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ABSTRACT 
 

Loss Minimization Control of Permanent Magnet Synchronous Machine 

 for Electric Vehicle Applications  

Kang Chang 

With the limits of power source taken into consideration, the efficiency of the 

traction drive is of particular importance in the engineering of electric vehicle and plug-in 

hybrid electric vehicle (EV/PHEV). Thanks to its high power density, high efficiency and 

high torque to weight ratio, Permanent Magnet Synchronous Machine (PMSM) 

distinguishes itself from other traction system candidates in the EV/PHEV application 

market. This research sets out to explore how the control strategy of PMSM can be 

optimized so as to achieve a better efficiency performance of EV/PHEV.  

Prior research has put forth Loss Minimization Control Strategy (LMC) and 

developed its algorithm by considering a certain operating point. The focus has been 

placed on how to approximately solve the optimal current reference from a high order 

expression. So far, very limited effort has been made toward a generalized form of LMC 

algorithm over the full machine operation region, i.e. constant torque and constant power 

region. In this thesis, a generalized relationship between d-q current for the LMC of 

PMSM is presented, and maximum torque per ampere (MTPA) and maximum torque per 

voltage (MTPV) can be derived as special cases of LMC. The proposed control strategy 

shows better response and enhancement of the machine efficiency over full speed range 

when compared to conventional control strategies. 

In order to develop the control method, the machine operation principle is 

discussed first, and the machine model is built for the control purpose. Then based on the 
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analysis of PMSM operation performance with voltage and current constrains, the 

boundary of the machine operating is defined. In the light of literature review, the LMC 

is derived from the equivalent model of PMSM by considering the core loss. And the 

performance of the LMC is analyzed in detail for both constant torque and constant 

power region. In addition, the effects of parameters variation are investigated. Thus the 

control strategy is improved by considering full speed range. A Simulink model of 

PMSM with core loss taken into consider is developed to test the proposed control 

method. The experiment is performed on a lab surface-mounted PMSM. The experiment 

results are found to be consistent with simulation results.   
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CHAPTER 1 INTRODUCTION 

 

1.1 PMSM for Electric Vehicle Applications 

Recent years have seen growing awareness of the risks associated with global warming, 

environmental pollution and nature resource crisis of the Earth. Being a major consumer 

of petroleum and a key contributor to carbon dioxide emissions, the transportation plays 

an important role in addressing those environment-related and energy-related issues. 

Electric vehicle (EV) and plug-in hybrid electric vehicles (PHEV) have been proposed to 

replace conventional fossil-fuel combustion vehicles, and progress is under way. Up to 

today, there have already been many commercial EV/PHEVs on the road. Among the 

most successful examples there are Toyota prius, Chevlet volts, and Nissan Leaf. 

Speaking of electric vehicle application, the standards of choosing an appropriate 

traction motor for the EV/PHEV propulsion are often focused on the characteristics such 

as torque density, extended speed range, energy efficiency, safety and reliability, thermal 

cooling, and cost. As determined by vehicle dynamics and system architecture, the 

extended speed range ability and energy efficiency are two particularly important factors 

in selecting the propulsion motor [1]. In addition, the power source in EV/PHEV is the 

battery, whose performance is claimed by many as “Achilles Heel” of any EV/PHEV 

application. The traction drive system consumes the largest share of the power source, 

and its efficiency thus becomes vital for EV/PHEV application. Generally, the drive 

system includes power inverter and traction motor. In order for the whole system to 

achieve high efficiency, it is essential that both the power inverter and the traction motor 
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operate with their optimal efficiency throughout the driving schedule [2]. This thesis 

work will emphasize on the traction motor part. 

There are many types of machine that are considered as candidates for electric 

vehicle traction system, which mainly include induction motor (IM), permanent magnet 

synchronous machine (PMSM), and switch reluctance machine (SRM). It is noteworthy 

that due to its high efficiency, power density and torque-inertia ratio, PMSM has now 

become the most common choice in the EV/PHEV. Table 1.1 shows the most important 

features of the principal motor types that are being considered for EV/PHEV application. 

 

Motor Design Induction 

(natural 

field 

weakening) 

PM SR 

SPM motor 

(BLDC) 

SPM motor with 

concentrated 

windings 

IPM motor Non-linear 

solenoid type 

force 

CPSR 4 11  Theotetically, 

infinity, but 

allow for 

rotational losses 

Theotretically, 

infinity, but 

allow for 

rotational losses 

Discontinuous 

control 

Cost $ $$ $$ $$$ $ 

Peak Power to 

Weight Ratio 

Low High High Highest Low 

Peak Power to 

Volume Ratio 

Low High High Highest Low 

Lifetime Higher High High High Higher 

Table 1-1: Advantage (green) and disadvantage (red) of the major motor types [3] 

1.2 Motivation and Review of Technologies  

In order to improve the efficiency of the machine, emphasis is often placed on the 

machine design. With proper topology of the machine and improvement of the material, 

the total efficiency can be optimized. It can also be enhanced by way of employing 

automatic control strategy. There has been a lot of research focused on the automatic 

control method, which mainly include maximum torque per ampere control (MTPA) that 

is meant to minimize the copper loss [4], maximum torque per voltage control (MTPV) 
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that works to optimize the core losses [5], and loss minimization control (LMC) 

conceived for both copper and core losses reduction [6,7,8]. All these strategies are 

implemented by finding the optimal d-q-axis current so that the objective of the control 

can be reached. In addition, the previous work on LMC usually considers certain steady 

state operating point, and there is no comprehensive analysis for the automatic control 

strategy over full operation region.  For EV/PHEV application, the traction motor works 

in a wide speed range. In order to reduce the total loss of the machine, the LMC strategy 

should take into account the whole operating region.  

In this research, based on the equivalent model of PMSM, the efficiency 

enhancement control strategy is generalized to an optimal d-q current relationship, from 

which the MTPA and MTPV can be derived. And then the performance of the LMC is 

analyzed in detail. Based on the traction motor operating region, an improved LMC 

strategy is proposed over full speed range.  

1.3 Thesis Outline 

The objective of this thesis is to develop a Loss Minimization Control (LMC) strategy 

over full speed range of permanent magnet synchronous machine (PMSM), and also the 

parameters variation issues will be discussed. The main body of the thesis is organized as 

follows: 

In Chapter 2, the fundamentals of PMSM are briefly discussed. Based on the dq 

model equivalent circuit, the behavior of PMSM in variable speed drive application is 

studied. The operating areas are analytically divided in terms of current and voltage 

constraints. 
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In Chapter 3, various control strategies are discussed. The maximum torque per 

ampere (MTPA), maximum torque per voltage (MTPV) and flux-weakening method are 

derived based on the dq equivalent model.  Also, their performances are analyzed from 

efficiency enhancement point of view. 

In Chapter 4, the loss minimization control (LMC) strategies of PMSM are 

reviewed.  With the core loss taken into consideration, the dq model with core loss 

resistance is used to derive the LMC. A generalized optimal current relationship is 

presented. And then by taking into account both constant torque and constant power 

region, the performance of LMC is analyzed in detail. Also, the effects of the machine 

parameters are examined. At the end, an improved control strategy is proposed over full 

speed range based on the performance of the LMC. 

In Chapter 5, the simulation model is developed by using Matlab. The 

performance and results of the simulation are analyzed.  

In Chapter 6, a lab design surface-mounted PMSM is used to test the proposed 

algorithm. The experimental results are compared with the simulation results and 

discussed in detail. In particular, the parameter variation issue is addressed in the 

discussion. 

Chapter 7 concludes the thesis and proposes future research work. 
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CHAPTER 2 FUNDAMENTALS OF PERMANENT MAGNET 

SYNCHRONOUS MACHINE 

 

 

2.1 Introduction 

The permanent magnet (PM) materials with considerable energy density were firstly 

introduced into the designing of electrical machine during 1950s.  They have experienced 

rapid growth and continuous improvement, especially during the past few years. Instead 

of field windings, the PM poles in rotor provide electromagnetic field and thus eliminate 

slip rings and brush assembly. Equally mentionable is that electronic commentators 

replace traditional mechanical ones in modern power electronics. These two factors have 

jointly propelled the development and growth of PM AC machine in the last two decades. 

It has now become possible to build high performance drive systems in a wide range of 

application fields including but not limited to electric vehicles.  

Generally, the PM AC machine can be classified by the direction of the flux 

density distribution. Its two main categories are radial field PM machines and axial field 

ones [9]. Also, depending on their induced back-EMF shape, the radial fields PM 

machines are classified into PMSM with sinusoidal back-EMF and BLDC with 

trapezoidal back-EMF.  The discussion in this research is based on the PMSM only. 

According to the location of the permanent magnet in the rotor, there are four topologies 

as shown in Figure 1.  
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Figure 2.1: Permanent Magnet AC machine topologies: (a) Surface mounted; (b) Surface 

inset; (c) Interior radial; (d) Interior circumferential 

 

In today’s EV/PHEV application market and related research, the interior radial 

PM machine (IPM) gets increasing attention. Compared with other topologies, this kind 

of PMSM has less torque ripple and higher reliability because of its buried magnets. 

Also, the buried magnet is better protected from demagnetizing due to the armature 

reactance. Moreover, the IPM features a special configuration in rotor. It results in a very 

strong saliency, which contributes to the total load demand by additional reluctance 

torque. Furthermore, the strong saliency feature provides an excellent flux weakening 

capability, and thus enables a wide range of high speed operation suitable for EV 

application. As the counterpart, the surface mounted topology PMSM (SPM) can be seen 

as a special case of IPM. This chapter will derive the model of PMSM based on IPM. 

2.2 Modeling of Permanent Magnet Synchronous Machine 
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In order to develop the desired algorithm, the behavior of the PMSM should be explored 

based on the dynamic model of the machine. In this section, the modeling of PMSM is 

derived from the transformation theory. And the d-q rotor reference frame model will be 

used for the analysis of PMSM. 

2.2.1 Three phase modeling 

The PMSM can be modeled in three phase stator coordinates with winding as shown in 

Figure 2. The two phase coordinates is also shown in Figure 2. 

 

Figure 2.2: Three Phase PMSM and Two Phase PMSM 

 

The voltage equations are 

        
   

  
 

        
   

  
 

        
   

  
 

 

 

         

(2-1) 
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where          are stator phase voltages,          are stator phase currents, and          

are the phase flux linkages. The input power for this model is 

                      
 

(2-2) 

Since the variables in this model are all sinusoidal or rotor position dependent, the 

solution of these equations will be computational complex.  

2.2.2 Reference frame transformation 

As one kind of observer platforms, the reference frame offers a unique view of the 

system. A simplified model with constant variables is desirable for the purpose of 

control.  In PMSM, rotor frame revolves at the synchronous speed with stator sinusoidal 

supply frequency. As a result, sinusoidal variable can be perceived as dc signal from the 

rotor frame. Based on this rotor reference frame, a two-phase motor can be derived from 

the three-phase model in direct and quadrature axes, which is generally referred to as d-q 

axes model. Figure 3 shows the stator abc phase and the rotating dq phase winding.  

 

 

 

 

 

 

 

 

 

Figure 2.3. Three phase to two phase transformation [10] 
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By applying Park’s transformation, the voltage equation in three-phase model can 

be transferred to the dq rotating frame as following: 
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]  
 

 

[
 
 
 
 
             

  

 
        

  

 
 

            
  

 
        

  

 
 

 

 

 

 

 

 ]
 
 
 
 
 

[

   

   

   

] 

 

 

         

(2-2) 

 

 

where    is the rotor angle. 

The Park’s transformation is represented as: 
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and its inverse form is 

[    ]
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(2-4) 

 

This transformation is also applicable to the current and flux linkage. 

 

2.2.3  Basic mathematic model  

After applying Park’s transformation, the synchronous machine variables in the abc phase 

equation are transferred to the dq-variable in the rotor reference frame. Since the 

reference frames are moving at an angular speed equal to the angular frequency of the 

sinusoidal supply, all sinusoidally varying inductances in the abc frame become constant 

in the dq frame.  
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With the assumption of saturation being neglected and the sinusoidal back emf, 

the dq equation in the rotor reference frame of the PMSM are derived as 

                                     
 

                                              

 

 

(2-5) 

 

The electromagnetic torque is expressed as  

    
 

 

 

 
 [               ]                      

 

 (2-6) 

 

It can be seen that the developed electromagnetic torque includes two components. The 

first term corresponds to the magnet exciting torque, which is the reaction between q-axis 

current and the permanent magnet on rotor. The second term is the feature of IPM, which 

is the reluctance torque due to the difference in the d-q-axis inductance.  

In terms of mechanical load, the torque is  

     
   

  
                                          

 

 (2-7) 

 

In the state space form, the PMSM model can be expressed as: 

    
 

  
                           

    
 

  
                                     

    
 

 
                                        

 

 

 

 

 

(2-8) 

where  

             :  q-axis and d-axis voltage 

               :  q-axis and d-axis current 

                :  stator phase resistance 

             :  q-axis and d-axis inductance 

                  :  derivative operator 
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                :  permanent magnet flux 

                 :  electromagnetic torque and load torque 

                  :  number of poles 

                   :  the moment of inertia of the load and machine combined 

                  :  the friction coefficient of the load and machine  

             :  the mechanical and electrical rotor speed,    
 

 
   

Alternatively, the dynamic equations of the PMSM in rotor reference frame can 

be represented by using flux linkages as variables. The flux linkages are continuous no 

matter voltage and current are continuous or not. In so doing, it is possible to differentiate 

the variables with numerical stability. This alternative way of representing the PMSM 

dynamic equations also places emphasis on how the flux and torque channels are dis-

coupled.  

The model in flux linkage is defined as 

                         

                        

 

 

(2-9) 

where  

 

                           

                   

 

 

(2-10) 

 

and the electromagnetic torque is  
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(2-11) 

 

From the power equivalence condition, the input power in terms of d-q variable, it is 

    
 

 
              

(2-12) 
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2.2.4 PMSM Equivalent Electric Circuit 

From the dynamic equation, the equivalent circuit of PMSM can be drawn as shown in 

Figure 4. There are two ciruits representing dynamic q-axis circuit and d-axis equivalent 

circuit. 

Rs Ld

ωLqiqVd

id

Rs Lq

ω(Ldid+λPM )Vq

iq

 

Figure 2.4: PMSM equivalent dq model circuit 

The models can be used to examine both the transient and steady state behaviors 

of PM machine drive system.  

2.3 Analysis of PMSM Operation    

For EV/PHEV application, the traction motor drives are generally designed to provide a 

constant torque up to base speed and constant power for extended speed up to a 

maximum speed. The torque speed characteristic is plotted as Figure 2.5: 
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Figure 2.5. Torque-Speed characteristics 

For the purpose of developing the control strategy of PMSM, the performance of 

PMSM is analyzed based on the d-q-axis model with the assumption ignoring the voltage 

drop on phase resistance and core loss. The control strategies and performance features in 

different regions will be discussed in detail.  

2.3.1 Current and Voltage constrains 

According to the equivalent circuit mentioned in section 2.2.4, the two-phase mathematic 

model in steady state is written as: 
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And the torque produced by the machine is: 
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(2-14) 

 

Speed 

   

Constant  

Torque Region 

Constant  

Power Region 

Torque 

     



 

14 

For the inverter-fed drive system with DC battery source, there are voltage and current 

constraints due to the power rating of the inverter, machine and power source. The 

current constraint is identified as: 

  
    

       
  (2-15) 

where Is,max is the maximum phase current of the machine. It is a circle in the dq current 

plane.The voltage constraint is: 

  
    

       
  (2-16) 

 

By ignoring the voltage drop on the phase resistance, in terms of dq current, it is: 

(    )
 
           

  
     

 

  
 

 

(2-17) 

 

where Vs,max is the maximum available voltage provided by the inverter.  Generally,  

      
   

√ 
 

 

(2-18) 

 

where Vdc is the dc power source voltage. For given speed, the voltage constraint is an 

ellipse with center ( 
   

  
, 0) in the dq current plane. With the speed increasing, the 

ellipse shrinks to the center. As shown in Figure 2.6, the above constraints are plotted in 

id-iq plane by using one example IPM. 
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Figure 2.6. PMSM operation region with voltage and current constraint 

Due to the current and voltage constraints, the operation region of the machine 

has to be within the overlapped area of the current and voltage constraints.  

2.3.2 Constant Torque Region 

In constant torque region, since the speed is lower than the base speed, the voltage 

constraint will not be exceeded in most cases.  More concern will be placed on the 

current constraint. In order to fully utilize the current, maximum torque per current 

control strategy is widely employed, which assures the minimization of the copper loss. 

Under this control strategy, the highest available speed is given by  
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(2-19) 

where Id, Iq are the MTPA optimal current for the peak torque, and  

  
    

       
  

 

(2-20) 
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Below the speed      , the motor can be accelerated by this peak torque. 

2.3.3 Constant Power Region 

When the speed exceeds the rated speed, the voltage constraint will be reached, and the 

operation of machine enters into the constant power region. With appropriate stator 

current distribution, the stator flux linkage gets reduced, and high speed operation can be 

performed up to extended speed range. In this region, flux weakening control strategy 

such as maximum output power, MTPV or LMC is applied for the purpose of the control.  

2.3.4 Power-Speed characteristic 

Considering the power capacity versus speed of the PMSM, there are three cases be 

summarized from [11, 12]. It can be seen that from the voltage constraint equation, the 

eclipse center is on ( 
   

  
, 0). With different design flux linkage of the permanent 

magnet, d-axis inductance and the available maximum phase current, the power speed 

characteristic will be varied.  

Case 1:  
   

  
     , which means that the permanent magnet flux is greater than 

the maximum d-axis flux field as caused by maximum phase current in stator. Under this 

circumstance, the voltage eclipse center is located outside the current constraint circle. 

There is a maximum available speed occurring where the two curves tangentially 

intersect at point (     , 0). This maximum available speed is called by many as critical 

speed, which is expressed as: 

   
   

          
 

 

 

(2-20) 
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After that speed, there are no overlapped region between voltage and current constraint. 

The power in this case drops fast to zero when the rated speed is exceeded.  

Case 2:  
   

  
     ,  which means that the voltage eclipse center lies on the 

current constraint circle. In this case, there is always an overlapped region between them 

at any high speed. The constant power region will be theoretical infinite.  

Case  3:   
   

  
     , which means that the stator field can cancel the rotor 

permanent magnet field in certain phase current that is lower than the maximum phase 

current. In this case, the voltage constraint eclipse center goes into the current constraint 

circle. It can have infinite constant power region but lower output power compared with 

Case 2. The power versus speed characteristics are as shown in Figure 2.7: 
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Figure 2.7  Power-speed characteristics of PMSM:  

(a) Case 1, (b) Case 2, (c) Case 3 

For EV/PHEV applications, Case 2 and Case 3 are the preferred designs of 

PMSM, due to extended constant power region. In this thesis, the LMC control strategy is 

developed based on this preferred design of PMSM. 

2.4 Summary 

In this chapter, the fundamentals of PMSM are presented. The modeling in two axes 

coordinate shows a convenient way to understand the behavior of PMSM. And from the 
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control point of view, the variable in dq-axis coordinate becomes dc value, and it is 

possible to make the control of PM AC machine as that of DC machine. Based on the two 

axes model, the dynamic mathematic equations for PMSM are derived. The equivalent 

electrical circuit is also presented in this chapter. Considering the operating region of 

PMSM, an analysis is performed at the end of this chapter. Due to voltage and current 

constraints, the control of inverter fed PMSM drive should be properly developed to meet 

with the objective within the constrained region. 
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CHAPTER 3 CONTROL OF PERMANENT MAGNET   

SYNCHRONOUS MACHINE 

 

3.1 Introduction 

With optimized design of PMSM, an appropriate control strategy will help extract full 

performance capability from the machine. Vector control, also known as field oriented 

control or decoupling control, was first proposed by Blaaske [13] and has been widely 

applied to the induction motor (IM). It has enabled the controlling of an AC machine like 

a separately excited DC machine by the orientation of the stator mmf or current vector in 

relation to the rotor flux to obtain the independent control of flux and torque. For 

PMSMs, the vector control can also be applied, and it is easier to implement thanks to the 

absence of slip frequency current [14]. In this chapter, the vector control for PMSM will 

be presented, and different control strategies will be discussed. 

From the dq-axes model of PMSM, the phasor diagram of the PMSM is shown as 

Figure 3.1. 

 

Figure 3.1.  Phasor Diagram of the PMSM  
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Considering the current as input, the three phase currents are: 
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(3-1) 

 

where    is the electrical rotor speed, and   is the angle between the rotor filed and stator 

current pharos and is known as the torque angle. 

In the rotor reference frame, the dq-axes stator currents are obtained by applying 

Park’s transformation as: 
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(3-2) 

Then the dq-axes currents in rotor and stator reference frame are obtained as:      
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(3-2) 

where            are the torque producing current and the flux producing current 

respectively. It should be noted that the dq-axes currents are constants in rotor reference 

frames, and the torque angle   is a constant for a given load torque. Substitute the above 

dq-axes stator current in rotor reference frame into torque expression, the torque is 

expressed in terms of the stator current magnitude and torque angles as: 
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Obviously, the control variables stator current magnitude and the torque angle determine 

the electromagnet torque with the machine parameters being assumed as constant. In 

addition, the mutual flux linkages in the air gap are the result of the rotor flux linkages 

and the stator flux linkages. It is given as: 

   √            (    )
 
       

 

(3-4) 

 

So from the perspective of control, by way of controlling the phase angle   and 

magnitude of the current phasor    from the inverter, which means the dq-axis current in 

two phase model on rotor reference frame, the torque can be determined and its control is 

achieved accordingly. The PMSM drive is shown to be analogous to the separately 

excited dc motor drive. It is achieved by finding the flux and torque producing 

components of stator current. And the independent control of electromagnetic torque and 

mutual flux is exercised via the flux and torque producing component current. 

3.2  Drive System of PMSM  

The general block diagram of vector control drive system is shown as in Figure 3.2.  
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Figure 3.2 Basic Vector Control Block Diagram 
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There exist two control loops in the drive system. The inner loop is torque loop, 

and the outer loop is speed loop. Depending on how the torque is controlled, the inner 

loop can be implemented by indirect torque control mode or direct torque control mode.  

Indirect torque control is also called stator current vector control or field oriented 

current control (FOC) in some literature. The torque equation (3-3) explains the 

relationship between the stator phase current and the instantaneous torque. Then the 

torque can be controlled by phase current and torque angle, in other words, the dq-axes 

current in two phase axes coordinate. For this control mode, the rotor position is needed 

except the current sensor. The process of deriving the torque component current and flux 

component current references plays a key role in this control. For the control purpose, 

different strategies to derive the dq current reference can be applied, for examples, 

MTPA, MTPV, and LMC.  

Direct torque control was first introduced for the induction motor by [15]. It is of 

great interest to EV/PHEV application, especially for dual motor propulsion system, 

where the fast torque response is desirable [16]. For PMSMs, direct torque control is also 

useful. Based on the torque and flux linkage error between the command and estimations, 

the controller outputs proper voltage vectors command to inverters. This control mode 

eliminates the current loop and directly controls the torque and flux independently. The 

torque and flux ripple are the major problems of this control mode. In some research 

work, these problems are tackled with introducing additional PI-controller, which makes 

the direct torque control have the same system complexity and the same cost as the 

indirect torque control.  

3.3 Control Strategies for PMSM 
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Vector control provides the decoupling between torque and flux channel in the PMSM. 

The control variables include current, voltage, flux, and torque angle. As the application 

requirements vary, there are different control strategies accordingly. 

3.3.1 Constant Torque Angle Control 

Constant torque angle control, also called zero d-axis current control, is widely used 

across the industry. As the phasor diagram in Figure3.3 shows, when torque angle is 

maintained at    , the direct field component of stator current is brought to zero, and all 

the stator current is used to produce torque. 

Figure 3.3. Constant torque angle control phasor diagram 

The torque control is then the simplified result in the linear relationship between 

torque and current as  

    
 

 

 

 
         

 

 

 

 
              

 

 

(3-5) 

 

where    is the magnitude of the stator current phasor.  

Under this mode, the steady state voltage equations in rotor reference frame as  
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(3-6) 

 

This provides a simple linear torque control, and it is similar to the DC motor control. 

The flux linkage under this control is  
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(3-7) 

 

It reveals that a weakening of mutual flux linkages is out of the question. Thus it only 

works for the speed lower than base speed operating range. Also for IPMSM, the 

reluctance torque is not utilized.  

3.3.2 Unity Power Factor Control (UPF) 

UPF control refers to the optimization of the VA rating of the inverter by way of keeping 

the power factor at UNITY (1.0). This type of control implies the utmost use of the real 

power input to the PMSM. It is enforced by controlling the torque angle as a function of 

the motor variables. As shown in Figure 3.1, the angle between the d-axis voltage and q-

axis voltage is  

         
  

  
 

 

    (3-8) 

 

In UPF, the power factor angle has to be zero (   ), which means that the voltage 

angle equals to the current angle.  

Substitute the voltage in terms of current into equation (3-8) 
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From the above equation, the torque angle is solved as 
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It should be noted that the torque angle needs to exceed 90°. Otherwise, the 

mutual flux linkages might be enhanced and saturation might be observed in the machine, 

which is undesirable from the perspective of loss control. In addition, the UPF control 

strategy has a very low torque per unit current ratio, and its efficiency will be inferior to 

that of other control strategies due to the increasing copper loss for producing the given 

torque.  

3.3.3 Maximum Torque per Ampere (MTPA) Control 

For the IPMSM, the electromagnetic torque is represented as: 
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     (3-11) 

 

It is composed of two terms. The former corresponds to the excitation torque by rotor 

permanent magnet, which is also called synchronous torque. The second term 

corresponds to the reluctance torque, which is the result of the difference in d-q-axis 

reluctance. Based on this equation, a strategy enabling the full utilization of the torque 

capacity can be derived, which is called maximum torque per ampere control (MTPA). It 

provides a maximum electromagnetic torque for a unit stator current via torque angle 

control and therefore minimizes copper loss for a given torque. By manipulating the 

torque equation (3-11) with the relationship between d-q-axis current and stator current: 
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Rewrite the equation (3-12) as: 
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In order to maximize the torque per unit stator current, take the derivative of the 

electromagnetic torque with respect to the current angle as: 

   
  

 
 

 

 

 
[           (     )   

      ]      
 

     (3-14) 

 

Equating it to zero, and substituting the d-q-axis current into the above equation,  the 

maximum torque per current unit condition is obtained as 
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Due to the current constraint, consider the continuous current rating as: 
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     (3-16) 

 

The peak torque is produced when  
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      (3-17) 

 

and this peak torque can accelerate the motor to the speed that allows the voltage to reach 

its limit. The speed under this operating point is defined as the base speed and is given as: 
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     (3-18) 

 

So the MTPA can only be used for the speed range lower than the base speed. The MTPA 

current trajectory in the d-q-axis current plane is plotted as shown in Figure 3.4. In 

MTPA control strategy, the saliency ratio significantly influences the torque 

performance. It is a preferred option for high saliency machine with ratio greater than 2 

and operating within the lower speed range. MTPA control strategy does not optimize the 

whole system for net loss, nevertheless. 
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Figure 3.4. MTPA current trajectory 

3.3.4 Maximum Torque per Voltage (MTPV) Control 

When PMSMs operate within high speed region, the voltage constraint shrinks to its 

center point. The MTPA cannot be used anymore due to the voltage constraint. In order 

to utilize the full available voltage to optimize the torque production, the maximum 

torque per voltage control (MTPV) strategy can be derived. Consider the voltage 

constraint equation for the PMSM above the based speed as: 
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     (3-19) 

 

For a given speed, the maximum available torque should be at the point where the 

voltage constraint curve tangentially intersects with the torque curve in d-q-axis current 

plane, which is shown in Figure 3.5.  
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Figure 3.5.  MTPV current trajectory 

The voltage constraint equation can also be rewritten in terms of d-q flux linkage: 
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where  
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Then rewrite the torque equation with voltage constraint as  
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Taking the differentiation with respect to the angle   and equating it to zero, the MTPV 

optimal current trajectory satisfies the relationship as  
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It is plotted in the dq current plane as shown in Figure 3.5. From the observation, it can 

be noted that the MTPV curve is independent of a specific speed, and then there is only 

one MTPV curve depending on machine parameters. The minimum speed for MTPV 

control strategy is determined by the intersect point between the MTPV curve and the 

current constraint circle. Below that speed, the intersect point will be outside the current 

constraint circle. MTPV control strategy makes full utilization of voltage, which means 

minimizing the core losses of the machine. 

3.3.5 Flux Weakening Control 

When operating above base speed, the backEMF of PMSMs can be exceeding the 

available maximum voltage fed by the inverter. In order to enable the speed to exceed the 

base speed, a negative d-axis current can be applied to reduce the stator flux linkage and 

then decrease the back EMF. It is generally called flux weakening control. This control 

strategy allows the machine to work at a speed up to maximum speed, but with a 

decreasing maximum available torque.  

 

Figure 3.6: Flux weakening region in dq-axis current plane 
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The flux weakening region is plotted in Figure 3.6, and it is located between the MTPA 

and MTPV curves.  Different flux weakening control strategies are proposed to meet with 

different objectives of the control. Two examples in this regard are efficiency 

enhancement flux weakening control [17] and current-voltage constraint maximum 

power flux weakening control [18].  

 

3.4 Summary 

In this chapter, the vector control of PMSMs is described, and different control strategies 

are discussed. As determined by the constraints of voltage and current, the operation of 

PMSMs can be divided into three regions with corresponding control strategies. When 

the machine runs below the base speed, the MTPA can be applied to obtain maximum 

constant torque, and the copper loss can be minimized. After the speed goes above base 

speed, the machine enters the flux weakening region. With properly flux weakening 

control strategy, the speed can be extended to high speed range with constant output 

power. Once the speed reaches some high value, the MTPV control strategy is used to 

fully utilize the voltage fed by the inverter, and the core losses will be minimized. 
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CHAPTER 4 LOSS MINIMIZATION CONTROL 

 

For EV application, the efficiency of the whole drive system is the most concerned issue, 

especially because of the limited power supply by the battery. In this chapter, the loss 

minimization control (LMC) will be discussed, and the pertinent control design will be 

investigated in detail. 

4.1 Literature Review of Loss Minimization Control 

In the PMSM operation, there are numerous combinations of motor variables such as 

voltage and current at a given operating point. These combinations result in different total 

loss, and the one causing minimum loss is chosen. The loss minimization control (LMC) 

has so far received a lot of attention from research on DC machine, induction machine, 

and PMSM machine. 

Roy S. Colby et al. [19] presented a testing efficiency optimizing controller for 

non-salient, scalar controller PMSM. In this approach, the output voltage of the inverter 

was adjusted to minimize the DC link current with the motor speed being maintained 

constant by independent open loop control of the inverter frequency. The DC link current 

rather than the input power to the motor drive was reduced. Due to the nature of the open 

loop, the dynamic performance of this approach was not satisfactory for high 

performance application.  

S. Morimoto et al. [20] established a loss minimization control based on the 

equivalent circuit including an iron loss model and a copper loss one. By way of taking 

differentiation of the loss function with respect to d-axis current, the optimal d-axis 

current was obtained. However, the expression after differentiation is a fourth order 
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equation, which only can be solved analytically for non-saliency. For rotor saliency, it 

has to use numerical solution to find optimal value. The machine parameter variation was 

not taken into account in this research.  

C. C. Chan, K. T. Chau et al. [21] proposed a PMSM machine for mini-EV and 

developed a new PWM algorithm, namely equal-area pulse-width modulation 

(EAPWM), for the purpose of control. The PWM algorithm can be automatically 

adjusted for a varying DC link voltage. It has low harmonic content, and allows a real-

time calculation of the PWM pattern. By employing the new PWM algorithm, the 

researchers developed a search algorithm to increase the efficiency of the PMSM. Since 

the search algorithm was not dependent on the loss model of the machine, it was not 

sensitive to variations in the motor parameters.  

Sadegh Vaez, V. I. John, M. A. Rahman et al. [22] proposed an online adaptive 

loss minimization controller (ALMC) for interior permanent magnet motor drive. This 

control minimizes the total input power to the drive system through continuing 

adjustment of d-axis current until the optimal point was found.  Compared to the 

conventional stepwise change, the ALMC offers advantages such as very smooth 

performance and fast searching time. 

C. Cavallaro et al. [23] developed an online loss minimization algorithm based on 

the model proposed by S. Morimoto et al. [20].  With the use of a substantial binary 

search algorithm, the d-axis current was adjusted until the total loss was minimized for a 

given operating point.  

Juggi Lee et al. [24] proposed a loss minimization control law that reflected the 

effects of saturation and cross decoupling. The optimized current sets were obtained from 
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experiment and summarized in a table. In another research, Juggi Lee et al. [25] proposed 

analytic method and used order reduction and linear approximation to identify the loss 

minimization solution. Two different cases were discussed therein, as the solution lied 

either within or on the boundary of the voltage constraint. The achieved accuracy was 

good enough for practical use. 

Eleftheria S. Sergaki et al. [26] presented a fuzzy logic efficiency control system 

incorporated to a standard vector control. By virtue of two fuzzy logic controllers, this 

system was capable of handling both transient and steady state operation. The search 

criterion is the minimization of the losses by simultaneously lowering the stator flux and 

satisfying the demands for speed and load. In another study, the same author et al. [27] 

proposed a hybrid control strategy which integrated a model based controller with a fuzzy 

logic search controller. The model based controller was adopted to regulate the transient 

states based on a simple generalized model with low accuracy, which provided a real 

time fast gross approximation of the optimal point. The fuzzy logic controller was used 

after the transient state, which offered a real time refinement of the optimal point during 

the steady state. 

The above literature review attempts to summarize some accomplished research 

and work on the loss minimization control of PMSM. Basically, the loss minimization 

control strategies in the literature can be classified to three categories: model based, non-

model based, and hybrid control. The model based strategy provides fast response, but it 

is sensitive to machine parameters. Non-model based control, like search controller, is 

independent of the machine model and parameters, but its slow convergence time and 

ripple problem are unfavorable in high dynamic application. The hybrid control strategy 
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combines both model based strategy and search controller so as to separately deal with 

transient and steady state conditions. It is relatively complex, however.  

4.2 Development of Loss Minimization Control 

4.2.1 Losses in PMSM machine 

In order to investigate the way of improving the efficiency of the machine, the losses in 

the machine should be examined carefully at first. The power flow in the AC machine is 

shown in Figure 4.1. 
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Figure 4.1: Steady-state power losses in an AC machine 

 For a three-phase machine, the input power is the electrical power flowing into 

the terminals. Power is then lost due to stator winding and stator core. The remaining 

power is transferred to the rotor. By deducting the rotor losses, the remaining power is 

converted into the mechanical power. The output power available to the mechanical load 

is the one that stray losses and mechanical losses are deducted. Base on the power flow in 

the machine, the different losses are briefly described as follows: 

 Copper Loss 
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The copper loss refers to the joule loss of copper winding due to the coil 

resistance. Because of the absence of rotor winding in PMSMs, the copper loss of a 

PMSM is less than that of induction machine.  

 Iron Loss 

The iron loss, also known as core loss, occurs on both the rotor and stator. It 

involves two components: hysteresis current loss and eddy current loss. The former is 

caused by energy loss in core material in its B-H loop for each cycle of operation and is 

directly dependent on the operating frequency and the operating flux density. The latter is 

the product of the induce emf generating a current in the core. It is proportional to the 

induced emf and therefore proportional to the flux density and frequency, also. The eddy 

current loss is inferior to hysteresis loss under the base frequency but becomes dominant 

in the high frequency range.  

 Stray Loss 

Stray loss accounts for the higher winding harmonics and slot harmonics loss, 

whose accuracy is difficult to calculate.  

 Mechanical Loss 

Mechanical loss consists of friction and windage loss, which will not be addressed in this 

research since it is not directly related to the motor current or flux.  

In reality, core losses and stray losses are usually electrical losses distributed 

throughout the motor. They must be taken off after the mechanical power is converted as 

there is no way to include them in the electrical model. In some cases, to simplify 

matters, stray, core and mechanical losses are grouped as "rotational losses" and all 

deducted after calculating the power converted to the mechanical system.  
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In this thesis, by employing a core loss model for control purpose, the core losses 

can be separated from the rotational losses. And the loss minimization control strategy 

will be developed to deal with copper loss and core loss in the machine.  

4.2.2 Equivalent Circuit Model with Core Losses 

For control purposes, the core loss is modeled as a resistance, known as core loss 

resistance, in the equivalent circuit, as shown in Figure 4.2. 
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Figure 4.2 : Equivalent circuit of PMSM incorporating core losses 

 The input stator currents and voltages are derived as: 
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The torque expression in terms of    and     is given below: 
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The net core losses       is computed as: 
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(4-5) 

The copper loss      is: 
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(4-6) 

The final power losses including both copper loss and core loss can be represented as: 

             

 

(4-7) 

Plot of the total losses in the dq-axis plane is as shown in Figure 4.3. 

 

Figure 4.3 : Plot of losses versus d-axis current 
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It can be seen that the total loss is concave curve with respect to d-axis current, 

which means that there is certainly a minimum point. Also, it can be noted that for certain 

operating point, many combinations of dq-axis current can support the operation, but 

there is only one combination that will give the minimum total loss.  

4.2.3 Loss Minimization Control  

With the voltage and current constraints, the loss minimization is formulated as a 

constraint optimization problem for a given torque    and speed    as: 

Minimize objective function                  

Subject to 
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(4-10) 

In order to get the optimal point for the minimized losses, take derivative with respect to 

    for the total loss Pt, and make it equal to zero as: 

   

    
   

 

 

(4-11) 

It can also be represented as: 

      

    
  

    
    

 

 

 

(4-12) 

It means, the minimum total loss occurs at the point where the core loss changing rate 

equals to the copper loss changing rate. As Figure 4.3 indicates, the total loss’ optimal 
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point lies on between the minimum point of copper loss and that of iron loss, which is 

consistent with the aforementioned understanding about (4-12). 

Rearrange the equation (4-11) as: 
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(4-13) 

Due to the steady state condition, the operating point is unchanged. So, the torque 

derivative with respect to     is also zero as: 

   
    

   

 

 

(4-14) 

Rearrange the above equations as: 
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(4-15) 

Substitute (4-15) into (4-13), the relationship of the optimal point dq current is obtained 

as: 

    
           

      

 

(4-16) 

where  
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Applying quadratic solution: 
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 (4-17) 

Since the d-axis current generally is negative, this expression will be used to produce the 

optimal current for minimized losses at given operating point. Compared to other 

research work on LMC, the relationship (4-16) is a second order expression.  Considering 

the implementation, it can easily get the solution of dq current by numerical iteration. 

It is noted that the current trajectory of the LMC is dependent on the speed, which means 

that it is a trajectory family in terms of the speed. Plot of the trajectory in the d-q current 

plane is as shown in Figure 4.4. 

 

Figure 4.4. LMC current trajectory for varying speeds 

Also, the subsequent Figure 4.5 shows an example, by way of plotting, to verify 

that he LMC current trajectory gives an exact solution for loss minimization. First, the 

total loss of an example machine operating at 6000rpm with 100 Nm load is calculated 
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analytically with different dq-axis combinations. Then, the results are plotted in Figure 

4.5. The LMC for this speed is also plotted. 

 

Figure 4.5: Example plot of LMC and total losses 

As shown from the plot Figure 4.5, it can be seen that the intersection point 

between total losses and LMC current trajectory is a minimized point. 

 

4.3 Performance Analysis of LMC   

The LMC current trajectory reveals the relationship between d-axis and q-axis currents 

for optimizing losses operation. The current constraint and voltage constraint are not 

taken into account in the plot, however. In this section, the performance of the LMC 

under current and voltage constraints will be investigated. 

4.3.1 Current constraint Operation 
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(4-18) 

And substitute (4-18) into the equation (4-16), it becomes  

        
             

      

 

(4-19) 

Solve the equation, the d-q axes currents are 
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 (4-21) 

Substitute the d-q-axis currents (4-20) and (4-21) into the torque equation, the maximum 

torque for the LMC at the certain speed is  
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(4-22) 

Plot of the speed and torque curves are as shown in Figure 4.6. 

 

Figure 4.6. Torque-speed characteristic using LMC under current constraint 
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It should be mentioned that the above torque and speed characteristics do not take 

into consideration the voltage constraint. Therefore, it is only theoretical analysis with 

infinite available voltage. 

4.3.2 Voltage constraint Operation 

When speed increases to a certain value, the voltage constraint is reached. Under this 

condition, the maximum torque available for the machine is calculate by setting  
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Rearrange the equation as: 

   
  

     
 

  
   

 
           

 

  
 

 

 

 

 (4-25) 

Substitute the above expression into (4-16), and then the follow equation is obtained: 
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where  

     
   

 

  
  

       
     

  
  

       
     

 

  
   

 
   

 

  
   

Solve the above equation, and the d-q-axis currents are obtained as: 
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 (4-27) 
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 (4-28) 

Substitute the d-q-axis currents (4-27) and (4-28) into the torque equation, the maximum 

torque for the LMC at the certain speed is:  
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(4-29) 

Plot of the speed and torque curves as shown in Figure 4.7. 

 

Figure 4.7: Torque-speed characteristic using LMC under voltage constraint 

It is noteworthy that the torque-speed characteristics in this case do not take into 

consideration the current constraint. 

4.3.3 LMC Operation Performance Boundary Regions 

With both the voltage constraint and the current constraint being taken into consideration, 

the LMC operation boundary region is obtained in the following plot, which is the 

overlapped region of the current and voltage constraints. 
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Figure 4.8. LMC operation region considering both voltage and current constraints 

The plot shows that, within the low speed range, the voltage constraint is not 

reached, and the maximum available torque is determined by the current constraint. 

When motor speed goes up to a certain speed      , the voltage constraint will be 

reached, and the maximum available torque is then determined by the voltage constraint. 

For machine operating within this torque-speed envelop, the LMC can be applied 

robustly. Here,      is a critical speed for LMC, which can divide the operation region 

into current constraint operation region and voltage constraint operation region. It can be 

calculated from solving the current constraint, voltage constraint, and LMC optimal 

current trajectory equations. 

4.4 Global Solution for Efficiency Improvement 
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The LMC in the former section is derived from the equivalent circuit with core loss 

resistance. The optimal current trajectory described by equation (4-16) can be applied in 

both SPM and IPM. Rewriting equation (4-16) as: 
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where  
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For SPM, it can be viewed as a special case with: 

      

Substituting it into equation (4-30), the optimal current trajectory becomes: 

     
               

  
        

           
 

 

 

(4-31) 

Equation (4-31) shows that the LMC optimal current for SPM is only related to d-axis 

current. The torque production of SPM is: 

   
 

 

 

 
       

 

 

(4-32) 

The negative d-axis current does not affect the torque production. It just reduces the total 

flux linkage in the machine and the core loss. Even though the presence of d-axis current 

will increase the total current and then copper loss, it is still possible to minimize the total 

loss as discussed in Section 4.2.3. 
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4.4.1 MTPA Derivation  

The MTPA can minimize the copper loss and can also be derived from the LMC current 

trajectory (4-16). Taking the core loss resistance    as infinite, or zero speed, which 

means to ignore the core losses, it can be seen that coefficients of the equation (4-16) 

become: 

            

        

             

    

And (4-16) becomes: 
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(4-33) 

From (4-33), 
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(4-34) 

The equations (4-34) and (3-16) are exactly the same. In other words, the MTPA also 

satisfies the LMC current trajectory. LMC is developed to optimize both copper loss and 

core losses. It makes sense to take the MTPA as a special case of LMC ignoring the core 

losses component. 

4.4.2 MTPV Derivation 

When the speed goes to infinite, the core losses become dominant, and the copper loss 

can be ignored. Use the LMC current trajectory (4-16), and set the speed to infinite, or 

zero phase resistance   . The equation coefficients of (4-16) become: 
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And (4-16) becomes: 
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Rearrange the equation (4-35) as: 
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(4-36) 

 

The equations (4-36) and (3-34) are identified as the same. In this way, the MTPV also 

satisfies the LMC current trajectory. The MTPV can be taken as a special case of LMC, 

which focuses on minimizing the core losses instead of the copper loss in MTPA. 

4.4.3 Global Solution 

The LMC optimal current trajectory (4-16) gives a relationship between dq-axis currents 

for loss minimization. It is derived based on the equivalent circuit with modeling the core 

loss as a resistance. MTPA and MTPV are two special case of LMC, which assure the 

minimized copper loss and the minimized core loss respectively and also satisfy the 

relationship of (4-16).  

In addition, the synchronous machines have similar equivalent circuits with core 

loss models. The LMC might be applicable to those machines such as synchronous 

reluctance machine (SRM). To a certain extent, SRM can be viewed as a special case of 
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IPM, which has no permanent magnet exciting on rotor. The equivalent circuit of SRM is 

almost the same as IPMs except PM flux    . There is no doubt that the LMC derived 

from IPM can be applied to SRM with     being set to zero in the optimal current 

relationship.  

The above discussion leads up to the conclusion that the LMC optimal current 

trajectory (4-16) can be taken as a global solution for the efficiency enhancement control 

strategy of all the synchronous machines. 

4.5  LMC Strategy over Entire Speed Range 

The efficiency enhancement control of PMSMs over full speed range can be developed 

according to the LMC and its operating boundary. 

 

Figure 4.9: LMC current trajectory and constant load 
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As shown in Figure 4.9, with speed increasing, the LMC current trajectory moves 

from MTPA to MTPV. The torque capacity decreases with increasing speed due to 

current and voltage constraints. Based on the operation region and torque speed capacity 

of LMC, the flow chat of the proposed control strategy is shown in Figure 4.10. The 

strategy is used to generate dq-axis reference current for the machine operating over the 

entire speed range. 
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Figure 4.10: Flow chart of efficiency enhancement control strategy 

 The operation region of LMC can be divided into two regions by the critical 

speed      as defined in Section 4.3.3. For speed less than     , the maximum torque is 

determined by the current constraint. When the speed goes up to above     , the 

maximum torque will be determined by the voltage constraint. Regarding the operation 



 

52 

outside the torque speed envelop, the flux weakening control has to be applied. For 

example, when a machine runs at the 6000 rpm speed with 60 Nm load, a direct 

application of LMC at this operating point gives the point A in Figure 4.9. However, the 

speed in the example is greater than     , and the machine in question indeed operates in 

the voltage constraint region. The maximum available torque with LMC for this speed is 

on the point C, which is less than the command load torque. That means point A is out of 

the voltage constraint of 6000 rpm, and the operation point is out of LMC torque speed 

envelop. Therefore, the LMC optimal current cannot apply to the operating point given in 

the example. Then the control has to transit to flux weakening, and force the current 

along the constant torque curve to move to the point B, where the voltage constraint can 

be satisfied. It can be seen that there are still a lot of combinations of dq currents that can 

afford this operation point between point B and D. In terms of the efficiency 

enhancement, the point B will be chosen because it is closer to the LMC current 

trajectory of 6000 rpm, which can still provide a relatively minimized total loss for this 

operating point under voltage and current constraints. To get the point B, it is necessary 

to solve the constant torque equation with voltage constraint. Since it is a fourth order 

equation, the approximated solution from [25] is used in this control strategy. 
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CHAPTER 5 CONTROL SYSTEM SIMULATION MODEL 

DEVELOPMENT AND RESULTS 
 

In order to analyze and test the control algorithm, the PMSM drive model is built in 

Matlab/Simulink. This chapter presents the model developed in Simulink. The simulation 

results of the control strategy are included and analyzed at the end of this chapter. Figure 

5.1 shows the block diagram of a basic drive system of PMSM. Table 5.1 lists the 

parameters of the three machines used in the simulation. 
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Figure 5.1: Block diagram of a basic drive system 

 

Parameters Motor A Motor B 

Rs (Ω) 1.93 0.0295 

Rc (Ω) 330 47.62*sqrt(wr) 

Ld (H) 42.44e-3 3.75e-4 

Lq (H) 79.57e-3 8.35e-4 

    (V.s) 0.314 0.07 

Vdc (V) 300  300 

Irate (A) 4.5 268 

Pole number 4 6 

Rated torque (Nm) 4 133 

Rated speed (RPM) 1800 2600 

Table 5-1: Parameters of Modeled Machines 
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5.1 Development of the Simulation Model 

5.1.1 PMSM Model with Core Loss 

Since the built-in PMSM block in Simulink does not include the core losses, a testing 

model has to be constructed. According to the equivalent circuit in Figure 4.2, the 

dynamic equation for the PMSMs is rewritten as:  
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In the state form, it is: 
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(5-2) 

The electromagnetic torque is: 
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(5-3) 

The mechanical part dynamic equation is: 

    
 

 
                

 

 
   

 

(5-4) 

A PMSM model with core loss has been built in Simulink, based on (5-1) and (5-2), for 

simulation purpose. Figure 5.2 shows the PMSM Simulink model, which includes 

electrical dynamic subsystem, mechanical dynamic subsystem, and measurements block.  

The outputs of copper loss and iron loss are calculated by (4-5) and (4-6). The efficiency 

is calculated by (2-12) and (4-7). 
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Figure 5.2.  PMSM Simulink Model 

By way of inserting the model in the Simulink demo to replace the build-in PMSM block, 

running the simulation and comparing the results, the model is validated.  

5.1.2 Current Controller Model 

The current controller is used to regulate the machine current so that the latter always 

tracks the reference command. The output is the voltage reference to the inverter. The 

current loop is the inner loop of the drive system, and it should have a response faster 

than that of the outer speed loop. Rewrite the voltage equation (5-1) as: 
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(5-5) 

 

(5-6) 

Take the backemf component as disturbance, and apply the decoupling feed forward 

compensation, the voltage equation can be simplified to  

                 

                 
 

(5-7) 

(5-8) 

Applying Laplace transformation, the s domain transfer equations are obtained as 
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(5-9) 

 

(5-10) 

The PI current controller is used in this thesis works, as shown in Figure 5.3. 
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Figure 5.3 : Current Controller  

 

In order to tune the PI-controller, the d-axis current loop in Figure 5.4 is used. 
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Figure 5.4: d-axis current loop for PI tuning 

The transfer functions for PI-controller are represented as: 

          

        

    
 

 

 

(5-11) 

The power inverter can be modeled as: 

        
 

       
 

 

 

(5-12) 
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The motor plant transfer function is: 

      
 

  

 

     
    

  

  
 

 

 

(5-13) 

For the measurement feedback, it can be modeled as: 

       
 

      
 

 

 

(5-14) 

By rearranging the current loop, unity feedback can be achieved, as shown in Figure 5.5. 
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Figure 5.5: Unity feedback current loop 

The pre-filter is used with transfer function                

 

Thus, the open loop transfer function then can be obtained as: 

          

        

    
 

 

       
  

 

  

 

     
  

 

      
  

 

 

 

(5-15) 

Generally, the time constants for inverter      and measurement     are set to 50% of the 

switching frequency of the inverter, as 0.5   . Compared with machine time constant, 

they are much smaller, and can be approximated as one, first-order transfer function, with 

time constant equal to the sum of each of them. Also, by applying pole-zero cancellation, 

the slowest pole of the PMSM can be cancelled by the PI-controller. As a result, equation 

(5-15) becomes: 

       
  

      
 

 

      
  

 

(5-16) 
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In order to calculate the PI-controller gains, the Modulus Optimum (MO) criterion by 

Kessler [28] is applied. Then, 

    
     

    
        

 

 

(5-17) 

For the simulated motor A, the bode plot and step response of the current loop are shown 

in Figure 5.6. 

 
(a) 

 
(b) 

Figure 5.6: Bode plot and step response of current loop 

It shows that the closed loop system is stable with 63.6° phase margin and 19.1dB 

gain margin. The step response has 0.0303ms rising time, 0.229ms settling time, and 
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4.56% overshoot.  The q-axis current controller can be tuned in the similar way as d-axis 

current loop.  

5.1.3 Speed Controller Model 

Compared with the inner current loop, the speed loop is slower. In this thesis, the speed 

loop is used to produce the torque command to the control strategy block. From 

mechanical torque speed equation: 

                (5-18) 

Take the load torque    as disturbance, and neglect the friction viscous. The transfer 

function of motor can be represented as: 

      
  

  
 

 

 

(5-19) 

where    is torque constant.  

The controller design is based on the speed loop shown in Figure 5.7. 
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Figure 5.7: Speed loop with unity feedback 

Since the current loop is generally 10 times faster than the speed loop, it can be 

approximated as a first order transfer function 

        
 

       
 

(5-20) 

The measurement transfer function is  

       
 

      
 

(5-21) 
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The open loop transfer function then can be obtained as  

          

        

    
 

 

      
  

 

       
 
  

  
 

 

(5-22) 

 

In order to simplify the transfer function, the delays caused by the current loop and the 

measurement can be approximated to a first order transfer function with time constant 

   as the sum of the delays. Then the open loop transfer function (5-22) becomes 

       
             

             
 

 

 

(5-23) 

Applying the Optimum Symmetric Method (OSM) [29], the optimal controller gain can 

be calculated as 

    
 

     
         

 

 

(5-24) 

For simulation motor A, the bode plot and step response of the speed loop are shown in 

Figure 5.7. 

 
(a) 
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(b) 

Figure 5.8: Bode plot and step response of current loop 

The results show that the speed loop response is slower than that of the current 

loop. And it is noted that the step response has a large overshoot. In order to avoid the 

saturation of the controller output, the anti-windup technique can be used [30]. 

5.2 Machine Model Validation 

 

A drive system has been built in Simulink using the PMSM model incorporated with core 

loss. It is shown in Figure 5.9. 

 

Figure 5.9:  PMSM drive system in Simulink 
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The whole system includes current controller, speed controller and space vector 

PWM blocks. The LMC and MTPA blocks are used to generate the dq-axis current 

reference.   

To validate the machine model, the simulation is carried out on Motor A first at 

different operating conditions mentioned in following sections. 

5.2.1 No-load Test Case Simulation 

The speed response is investigated with zero d-axis current, at no load. At t = 0, the rated 

speed command 188 rad/s is applied. And at t = 2.5s, the speed decreases to 120rad/s. 

The results are presented in Figure 5.10. 

    
                    (a) speed response                                         (b) d-q-axis current     

        
                    (c) phase current                                             (d)  d-q-axis voltage                                                              
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                     (e) phase voltage                                            (f) torque response 

 

Figure 5.10:  No-load speed response simulation results 

The results indicate that the drives have fast response corresponding to a rapid 

speed transient. 

5.2.2 Load Disturbance Test Case Simulation 

Subsequently, the load disturbance test is performed.  The motor runs at rated speed, and 

a rated load is applied at t = 1.5s and removed at t = 3s. The results are shown in Figure 

5.11. 

     
                     (a) speed response                                        (b) d-q-axis current 
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                    (c) phase current          (d) d-q-axis voltage 

      
                     (e) phase voltage                                            (f) torque response 

Figure 5.11: Load disturbance response simulation results 

As the results indicate, the torque increases quickly to a high value when the load 

is applied. It can also be seen that the q-axis current respond quickly to the rated current, 

which can support the rated speed and load condition. Also, the phase voltage has the 

same response as the current. The speed overshoot is a little bit large when the rated load 

is applied and removed. This can be improved by weakening the integrating gain in the PI 

speed controller.  

5.2.3 Effect of d-axis Current on Loss Simulation 

In order to investigate the effect of the d-axis current on the losses, a simulation is 

conducted by applying a continuously changing d-axis current at the rated speed and the 

rated load. Here, a ramp block in Simulink is used as d-axis current command. The slope 
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of the ramp signal is set as negative, and the initial value is set as zero. In other words, 

the d-axis current is decreased from zero to the negative set value. The simulation results 

are shown in Figure 5-12. 

     
                     (a) d-q-axis current                                          (b) torque response 

     
                      (c) losses                                                         (d) efficiency 

Figure 5.12. Effect of the d-axis current on loss simulation 

The simulation results show that total electrical loss is a function of the d-axis 

current. By injecting different id, the drives regulate the q-axis current to ensure the 

machine running at the command operating point. It can be seen that the varied 

combinations of id and iq give losses at different levels as well as changing machine 

efficiency. Based on this observation, the loss minimization control can be achieved by 

appropriately adjusting the id. 
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5.3 LMC Simulation 

In order to test the LMC control strategy, the simulation will be carried out in different 

cases. First, the steady state operation performance is simulated. And then the transition 

performance between LMC and FWC is investigated. Last, the drive cycle simulation is 

undertaken. 

5.3.1 Steady State Simulation 

The steady state simulation is performed on Motor A. It runs at the rated speed and the 

rated load. The simulation time is 4 sec with LMC being applied for the first 2 seconds 

and MTPA for the rest of the time. The results are shown as Figure 5.13. 

 

     
                        (a) speed response                                            (b) torque response 

      
                              (c) phase current                                             (d) phase voltage 
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                               (e) d-q current                                                 (f) flux 

    
 (g) loss                                                            (h) efficiency 

 

Figure 5.13: Steady state simulation for LMC 

It can be seen from the simulation results that LMC have fast speed and torque 

response. When LMC is applied to the motor, id goes to more negative than that of 

MTPA, and the phase current is larger than MTPA. However, since the id reduces the 

total machine flux, the phase voltage of LMC becomes lower than MTPA. The loss 

results also show that the copper loss is larger than MTPA due to larger phase current. 

The iron loss is inferior to the one of MTPA, however, and their difference is greater than 

the difference in copper loss. The total loss is found to decrease, and then the efficiency is 

improved. This steady state simulation validates that the LMC has better performance 
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than MTPA from the efficiency point of view, while the former maintains the same speed 

and torque response as the latter. 

5.3.2 Simulation for Operating Above Base Speed 

When the machine operates at above base speed, the MTPA cannot be applied anymore. 

The LMC still can be used unless the voltage constraint is reached. As shown in Figure 

5.14, the motor B will operate at 6000 rpm with 20 Nm load, and there are many options 

for this condition between point A to point D along constant torque curve. Generally, flux 

weakening control will choose point A, LMC will take point B, and MTPV will use point 

C. In this simulation, the performance of the three controls will be compared. 

 

Figure 5.14: Operating point of FWC, LMC, and MTPV 

In this simulation, Motor B operates above the base speed, and the performance of 

LMC is compared with that of FWC and MTPV.  
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                        (a) speed response                                          (b) torque response 

    
                        (c) phase current                                                (d) d-q current 

    
                        (e) flux                                                            (f) back EMF 
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                        (g) losses                                                          (h) efficiency 

 

Figure 5.15: Simulation comparison of MTPV, FWC, and LMC 

The simulation results in Figure 5.15 show that MTPV, FWC and LMC all can 

support the operating point above base speed. In term of losses, MTPV have minimized 

core losses. LMC provides highest efficiency. The performance of FWC is between the 

aforesaid two. It is noteworthy that for MTPV, the d-axis flux becomes a little bit 

negative. As shown in Figure 5.14, the point C is located on the left side of the voltage 

constraint center point ( 
   

  
, 0). Since in the simulation, Motor B has a 

   

  
 inferior to 

the maximum phase current, it theoretically has an infinite extended speed range. It is 

thus possible for the the d-axis flux to be negative. In real application, in order to avoid 

the demagnetization of the permanent magnet, there are certain limiting factors for the 

allowed maximum demagnetizing current.  

5.3.3 Transition Simulation 

This simulation is to test the performance of transition between LMC and FWC. The 

speed is set to 6000 rpm, and the load rises from 0 to 60 Nm. Since the maximum 

available torque of LMC for 6000 rpm is 38 Nm, the control should transfer from LMC 
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to FWC after the load toque becomes greater than 38 Nm. The results are shown as 

Figure 5.16.  

    
                        (a) speed response                                          (b) torque response                      

    
                         (c) phase current                                            (d) d-q current 

    
                        (e) flux                                                            (f) control mode 
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                        (g) back EMF                                                   (h) efficiency 
 

Figure 5.16: Transition simulation results 
 

 

The simulation results in Figure 5.16 show that the speed and the torque have a 

good tracking of the command. The transition from LMC to FWC happened at 3 second, 

where the load torque rises to 36 Nm. After that point, the LMC current trajectory goes 

outside the voltage constraint. So the control has to transfer to FWC. It is shown in back 

emf result that the voltage goes up to around 173 V, which is the voltage constraint for 

Motor B. In order to keep the machine working with voltage constraint, FWC forces the 

current to more negative so as to weaken the flux.  The flux result also shows that the 

total flux decreases after FWC being applied until the machine reaches steady state. The 

control mode plot is used to show the changes in control mode. It is consistent with the 

simulation condition. During the transition, there is a short transient period as shown in 

the dq current results. 



 

73 

 

 

Figure 5.17: Transition simulation current trajectory 

By plotting the dq current simulation results in the dq current plane, it is observed 

that the current exactly follows the LMC curve for 6000 rpm with load torque increasing. 

After the maximum available torque is reached at the point A, the current trajectory is 

going to follow the FWC’s current trajectory, which includes the intersection points 

between the torque and voltage constraint curves. In other words, it is on the voltage 

constraint eclipse.  

5.3.4 Vehicle Drive Cycle Test Case Simulation 

This test is to simulate one simple operating cycle of motor. The speed profile and load 

torque profile are shown in Figure 5.18. 
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Figure 5.18: Speed and torque profile of drive cycle 

The machine starts up with large rated load 134 Nm, and speeds up to the rated 

speed 2600 rpm. Once the speed is reached at 2 second, the load torque decreases 

gradually to 60 Nm at 4 seconds. And then the machine speeds up again to 6000 rpm with 

constant load torques 60 Nm. The machine stays at the 6000 rpm from 6 second, and the 

load torque begins to reduce. At 8 second, the speed of the machine also decreases to zero 

with load torque. The simulation results are shown as Figure 5.19. 
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                        (a) speed response                                          (b) torque response                      

   
                         (c) phase current                                            (d) d-q current 

   
                        (g) efficiency                                                   (h) control mode 

 

Figure 5.19: Drive cycle simulation results 

It is observed that the cycle operation includes the steady state and the transition 

between FWC and LMC. The speed and torque responses appear to be fast and stable 

during the whole cycle. The current trajectory in dq current plane is plotted in Figure 

5.20. 
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Figure 5.20: Drive cycle simulation current trajectory 

When the simulation starts with the load torque 134 Nm, the speed goes up to the 

rated value within 2 seconds. It is noted that the maximum available torque of LMC for 

the rated speed is 133Nm. For speed less than the rated value, the LMC torque capacity is 

higher, which can be seen from the torque speed envelop as described in Section 4.3.3. 

Therefore, the control gives the command current following the intersect point of LMC 

and torque curve even when the speed exceeds the critical speed     . It is 

corresponding to the region from point A to point B as shown in Figure 5.20. Since the 

load torque is 1 Nm higher than the rate torque, there is a transition between LMC and 

FWC around 2 second, which is shown in the simulation dq current and control mode 

results. After the rated speed is reached, the load torque begins to decrease at 2 second. 
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Once the load torque goes down to less than the rated value, the control comes back to 

LMC of the rated speed, and then the current should keep following the trajectory that is 

the interval from point B to point C. At 4 second, the load torque stays at 60 Nm while 

the speed goes up to 6000 rpm. During the rise of the speed, the transition occurs again at 

5 second. From Figure 5.20, between point C and point D, the D’ represents the intersect 

point of LMC for 4100 rpm with constant torque curve of 60 Nm, which means that the 

maximum torque capacity for 4100 rpm LMC is 60 Nm. When speed goes over 4100 

rpm, LMC cannot support this torque. So the control has to transfer to FWC. This 

transition is also shown in the dq current and control mode results. At 6 second, the speed 

stays at 6000 rpm, and the load torque decreases. Similar to the transition simulation in 

Section 5.3.3, the 6000 rpm LMC can support the maximum 38 Nm torque. Before the 

load torque decreases to less than 38 Nm, the control mode is still FWC. It is the region 

from point D to point E. At 7 second, the load torque becomes less than 38 Nm, and the 

control transfers back to LMC of 6000 rpm, which is region between point E and point F. 

Finally, the speed and the load torque decrease together at 8 second, and reach zero at 10 

second. The current trajectory follows the intersect point between LMC and torque curve, 

for example, point G and point H at lower load and lower speed. 

It can be seen that the simulation dq current result is exactly following the 

trajectory of the proposed efficiency enhancement control algorithm. The result shows a 

high average efficiency around 92.6% for the whole cycle operation. 

5.4 Summary 

In this chapter, the PMSM model with core loss resistance is built within the simulation 

environment of Matlab/Simulink. With optimal design, the current and speed controllers 
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are also developed. The whole drive system for PMSM is finally implemented in the 

Simulink.  Two test machines are used to test the control strategies. The steady state 

simulation is firstly performed with two cases, which include the operation below base 

speed and that above base speed. The cases are corresponding to the current and voltage 

constraint regions. The simulation results show that LMC can provide better efficiency if 

compared with MTPA, MTPV and FWC. Also, the performance of the transition between 

LMC and optimal FWC is investigated in voltage constraint region. Finally, a simple 

drive cycle is simulated to test the proposed control strategy in a wide speed range with 

load variation. Since the proposed control strategy is to generate the optimal current 

trajectory for loss minimization of the machine, better efficiency can be achieved if the 

drive system can track them properly. The simulation results suggest satisfactory tracking 

performance of the drive system, while it still can maintain a good speed and torque 

response. 
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CHAPTER 6 EXPERIMENTAL TESTS AND VERIFICATION 

In this chapter, a laboratory designed surface mounted PMSM is used to test the proposed 

algorithm. The simulation of this lab SPM is performed at first. Then the experimental 

work is conducted by employing the efficiency enhancement control. The experimental 

results are compared with simulation results and discussed in detail. 

6.1 Simulation of SPM 

The prototype SPM parameters are shown in Table 6.1. 

 

Parameters Lab SPM 

Rs (ohm) 0.1718 

Rc (ohm) Measured 

Ld (H) 3.36e-3 

Lq (H) 3.36e-3 

    (V.s) 0.591 

Vdc (V) 300 

Pole number 4 

Rated torque (Nm) 27 

Power rating (hp) 5 
 

Table 6-1: Prototype SPM Parameters 

Before the simulation, the core loss resistance has to be identified.  There are 

different methods can obtained the core loss resistance [31,32]. In this research work, 

based on the finite element analysis (FEA) results provided by the designer Maged, the 

core loss resistance is calculated. Table 4 shows the calculation results. The core loss 

resistance with respect to speed is also plotted in Figure 6.1. Using least square 

algorithm, the expression of the core losses resistance is approximated as a linear 

function of speed: 
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Speed 

(Rpm) 

Stator iron 

loss 

(W) 

Rotor iron 

loss 

(W) 

Totoal Iron 

loss 

(W) 

BackEmf 

(V) 

Rc 

(ohm) 

200 2.133 0.00001361 2.13301361 30.77 443.8785279 

400 4.55 0.00005428 4.55005428 61.53 831.8920897 

600 7.253 0.0001215 7.2531215 92.3 1174.264645 

800 10.24 0.0002146 10.2402146 123.1 1479.844727 

1000 13.5 0.0003324 13.5003324 153.8 1750.88379 

1200 17.05 0.0004738 17.0504738 184.6 1996.318688 

1400 20.87 0.0006372 20.8706372 215.4 2219.959809 

1600 24.96 0.0008213 24.9608213 246.1 2422.6084 

1800 29.32 0.001024 29.321024 276.9 2609.721239 

2000 33.95 0.001245 33.951245 307.7 2782.230091 
 

Table 6-2: FEA results and core losses results 
 

 

Figure 6.1: Core losses resistance 

The simulations are performed on the lab SPM as illustrated in following sections. 
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6.1.1 No-load Simulation 

In this section, the no load simulation is performed by stepping up the speed of the lab 

machine to1000 rpm. The loss performance of LMC and MTPA is investigated and 

compared. The results are shown in Figure 6.2. 

 
(a) speed response  

 
(b) d-q current 

 
(c) loss 

Figure 6.2: No-load simulation of lab SPM 
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It is observed that MTPA and LMC have same performance in terms of speed and 

current response. The result shows that LMC has a higher copper loss. However, the core 

loss in LMC cancels the increasing copper loss and gives a lower total loss in the end. It 

should be noted that in the simulation, the improvement of core loss is around 0.1W and 

that of total loss is about 0.05W due to the small core loss design of the lab machine. 

6.1.2 Steady-state Simulation 

The steady state load simulation is carried out on the lab SPM with 25Nm load and 

1000rpm speed. Initially, by applying the MTPA control strategy, which is zero id current 

control for SPM, the command speed is applied to the machine with the load. At 0.5 

second, the control changes from MTPA to LMC. The two control strategies are 

compared in terms of performance. The simulation results are shown in Figure 6.3. 

 

 
(a) speed response 
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(b) d-q current 

 
(c) loss  

Figure 6.3: 1000RPM with full load simulation of lab SPM 

Since the torque of SPM is only related to q-axis current, the id variation does not 

have any effect on the torque production. The results suggest that the id becomes a little 

negative during LMC control, but maintains as zero for MTPA. There are no changes on 

the torque and speed response as shown in the results. The flux becomes lower during 

LMC due to negative id current, and then the core loss in LMC is lower than that in 

MTPA. The result shows that MTPA has 153.4 W total loss, 138.51 W copper loss and 

around 14.85 W core loss. When LMC is applied, the optimal id is around -0.3A. The 
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core loss decreases to 14.72 W, and copper loss goes up to 138.55 W.  However, the core 

loss in LMC cancels the increasing copper loss and gives a lower total loss in the end. It 

should be noted that in the simulation, the improvement of core loss is around 0.13W and 

that of total loss is about 0.1W. Also, it is observed that the optimal current for 1000rpm 

without load and that with full load is the same. This can be explained by the solution of 

LMC for SPM as shown in the equation (4-31), which is rewritten here:  

     
               

  
        

           
                     

 

 

 

Viewed from the equation, the optimal solution for SPM is not related to the q-axis 

current. In other words, it is not related to the load.  

Figure 6.4 shows 1600rpm and 2000 rpm with full load simulation results.  

     
                (a) 1600rpm speed response                              (b) 2000rpm speed response 

    
                (c) 1600rpm d-q current                                     (d) 2000rpm d-q current 
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                        (e) 1600rpm loss                                          (f) 2000rpm loss 

Figure 6.4: 1600RPM and 2000RPM with full load simulation results 

As shown in Figure 6.4, the optimal currents for the two high speed cases are -

0.54A and -0.62A respectively.  It can be seen that the improvement of loss becomes 

relatively larger than that in the 1000rpm case thanks to high speed with high core loss. 

However, the improvement in itself is still small due to the small core loss design of the 

lab machine, which gives around 0.2W and 0.4W loss improvement for 1600rpm and 

2000rpm. 

 

6.1.3 FEA Simulation and Verification 

In order to validate the algorithm, the FEA experiments are also conducted on the lab 

SPM with full load at three speeds. With gradually decreasing the d-axis current, the total 

loss is recorded.  The results are shown in Table 4: 
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Speed 1000RPM 1600RPM 2000RPM 

id (A) Ptotal (W) Pcore (W) Ptotal (W) Pcore (W) Ptotal (W) Pcore (W) 
0 153.3404915 14.8404915 165.581215 27.081215 175.091843 36.591843 

-0.1 153.3004879 14.8004879 165.511206 27.011206 175.00183 36.50183 

-0.15 153.2804862 14.7804862 165.481202 26.981202 174.951823 36.451823 

-0.3 153.2204809 14.7204809 165.381189 26.881189 174.821803 36.321803 

-0.6 153.7104711 14.6104711 165.383165 26.681165 174.661766 36.061766 

-1 154.3604585 14.4604585 166.321134 26.421134 175.111719 35.711719 

-1.5 155.8804443 14.2804443 167.691099 26.091099 176.871666 35.271666 

-2 158.2004319 14.1004319 169.871068 25.771068 178.94162 34.84162 

-2.5 161.2204207 13.9204207 172.75104 25.45104 181.721578 34.421578 

-3 164.7304105 13.7304105 176.131015 25.131015 184.99154 33.99154 

Improvement of loss compare to id=0 

Loss 

(W) 

0.12 0.2 0.43 

 

Table 6-3: FEA simulation results 

Also, the results are plotted as Figure 6.5: 

 
(a) 1000rpm FEA result 
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(b) 1600rpm FEA result 

 
(c) 2000rpm FEA result 

Figure 6.5: FEA total loss plot for 1000rpm, 1600rpm, and 2000rpm 

The result for 1000rpm shows that the optimal d-axis current happens at around -

0.3A, and there is an around 0.12W improvement of loss compared to zero id. For 

1600rpm, the optimal id is between -0.5A and -0.6A. For 2000rpm, the optimal id is 

between -0.6A and -1A. The loss improvement is 0.2W and 0.43W respectively.  This 

result is consistent with the simulation result.  

6.2 Experimental Testing and Verification 
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6.2.1 Experimental Test Set-up 

The setup of the experiment is shown in Figure 6.5, which includes power supply, 

inverter, dSpace control system, lab SPM, and load system.  

DC
AC

PMSM Load

DC 

Power 

Supply

dSPACE System

Current 

Sensor
EncoderMeasurement

 

Figure 6.6: Experiment setup block diagram 

The dSPACE system provides a convenient environment to support model-based 

control design and real time hard-in-loop (HIL) simulation. It can use the 

Matlab/Simulink to develop the controller model, and the output signal will be sent to fire 

the inverter. The feedback from encoder, current sensor and other measurements is sent 

via the A/D port to the system. All the calculation and control processes are performed in 

the Matlab/Simulink. The parameters of the experiment system are listed in Table 5. 

 

Sampling time (sec) 2e-5 

Switch frequency (KHz) 5 

DC bus voltage (V) 250 

Table 6-4: Experiment parameters 
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6.2.2 No-load Test 

As observed from the simulation results, LMC gives the best optimal current in terms of 

loss even though the improvement of the lab SPM is small. In order to capture the small 

improvement of the loss, the experiment is at first performed with constant speed 800rpm 

with no load. The id is swept from 0A to -5A with 0.2A step, and the input power is 

recorded. Taking the average of the input powers for different ids so as to eliminate the 

ripple, the results are plotted as Figure 6.9. 

 

Figure 6.7: Input power result for varied id 
 

The input power waveform of ids equal to -0.2A, -0.4A and -0.6A is shown in 

Figure 6.10. 
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Figure 6.8: Input Power waveform for id = -0.2A, -0.4A and -0.6A 

The results show that the input power decreases until the id becomes -0.6A. 

Subsequently, the input power increases. The minimum input power happens between -

0.4A and -0.6A. The small improvement of loss can be seen from the power waveform. 

From the simulation, the 1000rpm optimal current is around -0.3A, and the optimal 

current is only dependent on the speed for SPM. Therefore, for 800rpm, the optimal 

current should be larger than -0.3A. The discrepancy in the results is possibly caused by 

the mismatched parameters. The variation of parameter will be addressed later. 

6.2.3 Steady-state Load Test 

The steady state load test is conducted by running the machine with light load at 

1000rpm. Decrease the d-axis current from zero with step -0.5A, and the phase current 

and input power waveforms are recorded. The results are shown in Figure 6.11. 
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(a) phase current 

 
(b) input power 

Figure 6.9: Steady-state load test results 

The results show that the phase current increases with negative current injection. 

The input power decreases a little bit when the id is -0.5A and increases at id equal to -

1A. The first three-step waveform captures the improvement of the input power even 

though it is very small. The test suggests that the minimum power occurs at the point 

around -0.5A. Compared with the simulation result -0.3A, a discrepancy also occurs with 

same error direction with no load test. Despite that, the test proves that it is possible to 

improve the total loss performance with certain negative id injection.  

 

6.3 Discussion 
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The simulation results in Matlab/Simulink and FEA are essentially consistent. But they 

both suggest that the improvement of the power is small even though LMC gives the best 

efficiency optimal current. It is hard to capture the small improvement of the power due 

to the design of the lab SPM. The experiment results do not show a significant 

improvement of the power, and the optimal current point is not exactly matched with the 

simulation. The discrepancy regarding the optimal current point is probably caused by 

measurement errors or parameter mismatches. As a matter for fact, the model based LMC 

is heavily dependent on the machine parameters. The optimal relationship between d-q 

currents provides a generalized solution for efficiency enhancement, but it can be seen 

that the hyperbolic equation’s coefficients include the machine parameters. The effect of 

the parameter variation on LMC is analyzed later. 

6.3.1  Effect of Core Loss Resistance 

By varying the iron loss resistance from 60% to 140% of the nominal value, the copper 

loss, iron loss, and total loss are plotted as Figure 6.12. 

 

Figure 6.10. Effect of core loss resistance on the total loss 
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It is observed that the copper loss Pcu is not affected much, but the iron loss Piron 

has significant changes. And the total loss apparently shifts to the bottom right direction. 

Also, the minimum total loss point as marked (*) in the plot shifts to the right. In other 

words, the optimal point for the minimization of loss moves to the small negative d-axis 

current. Plot the LMC in dq current plane as Figure 6.7. 

 

Figure 6.11: LMC with variation of Rc 

LMC moves to right with increasing Rc, which is consistent with the former 

discussion. Also, for the experiment results, the total loss is larger than the simulation and 

FEA results, which indicate that the real machine has smaller core losses resistance. This 

probably explains why all the optimal currents are less than the simulation results. In 

other words, the optimal current shifts to left due to small core loss resistance. The effect 

of the stator resistance is plotted in Figure 6.14.  
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Figure 6.12: LMC with variation of Rs 
 

It shows that the stator resistance has similar effect on LMC as core loss 

resistance. To be more exact, they both affect the copper loss instead of the core loss. The 

optimal point of LMC moves to the right side of small negative d-axis current. 

6.3.2 Effect of q-axis Inductance 

In the PMSM, the inductance is not constant in fact. Instead, it is affected by cross 

coupling and saturation issues. Especially, the q-axis inductance changes significantly 

along with saturation. As a result, the variation of q-axis inductance also has impacts on 

the total loss and the optimal loss points, which is plotted as Figure 6.9.  
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Figure 6.13. Effect of q-axis inductance on the total loss 

 

The plot shows that the decrease of Lq will shift up the total loss curve and shift 

the optimal loss point to left along the d-axis current, which means that the optimal point 

for d-axis current will be of larger negative value. When the machine flux becomes 

saturated, for the same load and the same speed, the current injected to the machine will 

be larger than that in non-saturation condition. This explains why the copper loss and the 

total loss have significant changes. Compared with general control strategy, LMC always 

has negative d-axis current, which reduces the machine’s total flux. It helps to decrease 

the saturation extent and then the variation of Lq. 

Changes are observed for LMC trajectory in Figure 6.16, as well. LMC shifts to 

right significantly when the Lq decreases to 60% of nominal value. For example, the 

optimal point of 60Nm load with 2600 rpm moves from point A to point B. 
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Figure 6.14: LMC with variation of Lq 

For the d-axis inductance, it is generally taken as constant in PMSMs when 

compared to q-axis inductance. Its effect is plotted in Figure 6.17. 

   
 

Figure 6.15: LMC with variation of Ld 

It can be seen that LMC shifts to bottom left with the Ld decreasing from 140% to 

60% of nominal value. The effect of Ld on LMC is not as much as that of Ld, 

nevertheless. 
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6.3.3 Effect of Permanent Magnet Flux  

The effect of permanent magnet flux linkage on LMC is plotted as Figure 6.18 and found 

to be similar as that of the resistances. With the permanent magnet flux linkage 

increasing, the optimal current trajectory shifts to the right side.  

 
 

Figure 6.16: LMC with variation of PM flux 

In real application, the PM flux linkage is affected mainly by the temperature, 

which is similar to the resistance. The changes will be slower compared to the 

inductance. With proper online parameter estimation techniques, the variation of machine 

parameters can be compensated [33].   
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CHAPTER 7 CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

As the energy and environmental issues contribute to the ever-growing interest in 

EV/PHEV application, a lot of research has been conducted on the traction system of 

EV/PHEV, which mainly includes power source, power electronics, and traction motor. 

Since the sole power source for EV/PHEV application comes from the battery, the whole 

system efficiency will be very important when the distance per charge is taken into 

consideration. A lot of research has been focused on MTPA and MTPV, the two control 

modes that achieve minimized copper loss and minimized core loss respectively. Also, 

there have been a few studies considering both copper loss and core loss reduction in this 

regard.  

In this thesis, the working principles of PMSMs are examined closely. For control 

purpose, the mathematic model of PMSMs is built by Park’s transformation, which 

transfers a three phase model to a fiction two phase coordinate system. The model in the 

two phase coordinate system is generally called dq model.  With the rotor reference 

frame being chosen, the time dependent variables such as the inductance in the three 

phase model becomes constant, which significantly facilitates the control design. Based 

on the dq model of PMSMs, the equivalent circuit is modeled to investigate the dynamic 

and static performances of PMSMs. According to the power flow in the machine, 

different losses are identified. As for core loss, it is modeled as a resistance component 

that is a parallel branch in the equivalent circuit. Based on this equivalent circuit, the total 

loss is formulated as a function of the d-axis current. The plot of the total loss function 

indicates that it is a concave curve with respect to the d-axis current. This suggests a 
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possibility to control the machine with minimum loss. LMC is developed from this 

consideration. An optimal current relationship is found to satisfy the loss minimization 

need corresponding to the speed.  The operating boundary region for LMC is analyzed 

with the voltage constraint and the current constraint both being taken into account. For 

the operation outside the LMC boundary region, an optimal FWC is employed, which can 

provide a better loss performance. In so doing, the efficiency enhancement control 

algorithm over full speed range is formed with the combined use of LMC and optimal 

FWC. Also, the optimal current relationship is proved to be a generalized expression for 

efficiency improvement algorithm. Control modes such as MTPA and MTPV, which can 

be considered as special cases of LMC, can be derived from the generalized optimal 

current trajectory. 

A drive system is built in Matlab/Simulink environment for the purpose of 

validating the control algorithm. Two testing machines with different power ratings are 

used in the simulation work. The steady state test is performed with the machine 

operating in both current constraint and voltage constraint regions. The simulation results 

indicate that the proposed algorithm give better loss performance than MTPA and MTPV 

without losing speed and toque responses. The transition simulation is also carried out to 

test the performance of the control mode transition between LMC and optimal FWC. 

Finally, the drive cycle simulation is conducted with a wide speed range and a load 

variation profile, whose results show a good optimal current tracking performance. 

Experimental test is also performed on a lab designed SPM. The experiment results show 

a discrepancy from the simulation results, which might be caused by measurement errors 
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and mismatches of the machine parameters. Despite the discrepancy, the experiment 

proves that with the proposed control algorithm, a reduction of the losses is possible.  

7.2   Future Work 

The simulation and experiment results prove the utility of the proposed algorithm as well 

as raises the following questions that have to be tackled with in the future work: 

 The algorithm uses a resistance component to model the core loss. Therefore, an 

accuracy measurement procedure of the core loss resistance should be developed. 

 The core loss characteristics have to be investigated in more detail, and there is a 

need to develop a simple and accurate core loss model for the control purpose.  

 Since the algorithm is dependent on the machine parameters, proper estimation 

techniques have to be developed for online parameters. 

 The proposed algorithm can be combined with search-based techniques to avoid 

parameters dependency, which can provide the initial current reference to the 

search method to accelerate the convergences. 

 The model based control algorithm does not include the inverter losses, which 

should be added due to the cross effect between the inverter and the motor. For 

example, LMC injects a negative d-axis current into the machine to improve the 

efficiency of the machine. However, it increases the phase current, which means 

that the inverter loss will increase.  
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