
CONTEXT-AWARE SERVICE REGISTRY: MODELING AND

IMPLEMENTATION

ALAA ALSAIG

A THESIS

IN

THE DEPARTMENT

OF

COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE

CONCORDIA UNIVERSITY

MONTRÉAL, QUÉBEC, CANADA

NOVEMBER 2013

c© ALAA ALSAIG, 2013

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Miss. Alaa AbdulBasit Alsaig

Entitled: Context-Aware Service Registry: Modeling and Implementation

and submitted in partial fulfillment of the requirements for the degree of

Master in Applied Science (Software Engineering)

complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

 ______________________________________ Chair
 Dr. N. Tsantalis

 ______________________________________ Examiner
 Dr. N. Shiri

 ______________________________________ Examiner
 Dr. D. Goswami

 ______________________________________ Co-supervisor
 Dr. V. S. Alagar

 ______________________________________ Co-supervisor
 Dr. M. Mohammad

Approved by __
 Chair of Department or Graduate Program Director

__
 Dr. Christopher W. Trueman, Interim Dean

Faculty of Engineering and Computer Science

Date __

Abstract

Context-aware Service Registry: Modeling and Implementation

Alaa Alsaig

Modern societies have become very dependent on information and services. Technology is

adapting to the increasing demands of people and businesses. Context-Aware Systems are

becoming ubiquitous. These systems comprise mechanisms to acquire knowledge about the

surrounding environment and adapt its behaviour and service provision accordingly. Service-

oriented computing is the main stream software development methodology. In Service-oriented

Applications (SOA), service providers publish the services created by them in service registries.

These services are accessed by service requesters during discovery process. For large scale

SOA, the registry structure and the type of quires that it can handle are central to efficient

service discovery. Moreover, the role of context in determining services and affecting execution

is central. This thesis investigates the structure of a context-aware service registry in which

context-aware services are stored by service producers and retrieved by service requesters in

different contexts. The thesis builds on an existing rich theoretical service model in which con-

tract, functionality, and contexts are bundled together. The thesis investigates generic models

and structures for context, context history, and context-aware registry. Also, it studies state

of the arts database technologies to analyse its suitability for implementing a registry for rich

services. Specifically, the thesis provides a thorough study of the structures, implementation,

performance, limitations, and features of Key-Value, Documented Oriented, and Column Ori-

ented databases while considering options for implementing a rich service registry. Database

models of contexts and context-aware services are discussed and implemented. The relative

iii

performance of the models are discussed after evaluating the test results run on large data sets.

Based upon test results a justification for the selected model is given.

iv

Acknowledgments

I would like to express my sincere thanks to my supervisors professor Vangalur Alagar and

Dr.Mubarak Mohammad for their guidance, teaching, and training through the learning process

of this master thesis. It has been an honour working with them as they are great sources of

knowledge and inspiration and role models for humility and patience. I would not have been

able to accomplish my thesis without their educational and personal support. Both have a great

understanding which makes them believe in others, motivate them, and give them chances. I

would never ask for better supervisors. I have learnt a lot from them throughout the work of

my journey towards the masters.

I would like to thank my parents who have been always sources of encouragement and

support and for having trust on me. Their giving and caring cannot be compensated and

thanking them is never enough to express the love and sincerity I have towards them. This

love includes all my sisters and brothers that are always there for me. A special thank for

my companion in this journey, my brother Ammar. I would not have been able to achieve

this without him. In all struggles I had, I found him there standing by my side listening and

supporting. I extend my deep thanks to his wife Duaa for her patience and support throughout

the whole journey. A great thank for my nieces Wedad and Sarah and my nephew Yassir for

adding joy and smiles to my life.

A great thank from the heart for all friends in Canada. Their support and caring are unde-

niable. They were not only friends but also a family who were there to celebrate my happiness

v

and cheer me up during my struggles. The kindness and great personalities they have make

them very memorable. Undeniably, I learnt a lot from their experiences and guidance. I am so

blessed to have them in my life.

A special thank for other great people who were helping from overseas and who have never

been late to listen, advice and support during these years. The far distance and different time

zones were never reasons for ignoring help and support. I cannot express how grateful I am

for them. Special gratitude for my brother Dr. Mohammad Alsaig and my professor Dr. Wadee

Alhalabi.

Moreover, I would like to extend my thanks to Saudi Cultural Bureau for the financial

support and help throughout these years.

vi

Contents

List of Figures x

List of Tables xiv

1 Introduction 1

1.1 Contribution . 4

2 Literature Review 5

2.1 Summary . 10

3 Context 11

3.1 Context Definition . 12

3.2 Context Type . 14

3.3 Generic Context Model . 16

3.4 Service Context History Model . 21

3.5 Summary . 26

4 Context-Aware Services 27

4.1 Configured Services . 28

4.2 Service . 28

4.3 Contract . 34

vii

4.4 Configured Service Generic Model . 40

4.5 Summary . 43

5 Context-Aware Service Registry 44

5.1 Context-Aware Service Registry . 46

5.1.1 Domain, Sub-Domain and Function . 47

5.1.2 Modeling Domain, Sub-Domain and Function 52

5.1.3 Service Providers (SP) . 55

5.1.4 Configured Services (CS) . 56

5.2 Context-Aware Service Registry Generic Model . 57

5.3 Summary . 60

6 CASR Implementation in NoSQL Databases 61

6.1 Why NoSql Databases . 61

6.2 Implementation: Redis - Key-Value Store . 64

6.2.1 Redis Features . 64

6.2.2 Design Considerations . 67

6.2.3 Implementing the Domain Knowledge Design 71

6.2.4 Implementing Provider Design . 77

6.2.5 Implementing Configured Service Design . 77

6.2.6 Implementing Context Design . 80

6.2.7 Implementation Limitations . 82

6.3 Implementation: MongoDB - Document-Oriented Store 83

6.3.1 MongoDB Features . 84

6.3.2 Design Consideration . 86

6.3.3 MongoDB Implementation . 90

6.3.4 Implementation Limitation . 94

viii

6.4 Implementation: Hbase Column-Oriented Store . 97

6.4.1 Hbase Features . 97

6.4.2 Design Consideration . 100

6.4.3 Table1: Domain, Sub-Domain and Providers in Hbase 102

6.4.4 Table2: Function in Hbase . 103

6.4.5 Table3: Services in Hbase . 106

6.4.6 Table4: Contract in Hbase . 106

6.4.7 Table5: Context in Hbase . 107

6.4.8 Table6: Followers/SRSPRole in Hbase . 109

6.4.9 Limitations . 109

6.5 Summary . 113

7 Testing and Analysis 114

7.1 YCSB Benchmarking . 114

7.2 General NoSql Characteristics . 118

7.2.1 Redis . 118

7.2.2 MongoDB . 120

7.2.3 Hbase . 122

7.3 Overall Verdict . 123

7.4 Summary . 124

8 Conclusion 125

8.1 Future Work . 126

Bibliography 132

ix

List of Figures

1 The Generic Context Model . 16

2 The structure of Context Value . 17

3 The Service Context Instance When No SR in the system 20

4 The Service Context Instance when SR is in the System 21

5 Context History Hierarchical Structure . 22

6 The Context History Instance of Internet Service . 24

7 The Context History Instance 2 of Internet Service 26

8 The Definition of the Configured Services [Ibr12] 28

9 The Generic Structure of Service Functionality . 29

10 Example of Service Functionality Element . 31

11 The Generic Structure of Non-Functionality Properties 31

12 Example of Service Non-functional Property . 32

13 The Generic Structure of Service Attributes . 33

14 Example of Service Attributes Part . 34

15 Example of Context Element . 36

16 The Generic Structure of Trustwothiness . 37

17 Example of Trustwothiness Element . 37

18 The Generic Structure of Legal Issues . 39

19 Example of Legal Issues Element . 40

x

20 The Generic Structure of Configured Service . 41

21 CarRent Configured Service Example . 42

22 The main structure Service Registry . 45

23 Context-Aware Service Registry Storage structure 46

24 The Domain, Sub-Domain and Function Definition 53

25 SP and SR Context Definition . 54

26 Provider information displayed with its service . 55

27 Provider Definition in the System . 56

28 The Generic Structure of Service Registry Domain Knowledge and Providers . . . 58

29 Example of Tree Structure for Transportation Domain 59

30 Redis Key-Value Store . 64

31 String Commands in Redis . 65

32 Hash Commands in Redis . 66

33 Set Commands in Redis . 67

34 List Commands in Redis . 68

35 SortedSet Commands in Redis . 68

36 Key Pattern Example . 69

37 Retrieving all records by patterns . 70

38 CS1 published as a grandchild of fun1 . 75

39 CS2 published as a grandchild of fun1 . 76

40 Basic Visualization for Service Publication Web Page 79

41 CASR Implementation in Redis (Snapshot(1)) . 81

42 CASR Implementation in Redis (Snapshot(2)) . 82

43 MongoDB Document-Oriented Store . 83

44 MongoDB Commands in Shell . 85

45 All Separated Collection Design . 87

xi

46 All Embedded . 88

47 Three Collections Model . 89

48 Domain Knowledge Implementation Model in MongoDB 90

49 Provider Implementation Structure in MongoDB . 91

50 Configured Service Implementation Model in MongoDB 93

51 CASR Implementation in MongoDB (Snapshot(1)) 95

52 CASR Implementation in MongoDB (Snapshot(2)) 96

53 Hbase Column-Oriented Store . 98

54 Disable and Drop Commands in Hbase Shell . 98

55 Put Commands by in Hbase Shell . 99

56 Get Commands in Hbase Shell . 99

57 Embedded Columns In Hbase . 101

58 Embedded Columns In Hbase . 101

59 Mapping The Generic Model Nodes to Hbase . 102

60 Table 1, Domain, Sub-Domain and providers Table in Hbase 104

61 Table2: Function Table in Hbase . 105

62 Table 3: Service Table in Hbase . 107

63 Table4: Contract Table in Hbase . 108

64 Table5: Context Table in Hbase . 108

65 Table 6: Followers/SPSR Roles in Hbase . 110

66 CASR Implementation in Hbase (Snapshot(1)) . 111

67 CASR Implementation in Hbase (Snapshot(2)) . 112

68 (A) Read/update ratio: 50/50 . 115

69 (B) Read/update ratio: 95/5 . 116

70 (C) Read/update ratio: 100/0 . 116

71 (D) Read/update/insert ratio: 95/0/5 . 116

xii

72 (E) Scan/insert ratio: 95/5 . 117

73 (F) Read/Read-Update ratio: 50/50 . 117

74 Overall Performance For all Workloads . 117

75 The FrSeC Framework Architecture [Ibr12] . 127

76 The main structure Service Registry . 128

77 Service Publication Sequence Diagrams . 129

78 Service Discovery Sequence Diagrams . 130

xiii

List of Tables

1 Context for five different SR and Service Description 18

2 The context tracking for a single SR . 19

3 Example of Context History of a diabetic patient. 23

4 The six workloads defined by YCSB . 115

5 A Comparison of the Structural Properties of Three Context Database Models . . 119

6 Ranking Each NoSql database basing on CASR Requirement 124

xiv

Chapter 1

Introduction

In Service-oriented Applications (SOA), service is the main object of the system. Services are

published by service providers and stored in a central service registry. Service seekers can

browse the registry to discover services. Hence, the modeling and implementation of a service

registry should facilitate efficient service discovery and provision. This thesis studies the design

of a context-aware service registry in which services that are associated with context informa-

tion are stored. The thesis introduces a generic structure for context-aware services. Also,

it provides three specialized models for context-aware services using three different NoSql

databases. Moreover, the thesis introduces generic models for context and context history.

Finally, the thesis provides implementation and performance analysis.

Modern societies have become very dependent on information and services. Technology

is adapting to the increasing demands of people and businesses. Context-Aware Systems are

becoming ubiquitous. These system comprise mechanisms to acquire knowledge about the

surrounding environment and adapt its behaviour and service provision accordingly. These

systems are expected to provide services to users based on context preferences or rules rather

than just providing general classes of services for all types of clients at all times. Hence, many

1

researchers were motivated to improve SOA systems by enhancing service discovery and provi-

sion to benefit from context-awareness. This thesis is a contribution to this field and introduces

a design and implementation of context-aware service registry.

In SOA systems, three components deal with services. These components are service reg-

istry, service provider, and service requester. The service registry is the component that stores

and manages services. It is responsible for service discovery and provision. In the literature, the

Universal Description, Discovery, and Integration (UDDI) is a standard that outlines the spec-

ifications for storing service functionality descriptions. Most of service registries that are used

in the industry are based on UDDI which considers only the functional part of service descrip-

tions. It uses Web Service Description Language (WSDL) to define model services. WSDL in-

cludes businessService, bindingTemplate, and tModel information to describe services registered

in UDDI [LGZ+05]. BusinessService includes general information of services. BinidingTemplate

includes any information related to the locations where services are stored and methods for

accessing them. One or more tmodel information is associated with a network address as an el-

ement represented in each bindingTemplate structure. Each tModel structure is used to describe

and distinctly define a Web service [BCE+02]. XML language is used in WSDL and the data

is stored in a relational database [LL09]. UDDI depends on static information about service

functionality. It does not support or benefit from context-awareness.

Integrating context-awareness in SOA enhances service discovery and provision. Formal-

izing context-aware services and registries is an essential prerequisite for providing context-

dependant services for consumers. However, only recently, a formal approach for formalizing

‘context-aware services’ was introduced by Ibrahim [Ibr12]. The building blocks of SOA sys-

tems are modeled as ConfiguredService. In ConfiguredService model, Service functionality and

its non-functional properties are bundled up with Contract that includes Context. The ser-

vice part encompasses all information that is highly related to the service including functional,

2

non-functional and attributes data. The contract part in ConfiguredService includes any infor-

mation that is highly related to context and legal rules. The contract part is loosely coupled to

the service in order to allow a service to have different contracts. This study [Ibr12] provided

only a formal service model, mentioned a high-level structure of service registry to store Con-

figuredServices, but did not discuss methods for service discovery and service provision. To the

best of our knowledge, there is no other service model that uses context-aware service registry.

Motivated by the need to provide context-dependent services and the lack of registries to sup-

port context-aware services, this thesis extends the work done by Ibrahim [Ibr12] on service

modeling by providing a generic model for service structure. Also, the thesis introduces a novel

service registry structure and provides an implementation for it.

Most of the existing service registries have been designed using either XML or pure XML.

Examples of such systems include UDDI and xUDDI [LL09]. There is no work that investigated

database models for service registries. After some investigation into database models we found

that NoSql databases provide powerful methodologies for storing, retrieving and updating data

with high performance and scalability. Also, Google uses BigTable [CDG+08] for its database,

and Amazon uses Dynamo [DHJ+07]. Both Google and Amazon use NoSql in some manner.

NoSql databases provide powerful capabilities to model dynamic and rich information. There-

fore, we decided to use NoSQL database as a tool for modeling context, context history, and

service registry. NoSql databases are mainly categorized into Key-Value Stores, Documented

Oriented Stores, and Column Oriented Stores. Each model has its own specific features and ad-

vantages. This led us to use these models to model context-aware service registry and compare

their abilities. We provide both abstract and concrete models for context-aware service registry,

service, and contract with due consideration to implementation requirements. Context, con-

tract, and ConfiguredService are rich terms. We define them before providing their database

models.

3

1.1 Contribution

The contributions of this thesis are:

• Generic structure for context, context history, and context-aware services.

• Generic structure for context-aware service registry.

• Three types of NoSql models and implementations for service registry.

• Comparative study and analysis of Key-Value, Documented Oriented, and Column Oriented

service registries.

The work done to achieve these contributions is outlined in this thesis as follows. Chapter 2

provides a quick literature review in order to highlight the original contributions of this thesis.

Chapter 3 discusses context definition and its types. Then, it introduces a new generic model for

context and context history. In Chapter 4 we extend the formal service model of Ibrahim [Ibr12]

and provide a new generic model for each of its components. A novel service registry model

is introduced in Chapter 5. Chapter 6 introduces our three NoSql models for context-aware

service registries and describe their implementations. Chapter 7 provides a comparative study

and performance analysis for each implemented model. The thesis is concluded in chapter 8

with a summary of the work done and an outline of the future work.

4

Chapter 2

Literature Review

There exists a large body of literature on service-oriented computing and contexts. Since we

are interested in database modeling of registries of context-aware services, we focus on the

literature of service registry modeling in general, with or without context information. We

highlight their approaches and outline their limitations.

In SOA, a service is an object that is stored in service registry, published by its service

provider and discovered by service requesters. The service registry is the component that is

responsible for storing services and providing the interfaces for service provision and discovery.

This makes the service registry a complex component that needs to be modeled with good

software architecture principles.

Many researches have proposed UML-based design of service registry [HL06]. Universal

Description, Discovery and Integration (UDDI) is one such registry that has been in the market

since year 2000 [web]. It stores service descriptions with references to their source locations

in the repository, where actual services and application software are stored. The structure of

a service includes only its function description. It does not include non-functional description,

quality information or context. A user query can only mention the functionality, and service

discovery is a simple matching of the query information with the specific service information

5

stored in the registry. To overcome this limitation, a modification to UDDI structure has been

proposed [LGZ+05]. This modification assigns additional storage to UDDI in which non-

functional attributes corresponding to each service in the service registry are stored. A user

query is directed to the registry if it is about service functionality and it is directed to the

adjoined repository if it is about non-functional descriptions. UDDI is not an efficient service

registry architecture [LGZ+05], and it does not have all logical operations which are required

for comparing and ranking services [Min08].

In [LL09] another important angle of UDDI drawback is brought out. UDDI uses relational

database to store its data, but XML code is used for exchanging messages. The protocol used for

messages is Simple Object Access Protocol (SOAP), which uses XML code. This is the reason for

the overload work that comes from managing XML data with relational databases as it requires

a lot of data shredding to database tables and vice versa, which leads to a massive work in

converting text to XML and shredding data to relational table. Excessive conversion operations

might result in valuable data loss. Therefore, it was motivated to structure xUDDI that is based

on pureXML. This study provides reasoning for using pureXML claiming that pureXML is the

best solution. By using pureXML, the structure of the data is stored in the registry and in the

database with no need for conversion or shredding. Also, generating a table from XML source

becomes easier and with less work. This paper also provides a way for performing classification

and authentication of services on pureXML hierarchies. However, pureXML has its limitations

when using large and rich objects. Searching, retrieving part of a document, and updating a

document can be expensive. A new methodology for indexing might be required to evade the

costs that result from parsing XML to every query to specify which part of the document meets

the determined search standards [SCA06]. Other limitations of UDDI registry are discussed in

[Min08].

In the aforementioned studies, there is no consideration to context information. We discuss

context in details in Chapter 3. For the present let us view context as the characteristic that

6

defines the status in which services are eligible to be delivered. Storing context information in

UDDI will involve additional overhead to the system, namely including some other operations

such as frequent updates and comparisons. Context might include information that is not only

related to a service but also to any component in the system. Also, service functionality might be

related to different sets of non-functional properties in different contexts. Having two registries,

a main registry to store services and an adjoined repository to store non-functional properties,

causes a heavy load of data transmission operations between the registry and the adjoined

repository. Therefore, modifying the UDDI structure by imposing context on the structure is

not practical. Thus, the available approaches are inadequate to fulfil the requirement of a

context-aware registry.

A new architecture for context-aware service registry is needed for improving service dis-

covery and provision. In general, an eligibility criterion for service provision is related to a spe-

cific situation. In these situations the service functionality may not change but non-functional

properties of the service and rules for providing the service might change. These situations are

the contexts of interests for service delivery. A service requester must fit in one of the avail-

able contexts to be eligible to receive a service. Storing contexts improves service provision by

adding intelligence to the system to specify which service specifications is eligible for that re-

quester plus the ability to adapt the execution of service to some contextual information. Also,

context-awareness enhances service usability by having the ability to use one service object in

various contexts. These context-aware services need a registry that has the ability to store, pub-

lish and discover them based on context. However, very few studies in the literature attempted

to provide a structure for a new registry to store context-aware services. We discuss them next.

In [CLC10] four types of contexts are introduced. They are

• S-context type is for single services contexts,

• C-context type is for community of services which is dynamic,

7

• U-context type for users, and

• W-context type for queries.

The paper proposed a new organization for the old UDDI Business Registry (UBR). It is aimed

to structure services in a tree-structure based on similarity among them. A group of strongly

similar services create a community. The focus of the paper is only on structuring the services

that are strongly similar. Then the paper introduces querying with context. However, a com-

plete structure of the registry is not made clear. The paper does not discuss the more important

issues such as how contexts and services are related, how a service is mapped to different con-

texts, and services are discovered and published based on contexts. There is increasing demand

to know how to structure registry with support for context-awareness which is not dealt with

in this paper.

Another modification to UDDI has been proposed in [Lee08]. They propose to integrate

Web service registries with web service quality management system (WSQMS). The goal is

to reduce the effort of measuring and testing services on service providers and making web

services more reliable. However, service reliability is not just related to service quality. There

are international laws and trade rules that assure service providers and requesters rights certain

. This means that the service quality will be constrained by these factors as well. So, service

descriptions should have more information to store these laws and rules, which makes service

object more richer. XML which is used in UDDI extensions are not suitable for describing

complex objects. Besides, there is no clear structure for what information is to be included to

describe service quality and context.

There exists a large body of literature in the study of context. Here we have chosen some

recently published work on context modeling to compare our work. A full discussion about

context, its formal representation, and modeling are taken up in Chapter 3.

In general, to our knowledge there is no report on database models for managing context

8

and context history. The UML context model [SB05] considers atomic and complex contexts.

An atomic context is modeled as a class in which the two attributes are the name of the context

and the source name of context. The only attribute of the complex context is the aggregation of

its different contexts, with some logical operations. The two context models are independent

of service. However, there is a class, called context-awareness, which is a component of the

service. There is no semantics given for context-awareness. Their context model is both abstract

and at best incomplete. It is abstract in the sense that the authors did not provide any language

or database support that are necessary for implementing the model. It is incomplete in the

sense that the type information necessary to capture the heterogeneity of information, the

nature of context (permanent or temporal), and rules for using it in services are not modeled.

Although the authors in [GS07] claim to have put forth a context-aware service application,

the work does not provide any view of the context structure and how it is defined. Actually,

the work is an extension to [SB05] in which they considered state-based and event-based

contexts. On the one hand, a state-based context includes data of attributes that could be

entity, device or user related. On the other hand, the event-based context encompasses a bunch

of entity events. These events could be related to an application or a user with consideration

to the history of events. However, there is no elaboration for how the context is structured

and where the data is stored. Also, there is no specific structure for the history and what data

could be included. In [TKS+10], the authors have introduced a context structure mainly for

Mashup application requirements. They have considered the dimensions when, where, what,

and who to construct contexts. The structure assigns several entities for each dimension. This

makes context structure complex. In general, not all applications require the same context

information. Consequently, their model could result in aggregating useless information. The

model does not provide any mechanism to add new dimensions. Although they mentioned

context change history in the paper, there was no information regarding history structure,

model or attributes and data of the history.

9

2.1 Summary

We studied previous works for modeling context-aware service registries, service structures,

and contexts. We found that there is no prior work that have provided a structure and imple-

mentation for context history and rich context-aware service registry. This motivates our focus

on modeling and implementing a context-aware service registry. In the next chapter, we define

context, discuss its different types, and review its history. Also, we provide a generic context

structure that is ready for implementation.

10

Chapter 3

Context

As technology evolves, the dependency of society on the technology becomes more intense.

This increases the need for smarter systems that can provide specific services rather than gen-

eral ones. Service in the Health Care sector is an example. As a result many service-oriented

systems have become pervasive, requiring context for service provision. Context can be ei-

ther a location of a subject or any environmental surrounding such as temperature or weather

affecting the subject. Much research is being done on context-aware computing, however

very little effort has been directed to context modeling which is fundamental for developing

context-aware applications. Context modeling should emphasize parameters and other needed

elements for storing and managing a large number of contexts. Since context information,

both past and current, are important for many applications, there is a need to manage them

efficiently. Since this thesis is concerned with the design of context-aware service registry, we

will first review how context is defined and comprehended in the current body of literature,

and following it we will discuss context modeling. In particular we provide a generic struc-

ture for contexts that can be embedded in any Service-oriented Application (SOA) or any other

ubiquitous computing system. Additionally, we propose a design for storing context history

that maximizes data management and enhances accessibility.

11

3.1 Context Definition

In Oxford English dictionary context is defined as “the circumstances that form the setting of

an event, statement, or idea, in terms of which it can be fully understood”. According to this

definition, context is necessary to fully comprehend a statement, and hence it is different from

the information conveyed through the statement. In Merriam-Webster dictionary context is

defined as “the situation in which something happens, the group of conditions that exist where

and when something happens”. This definition implies that context is the mutual relationship

between the many conditions that exist in a situation in which an entity exists or an event

happens. These two definitions are not exactly equivalent, because the first one is declarative

and separates context from what is “uttered” (or happening), whereas the second definition

makes context a logical entity. Both definitions are rather broad and do not suggest how

to invent the elements to construct a context. The essential conclusion is that context is a

rich concept and is understood in natural language communication. Therefore, it becomes

necessary to refine its definition in order to be applicable for computing applications.

Context is implicitly understood by linguists [Rud56], philosophers [CC81], and AI re-

searchers [ML90], [AS96], and freely used to express profound statements. There exists a

large body of literature on context, and many definitions proposed by different researchers

can be found in [BBH+10]. From computing perspective the first to propose a practical way

to model context was Schilit et al [SAW94]. They proposed that “three important aspects of

context are where you are, who you are with, and what resources are nearby”. Thus, in context-

aware applications, Context is a meta-information that qualifies either data or information or

an entity of interest in the system. For example, "Alice is the caregiver for John". By stating

“when, where, what and why” such a care is given, we are adding meta information, that is a

context for the service provided by Alice. Within SOA we can regard Context as any element

that could affect the service provision and execution operations. Another simple example of

12

context mentioned in [Kei08] is that “the location of a subject is the context” which will de-

cide whether or not a mobile service could be provided to that subject. Therefore, Context is

defined as any environment element that gives rise to a meaningful interpretation of a function

computation [Kei08].

Dey et al [DAS01] have given a definition of context that captures some aspects of dictio-

nary definitions and the definition of Schilit. Their definition is “Context is any information that

can be used to characterize the situation of an entity. An entity is a person, place, or object that

is considered relevant to the interaction between a user and an application.” This definition

has been adhered to by researchers in Human-Computer Interaction (HCI). The key aspect of

the definition is “relevance”, which allows the developers to choose the parameters that suit

the application, including mobility. However, these researchers have used only examples and

informal notations to represent context.

Wan [Wan06] has given a formal representation of context. This representation can ac-

commodate all definitions above, and more importantly it is supported by relational seman-

tics. Context is defined as a collection of ordered pairs (d, v), where d is a dimension, and

v is a value from the type domain associated with dimension d. Dimensions “Who, Where,

When, What, and Why” have been identified as primary dimensions to construct any gen-

eral context. A tag set, which is typed, is associated with each dimension. As an example,

along the dimension “Where” the tag set can be “the set of city names or streets”, and along

the dimension “When” the tag set can be “the set of discreet time points”. Therefore, con-

text is a multidimensional typed entity. An example of a context in this representation is

[Who : Alice, Where : Montreal, When : 11 : 00]. This context qualifies some events that

might be experienced by Alice in Montreal at time 11. More specifically, this in SOA can be

the service delivery context for Alice.

The context representation of Wan [Wan06] is used by Ibrahim [Ibr12] for defining a

ConfiguredService. We discuss the structure of ConfiguredService in Chapter 4. For the present,

13

it is sufficient to understand that ConfiguredService includes context information. This context

is split into ContextInfo and ContextRule. ContextInfo is the context representation introduced

by Wan [Wan06]. ContextRule is the service qualifier rule that has to be met to getting the

service. Ibrahim [Ibr12] has explained the necessity of a formal representation of context

for formally evaluating ContextRule. Such a formal evaluation can be automated, which is

an advantage to justify service delivery at specific contexts. One of the aspects that was not

discussed by Ibrahim [Ibr12] is context types. In modeling contexts for different applications

it is essential to categorize contexts, based upon context information which may designate a

context to be permanent, transient, or temporal. One of our contributions is the introduction

of context types in context modeling in order to enrich the ConfiguredService model, which in

turn will help implement more precise context-aware services.

3.2 Context Type

The three important entities in any SOA are service, service requester (SR), and service provider

(SP). Each entity is influenced by its own set of contexts. Thus, we define the three context

categories Service Context (SC), Service Requester Context (SRC), and Service provider Context

(SPC). A context qualifies the status of the requester SRC while requesting or receiving the

service. A SRC context includes information that is related only to SR. For example, the location

and time parameters characterize the context of a client while requesting or receiving a service.

A context of type SPC qualifies service availability and service quality for a service provided by

an SP. This means that the information included in a context of this type is related to the SPs

and their services. As an example, a SP may have license to provide services within 10 km of

the location where SP is registered, and a SP context will include this information. A context

of type SC is the most important one because it is to describe the service status. A SC context

includes information that defines the eligibility and the availability for delivering the service.

14

Such information could be service related, provider related, or requester related. That is, SC

is a combination of SRC, SPC and specific dimensions related to the service itself. Examples

include contexts that restrict services available in a zone, to section of people in a zone, or

time constraints for service availability. Context information in a SC context may sometimes

overlap with contexts in SPC and SRC types. For example, “Movie Downloading Service” may

be restricted to certain age groups which varies from one country to another. Hence the SC for

this service can be represented as [SRAge :≥ 18, SPlocation : USA, SRlocation : USA]. This

context restricts the service to a requester who resides in USA, and is at least 18 years old. The

service provider location is USA. Thus, we need to include Age and Location attributes in SRC

context and SP Location in SPC context.

Contexts from these categories regulate and restrict service provisioning in SOA. Contexts

of SRC and SPC types must be pre-defined in the system, However, contexts of type SC may

vary dynamically due to the mobility of SCs. In general, a SC type can be put into one of the

three subtypes permanent, temporal, and transient. A permanent context needs to be saved. SC

type contexts arise frequently in Health Care service domain. Diabetic patients need to know

the sugar level at specific times of the days. They also need to know when exactly the sugar

level is increasing, or peaks to a high or is decreasing to its lowest level. The contexts of blood

test service might include information on time/day of reading, medication and its level, and

other medical factors. Keeping the history of these contexts will help medical professionals as

well as patients. A temporal context is one which may undergo changes. Many contexts that

arise in business applications are of this type. As an example, a business rule of a multinational

corporation might change depending upon the government imposed legalities. The instant at

which a business rule changes is the instance in which a new context is created for enforcing

the new business rule, thus overwriting the old context. A transient context is one that arises

momentarily, and after its use the context may not arise again. Contexts that arise in many

game playing applications are of this type.

15

datatype

datatype

datatype

1

2

N

dimension

ContextInfo ContextRule

context

ContextValue

dimension

dimension

Dimension1=Value1 AND/OR Dimension2= Value2
... AND/OR Dimension n= Value n

Figure 1: The Generic Context Model

3.3 Generic Context Model

Motivated by the structure of ConfiguredService we came up with a generic context model.

In this section, we provide an implementation-oriented structure for this generic model. We

discuss ConfiguredService in detail in Chapter 4. For our discussion here it is sufficient to

assume that in a ConfiguredService, context has the two parts ContextInfo and ContextRule.

In our model we include ContextInfo and ContextRule. We also include an additional ele-

ment called ContextValue in which information on the context collectors and values of current

context are specified. The structure shown in Figure 1 illustrates this. In this ContextInfo field,

we include dimensions and their type value and explicitly introduce the data type of the value.

In the field ContextRule, a logical formula is included. The field ContextValue requires a more

sophisticated structure in order to capture the change of values. We decided to include in-

formation such as the identifier of the context collector and the date and time of collection.

Assuming that the information of the service context is gathered once the service is selected by

SR. When the service is to be executed the system validates SR,SP eligibility for executing the

service basing on the rules defined in the system.

The information included in the ContextValue is provided in two different nodes, as shown

in Figure 2. Information in a dimension node is specific to each dimension. This informa-

tion includes source ID which is the context collector’s identifier. Since information for each

16

Value

Dimension Value

Dimension datatype

1

2

N

Dimension
Registration Info

contextValue

dimensions info
sourceID

sourceID

sourceID

Time/Datelatest update

ClientID

ProviderID

ServiceID
ContextType

InitialDate
LifeTime

Value

Time/Date

Time/Date

Figure 2: The structure of Context Value

dimension can be collected by several collectors, it is important to know which collector has

collected the information in order to track it in case of a failure. Also, date and time of col-

lection are made part of ContextValue in order to record the history of change. The second

node of ContextValue is the registration node. This node includes information that is general

for all dimensions such as context type, requester ID, provider ID, service ID and date/time of

the last update. This information except date/time of last update, is not updated frequently.

Rather, they are set when the service is executed and will remain the same for other updates.

The fields in this node are defined below.

• lastupdate: includes the date and time of last update of the ContextValue

• requesterID: includes the ID of the requester to whom the service is provided

• providerID: includes the ID of the service provider

• serviceID: includes the ID of the service

• ContextType: can be permanent, temporal or transient

• initialdate: includes the date and time when the context was initialized

• lifetime: includes the time window for the life of the context

17

Example 1 As an example of context, let us assume that a service provided by SP is limited to

people who are maximally 150 Km away from the supplying station. The ContextRule states for

this SP is

• if the SR is within 100 Km, then the service is provided with speed 15 mbps,

• if the SR is at a distance more than 100 Km but less than 150 Km, then the service is provided

with speed 10 mbps, and

• if the SR is at a distance greater than 150 Km, then the service is not available.

This rule can be formally stated as follows:

((d ≤ 100)→ (s = 15))∧ ((d ≤ 150∧ d > 100)→ (s = 10)),

where d is the distance between the SP and SR, and s is the service speed. In Table 1 location

context uses d as ‘dimension for distance’, time is represented in t, source of information ID is

shown sr, and shows the context-dependent service speed s for five different SRs.

Service Requester Context Value Service Speed
SR1 [d : 70, t : 5 : 30, sr : sr1] s = 15
SR2 [d : 100, t : 9 : 30, sr : sr2] s = 15
SR3 [d : 101, t : 9 : 36, sr : sr1] s = 10
SR3 [d : 150, t : 5 : 30, sr : sr1] s = 10
SR5 [d : 170, t : 12 : 30, sr : sr1] NA

Table 1: Context for five different SR and Service Description

�

Example 2 In Example 1 the SR’s are static. The same context rule can be applied to a service

requester SR who wants the internet service on a smart phone device. Then, depending on the

current location of the client the quality of service will vary. Because of mobility, the system has to

track the location of the client in order to maintain or change the internet speed. Table 2 shows the

context dependent service delivery on a mobile service of a single client, assuming that the client is

18

in different locations at different times. We use d for ‘distance dimension’, T for ‘time dimension’,

and SR for ’SourceID’.

Service Requester Context Value Service Speed
SR1 [d : 70, T : t1, SR : sr1] s = 15
SR2 [d : 100, T : t2, SR : sr2] s = 15
SR3 [d : 101, T : t3, SR : sr3] s = 10
SR3 [d : 150, T : t4, SR : sr4] s = 10
SR5 [d : 170, T : t5, SR : sr5] NA

Table 2: The context tracking for a single SR

�

We attach Figure 2 in Figure 1 to obtain the full context model. This context model is sufficient

to model all context types. In modeling a context of type SC we remark that information from

the context of the service provider and information from the context of service requester are

to be absorbed. The service provider context is known at service publication time, whereas the

requester context will be known only at service discovery time. Consequently, the SC model

will only be partial at the time of service publication. It is completed when a service requester

discovers the service and ready to consume it. Example 3 explains these two stages.

Example 3 Let us consider a service provider SP who provides an Internet service in New York

city. The service provider context SPC has dimensions Location, Name, and Address. Let their

types be respectively an enumerated type of city names, string, and record. Let C = [Location :

NewYork, Name : ABC , Address : 15, f i f thavenue] be the SP context. Assume that the context

rule for service provision is that a client must be at least 18 years old and live within 50 Km of

the service provider location. So, this rule is written as (Age ≥ 18) ∧ (Distance(x , y) <= 50),

where x is the address “15, fifth avenue’, New york city”, y is the address of SR, and age is tag

value of dimension Age in the service requester context SRC. When the service is published by the

19

enumerate

records

ContextInfo ContextRule

(Age >= 18) AND (Distance(x,y) <= 50)

ContextValue

Registration Info dimensions info

SPC12

SPC12

latest update:
25/10/2013, 10:00

ClientID: 000

ProviderID: ABC

ServiceID: Internet123
ContextType: Temporal

InitialDate: 000
Lifetime: 000

SP Location
SP Address

enumerate

records

SR Location
SR Address

enumerateSR Age

NewYork

15,5th Ave

SP Location
SP Address

000

000

SR Location

SR Address
000SR Age

000

000

000

10:00, 25/10/13

10:00, 25/10/13

000

000

000

ValueDimension SourceID Time/Date

Service Context SC

Figure 3: The Service Context Instance When No SR in the system

service provider, the service requester information is not known. Therefore, the service context is

only partial, as shown in Figure 3.

When information of SR becomes available, the service context model becomes complete. As an

example, let C ′ = [I D : Alex123, Age :≥ 21, Location : NewYork, Address : 25, thirdavenue]

be the context of SR. This information is included in service context model when SR discovers the

registry. At this instance, the service context model will be as in Figure 4

�

20

enumerate

records

ContextInfo ContextRule

(Age >= 18) AND (Distance(x,y) <= 50)

ContextValue

Registration Info dimensions info

SPC12

SPC12

SP Location
SP Address

enumerate

records

SR Location
SR Address

enumerateSR Age

NewYork

15,5th Ave

SP Location
SP Address

NewYork

25, 3rd Ave

SR Location

SR Address

21SR Age

SRC14

SRC14

SRC12

10:00, 25/10/13

10:00, 25/10/13

13:00, 26/10/2013

ValueDimension SourceID Time/Date

Service Context SC

latest update:
26/10/2013, 13:00

ClientID: Alex123

ProviderID: ABC

ServiceID: Internet123
ContextType: Temporal

InitialDate: 26/10/2013, 13:00
LifeTime: 26/10/2015

13:00, 26/10/2013

14:00, 26/10/2013

Figure 4: The Service Context Instance when SR is in the System

3.4 Service Context History Model

An analysis of historical information of contexts will provide valuable lessons to service providers

in improving their business practises in future. Historical data regarding clients is very valuable

for improving businesses and capturing the market needs and business trends. Through the ac-

cumulated contexts, service providers can observe and evaluate the services provided in the

past and re-evaluate their business policies. In particular, service providers can perform data

mining tasks for instance to discover the contexts in which the frequency of service requests

peaked. When some of these contexts occur in future, providers can be better prepared to serve

the clients. Also, historical information can be critical in health-related applications where there

is an essential need to access the history of patients. For example, in providing health care for

mental illness, it is very useful to investigate a patient’s reactions in different medical situations

21

Single History
Record

Context History

Provider 1 Provider 2

Service 1 Service 2

Context 1 Context 2

History History

LatestUpdate
RequesterID
ProviderID
ServiceID
ContextType
InitialDate
LifeTime

DimName:Value
Date
Time
SourceID

DimName:Value
Date
Time
SourceID

data registration dimension Info

Figure 5: Context History Hierarchical Structure

for understanding and identifying the problem. The volume of data involved in historical evo-

lution of contexts is rather immense. Consequently, we need a structure in which information

can grow in an orderly manner, data access time is optimized, and insertion and deletion of

information are done efficiently.

We propose a hierarchical structure that categorizes the historical contexts based on ser-

vices associated with providers of the services. Figure 5 shows the hierarchy, where the subtree

rooted at a service provider contains the services and the contexts of providing these services.

Thus, with the help of information included in the data registration node, reaching the contexts

of a specific service for a specific client can be made an easy process. Also, the hierarchical clas-

sification helps in keeping the growth manageable by narrowing it down to a specific provider,

and service. Thus, the data related to one provider to one service is clustered together. There-

fore, when providers are to access service contexts they only need to surf their own contexts

among their own clients. This classification can be further refined by clustering the contexts for

providers based on context types. Thus, permanent contexts are clustered together and remain

untouched, whereas temporal contexts are visited periodically for updating the fields.

Additionally, to keep the history manageable we have introduced lifetime, intialdate and

contextType fields in Figure 2. Based on contextType, a context is either to be deleted or retained.

22

In case the type of context is permanent, the context is stored. If the context type is transient,

it is not saved at all. If the type is temporal, the lifetime field is added to the field initial date

which will define the expiry date of the context. This expiry date is calculated whenever the

clean-up process is activated and the record is deleted if either the current date information in

it is equal or past the expiry date information. Medical application is an example of applications

that require history storage.

Example 4 Some diabetic patients need to provide monthly reports that includes 4-5 readings of

their sugar level per day. This information is very important for doctors to specify the correct dosage

of medication to be administered to the patients in order to stabilize their sugar levels. Therefore,

it is essential to store the history of sugar tests done daily for each patient. There are medical

devices that provide sugar level testing service. This device could be enhanced by automating it to

produce reports. That is, the devices could be enhanced with contexts and to produce reports. The

context dimensions for this service are Date, Time, Sugar-Level, and Status of Sugar-Level. The

status could be N (Normal), H (High), or L (Low). The registration Information is not needed as

we assume that the device is used by individual patients. Table 3 shows an example of a report of

context history of a diabetic patient.

Context
Data | Time Sugar-Level Status
1/7/13 | 7:00 4 N
1/7/13 | 11:30 15 H
1/7/13 | 4:30 2.4 L
2/7/13 | 7:00 3.7 N
2/7/13 | 12:00 10 H
2/7/13 | 4:00 7 N
3/7/13 | 7:30 2.00 L
3/7/13 | 12:00 3.00 N
3/7/13 | 5:00 1.5 L

Table 3: Example of Context History of a diabetic patient.

23

Context History

ABC Provider 2

Internet123

Context 1 Context 2

History History

Registration
Data

Dimension
Info

LatestUpdate: 26/10/2013. 13:00
RequesterID: Alex123
ProviderID: ABC
ServiceID: Internet123
ContextType: Temporal
InitialDate: 26/10/2013, 13:00
LifeTime: 26/13/2015

Service SP2

SP Location: NewYork
Time: 10:00
Date: 25/10/2013
SourceID: SPC12

SP Address:15, 5th ave
Time: 10:00
Date: 25/10/2013
SourceID: SPC12

SR Location: NewYork
Time: 13:00
Date: 26/10/2013
SourceID: SRC14

SR Address:25, 5th ave
Time: 13:00
Date: 26/10/2013
SourceID: SRC14

SR Age: 21
Time: 13:00
Date: 26/10/2013
SourceID: SRC12

Figure 6: The Context History Instance of Internet Service

�

Table 3 presents a report produced by a single device at different contexts with a single

function. When we consider a service provided to different SRs with different information at

different contexts then we will have a hierarchy. Example 5 illustrates an instance of context

history model for Internet service.

Example 5 The Internet example in Section 3.3 showed context models at service publication and

service discovery times. When a SR information is not available, the service context is only partially

complete and hence context history is not there. So, in a context history model we do not store

partially filled instance of service contexts. However, once the information of all service context

24

dimensions is available we can start a context history. The latest updated information of context

value stays with the context service instance until it is updated again. Once it is updated, the

service context holds the new information and sends the older one to be stored in context history.

Let us assume the completed context information of Example 3 as the initial SC context. That is,

SC = [SP Location : NewYork, SPAddress : 15, 5thAve, SRLocation : NewYork,

[SRAddress : 25,3rdAve, SRAge : 21]

Suppose it is updated with a new SR context information, SC ′ = [SP Location : NewYork, SPAddress :

15, 5thAve, SRLocation : NewYork, SRAddress : 110,8thAve, SRAge : 30]. Then the initial

context instance of SC (Figure 4) is represented in the context history model shown in Figure 6. If

another SR uses the same service at the service context

SC” = [SP Location : NewYork, SPAddress : 15,5thAve]

[SRLocation : NewYork, SRAddress : 10,10thAve, SRAge : 31]

the information of SC’ is sent to history. The updated context history is shown in Figure 7.

�

25

Context History

ABC Provider 2

Internet123

Context 1 Context 2

History History

Registration
Data

Dimension
Info

LatestUpdate: 26/10/2013. 13:00
RequesterID: Alex123
ProviderID: ABC
ServiceID: Internet123
ContextType: Temporal
InitialDate: 26/10/2013, 13:00
LifeTime: 26/13/2015

Service SP2

SP Location: NewYork
Time: 10:00
Date: 25/10/2013
SourceID: SPC12

SP Address:15, 5th ave
Time: 10:00
Date: 25/10/2013
SourceID: SPC12

SR Location: NewYork
Time: 13:00
Date: 26/10/2013
SourceID: SRC14

SR Address:25, 5th ave
Time: 13:00
Date: 26/10/2013
SourceID: SRC14

SR Age: 21
Time: 13:00
Date: 26/10/2013
SourceID: SRC12

LatestUpdate: 30/11/2013. 10:00
RequesterID: Andrew113
ProviderID: ABC
ServiceID: Internet123
ContextType: Temporal
InitialDate: 26/10/2013, 13:00
LifeTime: 26/10/2015

SP Location: NewYork
Time: 10:00
Date: 26/10/2013
SourceID: SPC12

SP Address:15, 5th ave
Time: 10:00
Date: 26/10/2013
SourceID: SPC12

SR Location: NewYork
Time: 10:00
Date: 26/10/2013
SourceID: SRC14

SR Address:110,8thave
Time: 10:00
Date: 26/10/2013
SourceID: SRC14

SR Age: 30
Time: 10:00
Date: 30/11/2013
SourceID: SRC12

SC

SC'

Figure 7: The Context History Instance 2 of Internet Service

3.5 Summary

In this chapter, context has been modeled in a generic way, and its dynamic characteristics have

been explained. We introduced context types to manage dynamic context information in our

model. A model for context history has been proposed. The proposed context types and history

model are general enough that they could be used by different software systems that require

context. In particular, SOA systems can embed the context model to provide context-dependent

services. If a SOA system does not have context information as part of the service component,

then embedding our models will have no adverse effect on their performance.

26

Chapter 4

Context-Aware Services

In many application domains services are to be provided by taking the context information of

service requester into account. Health care domain is typical in requiring context-aware ser-

vices. An important requirement is to sense the contexts of patients in order to provide proper

services for them. In order that a service becomes aware of context, it is necessary to attach

context information to service component. Thus, it is important that context specifications and

context constraints are included in service definitions. Given this service structure, a service re-

quester whose context is specified can be delivered the correct service. Motivated by this need

to tightly couple service with context, Ibrahim [Ibr12] has introduced ConfiguredService in

which a service is configured by context. The context information is included as part of Con-

tract component, which includes Trustworthiness, LegalRules and Non-Functional properties.

In this chapter, the ConfiguredService components are explained and clarified for our modeling

and implementation needs. We extend ConfiguredService to provide a generic context-aware

service model, which is ready for implementation.

27

Contract Service

Nonfunctional

Function

Attributes

Context

Legalissues

Trustworthiness
ProviderTrust

ServiceTrust

ContextRule

ContextInfo
Postcondition

Result

Signature

Pre-condition

Configured Services

Figure 8: The Definition of the Configured Services [Ibr12]

4.1 Configured Services

The components of ConfiguredService are illustrated in Figure 8. ConfiguredService consists of

a Service and Contract components. The former is the component that includes all data that

are attached to service functionality and service description. The latter encompasses context as

a parameter adding to it other parameters that depend and change when context is changed.

These parameters are LegalRules and Trustworthiness properties. In the following sections we

explain each component and provide a generic model for Service and Contract components.

4.2 Service

Service is the part that includes all the information that are essential to describe the ser-

vice functionality and features. This service information is static and tightly coupled with

Service component. That is, the service information can be changed only when new service

(product) attributes are added. Any change of service information will not affect contract in-

formation. Likewise, the change of a context does not affect the service description. However,

it does affect the parameter included in the contract. Therefore, Service separated from the

context that is encompassed within the contract part. For example, a service description do not

28

Functionality

Pre-Conditions Post-Conditions Signature Result

Cond 1 = Value, Type

,
,
,

Name 2: Value2 : type
.
.
.

.

.

.

Name 1: Value1: type

Name n: Valuen : type

Cond 2 = Value, Type

Cond n = Value, Type

Cond 1 = Value, Type

,
,
,

Cond 2 = Value, Type

Cond n = Value, Type

Name 1: Value1: type

Name 2: Value1: type

Name n: Value1: type

Figure 9: The Generic Structure of Service Functionality

change with the change of location. Hence, all service description is modeled as elements of

service component. The service information is categorized into three parts: Functional, Non-

Functional properties, and Attributes. To model a Service we need to model each part of it and

put them together. We explain the steps next.

• Functionality

The service function is defined by four elements. These elements are Pre-condition, Post-

condition, Signature, and Result. Pre-condition includes condition that should be met by

either service provider or requester to provide the service. Post-condition specifies what

SP should provide and what SR is supposed to get. We need a model in order to allow

their retrieval and modification, independent from other elements in the ConfiguredSer-

vice model. Therefore, the Pre-condition and Post-condition elements are separately

modeled as a list of values and their types, considering each value as a condition. The

type helps with validation and executing processes. Signature includes information, such

as address, that is unique to an SP. This information is different from a service provider

to another. Hence, the model needs to have different identifiers and values for signature

fields. Also, each identifier needs to have a defined data type. This is because Signa-

ture information is needed when the provider is requested to enter its signature for

service execution or any other reason required during service provisioning process. The

29

type of data, in any element of service or contract, can be primitive type or complex.

The complex type is defined by service provider during service publication and is stored

in the system as part of the domain application. All the examples that we have used

involve only simple types, however, any complex type defined by SP can be included in

the model. From modeling perspective, each signature needs the ability to store a list

of identifier and their values with their type. Each identifier represents the name of the

files such as city, street name or location, the value includes the data for those fields, and

the type is a data type of the entered value such as string, integer or a defined type in

the system. Thus, for each signature element, the ability to store different keys, values

and types should be provided. Result stores the information that is returned after exe-

cuting the service. Although service execution is not within the scope of this thesis, our

structure should provide Result element in which execution results are provided service

requester. We model Result by a list of keys (identifiers) and values with defined types.

The identifiers represent names of the returned value. The value field is not assigned

till the service is executed. Types define the type of values returned from executing the

service. The Functional component with all its elements are illustrated in Figure 9.

Example 6 Let Rent-Car be the function name of a car rental service. A precondition of

this function can be

Pre-Cond:validC(credi tCard)∧ validD(Driving License),

where validC and validD are functions that will validate the status of credi tCard and

Driving License. A postcondition for the function Rent-Car can be

(con f irmC redentials = T),

Let the Signature information be (Address = (X X X , st r ing), and the result of booking

Resul t be (bookingCon f irmed = T). This service information is represented in Figure 10.

30

Rent_Car

Pre-Conditions Post-Conditions Signature Result

ValidC(CreditCard)
=(T,bool)

ConfirmCredentials
= (T,bool)

Address=
(xxx, string)

bookingConfirmed
= (T, Bool)

ValidD(DrivingLicense)
=(T,bool)

Figure 10: Example of Service Functionality Element

NonFunctional

ParameterName 1

ValueValue

Type

Description

ParameterName 2

ValueValue

Type

Description

ParameterName n

ValueValue

Type

Description

...

Figure 11: The Generic Structure of Non-Functionality Properties

�

• Non-Functional Properties

Non-functional properties refer to the characteristics that are not related to the function-

ality of the service but are essential for its acceptance. For example, for selling a book, the

price is a Non-Functional property. These non-functional properties are different from the

attributes. This is because the attributes are to describe the service functionality, whereas,

the non-functional properties are descriptions that are not related to the function but they

are fixed and not related to the context. Therefore, these information included as part

of the service. However, from modeling perspective the Non-Functional properties are

treated similar to attributes. Each identifier is the name of the non-functional property

31

NonFunctional

Price

Value50

Real

US Dollar

Figure 12: Example of Service Non-functional Property

that needs a value and data type of this value. Each non-functional property may need

extra information such as currency type for price. Therefore, it is decided to add a de-

scription parameter for the identifier which will provide semantic information on the

recorded data.

To model the non-functional part, we introduce four parameters. These parameters are

Name which is a string, Value which is the value of the name parameter and its type is

defined in the type field, Type which is the data type of the value, and Description which

is a string value that describes the Name parameter. This information should be easily

accessed and queried by service seekers. Figure 11 illustrates the Non-Functional model.

Example 7 Consider the non-functional property price for Rent-Car service

Price : (value : 50perDa y), (t ype : Real), descript ion[(Currenc yT ype = USDollar)].

This information is modeled in Figure 12.

�

• Attributes

Attributes are specific characteristics of a service. Specific properties add another di-

mension to describe certain service aspects. Often the terms “service” and “product” are

interchangeably used in certain application domains. For example, “Life Insurance (LI)”

32

Attributes

AttributeName1

Value

Type

Value Value

Type Type

AttributeName2 AttributeName n...

Figure 13: The Generic Structure of Service Attributes

is considered as a product in Insurance Industry, although we get only a service. The

attributes of that service will describe specific features of a LI. In some other domains,

product and service come together. In getting “mobile service”, we buy a cell phone,

which is a product, as well as telephone service using that cell phone. The same remarks

apply to car rental services. However, if the service does not involve a tangible prod-

uct, the service attributes are to describe the service functionality in some depth. As an

example, an on-line bill paying service does not require the user to own a computer; how-

ever, the user must have access to the Internet. Thus, attributes are required to describe

the service functionality and to characterize the products associated with a service. In

modeling we found that the model is not affected by the service type. Therefore, we let

Attributes model encapsulates Name, Value, and Type. The Name and the Value fields de-

scribe service and/or characteristics. However, the Type field is needed mainly to support

transforming data between units of the system. That is, type is needed by other units

to recognize the data. This is discussed later in the next chapter. Like non-functional

properties, attributes information are accessed and queried a lot by service seekers. The

model for attributes is illustrated in Figure 13. It supports data accessibility and retrieval.

Example 8 For car rental example with functionality Rent-Car both service and product

(car) attributes should be modeled. Some of the attributes that are of interest to the

33

Attributes

CarType

Toyota

string

Color

Red

Model

echo

string string

Year

2013

Int

CompanyName

CCCRental

string

Doors

4

enumerate

Transmission

automatic

string

Figure 14: Example of Service Attributes Part

consumer are the following:

CarBrand : [To yota, st r ing],

Color : [Red, st r ing],

Year : [2013, Integer],

Model : [Echo, st r ing],

Doors : [4, Integer],

Transmission : [automatic, st r ing],

CompanyName : [CCCRental, st r ing].

The name of the attribute is the identifier and this key is mapped to its value and its type.

Figure 14 shows the Attributes model for this example.

�

4.3 Contract

The Contract part in a ConfiguredService encompasses all the information that are changeable

with some context and is loosely coupled with service. That is, service part can be the same

while the Contract part is different for different ConfiguredServices. In other words, the same

34

service could be mapped to several contracts on which the service with each Contract creates a

different ConfiguredService. Contract may change based on Context. That is, different locations

may imply different legal rules. However, that does not affect the service whatsoever. Thus,

the service and contract are separated while Context and Contract are joined. For example, a

video download service could be provided in different countries such as Canada and England.

Because, every country has its own restrictions and laws on some services, every country needs

to have a different contract. For this particular service, the age restriction for downloading

movies varies depending on the country. Therefore, every country could have a Contract that

includes the legal rules and laws for this country. So, a contract for England is mapped to the

video service and another contract for Canada is mapped to same video service which means

that every country has it own ConfiguredService.

The contract part includes the three parameters Trustworthiness, LegalRules, and Context.

Context part includes information to define service eligibility for a specific service requester.

It includes ContextInfo, ContextValue, and ContextRule. Also, managing context history is im-

portant for many applications. Thus, context is considered the most complex part among the

three parameters. Therefore, we have separately explained all information related to context

definition, types, general model and context history thoroughly in Chapter 3. Below we give an

example for context modeling based on the discussion in Chapter 3. Following it, we explain

the models for the other two parameters.

• Context

Example 9 The service context of car rental service includes information of the service

provider SP and service requester SR. The SP provides a rule stating that the service should

be provided to a person who is at least 18 years old. This rule is represented as follows:

35

enumerate

records

ContextInfo ContextRule

(Age >= 18)

ContextValue

Registration Info dimensions info

SPC12

SPC12

SP Location
SP Address

enumerate

records

SR Location
SR Address

enumerateSR Age

Montreal

15,5th Ave

SP Location
SP Address

Montreal

25, 3rd Ave

SR Location

SR Address

31SR Age

SRC14

SRC14

SRC12

10:00, 25/10/13

10:00, 25/10/13

13:00, 26/10/2013

ValueDimension SourceID Time/Date

Service Context SC

latest update:
25/10/2013, 10:00

ClientID: Alex123

ProviderID: ABC

ServiceID: Internet123
ContextType: Temporal

InitialDate: 26/10/2013
LifeTime: 26/10/2015

13:00, 26/10/2013

14:00, 26/10/2013

DateSR License Expiry Date

21/11/2015SR Lisence Expiry Date SRC12 14:00, 26/10/2013

Figure 15: Example of Context Element

Contex tRule = (Age ≥ 18) The service provider context includes Location, Name and ad-

dress information that is written as SPC = [Location : NewYork, Name : ABC , Address :

15, f i f thavenue]. The service requester needs to provide Age, Location, Address and Driv-

ing License Expiry Date. The required information for SR is written as SRC = [I D :

Alex123, Age :≥ 31, Location : NewYork, Address : 25, thirdavenue, Driving LicenseEx pires :

21/11/2015]. The context model is shown in Figure 15.

�

• Trustworthiness

Trustworthiness parameter stores trust information related to service and/or service

provider. Thus, Trustworthiness is composed of ServiceTrust and ProviderTrust. Ser-

viceTrust includes information that is related to service quality, such as timeliness and

36

Trustworthiness

Service Trust Provider Trust

Name 1: Value1: Type

.

.

.

Name 2: Value2: Type

Name n: Value n: Type

Name 1: Value1: Type

.

.

.

Name 2: Value2: Type

Name n: Value n: Type

Figure 16: The Generic Structure of Trustwothiness

Trustworthiness

Service Trust Provider Trust

Safety: automatic seat built: string

Security: figer print locking: string
Rate: 4: enumerated

Recommendation: XXX Highly recommends: string

Availability: 48 hours in advanc: string

Reliability: no break record: string

Figure 17: Example of Trustwothiness Element

safety. It is considered ServiceTrust to be composed of safety, security, reliability, and

availability. Service Provider lists the claims of the Service Provider in some quanti-

tative or qualitative terms. Service Provider includes trust recommendations of peers

and reviews of clients. However, because of the generic nature of trust information, we

decided to model both ServiceTrust and ProviderTrust as a list of names, values of those

names and their data type . These names work as identifiers to their values. Figure 16 is

the generic model for Trustworthiness.

37

Example 10 Let the trustworthiness of a car rental service be as follows:

ServiceTrust : [(name : Sa f et y), (value : automaticseat buil t), (t ype : st r ing),

(name : Securi t y), (value : f ingerprint locking), (t ype : st r ing),

(name : Availabil i t y), (value : 48hoursinadvance), (t ype : st r ing),

(name : Reliabil i t y), (value : nobreakrecord), (t ype : st r ing)]

ProviderTrust : [(Name : Rate), (value : 4), (t ype : enumerate),

(name : Recommendation), (value : X X Xhighl y recommends), (t ype : st r ing)]

The trustworthiness model for this example is shown in Figure 17.

�

• Legal Issues

LegalRules are related to the business model and trade laws in the locations where ser-

vices are made available. A few examples are refund rules, penalties for contract viola-

tions, and service requesters rights. To model LegalRules part, it is both necessary and

sufficient to have the ability to store two string values for each rule that could be retrieved

and compared to other string values. The first value called Informal Rule which is a tex-

tual rule representation that is easily readable by service requesters. The second value is

Formal Rule that represents the rule formally to be understood and used by the system.

It is assumed that the service provider enters both values during service publication. It is

validated and analysed by the system before publishing the service. Considering model-

ing those values, both need to have a identifier. Therefore, each rule stores a name for

the rule and two string values which are the the Informal and the Formal rules. The

string type is proper and sufficient to represent both textual and formulated values. The

model is described in Figure 18.

Example 11 A few legal issues involved for car rental include information about collision

38

Legal Issues

RuleName1

InfromalValue

. . .

FormalValue

RuleName2

InfromalValue

FormalValue

RuleName3

InfromalValue

FormalValue

Figure 18: The Generic Structure of Legal Issues

insurance, parking violation, contract renewal, discount, and deposit. Each rule is repre-

sented in the form I F〈condi t ion〉T HEN〈act ion〉.

Colli s ionAndLiabili t y :

(In f ormalValue : The collision is not covered, if an accident happened

then the client CrditCard is charged)

(FormalValue : I F〈accident〉

T HEN(Coll isionCoverage = Null ∧ Liabil i t y = Null ∧ char ge(C rdi tCard))

Par king Violat ion :

(In f ormalValue : Must be paid before returning the car, otherwise 100 dollars is additionally charged)

(FormalValue : I F(ParkingV iolat ion)∧¬(DatePaid(Violat ionFee)< (Dateo f Return(car))

T HEN(Pa yonReturn(RentalFee + 100)),

where the functions (PayonReturn), (DatePaid), and (DateofReturn) should be evaluable in

order to enforce this rule. So, in the case that the parking violation fee is not paid, the

function (DatePaid) will return the value∞ which will make the predicate return a value.

Cont r actRenew al :

(In f ormal Value : Automatically renewed, inform us in at least two days advance of contract end date),

(Formal Value : I F(In f ormDate(user) + 2< Dateo f Return(Car)T HEN(Conf irmRenewal))

39

Legal Issues

Collision and liability
insurance

Coverage = Null, If
accident THEN
Cost charged on
CrditCard

Parking Violation

Must be paid before
returing the car,
otherwise 100 dollar
is charged is charged

Automatically renewed,
inform us in at
least two days advance
of contract end date

Contract Renewal

200 $
at time of
check out

15% for
AAA
members

Deposit Discount

IF (accident) THEN
(CollisionCoverage = Null
AND Liability = Null
AND charge(CrditCard))

IF (ParkingViolation) AND
~(DatePaid(ViolationFee)
<(Dateof Return(car) THEN
(PayonReturn (RentalFee + 100))

IF (InformDate(user) + 2
< DateofReturn(Car)
THEN (ConfirmRenewal))

IF (Checkout) THEN
(DepositPaid = 200))

IF(AAAMember(user))
THEN (PayonReturn
((1-0.15)*RentalFee))

Figure 19: Example of Legal Issues Element

where (InformData) and (DataofReturn) are functions and (ConfirmRenewal) is a predicate.

Depos i t :

(In f ormalValue : 200 dollars at time of check out),

(FormalValue : I F(Checkout)T HEN(Deposi tPaid = 200))

Discount :

(In f ormalValue : 15 % for AAA members)

(FormalValue : I F(AAAMember(user))T HEN(Pa yonReturn((1− 0.15) ∗ RentalFee))

The above legal issues or CarRent servic is shown in Figure 19.

�

4.4 Configured Service Generic Model

We put all the above generic models together to arrive at ConfiguredService generic model

shown in Figure 20. In this model, the loose coupling between Service and Contract is explicitly

modeled as a relation. The relation describes many to many relationship, using the traditional

database definition. Because of the loose coupling between Service and Contract models, and

the internal structuring within each model, it is possible (1) to apply changes on any parameter

of any components, and (2) to navigate and retrieve data easily.

40

Service

n

Functionality

Pre-Conditions Post-Conditions Signature Result

Cond 1 = Value, Type

,
,
,

Name 2: Value2 : type
.
.
.

.

.

.

Name 1: Value1: type

Name n: Valuen : type

Cond 2 = Value, Type

Cond n = Value, Type

Cond 1 = Value, Type

,
,
,

Cond 2 = Value, Type

Cond n = Value, Type

Name 1: Value1: type

Name 2: Value1: type

Name n: Value1: type

Contratct

m

Trustworthiness

Service Trust Provider Trust

Name 1: Value1: Type

.

.

.

Name 2: Value2: Type

Name n: Value n: Type

Name 1: Value1: Type

.

.

.

Name 2: Value2: Type

Name n: Value n: Type

Attributes

AttributeName1

Value

Type

Value Value

Type Type

AttributeName2 AttributeName n...

NonFunctional

ParameterName 1

ValueValue

Type

Description

ParameterName 2

ValueValue

Type

Description

ParameterName n

ValueValue

Type

Description

...

Legal Issues

RuleName1

InfromalValue

. . .

FormalValue

RuleName2

InfromalValue

FormalValue

RuleName3

InfromalValue

FormalValue

datatype

datatype

datatype

1

2

N

dimension

ContextInfo ContextRule

dimension

dimension

Dimension1=Value1 AND/OR Dimension2= Value2
... AND/OR Dimension n= Value n

Value

Dimension Value

Dimension datatype

1

2

N

Dimension
Registration Info

contextValue

dimensions info
sourceID

sourceID

sourceID

Time/Datelatest update

ClientID

ProviderID

ServiceID
ContextType

InitialDate
LifeTime

Value

Time/Date

Time/Date

context

Figure 20: The Generic Structure of Configured Service

Example 12 We take all the models for car rental developed in previous examples and put them

together as required by the generic model. This results in the model for a specific car rental service

shown in Figure 21.

The relation between the contract and the service component is changed to (one to one) because

particularily the carRent service component with this contract creates a single ConfiguredService.

41

Rent_Car

Contratct

1

1

Rent_Car

Pre-Conditions Post-Conditions Signature Result

ValidC(CreditCard)
=(T,bool)

ConfirmCredentials
= (T,bool)

Address=
(xxx, string)

bookingConfirmed
= (T, Bool)

ValidD(DrivingLicense)
=(T,bool)

enumerate

records

ContextInfo ContextRule

(Age >= 18)

ContextValue

Registration Info dimensions info

SPC12

SPC12

SP Location
SP Address

enumerate

records

SR Location
SR Address

enumerateSR Age

Montreal

15,5th Ave

SP Location
SP Address

Montreal

25, 3rd Ave

SR Location

SR Address

31SR Age

SRC14

SRC14

SRC12

10:00, 25/10/13

10:00, 25/10/13

13:00, 26/10/2013

ValueDimension SourceID Time/Date

Service Context SC

latest update:
25/10/2013, 10:00

ClientID: Alex123

ProviderID: ABC

ServiceID: Internet123
ContextType: Temporal

InitialDate: 26/10/2013
LifeTime: 26/10/2015

13:00, 26/10/2013

14:00, 26/10/2013

DateSR License Expiry Date

21/11/2015SR Lisence Expiry Date SRC12 14:00, 26/10/2013

Trustworthiness

Service Trust Provider Trust

Safety: automatic seat built: string

Security: figer print locking: string
Rate: 4: enumerated

Recommendation: XXX Highly recommends: string

Availability: 48 hours in advanc: string

Reliability: no break record: string

NonFunctional

Price

Value50

Real

US Dollar

Attributes

CarType

Toyota

string

Color

Red

Model

echo

string string

Year

2013

Int

CompanyName

CCCRental

string

Doors

4

enumerate

Transmission

automatic

string

Legal Issues

Collision and liability
insurance

Coverage = Null, If
accident THEN
Cost charged on
CrditCard

Parking Violation

Must be paid before
returing the car,
otherwise 100 dollar
is charged is charged

Automatically renewed,
inform us in at
least two days advance
of contract end date

Contract Renewal

200 $
at time of
check out

15% for
AAA
members

Deposit Discount

IF (accident) THEN
(CollisionCoverage = Null
AND Liability = Null
AND charge(CrditCard))

IF (ParkingViolation) AND
~(DatePaid(ViolationFee)
<(Dateof Return(car) THEN
(PayonReturn (RentalFee + 100))

IF (InformDate(user) + 2
< DateofReturn(Car)
THEN (ConfirmRenewal))

IF (Checkout) THEN
(DepositPaid = 200))

IF(AAAMember(user))
THEN (PayonReturn
((1-0.15)*RentalFee))

Figure 21: CarRent Configured Service Example

42

�

4.5 Summary

In this chapter, each formal element of ConfiguredService is clarified by explaining the data

included in each element and the structure needed for each element. A generic model is pro-

vided for each element of ConfiguredService plus an example for each one of them. Finally, a

general structure for ConfiguredService is proposed. As the ConfiguredService is constructed

from all these components, assembling all the provided examples for each element constructs

a complete example of ConfiguredService.

ConfiguredServices are stored and managed in a Registry. The Registry needs to be struc-

tured and modeled in a way that enhances accessibility and manageability. The next chapter

discusses Registry that stores context-aware services and proposes a structure for categorizing,

storing and managing ConfiguredService.

43

Chapter 5

Context-Aware Service Registry

Service registry is defined as a specific type of repository that allows companies to catalog and

reference the resources required to support the deployment and execution of services[K+05]. That

is, registries are used to store service descriptions and references to their resource locations.

The information of the registry and the repository could be stored in one storage or different

separate storages[Min08]. The current available registries, such as UDDI [BCE+02], store

web services using WSDL [CCMW01]. However, these registries do not support storing rich

services that include non-functional information and context. In Chapter 4, ConfiguredService is

discussed and we outlined a generic service structure. ConfiguredServices need a registry that

provides methods to support high manageability and accessibility for such rich services. The

following features [Ibr12] are necessary for a service registry.

1. It stores ConfiguredService.

2. It enables service providers to publish and manage services.

3. It controls access using Role Based Access Control (RBAC).

4. It provides domain knowledge and semantic methodology to be used by service providers

and service requesters.

44

Root

Domain 1 Domain 2

Domain 1 Domain 2

Function1 Function2

Provider1 Provider2

Configured
Service 1

Role(s) Role(s)

Role(s)Role(s)

Role(s) Role(s)

Non-Functional
Role(s)

Provider n

Configured
Service 2

Configured
Service n

Figure 22: The main structure Service Registry

In this chapter, we introduce a novel generic structure of a context-aware service registry.

45

Figure 23: Context-Aware Service Registry Storage structure

5.1 Context-Aware Service Registry

An abstract structure for the registry storage is shown in Figure 22. Since ConfiguredService de-

scription includes context information and context rules for service availability, services stored

in this registry can be discovered to best suit the contexts of service requesters. We expect that,

in a service-oriented application in which this registry will be embedded, context-awareness

will be part of service queries. We call the registry Context-Aware Service Registry (CASR).

CASR is structured as shown in Figure 23. It has three main parts. Below we discuss them

and explain their models.

46

5.1.1 Domain, Sub-Domain and Function

The first three levels of the hierarchy are Domain, Sub-Domain and Function. They are used

to classify the domain knowledge governing the information in ConfiguredServices. Domain

represents a wide area of knowledge, such as Health Care, Transportation, and Entertainment.

Sub-Domain is to represent a subset of knowledge within the domain. As an example electronic

games is a sub-domain of games which in turn is a sub-domain of Entertainment. Function

describes a type of service that is provided under this area sub-domain. An example of function

is OnlineGameStores within electronic games sub-domain. A child of a function node stores

information on providers of services with that functionality, and for each service provider what

the ConfiguredServices are. In this section we discuss the structure in details up to the function

level in Figure 23.

The nodes of these three levels share some elements, which we call Followers, Followings,

Level, NodeType, ChildType, and Roles. Followers and Followings are used to build the relation-

ship among the nodes of the CASR registry. Level is to determine the level in the tree hierarchy.

This gives the system the ability to recognize nodes position of the tree as either root, interme-

diate node, or a leaf. NodeType defines the type of the node that includes this field. ChildType is

to strict the children of a domain, sub-domain or a function, to either nodes from function type

or sub-domain type. Roles are used to manage accessibility to ConfiguredServices by restricting

domains, sub-domains and functions to specific user roles.

Before explaining each added field, we want to introduce the rules that restrict our DKN:

• the domains children are always sub-domain.

• the sub-domain can be further narrowed by a sub-domain once. That is, the DKN number

of levels cannot be more than four levels. It is either three where the levels are domain,

sub-domain and function, or four levels where the levels that are domain, sub-domain,

sub-sub domain and function. This decision is based on the three clicks rule [RWC12]

47

which surveys cases and features that attract users to use one website more than another.

One of the features that suits service requesters is that the number of clicks to browse a

website preferably does not exceed three clicks. Hence, we decided to restrict the number

of levels on a hierarchy of DKN to maximum 4.

• function cannot be a child of a domain, it is always a child of a sub-domain.

Level is a field of domain, sub-domain and function nodes that determines their level of the

hierarchy. The levels is fixed with the following conventions:

• Level =0, this is for domain nodes only as they are the roots of the hierarchy. Once the

system finds the value zero in this field, it recognizes that this node is a root node. The

value of Level for domains nodes is restricted by this formula

I F((t ype = ′dom′)T HEN(Level = 0))

• Level = 1 or 2, this is for the sub-domain nodes as they are children of domain. Any node

has the value 1 in their level field, it is a sub-domain node. However, a sub-domain can

have another sub-domain as a child that narrows the category into a sub category. The

sub-domain can present only in two levels of the hierarchy which are second (domain

child) or third (sub-domain child). This will be explained in coming paragraphs. How-

ever, at this point, we provide the formula that restricts the sub-domain level number is

assigned by the system following the methods below:

I F(t ype =′ sub′)AN D(ParentT ype(I D) =′ dom′)T HEN(level = 1)

I F(t ype =′ sub′)AN D(ParentT ype(I D) =′ sub′)T HEN(level = 2)

• Level = 2, 3, these values are assigned to level’s attribute of function nodes. A function

can be a child of a sub-domain node which results into assigning level field to value 2

48

(level = 2). Also, a function can be a child of a sub-sub-domain node which results in

level = 3.

The Level information of nodes are assigned implicitly to the nodes during construction.

I F(t ype =′ f un′)T HEN(level = (Parent Level(I D) + 1))

ChildType is to determine type of children a node can have. If childT ype = 0, then the

children are from type sub-domain only. If the childT ype = 1, then the children of this node

are all functions and other types are not allowed to be published under this node. The domain

is always restricted to childT ype = 0 as domains children are always sub-domains. However,

the sub-domain ChildType can be either childT ype = 0 or childT ype = 1. This is because

the sub-domain node can have children from one type. Therefore, childType is determined for

sub-domain node when the first child node is born. Depending on the first born child type,

the other sibling of this node should have the same type. That is, if a sub-domain1 node is

selected to be a parent of another sub-domain2 node, then other nodes of sub-domain1 should

be sub-domains as well. In contrast, if the node gets a child from type function, then all other

children of this node must be function as well. Function does need ChildType field as it is a

leaf node of the DKN. The formal representation of assigning a value to ChildType field for

sub-domain node is:

I F((T ype =′ dom′)T HEN(ChildType = 0))

I F((T ype =′ sub′)AN D(F irstChildT ype =′ sub′))T HEN(ChildT ype = 0)

I F((T ype =′ sub′)AN D(F irstChildT ype =′ f un′))T HEN(ChildT ype = 1)

NodeType is to tell the system the type of the node. This field is included in all nodes of the

system that includes DKN nodes plus Service Provider, Function, Service, Contract, and Context.

The type value could be dom for domain nodes, sub for sub-domain nodes, f un for function

49

nodes, sp for service provider nodes, service for service nodes, cont ract for Contract nodes

and contex t for Context nodes.

A role is represented as a tag attached to each node in Figure 23. Roles is a list of names

that represent roles of service providers and requesters. These roles include two main lists.

One is RequesterRoles another is ProviderRoles. The RequesterRolesare names of roles that are

defined to control access for service requester. Every time SR starts a session with CASR,

CASR assigns a role for SR. The role is decided by a third party of the system called Trusted

Authority Unit (TAU). Assuming this TAU exists, when the role is assigned for SR, the domain,

sub-domain or function is not displayed for SR unless the role of SR exists in RequesterRoles list

of this particular node. Similarly, the ProviderRoles are also names of roles that are used to

control access. However, it is specified to control access for service providers SP when they are

publishing a service. The reason for not merging these two roles list together is because using

a service is different from providing a service. Some services could be used by a wide range

of roles or types of people with different professional skills or educational levels. Nevertheless,

services can be provided by a limited range of roles that are assigned to few service providers

with concern only on their legibility for providing such a service. For example, medical services

could be used by almost every adult without specifications to their job or level of knowledge.

However, a medical service is allowed to be provided by licensed doctors or clinics. Therefore,

the two roles list are separated from each other.

The ProviderRoles list is defined by a third party that is intelligent to specify the roles of

providing some ConfiguredServices. However, the RequesterRoles are initially born with the

grandchild roles list(function). When a new role is added to the grandchild role list, an update

operation is required to child (sub-domain) and parent role list (domain). This is because, SP is

able to update RequesterRoles list every time service provider SP adds a new service. However,

logically if the function is not allowed to be used for some specific role, parent and grandparent

of this function should be aware of that. So, if the roles of a function are represented in a set

50

called A, and the roles of roles of its parent sub-domain are represented in a set called B, and

the roles of its parent domain are represented in a set called C , then A⊆ B ⊆ C must hold.

Followers and Followings are concepts inspired from the social website Twitter. These two

elements are used to build the relationship among users of Twitter. Similarly, Followers and

Followings are used to build relationships among nodes of the CASR. Followers is a list that

includes all the IDs of other nodes that follow this node. That is, Followers element of function,

sub-domain, and domain nodes are to define respectively what providers are followers to a

specific function, what functions are followers to a sub-domain and what sub-domains are

followers to a specific domain. However, Followings is a single value that represents one ID

that represents the parent of this node. So, Followings element of function and sub-domain are

respectively define which sub-domain is the parent of this function and which domain is the

parent of this sub-domain. The domain does not include following information as it is a root

node that follows no node.

The first three levels of the hierarchy represent the Domain Knowledge (DKN). DKN is used

to provide service requesters SR knowledge about services stored in the registry. In searching

service registries that exist in practise, the service requester usually seeks a service by entering

key words. In response, a huge number of services might turn up. Some of those services may

not be relevant to the user. However, in our design the registry uses DKN to direct a service

requester to specific groups of services. That is, CASR displays available domains of services

and guides the user to navigate through domains of interest. Then, when SR selects a specific

domain, the registry displays sub-domains under this domain, and the navigation continues.

This directs SR to service which that are categorized under this specific area. So, our structure

has the following advantage:

• It increases manageability and Enhance performance. searching for a specific service is

narrowed to particular services without the need to go through all services that exist in

51

the registry. For example, if the service requester SR looks for specific service name, by

a single query, it could be known if the service is included under this domain or not. By

having all the service names stored in the domain attached with their IDs, it is easier

to recognize service ID. Hence, the system can simply retrieve data for this particular

service. This manages the workload on the registry and hence enhances performance.

• It controls accessibility. Not every domain of knowledge could be accessible for every re-

quester. For example, let us assume that under the domain HealthCare a service provider

SP, who is not licensed, wants to publish a service. By enforcing Access Controls our sys-

tem will disallow this operation. Similarly, a user who is not authorized to browse certain

parts of the registry will be forbidden to navigate through those sections of registry.

• Syntax and semantics of representations help categorize services. Service providers can

publish similar services under two different categories. These two categories may be

semantically the same but syntactically different. For example, the domain Entertain-

ment and Games are syntactically different but semantically the same. Providing the

Domain knowledge, with description to types of services that belong to a domain, service

providers can choose the appropriate domain under which they want to publish a service.

5.1.2 Modeling Domain, Sub-Domain and Function

In this section, the definition of each node is explained thoroughly. These three nodes, as shown

in Figure 24 have precise definitions in the system. They are to be used every time a domain,

sub-domain or a function is to be constructed by the system or requested to be constructed by

a service provider.

1. Domain

The domain definition includes Name, ProviderRoles, RequesterRoles, Level, NodeType,

ChildType, Followers, SPContextand SRContext. We have explained already ProviderRoles,

52

DomainID Providers Roles: [value 1, value2,..., value n]
Requesters Roles: [value 1, value2,..., value n]

SRContext
SPContext

Followers: [ID 1, ID2,, ID n]

Sub-Dom ID Providers Roles: [value 1, value2,..., value n]
Requesters Roles: [value 1, value2,..., value n]
Followers: [ID 1, ID2,, ID n]
Following: string

FunctionID Providers Roles: [value 1, value2,..., value n]
Requesters Roles: [value 1, value2,..., value n]
Followers: [ID 1, ID2,, ID n]
Following: string
Functional: Name1:Datatype, Name2: Datatype,
..., Name n: Datatype
Non-Functional: Name1:Datatype, Name2: Datatype,
..., Name n: Datatype
Attributes: Name1:Datatype, Name2: Datatype,
..., Name n: Datatype

Level: enumerate
ChildType: '0'
NodeType: 'dom'

Level: enumerate
ChildType: enumerate
NodeType: 'sub'

Level: enumerate
NodeType: 'fun'

Name: string

Name: string

Name: string

Figure 24: The Domain, Sub-Domain and Function Definition

RequesterRoles, and Followers in previous paragraphs. From modeling perspective, they

need to include an identifier which is a key(unique name) that maps to a list of string

values. The values of RequesterRoles and ProviderRoles list role names for the service

requesters or service providers. With roles are associated the eligibility to browse this

domain. The values of Followers list are the IDs of sub-domains that follow this domain.

However, to model Name, Level, NodeType, and ChildType, each field needs to be mapped

to a single value, a string value for name and NodeType fields and an enumerate value

for Level and ChildType fields.

SPContext is the context of service provider that is pre-defined for this domain in the

53

datatype

datatype

datatype

1

2

N

dimension

ContextInfo ContextValue

dimension

dimension

Value

Dimension Value

Dimension datatype

1

2

N

Dimension sourceID

sourceID

sourceID

Time/Date

Value

Time/Date

Time/Date

SP/SR Context

Figure 25: SP and SR Context Definition

system. The definition of context information and its values are represented in Figure 25.

From Chapter 3 discussion it is clear that the structure of context can be used with any

component. Therefore, we are using the same structuring, excluding information related

to service restriction and context history. The contextRule is the field that includes the

situation that the service is allowed to be executed in. The SPContext and SRContext does

not require such an information. Thus, it is skipped. Also, the type of SPContext is

transient, which means there is no need to store it in history. Also, there is no need to

add registration information in the context. The SPContext and SRContext, which are

the contexts of service provider and service requester respectively, are defined within a

structure that is represented in Figure 25.

2. Sub-Domain

The sub-domain node includes ID, Level, NodeType, ChildType, ProviderRoles, Requester-

Roles, Followers and Followings. Level, NodeType, ChildType, and Followings the modeling

principle for domain, a sub-domain is modeled. The ProviderRoles, RequesterRoles, and

Followers are modeled as keys mapping to a list of string values.

3. Function

The function node includes ID, Level, NodeType, ChildType, ProviderRoles, RequesterRoles,

Followers, Followings, Functional, Non-functional and Attributes. ProviderRoles, Requester-

Roles, Followers, and Followings are similar to their models in domain and sub-domain.

54

JACL
Online Book Store

Enlighten yourself with a look

ID: Kje123
Name: James Clow
Location: London, ON
Email: JamesClow@hotmail.com
Rate: 4/5

Figure 26: Provider information displayed with its service

However, Functional, Non-Functionaland Attributes are the information stored in the ser-

vice component of ConfiguredService. We model them as lists of keys associated to their

data types. The data type is String. Figure 24 shows the general definition of function.

5.1.3 Service Providers (SP)

At this level we include information on service providers who provide a service with this func-

tionality. This information is repeated with every function that they provide in a service. That

is, if a service provider has services under different function nodes, then their information is

repeated under each function. However, it is not repeated if the provider is providing more

than one service under the same function. The provider information included in this node is

part of the information that is stored in their account and profile. What is stored in this node is

the information that matters to service requester such as name, rating and location. However,

personal information of service providers are kept private in the accounts database. A service

provider model includes the following information:

• ID

• Name

• Location

• Contact information

• Service Rating

55

Providers

Followes: [ID 1, ID2,, ID n]
Following: string

ID: string
Name: string
Location: string

Rating: string
Contact Details

NodeType: 'SP'

Figure 27: Provider Definition in the System

• NodeType

To capture this model we use a list of keys associated to their types. Figure 27 shows a generic

model. The reviews and recommendation of a service is stored with the provider of that service

as part of the ConfiguredService. The Service Rating information is repeated with every service

because it is viewed by service requesters as they browse the registry. As an example, let us

assume that a service provider with the profile

Id : K je123, Name : JamesClow, Location : London, ON ,

Email : JamesClow@hotmail.com, Rating : 4/5

provides an online service. While browsing such an online services, the service provider infor-

mation is displayed as in Figure 26.

5.1.4 Configured Services (CS)

In Figure 23, the ConfiguredService part encompasses three levels of the hierarchy which are

Service, Contract, and Context. The service as it is introduced in Chapter 4, includes the Func-

tional, Non-Functional, and Attributes values of the service. Adding to it NodeType, Followers,

and Followings. The NodeType is to define the type of this node. Followers is to list contracts

belong to this service and Followings is to specify the ID of node’s parent. These fields are

modeled as they modeled with other nodes of the hierarchy. Previously, it is clarified that the

contract includes Context, Trustworthiness, and LegalRules issues. The NodeType, Followers, and

56

Followings need to be added to contract elements. NodeType and Followers is modeled and

defined the same. However, Followings is to list the IDs of contract parents. That is, it is not

a single value as it is with other nodes. The relationship between a service and a contract is

many to many. Hence, it is needed to link between those nodes from both ways. That is, from

a contract node, the system is able to get all services that are parent to this node and from

service node, the system is able to list all contracts belong to this node. Context is also defined

and structured in Chapter 3. Adding to the elements included in context component, we add

NodeType and Followings. The NodeType is to sign that this node is a context and Followings is

to specify the contract parent of this node. The service can be related to many contracts and

the contract can be related to many service. The contract links to one context only. Hence, One

service with one contract attached to one context creates a unique ConfiguredService.

5.2 Context-Aware Service Registry Generic Model

With every component we discussed in previous chapters, we have provided a generic structure

for implementation. In this chapter we discuss a generic model for the registry tree structure.

This model includes mapping information among entities including ConfiguredService. Fig-

ure 28 illustrates the generic model of registries tree structure. It shows that every domain can

be a parent of one or more sub-domain(s) which can be a parent of one or more function(s).

A function is then mapped to one or more service provider(s). For the sake of simplicity, the

provider entity is created under every function which is the functionality of a service provided

by the service provider. If the service provider providers several services under the same func-

tion, the entity is not duplicated but mapped to several services as shown in Figure 28.

Example 13 Lets, assume that we have domain, sub-domain, function and provider that are

defined respectively as follows:

57

n

n

1

Services

n

Contract

m

DomainID Providers Roles: [value 1, value2,..., value n]
Requesters Roles: [value 1, value2,..., value n]

SRContext
SPContext

Followers: [ID 1, ID2,, ID n]

Sub-Dom ID Providers Roles: [value 1, value2,..., value n]
Requesters Roles: [value 1, value2,..., value n]
Followers: [ID 1, ID2,, ID n]
Following: string

FunctionID Providers Roles: [value 1, value2,..., value n]
Requesters Roles: [value 1, value2,..., value n]
Followers: [ID 1, ID2,, ID n]
Following: string
Functional: Name1:Datatype, Name2: Datatype,
..., Name n: Datatype
Non-Functional: Name1:Datatype, Name2: Datatype,
..., Name n: Datatype
Attributes: Name1:Datatype, Name2: Datatype,
..., Name n: Datatype

Level: enumerate
ChildType: '0'
NodeType: 'dom'

Level: enumerate
ChildType: enumerate
NodeType: 'sub'

Level: enumerate
NodeType: 'fun'

Name: string

Name: string

Name: string

n

n

1

1

1

Providers

Followes: [ID 1, ID2,, ID n]
Following: string

ID: string
Name: string
Location: string

Rating: string
Contact Details

NodeType: 'SP'

Context

1
1

Figure 28: The Generic Structure of Service Registry Domain Knowledge and Providers

Dom1→ [(Name : Transpor tat ion), (Level : 0), (NodeT ype : dom), (ChildT ype : 0),

(ProvidersRoles : [r1, r2, r5]), (RequesterRoles : [r12, r13]), (Fol lowers : [sub1, sub2])

sub1→ [(Name : CarServices), (Level : 1), (NodeT ype : sub), (ChildT ype : 1),

(ProvidersRoles : [r1, r5]), (RequesterRoles : [r12]), (Fol lowers : [f un1]),

(Fol lowing : Transpor tat ion)]

58

Dom 1
Providers Roles: [r1, r2, r5]
Requesters Roles: [r12, r13]

SRContext
SPContext

Followers: [sub1, sub2]

1

n

Providers Roles: [r2, r5]
Requesters Roles: [r12]
Followers: [fun1]
Following: Dom1

ID: sub1

n

Providers Roles: [r2]
Requesters Roles: [r12]
Followers: [sp1, sp2]
Following: sub1

ID: fun1

1

Functional: CreditCard:bool, DrivingLicense: bool
Non-Functional: Price: enumerate
Attributes: Cartype: string, Year: enumerate
Color: string, Doors: enumerate, Model: string

Providers

n ID: sp1

1

1

Name: James Clow

Location: London, ON

Rating: 4
Starting Date: 7/10/2013

Followers: [cs1, cs2, cs3]
Following: fun1

ID: sp2
Name: Alaa SG
Location: Montreal, QC

Rate: 5
Starting Date: 7/07/2009

Followers: [cs5, cs4, cs6]
Following: fun1

Name: Transportation
Level: 0
NodeType: 'dom'
ChildType: '0'

Name: CarServices
Level: 1
NodeType: 'sub'
ChildType: '1'

Name: Rent_Car
Level: 2
NodeType: 'fun'

NodeType: 'sp' NodeType: 'sp'

NodeType: 'service'
Followers: [con1,con2,con3]'

NodeType: 'context'
Following: con1

Following: sp1

NodeType: 'contract'
Followers: context1
Following: [s1, s2]

n

SP1

con1

Context1

m
n

m
n

Figure 29: Example of Tree Structure for Transportation Domain

fun1→ [(Name : RentC ar), Level : 2, NodeT ype : f un,

(ProviderRoles : [r1]), (RequesterRole : [r12]), (Fol lowers : [sp1, sp2]),

(Fol lowing : sub1), (f unct ional : [(credi tCard : bool), (drivingl icense : bool),

(nonf unct ional : [(price, enumerate)]), (at t ributes : [(carT ype : st r ing),

(Year, enumerate), (color, st r ing), (doors, enumerate), (model, st r ing)])]

sp1→ [(Name : JamesClow), (Location : London, ON), (Email : JamesClow@hotmail.com),

(Rate : 4/5), (Fol lowers : [cs1, cs2, cs3]), (Fol lowing : f un1, (NodeT ype : sp)]

((sp2→ [(Name : AlaaSG), (Location : Montreal,QC), (Email : alaa− sg@hotmail.com),

(Rating : 5/5), (NodeT ype : sp), (Fol lowers : [s3]), (Fol lowing : f un1)]

59

s1→ [(Name : service1), (Fol lowers : [con1, con2]), (Fol lowing : sp1, (NodeT ype : service)]

((con1→ [(NodeT ype : cont ract), (Fol lowers : [contex t1]), (Fol lowing : s1, s2)]

(context1→ [(NodeT ype : contex t), (Fol lowing : con1)]

This data is represented in Figure 29.

�

5.3 Summary

In this chapter, the context-aware service registry CASR storage is discussed covering structure

information that is used to classify the massive row data of ConfiguredServices. The CASR

structure supports hight manageability and controlled accessibility by providing and storing

role information. After structuring the registry, we are going to discuss its implementation.

The implementation needs a database that structure data and stores them. In the following

Chapter, database selection, design and implementation are discussed.

60

Chapter 6

CASR Implementation in NoSQL

Databases

In this chapter, we customize the general structure introduced in the previous chapter to the

three NoSql databases Redis, MongoDB, and Hbase. First, we introduce a general description

of NoSql databases and explain why we preferred them over traditional databases. Then,

we narrow down the discussion on the three NoSql databases. There are various options to

implement each NoSql database type. Therefore, we decided to pick only one representative

implementation for each type. For each database, we present general technical information

and then use this information to map the general structure provided in Chapter 5 to a structure

that suits the characteristics of each database.

6.1 Why NoSql Databases

The decision to select a database platform for a specific system is dependant on the data that is

required to be stored in a database. When using a database to organize unsupported structure

of data, the potential of the target database should be fully achieved. This is why we decided

61

using NoSql databases. Given the characteristics of our data, which was described in the pre-

vious chapters, traditional relational databases (RDBs) are not the best option. In fact, RDBs

were created to host and manage similar data which are grouped in tables. It support schema-

based structures. Also, RDBs have fixed number of columns for every table. This means that

rows in a table should have the same number of fields [Lea10]. Therefore, data included in

one table cannot be heterogeneous in the sense that they all should have the same number of

fields. This causes an increase in the number of tables and in turn increases the number of

join operations to link those tables. Join operations are very costly, CPU intensive and memory

consuming. However, because of the rigorous pre-fixed structure of columns in a table, joining

operations are unavoidable in RDBs. Although many efforts have been put [Cat11] towards

enhancing the scalability and the efficiency of RDBs by using master-slave and sharding tech-

niques, they fall short when faced with high volumes of diverse structures of data. Distributing

RDBs is complex and storing data in one machine might require expensive maintenance opera-

tions when the data load increases. Having the data stored in one place with pre-fixed schema

help providing safe transactions featured with Atomicity, Consistency, Isolation and Durability

(ACID) [Cat11]. SQL-like databases have pre-fixed structured schema which provides efficient

query system and aggregation operations. CASR registry data adopts highly diverse structures.

It contains different data structures and numerous levels of hierarchy. Service-Oriented Archi-

tectures are mainly built to respond to clients efficiently. Also, they are meant to store massive

data that are not necessarily structured. Therefore, RDBs is not the best choice to implement

the context-aware service registry.

NoSQL can fully contain the data of CASR registry. NoSql databases are naturally dis-

tributed. They support free-schema structures, diverse structure of rows and data hierarchy.

Therefore, our data can be denormalized into less number of tables which can eliminate the

great cost associated with join operations. Also, NoSql databases can store high volume of data.

Many experiments and comparative studies have been conducted on the measurable difference

62

in performance between NoSql and RDBs [Cat11]. NoSql does not support ACID transactions.

However, they support Scalability, Consistency, Availability and Partition Tolerance. NoSql can

query data; however, in general, they do not support aggregation operations such as Group

By. The simplicity of NoSql database structures and its distributed nature reduces the need for

management.

The main reasons for choosing NoSQL over RDBs model to implement CSAR are:

• NoSql can handle heterogeneity, withstand a large number of read and write operations,

and avoid join operations. Consequently, there is likely to be less workload and better

performance.

• NoSQL databases support massive database management efficiently.

• NoSql technology supports semi or free schema which makes it suitable for managing

semi-structured data [TJ10].

In service-oriented systems we need to provide flexible service schema for each service provider.

That is, not all service providers can be forced to stick to one particular service schema. Every

service provider should be given the flexibility to choose a schema that best fits their service

description goals. It is important to emphasize that the CSAR structure provides a generic

service model, which makes it possible to model any service in it. Consequently we aim to

provide its implementation in a database model which does not restrict the service schema to

be identical for all service providers.

There are different types and options when it comes to NoSql databases. However, they

mainly fall under the following three categories: 1) Key-Value, 2) Document-Oriented, and 3)

Column-Oriented. Each of these NoSql technologies has many platforms to support its opera-

tions. Therefore, we decided to choose one NoSql platform from each category in order to im-

plement CASR. The selected databases are: 1) Redis for Key-Value, 2) MongoDB for Document-

Oriented, and 3) Hbase for Column-oriented.

63

String Set Hash List Sorted Set

Key : Value

value n

value 3

value 2
value 1

(value n, score n)

(value 3,score3)

(value 2, score2)

(value 1,score 1)

Type of value

filed1: value 1
field2: value 2
field3: value 3
.
.
.
fieldn: value n

value 1
value 2
value 3
.
.
.
value n

value

can be string
or numerical

Figure 30: Redis Key-Value Store

6.2 Implementation: Redis - Key-Value Store

Redis is an open source advanced key-value database. In this section we describe in some detail

the features of Redis shown in Figure 30.

6.2.1 Redis Features

A record in a key-value database consists of a key mapped to its corresponding value. Redis

is considered an advanced key-value database because it provides five possible data structures

for the value type. These data structures are explained below.

• String: A String type is suitable to store a single value with a maximum size of 512MB.

The value of a string can be any byte array such as an integer counter, a string or a binary

serialized object. String structure is supported with different commands and operations

[SN10]. However, the CRUD operations GET , SET , and DEL are the most used ones.

Updates and insertions are performed by SET , retrieval of information is done by GET

and DEL is used to delete a record. These are explained in the screen shot shown in

Figure 31.

• Hash: A Hash type is suitable to store a set of pairs where each pair consists of a name

(field) and its corresponding value. A single Hash record in Redis could have up to 232−1

64

Figure 31: String Commands in Redis

pairs. Hash is similar to a hash directory which allows one to manipulate data through

the fields. Redis provides operations such as HSET and HMSET to set single field and

multiple fields at a time. Retrieval from hash storage is done using HGET operation with

ke y f ield−Name as parameter. The operation HGETALL is used to retrieve all the fields

and their values. Redis system is intelligent to recognize all existing fields and update

them with the new data or add the new entered field to the assigned key. Finally deleting

the whole hash record can be performed using either the command used with string type

or HDEL command. Figure 32 shows a a Redis session in which hash commands are

used.

• Set: A Set is suitable to store an unsorted and not duplicated group of elements connected

to a single key. In a Set data structure of Redis, a maximum of 232 − 1 elements can be

stored. For Set data structure the operations SADD, SREM , SM EMBER, ISM EMBER,

SUN ION , and SIN T ER are provided in Redis. Their semantics follow the set theory

semantics for inserting, deleting, checking membership, and forming respectively the

union and intersection. For instance, the operation SADD will need an element and set

variable as input. If the input element is not in the input set, the element is inserted

in the set, otherwise the input set is remained with no change. There is no operation

for updating the members values in a set, however it can be performed by deleting the

65

Figure 32: Hash Commands in Redis

appropriate member from the set and then performing the add operation. In Figure 33

we show a sample Redis session with set operations.

• List: A List type is simply a list of string values that are ordered as they are entered.

A List data structure of Redis could have a maximum size of 232 − 1 values. List uses

the command LPUSH, LPOP to add or remove a value to the list. List type provides the

operation LLEN to determine the length of a list, the operation LSET (with ke y, index as

argument) to index the elements of the list, and the operation LRANGE (with arguments

(ke ystar t, ke ystop)) to retrieve a range of values. Figure 34 shows a sample session

with List operations in Redix.

• Sorted Set: A Sorted Set type is a Set type, in which each value is associated with a score.

A score is an integer number attached to each value of a Sorted set. The values of a Sorted

set are sorted in ascending order based on the scores. To add a member to a sorted set

the command ZADD with arguments ke y and score is used. The command ZCARD

with argument ke y is used to get the member of a specific sorted set. The operation

66

CRUD

Union & Intersect

SISMEMBER & SMEMBERS

Figure 33: Set Commands in Redis

ZRANGEBY SCORE with arguments k ye f rom and ke y to is used to get the values of the

members from the index ke y f rom to ke y to. Updating a sorted set is similar to updating

a set [SN10] [RWC12]. Figure 35 shows a Redis session using Sorted Set structure.

6.2.2 Design Considerations

Mapping the generic model of CASR, introduced in Chapter 5, is not trivial. This is because

the nature of key-value stores does not allow constructing one rich object wrapped in a table.

67

Figure 34: List Commands in Redis

Inserting

Reading

Removing

Figure 35: SortedSet Commands in Redis

Therefore, the following design issues should be resolved first.

• It is necessary to aggregate data together to construct conceptual tables. Hence, we

link records of the same conceptual tables in a clear way. There are two solutions for

wrapping related data to a single record, as explained below:

1. Key Pattern: We can construct a key, by combining keys along the path from the

68

Domain1
ID: "dom"

sub-domain1
ID: "sub1"

sub-domain2
ID: "sub2"

function1
ID: "fun1"

function2
ID: "fun2"

function3
ID: "fun3"

Figure 36: Key Pattern Example

root to a child node. This is explained in the following example.

Example 14 In Figure 36, domain is the root of the hierarchy and its key is dom. The

two sub-domains sub − domain1 and sub − domain2 are the children of the root,

and their respective keys are sub1 and sub2. Sub − domain1 has the two children

f unct ion1 and f unct ion2, whose keys are f un1 and f un2. Sub − Domain2 has

one child f unct ion3 whose key is f un3. In Redis, as duplicating keys is not allowed,

we cannot represent

dom : “sub1”

dom : “sub2”

So we construct the pattern dom : sub1 as the key for sub−domain1, and dom : sub2

as the key for sub− domain2 and represent them in Redis as follows:

dom : sub1 : “sub : domain1”

The three functions are represented in Redis as shown below:

dom : sub1 : f un1 : ” f un1”

dom : sub1 : f un2 : ” f un2”

69

Figure 37: Retrieving all records by patterns

This method produces long complex IDs. Also, we do not need to know the path

from keys as we included Followings and Followers information defined in the generic

model. Hence, we thought of another pattern which is

NodeI D : F ieldName : value

If this pattern is used, it is possible to recognize the node’s parameter represented

by this record. For example, in ConfiguredService, the service part is represented by

four elements which, functional, Non-Functional, Attributes, Signature, AND Result.

Each of these is represented in a separate record in Redis. Their keys are represented

as FuncI D : At t ribute, which helps us to distinguish elements from one function

to another. So, using the key patten command, we can get all the elements related

to one service. The key pattern command helps to find all the records that match a

pattern. This command is ke ys ∗ ∗. In Figure 37 we shown a sample Redis session

in which the pattern ∗rent_car∗ is used as an ID of rent_car function. We found

that this is very useful for retrieving data related to a specific node. Therefore, we

applied it in our structure.

• Data Type Selection: We should choose the appropriate Redis data type by examining the

nature of included data and query types on this information.

• Secondary key: Redis does not support secondary keys. If we want to allow a user to

70

search the database using a secondary key such as email or phone number, then we can

use the Redis features that allow searching on the value of any given attribute. That is,

we can first look up for matches based on email and then for services that match for

number and combine result. Alternatively, we can create additional mappings from the

generic model to the Redis database. From the information stored in the generic model,

we can identify the primary key and secondary keys for each model element. For each

secondary key, we can construct the map which maps it to the primary key. For example,

the map Email → I D maps all emails to the respective IDs. We can store this key value

pairs in Redis and use it when the user requests a search based on email. Consequently,

we have to store all possible maps of secondary key to the respective primary keys and

store them in Redis data base in order to allow the user to search the data based on

secondary key. This will create additional storage and a small overhead of searching time

for the primary key.

6.2.3 Implementing the Domain Knowledge Design

To map the DKN that includes Domain, sub-domain and function in the generic structure into

Redis, we decided to construct the tables 1.1 to represent domains, 1.2 to represent sub-

domains, and 1.3 to represent functions.

Table 1.1

Domain:ID (name:value, ID:value, SPContext:ID, SRContext:ID, Level:value, childType: value,

NodeType: value) (hash)

Domian:ProviderRoles (set)

Domian:RequesterRoles (set)

SPContextDefintion: (name:type, name:type, name:type) (hash)

SPContextValue: (name:value, name:value, name:value) (hash)

SRContextDefintion: (name:type, name:type, name:type) (hash)

71

SRContextValue: (name:value, name:value, name:value) (hash)

Table 1.2

SubDomianID:Info (Name:value, Level:value, Following:value, childType:value, NodeType: value)

(hash)

SubDomianID:ProviderRoles (set)

SubDomianID:RequesterRoles (set)

SubDomainID:Followers (set)

Table 1.3

FunctionID:Info (Name:value, Level:value, Following:value, NodeType: value) (hash)

FunctionID:RequesterRoles (set)

FunctionID:ProviderRoles (set)

FunctionID:CSList (set)

FunctionID:Followers (set)

FunctionID:PreCond (name:type, name:type, name:type) (hash)

FunctionID:PostCond (name:type, name:type, name:type) (hash)

FunctionID:Attrib (name:type, name:type, name:type) (hash)

FunctionID:Sign (name:type, name:type, name:type) (hash)

FunctionID:Result (name:type, name:type, name:type) (hash)

FunctionID:NonFunc (name1:type, name1_des:value, name n:type, name_des n:value)

To structure DKN in Redis we use the data types Set, and Hash. For implementing the fields

Followers, ProviderRoles, and RequesterRoles we use Set type. This is because these fields store

list of their children IDs. Thus, Set is a proper data type to store these unrepeated set of values.

With sets, we are able to retrieve all elements at once, check existence of a specific value,

and delete/add a single member of/to the set. However we represent Attributes, Functional,

72

and Non-Functionalin Hash data type. This is because it provides the ability to include data in

ke y : value format. From the generic model representation Attributes, Functional, and Non-

Functional, it is clear that each one of these elements needs a list of values associated with their

names. In Redis this representation is made possible with hash data structure. The rest of the

information including Name, Level, NodeType, ChildType, and Followings, which are parameters

with a single value, can be represented in a separate record using String data type. However, we

decided to have them all stored in one Hash value that wraps all fields that have single values.

That is, instead of storing the information Name, Level, NodeType, ChildType, and Followings of

a sub-domain sub1 in five different records,

sub1 : Name : “Sub− domain1”

sub1 : NodeT ype : “sub”

sub1 : Level : “1”

sub1 : ChildT ype : “1”

sub1 : Fol lowing : “dom”

we use the hash data type to store all the above information in one record, named In f o, so

sub1 : in f o =

[Name : “Sub− domain1”NodeT ype : “sub”Level : “1”ChildT ype : “1Fol lowing : “dom”]

For Domains, the record In f o includes IDs of SPContext, and SRContext definition and values.

These two fields are the “LinkingTo” fields. That is, they include IDs of other records related to

this domain. Each SPContext (SRContext) is represented by two Hash records. One for defining

the dimension (names) with their data types and the other for associating those dimensions

with their values.

The sub-domain and domain have similar structure. In table 1.2, we use hash type to

wrap together Name, Followings, NodeType, ChildType, and Level fields. We use Redis Set type

73

to represent Followers, CSList which includes grandchildren(services) IDs, ProviderRoles and

RequesterRoles.

In table 1.3, a function definition includes In f o record to map the defined fields in the

generic model. However, from the generic model function node includes Functional, Non-

Functional, Attributes, Signatureand Result definitions. Each one of them must be repre-

sented individually. Such an individual representation requires the key pattern we defined

earlier to link the records of one function together. That is, FunctionID:Attributes is the key

for Attributes record of function1 that is represented by including its ID before the colon of

this record key. This way, using the Ke y ∗ ∗ command of Redis, we are able to get all the

records of a function. For example writing the command Ke y ”FunctionI D”, the records

keys FunctionID:Info, FunctionID:RequesterRoles (set), FunctionID:ProviderRoles (set), Func-

tionID:CSList, FunctionID:Followers, FunctionID:PreCond, FunctionID:PostCond, FunctionID:Attrib,

FunctionID:Sign, FunctionID:Result, FunctionID:NonFunc are all retrieved. Hence, we are able

to get their information by using a query with a key.

For the function node, we include the list of attributes and their type but not the values of

the attributes. This is because at the function node, we include the attributes of all the Config-

uredServices under that node. The value of the attributes along with their types are listed for

each ConfiguredService which the grandchildren of the function node. Such a representation

will enable all the ConfiguredServices that can be browsed for a given set of attributes. At the

time of publishing a ConfiguredService, the system checks the fields of each part and will incre-

mentally add descriptions. The following example illustrates this incremental representation.

Example 15 Let CS1 be a ConfiguredService, which is a grand child of function (fun1), in which

the At t ribute parameter of CS1 which is described by two lists.

At t rDe f : [a1 : t ype1, a2 : t ype2, a3 : t ype3],

74

fun1 PreCon[]
PostCond[]
Signnatue[]
Result[]

Attributes[] [a1: type1, a2: type2, a3: type3]

CS1 PreConDef[]
PostCondDef[]
SignnatueDef[]
ResultDef[]

AttributesDef[] [a1: type1, a2: type2, a3: type3]
PreConVal[]
PostCondVal[]
SignnatueVal[]
ResultVal[]

AttributesVal[] [a1: v1, a2: v2, a3: v3]

SP

Figure 38: CS1 published as a grandchild of fun1

and

At t rVal : [a1 : v1, a2 : v2, a3 : v3],

The fields a1, a2, a3 are in both lists. Their values v1,v2, v3 are stored in AttrVal. The type of vi

is t ypei , and is stored in At t rDe f . That is At t rDe f is a definition to At t ribVal. Note that the

hash type in Redis, see table (1.4)(1.3), allows us to have a list of attributes.

When CS1 is published by the system it adds the definition of attribute to fun1 node which is

represented as follows:

At t r ibutes : [a1 : t ype1, a2 : t ype2, a3 : t ype3]

Note that, the value parts are added under the service Figure 38. Assuming that another Config-

uredService , CS2, is added with the following Attributes lists representation:

At t rDe f : [a1 : t ype1, a4 : t ype4],

and

At t rVal : [a1 : v1, a4 : v4]

75

fun1 PreCon[]
PostCond[]
Signnatue[]
Result[]

Attributes[] [a1: type1, a2: type2, a3: type3, a4:typ4]

CS1 PreConDef[]
PostCondDef[]
SignnatueDef[]
ResultDef[]

AttributesDef[] [a1: type1, a2: type2, a3: type3]

PreConVal[]
PostCondVal[]
SignnatueVal[]
ResultVal[]

AttributesVal[] [a1: v1, a2: v2, a3: v3]

CS2 PreConDef[]
PostCondDef[]
SignnatueDef[]
ResultDef[]

AttributesDef[] [a1: type1, a4: type4]

PreConVal[]
PostCondVal[]
SignnatueVal[]
ResultVal[]

AttributesVal[] [a1: v1, a4: v4]

SP

Figure 39: CS2 published as a grandchild of fun1

When CS2 is published, the f un1 attribute elements are simply updated as:

At t r ibutes : [a1 : t ype1, a2 : t ype2, a3 : t ype3, a4 : t ype4]

Redis conceptual representation showing the incremental additional function description are shown

in Figure 38 and Figure 39.

�

The inclusion of elements definition within the function parent entity has two advantages.

The first advantage is to give a SP information on the attributes that already exist in the CASR

when it is publishing the service. The SP can see the provided fields in similar services for each

component and then they can be used to describe the service. Also, by including attributes

definition in function nodes, the system is able to display all the services under this node.

That is, when SR browses the available domains, sub-domains and functions, SR can select

the desired function. When the function is selected, the service registry provides the defined

attributes under this particular function; hence, it provides the service characteristics which the

76

SR is looking for. Consequently, the list of available services presented to SR will include all

relevant services related to the SR requirement.

6.2.4 Implementing Provider Design

Service provider SP information is different from the information provided as part of the DKN

as well as from the information included in the ConfiguredServices. For conceptual clarity, we

separate service provider information from the rest. We map the service provider information

in the generic model to a table structure. This table (1.4) includes one Hash data type that

includes SP In f o which has the Name, Address, Rating, Fol lowing and NodeT ype fields.

It also uses a Set data type to represent Followers field that includes all IDs of ConfiguredSer-

vices provided by the SP.

Table 1.4

ProviderID:Info (Name:value, Location: value, Rating:value, Following:value, NodeType:value)

(Hash)

ProviderID:Followers (set of CS IDs)

6.2.5 Implementing Configured Service Design

We map the ConfiguredServices model to Table 1.5 and Table 1.6.

Table 1.5

ServiceID:Info (Name:value, Following:value, NodeType:value)

ServiceID:PreCondDef (name:type, name:type, name:type) (hash)

ServiceID:PreCondVal (name:value, name:value, name:value) (hash)

ServiceID:PostCondDef(name:type, name:type, name:type) (hash)

ServiceID:PostCondVal(name:value, name:value, name:value) (hash)

ServiceID:NonFuncDef (name1:type, name1_des:value, name n:type, name_des n:value)

ServiceID:NonFuncVal (name1:value, name1_des:value, name n:value, name_des n:value)

77

ServiceID:AttribDef (name:type, name:type, name:type) (hash)

ServiceID:AttrinVal (name:value, name:value, name:value) (hash)

ServiceID:SignDef (name:type, name:type, name:type) (hash)

ServiceID:SignVal (name:value, name:value, name:value) (hash)

ServiceID:ResultDef (name:type, name:type, name:type) (hash)

ServiceID:ResultVal (name:value, name:value, name:value) (hash)

ServiceID: Followers (set)

In the generic model, there is an over lap of information between the function and Con-

figuredService. In the generic model, a ConfiguredService is a child of a service provider node,

who in turn is a child of a function node. The set of attributes at a function node is a super-

set of the set of attributes of the services under it. That is, at the level of service node the

attributes and value information are those that are very specific to that service. Consequently,

when we map a service into Redis we need two records for each of Functional, Non-Functional,

Attributes, Signatureand Result. In one record we map the fields corresponding to the attributes

names and their data types. In the other record we map the fields names and their values. For

each element, it is needed to know the type of data associated with each field as this helps

the system to provide other functionalities that deal with these data such as validation and

calculation. Figure 40 shows a simple interface to enable the user to create such table service

publication stage. Once services are uploaded for publication, an implicit update operation to

the grandparent node, which is a function, is invoked. This invocation is to add the definition

of new attributes to the Attribute list at the function node.

Table 1.6

ContractID:Info (Name:value, NodeType:value)

ContractID: Followers (set)

ContractID: Followeing (set)

78

Welcome SP1 in CASR

Add CS

Modify CS

Remove CS

Service Description (step1)

PreCon
PostCon
Attributes
Signature
Result

Attribute
Name Value Type

Add more

Figure 40: Basic Visualization for Service Publication Web Page

ContractID:LegalIssueInformal (name:value, name:value, name:value) (hash)

ContractID:LegalIssueFormal (name:value, name:value, name:value) (hash)

ContractID:ProviderTrustDef (name:type, name:type, name:type) (hash)

ContractID:ProviderTrustValue (name:value, name:value, name:value) (hash)

ContractID:ServiceTrustDef (name:type, name:type, name:type) (hash)

ContractID:ServiceTrustValues (name:value, name:value, name:value) (hash)

Table 1.6 shows the Redis table created by mapping the Contract part of the generic model.

The contract node in the generic model includes definition record and values record for each

of ProviderTrust and ServiceTrust. Both of these parameters need to be associated with type and

value. However, unlike service node, the inclusion of type information does not lead to update

operation in the function node. This is because the contract information is not included in the

function node. Also, in Contract table, the Followings and Followers are defined with set Redis

datatype. This is because the relationship between service part and Contract part are many

to many, which means that Followings field includes several IDs for services they belong to.

However, a Contract can be followed by only one Context although it includes several fields.

Therefore, Followers field includes the contextID which can get the rest of fields ID such as

79

contextID:ContextInfo, contextID:ContextValue, and contextID:Rule.

LegalRules are part of Contract and they do not need a type field because it includes values

represented as text which is a string value that is defined implicitly by the system. However,

we need two records to map each legal rule, one to represent the formal representation and

another to store the informal representation. That is, the informal value includes a list of fields

which represent the rule name and its textual value. However, the formal representation of this

rule is stored in the second record of LegalRules which is used and read by the system. The SP,

who publishes the service, is responsible for entering the formal and informal representation

of each rule assuming that SPs have the knowledge to do so.

6.2.6 Implementing Context Design

Table 1.7

ContextID:Info (name: value, NodeType:value (hash) ContextID:Following (set) ContextID:Rule

(value) (string)

ContextID:contextInfo (Dim1:type, Dim2:type,..., Dim n:type) (hash)

ContextID:contextValue (Dim1:ID, Dim2:ID,..., Dim n:ID) (hash)

ContextID:Dim1ID (Dim1:value, Time:value, Date:value, SourceID:value) (hash)

ContextID:Dim2ID (Dim2:value, Time:value, Date:value, SourceID:value) (hash)

.

.

ContextID:DimnID (Dim n:value, Time:value, Date:value, SourceID:value) (hash)

Table 1.7 shows the Redis key-value model for context structure. The model uses String and

Hash types to model the elements. The In f o record is added to include Context Name and

NodeType using hash Redis datatype. Because ContextInfo consists of many pairs of dimension

names and their types, Hash is a good data type to use. Similarly, ContextValue contains pairs.

80

redis 127.0.0.1:6379> hgetall dom1:info
 1) "name"
 2) "transportation"
 3) "level"
 4) "0"
 5) "childType"
 6) "0"
 7) "NodeType"
 8) "dom"
 9) "SPCDef"
10) "sp1d"
11) "SPCVal"
12) "sp1v"
13) "SRCDef"
14) "sr1d"
15) "SRCVal"
16) "sr1v"
redis 127.0.0.1:6379> hgetall sr1d
1) "name"
2) "string"
3) "contact"
4) "string"
5) "location"
6) "string"
7) "birthdate"
8) "date"
redis 127.0.0.1:6379> hgetall sr1v
1) "name"
2) "AlaaSG"
3) "contact"
4) "meSR@CASR.com"
5) "location"
6) "Lasalle, QC"
7) "birthdate"
8) "2/2/1984"
redis 127.0.0.1:6379> hgetall sp1d
1) "name"
2) "string"
3) "rating"
4) "string"
5) "contact"
6) "string"
7) "location"
8) "string"
redis 127.0.0.1:6379> hgetall sp1v
1) "name"
2) "JamesClow"
3) "rating"
4) "4/5 very good"
5) "contact"
6) "jc@CASR.com"
7) "location"
8) "Montreal,QC"
redis 127.0.0.1:6379> smembers dom1:followers
1) "sub2"
2) "sub1"
redis 127.0.0.1:6379> smembers dom1:SRRoles
1) "r4"
2) "r2"
3) "r3"
4) "r1"
redis 127.0.0.1:6379> smembers dom1:SPRoles
1) "r12"
2) "r13"
3) "r11"
redis 127.0.0.1:6379>

redis 127.0.0.1:6379> hgetall sub1:info
 1) "name"
 2) "CarServices"
 3) "NodeType"
 4) "sub"
 5) "ChildType"
 6) "1"
 7) "level"
 8) "1"
 9) "following"
10) "dom1"
redis 127.0.0.1:6379> smembers sub1:followers
1) "fun1"
2) "fun2"
redis 127.0.0.1:6379> smembers sub1:SPRoles
1) "r12"
2) "r13"
redis 127.0.0.1:6379> smembers sub1:SRRoles
1) "r3"
2) "r2"
3) "r1"

Table 1.1 Table 1.2

redis 127.0.0.1:6379> hgetall fun1:info
1) "name"
2) "rent_car"
3) "level"
4) "2"
5) "NodeType"
6) "fun"
7) "following"
8) "sub1"
redis 127.0.0.1:6379> smembers fun1:followers
1) "sp1"
2) "sp2"
redis 127.0.0.1:6379> smembers fun1:CSList
1) "s3"
2) "s1"
3) "s2"
redis 127.0.0.1:6379> hgetall fun1:PreCond
1) "valicC"
2) "bool"
3) "validD"
4) "bool"
redis 127.0.0.1:6379> hgetall fun1:PostCond
1) "confirmCredintial"
2) "bool"
redis 127.0.0.1:6379> hgetall fun1:NonFunctional
1) "price"
2) "real"
3) "Price:description"
4) "string"
redis 127.0.0.1:6379> hgetall fun1:Attribute
 1) "CarType"
 2) "string"
 3) "color"
 4) "string"
 5) "model"
 6) "string"
 7) "year"
 8) "int"
 9) "doors"
10) "int"
11) "transmission"
12) "string"
13) "companyName"
14) "string"
redis 127.0.0.1:6379> hgetall fun1:Signature
1) "address"
2) "string"
redis 127.0.0.1:6379> hgetall fun1:Result
1) "bookingconfirmed"
2) "bool"

Table 1.3

Figure 41: CASR Implementation in Redis (Snapshot(1))

However, it has two levels of hierarchy. The first level is used to map the names of dimensions

to their value keys. The second level is used to map the value keys to nested Hashes that

include dimensions information. The ContextRule attribute is modeled as a String data type

because it contains only one value which is the ContextRule statement.

81

redis 127.0.0.1:6379> hgetall sp1:info
 1) "name"
 2) "JamesClow"
 3) "rating"
 4) "4/5"
 5) "location"
 6) "Montreal,QC"
 7) "contact"
 8) "JC@CASR.com"
 9) "following"
10) "fun1"
11) "NodeType"
12) "sp"
redis 127.0.0.1:6379> smembers sp1:followers
1) "s1"
2) "s2"

redis 127.0.0.1:6379> hgetall con1:info
1) "name"
2) "contract1"
3) "NodeType"
4) "contract"
redis 127.0.0.1:6379> hgetall con1:LegalIssueInformal
 1) "prakingViolation"
 2) "must bepaid before returning the car otherwise 100 dollar is charged"
 3) "contractRenewal"
 4) "automatically renewed inform us two days in advance at least"
 5) "deposit"
 6) "200 at check out time"
 7) "CollisionAndLiabilityInsurance"
 8) "no coverage if accident happens, creditcard will be charged"
 9) "discount"
10) "15% for AAA Members"
redis 127.0.0.1:6379> hgetall con1:LegalIssueFormal
 1) "prakingViolation"
 2) "IF (parkingValidation) AND ~(DatePaid(ValidateFee)<(DateofReturn(car)) THEN (PayonReturn(RentFee+100))"
 3) "contractRenewal"
 4) "IF(InformDate(user)+2)<(DateofReturn(car))THEN (ConfirmRenewal())"
 5) "deposit"
 6) "IF (checkout)THEN (DepositPAid=200)"
 7) "CollisionAndLiabilityInsurance"
 8) "IF(accident) (THEN collisionCoverage=Null AND liability= Null AND charge(CreditCard))"
 9) "Discount"
10) "IF(AAAMember(user)) TEHN (PayonReturn((1-.015)*RentalFee))"
redis 127.0.0.1:6379> smembers con1:following
1) "s3"
2) "s2,"
3) "s1,"
redis 127.0.0.1:6379> smembers con1:followers
1) "context1"
redis 127.0.0.1:6379> hgetall con1:providerTrustDef
1) "rating"
2) "real"
3) "recommendaton"
4) "string"
redis 127.0.0.1:6379> hgetall con1:providerTrustVal
1) "rating"
2) "4"
3) "recommendaton"
4) "XXX Execllent"
redis 127.0.0.1:6379> hgetall con1:serviceTrustDef
1) "safety"
2) "string"
3) "security"
4) "string"
5) "availability"
6) "strinng"
7) "reliability"
8) "string"
redis 127.0.0.1:6379> hgetall con1:serviceTrustVal
1) "safety"
2) "finger print locking"
3) "availability"
4) "48 hours in advance"
5) "reliability"
6) "no break record"

Table 1.4
Table 1.6

redis 127.0.0.1:6379> hgetall context1:info
1) "name"
2) "conx1"
3) "NodeType"
4) "context"
5) "following"
6) "con1"
7) "Rule"
8) "(Age>=18)"
redis 127.0.0.1:6379> hgetall context1:contextInfo
 1) "spLocation"
 2) "enumerate"
 3) "SPAddress"
 4) "string"
 5) "SRLocation"
 6) "enumerate"
 7) "SRAddress"
 8) "string"
 9) "SRAge"
10) "int"
11) "SRLicenseExpiryDate"
12) "date"
redis 127.0.0.1:6379> hgetall context1:contextVal
 1) "spLocation"
 2) "spl1"
 3) "SPAddress"
 4) "spadd1"
 5) "SRLocation"
 6) "srl1"
 7) "SRAddress"
 8) "sradd1"
 9) "SRAge"
10) "ageSr"
11) "SRLicenseExpiryDate"
12) "srdl1"
redis 127.0.0.1:6379> hgetall spl1
1) "spLocation"
2) "Montreal"
3) "sourceID"
4) "spc123"
5) "time"
6) "11:30"
7) "date"
8) "12/2/2013"
redis 127.0.0.1:6379> hgetall spadd1
1) "Address"
2) "15, 5th ave"
3) "sourceID"
4) "src123"
5) "time"
6) "11:35"
7) "date"
8) "12/2/2013"
redis 127.0.0.1:6379> hgetall srl1
1) "spLocation"
2) "Montreal"
3) "sourceID"
4) "src123"
5) "time"
6) "11:35"
7) "date"
8) "12/2/2013"
redis 127.0.0.1:6379> hgetall sradd1
1) "Address"
2) "25, 3rd ave "
3) "sourceID"
4) "src34"
5) "time"
6) "11:36"
7) "date"
8) "12/2/2013"
redis 127.0.0.1:6379> hgetall ageSr
1) "Age"
2) "31"
3) "sourceID"
4) "src12"
5) "time"
6) "11:45"
7) "date"
8) "12/2/2013"
redis 127.0.0.1:6379> hgetall srdl1
1) "SRDrivingLicenseExpire"
2) "12/12/2016"
3) "sourceID"
4) "src12"
5) "time"
6) "11:46"
7) "date"
8) "12/2/2013"

Table 1.7

redis 127.0.0.1:6379> hgetall s1:info
1) "name"
2) "JamesCarRental"
3) "following"
4) "sp1"
5) "NodeType"
6) "service"
redis 127.0.0.1:6379> hgetall s1:PreCondDef
1) "validC"
2) "bool"
3) "validD"
4) "bool"
redis 127.0.0.1:6379> hgetall s1:PreCondVal
1) "validC"
2) "T"
3) "validD"
4) "T"
redis 127.0.0.1:6379> hgetall s1:PostCondDef
1) "confirmCredential"
2) "bool"
redis 127.0.0.1:6379> hgetall s1:PostCondVal
1) "confirmCredential"
2) "T"
redis 127.0.0.1:6379> hgetall s1:AttributesDef
 1) "carType"
 2) "string"
 3) "color"
 4) "string"
 5) "model"
 6) "string"
 7) "year"
 8) "int"
 9) "doors"
10) "int"
11) "transmission"
12) "string"
13) "companyName"
14) "string"
redis 127.0.0.1:6379> hgetall s1:AttributesVal
 1) "carType"
 2) "Toyota"
 3) "color"
 4) "red"
 5) "model"
 6) "echo"
 7) "year"
 8) "2013"
 9) "doors"
10) "4"
11) "transmission"
12) "automatic"
13) "companyName"
14) "CCCRental"
redis 127.0.0.1:6379> hgetall s1:NonFunctionalDef
1) "price"
2) "real"
3) "description"
4) "string"
redis 127.0.0.1:6379> hgetall s1:NonFunctionalVal
1) "price"
2) "50"
3) "description"
4) "us dollar"
redis 127.0.0.1:6379> hgetall s1:SignatureDef
1) "address"
2) "string"
redis 127.0.0.1:6379> hgetall s1:SignatureVal
1) "address"
2) "XXXX, Montreal QC"
redis 127.0.0.1:6379> hgetall s1:ResultDef
1) "bookingConfirem"
2) "bool"
redis 127.0.0.1:6379> hgetall s1:ResultVal
1) "bookingConfirem"
2) "T"
redis 127.0.0.1:6379> smembers s1:followers
1) "con2"
2) "con1"

Table 1.5

Figure 42: CASR Implementation in Redis (Snapshot(2))

6.2.7 Implementation Limitations

Redis is limited by its inability to provide complex structures. Consequently, we need to con-

struct structures from the basic Redis structures. As mentioned before, structuring complex

82

Collection

Document 1

filed1: value 1
field2: value 2
field3: value 3
.
.
field n: value n

Document 2

filed1: value 1
field2: value 2
field3: [value 1, value2, value 3,....., value n]
.
.
field n: [value 1, value2, value 3,....., value n]

Document n

filed1: value 1
field2: { document 1, documnent 2, ...,
document n}
.
field n { document 1, ..., document n}

.

.

.

Figure 43: MongoDB Document-Oriented Store

structures requires several records of Redis to represent one element. For example, a function

node in CASR registry is represented in eight records. These records are linked to each other

by providing their key patterns. That is, all records start with the ID of the function. Yet, the

operations to be performed on one complex structure record will involve too much work which

might involve programming in either Java or Python with the client platform which can affect

performance.

6.3 Implementation: MongoDB - Document-Oriented Store

In this section we discuss MongoDB features and their suitability for implementing the CASR

generic model. MongoDB is an open source document-oriented database. It is easy to use and

seems quite efficient in handling large volume of data as well.

83

6.3.1 MongoDB Features

Each record in MongoDB is called a document, which in turn is made up of a group of fields

and their associated values. It can contain embedded documents with an overall size that does

not exceed 16MB. The number of fields need not be the same in all documents. That is, each

record can have a structure different from the structure of another record. Each document has

a unique key by default and a secondary key can be assigned to some fields of the document.

A collection is a pool of documents, which is equivalent to a table in SQL. The database sup-

ports all primitive types (Integer, String, Float), and arrays. Figure 43 illustrates MongoDB

documents on one collection.

MongoDB is supported by ad-hoc query system that allows querying by a specific field of

a document. MongoDB has high performance as it uses master/slave replication system. The

slaves can only read and backup but all write operations is done by the master. The slaves are

permitted to select another master in the case of master failure. In addition, MongoDB supports

aggregation operation which is a benefit of using map reduce methodology [RWC12].

MongoDB users can display and use existing databases by using show d bs, and use d b. If

the command use d b is entered with a name of non-existing database, then MongoDB recog-

nizes the user’s desire to create a new one. Also, MongoDB provides several commands such as

d b.Collec t ion.inser t() and d b.Collec t ion. f ind() that help inserting and reading data. Also,

MongoDB enhance readability of the retrieved data by the command

d b.Collec t ion. f ind().pret t y()

which helps displaying data in an organized presentation. Figure 44 shows a sample MongoDB

session that uses these basic operations..

One of the most important features of MongoDB is its indexing facility. Aside from the

mandatory indexing that is automatically done by MongoDBs ystem_id, a secondary indexing

facility is supported by MongoDB. This enables adding indexes on other fields of the documents.

84

Figure 44: MongoDB Commands in Shell

The command ensureIndex(f ieldNames, f eatures) specifies field names of one collection to

be indexed and to clarify indexing features in feature parameters.

Example 16 The ConfiguredService object in the generic model has Followings field to deter-

mine the parent of this node. If a query is required to bring all the ConfiguredServices of specific

service provider SP1, then adding index on Followings field is required. This could be done in

MongoDB by using the following command:

d b.cs.ensureIndex(Fol lowing : 1,unique : t rue, dropDups : t rue)

The first parameter of the function includes the field name which is Followings, and the second

parameter includes features. There features are dropDups which is to drop any duplicates and

unique which is to create a unique index on Followings. This indexing method can be applied on

several fields of the database. So, to get all the services provided by SP1 the following command is

used:

d b.cs. f ind(Fol lowing : “SP1”)

�

85

Although indexing can slightly affect the performance of MongoDB database, it comes with a

reasonable profit. By introducing indexes we avoid the overhead that comes with querying

large datasets. Therefore, we should choose to index the data set only if it is large and is most

likely to be queried frequently [Cho13] [RWC12].

6.3.2 Design Consideration

MongoDB is a cross-platform document-oriented database system. It avoids the traditional

table-based relational database structure in favour of documents with dynamic schemas. It’s

format makes the integration of data in certain types of applications easier and faster. Embed-

ding and linking in MongoDB are two powerful features for designing a hierarchical structure.

However, with these features there are two issues:

• Embedding and Linking: Embedding increases performance as one operation is required

to get the data, but decreases query efficiency as MongoDB is not able to query field of

embedded file. On the other hand, Linking decreases performance as more than one

operation is performed for one query but query efficiency is enhanced by having no em-

bedded fields queried.

• Document size: It should not exceed 16MB which is a lot of space. We pay attention to

this restriction in embedding documents in MongoDB.

These features give the flexibility to a designer to think of different structures that can be

best for a structure. For CASR registry, a naive approach would be to map all domains in the

generic model to one collection, all sub-domains to another collection, and so on. Figure 45

shows this representation. Conceptually, this leads to a hierarchical model where each collec-

tion represents a level of the hierarchy. However, this design does not use any of MongoDB

structuring best practices to build a good database. For example, embedding of data to en-

hance the efficiency of data retrieval and writing operations are not followed. Therefore, we

86

Domains' Collection

name: D1

follows: 1

role:[r1,r2]ID: 1 fun: 0level:0 subdomain:2

parants:[1]

name: sub1

role:[r1,r2]

ID: 1;1

fun: 0

level:1

subdomain:1

follows: 1;1

parants:[1,1;1]

name: sub1

role:[r1,r2]

ID: 1;1;1

fun: 0

level:2

subdomain:0follows: 1;2

parants:[1,1;2]

name: fun1

role:[r1,r2]

ID: F1

level:2

Direct Parent

All Ancestors

Subdomain1 Collection

Functions Collection subdomain2 Collection

follows: 1

parants:[1]

name: sub2

role:[r1,r2]

ID: 1;2

fun: 1

level:1

subdomain:0no more subdomains can
be added to this suddomain
since fun is not '0'

functions can't be added
since subdomain is not '0'

other subdomains

Providers Collection subdomainN collections

name: prov1
Address:ABC

ID: P1

level:3

follows: F1
parants:[1,1;2,F1]

name: prov2
Address:XYZ

ID: P2

level:3

follows: F1
parants:[1,1;2,F1]

Configured Services Collection

Figure 45: All Separated Collection Design

avoid this naive approach and look at two other methods.

Figure 46 shows another design called “All embedded”. This design, is the opposite of the

previous one, which is to embed all records in one collection. That is, when mapping the

generic model to this design all information from root(domain) to a leaf (ConfiguredService)

will be stored in one document. That is, we embed all the sub-domains, functions, providers

and configured services under one domain name in one document. Of course, one of the

greatest flexibilities of document-based databases is the ability to build sub-documents. This

facilitates the picturing of mapping the generic model to our structure as well as the under-

standability of the relationships among the documents. See Figure 46 in which two MongoDB

documents are created from two branches of a domain node in the generic model. Besides be-

ing an intuitive structure, it is known for its high performance in retrieving the data. However,

there are two great limitations to this approach. One limitation is the size of the MongoDB

document might not allow this mapping. Although 16 MB is not small for a document, but

for service data whose growth is unpredictable, it can cause problems. In addition, structuring

87

Domain1

subdomain1

Function

Provider

CS

Domain2

subdomain1

Function

Provider

CS

Document_1

Document_2

subdomain2

Function

Provider

CS

Figure 46: All Embedded

embedded documents is simple for two or three level sub-documents, but can become very

complex and error-prone for ten level sub-documents. For these reasons, we conclude that

mapping all information from domain down to configured service into a single document is to

be avoided. That is, this model is not suitable for CASR.

Figure 47 shows the “three collection model”. This model takes advantage of many Mon-

goDB features and maps CASR generic model into three collections. First collection includes the

domain information which includes sub-domain information represented as a sub-document of

domain document. Same thing with the second collection that stores functions documents

embedding providers documents. Finally, ConfiguredServices are mapped into a separate col-

lection. ConfiguredServices should be in a separate collection as they represent most of the data

and they are the most frequent queried nodes. That is, this collection not only will contain a

large volume of information but also will be subjected to a high volume of querying. Consider-

ing the performance issue, it is better to keep ConfiguredServices as a separate collection, see

Figure 47. This model is proper for implementation with some changes that are considered to

enhance performance.

It seems that the best choice for mapping the generic model into MongoDB is to map the

DKN part into one collection. In that collection, domain, sub-domain, and function parts are

88

Domain1

subdomain1

Function

CS2

Domain2

subdomain1

Collection_1

Collection_2

subdomain2

Provider1

subsubdomain

CS1
Collection_3

CS4CS3

subdomain2

FunctionFunctionFunctionFunction Function

Provider2 Provider3 Provider4

Figure 47: Three Collections Model

mapped into separate documents. That is, each node of the first levels of the generic model

hierarchy represents a document in this collection. This structuring will enable fast browsing

of the domain knowledge by the users without the need to look at more than one collection.

Then, we represent the Provider entity of the generic model by representing service provider

information in documents stored in the second collection. In this way, providers can be mapped

to more than one function and ConfiguredServices in order to cut down on the repetition of

data. ConfiguredServices are very rich to be structured in one document. Hence, the three parts

service, contract and context of a ConfiguredService are separately mapped into three different

documents. This increases the number of documents stored in ConfiguredService collection.

Therefore, we decided to split ConfiguredService collection basing on the grandparent of Con-

figuredServices. That is each function(grandparent) wraps all ConfiguredServices that provide

this functionality including all documents related to their ConfiguredServices. That is, in the

collection that stores the ConfiguredService we include their contract and context information,

which are represented in separate documents of the collection. This collection structure is

shown in Figure 48. In other words, function creates a collection under its ID. This collection

includes ConfiguredService documents that is published as a grandchild of this function. Hence,

there is no need to dive in to all services in order to get the ones that belong to a specific func-

tion. What is needed is to go through the collection that is named with the function ID. Hence,

it is decided to manually cluster all ConfiguredServices based on functionsID. Each of these

collections of the MongoDB design is explained below.

89

Domain Knowledge Collection

Function Document

Domain Document

Subdomain Document

Figure 48: Domain Knowledge Implementation Model in MongoDB

6.3.3 MongoDB Implementation

1. Domain Knowledge Collection

The DKN collection includes a single document for each of domain, sub-domain and func-

tion. One of the strong points of MongoDB is that it allows different documents within a

collection to be structured differently. Exploiting this feature we structure domain doc-

ument, sub-domain document, and function document differently. Figure 48 shows the

90

Providers Collection

Provider Document

Figure 49: Provider Implementation Structure in MongoDB

mapping structure of the three first levels of generic model into MongoDB representation.

The domain document is structured in order to have a direct one-one mapping from the

domain part in the generic model. Notice that both SPContext and SRContext fields are

embedded documents. The advantage is that these sub-documents can be retrieved and

used separately from the domain document. The rest of the fields in domain document

are either records or atomic values. In sub-domain document and function document all

fields are either records or atomic values. The mapping from the generic model preserves

all consistencies between parents and children nodes. As an example, the set of roles in

the SPRoles field of a sub-domain node will be a subset of the set of roles in SPRoles field

of its parent.

2. Provider Collection The provider collection is a set of documents, where in each doc-

ument we store one service provider in which its information defined in the generic

model. The document structure for a service provider is shown in Figure 49. In the Fol-

lowers field the identities of all provided services are wrapped. The Followings field refers

to the parent node of the service, which defines what function this provider is using.

3. Configured Service Collection With MongoDB, it is decided to store ConfiguredSer-

vices in separate collections. Each collection represents the function that represents

the service that the ConfiguredServices provides. Hence, there will exist many collections

91

for storing all ConfiguredServices. This requires the ability to construct a collection ev-

ery time a function node is constructed. The collections is named by the function ID. A

ConfiguredService in the generic model is represented in three documents stored in the

collection that the ConfiguredService belongs to. These documents are used to represent

service, contract, and context information defined in the generic model. Because many

ConfiguredServices can have the same functionality, we assign the function ID to name

ConfiguredServicecollection that stores all ConfiguredServices with this functionality. This

design has the following advantages.

• Both contract and context parts of a ConfiguredService can be updated, either inde-

pendently or jointly, without affecting the service part.

• When SR browses DKN and selects the desired function, the system can automati-

cally find all ConfiguredServices that belong to this function by finding the collection

distinguished by the function ID. The overall performance is enhanced by avoiding

the concentrated load that comes when all the that are ConfiguredServices stored in

one collection.

The three documents in the collection of ConfiguredService are linked through Follow-

ings and Followers fields. That is, each service document includes Followers and Fol-

lowings information to know the ID of contract documents belonging to this service.

Similarly, each contract document includes Followers field that includes the ID of con-

text following this contract. It also includes Followings which defines the parent ID of

this contract. All fields in service and contract documents are direct mappings of the

respective ConfiguredService fields in the generic model.

The context document is richer than the other two documents, because we need many

embedded documents in it. The ContextInfo part of a ConfiguredService contract is

mapped to an embedded document that contains all dimensions as fields with their types

92

Collection

Service Document

Contract Document

Context Document

Figure 50: Configured Service Implementation Model in MongoDB

as values. The ContextRule is a defined field in the contract that includes string value to

represent the rule entered by SP. The ContextValue is mapped to an embedded document

that contains fields and arrays. The fields datetime, clientID, providerID, and serviceID

93

within the embedded document of ContextValue have only atomic values. Each dimen-

sion of the context is modeled as an array structure, which wraps the information specific

to each dimension in one memory block. Thus, all information regarding one dimension

including sourceID, date/time of collection, and value of the dimension can be retrieved

by the name of the dimension. The rationale for representing dimensions as arrays in-

stead of embedded documents is to reduce the number of levels of document embedding.

Increasing the number of levels of document embedding requires complex query process-

ing and retrieval, and makes MongoDB’s operations resource intensive. Thus, with the

current structure, when an update operation is performed, only lastupdate field and the

values of dimensions are updated with a single query.

6.3.4 Implementation Limitation

Using this implementation design can result in the following issues:

1. Some Collections will scale down. This is because of the decision we made for clustering

the ConfiguredServices based on their common functionality. Some collections of Config-

uredServices might have only few records in it, because not too many SPs may publish

such a service. Also when the SP of an existing ConfiguredService ceases to sustain pro-

viding a service it may be deleted from the system. Consequently, there is a possibility

that a collection may end up being empty.

2. Collections Iterations: If there was a user request that requires some operation to be

repeatedly applied to more than one ConfiguredServices, then we need to go through

different collections to apply that operation. Consequently, substantial amount of work

will have to be done to satisfy such user requests. It is also possible that maintenance

operations might require going through different collections more frequently than others.

94

Transportation

Rent_Car Funct_2

Car_Services Service2

Jawes Clow

Service Explaining in figure(52)

Figure 51: CASR Implementation in MongoDB (Snapshot(1))

95

MyCarService

My_Contract Contract2

CanadaContext Context_2

Figure 52: CASR Implementation in MongoDB (Snapshot(2))

96

6.4 Implementation: Hbase Column-Oriented Store

In this section we explain the features of Hbase and the possible mapping of CASR generic

model into a Hbase. Hbase is an open source column-oriented database. It is designed by Google

basing on BigTable techniques [Geo11], Hadoop and Distributed File System HDFS [Tay10].

6.4.1 Hbase Features

Hbase is designed to work with massive data by storing data in tables which are not similar to

traditional tables of SQL databases. A table in Hbase is the big table that can expand vertically

and horizontally. That is, Hbase welcomes to increase number of rows and columns as this is

what it is designed for. The columns are like variables assigned for each row. Hbase supports

the flexibility to provide different columns for each row. Rows are records of the table. Each

table stores information based on key-value techniques. That is, a table of Hbase contains a

bunch of keys (column qualifiers)-Values(cells) wrapped together under one name, which is

called Column Family (CF). Column Qualifier (CQ) is a field within CF. Row Key is a unique key

that differentiates a row from another. Cell stores an atomic value. To store this value or query

it, three keys are needed. These keys are row key, column family, and column qualifier. The size

of a cell could be from 10 to 50 MB [DKR13]. The bigger size a cell has, the better performance

Hbase provides [Geo11]. Version of a cell is characterized by a time stamp. Whenever data

is inserted or updated in a cell, the system stores a time stamp for this action. If time stamp

is not specified when retrieving data, the system automatically returns the most recent data

from the cell. Hbase does not provide indexing methods. By using only row key to query the

data, the CFs that include data related to this row attached to their CFs and cells are provided.

If row key is used with a specific CF in a query, then the CQs under this CF related this row

are provided. The query can be narrowed to a cell if the row key, CF, and CQ are used in a

query, because data is stored in the cell referenced by row key, CF and CQ. Figure 53 shows the

97

Hbase Table ColumnFamilies (CF)

CF1

Row 1

Row n

.

.

.

Row 2

CF2 CF n....
CQ1: value1
CQ2: value2
.
.
.
CQn: value n

CQ1: value1
CQ3: value2
CQ4; value4
.
.
CQn: value n

CQ5; value4
.
.
CQn: value n

CQ1; value1
CQ2: value2
.
.
CQn: value n

CQ6; value4
.
.
CQn: value n

CQ1: value1
CQ2: value2
.
.
.
CQn: value n

CQ1: value1

Cells

Keys

CQ: Column Qualifier

Figure 53: Hbase Column-Oriented Store

Figure 54: Disable and Drop Commands in Hbase Shell

column-oriented Hbase structure.

Hbase shell commands can serve with data definition such as alter, drop, and disable. Ma-

nipulating data is possible with operations such as count, delete, scan, get and put. To admin-

ister data clusters, the commands such as move, split, and disable_peer are used. To build our

database we use the commands that are for defining and manipulating the data. Figure 54

shows a session using disabling and drop command. Figure 55 shows a session using Put

command, and Figure 56 shows a session using Get command..

Hbase provides several features that meet the requirement of implementing CASR registry.

98

Create a table with
two column families
myInfo, and myfamilies Info

Enter Name Column Qualifier
Under MyInfo Column Family

Enter a value 'female' for
Column Qualifier Under
MyInfo Column Family

Enter a value 'female' for
gender Column Qualifier
Under MyInfo Column Family

Figure 55: Put Commands by in Hbase Shell

Data queried only
by table name and
row key

Data queried only
by table name, row
key & ColumnFamily

Data queried only
by table name, row
key , ColumnFamily
and Column Qualifier

Figure 56: Get Commands in Hbase Shell

Supporting scalability, rich structure and querying all fields of the database are essential fea-

tures to support flexibility and data expansion of CASR registry. Also, Hbase supports CRUD

operations on several parts of the database which helps with modifying and updating database

records [DKR13] [Geo11] [RWC12].

99

6.4.2 Design Consideration

When designing the database, it is important to be aware of the following restrictions:

• Limited Column Family: The number of column families should be small. It is better to

keep a maximum of three CFs to optimize the performance. If it is necessary to have

more than three CFs, it is better not to query more than three at any one time.

• Scale Down: Hbase does not perform well when it is not populated with massive data.

Hbase can scale out but cannot scale down.

• Embedding: Hbase, similar to MongoDB, provides the flexibility to embed data and in-

formation inside each other. Embedding in Hbase is conceptual, but it is important for

the designer to choose between “embedding all in one table” or “embedding in more than

one table”. This choice has a consequence in how data is stored. This is because in Hbase

information of one table is stored in one region. As an example, we show two different

embeddings for the same database in Figure 57 and Figure 58.

• Column Qualifier Benefits: There is no limitation on the number of column qualifiers. It

is better to use column fields as stored information because this increases efficiency. That

is, CQ names can themselves provide information to a row in the table. For example, for

a student taking courses, instead of having the field RegisteredCourses for each student

that will include all IDs of courses taken by a specific student, it is better to construct a

table that has CF called courses and under this CF each column represents a course name

taken by a specific student. Each student does not have to have the same CQ name.

Hence, courses taken by a student can easily be retrieved by just providing the student

ID, which is the row key, and CF name(courses). Then all CQ(courses names) belong to

this student under this CF is provided.

100

Figure 57: Embedded Columns In Hbase

Figure 58: Embedded Columns In Hbase

To map the generic structure to Hbase, it is difficult to structure based on the classification

DKN, Provider, ConfiguredService, and context. The nature and features of Hbase has driven us

to classify the generic model basing on common and similarity of nodes structure. Figure 59

shows the nodes mapped to the tables that are constructed by Hbase. The following sections

explain each table.

101

Domain

Sub-Domain

Function

Service
Provider

Context

Service

Contract

Context

Table 1:
Domain/
Sub-Domain/
SProvider

Table 2:
Function

Table 2:
Roles/
Followers

Table 3:
Service
Value

Table 4:
Contract

Table 5:
Context

Se
rvi

ce
 El

em
en

ts
Defi

nit
ion

Tables of
Hbase

Tables of
HbaseGeneric Structure

Nodes

Figure 59: Mapping The Generic Model Nodes to Hbase

6.4.3 Table1: Domain, Sub-Domain and Providers in Hbase

We structure the domain, sub-domains and service providers in Figure 60. This table includes

three CFs which are Info, SPC/SRC DEF, and SPC/SRC Value. The Info CF wraps all the columns

that provide information to the row key that can be a key for a domain, sub-domain or a

SP. This information is represented in column qualifiers which are Name, Level, NodeType,

ChildType, and Followings. All these columns are defined to represent the fields defined in the

generic model. As mentioned in previous chapters, the Name field is the name of the node,

the Level field helps to define in which level of the hierarchy this node is, NodeType defines

the type of the node, ChildType is to strict the children nodes of this node to the defined type,

102

and Followings is to recognize the parent of this node. The Level information gives the ability

to display the DKN and other information in an organized manner,

Figure 60 highlights that the records of the table do not have to be of the same length.

Besides, any cell that is not assigned to NULL value will not exist in the table. The SPC/SRCDef

CF is the family that includes every domain SPContext and SRContext dimensions and their

types. The last column family is the SPC/SRCVal includes the same dimensions defined in

the SPC/SRCDef associated with their values adding to it fields time, data and sourceID. The

SPC/SRC context are filled with values until SR instantiates a session with one of the Config-

uredServices. Hence, the SP information is gathered to populate SPC/SRC context values. The

system updates the values whenever another sessions starts. As versioning is accumulated by

Hbase, we decided to set it to zero copy of versions with this column family. There is no need

to fill the memory with redundant data.

The reason for putting all these three nodes together is that the domain, sub-domain,

provider nodes have similar and considerably simpler structures from the other nodes in the

generic model. The ConfiguredService and function nodes include several elements, with each

element in it having many fields and their values. Hence, it is decided to change the organi-

zation of structuring, yet we preserve the concept of providing DKN to SR. This is achieved

by including all the fields in a table that keeps the structure of generic model. This table is

explained in Section 6.4.8.

6.4.4 Table2: Function in Hbase

We map the function node defined in the generic model to Hbase by constructing one table

called Function. The Function Table is to map the function node of the generic model into

Hbase. The table includes Info CF. Similar to table1, the CF Info includes the information

defined in the generic model including Name, Level, NodeType, and Followings. Also, the info

CF has additional information related to attribute, non-functional, preCond and postCond CQs.

103

Hbase.pdf

Figure 60: Table 1, Domain, Sub-Domain and providers Table in Hbase

These CQs are associated with the row key of these records that are stored in the same table.

That is, according to the generic model of function structure, function includes four elements

which are Functional, Non-functional, Signature and Result. Each one of these elements is

constructed with a set of fields which represent Pre-Condition, Post-Condition or attributes

fields. Each field is associated with the data type of this field. As each element includes several

fields, each element needs a row to be represented or may be put in a separate table. However,

in Hbase we can create many different CQs. So, we decided to include five CQs added to their

Info CQs. These CQs are Functional, Non-functional, Attributes, Signature and Result. The

cell of each of these includes the row key of this element. Thus, there will be a row key for

104

Figure 61: Table2: Function Table in Hbase

functional element, a row key for attribute, a row key for attributes element, a row key for

signature and a row key for result element. Every time function is queried Hbase gets these IDs

from function row and dives into the same table to get the rest of the information using the

discovered keys. This does not affect the performance of Hbase as we are only scaling up. This

approach is preferable than creating more CFs. figure 61 shows the mapping of function from

the generic model to Hbase table.

The service node in Figure 59 is mapped to the function table Table.2. which is because

of the similarity between service definition and function structure. The service definition is

exactly structured with the same elements of the function. Moreover, function includes other

attributes from other services that are their grandchildren. This is explained with examples in

Section 6.2. As Hbase provides the flexible schema for records of the same table and welcomes

scaling up the data, we are motivated to include all services definition in one table. This

helps to have only a fewer number of tables and hence a fewer number of CFs, which in turn

provides better performance. Also, as the load on service table is heavy, in terms of querying, it

is decided to lessen the work on service table (Table3) by including their definition in function

105

table(Table2).

6.4.5 Table3: Services in Hbase

We map the service node constructed as part of the ConfiguredService in the generic model in

Hbase by constructing one table for service. This table is similar to the table of function. Yet

it includes only service records and the values of their elements without including their type.

The table includes the CF Info that includes the Name, NodeType, and following fields that are

defined earlier. The IDs of PreCon, PostCond, NonFunctional, Attributes, Signature, and result

are added under this CF as well. Info CF also includes a field called grandParent which is equal

to the provider’s following value. This is to help the system find all ConfiguredServices provided

under a specific function without going through SP level. That is, if we want to check all the

services belonging to one function, we have to query the field grandParent to let the system

to recognize all grandchildren of a specific function. This eases the work on CASR registry to

query the services belonging to a specific function by skipping the level of provider.

The rows that represent pre-conditions and post conditions represent a list of pre-conditions

and post-conditions of a specific values associated with the value of this condition. Non-

Functional is mapped to three CQs which are the names of the parameter, its value and the

description field that describes the parameter. Attributes, Signature and Result include list of

fields associated with their values.

6.4.6 Table4: Contract in Hbase

We map the contract component of the generic model into one table. The contract includes

Service trust definition and value, Provider trust definition and value and Legal issues. The

service trust needs to have a field that includes two values which are the value and its field.

The Legal issue part of the contract needs a field that is associated with two values, which

are the formal and the informal representation of the rule. Therefore, we decided to use

106

Figure 62: Table 3: Service Table in Hbase

the same methods that was used with service. The contract table includes one CF called Info.

This Info includes the Name, NodeType, FollowingsID, serviceTrustID, providerTrustID, Rule1ID,

Rule2ID,...,RulenID. These IDs represent row keys of those elements. To retrieve the informa-

tion of any of those elements the contract ID is enough to have them reachable. All records

are stored in the same table Figure 63. The Followings is separated in a single records be-

cause it represents all IDs of services the contract belongs to. This represent the generic model

definition for Followings field in Contract node.

6.4.7 Table5: Context in Hbase

We designed the Service Context Model using the CF feature in Hbase. This is shown in Fig-

ure 64 in which we have named the column family as Context Family. The Context Family is

mapped to a set of dimension names defined as CQ. Also, these CQs include other columns that

provide information to the ContextValue. Actually, columns include the data that are related to

one or more rows and rows include data that are related to the dimensions. As illustrated by

Figure 64, only the ContextValue needs all the fields represented by columns. This results in

rows with different lengths. The third row key is ContextRule which does not need any data

107

Figure 63: Table4: Contract Table in Hbase

Figure 64: Table5: Context Table in Hbase

of column defined in the structure. To map the ContextRule element of context defined in the

generic model into Hbase, another CQ is defined. This CQ is called Rule. ContextRule will not

reserve extra space by defining one CQ in its record. Actually, we have the ability in Hbase to

include any number of CQs which gives the flexibility to have one table encompasses several

elements with different data structures. These features are the most useful during mapping.

Not only context information but also all other nodes of the generic model use this feature.

108

6.4.8 Table6: Followers/SRSPRole in Hbase

The relationships among records that are stored in the defined Hbase tables are represented in

another Hbase table. In the generic model, every node includes SPRole and SRRole. These two

lists are included with domain, sub-domain and function nodes of the generic model to control

access on services. Also, Followers fields is defined in the generic model to include children

ID of each node. Driven by Hbase structure, we decided to separately map these information

in a new table. This decision is motivated by the need to ease the work on building up the

skeleton of the DKN. The relation Followers is represented as in Table5 of Figure 64. This

table includes three CFs, which are Followers, SPRoles and SRRoles. For the column families

SRRoles and SPRoles, every domain, sub-domain and function have CQs with each CF. The CQs

represent the roles of SP under the family SPRoles, and represent roles of SR when they belong

to SRRoles family. However, the column family Followers encompasses information on every

domain, sub-domain, function, provider, service, contract and context in the CASR registry. The

CQs of each record in Followers represent IDs of other records that follow them. In contract

representation the Followers table includes any record ID related to its context. That is, the

context table includes several records that represent one context information. Therefore, all

these IDS included in the Followers list of the contract. Hence, the contract is linked to all the

details of its context.

6.4.9 Limitations

Hbase is designed to withstand massive data with the ability to scale up. However, the per-

formance is limited by the number of column families. It is not preferred to query more than

two or three CFs at the same time as this increases the load of Hbase and hence loses perfor-

mance. The community of Hbase developers have suggested to keep the number of CF low in

the database. Following this suggestion we have devised our mappings from the generic model

109

Figure 65: Table 6: Followers/SPSR Roles in Hbase

to Hbase tables. However, the structure of CASR registry is rich and each component needs the

ability to store fields and values. Hence to map the generic model into Hbase we needed seven

CFs among all tables.

110

hbase(main):076:0> get 'table1', 'dom1'
COLUMN CELL
SPSRDEF:ID timestamp=1381761977002, value=SPDEF
SPSRDEF:SRID timestamp=1381761994780, value=SRDEF
info:Name timestamp=1381761894814, value=Transportation
info:NodeType timestamp=1381761923624, value=dom
info:childType timestamp=1381761933051, value=0
info:level timestamp=1381761905823, value=0
6 row(s) in 0.0200 seconds

hbase(main):077:0> get 'table1', 'SPDEF'
COLUMN CELL
SPSRDEF:Name timestamp=1381762563645, value=string
SPSRDEF:email timestamp=1381762575662, value=string
SPSRDEF:location timestamp=1381762570296, value=string
SPSRDEF:rating timestamp=1381762582801, value=string
SRSPVal:Name timestamp=1381762480219, value=alaa
SRSPVal:email timestamp=1381762498594, value=alaa@hotmail.com
SRSPVal:location timestamp=1381762492035, value=Montreal
SRSPVal:name timestamp=1381762128951, value=string
SRSPVal:rating timestamp=1381762505356, value=5/5
9 row(s) in 0.0170 seconds

hbase(main):078:0> get 'table1', 'SRDEF'
COLUMN CELL
SPSRDEF:Name timestamp=1381762663307, value=string
SPSRDEF:email timestamp=1381762670421, value=string
SPSRDEF:location timestamp=1381762655370, value=string
SRSPVal:Name timestamp=1381763132867, value=abc
SRSPVal:email timestamp=1381763176408, value=abc@whatever.com
SRSPVal:location timestamp=1381763153968, value=xxxx

8 row(s) in 0.0230 seconds

hbase(main):010:0> get 'table1', 'sub1'
COLUMN CELL
info:Following timestamp=1381763370354, value=dom1
info:NodeType timestamp=1381763397572, value=sub
info:childType timestamp=1381763406700, value=1
info:level timestamp=1381763378414, value=1
info:name timestamp=1381763352913, value=carServices
5 row(s) in 0.0230 seconds

hbase(main):011:0> get 'table1', 'sp1'
COLUMN CELL
info:Following timestamp=1381763480824, value=fun1
info:NodeType timestamp=1381763465126, value=sp1
info:name timestamp=1381763443722, value=alaa
3 row(s) in 0.0100 seconds

hbase(main):010:0> get 'table1', 'sub1'
COLUMN CELL
info:Following timestamp=1381763370354, value=dom1
info:NodeType timestamp=1381763397572, value=sub
info:childType timestamp=1381763406700, value=1
info:level timestamp=1381763378414, value=1
info:name timestamp=1381763352913, value=carServices
5 row(s) in 0.0230 seconds

hbase(main):001:0> get 'table2', 'fun1'
COLUMN CELL
info:AttrinutesID timestamp=1381763684288, value=AttID
info:Name timestamp=1381763604136, value=Rent_Car
info:NodeType timestamp=1381763631233, value=fun
info:NonfunID timestamp=1381763720041, value=nfID
info:PostConID timestamp=1381763661414, value=PostID
info:PreConID timestamp=1381763651847, value=PreID
info:ResultID timestamp=1381763708802, value=resID
info:SignatureID timestamp=1381763697736, value=sigID
info:level timestamp=1381763619086, value=2
9 row(s) in 0.6680 seconds

hbase(main):017:0> get 'table2', 'AttID'
COLUMN CELL
info:CarType timestamp=1381769828069, value=string
info:Color timestamp=1381769844576, value=string
info:CompanyName timestamp=1381769903259, value=string
info:Doors timestamp=1381769869004, value=int
info:Model timestamp=1381769963113, value=string
info:Tranmission timestamp=1381769888479, value=string
info:Year timestamp=1381769861333, value=int
7 row(s) in 0.0400 seconds

hbase(main):019:0> get 'table2', 'nfID'
COLUMN CELL
info:description timestamp=1381763825783, value=string
info:price timestamp=1381763814830, value=real
2 row(s) in 0.0120 seconds

hbase(main):004:0> get 'table2', 'preID'
COLUMN CELL
info:ValiDC timestamp=1381770386953, value=bool
info:ValiDD timestamp=1381770393459, value=bool
2 row(s) in 0.0260 seconds

hbase(main):005:0> get 'table2', 'postID'
COLUMN CELL
info:ClientConfirm timestamp=1381770408068, value=bool
1 row(s) in 0.0060 seconds

hbase(main):016:0> get 'table2', 'sigID'
COLUMN CELL
info:address timestamp=1381763839898, value=string
1 row(s) in 0.0090 seconds

hbase(main):016:0> get 'table2', 'sigID'
COLUMN CELL
info:bookingConfirm timestamp=1381763839898, value=bool
1 row(s) in 0.0090 seconds

T
a
b
le
1

T
a
b
le
2

hbase(main):001:0> get 'table3', 's1'
COLUMN CELL
info:AttributesID timestamp=1381764264941, value=AttID
info:Following timestamp=1381764222673, value=sp1
info:NodeType timestamp=1381764199141, value=service
info:NonfuncID timestamp=1381764361715, value=nfID
info:PostCondID timestamp=1381764283162, value=postID
info:PreCondID timestamp=1381764276048, value=preID
info:ResultID timestamp=1381764318388, value=resID
info:SignatureID timestamp=1381764305445, value=sigID
info:name timestamp=1381764176176, value=myservice
10 row(s) in 0.6580 seconds

hbase(main):003:0> get 'table3', 'preID'
COLUMN CELL
info:ValidC timestamp=1381764443117, value=T
info:ValidD timestamp=1381764439792, value=T
2 row(s) in 0.0120 seconds

hbase(main):008:0> get 'table3', 'postID'
COLUMN CELL
info:ClientConfirm timestamp=1381764461910, value=T
1 row(s) in 0.0050 seconds

hbase(main):018:0> get 'table3', 'AttID'
COLUMN CELL
info:CarType timestamp=1381770013238, value=toyota
info:Color timestamp=1381769985771, value=Red
info:CompanyName timestamp=1381769920277, value=CCCrenatl
info:Model timestamp=1381769968646, value=Echo
info:Tranmission timestamp=1381769932348, value=Automatic
5 row(s) in 0.0250 seconds

hbase(main):001:0> get 'table3', 'nfID'
COLUMN CELL
info:description timestamp=1381764408242, value=US Dollar
info:price timestamp=1381764386922, value=50
2 row(s) in 0.6310 seconds

hbase(main):006:0> get 'table3', 'sigID'
COLUMN CELL
info:address timestamp=1381764482864, value=Montreal, QC
2 row(s) in 0.0300 seconds

hbase(main):007:0> get 'table3', 'resID'
COLUMN CELL
info:bookingconfirem timestamp=1381764583910, value=T
1 row(s) in 0.0080 seconds

Ta
b
le
3

Figure 66: CASR Implementation in Hbase (Snapshot(1))

111

hbase(main):029:0> get 'table5', 'conx1:ContextInfo'
COLUMN CELL
contextFmaily:name timestamp=1381771496216, value= context1
contextFmaily:NodeType timestamp=1381761496216, value= context
contextFmaily:splocation timestamp=1381771496216, value= string
contextFmaily:srlocation timestamp=1381781496216, value= string
contextFmaily:spAddress timestamp=1381771496216, value= string
contextFmaily:srAddress timestamp=1381781496216, value= string
contextFmaily:srage timestamp=1381771496216, value= enumerate

hbase(main):029:0> get 'table5', 'conx1:ContextValue'
COLUMN CELL
contextFmaily:splocation timestamp=1381771496216, value= Montreal, QC
contextFmaily:srlocation timestamp=1381781496216, value= Lasalle, QC
contextFmaily:spAddress timestamp=1381771496216, value= 15, 5th Ave
contextFmaily:srAddress timestamp=1381781496216, value= 25, 3rd Ave
contextFmaily:srage timestamp=1381771496216, value= 31
contextFamily:SPID timestamp=1381781496216, value= sp1
contextFamily:ServiceID timestamp=1381781496216, value= s1
contextFamily:latestUpdate timestamp=1381781496216, value= 11:20
contextFamily:date timestamp=1381781496216, value= 12/12/13

hbase(main):029:0> get 'table5', 'conx1:splocation'
COLUMN CELL
contextFmaily:time timestamp=1381771496216, value= 11:30
contextFmaily:date timestamp=1381771496216, value= 12/12/13
contextFmaily:sourceID timestamp=1381771496216, value= spc12

hbase(main):029:0> get 'table5', 'conx1:srlocation'
COLUMN CELL
contextFmaily:time timestamp=1381771496216, value= 11:33
contextFmaily:date timestamp=1381771496216, value= 12/12/13
contextFmaily:sourceID timestamp=1381771496216, value= src13

hbase(main):029:0> get 'table5', 'conx1:spaddress'
COLUMN CELL
contextFmaily:time timestamp=1381771496216, value= 11:35
contextFmaily:date timestamp=1381771496216, value= 12/12/13
contextFmaily:sourceID timestamp=1381771496216, value= spc12

hbase(main):029:0> get 'table5', 'conx1:sraddress'
COLUMN CELL
contextFmaily:time timestamp=1381771496216, value= 11:44
contextFmaily:date timestamp=1381771496216, value= 12/12/13
contextFmaily:sourceID timestamp=1381771496216, value= src12

hbase(main):029:0> get 'table5', 'conx1:srage'
COLUMN CELL
contextFmaily:time timestamp=1381771496216, value= 11:45
contextFmaily:date timestamp=1381771496216, value= 12/12/13
contextFmaily:sourceID timestamp=1381771496216, value= spc12

T
a
b
le
4hbase(main):019:0> get 'table4', 'con1'

COLUMN CELL
info:FollowingID timestamp=1381768396003, value=FollowingID
info:NodeType timestamp=1381768348648, value=contract
info:formalID timestamp=1381768422757, value=formID
info:informalID timestamp=1381768413318, value=infID
info:trustDevID timestamp=1381768465345, value=trddefID
info:trustValID timestamp=1381768457884, value=trdvalID
7 row(s) in 0.0370 seconds

hbase(main):018:0> get 'table4', 'trddef','info'
COLUMN CELL
info:reliability timestamp=1381768647044, value=string
info:safety timestamp=1381768616727, value=string
info:security timestamp=1381768625598, value=string
info:vailability timestamp=1381768634337, value=string
4 row(s) in 0.0190 seconds

hbase(main):030:0> get 'table4', 'infID'
COLUMN CELL
info:deposit timestamp=1381771271656, value=200 at a time of checkout
info:discount timestamp=1381771416427, value=15% for AAA member
2 row(s) in 0.0070 seconds

hbase(main):029:0> get 'table4', 'formID'
COLUMN CELL
info:deposit timestamp=1381771496216, value=IF (Checkout) THEN (Deposit

Paid=200)
info:discount timestamp=1381771638234, value=IF (AAAMember(user)) THEN (

PayOnReturn((1-0.15)*RentalFee)
2 row(s) in 0.0080 seconds

Table5

hbase(main):029:0> get 'table6', 'dom1'
COLUMN CELL
Followers:sub1 timestamp=1381211496216, value= 1.1
Followers:sub2 timestamp=1381761496216, value= 1.2
SPRoles:r1 timestamp=1381771496216, value= 1.3
SPRoles:r2 timestamp=1381231496216, value= 1.4
SPRoles:r3 timestamp=1381701496216, value= 1.5
SRRoles:r11 timestamp=1381771496216, value= 1.6
SRRoles:r12 timestamp=1381771496216, value= 1.7
SRRoles:r13 timestamp=1381771496216, value= 1.8

hbase(main):029:0> get 'table6', 'sub1'
COLUMN CELL
Followers:fun1 timestamp=1381771496216, value= 1.1
Followers:fun2 timestamp=1381771496216, value= 1.2
SPRoles:r1 timestamp=1381771496216, value= 1.3
SPRoles:r2 timestamp=1381771496216, value= 1.4
SRRoles:r11 timestamp=1381771496216, value= 1.6
SRRoles:r12 timestamp=1381771496216, value= 1.7

hbase(main):029:0> get 'table6', 'fun1'
COLUMN CELL
Followers:sp1 timestamp=1381771496216, value= 1.1
Followers:sp2 timestamp=1381771496216, value= 1.2
SPRoles:r1 timestamp=1381771496216, value= 1.3
SPRoles:r2 timestamp=1381771496216, value= 1.4
SRRoles:r13 timestamp=1381771496216, value= 1.8 Ta
b
le
6

Figure 67: CASR Implementation in Hbase (Snapshot(2))
112

6.5 Summary

In this chapter, the implementation designs in Redis, MongoDB and Hbase NoSql databases are

discussed. We described the structural characteristics of the three NoSql databases, their main

features and limitations. Subject to each one’s potential, we have developed mappings that

respectively map the CASR generic model into Redis, MongoDB, and Hbase. These three NoSql

databases have different features; therefore, each of them has a different implementation struc-

ture of CASR. Therefore, next chapter provides an evaluation for the three NoSql databases

using different approaches. These include benchmarking, using experience and CASR require-

ments

113

Chapter 7

Testing and Analysis

In this chapter, we present a comparative study on the three NoSql implementations introduced

in the previous chapter. We first examine the general abilities of NoSql databases in terms of

its runtime and throughput using YCSB tool. Then, we provide a comparison between the

general characteristics of the three NoSql databases. In the light of both the experimental

results and the general characteristics, we analyse the proposed structure presented in the

previous chapter for each NoSql database. Finally, we rank the NoSql databases based on their

overall performance.

7.1 YCSB Benchmarking

Yahoo! Cloud Serving Benchmarking tool (YCSB) [CST+10] is designed to test the performance

of NoSql databases without consideration to the structure of the database. The goal of this

experiment is to examine the general runtime and throughput of the three NoSql databases

with immense number of records. The runtime is the time necessary to execute operations on

all methods, and the throughput is the number of operations performed in a second. Thus, the

relationship between the runtime and throughput is a negative correlation. That is, the less the

time necessary to finish the execution of operations on all records the more will be the number

114

0

1000

2000

3000

4000

5000

6000

7000

8000

R
u
n
tim

e
(m

s)

10,000
records

RedisDB
MongoDB
HbaseDB

100,000
records

1000,000
records

500,000
records

10,000
records

100,000
records

1000,000
records

500,000
records

0

500

1000

1500

2000

2500

3000

O
p
e
ra

tio
n
s/

se
c

Figure 68: (A) Read/update ratio: 50/50

of operations performed per second. The basic database operations are: Insert, Retrieve, and

Update. To test the possible combinations of those operations, YCSB provides six workloads.

Each workload performs different combination of operations on different ratios. Table 4 shows

the six workloads defined by YCSB. Also, each workload is executed with different number of

records, 10,000, 100, 000, 500,000, and 1000,000. We executed the operations three times

for each workload and plotted the average of results in Figures (68, 69, 70, 71, 72, 73 and

74).

Workload Operations Combination Ratio
(A) Read/Update 50:50
(B) Read/update 95:5
(C) Read/update 100:0
(D) Read/update/insert 95:0:5
(E) Scan/insert 95:5
(F) Read/Read-Update 50/50

Table 4: The six workloads defined by YCSB

Remark 1 For a fair examination, all experiments were performed on the same machine.

From the experimental results we conclude that Redis occupies the first place in terms of

runtime and throughput followed by MongoDB and Hbase is ranked last. However, YCSB does

not consider complexity of structure. Therefore, the results could change dramatically with

115

0

1000

2000

3000

4000

5000

6000

7000

R
u
n
ti
m
e
(m

s
)

0

500

1000

1500

2000

2500

3000

O
p
e
ra
ti
o
n
s
/s
e
c

RedisDB
MongoDB
HbaseDB

10,000
records

100,000
records

1000,000
records

500,000
records

10,000
records

100,000
records

1000,000
records

500,000
records

Figure 69: (B) Read/update ratio: 95/5

0

1000

2000

3000

4000

5000

6000

7000

8000

R
u

n
tim

e
(m

s)

0

1000

2000

3000

4000

5000

6000

7000

8000

O
p

e
ra

tio
n

s/
se

c

RedisDB
MongoDB
HbaseDB

10,000
records

100,000
records

1000,000
records

500,000
records

10,000
records

100,000
records

1000,000
records

500,000
records

Figure 70: (C) Read/update ratio: 100/0

0

500

1000

1500

2000

2500

3000

O
p
e
ra

tio
n
s/

se
c

0

1000

2000

3000

4000

5000

6000

R
u
n
tim

e
(m

s)

RedisDB
MongoDB
HbaseDB

10,000
records

100,000
records

1000,000
records

500,000
records

10,000
records

100,000
records

1000,000
records

500,000
records

Figure 71: (D) Read/update/insert ratio: 95/0/5

more complex structures. Specifically, because Redis does not have pre-defined data struc-

tures, it consumes more operations to perform a single query. As a result, the overall Redis

116

0

5000

10000

15000

R
u

n
tim

e
(m

s)

0

100

200

300

400

500

600

O
p

e
ra

tio
n

s/
se

c

RedisDB
MongoDB
HbaseDB

10,000
records

100,000
records

1000,000
records

500,000
records

10,000
records

100,000
records

1000,000
records

500,000
records

Figure 72: (E) Scan/insert ratio: 95/5

0

0.5

1

1.5

2

2.5
x 104

R
u

n
tim

e
(m

s)

0

500

1000

1500

2000

2500

O
p

e
ra

tio
n

s/
se

c

RedisDB
MongoDB
HbaseDB

10,000
records

100,000
records

1000,000
records

500,000
records

10,000
records

100,000
records

1000,000
records

500,000
records

Figure 73: (F) Read/Read-Update ratio: 50/50

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5
x 104

RedisDB
MongoDB
HbaseDB

Figure 74: Overall Performance For all Workloads

117

performance may decrease, whereas MongoDB and Hbase may perform better with complex

structures.

7.2 General NoSql Characteristics

In this section, we compare the general characteristics of each NoSql database and there struc-

tural features. The CAP Theorem [Bre00], which studied consistency, availability, and partition

tolerance of NoSql databases, states that any NoSql database should have at least two out of

three strong features. As NoSql databases are distributed, the partition tolerance support is

mandatory which leaves the sacrifice on either consistency or availability. In [HHLD11], it is

stated that MongoDB, Redis, and Hbase have the two strong features consistency and partition

tolerance (CP). Redis is a flexible database but has some limitations, compared to the other

two. The constraints on data type, indexing system, and key value structure make it more

difficult to use with complex rich data. On the other hand, both MongoDB and Hbase can han-

dle complex data. MongoDB supports hierarchical structures by permitting nested documents

and allowing secondary indexing [Cho13]. In Hbase, hierarchical structures are supported by

nested columns with multiple indexing [Geo11]. These features help developers to structure

rich context data. MongoDB is easier than Hbase in configuring and coding. Table 5 illustrates

this general comparison.

7.2.1 Redis

The primary strength of Redis is concentrated in its speed which is a common feature of key-

value stores. Redis has high speed because it lives in memory and it supports replication

which is useful for high read operations. Database developers could sacrifice speed to have

durable database. Redis is durable database because its replication is built in master-slave

methodology [RWC12]. In addition, Redis is powerful for its ability to store complex values by

118

Redis MongoDB Hbase
CAP Theorem CP CP CP
Strengths High speed flexibility,simplicity versions support,

compressions
Weaknesses durability problem difficult to update can’t work alone, or

scale down
Maximum size

Chapter 6
16 MB Cell 10-50MB

Indexing one index allows secondary in-
dex

cell queried by (row
key, CF, CQ)

modeling ability One structure, No hi-
erarchy

Supports embedding Tables and embed-
ding

Table 5: A Comparison of the Structural Properties of Three Context Database Models

providing various data structures such as hash, sets and list. To manipulate data of these types

Redis provides several operations such as Create, Retrieve, Update an Delete (CRUD), union

and intersection. The union and intersection operations are useful to know, as an example,

common friends between two users in social website. Moreover, Redis is easy to learn and use.

The configuration is documented well and easy to understand. The shell command of Redis

is clearly classified by their data type in their website [SN10]. Some other functionalities

provided by Redis are useful in building databases such as key expiration. Key expiration is

to have a key that can be used temporarily. This saves memory from storing unused keys and

hence consistent performance. Key expiration time is assigned by a developer and hence its

implicitly executed by the system.

As Redis is based on memory, data loss can happen when a shut down of the Redis server

occurs. That is, if the shut down happened before writing the data to disk is complete, the

loss might happen. Also, if clustering is needed in Redis databases developers should do it

with clients, such as Ruby driver [RWC12], that support thess features. Also, Redis provides

some data type that helps with structuring rich components, yet it is still not efficient enough

for all complex structures. That is, one document in MongoDB or row in Hbase is actually

represented by two or more records in Redis. Consequently, Redis will require many queries

119

to do the operations operations to retrieve one document or row, which could be done by one

query in other databases. This requires some additional programming to trigger the several

iterations on the stored records in Redis.

Through our experimental observations with Redis, structuring Redis without being aware

of its limited data structures support can lead to serious performance issues. Even with careful

considerations to its limitations, a single operation in complex structures can be translated

to several operations when performed in Redis. This is because Redis does not support table

or document structure. Therefore, there is a need to find a way to manually attach records

by using key patterns and mappings. Yet, they increase the number of operations that are

performed to retrieve one ConfiguredService. In Redis we only used hash and set data structures,

since the ability to query each element of CASR registry is a necessity. Hash provides the ability

to store fields names connected to their values. Deleting, adding, and updating specific fields

can be performed with Hash. Sets can store different elements for a single value which is

useful for some attribute and parameters of CASR data. However, other data structures such as

list, is limited to the ability to remove only the first element of the list. Besides limited CRUD

operations can be done on each element of the list. This limits our use to hash and set data to

structure CASR registry.

7.2.2 MongoDB

MongoDB is a flexible database. It supports heterogeneous documents structures. That is, each

document(row) in a collection(table) in MongoDB can have a structure different from other

rows. Moreover, these structures can change dynamically. In addition, MongoDB manages

massive data as it supports horizontal scaling and manages big number of requests by support-

ing master/slave replication [RWC12]. One of the most important features of MongoDB, is

indexing which is not supported by Redis and Hbase. That is, aside from the mandatory index-

ing done by MongoDB system _id, a secondary indexing is supported by MongoDB. MongDB

120

indices can come with a performance price which is worthy in front of the load that comes with

querying data sets. That is, to get the power of indexing in MongoDB, the developer should de-

fine types of queries on the indexed data. If the data includes large data set and queried often,

indexing it is worthy. Otherwise, it is not worthy to pay less performance price [RWC12].

MongoDB has some drawbacks associated with performance. MongoDB performs better in

clusters with massive data as it is designed for large databases [Ban11]. This requires con-

siderable management effort. Although embedding is a feature that enhances performance, it

decreases querying flexibility. Information and fields that are inside the embedded document

cannot be queried individually. However, the performance is enhanced as embedding helps in

avoiding linking operations. That is, the embedded documents are usually sub-objects of the

main objects that include related information. So, retrieving the main document will include

sub-documents. Also, it is welcomed by MongoDB to retrieve the sub-document separately.

The issue is when fields and data of these sub-documents are queried a lot. In this case embed-

ding is not useful. Instead, these embedded documents can be stored in separate documents.

In this case, linking between the main documents and the separated documents is required.

This solves the querying problem but increases the overload that comes with retrieving the

documents that includes a link to the sub-documents and hence performance degrades.

In using MongoDB we found that its concepts are easy to understand as it is close to tradi-

tional database. We did not have any issue to understand and implement database in MongoDB.

The provided resources and online documentation are enough to start dealing with MongoDB.

MongoDB features and characteristics help with structuring CASR registry. The ability to query

data and fields easily meets our registry requirements in query system. Also, the ability to

store different data type such as arrays and sub-document are very useful in structuring DKN,

providers and ConfiguredServices. In addition, MongoDB supports dynamic document expan-

sion which is essential feature to provide for CASR registry. CASR aims to provide SP to enhance

their services by updating their service description adding new attributes and data. In Redis

121

and Hbase the dynamic expansion is supported, yet it is limited to the type of data that will

be included in the records or documents. That is, if it is decided to expand records of SP by

including a construct, such as struct which is commonly used in programming language, this

can be easily performed with MongoDB. However, with Hbase and Redis there should be some

analysis to find the proper structure to include those information within SP records, without

affecting the performance and consistency.

7.2.3 Hbase

Hbase is featured with its ability to deal with massive data. That is, its performance peaks when

storage includes huge amount of data locating in gigabytes or terabytes of memory [RWC12].

Hbase supports versioning and compression functionalities. These features omit the need to

structure a database for history. Implicit versioning feature in Hbase [DKR13] gives the ability

to get the history of data changes through a period of time. Hbase provides the functions to

control number of versions and their durations. Also, Hbase has a semi-structured schema.

This helps with structuring rich data. In addition, Hbase operations enable finding every single

data stored in its tables. This features adds more expressive power to querying capabilities in

Habse.

Although Hbase is a powerful system, there are some limitations with Hbase. Hbase sup-

ports column families in its structure. Each table can have more than one column family. How-

ever, Hbase performance degrades if the table has more than three CFs. This does not help

when structuring rich components. If an application requires more than three CFs in a table, it

can be constructed in Hbase but only a maximum of three CFs should be queried at a time in

order to maintain the high level of performance. This is because each column family is stored in

one region, and flushing and compaction operations are performed on the data to be retrieved

from CFs. When several flushing and compaction operations are done for each query on dif-

ferent regions needless input/output operations become necessary, which in turn will increase

122

the system load. It is remarked in [RWC12] that

Hbase was quite challenge for us. The terminology can be deceptively reassuring, and

the installation and configuration are not for the faint of heart.

Indeed, we found that understanding and dealing with Hbase was not easy. There was much

time spent to understand how to structure tables in Hbase, how to configure it on machine and

what structural characteristics might lead to maximize Hbase potential.

7.3 Overall Verdict

Based on our observations, from the starting point of understanding the three NoSql, through

to the final implementation, and in the light of the previously discussed experimental and

structural comparisons, we summarize our own comparisons between the three databases.

Also, we rank databases with respect to the suitability to our CASR registry. The following

features are the most prioritized for our CASR registry. These features are briefly described as

follows:

• Stable Performance: with different number of records, the performance shows stable

behaviour.

• Indexing: the ability to index some fields of the records or the document.

• Fields Querying: the ability to query specific fields of the record or the document.

• Hierarchical Structure: to support embedding or linking among entities.

• Usage easiness: the ease of interacting with the NoSql database that includes configura-

tion, installation and coding.

123

Redis MongoDB Hbase
Stable Performance Yes Yes No

Indexing No Yes No
Fields Querying Partial Partial Yes

Hierarchical Structure No Yes Partial
Usage easiness Yes Yes Partial

Table 6: Ranking Each NoSql database basing on CASR Requirement

Table 6 ranks each NoSql database in the light of the above comparison. Based on this

ranking we recommend MongoDB as the most suitable NoSQL database for implementing CASR

registry.

From the table, MongoDB is the database that meets most of the requirements that CASR

registry needs. Even with the querying abilities, as it is mentioned before, it only comes with

embedded documents and there are methods and solutions provided to overcome such a lim-

itations. Having said that, Redis and Hbase have great features that can match other projects

requirements.

7.4 Summary

In this chapter we introduced analysis on the three NoSql databases from the three perspectives

general performance, general characteristics and personal observations. Then, we concluded

our analysis with a summary that puts together all the three NoSql databases. Finally, we

ranked the databases based on the ability to use them in our CASR registry.

124

Chapter 8

Conclusion

In this thesis, we proposed a structure and provided an implementation for a context-aware ser-

vice registry (CASR). This registry is capable of storing and managing rich services, which have

complex features, contracts, legal rules, and non-functional specifications. We analysed thor-

oughly the requirements of such a registry and introduced a generic structure for it. Also, we

investigated in depth three NoSql database approaches and analysed their features, strengths,

limitations, and structures. For each NoSql systems, we introduced a model for context-aware

rich service definition. Finally, we implemented the three models and provided benchmark

thorough analysis of the capabilities of each approach. We compared the results and outlined

our analysis.

The contributions of this thesis are expected to have a positive impact and improve ser-

vice provision and discovery. Technological services have become essential parts of daily life

of people. They are provided in many essential sectors such as Health, Education, Entertain-

ment, Business, etc. Including context in such service makes it smarter and well adapted to the

needs of people. The context and history modeling parts of this thesis have been accepted for

publication in The Second International Conference on Context-Aware Systems and Applications

125

(ICCASA) [AADDA13]. Providing an approach for modeling context-aware services and struc-

turing and implementing context-aware registries brings a significant contribution to the field

of service computing.

8.1 Future Work

In order to reach its full potential, CASR has to be included in a bigger framework that sup-

ports context and trustworthiness. Ibrahim [Ibr12] has proposed a framework for trustworthy

context-aware service publication, discovery and delivery. This is shown in Figure 75. We have

explained details of the design for the context, ConfiguredService and service registry. In this

section, we explain how our service registry model will fulfil the goals of the framework archi-

tecture for service publication and service discovery. In particular, we want to emphasise the

design components that should be constructed in future.

The three goals stated by Ibrahim [Ibr12] for designing service registry are:

• It should be a simplified browsing media for SRs and an efficient publication media for

SPs.

• It should provide secure access for SPs and SRs.

• It has build in semantics for publishing functionalities under different domains.

Figure 76 shows the components that are required to provide a full implementation of

CASR. We briefly describe these components and their interactions with CASR in order to fulfil

the three goals that are stated above.

The structure of CS storage, which is the main registry for services, has been thoroughly

explained in previous sections. We assume that there exists a Trust Authority (TAU) which has

the export knowledge, skills and resources to construct domains and sub-domains and manage

identities of service providers and requesters using Role-Based Access Security (RBAC). Initially,

126

Figure 75: The FrSeC Framework Architecture [Ibr12]

the TAU will identify the domains of interest and the sub-domains within each domain. For

example, Education, Transportation, HealthCare and Entertainment are domains, with each

domain the sub-domains are identified and this information is structured as skeleton within

the CS storage. This skeleton will be consistent the service registry model that we discussed

earlier. Functionalities under each sub-domain will be added as and when service providers

upload their services in the CS storage. This process of uploading is shown in Figure 77.

Figure 77 shows the sequence of SP actions. In step (1), the SP is to be registered by the

TAU, this step is required to fulfil the secure access goal. After the is successfully registered, the

SP is assigned a token by TAU, who also forwards the token with the identity of SP to be saved

in Tokens storage. This is shown in Figure 77 as step (2). In steps (3) and (4) the confirmation

and acceptance of SP in the system happen. The token has time window specifying the session

127

Figure 76: The main structure Service Registry

duration allocated for the SP. Within this time the SP expected to complete the rest of the action

in Figure 77. In case the time expires before this is accomplished, the whole scenario shown in

Figure 77 has to be repeated.

The semantics of the rest of the steps are as follows:

128

Figure 77: Service Publication Sequence Diagrams

• (5) Now after the SP is accepted to access the storage, SP request Browsing DKN sending

its token with the request.

• (6) Then, the The storage takes this token and send it to the Matching Unit (MU) to first

match it with the one stored in the Token storage and if it mutual, the role is sent to

RBAC. The reason for matching the tokens is to support security goal. The information

included in token sent by SP could be changed or faked by any reason. Therefore, the

system stores a copy to authorize the identity of the sender and hence secure the system.

• (7) The RBAC takes this role and checks the domains, sub-domains and functions that

are eligible for this SP. If the role of SP exists in the ProviderRole list that is attached

with every domain, sub-domain and function, then they are eligible to be displayed. The

RBAC takes the list of eligible domains, sub-domain, and function giving it to storage.

(8) the storage takes this list and display it to SP.

129

SR TAU Storage

Request(session)
Store(Token)

Accept(Token)

BrowseDKN(Token)
Match(Token)

RBACMatching
Unit

Accept(Role)

ControlAccess(role)Display(DKN)

Request(SerID)

Confirm(responde)

ServiceConfirm(answer))

Confirm(SerID)

Execute (SR, SerID, message)

(1) (2)

(3)

(4) (5)

(6)

(7)
(8)

(9)

(10)

(11)

(12)

Figure 78: Service Discovery Sequence Diagrams

• (10) SP select the proper path for its service, fills the service publication request and

sends the request. (11) The TAU analyses the request and makes a decision. If it is

accepted then a confirmation message is sent to SP including other information attached

with this decision such as contract renewal date. If the publication is not accepted, the

TAU sends refusal letter that includes reasons for this refusal that could help SP to avoid

those issues when reordering publishing the service.

For the service requester SR follows the steps in Figure 78 to discover services. The seman-

tics of the steps are similar to the steps are shown in Figure 77. However, (10),(11) and (12)

are actually steps for requesting a service, then TAU requests confirmation from SP and, finally,

after SR confirms to request the services, service execution process starts.

The rest of the units shown in Figure 76 are necessary to manage the system evolution. The

functionality of these units are explained below.

130

The Control Unit (CU) is the unit that control input and output in storages and from stor-

ages. That is, this unit works as an interface of storages to allow or not to allow communication

between storages and other units. It is needed to help processing other functionalities such as

service publication. That is, the final step for service publication is to accept the request com-

ing from SP by TAU. When TAU accepts the request, the service information is sent to service

registry to be stored, the request goes through the CU to validate request and sends it to the

storage and to refuse request in case of data loss during request transferring.

Maintenance Unit (MU) that is responsible for service development and improvement. This

is done by requesting frequent update and checking on the stored data. Service improvement

is done by two units one is tracking and another is solution. The tracking unit tracks the least

used or unused ConfiguredServices in the system. These ConfiguredServices can be improved

by providing some solutions. Therefore, the ConfiguredServices with low usage are sent to

solution unit to provide a development plan to improve the service usage. These plan includes

actions such as offers and deals provision, service compositions with the help of Action unit,

or advertising with the help of Ads unit. The Action unit could make firm decisions such as

deleting the ConfiguredService , if the providers of those ConfiguredServices do not conform to

the rules of the agreement that are provided to service providers when they start working with

CASR registry. The tracking unit also tracks service provider and service requester accounts

and tokens expiry dates to command actions in some particular cases. These cases and actions

should be defined and documented in the CASR registry.

The Data warehouse Unit is to store all transactions done by the registries which help to

provide long term process report of each service that helps SPs to know many aspects of where

they can improve their services.

131

Bibliography

[AADDA13] Alaa Alsaig, Ammar Alsaig, Mubarak Dr.Mohammad, and Vangalur Dr. Alagar.

Storing and managing context and context history. In The Second Interna-

tional Conference on Context-Aware Systems and Applications, Phu Quoc, Vietnam,

November 2013.

[AS96] Varol Akman and Mehmet Surav. Steps toward formalizing context. AI magazine,

17(3):55, 1996.

[Ban11] Kyle Banker. MongoDB in action. Manning Publications Co., 2011.

[BBH+10] Claudio Bettini, Oliver Brdiczka, Karen Henricksen, Jadwiga Indulska, Daniela

Nicklas, Anand Ranganathan, and Daniele Riboni. A survey of context modelling

and reasoning techniques. Pervasive and Mobile Computing, 6(2):161–180, 2010.

[BCE+02] Tom Bellwood, Luc Clément, David Ehnebuske, Andrew Hately, Maryann Hondo,

Yin Leng Husband, Karsten Januszewski, Sam Lee, Barbara McKee, Joel Munter,

Claus von Riegen, and SAP. Uddi spec technical committee specification.

URL:http://uddi.org/pubs/uddi-v3.00-published-20020719.htm, 2002.

[Bre00] Eric A Brewer. Towards robust distributed systems. In PODC, page 7, 2000.

[Cat11] Rick Cattell. Scalable sql and nosql data stores. ACM SIGMOD Record, 39(4):12–

27, 2011.

132

[CC81] Herbert H Clark and Thomas B Carlson. Context for comprehension. Attention

and performance IX, pages 313–330, 1981.

[CCMW01] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana.

Web services description language (wsdl) 1.1. URL:http://www.w3.org/TR/wsdl,

2001.

[CDG+08] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach,

Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. Bigtable:

A distributed storage system for structured data. ACM Transactions on Computer

Systems (TOCS), 26(2):4, 2008.

[Cho13] Kristina Chodorow. MongoDB: the definitive guide. O’Reilly, 2013.

[CLC10] Lu Chen, Yan Li, and Randy Chow. Enhancing web service registries with seman-

tics and context information. In Services Computing (SCC), 2010 IEEE Interna-

tional Conference on, pages 641–644. IEEE, 2010.

[CST+10] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st

ACM symposium on Cloud computing, pages 143–154. ACM, 2010.

[DAS01] Anind K Dey, Gregory D Abowd, and Daniel Salber. A conceptual framework

and a toolkit for supporting the rapid prototyping of context-aware applications.

Human-computer interaction, 16(2):97–166, 2001.

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

and Werner Vogels. Dynamo: amazon’s highly available key-value store. In SOSP,

volume 7, pages 205–220, 2007.

133

[DKR13] Nick Dimiduk, Amandeep Khurana, and Mark Henry Ryan. HBase in Action. Man-

ning, 2013.

[Geo11] Lars George. HBase: the definitive guide. O’Reilly Media, Inc., 2011.

[GS07] Vincenzo Grassi and Andrea Sindico. Towards model driven design of service-

based context-aware applications. In International workshop on Engineering of

software services for pervasive environments: in conjunction with the 6th ESEC/FSE

joint meeting, pages 69–74. ACM, 2007.

[HHLD11] Jing Han, E Haihong, Guan Le, and Jian Du. Survey on nosql database. In Per-

vasive computing and applications (ICPCA), 2011 6th international conference on,

pages 363–366. IEEE, 2011.

[HL06] Yan Ha and Roger Lee. Integration of semantic web service and component-based

development for e-business environment. In Software Engineering Research, Man-

agement and Applications, 2006. Fourth International Conference on, pages 315–

323. IEEE, 2006.

[Ibr12] Naseem Ibrahim. Specification, composition and provision of trustworthy context-

dependent services. Technical report, Concorida Univeristy, 2012.

[K+05] LF Kenney et al. Soa registries and policy enforcement bolster soa governance

and consumption. Gartner Research, 2005.

[Kei08] Jones Keith. Building a context-aware service architecture.

URL:http://www.ibm.com/developerworks/architecture/library/ar-

conawserv/index.html, 2008.

[Lea10] Neal Leavitt. Will nosql databases live up to their promise? Computer, 43(2):12–

14, 2010.

134

[Lee08] Youngkon Lee. Quality context composition for management of soa quality. In

Young Computer Scientists, 2008. ICYCS 2008. The 9th International Conference

for, pages 330–335. IEEE, 2008.

[LGZ+05] Jiamao Liu, Ning Gu, Yuwei Zong, Zhigang Ding, Shaohua Zhang, and Quan

Zhang. Service registration and discovery in a domain-oriented uddi registry.

In Computer and Information Technology, 2005. CIT 2005. The Fifth International

Conference on, pages 276–283. IEEE, 2005.

[LL09] Ruiming Li and Nianlong Luo. xuddi: A framework for uddi registry based on

purexml. In Information Processing, 2009. APCIP 2009. Asia-Pacific Conference on,

volume 1, pages 510–513. IEEE, 2009.

[Min08] Alexander Mintchev. Interoperability among service registry implementations:

Is uddi standard enough? In Web Services, 2008. ICWS’08. IEEE International

Conference on, pages 724–731. IEEE, 2008.

[ML90] John McCarthy and Vladimir Lifschitz. Formalizing Commonsense: Papers by John

McCarthy. Greenwood Publishing Group Inc., 1990.

[Rud56] Carnap Rudolf. Meaning and necessity, 1956.

[RWC12] Eric Redmond, Jim R Wilson, and Jacquelyn Carter. Seven databases in seven

weeks: A Guide to modern databases and the NoSQL movement. Pragmatic Book-

shelf, 2012.

[SAW94] Bill Schilit, Norman Adams, and Roy Want. Context-aware computing applica-

tions. In Mobile Computing Systems and Applications, 1994. WMCSA 1994. First

Workshop on, pages 85–90. IEEE, 1994.

135

[SB05] Quan Z Sheng and Boualem Benatallah. Contextuml: a uml-based modeling lan-

guage for model-driven development of context-aware web services. In Mobile

Business, 2005. ICMB 2005. International Conference on, pages 206–212. IEEE,

2005.

[SCA06] CM Saracca, Don Chamberlin, and Rav Ahuja. Db2 9: pure xml–overview and

fast start. IBM Redbooks, 2006.

[SN10] Salvatore Sanfilippo and Pieter Noordhuis. Redis, 2010.

[Tay10] Ronald C Taylor. An overview of the hadoop/mapreduce/hbase framework and

its current applications in bioinformatics. BMC bioinformatics, 11(Suppl 12):S1,

2010.

[TJ10] Rob Tweed and George James. A universal nosql engine, using a tried and tested

technology, 2010.

[TKS+10] Martin Treiber, Kyriakos Kritikos, Daniel Schall, Schahram Dustdar, and Dimitris

Plexousakis. Modeling context-aware and socially-enriched mashups. In Proceed-

ings of the 3rd and 4th International Workshop on Web APIs and Services Mashups,

page 2. ACM, 2010.

[Wan06] Kaiyu Wan. Lucx: Lucid enriched with context. PhD thesis, Concordia University,

2006.

[web] Uddi tutorial. URL:http://www.tutorialspoint.com/uddi/index.htm.

136

	List of Figures
	List of Tables
	Introduction
	Contribution

	Literature Review
	Summary

	Context
	Context Definition
	Context Type
	Generic Context Model
	Service Context History Model
	Summary

	Context-Aware Services
	Configured Services
	Service
	Contract
	Configured Service Generic Model
	Summary

	Context-Aware Service Registry
	Context-Aware Service Registry
	Domain, Sub-Domain and Function
	Modeling Domain, Sub-Domain and Function
	Service Providers (SP)
	Configured Services (CS)

	Context-Aware Service Registry Generic Model
	Summary

	CASR Implementation in NoSQL Databases
	Why NoSql Databases
	Implementation: Redis - Key-Value Store
	Redis Features
	Design Considerations
	Implementing the Domain Knowledge Design
	Implementing Provider Design
	Implementing Configured Service Design
	Implementing Context Design
	Implementation Limitations

	Implementation: MongoDB - Document-Oriented Store
	MongoDB Features
	Design Consideration
	MongoDB Implementation
	Implementation Limitation

	Implementation: Hbase Column-Oriented Store
	Hbase Features
	Design Consideration
	Table1: Domain, Sub-Domain and Providers in Hbase
	Table2: Function in Hbase
	Table3: Services in Hbase
	Table4: Contract in Hbase
	Table5: Context in Hbase
	Table6: Followers/SRSPRole in Hbase
	Limitations

	Summary

	Testing and Analysis
	YCSB Benchmarking
	General NoSql Characteristics
	Redis
	MongoDB
	Hbase

	Overall Verdict
	Summary

	Conclusion
	Future Work

	Bibliography

