_2.pdf.

C. Castelluccia, M. Diirmuth, and D. Perito, “Adaptive password-
strength meters from Markov models,” in Network and Distributed
System Security Symposium (NDSS’12), San Diego, CA, USA, Feb.
2012.

X. de Carné de Carnavalet and M. Mannan, “From very weak to
very strong: Analyzing password-strength meters,” in Network and
Distributed System Security Symposium (NDSS’14), San Diego, CA,
USA, Feb. 2014.

M. Diirmuth, A. Chaabane, D. Perito, and C. Castelluccia, “When
privacy meets security: Leveraging personal information for password
cracking,” Apr. 2013, http://arxiv.org/abs/1304.6584.

S. Egelman, A. Sotirakopoulos, I. Muslukhov, K. Beznosov, and C. Her-
ley, “Does my password go up to eleven? The impact of password
meters on password selection,” in ACM Conference on Human Factors
in Computing Systems (CHI’13), Paris, France, April/May 2013.

S. Furnell, “Assessing password guidance and enforcement on leading
websites,” Computer Fraud & Security, vol. 2011, no. 12, pp. 10-18,
Dec. 2011.

N. V. Heijningen, “A state-of-the-art password strength analysis demon-
strator,” Master’s thesis, Rotterdam University, June 2013.

C. Herley and P. Van Oorschot, “A research agenda acknowledging the
persistence of passwords,” IEEE Security & Privacy, vol. 10, no. 1, pp.
28-36, 2012.

S. Houshmand Yazdi, “Analyzing password strength and efficient pass-
word cracking,” Master’s thesis, Florida State University, June 2011.

P. Inglesant and M. A. Sasse, “The true cost of unusable password
policies: Password use in the wild,” in ACM Conference on Human
Factors in Computing Systems (CHI’10), Atlanta, GA, USA, Apr. 2010.

P. G. Kelley, S. Komanduri, M. L. Mazurek, R. Shay, T. Vidas, L. Bauer,
N. Christin, L. F. Cranor, and J. Lopez, “Guess again (and again
and again): Measuring password strength by simulating password-
cracking algorithms,” in IEEE Symposium on Security and Privacy, San
Francisco, CA, USA, May 2012.

S. Komanduri, R. Shay, P. G. Kelley, M. L. Mazurek, L. Bauer,
N. Christin, L. F. Cranor, and S. Egelman, “Of passwords and people:
measuring the effect of password-composition policies,” in ACM Con-

ference on Human Factors in Computing Systems (CHI’11), Vancouver,

BC, Canada, May 2011.

C. Kuo, S. Romanosky, and L. F. Cranor, “Human selection of
mnemonic phrase-based passwords,” in Symposium On Usable Privacy
and Security (SOUPS’06), Pittsburgh, PA, USA, July 2006.

R. Morris and K. Thompson, “Password security: A case history,”
Communications of the ACM, vol. 22, no. 11, pp. 594-597, Nov. 1979.

A. Narayanan and V. Shmatikov, “Fast dictionary attacks on passwords
using time-space tradeoff,” in ACM Conference on Computer and
Communications Security (CCS’05), Alexandria, VA, USA, Nov. 2005.

OpenWall.com, “John the Ripper password cracker,” http://www.
openwall.com/john.

oxid.it, “Cain & Abel,” http://www.oxid.it/cain.html.

A. Rao, B. Jha, and G. Kini, “Effect of grammar on security of long
passwords,” in ACM Conference on Data and Application Security and
Privacy (CODASPY’13), San Antonio, TX, USA, Feb. 2013.

S. Schechter, C. Herley, and M. Mitzenmacher, “Popularity is every-
thing: A new approach to protecting passwords from statistical-guessing
attacks,” in USENIX Workshop on Hot Topics in Security (HotSec’10),
Washington, DC, USA, Aug. 2010.

R. Shay, P. G. Kelley, S. Komanduri, M. L. Mazurek, B. Ur, T. Vidas,
L. Bauer, N. Christin, and L. F. Cranor, “Correct horse battery staple:
Exploring the usability of system-assigned passphrases,” in Symposium
On Usable Privacy and Security (SOUPS’12), Washington, DC, USA,
July 2012.

R. Shay, S. Komanduri, P. G. Kelley, P. G. Leon, M. L. Mazurek,
L. Bauer, N. Christin, and L. F. Cranor, “Encountering stronger pass-
word requirements: user attitudes and behaviors,” in Symposium On
Usable Privacy and Security (SOUPS’10), Redmond, WA, USA, July
2010.

[28] E. H. Spafford, “OPUS: Preventing weak password choices,” Computers
& Security, vol. 11, no. 3, pp. 273-278, May 1992.

[29] B. Ur, P. G. Kelley, S. Komanduri, J. Lee, M. Maass, M. Mazurek,
T. Passaro, R. Shay, T. Vidas, L. Bauer, N. Christin, and L. F. Cranor,
“How does your password measure up? The effect of strength meters
on password creation,” in USENIX Security Symposium, Bellevue, WA,
USA, Aug. 2012.

[30] R. Veras, C. Collins, and J. Thorpe, “On the semantic patterns of
passwords and their security impact,” in Network and Distributed
System Security Symposium (NDSS’14), San Diego, CA, USA, Feb.
2014.

[31] W3Techs.com, “Market share trends for content management systems
for websites,” online report. http://w3techs.com/technologies/history_
overview/contentfmanagement.

[32] C. M. Weir, “Using probabilistic techniques to aid in password cracking
attacks,” Ph.D. dissertation, Florida State University, March 2010.

[33] M. Weir, S. Aggarwal, B. de Medeiros, and B. Glodek, ‘“Password
cracking using probabilistic context-free grammars,” in /IEEE Sympo-
sium on Security and Privacy, Oakland, CA, USA, May 2009.

[34] M. Weir, S. Aggarwal, M. Collins, and H. Stern, “Testing metrics
for password creation policies by attacking large sets of revealed
passwords,” in ACM Conference on Computer and Communications
Security (CCS’10), Chicago, IL, USA, Oct. 2010.

[35] D. Wheeler, “zxcvbn: realistic password strength estimation,” Drop-
box blog article (Apr. 10, 2012). https:/tech.dropbox.com/2012/04/
zxcvbn-realistic-password-strength-estimation/.

[36] World Wide Web Consortium (W3C), “Cross-Origin Resource Sharing,”
W3C Candidate Recommendation (Jan. 29, 2013). http://www.w3.org/
TR/cors/.

APPENDIX A
EVALUATION OF ADDITIONAL METERS

A. Drupal

Drupal is an open-source framework for building content
management systems (CMS). It is the third mostly used
CMS,!° behind Joomla and WordPress [31] (as of Dec. 6,
2013). Drupal version 7.x uses a simple client-side checker
based on a decreasing scoring system (Joomla and WordPress
currently do not use a checker). Fig. 9 summarizes our results.

(a) Algorithm. First, passwords below six characters suffer a
significant linear penalty with respect to the number of missing
characters. A 6-character password passes the minimum length
requirement and is at least considered fair. Then, the score
non-linearly decreases for each charset that has no member
in the given password. Starting from an initial value of 100,
missing one charset reduces it by 12.5, two by 25, three
and four by 40. Thresholds are applied on the score to yield
one of the four categories. A score below 60 is weak, is
fair below 70, good below 80 and strong if higher or equal.
The penalizing mechanism for passwords shorter than six
characters prevents them from reaching a score higher than
weak, even if they are composed of all charsets. Covering two
charsets with a password of at least six characters ensures a
good strength, while covering three charsets ensures a strong
strength. Examples include: Aal+ is fair, passwl is good,
Passwl and AAaal+ are strong. The beta version 8 introduces
an additional check to prevent a user from choosing a password
that is the same as the username. This restriction was actually
implemented but commented out in version 7.x.

(b) Weaknesses. No further checks are done such as searching
for repetitive patterns, weak or common words, nor is any

10Example sites using Drupal include: usenix.org, whitehouse.gov.

http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63V1_0_2.pdf
http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63V1_0_2.pdf
http://arxiv.org/abs/1304.6584
http://www.openwall.com/john
http://www.openwall.com/john
http://www.oxid.it/cain.html
http://w3techs.com/technologies/history_overview/content_management
http://w3techs.com/technologies/history_overview/content_management
https://tech.dropbox.com/2012/04/zxcvbn-realistic-password-strength-estimation/
https://tech.dropbox.com/2012/04/zxcvbn-realistic-password-strength-estimation/
http://www.w3.org/TR/cors/
http://www.w3.org/TR/cors/
usenix.org
whitehouse.gov

|647770

80 100
|

60
|

40

0 20
|
&E 11052

Fig. 9.

Drupal checker password strength distribution

reward given to the length beyond six characters. A password
like correcthorsebatterystaple is thus just fair. Given the sim-
plistic design of this checker, it is unsurprising to see that
most common dictionary words are at least considered fair;
C&A words, are also mostly considered as fair; and mangled
dictionary words reach good and strong strengths fairly easily.

B. Microsoft

Microsoft’s password checker is available as a separate
webpage for users to evaluate any password. The JavaScript
source of the client-side checker shows a commented old
version along with the current version. During our study, the
checker has changed to a newer algorithm. We evaluate all
three versions here. All algorithms are based on predefined
strict rules as explained below. Fig. 10 summarizes our results
for the three versions of Microsoft’s checker.

(a) Algorithm version 1. This version first classifies pass-
words as weak, and then as medium when the candidate
password is at least 8 characters long, spans on a minimum of
2 charsets and is not included in the 2254-word embedded
dictionary. To be classified as strong, a password must be
at least 8 characters long, span on 3 charsets, and must
not be a dictionary word, or some transformations of the
dictionary words (e.g., leet transformations). Finally, the best
score needs 14 characters covering 3 charsets, and shares the
same constrains about the dictionary check and transformations
as for the medium score. This version only considers the
special characters of a US keyboard (except \because of a
programming mistake) as part of the symbols charset.

(b) Algorithm version 2. The new algorithm, which became
obsolete during our study, is based on some custom entropy
calculation, and only considers mixing different charsets (low-
ercase, uppercase, digits, symbols) to assign better scores. The
best score can be reached by either 28 lower or uppercase
characters only, 23 lower-upper mixed characters only, 39
digits only, 32 symbols only, or 20 characters combined (all
charsets). It means that entering an “a” 14 times gives a
strong password or 28 times for a best password. Also, this
version distinguishes symbols found on the upper part of an
US keyboard and other characters, however it considers the
“other” charset size to be the number of characters between
ASCII code 0x20 and Ox7F (hence a size of 95), leading to
incorrect entropy calculation with international letters not in
this range.

Compared to version 1, this algorithm is more stringent in
terms of mandating longer and/or more complex passwords to

]621925

vi

575
14177
223419

T5(0
CF|0
JR[1
CAl4
RY[3337
PB|J8428
™ 1693
CM
JM
RM
LT

0
CF|0
JR|0
CAl5
RY |26
PB|58
TM[0
CM|13
JM|13
RM|[4334
LT[|25845

v2

114808

T5(0
CF|0
JR|0

CA 23343
RY|[3342
PB|[1853
TM|219
CcM178
JM||1816
RM|l|85670
LT

T5(0
CF|0
JR|0
CA|0
RY([17
PB[12
T™|(0
CM|0
JM|0
RM|[48
LT[0

v3

cocococococococooo

R
HOLOKMEDREA

Medium Strong Best

Fig. 10. Microsoft checkers (v1, v2 and v3) password strength distribution

return a strength better than weak. It also leaves some room
to strong passwords that consist of long lowercase words only
(e.g., concatenation of common words). C&A demonstrates
this behavior by being the dictionary with the most non-weak
passwords (19.5% of the dictionary). The few best passwords
are actually outliers in the leaked dictionaries. phpBB has
12 of its passwords considered as best, yet 7 of them are
email addresses, 2 of them are MDS5 hashes (32 characters
in hexadecimal representation), and one simply consists of 32
stars (*). The same happens with RY5, where best passwords
are either email addresses, long unique-character passwords,
URLs or what seems to be generic text messages. Finally,
48 passwords from RY5+M that are just alphabet sequences,
long keyboard combinations or repetitive unique characters,
are categorized as best passwords too.

(¢) Algorithm version 3. On July 11, 2013, Microsoft
changed the algorithm for a newer one, which is apparently
simpler than earlier versions. The strength is assigned based
on the length of a password: passwords are weak below 8
characters, medium between 8 and 13, and strong starting
from 14 characters. Once strong, they can reach a “BEST”
strength if they consist of characters from all 4 charsets. This
latest change in the algorithm has a greater impact on the

646181

80 100
| |

60
|

40

Fig. 11.

PayPal checker password strength distribution

scoring of our dictionaries, compared to version 2. This is the
only checker that labels no passwords from our dictionaries
as strong. The reason is obvious: a 14-character password
covering 4 charsets should be quite a rare entry in a common
word dictionary. Version 3 counts symbols as any special
character found on a US keyboard.

(d) Strengths. Although the first algorithm did not consider
passphrases as strong and required a minimum charset com-
plexity, the shift to the newest algorithm tends to invert the
trend. Version 3 gives room to passphrases while deprecating
standard random passwords.

(e) Weaknesses. Microsoft abandoned the idea of an embed-
ded dictionary in the second version for a simpler algorithm
that could be bypassed by mainly repeating a character several
times (such as padding a simple password with a unique
symbol). In the newest algorithm, a 32-star password is stuck
as strong and cannot become best unless it has a lower
and upper-case letter and a digit. The length requirement is
also apparently too restrictive and makes randomly generated
passwords such as C7ef*1Y6#A being only medium.

C. PayPal

PayPal is a global online money transfer service and a
subsidiary of eBay Inc. Although PayPal and eBay portals
belong to the same company, they use different password
checkers on their respective websites.

(a) Algorithm. PayPal’s checker is hybrid in nature. It first
involves an client-side process to check that a given password
is at least better than weak, which requires spanning on more
than two charsets, considering letters as one charset indepen-
dently of the case. Then it checks against an online checker
for blacklisted words. Strength is directly linked to the number
of charset the password spans onto. However, repetitions,
sequences and use of the email address or username in the
password, make it weak altogether. Sequences include qwerty-
like combinations that are supposed to be localized for the
country selected by the user. We tested the French version of
the website and found it still checks only for an US layout.
However, there are only few changes between both layouts.
The same thing happens with the German version, although it
is treated with additional care where series of accented letters
are also checked for spatial keyboard combinations. When
passwords are less than 8 characters, they are considered lame,
which accounts for a majority of the dictionaries, expect C&A.
The checker requires at least a digit or symbol for better scores;
hence, passwords from C&A are mostly considered as weak.

17

80 100
| |

60
|

241004

40

Medium

Fig. 12. Skype checker password strength distribution

(b) Weaknesses. On the more than 1.5 million passwords that
were checked against the blacklist, only 621 of them were
effectively blacklisted. Thus, most passwords are categorized
solely by the client-side checker, and only the 617 blacklisted
ones were downgraded to weak. Among the latter ones, 571
had the word password in them. The remaining had trust,
access, football, superman, and few other words, as part
of the password. Thus, we can conclude that the blacklist
check is mostly useless and could be used to catch more
trivial passwords such as Password0 (even though password0
is caught).

D. Skype

Skype is now a Microsoft-owned VoIP service provider
with more than half a billion users. Skype’s password checker
relies solely on a server-side validator, independent of the
Microsoft checker. Like Google, no user information are sent
to the server during password evaluation, allowing a user to
register with a password close to her username.

(a) Algorithm. Skype has one of the simplest strength scale:
a password is either poor, medium or good. The results of
our tests are also straightforward. All lowercase or single-
charset passwords are poor (preventing the use of long user-
memorable passwords), and 2-charset passwords are medium,
e.g., Tennis, sleep0. No mangling rules in our tests could
generate a strong password because even a randomly chosen
20-character password such as 2eppf5SN58J5z8yt2h52T is still
considered medium. We found that for a password to be
“good”, it must be composed of at least 2 symbols along
with at least 6 other characters. This rule makes soccer++
and pa$3word good. Apparently, there is very little check
against slightly-modified common words, even though an
extra warning is displayed for very simple words (‘“Password
is too easy to guess”). This warning appears for Password
and MySkype for example, but not for p4ssword. Among
the cracking dictionaries, only 9 C&A passwords reached a
good level. These passwords all contain double underscores
to separate words, e.g., mot_de_passe which is the 3-word
French equivalent of password. Finally, only phpBB and RY5
were successful at reaching a good strength more often with
passwords such as hockey!!, bl@hbl@h or [[please.

(b) Weaknesses. As for Drupal, the checker remains very
simple and no additional care is given to repetitive patterns,
weak or common words, nor is any reward given to the length.

(c) Problems. Some leaked dictionary passwords start with a
< character (e.g. <?php ?>, <3love) and do not receive any

100
|

o |
©

hd
5

60
|

40

oz

Tt
Blsictster

NSE

Too short

Obvious

Fig. 13. Twitter checker password strength distribution

score. Also, one of the passwords in phpBB dictionary was a
compilation command (gcc -02) and generated a systematic
Internal Server Error. These passwords may interfere with
an IPS solution that prevents the server-side program from
receiving these allegedly dangerous inputs.

E. Twitter

Twitter is a microblogging service gathering over half a
billion users. It has the most diverse strength scale with 6
categories and is also fully client-side.

(a) Algorithm. The algorithm is based on an increasing
score, which considers the password length and presence of
the following features: multiple digit groups; two separated
symbols; a lower and an uppercase letter separated by any
character; a mix of lower-uppercase letters and digits; a mix
of symbols and digits; and a mix of symbols and lower-
uppercase letters. The algorithm downgrades the score to very
weak if it finds a 10-character long single-charset group in
the password. A range of thresholds then maps the score to a
strength label. An embedded 401-word blacklist is used, and
passwords matching the blacklist are labeled as obvious. The
strength label “not secure enough” (NSE) is rare (in our tests)
and is apparently only meant for passwords that “could be
more secure” (CMS) but are getting weakened by the negative
coefficient for repetitions (e.g., aaaaaaa, deedee, annnna). The
blacklist covers a large portion of the Top500 dictionary, hence
the obvious scoring of that dictionary. Most passwords in our
test are considered “Could be more secure” (CMS) and “Okay,”
while there are very few perfect passwords. A perfect strength
can be reached with a short password covering all 4 charsets,
e.g., Twl$er, P@sswOrd, or longer 3-charset passwords (e.g.,
Password123456), or even longer 2-charset passwords (e.g..
Impossibleisnothing), or finally a combination of lowercase
words (e.g., theologicoastronomical).

(b) User information. If a password directly matches the user-
name, it is considered obvious and disallowed. However, such
restriction can be easily bypassed, by adding extra characters to
the password. In addition, the password is not checked against
the email address and full name.

(c) Weaknesses. The blacklist check is quite simplistic; e.g.,
mustang is in the blacklist, but mustangl is considered “okay”
(a category right below “perfect” in the strength scale). Only
the case is made independent for the validation by converting
the password to lowercase. The mangling rule that makes

18

the first letter uppercase and adds a trailing digit in a given

]644753

S
o S
=& 3
- &

Fig.

14. Yahoo! checker password strength distribution

word, performs very well in deriving okay passwords. Hence,
Owert0, Magicl, Hello2 are okay. Also, a special character
is good enough to replace both uppercase and digit, e.g.,
super!, lucky!, naked? are okay. The length can also replace
the need for a digit or uppercase letter; e.g., Mypassword,
Anythings, and interneting are considered okay. However, in
order to be considered perfect, a password needs a longer
length or more digits and special characters; examples include
passwOrd!, p@sswOrd, troubl#3, e=mc**2, anatomicophysio-
logical. However, repeated simple (even blacklisted) words can
easily yield okay (passwordpassword) and perfect (password-
passwordpassword) passwords.

F. Yahoo!

Yahoo! relies on a client-side checker with 4 main strength
categories. The additional invalid category is used for pass-
words matching the provided user information, or if the
password is password. We omit this category in Fig. 14, which
summarizes our results for Yahoo!.

(a) Algorithm. This algorithm mostly checks for multiple
charsets in the candidate password. However, a lowercase
password with a single uppercase, digit or symbol is already
considered strong, hence many non-trivial dictionaries such as
mangled versions of simple dictionaries are getting a strong
score. C&A is largely limited in the weak category because of
its majority of lowercase-only passwords. In the source code, a
single-charset password passing the 6-character requirement is
supposed to get a “mediocre” score. However, when mapping
internal qualification to user-readable feedback, this score is
translated to “weak”. Only !@#$% &+ 7?_, ~ are considered
as symbols.

(b) User information. Yahoo! takes into account the user’s
name and email address (the local part) to weaken the strength
of the candidate password if they are found as part of the
password.

(c) Weaknesses. A password is strong if it has at least 2
charsets, e.g., Abcdef. Reaching the very strong level, where
a password must have a lower-uppercase combination and
a symbol or digit, is quite trivial; e.g., Abcde0. Also, no
blacklists or checks for patterns are used.

(d) Problems. As of end of June 2013, Yahoo! checker has
been changed to allow a minimum length of 8 characters.
However, the checker is functionally broken and outputs “In-
valid Password” most of the time or “Too short” even for a 20
random characters password.

	Introduction
	Password meters overview
	Test automation
	Tested dictionaries
	Cracking tool dictionaries
	Real password database leaks
	Mangling
	Leet transformations

	Meters evaluation
	Dropbox
	Google
	eBay
	Apple
	FedEx

	Results analysis
	Meters heterogeneity and inconsistencies
	Targeted dictionary for FedEx
	Comparison
	International characters
	Implications of design choices
	Stringency bypass
	Google checker hypothesis
	Password policies

	Discussion
	Related work
	Conclusion
	References
	Appendix A: Evaluation of Additional Meters
	Drupal
	Microsoft
	PayPal
	Skype
	Twitter
	Yahoo!

