
Instantaneous Harmonic Analysis

and its Applications in

Automatic Music Transcription

Ali Jannatpour

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Doctorate of Philosophy (Computer Science) at

Concordia University
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Abstract

Instantaneous Harmonic Analysis and its Applications in Automatic Music

Transcription

Ali Jannatpour, Ph.D.

Concordia University, 2013

This thesis presents a novel short-time frequency analysis algorithm, namely Instan-

taneous Harmonic Analysis (IHA), using a decomposition scheme based on sinusoidals. An

estimate for instantaneous amplitude and phase elements of the constituent components of

real-valued signals with respect to a set of reference frequencies is provided. In the context

of musical audio analysis, the instantaneous amplitude is interpreted as presence of the

pitch in time. The thesis examines the potential of improving the automated music anal-

ysis process by utilizing the proposed algorithm. For that reason, it targets the following

two areas: Multiple Fundamental Frequency Estimation (MFFE), and note on-set/off-set

detection.

The IHA algorithm uses constant-Q filtering by employing Windowed Sinc Filters

(WSFs) and a novel phasor construct. An implementation of WSFs in the continuous

model is used. A new relation between the Constant-Q Transform (CQT) and WSFs is

presented. It is demonstrated that CQT can alternatively be implemented by applying a

series of logarithmically scaledWSFs while its window function is adjusted, accordingly. The

relation between the window functions is provided as well. A comparison of the proposed

IHA algorithm with WSFs and CQT demonstrates that the IHA phasor construct delivers

better estimates for instantaneous amplitude and phase lags of the signal components.
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The thesis also extends the IHA algorithm by employing a generalized kernel func-

tion, which in nature, yields a non-orthonormal basis. The kernel function represents the

timbral information and is used in the MFFE process. An effective algorithm is proposed to

overcome the non-orthonormality issue of the decomposition scheme. To examine the per-

formance improvement of the note on-set/off-set detection process, the proposed algorithm

is used in the context of Automatic Music Transcription (AMT). A prototype of an audio-

to-MIDI system is developed and applied on synthetic and real music signals. The results

of the experiments on real and synthetic music signals are reported. Additionally, a multi

-dimensional generalization of the IHA algorithm is presented. The IHA phasor construct

is extended into the hyper-complex space, in order to deliver the instantaneous amplitude

and multiple phase elements for each dimension.

Index Terms: Instantaneous Harmonic Analysis (IHA), Short-Time Fourier Transform

(STFT), Constant-Q Transform (CQT), Windowed Sinc Filters (WSFs), Phasor, Wavelets,

Short-Time Cross Correlation, Analytical Signal, Automatic Music Transcription (AMT),

Audio-to-MIDI, Kernel Function, Multiple Fundamental Frequency Estimation (MFFE),

Hyper-Complex Space, Quaternions, Multi-Dimensional Signal Processing.
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Foreword

“In the name of Hermes, the god and the deity of the science of art1”

In the memory of Morteza Hannaneh (1923–1989), who believed music was not

only art but science.

Throughout the thesis, references to various musical terms are made. While the

reader is expected to be familiar with music terminology, a brief glossary is provided in

section 1.1. Throughout chapters 1–3 a brief introduction on the harmonic analysis and

music signal processing with a short survey on the state-of-the-art techniques is provided.

Chapters 4–7 provide the Instantaneous Harmonic Analysis (IHA) transform along with

its generalizations towards music signal processing, while chapter 8 solely focuses on music

transcription. It is hoped that the fundamental contribution of the IHA transform motivates

future research directions.

Ali Jannatpour,

October 2013, Montréal – Canada

1Quoted by Motreza Hannaneh during tutoring Practical Manual of Harmony by Nikolai Rimsky-Kor-
sakov.
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Chapter 1

Introduction

Harmonic analysis may be understood as a special case of functional analysis in math-

ematics, which concerns studying functions and their representations based on superposition

of basic waves. The term harmonic originally comes from the eigenvalue problem, in which

the frequencies of the waves are integer multiples of the mother wave. Fourier analysis

may be considered in the context of Hilbert spaces, which provides a bridge between the

harmonic analysis and functional analysis. In music theory, however, harmonic analysis is

known as the study of chords and their combination in terms of producing musical effects.

This thesis concerns the former definition.

While harmonic analysis dates back to Fourier’s effort on analyzing the solutions of

the heat and wave equations, it has been widely used in many branches of science such as

mathematics, physics, and engineering, to name a few. Fourier series has been one of the

earliest attempts to study periodicity, by which an arbitrary periodic function is represented
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by a sum of simple wave functions 1. The motivation of the Fourier transform comes from

generalization of the Fourier series when the period of the represented function is stretched

out and approaches infinity [48]. Such a definition delivers a sufficient measure for studying

the frequency distribution and provides a tool for studying non-periodic functions. The

periodicity itself has been studied in many branches of mathematics, which has resulted

in the topics such as definition of almost periodic functions, etc. The topic is an ongoing

research, especially in the generalization area [67].

Much effort has been devoted through the years to overcome the main drawback of the

classical Fourier transform, with respect to the loss of time information when the signal is

transferred into the frequency domain. Time-frequency analysis provides a compromise so-

lution by studying the signal simultaneously in the time and frequency domains. It has been

widely studied by many researchers in the literature. The Short-Time Fourier Transform

(STFT) has been one of the earliest approaches delivering a joint time-frequency analysis

[95]. It suggests applying the Discrete Fourier Transform (DFT) using a window function.

Assuming the input signal is quasi-stationary, STFT provides a two-dimensional time-fre-

quency analysis by taking the Fourier transform of the signal using a window function. Such

windowing results in a tradeoff in time resolution vs. frequency resolution. Wavelets, on the

other hand, provide frequency analysis at different resolutions by preserving the locality.

Wigner Distribution (WD) has been used by many researchers as a powerful time-

frequency analysis tool [65]. One of the advantages of WD over STFT is using a quadratic

function to avoid negativity in order to provide energy distribution. It however produces

undesirable cross-terms [89]. It has been demonstrated to have a fine performance, especially

1Convergence of the Fourier series has been studied extensively in the literature. In general, one can
consider point-wise, uniform, and L2 convergence. It is easy to show that a Fourier series of a periodic
function f in L2 converges to f in L2 sense. Also a Fourier series of a periodic, integrable function which is
continuous at x0 converges to f(x0). If f is periodic, continuous and differentiable on R with f ′ piecewise
continuous then the Fourier series of f converges uniformly. Point-wise convergence is tricky. It was shown
by Carleson [19] that Fourier series of any periodic function f ∈ L2 converges to f point-wise, almost
everywhere. Later on, Hunt [60] generalized the space to Lp for any p ∈ (1,∞). The main references on the
topic are [8, 113].

2



in the analysis of non-stationary signals [58].

Alternatively, the Instantaneous Frequency (IF) is defined based on analytical signals

where both amplitude and phase are represented by time-varying functions. IF is generally

calculated from the analytical signal using the Hilbert transform, although other variations

have been used in the literature, resulting in contradicting definitions [91]. The major

difference between IF and STFT is that STFT delivers a spectral analysis in a discrete

form, whereas IF provides an instantaneous measure at a frequency level. The STFT

allows studying multiple frequencies within a short time, while IF delivers the instantaneous

frequency of the signal in time. IF has been extensively used by many researchers. Although

there are numerous applications for IF-based signal analysis, some researchers challenge the

concept stating that it violates the uncertainty principle (see [51]).

The uncertainty principle states that the signal cannot simultaneously be localized in

both time and frequency. It may alternatively be understood as the Gabor limit, stating that

a function cannot be both time-limited and band-limited at the same time [43, 88]. Several

papers have been published on the topic of the relation between the time-resolution and

the bandwidth, mainly suggesting an upper limit for the product of the two. This relation

plays a great role in short-time frequency analysis, especially when estimating instantaneous

properties are targeted. A mathematical survey on the topic may be found in [41].

The concept of IF has provoked strong opinions among scientists with respect to

the uncertainty principle [59]. Cohen has published a significant paper [28] on the topic

of the product of time and frequency covariances. He states that the reason behind so

much confusion on the uncertainty principle is mainly due to misinterpretation of STFT

philosophy.

In frame-based analysis [6] where the signal is segmented into smaller pieces, it is

3



assumed that the signal is completely stationary within the frame. In case the stationary

property cannot be satisfied, smaller frames may be used. However, the frames cannot be

made arbitrarily small, for many different reasons, the most importantly, the uncertainty

principle. Hence, a need for non-stationary signal analysis is beneficial.

One practical domain of non-stationary signal processing is the analysis of music

signals. Music signals have a certain specific characteristics. For instance, they follow

the pattern of musical scales which represent a discrete set of frequencies; the discrete

frequencies are logarithmically spaced on the frequency axis; and, the presence of notes in

time forms the melody. In this thesis, we focus on short-time frequency analysis approaches,

specific to the non-stationary time-frequency characteristics of the music signals.

Several attempts have been made for choosing the best joint time-frequency resolu-

tions based on the application [94]. For instance, in the context of tonal music analysis,

considering the way that the musical scales are structured, applying a logarithmic spectral

analysis is more effective than using a linear paradigm [49]. In an equal temperament sys-

tem [7], the frequency ratio of the two notes within an equal interval is always constant.

Therefore, the frequencies follow a logarithmic scales. Constant-Q Transform (CQT) is one

of the approaches that provides a logarithmic spectral analysis with respect to the equal

temperament that is used in western music [16]. It is based on the theory behind DFT, but

uses a constant ratio of center frequency to resolution that is equivalent to one semitone.

CQT can generally be performed by taking the Fourier transform of a windowed sequence

where the window is a function of the product of time and frequency. Prior to introducing

CQT by Brown, constant-Q analysis has been used in the literature. For instance, Kates [66]

previously showed that the result of a constant-Q analysis using an exponentially decaying

window is equivalent to the Z-transform along an outwardly going spiral in the complex Z

4



-plane 2.

General issues about instantaneous amplitude and phase of signals have been dis-

cussed in [91]. This thesis proposes a new model for estimating instantaneous amplitude

and phase of multi-component signals which may be used as a fundamental tool in Multi-

ple Fundamental Frequency Estimation (MFFE). MFFE, or multiple-F0 estimation, is an

essential process in audio analysis by addressing the over-toning issue, which is caused by

harmonic collisions from two or more simultaneous tones. A tone is a steady periodic sound,

often generated by a musical instrument, that plays a musical note. It is not necessarily

a pure tone. A non-pure tone may be decomposed into one pure fundamental tone and a

some overtones [70].

In Single Fundamental Frequency Estimation (SFFE), a signal is assumed to consist

of single Fundamental Frequency (F0) at a time. Therefore, estimating F0’s is a straightfor-

ward process. In MFFE, however, the harmonic collision of the multiple overtones makes

the process rather difficult. The harmonic collision is caused by the interferences of the

overtones produced by multiple sources (i.e. an octave or a perfect fifth). This is very

common in music where the multiple sources form consonant intervals [7].

1.1 Terminology

The thesis discusses the harmonic analysis of multi-component tonal audio signals. While

the formal specification of the analysis id provided in chapters 4–6, the used terminology is

2Z-transform converts a discrete time-signal into a complex frequency-domain representation:

Z{x[n]} =

+∞
n=−∞

x[n]z−n

5



given in the following:

Multi-Component Signal: is an audio signal composed of musical tones.

Tonal Signal: is referred to an audio signal that consists of perfectly pitched

tones, corresponding to the standard musical notes. Musical notes correspond to

a discrete set of frequencies, each of which, designate the fundamental frequency

of the note (i.e. 440 Hz for the standard concert pitch).

Transcription System: in simple words, is a system of converting an audio

signal into a set of note events that can be represented in a musical notation

format.

Throughout the thesis, various references to music terms are made. They are briefly ex-

plained in the following, while a comprehensive guide may be found in [46].

Accidentals: are note modifiers, which cause a pitch change that does not be-

long to the scale.

Cent: is a logarithmic micro-tonal unit of measure used for musical intervals,

equivalent of one-hundredth of a semitone.

Chord: is a harmonic set of three or more notes that is played simultaneously.

Diatonic Scale: is an eight-note scale composed of seven notes and a repeated

octave.

Harmony: is the use of simultaneous notes, usually in form of a chord. It often

refers to the vertical sonority of the music.

Harmonic: is an overtone whose frequency is an integer multiple of the funda-

mental frequency.

Interval: is the difference between two pitches, usually on a diatonic scale.
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Melody: is a rhythmic sequence of single notes. It is often regarded as hori-

zontal, since the notes are played from left-to-right.

MIDI: Musical Instrument Digital Interface, is an industry specification for

encoding, storing, synchronizing, and transmitting the musical performance,

primarily based on note events.

Notation: is a system used in sheet music in order to represent a piece of mu-

sic.

Note: identifies a pitched sound and is associated with a name (and sign).

Notes may be considered as atoms of music that allows discretization of musical

analysis.

Note Events: are the set of events identifying notes on-sets and off-sets.

Octave: is an interval between a note and its second harmonic.

Overtone: is a component of a sound with a frequency higher than the funda-

mental frequency.

Pitch: may be defined as the degree of highness or lowness of a tone on a fre-

quency-related scale.

Rhythm: is the timing of musical sounds and silences.

Semitone: is the smallest interval used in Western music and is equivalent to

one-twelfth of an octave. It is sometimes known as half-tone or half-step.

Scale: is a set of musical notes ordered by pitch.

Staff: is a set of five horizontal lines and four spaces that each represent a

different note.

Timbre: also known as tone color or tone quality, is referred to the physical

characteristics of a sound, which makes the different tonal sounds distinguish-

able while they have the same pitch.

Tone: is a steady periodic sound, often generated by a musical instrument, that

plays a musical note3.

3In some context, tone may also refer to the musical interval, equivalent to a major second. To distinguish
between the two, we refer to the latter as whole-tone.
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1.2 The Scope of the Thesis

This thesis primarily concerns the problems and challenges of the Instantaneous Harmonic

Analysis (IHA) of audio signals, with a focus on non-stationary signal analysis techniques.

The challenges include multi-pitch analysis, MFFE, harmonic collision, overtone estimation,

to name a few. The thesis targets the two core areas in music transcription: MFFE and note

events detection. The audio analysis in this thesis is purely tonal and therefore percussion

analysis is out of the scope of this thesis.

A novel harmonic analysis algorithm, namely IHA, is provided based on enhanced

Constant-Q filtering. The IHA algorithm delivers a signal decomposition scheme based

on the frequency distribution of musical scales. The objective of the IHA algorithm is to

provide the instantaneous amplitudes and phase lags of the signal components with respect

to the discrete set of frequencies that are associated with the musical scales. It can be used

as a fundamental tool for MFFE where the instantaneous amplitudes represent the presence

of fundamental frequencies in time, and the instantaneous phase lags are used for overtone

estimation.

The scope of the thesis is to implement and evaluate the performance of the new

algorithm in the context of musical signal analysis. The performance is measured by evalu-

ating the improvement of the note events detection process, by applying the algorithm on

different sets of musical data in order to produce the note events. Note events, in simple

words, are referred to as the representation of music pieces in form of note on-sets and off-

sets. They are the essential part of the music and form the core of the music notation [46].
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The thesis contributes to the music analysis, yet it does not aim at automating the whole

music transcription process.

1.3 Thesis Contributions

The thesis delivers a novel IHA algorithm based on enhanced Constant-Q filtering [62]. An

implementation of Windowed Sinc Filters (WSFs) based on the signal model in its original

continuous form has been used. A new relation between the CQT and WSFs has also been

provided [63]. The thesis also extends the IHA transform by employing a generalized kernel

function. The algorithm contributes to an MFFE process where a post-processing overtone

elimination algorithm is used for timbral analysis. A generalization in multi-dimensional

space has also been provided.

1.4 Thesis Organization

The thesis is structured as follows: A background on harmonic analysis algorithms and

related transformations and the motivation of the thesis is given in the next chapter. A

short survey of related music signal processing techniques is provided in chapter 3. The

formal specification of the IHA transform is given in chapter 4. Chapter 5 presents the

generalization of the IHA transform into the multi-dimensional space. The generalization of

the IHA algorithm for timbral analysis is formalized in chapter 6. The theoretical analysis

of the IHA algorithm along with the relation between WSFs and CQT is presented in

chapter 7. The transcription system as well as the post-processing algorithms are discussed

in chapter 8. And in chapter 9 the thesis is concluded.
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Chapter 2

Background and Motivation

This chapter discusses the background and motivation behind this thesis. A short

survey of time-frequency analysis algorithms with an emphasis on CQT is presented.

The signal decomposition scheme that is used in the thesis is discussed here.

The STFT has been one of the earliest attempts delivering a joint time-frequency

analysis [95]. Huang et al. [59] provided a comprehensive survey on instantaneous frequency

-based methods in particular Zero Crossing (ZC), Teager Energy Operator (TEO), and

normalized Hilbert transform, to name a few. A historical review on instantaneous frequency

was previously provided in [14, 15]. Rabiner and Schafer utilized the STFT in [95], which

was also surveyed by Kadambe and Boudreaux-Bartels [65] along with the WD and wavelet

theory. Khan et al. [68] proposed an IF estimation using fractional Fourier transform and

WD.

IF has been widely used by many researchers in the literature. It is generally calcu-

lated from the analytical signal using the Hilbert transform [91]. Oliveira and Barroso used
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the IF of multi-component signals in [87]. Nho and Loughlin studied IF and the average

frequency crossing in [86]. An Empirical Mode Decomposition (EMD) based-method is also

used by Zhang et al. in [111] for IF estimation. Arroabarren et al. in [5] have provided some

methodological basis for determining the instantaneous amplitudes and frequencies.

In the context of tonal music analysis, considering the way that the musical scales

are structured, applying a logarithmic spectral analysis is more effective than using a linear

paradigm. CQT, originally introduced by Brown, is one of the approaches that provide

such spectral analysis [16]. Brown explained how such analysis can be improved by using

a spectral representation that supports the logarithmic spacing of the musical tones. She

states that one of the major advantages of such representation is that the spectral com-

ponents form a pattern in the frequency domain which is the same for all sounds with

harmonic frequency components [16]. Therefore, using a constant ratio of center frequency

to resolution, namely Q, is highly efficient in comparison with using a constant bandwidth

resolution that is used in the traditional DFT-based approaches. Brown explained that one

of the major advantages of such design is that the spectral components form a pattern in

the frequency domain that is the same for all sounds with harmonic frequency components.

In the following sections, the formal definition of CQT is given. CQT is used in this

thesis, in relation with the signal decomposition scheme. The signal decomposition scheme is

subsequently discussed. The frequency quantization delivered by the decomposition scheme

is explained. This chapter concludes with the motivation behind the thesis.
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2.1 The Constant-Q Transform

CQT is calculated by taking the Fourier transform of a windowed sequence while the window

is a function of the product of time and frequency. The constant ratio represents the quality

factor and is set to the number of full cycles to be used by the temporal window. The formal

definition of CQT is as follows [16].

Given x[n], the input signal in discrete domain, the CQT of x[n] is defined as:

X[k] =
1

N [k]

N [k]−1
n=0

W [k, n] ·x[n] · e
−j2πQn

N [k] (2.1)

where N [k] represents the temporal window length,

N [k] =
Q

Tfk
,

and Q and fk are the quality factor and the kth reference frequency, respectively. W [k, n]

denotes a symmetric window function, e.g., Hamming window. The above equation may

also be understood as taking a normalized Fourier transform of the windowed signal by

using a predefined set of digital frequencies and applying a temporal window with the exact

Q number of cycles. It must be noted that x[n] in (2.1) represents the windowed signal. cf.

[16].

The invertibility of CQT has been a challenge for years. Although filter bank ap-

proaches are invertible in nature, the inverse transform for the CQT algorithm had not

been available until recently. The first attempt of obtaining the inverse transform was

made by Cranitch et al. [30]. The authors explained that the process could not formally be

inverted as the matrix representation of the CQT implementation by DFT uses non-square

matrices. They provided the solution using a pseudo-inverse of the transform matrix, by

taking advantage of the scarcity property of the DFT, due to the fact that the time domain
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signal is properly pitched. Holighaus et al. [56] recently provided a framework for calcu-

lating an invertible CQT in real-time. Their work was based on the non-stationary Gabor

frames [6, 20]. Ingle and Sethares [61] also developed a least-square invertible constant-Q

spectrogram for phase vocoding.

2.2 The Decomposition Scheme

Signal decomposition is a broad topic that addresses the functional relationship between an

arbitrary signal and its constituent components by which the original signal can be recon-

structed. Depending on the application, different decomposition paradigms may be used.

While frame theory provides an orthonormal basis for signal decomposition, alternative

schemes may also be used based on the application.

In tonal music analysis, where the input signal is perfectly pitched, it is desired to

study signals at certain frequencies. These frequencies correspond to musical notes and the

analysis examines the existence of such frequencies in short time. Hence, one may look for

a decomposition scheme to transform input signals into a set of pure components that can

be later on used within an MFFE process. In such a model, the reference pitches form

the musical scale and are chosen according to the intonation system [7] (cf. [16], harmonic

sounds in [71]). Since each tone is represented by a fundamental frequency, estimating the

presence of such frequencies is the key to the note identification process [26].

In our model, a multi-component signal may be decomposed into a finite number

of single-component signals, each of which represents a pure tone in the form of a quasi-

sinusoidal:

x(t) =

k

Ck(t), (2.2)
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where

Ck(t) = ak(t) cos(ωkt+Φk(t)), (2.3)

represents the kth component, ak(t) and Φk(t) represent the instantaneous amplitude and

phase lag of the kth component, respectively. ωk’s represent the frequencies and are loga-

rithmically spaced on the frequency axis:

ωk+1 = γ ·ωk, γ > 1, ωk > 0. (2.4)

2.3 Frequency Quantization

Eq. (2.4) conveys a logarithmic quantization of the frequency axis. The frequency axis is

quantized into a set of small intervals by maintaining the constant-Q whereas the reference

frequencies are logarithmically centered on the corresponding intervals. Brown’s quality

factor Q was originally defined in the discrete domain based on the window size in the time

resolution. One may redefine such a measure by using the frequency resolution instead (cf.

[28]). In such definition, the time domain need not be necessarily discretized. This allows

us to apply the filters in both discrete and continuous forms. Our approach is based upon

a map function Ω : Z→ R× R2, as follows.

Given ω0, the global reference frequency, and γ > 1, the bandwidth resolution factor,

the map function Ω quantizes the frequency axis into a set of bands Bk, each of which is

tagged with a reference frequency ωk, where the reference frequency is centered in the band.

In this model, the bandwidths are proportional to the frequencies. The definition of the

map function is given in the following:

Ω(k) = ⟨ωk, Bk⟩ , (2.5)
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where

ωk = γkω0,

|Bk| = λωk,

and |Bk| denotes the bandwidth and λ is a function of γ.

A full partition of the frequency axis may be achieved by choosing non-overlapping Bk’s,

as in the following:

Bk ∩Bl = ∅, k ̸= l with

k Bk = [0,Ω] ,

where Ω denotes the bandwidth of the signal. However, in general, Bk may be chosen as


(1− λ

2
)ωk, (1 +

λ

2
)ωk


, (2.6)

or 
ωk

1
√
γ
, ωk
√
γ


, (2.7)

whether ωk is linearly or logarithmicaly centered in Bk, respectively. It must be noted that

in case (2.6) is used, λ < 2 must hold. Also, for small bandwidths, λ→ γ.

In practice, the map function Ω is bounded. Although ω0 is chosen arbitrarily, it is

commonly set to 880π, representing A440, the standard concert pitch, or to a minimum

frequency, i.e. the minimum audible tone or the lowest frequency of the musical instruments

/ vocals in use. The bandwidth resolution may also be represented in cents,

c = 1200 log2 λ

an equivalent of one-hundredth of a semitone [7]. A 50-cent or a 100-cent resolution may

be used whether a 12 or 24 equal temperament system is desired [32]. The two systems
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are used in western and quarter-tone music, respectively [38]. The equivalent bandwidth

resolution factors of such resolutions are 1.0293 and 1.0595, or in Brown’s system 69.25 or

34.62, respectively. The relationship between Brown’s quality factor and our bandwidth

resolution factor may also be obtained by (cf. [28, 16]):

1

Q
=
λ− 1

2
. (2.8)

2.4 Motivation of the IHA Algorithm

The objective of our model is to find a set of pairs of time-varying functions ak(t), Φk(t) in

(2.3), that best estimate the instantaneous amplitude and phase lag of the signal compo-

nents. Our approach is based upon two constraints:

1. ωk’s are known, and

2. ak’s and Φk’s are smooth functions such that they can be locally approximated by a

constant 1.

ωk’s form the standard musical tones, and the constraints on ak’s and Φk’s makes it possible

to use a linear approach, i.e., the first derivative, for the estimation2. The details are given

in the chapter 4.

1We call ak(t) and Φk(t) locally constant, if:
ak(t) ≈ ak(t±∆t), ∆t→ 0

Φk(t) ≈ Φk(t±∆t), ∆t→ 0

2It must be noted that the signal is assumed to be noise-free, and hence, the estimation process does not
take noise into account.
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Since the input signal is real-valued, one may combine the two functions into a single

time-varying complex function, such as the following phasor notation:

Hk(t) = ak(t)e
jΦk(t) (2.9)

where Hk(t) ∈ C. Therefore, given a set of reference frequencies, the multi-component real

-valued input signal can be represented by a set of complex-valued time-varying functions.

x(t) may then be fully reconstructed using the following:

x(t) = ℜ{

k

Hk(t)e
jωkt} (2.10)

where ℜ denotes the real-part function. Hence, the objective of our decomposition algorithm

is to estimate the complex values Hk(t)’s with respect to the set of ωk’s representing the

reference frequencies. This forms the basis of the IHA algorithm that is specified later on

in chapter 4.
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Chapter 3

Music Signal Processing

This chapter delivers a short survey of state-of-the-art techniques in music transcription.

An overview of the music analysis techniques is given. Related works with focus on CQT

are cited.

3.1 Overview

Harmonic analysis plays a significant role in audio signal processing, and in particular,

in the processing of musical signals. It has been used in various areas of musical signal

processing, such as classification, encoding, enhancement, registration, and automatic tran-

scription. A piece of music may be analyzed in various aspects such as pitch and tone,

mode, rhythm, chord, melody, harmony, texture, timbre, as well as form, dynamics, and

articulation. Among those, melody and harmony are very important as both provide tonal

information. The melody may be defined as a series of tones in succession whereas the har-

mony represents the vertical sonority. The timbre, also known as tone color or tone quality,
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is referred to the physical characteristics of a sound, which makes the different tonal sounds

distinguishable while they have the same pitch.

One of the practical examples of IHA is the analysis of musical signals in the context

of polyphonic music; where the musical piece is represented by a set of tones that are played

in time, so called note events. This founds the basis of the modern notation system. The

term polyphony is generally referred to a texture that consists of two or more melodic tones,

whether played by single or multiple instruments.

Many notation systems have been used in the history of music from cuneiform tablets,

used during the Babylonian era, to alphabetical notation employed during ancient Per-

sia and Greece, to modern notation system which originated in European classical music.

In modern notation system, instruments are represented by staff lines and the tones are

symbolized by musical notes, placed on or in between the lines [46]. Examples of single-

instrument monophonic and orchestral polyphonic pieces have been given in figures 3.1 and

3.2, respectively.

Figure 3.1: A Monophonic sample, Rimsky Korsakov’s Scheherazade symphonic suite, Opus
35, Movement I, Contra-Bass
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Figure 3.2: A Polyphonic sample, Mozart’s Serenade in G, Köchel 525, No. 13, Movement
I, String Quartet

3.2 The Music Transcription Problem

The Automatic Music Transcription (AMT) problem is explained in [52, 71]. The concept

of AMT has been studied for nearly forty years, resulting in various publications. The

AMT process, in general, may be broken into sub-processes such as pitch detection, chord

analysis and identification, melody extraction, or more specifically timbral analysis, beat

tracking, as well as post-processes such as analysis of keys and accidentals, which result in

full score generation [70]. The process of music transcription itself is a difficult task, which

requires several years of musical training. Automating such a process is therefore extremely

challenging. The process has not been fully automated with a desired level of accuracy

especially in case of complex polyphonic signals [52].

Monophonic transcription is known to be one of the earliest attempts in automating
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the music transcription process, resulting in melody transcription. Melody transcription is

generally achieved by using a pitch detection algorithm. Poliner et al. studied and evaluated

melody transcription approaches in [92]. Earlier approaches used STFT for audio spectral

analysis. Some authors have shown interest in STFT, even recently. For instance Gang et al.

[44] used STFT in polyphonic music transcription by employing spectrographic features.

Several theses have been written on the topic of music analysis and transcription.

Klapuri discussed signal processing methods for music transcription in [70]. His thesis con-

cerned source separation and multi-pitch estimation. Probabilistic approaches have been

discussed in [21, 57]. Martin discussed sound-source recognition in [80]. Tzanetakis [105]

provided an audio texture segmentation methodology for feature extraction in genre clas-

sication and Music Information Retrieval (MIR) systems. Benetos [10] provided automatic

transcription based on note events. Harmonic collisions using sinusoidal analysis has been

discussed in [35]. This thesis concerns note event modeling based on the sinusoidal analysis

that is provided by the IHA transform.

3.3 Note Events Analysis

Note events detection and modeling plays a great role in the AMT process [98].

Abdallah and Plumbley [1] provided a note event detection using Independent Component

Analysis (ICA) as a conditional density model. A complete survey may be found in [10].

Note events also form the essential part of the Musical Instrument Digital Interface (MIDI)

standard [81]. MIDI is an industry specification for encoding, storing, synchronizing, and

transmitting the musical performance, primarily based on note events. As such, it has been

used by music authoring software not only for playback but also for score visualization. One

of the important characteristics of the MIDI format is that the MIDI data is represented
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in time rather than beats. Therefore, post-processes such as tempo detection may be ap-

plied on the note event model, in an isolated manner although semi-automated techniques

such as tapping may also be employed for fine-tuning the result [22, 70]. Processing MIDI

information is also beneficial in MIR systems [105].

Pitch detection is the crucial process in MFFE. The purpose of multiple-F0 estimation

is to detect the fundamental frequencies (F0s), also known as pitches, of all the components

in a mixture signal. Harmonic structures play a great role in multi-pith estimation [26]. A

review on objective music structure analysis is provided by Li et al. in [74]. Numerous pitch

detection algorithms have been proposed by the researchers, most of which are based on

a Blackboard system [79]. Previously, Abe and Ando [2] provided time-frequency domain

operators for decomposing sounds into loudness, pitch and timbre. Yeh et al. discussed the

polyphony inference in the MFFE process in [109]. They used a frame-based system by

combining an F0 candidate selection with a joint F0 evaluation.

While early methods were based on DFT, other short-time frequency analysis ap-

proaches have later been used for pitch detection. For instance, Fitch and Shabana pro-

posed a wavelet-based pitch detector in [40]. Wavelets has been widely used in the literature.

They are highly beneficial in template-based approaches such as classification and retrieval.

For instance, recently, [37] Fan et al. used wavelets to implement a humming music re-

trieval. Auto-Correlation Function (ACF) has also been prominently used for multiple-F0

estimation. [82], for instance, developed a monophonic transcription system using ACF

[82]. de Cheveigné and Kawahara [32] proposed an algorithm, called YIN, based a modified

ACF. Using pre-processing algorithms, such as source separation [23], also improves the

MFFE process.
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3.4 Music Transcription Techniques

AMT is a broad topic that involves various techniques, from frequency analysis to prob-

abilistic model, genetic algorithms, neural networks, and holistic approaches. Frequency

-domain based methods, in general, have better overall performance, especially in multi-

pitch detection [4]. While ZC and temporal ACF were originally used in the context of

pitch detection, other combined approaches have been applied in AMT. Leman [73], for

instance, proposed a tonality induction system using a self-organizing map based on neural

networks, so called Kohenon map, which used a twelve bin analyzer for twelve semitones,

independent of octave. Marolt used neural networks for transcription of polyphonic piano

music in [77, 78]. Pichevar and Rouat [90] used neural networks for monophonic sound

source separation, which is a supplementary technique used in music transcription. Bruno

and Nesi [17] provided an music transcription system supporting different instruments.

Kitahara et al. [69] provided an instrument identification based on F0-dependent multi-

variate normal distribution. Reis et al. [97] used genetic algorithms for polyphonic music

transcription. Grindlay and Ellis [50] developed an Eigen-instrument model for multi-voice

polyphonic music transcription. Table 3.1 lists some reported results form the literature.

Method
Rate (%)

Details
Lowest Highest

Argent et al. [4] 53.8 72.1 polyphonic, using constant-Q bispectral analysis

Bertin et al. [12] 22.4 36.4 polyphonic, NMF and K-SVD

Yeh et al. [109] 58.9 61.9 MFFE, MIREX dataset

Bertin et al. [13] 32.0 75.8 polyphonic, NMF, various implementations

Benetos and Dixon [11] 58.2 polyphonic, multiple-instrument

Bruno and Nesi [17] 91.3 AMT supporting different instruments

Costantini et al. [29] 96.9 J. S. Bach Inventions

da C. B. Diniz et al. [31] 80.0 Filter Banks, Korsakov’s Flight of the Bumblebee

Grindlay and Ellis [50] 64.0 98.0 polyphonic, multi-voice, Eigen-instruments

Ryynänen and Klapuri [98] 41.0 polyphonic, using note event modeling

Table 3.1: Some Reported Results from the Literature
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Non-Negative Matrix Factorization (NMF) has been extensively used in AMT.

Smaragdis and Brown [102] along with Sophea and Phon-Amnuaisuk [104] used NMF for

polyphonic music transcription. Bertin et al. [12] used NMF as well as non-negative K-

Means Singular Value Decomposition (SVD) as two blind signal decomposition algorithms

for AMT. Bertin et al. [13] used Bayesian NMF for enforcing harmonicity and smoothness

in polyphonic music transcription. Costantini et al. [29] used NMF in transcription of pi-

ano music. Ganseman et al. [45] recently used Probabilistic Latent Component Analysis

(PLCA), a variant of NMF for source separation using invertible CQT. Fuentes et al. [42]

also recently published a paper on the topic of melody extraction using probabilistic models

based on CQT and NMF.

The music transcription problem is still an unsolved problem [71]. Although most

transcription systems focus on multi-pitch analysis, others have target atonal areas. For

example, Tzanetakis et al. [106] provided a subband-based drum transcription. Multi-pitch

analysis, in general, delivers a basis for note events detection, which results in melodic or

harmonic transcription. It can also be used in a more high level analysis, i.e., key detection,

harmonic analysis, etc. For example, Gerhard [47] provided an interval analysis using

relative pitch. Chuan and Chew [27] implemented a key finding method.

3.5 The Applications of CQT in Music Analysis

CQT has been applied on monophonic as well as polyphonic music analysis such as chord

identification [85, 54], chord transcription [72], key detection [112], and score transcription

[4]. Purwins et al. [93] used CQT for modulation tracking. CQT has also been used in

source separation [96]. Different variations of Constant-Q approach have been used in the

literature. For example, Graziosi et al. earlier proposed a modified version of the Constant-

24



Q, so called mCQFFB, by improving the response characteristics of Fast Filter Bank (FFB)

[34, 49]. da C. B. Diniz et al. [31] provided a practical design of filter banks in the AMT

context. Argent et al. [4] proposed using CQT for both pitch and onset estimation. A

comprehensive survey may be found in [57].

3.6 Summary

An overview of music signal analysis with the focus on music transcription was provided.

A survey of related work was given with an emphasis on CQT in polyphonic transcription,

and the importance of MFFE and note events analysis in music transcription. In the next

chapter, we develop our harmonic analysis algorithm, which in nature is a time-frequency

transformation targeted for music analysis. The algorithm is used in this thesis for MFFE

and the note events detection.
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Chapter 4

The IHA Transform

This chapter presents our novel short-time frequency analysis algorithm. Given a set

of reference pitches, the objective of the algorithm is to transform the real-valued time-

domain signal into a set of complex time-domain signals in such a way that the amplitude

and phase of the resulting signals represent the amplitude and phase of the signal

components with respect to a set of reference pitches. The specification of the IHA

algorithm as well as the phasor construct for both continuous and discrete forms is

provided, in here. The chapter also contributes to the fast real-time implementation of

an M + 1-delay IHA algorithm.

The IHA problem may be defined as the following. Given an input signal, the objective

of the approach is to find a set of pairs of time-varying functions, representing instantaneous

amplitude and phase of the signal components. The problem may be broken into two main

sub-problems: signal decomposition, and instantaneous amplitude phase estimation. As

there are numerous approaches for decomposing an arbitrary signal into its components,

our proposed approach is based on constant-Q analysis which is well suited for the processing

musical signals.
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The IHA transform is derived by using a Constant-Q filtering and performing a lin-

ear amplitude and phase estimation scheme, as follows. We use WSFs with regards to

the logarithmic spectrum that is used by CQT in order to implement the decomposition.

Estimating the instantaneous amplitude and phase components is carried out by applying

the constraints mentioned in section 2.4. We used a linear approach, although non-linear

methods have also been suggested in the literature [18].

4.1 Constant-Q Filtering

Let x(t) represent the real-valued input signal whose Fourier transform exists [48], and

hω(t) be the transfer function of the ideal low-pass filter in the time domain with cut-off

frequency of ω:

hω(t) =
ω

π
sinc


ωt

π


,

where sinc(t) = sin(πt)
πt .

Recall the decomposition scheme in (2.2). By applying a series of band-pass filters repre-

sented by Bk’s, the input signal can be decomposed into a set of Ck(t), as in the following:

Ck(t) = P((1 +
λ

2
)ωk, t)− P((1− λ

2
)ωk, t), (4.1)

where P(ω, t) represents the output of the low-pass filter

P(ω, t) =
ω

π

 +∞

−∞
x(t− τ)sinc

ωτ
π


dτ . (4.2)

Remark 1. In the above equation, the linear centric approach in (2.6) is used. In case of
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using (2.7), the output components will be:

Ck(t) = P(ωk
√
γ, t)− P(ωk

1
√
γ
, t).

Recall the decomposition scheme in section 2.2. In our model, the input signal is

composed of quasi-sinusoidals whose frequencies are ωk’s. The quasi-sinusoidal, in here,

may be understood as a wave form that best fits a piecewise sinusoid. Various models of

quasi-sinusoidals have been used in the literature. For instance, in using K-partials [35], a

blind estimation approach can be used for estimating sinusoidal parameters. Partials refer

to the fundamental frequency and the overtones. Shahnaz et al. [101] used a different model

of K-partials, similar to our approach, for single pitch estimation. We will show later on

how their model fits in our model.

Eq. (4.1) specifies the implementation of our constant-Q filtering. Graziosi et al. used

a discrete constant-Q filter bank in [49]. Our approach applies the filter bank in the con-

tinuous form. Using the continuous implementation has many advantages. For instance, it

provides utilizing theoretical approaches by using a continuous model of the signal. We will

show how our implementation can improve the estimation of the instantaneous amplitude

and phase functions.

4.2 Amplitude and Phase Estimation

Recall (2.2). Assuming Bk’s are sufficiently small and Ck(t) approximately represents the

kth quasi-sinusoidal component, we can write:

Ck(t) ≈ ak(t) cos(ωkt+Φk(t)).
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By taking derivative of both sides of the equation, we obtain:

d

dt
Ck(t) ≈


d

dt
ak(t)


· cos(ωkt+Φk(t))− ak(t) ·


ωk +


d

dt
Φk(t)


· sin(ωkt+Φk(t))

Since ak(t) and Φk(t) are locally constant, for small ∆t, we write:


Ck(t−∆t) ≈ ak(t) cos(ωk(t−∆t) + Φk(t))

Ck(t+∆t) ≈ ak(t) cos(ωk(t+∆t) + Φk(t))

.

As ∆t→ 0

d
dtak(t) ≈ 0, d

dtΦk(t) ≈ 0.

therefore:

Ck(t)−
j

ωk

d

dt
Ck(t) ≈ ak(t)ej(ωkt+Φk(t)).

Thus, we define Hk(t), the continuous IHA transform of x(t) as

Definition 1 (The continuous IHA transform). The continuous IHA transform of x(t) with

respect to the map function Ω is defined as:

Hk(t)
def
= e−jωkt


1− j

ωk

d

dt


Ck(t). (4.3)

where Ω(k) = ⟨ωk, Bk⟩ as specified in (2.5).

x(t) may then be fully reconstructed using:

x(t) = ℜ


k

Hk(t)e
jωkt



The magnitude of the time-varying complex function Hk(t) in (4.3) delivers the estimates

for instantaneous amplitude of the component Ck. It also presents the existence of reference
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frequency ωk in time.

4.3 Discretization

In practical applications, real signals are generally sampled and represented in the discrete

form. Therefore, the Constant-Q filtering as well as the amplitude and phase estimation

algorithms must be provided in the discrete form, as well. Various approaches have been

proposed in the literature for implementing band-pass filtering in the discrete form, most

of which are based on DFT. CQT uses STFT for applying short time windows in order

to calculate the DFT. It provides acceptable results, especially in combination with other

approaches (cf. [4, 49, 31]). We propose using a different approach by remodeling the

signal in its original continuous form. This significantly improves the estimation of the

instantaneous amplitude and phase functions in the discrete form1.

In our approach,

1. the discrete signal is initially interpolated in order to be remodeled in the continuous

form;

2. the continuous signal is then filtered and the filter outputs are generated;

3. and the result is subsequently represented in the discrete form.

For simplicity, we use the Nyquist-Shannon algorithm among other interpolation techniques.

The details are given in the following.

1The performance analysis is provided in chapter 7.
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Let x[n] represent our discrete signal. If the input signal is a perfectly pitched audio,

it can be assumed that the signal consists of a set of piece-wise quasi-sinusoidal components.

Therefore, given x[n], a sequence of numbers in the real domain, representing a sampled

signal with the sampling period T , where n is an integer and denotes the sample index, the

signal decomposition will become:

x[k] =

k

C[k, n],

where

C[k, n] = a[k, n] cos(nωkT +Φ[k, n]).

C[k, n]’s in the above equation represent the harmonic sinusoidals.

4.4 Derivation of the IHA Transform

Suppose x is band-limited and contains no frequencies higher than π/T where T represents

the sampling period. Using sampling theorem2, x can be reconstructed using the following

[76]:

x̃(t) =

+∞
m=−∞

x[m]sinc


t−mT
T


. (4.4)

It can be shown that x[m] = x̃(mT ).

To derive the IHA transform, we apply the band-pass filters represented by Bk’s on the

signal model in the continuous form. Using (4.2), the output of the ideal band bass filter

2The Shannon interpolation formula is used for simplicity, as the convolution of the sinc kernel and the
low-pass filter function is indeed a sinc function. However, one may use a more modern sampling approach.
Comprehensive overview of modern sampling theory may be found in [55, 36, 107]. The infinite latency
property of the sinc filters is addressed in section 4.5.1.
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will become:

P̃(ω, t) =

+∞
m=−∞

x[m]
ωT

π
sinc


ωt−mωT

π


,

where 0 ≤ ω ≤ π/T .

By rewriting the above equation in the discrete form (t = nT ), we will have:

P̃(ω)[n] =

+∞
m=−∞

x[m]
ωT

π
sinc


ωT

π
(m− n)


.

P̃ may also be rewritten as:

P̃(υ)[n] =
+∞

m=−∞
υsinc (υ(m− n))x[m], (4.5)

where

υ = ωT
π , 0 ≤ υ ≤ 1, (4.6)

is to be called the normalized frequency, as (4.5) is independent of T . The normalized

frequency is expressed in number of half-cycles per sample. Some authors have used the

product of the frequency and the sampling period as the normalized frequency (cf. [4]).

Definition 2 (The normalized frequency). The normalized frequency υ with respect to the

sampling period T is defined as (4.6).

By using (4.2) and (4.5), we may obtain the filter response C[k, n] as in the following3. For

simplicity, m is shifted by n.

C[k, n] =

+∞
m=−∞

x[m+ n]Fk[m],

3cf. Appendix A.1
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where

Fk[m] = υk · (1 +
λ

2
) · sinc


υk(1 +

λ

2
)m


− υk · (1−

λ

2
) · sinc


υk(1−

λ

2
)m


,

represents the discrete constant-Q filter, m ∈ Z, and υk represents the kth normalized

frequency with respect to T . Fk[m] may also be simplified as:

Fk[m] = λ · υk · sinc

λmυk
2


cos(πυkm). (4.7)

Remark 2. In case of using logarithmic centric approach as in (2.7):

Fk[m] = υk
√
γsinc (mυk

√
γ)− υk

1
√
γ
sinc


mυk

1
√
γ


.

The final step to formulate the discrete IHA transform is to implement the estimation

algorithm in the discrete form. In order to best fit C[k, n] into a piece-wise sinusoid, we

assume that a[k, n] and Φ[k, n] are locally constant. Hence, we can write:

C[k, n] ≈ a[k, n] cos(nπυk +Φ[k, n]).

By using the similar approach as in section 4.2, we can estimate the instantaneous amplitude

and phase components by using two consecutive samples, and maximizing the likelihood of

having equal amplitudes and a πυk phase lag:


C[k, n− 1] ≈ a[k, n] cos((n− 1)πυk +Φ[k, n])

C[k, n+ 1] ≈ a[k, n] cos((n+ 1)πυk +Φ[k, n])

.

By representing a[k, n] and Φ[k, n] in their phasor representation,

H[k, n] = a[k, n]ejΦ[k,n],

33



we can estimate the phasor coefficients using4:

H[k, n] ≈

 1

j


T

·D(υk, n)
−1 ·

 C[k, n− 1]

C[k, n+ 1]

,
where

D(υ, n) =

 cos(nπυ − πυ) − sin(nπυ − πυ)

cos(nπυ + πυ) − sin(nπυ + πυ)

.
By resolving D(υ, n)−1 we can simplify the result. Therefore, using the map function Ω,

we derive the discrete IHA transform of x[n], a sequence in the complex domain, as given

in the following. The definition of the map function Ω is given in (2.5).

Definition 3 (The discrete IHA transform). The discrete IHA transform of x[n] with respect

to the map function Ω is defined as:

H[k, n]
def
= e−jπυkn ·℘υk (C[k, n]) , (4.8)

where ℘ is the IHA phasor construct, as defined below:

℘υ(x[n])
def
=

j

sin 2πυ

 e−jπυ

−ejπυ


T

·

 x[n− 1]

x[n+ 1]

.

The above construction transforms the real-valued component into its instantaneous phasor

representation.

4cf. Appendix A.2
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4.5 Implementation

This section presents the implementation of constant-Q filtering based on WSFs and the

signal model in its original continuous form, which was presented in section 4.3.

4.5.1 Using a Window Function

Consider the filter equation in (4.7). Since Fk is symmetric and attenuating on both sides,

one may consider an absolute upper bound for m such that m ∈ [−Mk,Mk]. Smith [103]

showed the improvement of filter response by using windowed sync filters, among which

Blackman [103] was demonstrated to have the smoothest response:

WBlackman[m] = 0.42− 0.5 cos


π(m+Mk)

Mk


+ 0.08 cos


2π(m+Mk)

Mk


.

CQT suggests only Q number of cycles would be sufficient for the filter implementation [16]:

ω(2Mk + 1)T ≈ 2πQ.

By applying (2.8) and (4.6), Mk may be estimated by:

Mk =


2

υkλ


. (4.9)

Thus our modified filter response will be:

C̃[k, n] =

m

x[m+ n] ·Fk[m] ·Wk[m], (4.10)

where Wk[m] represents the symmetric window function5.

5Wk[m] =Wk[−m]
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4.5.2 Frequency Upper Bound

One of the key constraints in using sampling theorem is that the signal is to be band-limited.

As a result, the center frequencies υk’s are bounded, as well. For instance, in case of using

(2.6), the upper bound for υk may be obtained by6:

υk ≤
2

λ+ 2

Remark 3. In case of using logarithmic centric approach, the following inequality may be

used:

υk ≤
1
√
γ

Therefore, given υ0, the normalized global reference frequency were 0 < υ0 < 1, the upper

bounds for k, the frequency index, may be obtain by using (2.5), as in the following:

k ≤ − 1

log γ
(log υ0 + log(λ+ 2)− log 2)

Remark 4. Similarly, in case of using logarithmic centric approach, upper bound for k will

be:

k ≤ − log υ0
log γ

− 1

2

4.5.3 Frequency Lower Bound

Eq. (4.9) also indicates that the number of samples that are required for each iteration

increases as υk approaches lower frequencies. In practice, where there exists a time quantum,

one may consider an upper bound forM . Hence, the lower bound for the reference frequency

6cf. Appendix A.3
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can be derived using γυk as the frequency resolution (cf. [28]):

υk ≥
2

Mmaxλ
.

A lower bound for k may also be obtained by:

k ≥ 1

log λ
(log 2− logMmax − log υ0)− 1.

4.5.4 Unity Gain and Zero Phase Shift

Recall the decomposition scheme presented in section 4.3. In practice, both k and n are

bounded. Hence, using a window function delivers undesirable but inconsiderable noise in

the frequency response, cf. [18]. Using such windows results in amplitude loss and phase

lag. To overcome this, in order to preserve the unity gain, we may include an amplification

factor in the window function. To calculate such amplification factor, a test signal, i.e.,

cos(mπυk), m ∈ [−Mk,Mk],

may be used. Therefore, the amplification factor may be estimated using calculating the

inverse of the absolute value of the median of the output (where m = 0).

Furthermore, a similar approach may be used to overcome the phase lag issue. The

amplification factor may then be generalized into a complex number whose amplitude and

phase equate the amplification factor and the inverse phase of the median, respectively.

Therefore, the modified phasor coefficients can be rewritten as:

H[k, n] ≈ zk · e−jπυkm ·℘υk (C[k, n]) , (4.11)
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where zk represents the complex amplification factor. Since both k and n are bounded, the

filter banks produce undesirable non-zero H[k, n] for non-existing frequencies. To overcome

this, a simple threshold technique may also be used. The overall error, caused by zk’s, will

consequently be minimized.

4.5.5 The Resolution Pyramid

Using (4.9), one may minimizeM by performing the convolution in a lower resolution, where

υk is maximized. In order to perform the IHA transform in the original resolution, a linear

interpolation technique may be applied on both the amplitude and the phase, individually.

It can be shown that the latency, as calculated in the following, is constant, regardless of

the resolution in use. The latency, in here, may be interpreted as the amount of time that

the filter requires to produce unity gain response:

l =Mk ·T (4.12)

Using our approach, the number of samples is adjusted according to the frequency bin,

whereas in mCQFBB a fixed number is used [49].

4.5.6 Fast Realtime Implementation

Several papers have been published on the efficiency of the various implementations of CQT,

cf. [100]. In our approach, the real-time sliding window may be implemented by using an

Mk +1-delay component. Eq. (4.9) indicates that the number of samples that are required

for each iteration increases as υk approaches lower frequencies. We may minimize Mk by

performing the convolution operation in a lower resolution, where υk is maximized. As a
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Algorithm 1: Realtime IHA algorithm

Input: k: the frequency index,
ϵ: amplitude threshold,
x[n]: a stream of real numbers representing the input signal

Output: H[k, n]: a delayed stream of complex numbers representing the IHA
transform of x[n]

1 choose appropriate resolution pyramid based upon frequency index, as explained in
4.5.5

2 perform the M + 1-delay IHA algorithm, as specified in Alg. 2
3 perform the following filter on H[k, n]
4 foreach H[k, n] do
5 if H[k, n] ≤ ϵ then
6 H[k, n]← 0

7 perform an up-resolution operation on H[k, n], if necessary, using a linear
interpolation approach on both instantaneous amplitude and phase, individually, as
specified in 4.5.5

8 output H[k, n]

result, the phasor coefficients in the original resolution may be estimated by using a linear

interpolation technique on both the amplitude and the phase, individually. Due to the

limited number of frequencies in practice, a maximum of 8-level resolution-pyramid may be

used.

Fig. 4.1 presents the block diagram of our real-time IHA system. As illustrated, it

consists of two delay buffers, a total of M + 1 samples delay. The complexity of the above

construct in time and space is therefore O(Mn) and O(M), respectively (cf. [61, 56]).

Algorithm 1 specifies the implementation of the real-time system. The input signal x, in

this implementation, is represented by an input stream and is assumed to be zero-padded.
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x[n] down-sampler ▽ M -delay buffer ∗

1-delay buffer

℘×e−jnπυk

z[k]

l

up-sampler △ H[k, n]

×W [k,m] cos(mπυk)

Figure 4.1: Block diagram of the real-time IHA system
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Algorithm 2: The M + 1-delay fast online discrete IHA block

Input: k: the frequency index,
x[n]: a stream of real numbers representing the input signal

Output: H[k, n]: a delayed stream of complex numbers representing the IHA
transform of x[n]

1 estimate M using (4.9)
2 construct the window function W [k,m] using desired window (i.e. Blackman)
3 construct the template signal: cos(mπυk)
4 construct the filter: Fk ←W [k,m] · cos(mπυk)
5 adjust zk using the template signal and the approach specified in 4.5.4
6 input x[n] using and M -delay buffer
7 foreach x[n] do
8 calculate the filter response using (4.10)
9 estimate H[k, n] using a 1-delay buffer and the modified phasor construct in (4.11)

10 output H[k, n]

4.6 Summary

The IHA algorithm was formalized by using the decomposition scheme, presented in sec-

tion 2.2, and employing the phasor construct, specified in (4.8). The normalized frequency,

presented in the discretization section, makes the derivation independent of sampling fre-

quency. We provided a fast implementation of the IHA algorithm for being used in realtime

systems. The analysis of the algorithm will be provided in the chapter 7.
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Chapter 5

Generalization into the Multi-

Dimensional Space

This chapter contributes to the instantaneous harmonic analysis of multi-dimensional

signals. A quaternion representation is proposed to support multiple phase elements.

The space is extended into hyper-complex in order to address multiple phase elements.

Hamilton’s quaternions are the extension of complex numbers into a higher dimen-

sion [53]. They are based on one real and three imaginary components represented by three

imaginary units such as i, j, and k where i2 = j2 = k2 = ijk = −1. Using the Cayley-

Dickson construct, quaternions can also be extended into hyper-complex numbers in which

each number consists of one real and 2M − 1 imaginary components where M > 2. Quater-

nions have been widely used by many researchers and they are reported in the literature

for the processing and representation of multidimensional data such as computer graphics,

computer aided geometry and design, signal processing, etc. Whilst they were introduced in

1843 by Hamilton, they have not been applied in signal processing until recent years [99]. In
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signal processing, many quaternion applications can be found in time-frequency analysis of

multi-dimensional signals: Quaternion Fourier Transform (QFT) [99, 110], Quaternion Dis-

crete Cosine Transform (QDCT) [39], quaternion wavelets [24], and hyper-complex wavelet

transform [25].

Similar to the one-dimensional IHA algorithm, the goal of the multi-dimensional IHA

transform is to transform the real-valued multi-dimensional time-domain input signal into

a set of hyper-complex time-domain signals in such a way that the amplitude and phase

elements of the resulting signals represent the amplitude and phase elements of the signal

components. To achieve this, the space is extended into a hyper-complex in order to address

multiple phase elements.

The input signal, in our approach, is represented by a multi-dimensional real function

whereas in the literature other models have been used. For instance, QFT in [99] the signals

in the hyper-complex space. Using such model provides a transformation algorithm that

can be applied in higher dimensions. For instance, Sangwine suggests forming the hyper

-complex signal by putting the RGB color components into the hyper-complex imaginary

parts and leaving the real part with zero.

In the following sections, we will extend the IHA algorithm to address multi-dimen-

sional signals in both continuous and discrete forms. The generalization is given in four

parts: the two-dimensional continuous algorithm, the multi-dimensional continuous algo-

rithm, the two-dimensional discrete algorithm, and the multi-dimensional discrete algo-

rithm.
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5.1 Quaternion Representation

In order to construct the phasor operator in the multi-dimensional space, we suggest taking

the same approach as in section 2.4. To do so, we take the complex value a(cosφ+ j sinφ)

and extend it into quaternion space: a(cosφ1 + i sinφ1)(cosφ2 + j sinφ2) where i and j are

the 1st and the 2nd imaginary units in the quaternion space. This will result in the following

quaternion:

a cosφ1 cosφ2 + a sinφ1 cosφ2i+ a cosφ1 sinφ2j+ a sinφ1 sinφ2k

Therefore, using a above redundant construct, the tuple ⟨α, φ1, φ2⟩ may be represented by

a quaternion were α represents the amplitude and φ1, φ2 represent the phases in R2.

Definition 4 (The quaternion representation). A tuple ⟨α, φ1, φ2⟩ may be represented by a

quaternion using the following construct:

Qdef= a ·


 cos(φ1)

sin(φ1)

⊗
 cos(φ2)

sin(φ2)



T

·U2 (5.1)

where

U2 =


1 i j k

T
.

U2 represents the vector of units in the quaternion space. T and ⊗ denote the matrix

transpose and Kronecker product operations, respectively [53].

Likewise, given any arbitrary quaternion Q, it can be shown that in order for Q to be a

redundant representation, the condition e(Q) = 0 must be satisfied. e(Q) is referred to as

the eccentricity of Q and defined as the following.

Definition 5 (The eccentricity of quaternion representation). The eccentricity of a quater-
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nion H = a+ bi+ cj+ dk is defined as:

e(Q)def= |ad− bc|
max(|ad|, |bc|)

(5.2)

The quaternion representation may also be extended into the M -dimensional space,

where UM represents the vector of units in the hyper-complex space:

UM =


1 j1 · · · j2M−1

T
,

and ji designates the i
th imaginary unit in the hyper-complex space [53].

Definition 6 (The hyper-complex representation). A tuple ⟨α, φ1, · · · , φM ⟩ may be repre-

sented by a hyper-complex number using the following construct:

Qdef= a ·

 M
i=1

 cos(φ1)

j2i−1 sin(φ1)



T

·UM . (5.3)

Using the above construct, the number of redundancies becomes 2M −M − 1. As a

result, in order for Q to be a hyper-complex representation of the tuple ⟨α, φ1, · · · , φM ⟩,

the quaternion property must be satisfied for all M(M − 1)/2 combinations of every two

dimensions i, j that are used in the calculation. The vector of units may alternatively be

derived using the following construct, as well:

UM =
M
i=1

 1

j2i−1

.
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5.2 The Two-Dimensional Continuous IHA Algorithm

The two-dimensional continuous IHA algorithm is derived by extending the approach that

has been used in section 4.2 into the quaternion space and using the quaternion represen-

tation that was specified in section 5.1;

Let x(T ) be a Fourier-transformable two-dimensional time-domain continuous signal

where T = (ti) ∈ R2 represents the time vector and i represents the dimension index. Let

K = (ki) ∈ Z2 represent the reference frequency index vector, ΩK = (ωki) ∈ R+2
be the

reference frequency vector, and Bki = [ω1
ki
, ω2

ki
] be a band around ωki where ω

2
ki

and ω1
ki

represent the upper bound and lower bound of the band and 0 ≤ ω1
ki
< ωki < ω2

ki
≤ 1,

using a map function similar to (2.5)1. Similar to the approach in section 4.1, the filter

output CK(T ) may be derived as in the following:

CK(T ) = x(T ) ∗ ζ(T ), (5.4)

where ζ(T ) represents the filter function:

ζ(T ) =
1

π2

2
i=1


ω2
ki
sinc(

ω2
ki
ti

π
)− ω1

ki
sinc(

ω1
ki
ti

π
)


,

and ∗ denotes the two-dimensional convolution.

If Bki is sufficiently small, we can assume CK(T ) forms a quasi-sinusoidal, therefore:

CK(T ) ≈ aK(T ) cos(ωk1t1 +Φk1t1) cos(ωk2t2 +Φk2t2).

Thus, we define HK(T ), the IHA transform of x(T ) as the following:

1We differentiate Ω, the frequency vector, from Ω in (2.5) which represents the quantization map function

46



Definition 7 (The continuous two-dimentional IHA transform). The continuous two-di-

mentional IHA transform of x(T ) is defined as:

HK(T )
def
= ΞK{CK(T )} (5.5)

where

ΞK = U2
T .

2
i=1

(℘(ωki , ti)),

℘(ω, t) =

 cos(ωt) − sin(ωt)

− sin(ωt) − cos(ωt)

 ·
 1

1
ω
∂
∂t

 .

5.3 The Multi-Dimensional Continuous IHA Algorithm

The multi-dimensional IHA algorithm can similarly be derived by using the same approach

presented in 5.2 and extending the number of dimensions to M . The definition of the

transformation is given in the following where ΞK represents the phasor construct in M -

dimentional space. CK(T ), the filter output is derived using the approach in (5.4) where ζ

represents the filter function in the M-dimensional space:

ζ(T ) =
1

πM

M
i=1


ω2
ki
sinc(

ω2
ki
ti

π
)− ω1

ki
sinc(

ω1
ki
ti

π
)


.

Definition 8 (The continuous multi-dimentional IHA transform). The continuous multi-

dimentional IHA transform of x(T ) is defined as:

HK(T )
def
= ΞK{CK(T )} (5.6)

where

ΞK = UM
T ·

M
i=1

(℘(ωki , ti))
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℘(ω, t) =

 cos(ωt) − sin(ωt)

− sin(ωt) − cos(ωt)

 ·
 1

1
ω
∂
∂t

 ,

It can be shown that in case of M = 1, the above equation becomes (4.3)2.

5.4 The Two-Dimensional Discrete IHA Algorithm

The two-dimensional discrete IHA algorithm may be derived by using a similar approach

in section 4.3 and extending the number of dimensions to two. The derivation is given in

the following.

Let x[N ] : Z2 → R be a two-dimensional sequence of numbers in the real domain

where N = (ni) ∈ Z2 represents the sample index vector, and T = (Ti) ∈ R2 represents the

sampling period vector3, and i represents the dimension index. Using sampling theorem,

we can derive the continuous form of the signal as:

x̃(T ) =

N

x[N ] · sinc

t1 − n1T1

T1


sinc


t2 − n2T2

T2


. (5.7)

where T = (ti) ∈ R2 represents the time vector.

Let K = (ki) ∈ Z2 be the reference frequency index vector. Using similar approach

in (4.6), we derive the normalized frequency vector ΥK = (υki) ∈ R2 as:

ΥK =
1

π


ΩK

TT

, (5.8)

2cf. Appendix A.4
3T represents the sampling period vector whereas T represents the time vector in the continuous form
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where ΩK = (ωki) ∈ R+2
represents the actual reference frequency vector.

The filter output can similarly be derived as:

C[K,N ] =

Ṅ

2
i=1


υ2ki sinc


υ2ki (ṅi − ni)


− υ1ki sinc


υ1ki (ṅi − ni)


·x[Ṅ ], (5.9)

where 0 ≤ υ1ki < υki < υ2ki ≤ 1. υ2ki and υ
1
ki

represent the upper bound and lower bound

of Bki = [υ1ki , υ
2
ki
], the normalized band around υki similar to section 5.2.

If Bki is sufficiently small, we can assume C[K,N ] forms a quasi-sinusoidal, therefore:

C[K,N ] ≈ a[K,N ] cos(n1πυk1 +Φ[k1, n1]) cos(n2πυk1 +Φ[k2, n2]).

Using the 4 neighbors at N in all four directions: N, E, S, W (using the points of a compass),

we may write:



C[K,N + P 1] ≈ a[K,N ] cos((n1 − 1)πυk1 +Φ[k1, n1]) cos(n2πυk1 +Φ[k2, n2])

C[K,N + P 2] ≈ a[K,N ] cos((n1 + 1)πυk1 +Φ[k1, n1]) cos(n2πυk1 +Φ[k2, n2])

C[K,N + P 3] ≈ a[K,N ] cos(n1πυk1 +Φ[k1, n1]) cos((n2 − 1)πυk1 +Φ[k2, n2])

C[K,N + P 4] ≈ a[K,N ] cos(n1πυk1 +Φ[k1, n1]) cos((n2 + 1)πυk1 +Φ[k2, n2])

where P i is the ith column of the following matrix:

P =


−1 1


⊗

 1 0

0 1

 .

By using the quaternion representation, as described in section 5.1, and technique used in

section 4.4, we may derive the two-dimensional discrete IHA transform, as in the following:
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Definition 9 (The two-dimentional discrete IHA transform). The two-dimentional discrete

IHA transform of x[N ] is defined as:

H[K,N ]
def
= ΞK{C[K,N ]} (5.10)

where Ξ is the two-dimensional phasor construct:

ΞK(x[N ])
def
=

2
i=1

e−j2i−1πυkm ·℘υk,i (x[N ]),

℘υ,i(x[N ])
def
=

j2i−1

sin 2πυ

 e−πυj2i−1

−eπυj2i−1


T

·

 x[N + P i1 ]

x[N + P i2 ]

,

P =


−1 1


⊗

 1 0

0 1

 ,

and P i1 , P
i
2 are the first and second elements of the ith row of the matrix P .

5.5 The Multi-Dimensional Discrete IHA Algorithm

The multi-dimensional discrete IHA algorithm may be derived by using a similar approach

in section 5.4 by extending the number of dimensions to M , as specified in the following:

Definition 10 (The multi-dimentional discrete IHA transform). The multi-dimentional

discrete IHA transform of x[N ] is defined as:

H[K,N ]
def
= ΞK{C[K,N ]} (5.11)
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where Ξ is the multi-dimensional phasor construct:

ΞK(x[N ])
def
=

M
i=1

e−j2i−1πυkn ·℘υk,i (x[N ]),

℘υ,i(x[N ])
def
=

j2i−1

sin 2πυ

 e−πυj2i−1

−eπυj2i−1


T

·

 x[N + P i1 ]

x[N + P i2 ]

,
P =


−1 1


⊗ IM ,

IM represents the identity matrix in M ×M , and P i1 , P
i
2 are the first and second elements

of the ith row of the matrix P .

It can be shown that in case of M = 1, the above equation becomes (4.8)4.

5.6 Remarks

By definition, the quaternion representation is redundant. It can be shown that in order

for H in (5.10) to satisfy the quaternion representation property, the following matrix must

also satisfy the property:

Γ =



C[K,N + P 1]

C[K,N + P 2]

C[K,N + P 3]

C[K,N + P 4]


.

This cannot generally be satisfied. Thus one may apply a normalization operation on Γ

before using it in (5.10). However, for simplicity, this can be bypassed due to the special

interest in estimating the instantaneous amplitude. Both approaches yet provide acceptable

4cf. Appendix A.5
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results. Similar approach may be used in the M -dimensional case. The statement may

be generalized into the multi-dimensional space, in which case the quaternion property is

applied on all M(M −1)/2 combinations of every two dimensions i, j, which are used in the

calculations of ℘υ,i(x[N ]) and ℘υ,j(x[N ]), as specified in (5.11).

Although the IHA transform outperforms the QFT approach in terms of providing

the instantaneous amplitude and phase elements, the IHA algorithm cannot be used for

the multi-channel signals unless each channel is processed individually. The IHA transform

is quite similar to the quaternion wavelet transform in [24] in terms of using a redundant

representation. Our approach, however, outperforms the latter in terms of estimating the

instantaneous amplitude of the signal vs. the oscillating wavelet response. And finally, the

time complexity of the algorithm may be reduced by utilizing symmetric property of the

matrices.
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Chapter 6

Generalization of IHA Algorithm

for Multiple Fundamental

Frequency Estimation

This chapter contributes to the generalization of the IHA algorithm by utilizing a com-

posite kernel. The generalized IHA algorithm contributes to the MFFE process. A

bottom-up overtone elimination approach is proposed by utilizing the representation of

the kernel function by a sequence of complex values. The generalized IHA algorithm

forms the core of our audio-to-MIDI system, which will be specified in chapter 8.

In this chapter, we generalize the IHA transform that was specified in chapter 4, by

utilizing a composite kernel function. Considering IHA to provide the instantaneous pure

components of the input signal, the generalized IHA estimates the instantaneous amplitude

and phase elements of the components based upon a generalized kernel function. Such

generalization makes it possible to use IHA in an MFFE process, where a multi-pitch
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analysis is required for detecting multiple fundamental frequencies.

To overcome the harmonic collisions, several approaches may be used. Recently, Chen

and Liu used a modified harmonic product spectrum technique by calculating the magnitude

of the STFT for all the integer harmonics [26]. We propose using a bottom-up approach

in order to eliminate the overtones, as follows. In our model, the timbre is modeled by

a set of complex numbers, representing the amplification and phase lag of the subsequent

overtones, generated from the fundamental tone. Thus, starting from the lowest frequency,

the overtones are estimated and subsequently removed from the higher frequencies. Our

approach is sensitive to the fundamental frequencies while in [26] a product of the magnitude

of all integer harmonics is used.

In the following sections, the derivation of the generalized IHA algorithm by specifying

the properties of the kernel function and the constraints that are used in the decomposition

scheme is provided.

6.1 Overview

The IHA transform provides a decomposition framework for transforming an arbitrary signal

into a set of pure sinusoidals, given a set of reference frequencies. In here, we generalize the

kernel function ejt in (2.10), into a generic periodic function such that the input signal can

be decomposed into a set of composite components. Hence, the objective of the algorithm

is to generalize the kernel function ejt into a set of generic periodic functions ψ(t) such that

it can be used in the following decomposition scheme:

x(t) = ℜ{

k

Hk(t)ψA(ωkt)}+ r(t), (6.1)
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where ψA(t) denotes the analytical form of ψ(t):

ψA(t) = ψ(t) + j ·H{ψ(t)},

H denotes the Hilbert transform, and r(t) represents a residual signal.

6.2 Kernel Properties

Let ψ(t) : R→ R be an arbitrary Fourier tranformable smooth periodic function in R with

the following properties:

ψ(t) = ψ(t+ 2π), (6.2) π

−π
ψ(t)dt = 0.

Remark 5. The period value 2π is chosen for simplicity. It does not impose any restriction

on the algorithm. A rescaling operation may be applied to any given kernel to achieve a 2π

period.

Using the theory of Fourier series, we can show that the kernel function may alternatively

be derived by:

ψ(t) =
1√
2π

+∞
k=−∞

·Ψke
jkt

where Ψk represents the kth coefficient and is obtained by:

Ψk =
1√
2π

 π

−π
ψ(t)e−jktdt.

It must be noted that Ψ0 = 0 and Ψk = Ψ̄−k, where Ψ̄k represents the complex conjugate of

Ψk. Hence the kernel function ψ(t) can be represented by a sequence of complex coefficients,
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as the following:

(Ψk)
∞
k=1 .

6.3 Estimating the Kernel Function

Estimating the Kernel function from a sampled wave-form is a straightforward practice, as

kernels are represented by a series of complex coefficients Ψk, where k ∈ N. In practice, the

input wave-form is band-limited, and therefore, there exist an upper bound for k such that

k ≤ kmax.

Let ψ[k] represent sampled wave-form of the kernel ψ(t) with frequency f and sam-

pling frequency fs where fs ∈ N. Using sampling theorem, we can write:

ψ(2πft) =
+∞

m=−∞
ψ[m]sinc (fst−m) (6.3)

Since ψ is periodic, using (6.2), we can obtain:

ψ[m] = ψ(
2πm

M
), (6.4)

where m ∈ [0,M ], M ∈ N, and M = fs
f .

For simplicity, f is assumed to be is a divisor of the sampling frequency. In general, a simple

interpolation technique may be applied by virtually choosing a new sampling frequency as:

fsnew = gcd(fsold, f),

where gcd represents the greatest common divisor.
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Using (6.4), and by applying Fourier transform on both sides of (6.3), we obtain:

F{ψ(2πft)} = 1√
2π

+∞
n=−∞

M−1
m=0

1

fs
ψ[m]e

−j(nM+m)ω
fs , (6.5)

where 0 ≤ ω ≤ πfs.

Using (6.2), we can also derive the Fourier transform of ψ:

F{ψ(2πft)} =
√
2π

+∞
k=−∞

Ψk · δ(ω − 2πfk), (6.6)

where 1 ≤ k ≤ M
2 .

By equating (6.5) and (6.6), and using the limit theorem on ω → 2πfk, we can estimate

Ψk by:

Ψk =
2

M

M
m=1

ψ[m] · e
−j2πmk

M . (6.7)

The existence of inharmonicity in real audio signals makes the kernel estimation pro-

cess difficult. Inharmonicity is the measure to which the frequencies of the overtones do not

equate the integer multiples of the fundamental frequency. String instruments, for instance,

are known to produce imperfect harmonic tones. To overcome the inharmonicity issue, we

use a regression-based estimation algorithm, as specified in Alg. 3.

Although perfect harmonics are desirable, inharmonic sounds are not necessarily un-

pleasant. Among musicians, inhamonicity is sometimes referred to as the warmth property

of the sound. The topic has been researched in the audio processing field, especially in

sound synthesis [64].
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Algorithm 3: Kernel estimation using regression

Input: x[n]: a stream of real numbers, representing the sample wave
M : number of coefficients to estimate

Output: (Ψk): kernel function represented by a sequence of complex coefficients
1 estimate υ0, the normalized fundamental frequency of x[n]
2 set qk ← arg

n
(υ[n], kυ0),∀k ∈ [1,M ] /* overtone indices */

3 calculate H[qk, n], the IHA algorithm of x[n], for k ∈ [1,M ]
4 set X ← {H[q1, n], |H[q1, n]| ≥ α}
5 set Y ← {H[qk, n], k ∈ [2,M ], |H[q1, n]| ≥ α} /* n corresponds the elements in

X */

6 estimate ⟨A,Θ⟩ by applying a linear regression on |X|, |Y | and ∠X,∠Y , respectively.
7 estimate Ψk’s using

Ψk =


1 k = 1

Ake
jθk k > 1

8 output (Ψk)

6.4 On the Decomposition Scheme

The Fourier transform is an integral transform that uses an orthonormal kernel: ejt [48].

An integral transform may generally be represented by:

X(ω) =

 t2

t1

x(t)ξ∗(ω, t)dt,

which delivers the following decomposition scheme:

x(t) =

 ω2

ω1

X(ω)ξ(ω, t)dω,

where ξ represents the decomposition kernel function, associated with an forward kernel

ξ∗1. In Fourier transform, ξ(ω, t) is set to ejωt. Our decomposition scheme suggests using

ξ(ω, t) = ψ(ωt), cf. (6.1). Such a kernel, however, does not provide an orthornormal

basis for the integral transformation, mainly for the reason that the solution to the integral

1In some texts, ξ∗ is referred to as the kernel and ξ is identified as the reverse kernel.
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transformation does not exist2.

Several papers have been published in the literature to find an orthonormal basis for

using composite kernels. The wavelet transform, for instance, suggests using two variables,

and therefore, provides a two-dimensional transform. The main reasons behind the diver-

gence of the integral transform, using the kernel ψ(ωt), is that the residual error from the

lower frequencies is propagated and accumulated in the higher frequencies. For that reason,

we proposed the residual function r(t) in 6.1. The solution is derived in the following.

6.5 The Generalized Discrete IHA Algorithm

The generalized discrete IHA algorithm forms the basis of our MFFE process. Using the

harmonic structures [26], it delivers a timbral analysis of input signal where a multi-pith

estimation is performed. The algorithm uses the harmonic structure, provided by the IHA

core, and transforms them into multi-pitch estimation. The algorithm is based upon the idea

behind the integral transformation, presented in section 6.4, with regards to the following

suppositions:

1. The discrete IHA delivers the instantaneous complex coefficients;

2. We interpret the presence of the wave by examining the lower frequency and its

2The problem may be defined as finding J {x(t), ψ} such that it satisfies:

xA(t) =

 ∞

0+
J {x(t), ψ}(ω) ·ψA(ωt)dω.

By applying a Fourier transform on both sides of the equation, it can be shown that the following recursive
definition, which represents the solution to the integral, does not converge [108]:

J {x(t), ψ}(ω) = 1

Ψ1


1

2
F{xA(t)}(ω)−

∞
k=2

Ψk · J {x(t), ψ}(ω
k
)


.
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Algorithm 4: Generalized discrete IHA algorithm

Input: x[n]: a stream of real numbers, representing the input signal
k0: starting frequency index,
kmax: ending frequency index,
(Ψi): kernel function represented by a sequence of complex coefficients,
M : number of kernel coefficients

Output: J[k, n]: a stream of complex numbers, representing the generalized
discrete IHA,
r[n]: a stream of real numbers, representing the residual signal

1 quantize the frequency axis and store the normalized frequency values in υ[k]
2 set r[n]← x[n] /* residual signal */

3 for k ∈ [k0, kmax] do
// number of overtones

4 set M ′ ← min(argmax
i

(i|∀i ∈ [1,M ], iυ[k] < υ[kmax]),M)

// overtone indices

5 set qi ← arg
n
(υ[n], iυ[k]),∀i ∈ [1,M ′] /* arg

n
(x[n], α) := {n|∀n : x[n] = α} */

6 foreach qi do
7 calculate H[qi, n], using the IHA transform of r[n]

8 estimate a[k, n] = min
H[qi,n]

Ψi

, ∀qi
9 estimate φ[k, n] = ∠H[k, n]− ∠Ψ1

10 set J[k, n]← a[n] · ejφ[k,n]
11 output J[k, n]

12 set r[n]← r[n]−
M ′

i=1 a[k, n] ·Φi · ejiφ[k,n]

13 output r[n]

overtones, by matching them against the kernel coefficients; and

3. Since, in practice, the input signal is band-limited, a limited number of coefficients is

required for overtone estimation.

By taking the above into consideration, we proposed using a bottom-up overtone elimination

approach for estimating the instantaneous complex coefficients. Algorithm 4 presents our

generalized IHA algorithm, which implements our MFFE process.

Our algorithm delivers a decomposition algorithm using a composite kernel. Shahnaz

et al. provided a pitch estimation based on harmonic sinusoidal autocorrelation model sim-

60



ilar to our decomposition scheme in 2.2 [101]. Our approach delivers multi-pitch estimation

using composite kernels, which resembles the mother wave in wavelet transform. Also, Ding

et al. provided a pitch estimation using Harmonic Product Spectrum (HPS) [33]. The au-

thors used HPS as the product of spectral frames for constant number of overtones. Chen

and Liu utilized a modified HPS for multi-pith estimation [26]. Our method uses the kernel

coefficients Ψk’s in calculating the overtones.

6.6 Summary

We presented a signal decomposition algorithm using composite kernels. We used the

harmonic structure delivered by the IHA core and transformed them into multi-pitch infor-

mation. A bottom-up overtone reconstruction and elimination process was carried out for

the MFFE process. This forms the core of our audio-to-MIDI system, which is specified in

the chapter 8.
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Chapter 7

Performance Analysis

This chapter presents the performance analysis of the presented IHA algorithm. A

new relation between CQT and WSFs is provided, in here. It is shown that CQT

can alternatively be implemented by applying a series of logarithmically scaled WSFs

while its window function is adjusted, accordingly. Both approaches yet provide a

short-time cross-correlation measure between the input signal and the corresponding

pure sinusoidal kernels whose frequencies are equal to the center of the filter band.

It is shown that the IHA phasor construct significantly improves the instantaneous

amplitudes estimation.

WSFs have been extensively used in the literature [103]. Both CQT andWSFs provide

a decomposition scheme based on a set of reference frequencies (cf. invertible CQT [56] and

the WSF decomposition, presented in section 4.5). In this chapter, we present a new relation

between CQT and WSFs. The derivation of the relation as well as the performance analysis

of our IHA algorithm are given in the following sections.
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7.1 The Relation between CQT and WSF

We derive the relation between CQT and WSF by deriving a sliding version of CQT, by

using a delay operation [49]. The details are given in the following.

7.1.1 Deriving the Relation

Recall that the formal definition of CQT is given in a form of STFT, as presented in (2.1).

The sliding version of CQT may be formalized by using the following two assumptions:

1. x is zero padded;

2. and the STFT window is centered at n.

Thus:

X[k, n] =
1

N [k]

N [k]−1
m=0

W [k,m] · e
−j2πQm

N [k] ·x[m+ n− N [k]− 1

2
].

It must be noted that, by definition, N [k] is an odd number. Therefore, by substituting

N [k] with 2MK + 1, shifting m by −Mk, and also substituting

2Q

2Mk + 1

with υk using (4.6), we will have:

X[k, n] =
(−1)Q

2Mk + 1

Mk
m=−Mk

e−jπυkm ·x[m+ n] ·W [k,m+Mk].
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Without losing generality, we can rewrite the window W [k,m +Mk] as W [k,m], where m

is shifted by Mk. Therefore,

X[k, n] = ξ


x, ejπυkm,

(−1)Q

2Mk + 1
·Wk[m]


, (7.1)

where ξ denotes the windowed cross-correlation, as defined in the following:

ξ(x, τ,W ) =
M

m=−M
x[n−m] · τ [m] ·W [m], (7.2)

and W is a symmetric window with 2M + 1 samples in length.

Corollary 1. Eq. (7.1) suggests that CQT is equivalent to the cross correlation of the

input signal with the sinusoidal kernel cos(πυkm) in its analytical form within the following

window:

(−1)Q

2Mk + 1
·Wk[m].

Similarly, (4.10) can be derived by means of the above cross-correlation. By choosing:

Mk =
2

λυk
,

we may derive C[k, n] as:

C[k, n] = ξ


x, cos(πυkm),

2

Mk
sinc


m

Mk


·Wk[m]


. (7.3)

Thereby:

Corollary 2. We interpret (7.3) as the cross-correlation of the input signal with the sinu-

soidal kernel cos(πυkm) within the window:

2

Mk
sinc


m

Mk


·Wk[m].
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Hence, by comparing (7.1) and (7.3), it can be deduced that:

Corollary 3. CQT is the equivalent of performing a series of WSF whose bandwidths

correspond to (2.6), where

λ =
2

Q
,

and the window function is adjusted by the following:

Wsinc[m] = (−1)Q ·

4Mk + 2

Mk


· sinc


m

Mk


·WCQT[m].

By assuming that Q is generally an even number, and Mk is also considerably large, the

above adjustment may be simplified as:

Wsinc[m] = 4sinc


m

Mk


·WCQT[m]. (7.4)

Corollary 4. CQT and WSF can interchangeably be used as both provide a cross-correlation

measure of the function with a sinusoidal kernel.

7.1.2 Interpretation

The decomposition scheme presented in section 2.2 makes it possible to perform an IHA

of the input signal. This was achieved by estimating the complex values H[k, n]’s which

designate the phasor representation of the instantaneous amplitude and phase lag of the

signal’s constituent components. Both CQT and our presented WSF provide instantaneous

complex values, which can be used in such estimation.

One interesting property of CQT’s complex kernel e−jπυkm is that the magnitude

of the resulting transformation can be interpreted as a representation for instantaneous
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amplitudes of the corresponding components. At first glance, it may seem that the WSF

approach lacks such a property. However, to resolve this, one may simply substitute the

cos(πυkm) kernel with its analytical form:

τ [m] = e−jπυkm,

without changing the relation. Such WSF will be equivalent to performing the filters on

the analytical form of the input signal using Hilbert transform. Since we demonstrated

the sliding CQT could be derived by means of WSF, an invertible CQT is achievable, and

thereby, a reconstruction algorithm may be used, cf. (2.10).

Fig. 7.1 presents a sample output of the IHA algorithms using flat and Blackman

windows in 7.1(a) and 7.1(b), respectively. A single-component piece-wise sinusoidal with

unit amplitude and frequency of 880 Hz has been used. The sampling frequency were also

44 kHz. In order to condense the temporal window as much as possible, γ = 2 was used.

Table 7.1 summarizes the overall instantaneous amplitude estimation rate. The overall rate

has been estimated by averaging the absolute values of distances between estimated and

actual amplitudes. The ratio of the signal length over latency, as well as the latency itself

were 2.20 and 2.30× 10−3, respectively. In this particular example, IHA delivered a stabi-

lized estimate even though the underlying filtering algorithm provided unstable oscillating

response, cf. WSF-IHA flat vs. WSF Blackman.

In Fig. 7.2, a sample output for a two-component input signal using a semi-tone

bandwidth and Blackman Window has been demonstrated. The details are given in Table

7.2, correspondingly. In both examples, it is shown that using the combination of WSF and

IHA not only maximizes the estimation rate, but also minimizes the overall reconstruction

error.
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Figure 7.1: Sample output of CQT vs. WSF and IHA
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Figure 7.2: Sample output of two-component signal using a semitone bandwidth
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Method
Overall Estimation Rate

flat-window Blackman-window

Amp. Rec. Amp. Rec.

CQT 88.20 87.24 46.28 65.54

WSF 83.12 86.00 76.73 83.52

CQT+IHA* 88.26 87.24 46.30 65.54

WSF+IHA* 83.28 86.00 76.78 83.52

CQT+IHA 88.11 89.68 93.06 95.68

WSF+IHA 92.03 95.01 94.18 96.39

Amp. amplitude response

Rec. signal reconstruction

* not using eq. (4.11)

Table 7.1: Overall estimation rate for instantaneous amplitude and full signal reconstruction
of a sample signal using CQT, WSF and IHA.

Method
Overall Estimation Rate

Amp.
Rec.

C1 C2 C1 + C2

CQT 60.75 63.36 55.20 53.78

WSF 79.55 83.07 81.31 82.46

CQT+IHA 88.18 93.31 87.41 92.03

WSF+IHA 90.02 94.25 89.26 93.45

Table 7.2: Overall estimation rate for instantaneous amplitude and full signal reconstruction
of a two-component signal

Although CQT was originally defined by means of STFT [16], a number of versions

of it have been used in the literature. For instance, Graziosi et al. utilized a sliding filter

bank approach to calculate the CQT [49] while Holighaus et al. [56] proposed using a sliced

version. In their approach the input signal is uniformly sliced and consequently converted

into a set of atom coefficients. Since those coefficients can form a matrix, they proposed

obtaining the reconstructed signal using a pseudo-inverse approach.

Such matrix representation seems to be highly efficient for signal registration and

compression. Nagathil and Martin,for instance, provided an optimal signal reconstruction

69



from constant-Q spectrum [84]. However, depending on the application, other representa-

tion schemes may be also used. For example, in melody extraction, one major concern is

the detection of on-set/off-set events, which can be achieved by processing an instantaneous

amplitude response. In such a model, whether a linear centric or a logarithmic centric ap-

proach is used, the sliding transformation is always invertible (cf. (2.6) and (2.7)). The

window function, however, produces an small noise, cf. [103].

7.2 Relation to Wavelets

An interesting property of logarithmic quantization is that the resulting filter outputs inherit

wavelet properties. For instance, in case of octave bandwidth (λ = 2), the filter output

simulates a quasi-Shannon wavelet:

Ck(t) =
1

π


ωk

π
√
2
·WTψ(Sha){x}


π
√
2

ωk
, t


. (7.5)

In the above equation, WTψ(Sha){x} represents the continuous wavelet transform of x

using Shannon wavelet [75] with

π
√
2

ωk
, t,

as the scale and translational values, respectively. Choosing a lower value for λ results

in a higher Q factor and therefore provides rational dilation wavelets [9]. Although the

wavelet output is rescaled by a factor of
√
ωk, both approaches provide full reconstruction

algorithms.

Although ωk’s are logarithmically scaled, (2.6) shows that they are yet linearly cen-

tered within the bands. This poses certain restrictions in practice, especially in music

analysis, where the border frequencies are also desired to be logarithmically scaled, i.e.
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(2.7). The border frequencies are referred to the upper-bound and the lower-bound of Bk.

CQT suggests that Q is integer. However, in order to have side-by-side bandwidths, a

real-valued Q must be used in general. Moreover, a lower bound for Q may also be derived

as Q > 1, due to the fact that in case Q = 1, the quantization of the frequency axis by non-

overlapping frequency bands is not possible, as the minimal frequencies of all Bk’s approach

zero.

Fig. 7.3 demonstrates the distance between the center frequency and the upper and

lower border frequencies in form of musical intervals. As illustrated, for lower values of

Q, the difference between the minimal and maximal frequencies is considerably large (i.e.

octave vs. perfect fifth, at Q = 2). However, as Q approaches 34, both values merge into

a semitone, which makes the filter banks suitable for a 12-equal temperament system im-

plementation [7]. Therefore, for Q > 34, the two linear-and logarithmic-centric approaches

merge (cf. (2.7), (2.6)).
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Figure 7.3: Lower-limit vs. upper-limit intervals of various Q’s
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7.3 Simulations

The performance analysis of the CQT in (7.1) against WSF with and without using window

functions is provided here. A Blackman window is used in this comparison. We apply the

IHA phasor construct on the real-part of the CQT output as well as the WSF approach.

The details are given in the following.

In order to evaluate the relation in (7.4), we examined the performance of the CQT

in (7.1) against WSF with and without using window functions. A Blackman window was

used in the experiment. We also applied our phasor construct on the real-part of the CQT

output as well as the WSF approach for the instantaneous harmonic analysis. The details

are given in the following.

In the simulations, we used two sets of synthetic data as well as one set of mid-range

real-audio. We applied the algorithms on the frequency range between 110 and 1, 760Hz

with semitone steps, resulting in full four octaves. Both CQT and WST using Blackman

window along with IHA were applied to the data sets.

We calculated the overall amplitude estimation success rate for the two synthetic data

sets with respect to the actual amplitudes. The threshold value, as explained in section 4.5.4,

was set to one-tenth of the maximum amplitude and was applied to all four methods. The

following formula was used for calculating the success rate:

rate = 100×


1− 1

N


k,n

|a[k,n]−ã[k,n]|
a[k,n]


, a[k, n] ̸= 0,

where a and ã denote the actual and estimated amplitudes, respectively. The summary of

the results is given in table 7.3.
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Method
Overall Estimation Rate
DS1 DS2

CQT 43.51 31.87

WSF 70.35 51.26

CQT+IHA 79.87 55.69

WSF+IHA 82.28 57.75

Table 7.3: Overall estimation rate on synthetic data

In the case of real audio data, since the actual amplitudes were unknown, we calculated

the reconstruction rate, using a weighted averaging method as given in the following:

rate = 100×

1−


n
|x[n]− x̃[n]| · |xA[n]|

max(|xA[n]|) ·

n
|xA[n]|

 ,

where x, x̃, and xA denote the original, estimated, and analytical signals, respectively. In

our experiment we modified the signals by applying a low pass filter in order to eliminate

the frequencies above 1, 760Hz. The results are shown in table 7.4.

Method
Overall Estimation Rate

DS3*

CQT 86.47

WSF 89.72

CQT+IHA 90.03

WSF+IHA 90.27

* modified

Table 7.4: Overall reconstruction rate on real audio signals

Tables 7.3 and 7.4 demonstrate that WSF, in general, outperformed CQT in both

amplitude estimation as well as signal reconstruction. The combination of IHA and WSF

significantly improves the amplitude estimation and reduces the overall reconstruction error.
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7.4 Summary

A new relation between CQT and WSF in the presented continuous model was provided.

The invertibility of our IHA was discussed. We demonstrated that the performance of CQT

can be enhanced by adjusting its window function, as specified in (7.4). Our simulation

results supported the theory. In the following chapters we examine the applicability of the

IHA algorithm for improving the MFFE and note on-set/off-set detection processes.
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Chapter 8

The Transcription System

This chapter contributes to the post-processing algorithms, used in the proposed tran-

scription system. The output of the MFFE process using the generalized IHA algorithm

is translated into note on-set/off-set events. The specification of our proposed audio-to

-MIDI system as well as the note event representation, used in the simulation, are also

discussed here.

The music transcription in this thesis is defined as a process of analyzing audio signals

in order to detect on-set/off-set events of the notes, in form of an audio-to-MIDI practice.

Percussion analysis or processing of musical accidentals is not included (cf. [71, 10]). Our

proposed transcription system is built on top of the generalized IHA transform, which was

presented in the previous chapters. It is based upon the note events modeling, which is

specified in the following.

In the following sections, an overview of the note events modeling is given; an equiv-

alent matrix representation is provided; the proposed transcription system is specified; the
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MFFE process is reviewed; and the post-processing algorithms for extracting the note events

are provided. The simulation results are provided.

8.1 An Overview of Note Events Modeling

The music notations deliver three primary pieces of information: beat information, note

events, and instrumentation:

1. the beat information specifies how the note events are translated in time;

2. the note events provide the information about note on-sets and off-sets;

3. and the instrumentation represents the information about the tone color, also known

as timbre.

Given the beat information, a piece of music may be encoded using a set of tuples, as

specified in the following. Coding and synthesis of articulations are out of the scope of our

discussion.

One important characteristic of the MIDI format is that the MIDI data is represented

in time rather than beats. Therefore, we exclude the beat information from the note event

representation. Hence, we use a set of 5-tuples ⟨i, n, v, ton, toff⟩ where i represents the

instrument index, n represents the note index, v represents the loudness, ton represents the

on-set, and toff represents the off-set. The note index is associated with a fundamental

frequency. The loudness factor in the MIDI context is also referred to as the velocity [81].

In some context, toff is substituted with note duration. Translating such representation

into MIDI format is a straightforward process. Each tuple is translated into two individual
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MIDI events: one for on-set and one for off-set [81]. Our audio-to-MIDI system is based

upon this representation.

8.2 Matrix Representation

For the MFFE process, we used a quantized time model, as follows. In our model, the time

axis is quantized into a set of time intervals, each of which covers a beat resolution. As

a result, each individual instrument channel is encoded using a melody matrix where each

row represents a tone whereas each column represents a discrete time. A non-zero element

indicates an on-set whereas the consequent zero element within the same row indicates the

corresponding off-set.

Figure 8.1 illustrates a sample melody matrix in crotchet [46] beat resolution using

the A440 just-intonation system [7]. As illustrated, the melody is represented by matrix

M , with respect to the reference frequency matrix F , corresponding to the notes: A, C#,

E, G, and A+8va, and A-8va. Each row in matrix M corresponds to a particular note

and each column represents a crotchet beat. For instance, row 1 corresponds to the note A

(i.e. the leftmost note, fourth note, etc. on the staff lines), row 2 corresponds to C#, etc.

For simplicity, only five reference frequencies have been shown whereas in the simulation

the full range (an 88-row) matrix is used.

M =


100100000111111
010110001001111
001011010011111
000001000001111
000000100000111

 F =


1

5/4
3/2
7/4
2

 · 440 Hz

Figure 8.1: A sample melody matrix in crotchet beat resolution
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In general, the beat resolution for coding is set to a 1/2 of the beat resolution used in

the transcription. Beat resolution is normally chosen depending on the desired transcription

assurance.

8.3 The Proposed Transcription System

Figure 8.2 illustrates the block diagram of our proposed transcription system. To extract

the note events from the audio input, we apply the generalized IHA algorithm on the input

signal. The instantaneous amplitude for each frequency index is interpreted as the presence

of the tone in time. Therefore, a post-processing algorithm is performed to translate the

instantaneous amplitudes into note events.

As illustrated, the transcription system is implemented in two phases. Phase I pro-

duces the raw output by applying the IHA transform on the input signal. The output of

the IHA block consists of the harmonic sinusoidals and their overtones. The raw output is

then fed into Phase II for the MFFE process. By using the timbral data captured by an

offline process, the generalized IHA transforms the raw output into a set of sequences of

complex coefficients, representing the notes.

Phase I is implemented by applying Algorithms 1 and 2, as presented in chapter 4.

The Offline Phase is implemented by using Algorithm 3, as given in the previous chapter.

The generalized IHA block in phase II delivers the MFFE using Algorithm 4. In our model,

each instrument is represented by a sequence of kernel coefficients.

In order to translate the complex coefficients into note events a down-sampler is used.

We use a gradient operation to detect the on-set/off-set events. To increase the efficiency
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on-set/off-set
detection

MIDI
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MIDI output �

Figure 8.2: Block diagram of the proposed transcription system

of the note events detection, we apply the gradient operation in a lower resolution. Using

this, the time complexity of the process is also reduced. The time resolution is reduced into

beat quantum. The note events are then translated and consequently represented in MIDI

format. The details are given in the following sections.
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8.4 The MFFE Process

We perform the MFFE analysis by applying Algorithm 4 on the input signal using (Ψk)i,

representing the ith instrument from the timbre bank, where k denotes the coefficient index.

Klapuri [70] proposed two different iterative spectral subtraction systems for MFFE. He took

advantage of prime number harmonics to detect the fundamental frequencies. In IHA, we

use the harmonic relations by sweeping the frequency bins from lower frequencies to the top.

For a fundamental frequency to exist, the IHA amplitude for the fundamental frequency

and its overtones must co-exist.

Figures 8.3(a), 8.3(b) illustrate the output of the algorithm for the sample melody in

Figure 8.1 using zero and two overtones, respectively. Figure 8.3(b) demonstrates the har-

monic collusion caused by non-prime overtones. The output of the Algorithm 4 is provided

in Figure 8.3(c) where the effect of the harmonic collisions on the estimated fundamental

frequencies is highlighted.

Figure 8.3(a) was generated from the output of the IHA for the twelve semitones in the

octave between A and A+8va. Figure 8.3(b) demonstrates the output of the IHA for

three octaves, covering two overtones, and figure 8.3(c) demonstrates the output of the

Algorithm 4 for the first octave. The output of the algorithm outside the range was zero

and not included in the image.

8.5 Extracting the Note Events

Extracting the note events is performed by scanning the output of the generalized IHA for

note on-set/off-set events. Before processing the IHA output, one may perform an inverse-
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(a) no overtone

(b) two overtones

(c) output the generalized IHA

Figure 8.3: The output the IHA algorithm on the sample melody in Fig. 8.1

weighting operation to equalize the frequency outputs. Frequency weighting is an operation

for measurement of the sound loudness [3]. Figure 8.4 illustrates various weighting curves

relative to 1 kHz, as defined by ANSI [3].

To identify the note events, we perform a down-sampling operation on the output

of the generalized IHA algorithm, to transform the output into beat quantum. The down

sampling is applied on the magnitude of the generalized IHA. A threshold / mapping tech-

nique is then applied to transform the real data into a 128-level gray-scale, depending on

the type of desired MIDI output1. A gradient operation is consequently applied on the gray

-scale data, for detecting the on-sets and off-sets. The details are given in Algorithm 5.

1In most transcription systems a binary-level MIDI velocity is used.
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Figure 8.4: Different weighting curves relative to 1 kHz

8.6 Simulations

The performance of the generalized IHA algorithm has also been examined by applying

the algorithm on three sets of synthesized signals, as explained in the following. Using the

tempo information and given a desired beat resolution, a melody matrix was generated for

each input MIDI where each row designated the presence of a particular note in time and

each column represented a unit time interval in beat resolution, as specified in 8.2.

The synthesized wave files were then generated by using the input matrices and a set

of pure sinusoidals corresponding to each tone and its overtones. In our experiment three

versions were generated by applying pure-harmonic, one-overtone, and two-overtone timbre

banks. The accuracy of the note detection process has been determined by applying the

same coding process on the output signals. The accuracy rate was calculated using the F -
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measure:

a =
2TP

2TP +HD
× 100,

where TP represents the total number of matching 1s between the input and output matrices

and HD represents the Hamming distance between the two.

Five different MIDI data sets have been used in our experiment, as in the following.

DS1: treble-range, DS2: easy full-range, DS3: four-part choral, DS4: full-range piano, and

DS5: full-range multi instrument. The details of the datasets are provided in Appendix B.

The MIDI parts were extracted and synthesized using three timbre banks. The data items

were created by splitting the original files into five-measure segments. The accidentals were

not used during the synthesizing process. The algorithm was applied to individual segments

and the overall accuracy was calculated for each data set. In our experiment a maximum

of two overtones was used. The result is listed in table 8.1. Notes below C3 were not used

in the simulation.

Accuracy AP 0-overtone 1-overtone 2-overtone

DS1 1.9 99.5 98.3 97.2

DS2 2.7 99.8 98.8 98.3

DS3 4.0 99.4 97.8 97.8

DS4 2.6 91.1 88.0 78.6

DS5 3.2 81.3 76.8 72.5

AP Average Polyphony

Table 8.1: Overall AMT Simulation Results

In the above table, the melody matrix was used as the ground truth. Our accuracy

measurement supports the Music Information Retrieval Evaluation eXchange (MIREX)

specification [83]. MIREX specifications define the accuracy of note event detection as the

following:

1. The onset is detected within a ±50 ms range of a ground-truth onset
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2. and the detected F0 is within a quarter tone of the ground-truth pitch

8.7 Summary

The applicability of the generalized IHA algorithm in MFFE and note event modeling

was demonstrated. An audio-to-MIDI transcription system based on generalized IHA was

presented.

While the transcription output seems satisfactory for mid-range and slow pieces (DS1

-3), our simulation shows that the accuracy has been decreased by 25% in the case of using

full-range data. Such errors occur mainly for the following reasons: the response latency

associated with the low frequencies, the difference between the responses from the funda-

mental tone and the overtones, and the harmonic collision. The existence of inharmonicity

in real audio signals, where the frequencies of the overtones do not follow the integer mul-

tiples of the fundamental frequency, makes the transcription process rather difficult.
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Algorithm 5: Algorithm for generating note events

Input: i: instrument index,
τ : tempo (in crotchets per minute),
u: beat resolution (in whole note unit),
T : sampling frequency,
J[k, n]: a stream of complex numbers, representing the generalized discrete
IHA
k0: starting frequency index,
kmax: ending frequency index,
ϵ: amplitude threshold

Output: e: collection of ⟨b, k, l⟩ representing the note events where b ∈ N, k ∈ Z,
and l ∈ N represent the beat index, the note index, and the velocity level.
(l = 0 denotes off-set)

1 construct the melody matrix M by performing a down-resolution on every row of J
using the ratio r, where J[k, n] ≥ ϵ where

r =


1

T


:
 τ

240u


2 set e← {}
3 M ←M : mi,j ≥ ϵ /* eliminate the noisy output */

4 O ← sgn(mi,j −mi,j−1) where sgn represent the signum function /* on-set */

5 F ← sgn(mi,j+1 −mi,j) /* off-set, in binary level */

6 for k ∈ [k0, kmax] do
7 for b ∈ [0, bmax] do
8 if Ok,n ≥ 0 then
9 add ⟨b, k,Ok,n⟩ to e

10 if Fk,n ≤ 0 then
11 add ⟨b, k, 0⟩ to e

12 output e[n]
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Chapter 9

Conclusions and Future Directions

Techniques and challenges regarding both time-frequency analysis and auto-

matic music transcription were reviewed. A novel approach for estimating the

instantaneous amplitude and phase elements of real-valued signals based on en-

hanced Constant-Q filtering and a unique phasor construct was presented. It

was demonstrated that the proposed algorithm delivers a stable estimation by

maintaining the instantaneous amplitudes and the phase lags locally constant.

The magnitude of such a construct provides a finer estimate for instantaneous

amplitude, compared to the analytical kernel that is used in CQT.

A fast real-time M +1-delay IHA algorithm was implemented. A generalization

of the IHA algorithm for multi-dimensional signal analysis was also formalized in

the hyper-complex space. A quaternion representation was proposed to support

multiple phase elements.
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A theoretical analysis of the IHA algorithm was provided. A new relation be-

tween the CQT and WSFs based on the original signal model in the continuous

form was presented. It was shown that CQT can alternatively be implemented

by applying a series of logarithmically scaled WSFs while its window function

is adjusted, accordingly. Both approaches yet provide a short-time cross-corre-

lation measure between the input signal and the corresponding pure sinusoidal

kernels whose frequencies are equal to the center of the filter band. It was

shown that the IHA phasor construct significantly improves the instantaneous

amplitude estimation.

A generalization of the IHA algorithm was provided by utilizing composite ker-

nels for timbral analysis. The IHA algorithm contributed to an MFFE process

where a post-processing overtone elimination algorithm was used. Due to the

limited number of overtones in practice, a representation of the kernel function

by a sequence of complex values was used.

An audio-to-MIDI system was designed based upon the generalized IHA algo-

rithm. The proposed system was implemented using the generalized IHA algo-

rithm as the MFFE block and a set of post-processing algorithms for detecting

the note on-set/off-set events. By using the timbral data captured by an offline

process, the generalized IHA provides a set of sequences of complex coefficients,

designating the presence of notes in time.

The performance of the proposed audio-to-MIDI system was analyzed by apply-

ing the algorithms on five data sets: treble-range, full-range, four-part choral,

full-range piano, and full-range multi instrument. The MIDI parts were ex-

tracted and synthesized using timbre banks. The algorithm was applied to each

87



individual segment and the overall accuracy was measured for each data set.

The data sets were explicitly selected to examine the performance of our MFFE

algorithm with regards to latency, amplitude weighting, and harmonic collision.

Our simulation demonstrated compelling results, with regards to the MIREX

specification and existing state-of-the-art AMT systems, as reported in the lit-

erature [83].

The latency factor, especially in the lower frequency range imposes a risk where

a low beat resolution is desired. While it can be assumed that, in practice,

no consecutive low-range tones coexist simultaneously, a lower quality factor

resulting in overlapping bands (i.e. 200- or 400-cent width) may be used for

very low range tones. A post-processing selection algorithm, such as maximum

likelihood, may be used to classify best candidates among the neighbored bins

[72].

One of the interesting extensions of the proposed algorithm is to utilize the

algorithm in interactive music retrieval systems such as humming. The IHA al-

gorithm may also be used in music registration and classification systems, with

regards to the provided normalized temporal spectral analysis. Another inter-

esting extension would be to evaluate the performance of the multi-dimentional

IHA and its applicability to multi-dimensional signals.

The proposed algorithms can be used as a basis for improving existing transcrip-

tion systems. The ability of the IHA algorithm to simultaneously decompose

an audio input into its fundamental components and deliver their instantaneous

amplitudes, makes it exceptionally beneficial in music processing applications.

The IHA algorithm may be applied in various AMT sub-systems such as note
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tracking, chord analysis, we well as instrument identification.

During recent years, many contributed to individual areas of AMT. Although

there have been significant improvements in the state-of-the-art AMT tech-

niques, the overall performance of the existing systems is yet not comparable to

human experts [11]. AMT is essentially a complex problem and requires various

techniques. It is still an open problem, especially in the field of polyphonic tran-

scription, and requires experts from different disciplines. Although the number

of components that are possibly required to implement a functional AMT sys-

tem is beyond the scope of this thesis, we hope our fundamental contributions

to the harmonic analysis motivate future research directions.
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[18] Cancela, P., Rocamora, M. and López, E. [2009], An efficient multi-resolution spectral

transform for music analysis, in ‘Proceedings of the 10th International Society for

Music Information Retrieval Conference (ISMIR 2009)’, Kobe, Japan, pp. 309–314.

[19] Carleson, L. [1966], ‘On convergence and growth of partial sums of Fourier series’, Acta

Mathematica 116(1), 135–157.

[20] Casazza, P. G. [2000], ‘The art of frame theory’, Taiwanese Journal Mathematics

4, 129–202.

[21] Cemgil, A. T. [2004], Bayesian Music Transcription, PhD thesis, Radboud University

of Nijmegen.

[22] Cemgil, A. T. and Kappen, B. [2003], ‘Monte Carlo methods for tempo tracking and

rhythm quantization’, Journal of Artificial Intelligence Research 18, 45–81.

[23] Chafe, C. and Jaffe, D. [1986], Source Separation and Note Identification in Polyphonic

Music, in ‘Proceeding of the IEEE International Conference on Acoustics, Speech, and

Signal Processing (ICASSP)’, Tokyo, pp. 1289–1292.

[24] Chan, W. L., Choi, H. and Baraniuk, R. [2004a], Quaternion wavelets for image analysis

and processing, in ‘International Conference on Image Processing (IICIP’04)’, Vol. 5,

pp. 3057–3060.

92



[25] Chan, W. L., Choi, H. and Baraniuk, R. G. [2004b], Directional hypercomplex wavelets

for multidimensional signal analysis and processing, in ‘IEEE International Conference

on Acoustics, Speech, and Signal Processing (ICASSP’04)’, Vol. 3, pp. iii–996–999.

[26] Chen, X. and Liu, R. [2013], Multiple pitch estimation based on modified harmonic

product spectrum, in ‘Proceedings of the 2012 International Conference on Informa-

tion Technology and Software Engineering’, Vol. 211 of Lecture Notes in Electrical

Engineering, Springer Berlin Heidelberg, pp. 271–279.

[27] Chuan, C.-H. and Chew, E. [2005], Polyphonic audio key finding using the spiral

array CEG algorithm, in ‘IEEE International Conference on Multimedia and Expo

(ICME’05)’, pp. 21–24.

[28] Cohen, L. [1994], The uncertainty principle in signal analysis, in ‘Proceedings of

the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis’,

pp. 182–185.

[29] Costantini, G., Todisco, M. and Saggio, G. [2011], A sensor interface based on sparse

nmf for piano musical transcription, in ‘4th IEEE International Workshop on Advances

in Sensors and Interfaces (IWASI’11)’, pp. 157–161.

[30] Cranitch, M., Cychowski, M. T. and FitzGerald, D. [2006], Towards an inverse

constant-Q transform, in ‘120th Audio Engineering Society Convention’, pp. 1–5.

[31] da C. B. Diniz, F., Biscainho, L. and Netto, S. [2007], Practical design of filter banks for

automatic music transcription, in ‘5th International Symposium on Image and Signal

Processing and Analysis (ISPA’07)’, pp. 81–85.
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Appendix A

Mathematical Derivations and Proofs

A.1 Derivation of (4.7) in section 4.4

C[k, n] is derived by:

C[k, n] = P((1 +
λ

2
)υk)[n]− P((1− λ

2
)υk)[n]

Using

P̃(υ)[n] =

+∞
m=−∞

υsinc (υ(m− n))x[m],

we derive the output of the band pass filter for Bk as:

C[k, n] =

+∞
m=−∞

υk · (1 +
λ

2
) · sinc


υk(1 +

λ

2
)(m− n)


x[m]−

υk · (1−
λ

2
) · sinc


υk(1−

λ

2
)(m− n)


x[m].
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By shifting m by n (m← m+ n),

C[k, n] =

+∞
m=−∞

υk · (1 +
λ

2
) · sinc


υk(1 +

λ

2
)m


x[m+ n]−

υk · (1−
λ

2
) · sinc


υk(1−

λ

2
)m


x[m+ n].

Therefore:

Fk[m] = υk · (1 +
λ

2
) · sinc


υk(1 +

λ

2
)m


− υk · (1−

λ

2
) · sinc


υk(1−

λ

2
)m


.

To simplify Fk[m] we expand the sinc functions. Without loosing the generality, we exclude the

special case where m = 0. The result is similar. Therefore:

Fk[m] =
1

πm


sin


πυk(1 +

λ

2
)m


− sin


πυk(1−

λ

2
)m


.

By expanding above, we obtain:

Fk[m] =
1

πm


sin


πυkm+ πυkm

λ

2
)


− sin


πυkm− πυkm

λ

2
)


.

By combining the two sines, we get:

Fk[m] =
2

πm
cos(πυkm) sin(πυkm

λ

2
).

By rewriting the sine function by sinc, we obtain:

Fk[m] = cos(πυkm)λυksinc(υkm
λ

2
).

�
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A.2 Derivation of the Phasor Coefficients in section 4.4

Using two consecutive samples: s[n] and s[n± 1], we write:


C[k, n− 1] ≈ a[k, n] cos((n− 1)πυk +Φ[k, n])

C[k, n+ 1] ≈ a[k, n] cos((n+ 1)πυk +Φ[k, n])

.

By expanding the cosine functions, we obtain:


a[k, n] cos(Φ[k, n]) cos((n− 1)πυk)− a[k, n] sin(Φ[k, n]) sin((n− 1)πυk) ≈ C[k, n− 1]

a[k, n] cos(Φ[k, n]) cos((n+ 1)πυk)− a[k, n] sin(Φ[k, n]) sin((n+ 1)πυk) ≈ C[k, n+ 1]

.

By rewriting the above equations in matrix form, we get:

D(υk,n)   cos((n− 1)πυk) − sin((n− 1)πυk)

cos((n+ 1)πυk) − sin((n+ 1)πυk)

 ·
 a[k, n] cos(Φ[k, n])

a[k, n] sin(Φ[k, n])

 ≈
 C[k, n− 1]

C[k, n+ 1]

 .

Since

H[k, n] =

 1

j

T

·

 a[k, n] cos(Φ[k, n])

a[k, n] sin(Φ[k, n])

 ,

we obtain H[k, n] using:

H[k, n] ≈

 1

j

T

·D(υk, n)
−1 ·

 C[k, n− 1]

C[k, n+ 1]

.

D(υ, n)−1 may also be derived by:

1

detD(υ, n)
·

 − sin((n+ 1)πυk) sin((n− 1)πυk)

− cos((n+ 1)πυk) cos((n− 1)πυk)


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where

detD(υ, n) = cos((n+ 1)πυk) sin((n− 1)πυk)− sin((n+ 1)πυk) cos((n− 1)πυk)

= sin ((n− 1)πυk − (n+ 1)πυk)

= − sin(2πυk).

The derivation of the phasor construct is given in the following:

 1

j

T

·D(υk, n)
−1 = −1

sin(2πυk)
·

 1

j

T

·

 − sin((n+ 1)πυk) sin((n− 1)πυk)

− cos((n+ 1)πυk) cos((n− 1)πυk)


= 1

sin(2πυk)
·

 sin((n+ 1)πυk) + j cos((n+ 1)πυk)

− sin((n− 1)πυk)− j cos((n− 1)πυk)

T

= j
sin(2πυk)

·

 e−j(n+1)πυk

−ej(1−n)πυk

T

= e−jnπυk · j

sin(2πυk)
·

 e−jπυk

−ejπυk

T

  
℘υk

�
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A.3 Derivation of the equations in section 4.4

Using (2.6), the upper bound for Bk’s is obtained by (1 + λ
2 )υk. Since ∀ω, ω ≤ 1, we can write:

(1 +
λ

2
)υk ≤ 1

Therefore:

υk ≤
2

2 + λ

�

Using υk = γkυ0, we can write:

(1 +
λ

2
)γkυ0 ≤ 1.

By taking logarithm from both sides, we obtain:

k log γ + log υ0 + log(1 +
λ

2
) ≤ 0.

Using (2.4), we know that log γ > 0, therefore:

k ≤ − 1

log γ
(log υ0 + log(λ+ 2)− log 2) .

�

In case of using (2.7), the upper bound for Bk’s is obtained by
√
γυk. Since

√
γυk ≤ 1, we obtain:

υk ≤
1
√
γ
.

�

The upper bound for k can similarly be derived using υk = γkυ0:

γk
√
γ log υ0 ≤ 1
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By taking logarithm from both sides, we get:

k log γ +
1

2
log γ + log υ0 ≤ 0.

Since we know that γ > 1, the upper bound for k will be:

k ≤ − log υ0
log γ

− 1

2
.

�
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A.4 Multi-Dimensional Continuous IHA – Special Case

In case of M = 1,

Hk(t) = Ξk{Ck(t)}

= U1
T ·℘(ωk, t){Ck(t)}

=

 1

j

T

·

 cos(ωkt) − sin(ωkt)

− sin(ωkt) − cos(ωkt)

 ·
 1

1
ωk

∂
∂t

 {Ck(t)}

=

 cos(ωkt)− j sin(ωkt)

− sin(ωkt)− j cos(ωkt)

T

·

 1

1
ωk

∂
∂t

 {Ck(t)}

=

 e−jωkt

−je−jωkt

T

·

 1

1
ωk

∂
∂t

 {Ck(t)}

= e−jωkt ·

 1

−j

T

·

 1

1
ωk

∂
∂t

 {Ck(t)}

= e−jωkt

1− j

ωk

∂
∂t


Ck(t).

�
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A.5 Multi-Dimensional Discrete IHA – Special Case

In case of M = 1,

H[k, n] = Ξk{C[k, n]}

= e−jπυkn ·℘υk,1 (C[k, n])

= e−jπυkn · j
sin 2πυ

 e−πυkj

−eπυkj

T

·

 C[k, n+ (−1)]

C[k, n+ (+1)]


= e−jπυkn · j

sin 2πυ

 e−jπυk

−ejπυk

T

·

 C[k, n− 1]

C[k, n+ 1]


�
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Appendix B

The Specifications of the Simulation Data Sets

Data Set Specification Details

DS1 treble
pieces from Beyer Op.101

piano right hand, medium level

DS2 easy full-range
pieces from Beyer Op.101

John Thompson’s Easiest Piano Course

DS3 four-part choral pieces from Nikolai Rimsky-Korsakov’s harmony exercises

DS4 full-range piano

Invention No. 1 by Johann Sebastian Bach BWV.772

Ludwig van Beethoven’s Für Elise, WoO 59

Flight of the Bumblebee, Nikolai Rimsky-Korsakov

DS5 orcherstral & piano-duet

Flight of the Bumblebee, version for string orchestra

selected pieces for piano and violin

selected pieces for piano and flute
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