
Cryptanalysis of Symmetric Cryptographic Primitives

Aleksandar Kircanski

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy (Computer Science) at

Concordia University
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Abstract

Cryptanalysis of Symmetric Cryptographic Primitives

Aleksandar Kircanski, Ph.D.

Concordia University, 2013

Symmetric key cryptographic primitives are the essential building blocks in modern information se-

curity systems. The overall security of such systems is crucially dependent on these mathematical functions,

which makes the analysis of symmetric key primitives a goal of critical importance. The security argument

for the majority of such primitives in use is only a heuristic one and therefore their respective security eval-

uation continually remains an open question. In this thesis, we provide cryptanalytic results for several

relevant cryptographic hash functions and stream ciphers.

First, we provide results concerning two hash functions: HAS-160 and SM3. In particular, we de-

velop a new heuristic for finding compatible differential paths and apply it to the the Korean hash function

standard HAS-160. Our heuristic leads to a practical second order collision attack over all of the HAS-160

function steps, which is the first practical-complexity distinguisher on this function. An example of a collid-

ing quartet is provided. In case of SM3, which is a design that builds upon the SHA-2 hash and is published

by the Chinese Commercial Cryptography Administration Office for the use in the electronic authentica-

tion service system, we study second order collision attacks over reduced-round versions and point out a

structural slide-rotational property that exists in the function.

Next, we examine the security of the following three stream ciphers: Loiss, SNOW 3G and SNOW

2.0. Loiss stream cipher is designed by Dengguo Feng et al. aiming to be implemented in byte-oriented

processors. By exploiting some differential properties of a particular component utilized in the cipher,

we provide an attack of a practical complexity on Loiss in the related-key model. As confirmed by our

experimental results, our attack recovers 92 bits of the 128-bit key in less than one hour on a PC with 3
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GHz Intel Pentium 4 processor. SNOW 3G stream cipher is used in 3rd Generation Partnership Project

(3GPP) and the SNOW 2.0 cipher is an ISO/IEC standard (IS 18033-4). For both of these two ciphers,

we show that the initialization procedure admits a sliding property, resulting in several sets of related-key

pairs. In addition to allowing related-key key recovery attacks against SNOW 2.0 with 256-bit keys, the

presented properties reveal non-random behavior of the primitives, yield related-key distinguishers for the

two ciphers and question the validity of the security proofs of protocols based on the assumption that these

ciphers behave like perfect random functions of the key-IV.

Finally, we provide differential fault analysis attacks against two stream ciphers, namely, HC-128

and Rabbit. In this type of attacks, the attacker is assumed to have physical influence over the device that

performs the encryption and is able to introduce random faults into the computational process. In case of

HC-128, the fault model in which we analyze the cipher is the one in which the attacker is able to fault a

random word of the inner state of the cipher but cannot control its exact location nor its new faulted value.

Our attack requires about 7968 faults and recovers the complete internal state of HC-128 by solving a set of

32 systems of linear equations over Z2 in 1024 variables. In case of Rabbit stream cipher, the fault model

in which the cipher is analyzed is the one in which a random bit of the internal state of the cipher is faulted,

however, without control over the location of the injected fault. Our attack requires around 128−256 faults,

precomputed table of size 241.6 bytes and recovers the complete internal state of Rabbit in about 238 steps.
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1

Introduction

1.1 Background and motivation

Historically, the goal of cryptography was to allow two parties to communicate over an insecure

channel with an adversary not able to understand what is being said. Nowdays, the goal of cryptography,

understood in a broader sense, is to provide means to enforce diverse security goals such as integrity, au-

thenticity and non-repudiation [104].

Modern information security systems widely implement cryptographic functions to enforce such se-

curity goals and the very basic constructions that are employed for this purpose are called cryptographic

primitives. In the past twenty five years, a variety of efficient cryptographic primitives has been developed.

The cryptographic primitives that use the same cryptographic key for both encryption of plaintext and de-

cryption of ciphertext are called symmetric-key primitives. Examples of such primitives are block ciphers

and stream ciphers. Although hash functions do not fall into the category of symmetric key primitives in

the strict sense since they are keyless, many currently used hash functions are constructed based on block

ciphers and in this sense are naturally related to the area of symmetric key cryptography.

Many of the symmetric-based cryptosystems designed in the last fifteen years owe their existance

to public competitions for cryptographic primitives. In such a competition, a standardization body issues

a submission request for the cryptographic primitive to be developed and coordinates the process of analy-

sis/standardization of the primitive. So far, NIST has organized two such competitions, one for block cipher

standard AES (1997-2000) and one for the cryptographic hashing standard SHA-3 (2007-2012). Another

such competition called eStream (2004-2007) was organized for new stream cipher designs by ECRYPT,

1



the Network of Excellence within the European Information Societies Technology. These competitions

sparked a great deal of cryptanalytic and design efforts and also had a strong impact on communities outside

cryptography.

The security of a particular symmetric cryptographic primitive relies on the fact that experienced

cryptanalysts have not been able to breach the security claims that come with the primitive in question. In

other words, in most of the cases, there exists no proof that the cryptosystem is secure and the security claim

is only a heuristic one. Devising cryptanalytic attacks can thus be seen as providing better lower bounds on

the attack complexities for the primitive in question.

In the last 15 years, the cryptographic community witnessed several interesting cryptanalytic attacks.

As for cryptographic hash functions, attacks against MD5 and SHA-1 hash functions [130] by Wang based

on differential cryptanalysis have shown that MD5 and SHA-1 are not collision resistant. Given these

cryptanalytic results as well as the dramatic attacks that built upon collision attacks (e.g., the construction

of two X.509 certificates containing identical signatures and differing only in the public keys [128]), the

National Institute of Standards and Technology (NIST) started a public hash function competition SHA-3

that resulted in choosing Keccak as the new hash function standard. In the area of stream ciphers, Fluhrer,

Mantin and Shamir described an attack against RC4 used in the WEP mode, which allowed breaking the

WEP key in real time. Finally, as for block ciphers, AES block cipher that has been believed to be secure

for around 10 years, is now shown to be susceptible to boomerang related-key analysis [20] (Biryukov,

Khovratovich and Nikolić) and also biclique attacks [29] (Bogdanov, Khovratovich and Rechberger) in

the single-key model. It should be noted that, while the MD5/SHA-1 and the WEP attack are practically

feasible, the AES analysis did not provide attacks that threaten security in practice so far.

Motivation: The cryptanalytic work done in this thesis is motivated by the fact that the security

of symmetric cryptographic primitives continually remains an open question. This is especially true when

diverse new cryptographic primitives are publicly proposed by different groups and there exists no assurance

in the security of these primitives. Our goal is to achieve better understanding of the real security of these

primitives and to provide our independent findings to the public.

1.2 Thesis contributions

The contributions of this thesis are as follows:

2



- We propose a heuristic algorithm [71] for searching for compatible differential paths and apply it to

the Korean hash function standard HAS-160. Our heuristic leads to a practical second order collision

attack over all of the HAS-160 function steps, which is the first practical-complexity distinguisher on

this function. An example of a colliding quartet is provided. In the context of second order collision

attacks, constructing compatible differentials paths plays a central role. Previously, searching for

compatible differentials was done in an ad-hoc manner and in case of HAS-160 (and SHA-2), the

known compatible paths for HAS-160 spanned over a suboptimal number of steps. Our proposed

heuristic aims to provide a systematic and efficient way to search for compatible paths over large

number of steps, which extends the overall number of attacked steps.

- SM3 is a hash function designed by Xiaoyun Wang et al., and published by the Chinese Commer-

cial Cryptography Administration Office for the use of electronic authentication service system. The

design of SM3 builds upon the design of the SHA-2 hash function, but introduces additional strength-

ening features. In Chapter 4, using a higher order differential cryptanalysis approach, we present

a practical 4-sum distinguisher against the compression function of SM3 reduced to 32 rounds [72]

In addition, we point out a slide-rotational property of SM3-XOR, which exists due to the fact that

constants used in the rounds are not independent.

- Loiss is a byte-oriented stream cipher designed by Dengguo Feng et al. Its design builds upon the de-

sign of the SNOW family of ciphers. The algorithm consists of a linear feedback shift register (LFSR)

and a non-linear finite state machine (FSM). Loiss utilizes a new structure called Byte-Oriented Mixer

with Memory (BOMM) in its filter generator, reminiscent of the RC4 S-box and aiming to improve re-

sistance against algebraic attacks, linear distinguishing attacks and fast correlation attacks. In Chapter

5, by exploiting some differential properties of the BOMM structure during the cipher initialization

phase, we provide an attack of a practical complexity on Loiss in the related-key model [21]. As

confirmed by our experimental results, our attack recovers 92 bits of the 128-bit key in less than one

hour on a PC with 3 GHz Intel Pentium 4 processor. The possibility of extending the attack to a

resynchronization attack in a single-key model is discussed.

- SNOW 3G is a stream cipher chosen by the 3rd Generation Partnership Project (3GPP) as a crypto-

primitive to substitute KASUMI in case its security is compromised. SNOW 2.0 is one of the stream
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ciphers chosen for the ISO/IEC standard IS 18033-4. In Chapter 6, we show that the initialization

procedure of the two ciphers admits a sliding property, resulting in several sets of related-key pairs

[77]. In case of SNOW 3G, a set of 232 related key pairs is presented, whereas in case of SNOW

2.0, several such sets are found, out of which the largest are of size 264 and 2192 for the 128-bit and

256-bit variant of the cipher, respectively. In addition to allowing related-key key recovery attacks

against SNOW 2.0 with 256-bit keys, the presented properties reveal non-random behavior which

yields related-key distinguishers and also questions the validity of the security proofs of protocols that

are based on the assumption that SNOW 3G and SNOW 2.0 behave like perfect random functions of

the key-IV.

- HC-128 is a high speed stream cipher with a 128-bit secret key and a 128-bit initialization vector. It

has passed all the three stages of the ECRYPT stream cipher project and is a member of the eSTREAM

software portfolio. In Chapter 7, we present a differential fault analysis attack on HC-128 [75]. The

fault model in which we analyze the cipher is the one in which the attacker is able to fault a random

word of the inner state of the cipher but cannot control its exact location nor its new faulted value. To

perform the attack, we exploit the fact that some of the inner state words in HC-128 may be utilized

several times without being updated. Our attack requires about 7968 faults and recovers the complete

internal state of HC-128 by solving a set of 32 systems of linear equations over Z2 in 1024 variables.

- Rabbit is a high speed scalable stream cipher with 128-bit key and a 64-bit initialization vector. It has

passed all three stages of the ECRYPT stream cipher project and is a member of eSTREAM software

portfolio. In Chapter 8, we present a practical fault analysis attack on Rabbit [74]. The fault model in

which we analyze the cipher is the one in which the attacker is assumed to be able to fault a random

bit of the internal state of the cipher but cannot control the exact location of injected faults. Our attack

requires around 128 − 256 faults, precomputed table of size 241.6 bytes and recovers the complete

internal state of Rabbit in about 238 steps.

The work in this thesis was published in [21, 71, 72, 74, 75, 77]. In addition, the work which was executed

during this Ph.D. but not included in the thesis appeared in [76, 78, 120].
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2

Background

2.1 Basic symmetric key primitive design approaches

In this chapter, we provide a short overview of the basic symmetric key cryptography constructions

and their respective cryptanalysis methods. We start by providing common design methods for block ci-

phers, stream ciphers and hash functions.

2.1.1 Block Ciphers

A block cipher is a function that maps n-bit plaintext into n-bit ciphertext, parameterized by a k-bit

secret key. More formally [104], a block cipher is a mapping

EK : {0, 1}n × {0, 1}k 7→ {0, 1}n

such that for each key K ∈ {0, 1}k, E(P,K) is an invertible mapping (the encryption function for K) from

{0, 1}n 7→ {0, 1}n written EK(P ). The inverse mapping is the decryption function, denoted DK(C). Here,

n is called the blocksize and k is the keylength. It is generally assumed that the key is chosen at random.

Modern block ciphers are built by cascading simple operations which are individually insufficient to

provide the required properties, but, when combined, achieve a high degree of mixing of the plaintext and

secret key bits. The schematic view of iterative block cipher design is shown in Fig. 2.1. Before use, the

secret key is expanded according to the key expansion, which aims to mix the secret key bits into the different

rounds of the block cipher. For instance, in the case of the DES block cipher [109], the key expansion is fully
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Figure 2.1: Block cipher: key expansion and layers of simple round functions

linear, but in the case of AES block cipher, the key expansion includes non-linear mixing operations. One

iteration layer is called a round and typically consists of linear and non-linear sub-layer. The linear layer

is specified using permutations, XOR, finite field multiplications by constants and similar linear operations.

The non-linear layer is often implemented using S-boxes which implement operations that are non-linear

with respect to the ones used in the linear layer.

In Fig. 2.2, two common approaches to construct a round function are provided. The Feistel Net-

work round function, similar to the one used in the design of DES [109] block cipher and the Substitution

Permutation Network, similar to the one used in AES [110] are presented. In the basic Feistel network

construction, the input to the round function is divided in two words Li, Ri and processed as follows:

Li+1 = Ri

Ri+1 = Li ⊕ F (Ri, Ki)

where Ki is the i-th round subkey and F is the mixing function. The advantage of the Feistel network

construction lies in the fact that decryption function can be implemented by reusing the implementation

of the encryption function where only the subkey expansion is different. In the Substitution Permutation

Network construction depicted in Fig. 2.2, all of the input is uniformly mixed by applying a non-linear

S-box layer followed by a linear layer, such as permutation.

Cascading a sufficient number of rounds in a block cipher may achieve the required mixing of plain-
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Figure 2.2: Approaches for constructing the round function in a cryptographic primitive

text and key bits and render the algorithm resistant to key or plaintext recovery algorithms. Classical secu-

rity requirements for block ciphers include resistance to known-plaintext attacks, chosen-plaintext attacks

and chosen-ciphertext attacks [104]. A more recent security requirement includes resistance to related-key

attacks, in which the attacker is assumed to have access to the ciphertext typically for chosen plaintext

encryption under multiple unknown keys that follow some pre-specified relation.

It is important to note that there exist even stronger security requirements, such as resistance to

known-key attacks and chosen-key attacks. These scenarios are relevant to the analysis of the block ciphers

in the hash function modes. As will be seen in subsection 2.1.3, when a block cipher is turned into a

compression function according to the Davies-Meyer construction, the input message that is to be hashed is

passed to the block cipher through the secret key mechanism and thus the attacker is in control of the key

input.

2.1.2 Stream Ciphers

Instead of processing the plaintext block by iterating layers of transformations as done in block

ciphers, stream ciphers generate pseudo-random sequences of data that is used to mask the plaintext. In

that sense, stream ciphers can be seen pseudo-random number generators that depend on secret keys. Apart

from the secret key, modern stream ciphers make use of another parameter called the initial vector (IV),

which allows reusing the same secret key for different plaintexts. Unlike block ciphers, stream ciphers have

memory, i.e., keep an inner state over different generated outputs.

Before the encryption starts, the secret inner state is initialized depending on the supplied secret key

and the initial vector. Here, it is essential to achieve a high degree of mixing of these two variables to avoid
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Figure 2.3: One possible stream cipher work flow

resynchronization attacks on the initialization phase of the cipher. It is important to point out the similarity

between the stream cipher initialization phase and a hash function. Namely, the initialization can be seen as

hashing of the key and the IV into the starting inner state. The schematic view of a stream cipher is provided

on Fig. 2.3.

The design of some stream ciphers is reminiscent of the block cipher design explained in 2.1.1. For

example, this is the case in the LFSR-based software-oriented SNOW family of stream ciphers [49,51]. In a

block cipher, the plaintext is processed by iterating a comparatively large number of similar transformations

(i.e., rounds) on the plaintext. Contrarily, the idea of a stream cipher is to release a small portion of the

inner state after each stream cipher inner state update step. The state update step in the SNOW family of

ciphers consists of a linear and a non-linear part. The linear part corresponds to an LFSR over GF(232) and

the non-linear part to an FSM consisting of a transformation similar to one S-box based block cipher round.

Apart from the fact that the FSM can be seen as one block cipher round, the analogy can be extended and

the LFSR can be seen as the key schedule in a block cipher. The work flow of such a design approach is

provided in Fig. 2.4, where NL and L denote non-linear and linear transformations, respectively. The length

and the choice of the released keystream at each step have to be chosen carefully to eliminate the chances

of inner state recovery algorithms while maximizing the performance of the cipher.
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Figure 2.4: One possible approach to designing a stream cipher

2.1.3 Hash Functions

In this subsection, common ways to construct a hash function out of a block cipher are reviewed.

The widely used hash functions such as SHA-2 [112], SHA-1 [111] and MD5 [119] are all built based on

an underlying block cipher.

It is assumed that the input message to be hashed is divided into blocks of some fixed size. In the

case the length of the message is not a multiple of the message block length, padding is applied. Now, a

block cipher is used as a building block for a hash function as follows. First, a block cipher E : {0, 1}n ×

{0, 1}k 7→ {0, 1}n is turned into a compression function, which compresses a single message block into a

digest. Three common ways to achieve this are provided on Fig. 2.5. In the Davies-Meyer mode [104],

which is utilized in SHA-1, SHA-2 and MD5, the compression function is specified by computing Hi =

Emi
(Hi−1, K) ⊕ Hi−1. In other words, the input message is passed as a key to the block cipher and the

output of the cipher is XOR-ed to its input. In the Matyas-Meyer-Oseas (MMO) mode [104], the function

is specified by Hi = Eg(Hi−1)(mi) ⊕ mi. Finally, in the Miyaguchi-Preneel (MP) mode [104], we have

Hi = Eg(Hi−1)(mi)⊕mi ⊕Hi−1. The g function used in the two latter modes accomodates the fact that the

block cipher may have different block and key sizes and therefore the key length is adjusted by applying the

function g to overcome this problem.

The compression function is then plugged in a mode that allows processing of an arbitrary number

of message blocks. One way to achieve this functionality is the well-known Merkle-Damgård construction,

shown in Fig. 2.6. Although limitations of this method have been exposed [64, 66], it is one of the most

commonly used modes and it is applied in SHA-1, SHA-2, MD5 and SM3.
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Figure 2.6: Merkle-Damgård mode

The main security goals of cryptographic hash functions are:

- Preimage resistance: Given a hash h, it is difficult to find any message m such that h = hash(m).

- Second Preimage resistance: Given input m1, it is difficult to find another m2 s.t. h(m1) = h(m2).

- Collision resistance: It is difficult to find any two messages m1 and m2 such that h(m1) = h(m2).

The collision resistance property is the generic attack complexity of 2n/2, due to the birthday paradox [104],

where n is the digest size. The second preimage and the preimage attacks have a higher generic complexity

of 2n−1 operations.

2.2 Background on cryptanalysis of cryptographic primitives

In an effort to render cryptographic primitives more secure, researchers in the cryptanalytic commu-

nity discovered many powerful attacks against symmetric key systems. Each proposed cryptanalytic attack

is characterized by the following parameters:

- Amount of required input data: The number of input/output data required to successfully execute the

attack.
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- Number of necessary operations: The amount of necessary computations required to execute the

attack, often measured in terms of the number of executions of the cryptographic primitive.

- Storage complexity: The amount of memory required to perform the cryptanalytic task.

- Number of necessary physical actions on the encrypting device: This can include the number of

necessary measurements in the case of side channel analysis (such as power analysis attacks [84] and

timing attacks [83]) or the number of induced faults in the memory of the cipher, in the case of fault

analysis.

As stated above, apart from having available some amount of the input/output data related to the crypto-

graphic primitive, sometimes the attack model includes physical access to the device. Thus, another classifi-

cation of cryptanalytic attacks is with respect to whether or not the attacker has some sort of physical access

to the encrypting device. In more detail, the classification is as follows:

- Pure cryptanalytic attacks: If there is no information that leaks from the physical implementation of

the primitive, the attacker attempts to breach the security goals of the cryptographic primitive given

some input/output data. In the case of stream and block ciphers, this can include an attempt to recover

the key given plaintext/ciphertext material, whereas in the case of hash functions this may include

attempting to find a preimage for a given hash value, or to construct a collision for the primitive,

solely based on the specification of the primitive.

- Physical access dependent attacks: This attack model assumes that the attacker has some physical

access to the device executing the cryptographic primitive in question. It should be noted that side

channel attacks are applied against primitives that utilize a secret parameter, such as stream ciphers,

block ciphers or hash functions in MAC modes [104]. The model includes side channel analysis

where the attacker measures certain leaking parameters, e.g., the power consumption of the crypto-

graphic device or the time used to perform the encryption operation. A careful analysis of this side

channel information may enable the attacker to find some information about the inner workings of the

encrypting process under the given secret parameter, which leads to information recovery. Another

cryptanalytic model that falls into this category is differential fault analysis of ciphers in which the

attacker induces faults (errors) by applying physical influence such as ionizing radiation to the de-
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vice during the encryption. Similarly to side-channel analysis, a careful inspection of the results of

encryption in a faulty environment may help the cryptanalyst to pin down the secret parameter.

In the sequel, some of the most important cryptanalytic techniques applied against symmetric key based

primitives are reviewed, after which we provide a short introduction to side-channel attacks.

2.2.1 Pure cryptanalytic attacks

In the literature, cryptanalytic attacks are defined conservatively: a break of a cryptosystem is

achieved if the effort required by the attacker is less than the effort required by the generic attacks (such

as exhaustive key search or collision attack based on the birthday paradox). At the same time, in many prac-

tical scenarios, the attackers may have access to the cryptographic device. For such scenarios, side-channel

attacks are expected to recover the secret information in practical complexities.

Differential cryptanalysis: Instead of following the input/output values through layers of mixing, in dif-

ferential cryptanalysis, one follows the propagation of differences throughout the primitive. Differential

cryptanalysis is one of the most often used tools in cryptanalysis of symmetric key primitives. It was intro-

duced in [18] in the context of the block cipher DES, where efficient attacks on reduced-round variants of

the cipher have been proposed by noting biases in the corresponding plaintext-ciphertext differences. Apart

from block ciphers, differential cryptanalysis can be naturally applied to all other symmetric-key-based

cryptographic primitives.

The first stage in the differential analysis of a primitive is to study differential properties of particular

components used in the function. As for linear parts, such as bit permutations or key addition, the resulting

differences are deterministically computed by the differences in the input and therefore their behavior is

completely deterministic. In the case of non-linear components, such as s-boxes, knowledge of the input

difference does not guarantee knowledge of the output difference. In this case, the differentials

∆X
p→ ∆Y

are traced probabilistically. Here, p denotes the probability that the input difference ∆X will cause the

output difference ∆Y when passed through the considered non-linear function. To obtain a differential for

R − 1 rounds of the cipher, differentials are combined along a differential path and the final differential
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probability is given by
n∏

i=1

pi

where n is the number of s-boxes used in the differential path and pi the probability of the difference

propagation within the i-th s-box.

In the case of block ciphers, portions of the last round subkey are guessed and if the distribution of

differences for the current key guess does not correspond to the expected one, the key candidate is discarded.

Since the said portion of the last round subkey is usually smaller than the full key, significant reduction of

the key space is achieved. In the case of stream ciphers, differential attacks are typically applied on the

initialization procedure of the cipher which depends on the secret key. Finally, in the case of collision

attacks on hash functions, the attacker attempts to control the propagation of differences in order to find a

colliding input pair.

Linear Cryptanalysis: This type of analysis uses probabilistic linear relations between the input and output

of the non-linear components of the cryptographic primitive. It has been successfully applied to block

ciphers [96], providing the first attack on the full DES block cipher. Also, it turns out to be effective

against stream ciphers [32]. Recently, it has been applied to construct distinguishers in the context of hash

functions [7].

When applied to block ciphers, linear cryptanalysis is a known plaintext attack that relies on linear

relations between plaintext and ciphertext bits. The relation that is exploited needs to hold with biased

probability, i.e., with probability different from 1
2
. To construct such a relation, the first stage is to find linear

approximations of the non-linear building blocks of the cipher. In other words, the relation among input and

output bits of a given non-linear function is established

Xi1 ⊕Xi2 ⊕ . . .⊕Xim ⊕ . . .⊕ Yi1 ⊕ Yi2 ⊕ . . .⊕ Yin

where X and Y denote the input and output of the component. If the particular component is an s-box

with n input bits and m output bits, there exist (2n − 1)× (2m − 1) possibilities and the cryptanalyst needs

to investigate which ones hold with high bias, defined as ǫ = p − 1
2
. Next, these linear approximations

are combined using the Piling-Up Lemma [96] and a biased linear approximation among the key bits, the

plaintext and ciphertext for the cipher reduced to R − 1 rounds is obtained. In particular, the Piling-Up
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Lemma provides how the bias behaves when several biased random variables are XOR-ed together.

Lemma 1 Let Xi be independent random variables of which the values are 0 with the probability of pi and

1 with probability 1− pi. Then, the probability that X1 ⊕ . . .⊕Xn = 0 is

1

2
+ 2n−1

n∏

i=1

(pi −
1

2
)

Once the distinguisher for R − 1 round of a block cipher is obtained using the linear relation, the key-

recovery stage can proceed as follows. The R-th round subkey bits are then guessed and determined by the

guesses that provide most of the plaintext-ciphertext pairs satisfying the linear relation. When applied to a

stream cipher, similar to the way linear relations are constructed in block ciphers, one follows the evolution

of the inner state bits that participate in keystream generation at different cipher clocks and combines the

linear approximations of non-linear components. This allows construction of linear relations between bits at

different clocks, which allows the keystream produced by the stream cipher to be distinguished from random

and also in some cases secret inner state recovery [32]. Finally, linear relations have been used to construct

distinguishers for hash functions [7]. An important difference is that, since there is no key involved, one

does not aim to recover the key but rather attempts to construct a distinguisher for the function.

Higher-order differential cryptanalysis: While ordinary differential cryptanalysis utilizes differences of

the form

∆af(x) = f(x⊕ a)⊕ f(x)

higher-order differential cryptanalysis attempts to generalize these first order difference to the i-th deriva-

tives. It has been shown [80] that it is possible to construct a cipher that is unbreakable by means of classical

differential cryptanalysis and at the same time weak with respect to higher order differential cryptanalysis,

making the attack relevant. For instance, in [80] it was shown that for the function f(x, k) = (x+k)2 mod p

with input/output size of 2log2p, where p is prime, every non-trivial one round differential has probability

of 1
p

and the second order derivative is a constant. The problem with high-order differentials is to combine

them to more than two rounds, as is possible with first order differentials.

More precisely, the notion of higher order differentials as introduced by Lai in [85] is as follows.

Definition 1 Let (S,+) and (T,+) be Abelian groups. For a function f : S → T , the derivative of f at
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a ∈ S is defined as

∆af(x) = f(x+ a)− f(x)

The i-th derivative of f at (a1, . . . , ai) is then defined by

∆(i)
a1,...,ai

f(x) = ∆ai(∆
(i−1)
a1,...,ai−1

f(x))

In the case of the function f : Fm
2 → F n

2 , we have (Proposition 3, [85]):

Lemma 2 Let L[a1, . . . , ai] be the list of all 2i possible subsets of a1, a2, . . . , ai. Then,

∆(i)
a1,...,ai

f(x) =
⊕

c∈L[a1,...,ai]

f(x⊕ c)

Below, we review the higher-order analysis of hash functions. In particular, the two equivalent no-

tions of second order collisions and zero-sums are defined. As defined in [22], an i-th order differential

collision for f is an i-tuple (a1, . . . , ai), together with a value x such that

∆(a1,...,ai)f(x) = 0

As argued in [22], since the i+1 input parameters a1, . . . , ai and x can be chosen freely, the query complexity

of finding an i-th order collision is 2n/(i+1), where n denotes the bit-size of the output of the function f .

Here, the query complexity denotes the number of queries made to the f function oracle. Thus, the query

complexity of finding a second order collision for the function f , i.e., values x, a1 and a2, such that

f(x⊕ a1 ⊕ a2)⊕ f(x⊕ a1)⊕ f(x⊕ a2)⊕ f(x) = 0 (2.1)

is 2n/3. As for the computational complexity, which would include evaluating f around 2n/3 times and

finding, among the outputs, a quartet that sums to 0, no algorithm with complexity better than 2n/2 is known.

It should be noted that in [121], the boomerang technique is used to find a zero-sum quartet of inputs x0, x1,
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Figure 2.7: Boomerang attack against a compression function

x2, x3, introduced in [8], such that

x0 ⊕ x1 ⊕ x2 ⊕ x3 = 0

f(x0)⊕ f(x1)⊕ f(x2)⊕ f(x3) = 0

(2.2)

It is easy to verify that the notions zero-sum quartet and second order collision notions are equivalent. For

example, given a zero-sum quartet, it suffices to put x = x0, a1 = x0⊕x1, a2 = x0⊕x2 to have (2.1) satisfied.

An efficient technique to construct second order collision utilizes the boomerang attack, as explained below.

Boomerang Attacks: This is a combined attack in which two different differential paths are combined in

order to pass through a larger number of rounds. The attack was devised in 1999 by Wagner [129] and in its

basic version, the attack required chosen-ciphertext queries, but in later versions [65] this requirement was

removed.

Boomerang attacks were applied to construct second order collisions for hash functions in 2011

independently by Biryukov et al. [23] and Lamberger et al. [86]. The general idea is to construct a quartet

that forms a boomerang structure [129] for a block cipher in the Davis-Meyer mode. The differentials used

in the boomerang are related key differentials, where the secret key of the block cipher corresponds to the

message block in the case of a compression function. The encryption function is divided into two parts,

E1 ◦ E0. As shown in Fig. 2.7, for the bottom part of the boomerang, a related-key differential (∆,∆K) →

β for E1 with probability q is constructed. Similarly, another related-key differential (δ, δK) → α with

probability p is used for E−1
0 . Then, an attempt to randomly satisfy the differentials in the boomerang
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structure with probability p2q2 would proceed as follows:

- Randomly choose X , the inner state in the middle of the hash function execution, representing the

input to E1 (and the output of E0). Let X∗ = X ⊕∆, Y = X ⊕ δ and Y ∗ = X ⊕∆⊕ δ.

- Compute backward from X , X∗, Y , Y ∗ using E−1
0 to obtain P , P ∗, Q, Q∗, using keys K, K ⊕∆K ,

K ⊕ δK , K ⊕ δK ⊕∆K , respectively.

- Compute forward from X , X∗, Y , Y ∗ using E1 to obtain C, C∗, D, D∗ using keys K, K ⊕ ∆K ,

K ⊕ δK , K ⊕ δK ⊕∆K , respectively.

- Verify whether C ⊕ C∗ = D ⊕D∗ and P ⊕Q = P ∗ ⊕Q∗.

If the last condition is satisfied, a zero-sum quartet is found for the encryption function in Davis-Meyer

mode, since P ⊕Q⊕ P ∗ ⊕Q∗ = 0 and also (C ⊕ P )⊕ (C∗ ⊕ P ∗)⊕ (D ⊕Q)⊕ (D∗ ⊕Q∗) = 0.

To improve the efficiency of the process above, instead of trying to satisfy the boomerang randomly,

message modification can be used for some of the differential paths in the boomerang. For example, in

[22], message modification is applied to satisfy the middle part of the boomerang, i.e., to satisfy the two

differentials paths of the function E1. The other paths in the boomerang are satisfied randomly.

Truncated differential cryptanalysis: Truncated differential cryptanalysis was introduced in 1994 by

Knudsen [80]. The idea of this technique is to view the differences in an abstracted way, instead of fully

specifying them. In particular, in a conventional differential attack, each bit of the input and output difference

is specified. In truncated differential cryptanalysis, the differences are not fully specified. For instance,

instead of specifying each bit in a 32-bit difference, one can only take into account whether each of the four

bytes in a difference are active and write, say, 1001, if only the least and most significant bytes are active.

Here, the particular 8-bit value of the difference is abstracted away from the picture.

Truncated differentials are a versatile tool in cryptanalysis. One of the first applications of truncated

differentials was provided in [80], where truncated differentials are used to attack a 6-round DES with only

46 chosen plaintext-ciphertext pairs. Another interesting early truncated differential is the one used to attack

the reduced round Skipjack block cipher [82] (an algorithm developed by the US National Security Agency),

where it was shown that there exists a truncated differential that spans over 24 steps with probability 1.

Over the last 20 years, truncated differentials have been extensively used. A recent truncated differential

attack includes an attack against the recently proposed block cipher WIDEA [91], which is a successor of
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the widely used IDEA block cipher. In the case of hash functions, truncated differentials are naturally used

against block cipher based hash functions that rely on S-boxes, such as ECHO and Grøstl [117]. An example

of an application of truncated differentials on a stream cipher is cryptanalysis of round-reduced versions of

the Salsa stream cipher [115].

Differential-linear cryptanalysis: This type of attack was introduced in 1994 by Langford and Hellman

[87]. It is a combined attack in the sense that it combines two different probabilistic patterns (a differential

pattern and a linear pattern). Ideally, combining the two patterns outperforms a pure differential or linear

attack over the same number of rounds. This is the case when this attack is applied against 8-round DES, as

shown in [87]. In particular, a chosen-plaintext attack against 8-round DES is obtained, in which differential

cryptanalysis is applied to the first three rounds and linear cryptanalysis is applied on the remaining five

rounds. The main observation on which the attack relies is that inverting certain bits in the input of the first

round leaves certain third round bits unchanged, implying that the XOR sum of these third round bits is also

left unchanged. From rounds four to seven, a linear approximation involving exactly these unchanged four-

round input bits and certain 7-th round bits is then used. For each 8-th round subkey portion, it is verified

whether for each plaintext, the XOR sum of the bits in question changes or not. Using differential-linear

cryptanalysis, the number of necessary chosen plaintext-ciphertext pairs was reduced to 512 to recover 10

bits of the key, for 8-round DES. In this case, the differential-linear combination yielded an attack that

requires fewer plaintext-cipher text pairs, when compared to the the classical Biham-Shamir differential

attack, which requires over 5000 chosen pairs. The differential-linear attack has mostly been applied to

block ciphers. One recent application of this technique is a 12-round cryptanalysis of the Serpent block

cipher [46], which was a finalist in the AES block cipher competition.

Impossible differential cryptanalysis: Instead of using biased differentials, differentials with probability

0 can also be used to mount key recovery attacks on cryptographic primitives [14]. Let the input difference

δ0 never propagate to the output difference δ1. If this property holds for rounds 1 to R − 1, then the final

round subkey can be attacked as follows. We encrypt many plaintext pairs with difference δ0 and guess the

corresponding portion of the round R subkey. If the guess is correct, the difference δ1 will not occur. If,

however, such a difference occurs, we can prune the key space based on the current key guess. One notable

early application of this attack was on the Skipjack block cipher [15], where 31 out of 32 rounds where

shown to be susceptible to this technique.
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Multiset attacks, Integral attacks: The first application of multiset attacks was against the predecessor

of AES, a block cipher called Square [43]. The main probabilistic pattern utilized in such attacks is the

preservance of certain properties of sets of values. For example, consider a set of inputs such that each

two inputs differ in exactly one byte i0 and this byte takes all possible values, i.e., a set of 28 inputs are

considered. Namely, if a byte-wise bijective transformation is applied, the output set will also satisfy the

said property, i.e., the corresponding output byte will take all possible values. Useful sets of another type are

sets where each value occurs exactly k times. Multiset attacks trace this kind of properties through as many

rounds as possible. Integral cryptanalysis refers to the attack when the used set property is that
∑

x∈G x = 0,

where G is the group that the elements belong to, i.e., the set is balanced. The property is conserved after

the addition of two sets and this is what is important for pushing the property through several rounds in

the cipher. One relatively recent application of this technique is against AES [81], where it is shown that

7-round AES does not behave as a random oracle.

Slide attacks: A particularity of this type of attack is that it is independent of the number of rounds

employed in the primitive. The idea is quite simple: one attempts to instantiate the inner state at round

i + 1 with values exactly equal to values in state i of another instance of the primitive. If the same round

functions are applied throughout the primitive, the property is preserved with probability 1 until the end

of the execution of the primitive. Slide attacks have been introduced in the context of block ciphers by

Biryukov and Wagner [26] and have been applied to stream ciphers [34] and hash function as well [56].

When applied to block ciphers, the attack relies on the key schedule weakness by which parts of the

key are reused subsequently in different rounds. For simplicity, assume that the same key is used in each

round transformation; let property of the cipher be called self-similarity. The first stage of the key-recovery

attack on such a block cipher is to find slid pairs, defined as follows. Let F be the round function of an

iterated block cipher. If a pair of known plaintexts (P,C), (P ′, C ′) satisfies F (P ) = P ′, then due to the self-

similarity of both the rounds and the key schedule, the corresponding ciphertexts also satisfy F (C) = C ′.

Such a pair is called a slid pair.

By finding a slid pair, which is possible using O(2
n
2 ) plaintexts due to the birthday paradox [104],

the attacker obtains a plaintext P and its one-round ciphertext, P ′. The key idea here is that the attacker is

able to verify that the corresponding ciphertexts (C,C ′) are on a one-round difference. Now, if from the pair

(P, P ′) it is possible to deduce the information about the key K, the secret key is compromised. A common
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way to defend against slide attacks is to use different constants in each round of the transformation.

2.2.2 Side channel attacks

Side channel attacks usually exploit the information leaked by the physical characteristics of the

cryptographic modules during the execution of the algorithm. This extra information can be extracted from

timing, power consumption or electromagnetic radiation features. Other forms of side-channel information

can be a result of hardware or software failures, changes in frequency or temperature and computational

errors. In the following subsections, we briefly review some of the side channel cryptanalytic models.

Fault Analysis: In fault analysis, the cryptanalyst applies some kind of physical influence on the internal

state of the cryptosystem, such as ionizing radiation which flips random bits in the memory of the device. By

careful study of the results of computations under such faults, an attacker may be able to retrieve information

about the secret key. Smartcards are especially susceptible to this kind of attack. Fault attacks were first

introduced by Boneh et al. [30] in 1996 where they described attacks that targeted the RSA public key

cryptosystem by exploiting a faulty Chinese Remainder Theorem computation to factor the modulus n.

Subsequently, fault analysis attacks were extended to symmetric systems such as DES [19] and later to

AES [48] and other primitives. Fault analysis attacks became a more serious threat after cheap and low-tech

methods of applying faults were presented (e.g., [6, 126]).

Hoch and Shamir [58] addressed the problem of fault analysis of stream ciphers in 2004. Ciphers

based on LSFRs, LILI-128, SOBER-t32 and also RC4 were analyzed and it has been shown that none of

these constructions are secure in the random-location fault model, i.e., in the case where the attacker can

not choose the exact location of induced faults. As for RC4, the key recovery attack required 216 faults and

226 keystream words.

In [17], Biham et al. assessed the RC4 stream cipher in the chosen-location model, where an attacker

chooses a location at which a fault is induced. An interesting idea to push the cipher into a specific state

called a Finney state, by means of inducing faults, is used to find the secret internal state of RC4. A Finney

state is a state in which RC4 in normal mode of operation, i.e., without faults, can not enter. However, once

the internal state is artificially pushed into one of the Finney states, it can not go out anymore, the length

of a cycle becomes very small and what is more, the secret S table can be read solely by looking at the

keystream output. The attack required 216 chosen-location faults. Another, more advanced fault analysis
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attack on RC4 which requires 210 faults was also introduced in the same paper.

Timing Analysis: The majority of optimized implementations of cryptographic algorithms execute the

computation in a non-constant time. If these operations involve secret parameters, these timing variations

can leak some information that can provide enough critical knowledge to recover secret information. Timing

attacks were first introduced in 1996 by Kocher [83] who demonstrated the power of these attacks against

the RSA cryptosystem. Subsequently, Schindler [4] presented timing attacks on the implementation of RSA

exponentiation that employs the Chinese Remainder Theorem. Other uses of timing attacks can be found

in [45, 57].

A particular type of timing analysis, called cache-timing analysis was proposed in 2005 by Osvik

et al. [113]. A simple cache-timing attack in a scenario where the attacker and the legitimate user share

the same CPU, named prime-then-probe, is as follows. First, the attacker fills the cache with data and then

stops using the CPU. Then, the legitimate user performs the encryption on the CPU. Finally, the attacker

measures loading times and finds which of his data has been removed from the cache. It should be noted

that the attacker does not learn the content of the cache registers, but only positions that have been used

by the legitimate user. From such information, a cipher’s internal values leak and can lead to the recovery

of the secret key. An important example of ciphers particularly vulnerable to cache-timing analysis is the

Advanced Encryption Standard (AES) [31,113]. Bertoni et al. [13] describes how cache misses can be used

for cryptanalysis.

As for the stream ciphers, a cache-timing model was applied to analyze the HC-256 stream cipher by

Zenner [138], where, given 6148 precise cache measurements and computational, effort equivalent to around

255 key tries in the brute force setting, the secret internal state of the stream cipher can be recovered. In [88],

Leander et al. have shown how to apply cache-timing attacks against Linear Feedback Shift Register based

stream ciphers. In particular, it was shown how to recover the secret key for SOSEMANUK [12], another

software oriented eStream finalist, given the precise cache measurements in 40 and 60 clocks of the cipher,

respectively.

Power Analysis Attacks: Useful information about the operations being executed in cryptographic hard-

ware can leak through power consumption information. Power analysis has been shown to be effective

against smart cards and embedded devices. In general, power analysis attacks [84] can be either simple

power analysis (SPA) or differential power analysis (DPA). In SPA attacks, using the measured power
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traces, the attacker guesses what instruction is being carried out at a specific time as well as the input

and the output values of the instruction. Such analysis requires the attacker to know the exact structure of

the implementation. In contrast, DPA attacks do not require detailed knowledge of the implementation and

utilize statistical methods in the process. Experimental results of power analysis against smartcards have

been reported in [5, 114].
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3

A heuristic for finding compatible differential

paths with application to HAS-160

In this chapter, a heuristic that searches for compatible differential paths is proposed. The application

of the proposed heuristic in the case of HAS-160 yields a practical second order collision over all of the hash

function steps, which is the first practical result that covers the full HAS-160 compression function.

In general, whenever two probabilistic patterns are combined for the purpose of passing through a

maximal number of rounds of a cryptographic primitive, a natural question that arises is the question of

compatibility of the two patterns. Particularly, the question of compatibility of differential paths in the

context of boomerang attacks was tackled in 2011, by Murphy [107], who showed that care should be

exercised when estimating the boomerang attack success probability, since there may exist dependency

between the two combined differentials. The extreme case is the total impossibility of combining the two

paths, where the corresponding probability is equal to 0.

In the context of constructing second order collisions for compression functions using the start-from-

the-middle technique, due to availability of message modification in the steps where the primitive follows

the two paths, the above mentioned probability plays less of a role as long as it is strictly greater than 0.

In that case, the two paths are said to be compatible. Several paths that were previously believed to be

compatible have been shown to be incompatible in the previously described sense, e.g., by Leurent [89] and

Sasaki [123] for the BLAKE and RIPEMD-160 hash functions, respectively.

The compatibility requirement in this context can be stated with more precision as follows. Let φ and

ω be two differential paths over some number of steps of an iterative function f = fj+n ◦ . . . ◦ fj . If there
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exists a quartet of f inputs x0, x1, x2 and x3 such that computations (x0, x1) and (x2, x3) follow φ whereas

(x0, x2) and (x1, x3) follow ω, we say that φ and ω are compatible. Usually the path φ is left unspecified

over the last k steps (backward path) and ω is unspecified over the remaining steps (forward path). Such

paths have also been previously called independent [23]. Another closely related notion is the concept of

non-interleaving paths in the context of biclique attacks [67].

New Contributions. In this chapter, we present a heuristic that allows us to search for compatible differ-

ential paths. The heuristic builds on the previous de Cannière and Rechberger automatic differential path

search method. Instead of working with pairs, our proposed heuristic operates on quartets of hash execu-

tions and includes cross-path propagations. We present detailed examples of particular propagations applied

during the search. As an application of our proposed heuristic, a second order collision for the full HAS-160

compression function is found. The best previous practical distinguisher for this function covered steps 5

to 80 [124]. This is the first practical distinguisher for the full HAS-160. This particular hash function is

relevant as it has been standardized by the Korean government (TTAS.KO-12.0011/R1) [1].

Related Work. The differential paths used in groundbreaking attacks on MD4, MD5 and SHA-1 [130,131]

were found manually. Subsequently, several techniques for automatic differential path search have been

studied [35, 54, 125, 128]. The de Cannière and Rechberger heuristic [35] was subsequently applied to

many MDx/SHA-x based hash functions, such as RIPEMD-128, HAS-160, SHA-2 and SM3 [99–102]. To

keep track of the current information in the system, the heuristic relies on 1-bit constraints that express the

relations between pairs of bits in the differential setting. This was generalized to multi-bit constraints by

Leurent [89], where the finite state machine approach allowed uniform representation of different constraint

types. Multi-bit constraints have been used in the context of differential path search in [90].

The boomerang attack [129], originally applied to block ciphers, has been adapted to the hash func-

tion setting independently by Biryukov et al. [23] and by Lamberger and Mendel [86]. In particular,

in [23], a distinguisher for the 7-round BLAKE-32 was provided, whereas in [86] a distinguisher for the

46-step reduced SHA-2 compression function was provided. The latter SHA-2 result was extended to 47

steps [22]. Subsequently, boomerang distinguishers have been applied to many hash functions, such as

HAVAL, RIPEMD-160, SIMD, HAS-160, SM3 and Skein [72, 92, 98, 121, 123, 124, 136]. Outside of the

boomerang context, the zero-sum property as a distinguishing property was first used by Aumasson [8].

As for the previous HAS-160 analysis, in 2005, Yun et al. [137] found a practical collision for
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the 45-step (out of 80) reduced hash function. Their attack was extended in 2006 to 53 steps by Cho et

al. [36], however, with computational complexity of 255 53-step compression function computations. In

2007, Mendel and Rijmen [103] improved the latter attack complexity to 235, providing a practical two-

block message collision for the 53-step compression function. Preimage attacks on 52-step HAS-160 with

complexity of 2152 was provided in 2008 by Sasaki and Aoki [122]. Subsequently, in 2009, this result was

extended by Hong al. to 68 steps [61] where the attack required a complexity of 2156.3. In 2011, Mendel et

al. provided a practical semi-free-start collision for 65-step reduced compression function [99]. Finally, in

2012, Sasaki et al. [124] provided a theoretical boomerang distinguisher for the full HAS-160 compression

function, requiring 276.6 function computations. In the same work, a practical second order collision was

given for steps 5 to 80 of the function.

In the next section, we provide a review of boomerang distingiushers and a recapitulation of the de

Cannière and Rechberger search heuristic, along with the HAS-160 specification. In Section 3.2, the general

form of our search heuristic is provided and its application to HAS-160 is discussed. The three propagation

types used in the heuristic are explained in Section 3.3. Concluding remarks are in given Section 3.4.

3.1 Review of related work and the specification of HAS-160

In the following subsections, we provide a description of a commonly used strategy to construct

second order collisions, an overview of the de Cannière and Rechberger path search heuristic and finally the

specification of the HAS-160 hash function.

3.1.1 Review of boomerang distinguishers for hash functions

First, we provide a generic definition of the property used for distinguishing the compression function

from a random function. Let h be a function with n-bit output. A second order collision for h is a set

{x,∆,∇} consisting of an input for h and two differences, such that

h(x+∆+∇)− h(x+∆)− h(x+∇) + h(x) = 0 (3.1)

As explained in [22], the query complexity for finding a second order collision is 3 ·2n/3 where n denotes the

bit-size of the output of the function f . By the query complexity, the number of queries required to be made
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Figure 3.1: Start-from-the-middle approach for constructing second-order collisions

to the function h is considered. On the other hand, for the computational complexity, which would include

evaluating h around 3 · 2n/3 times and finding a quartet that sums to 0, the best currently known algorithm

runs in complexity no better than 2n/2. If for a particular function a second order collision is obtained with

a complexity lower than 2n/2, then this hash function deviates from the random function oracle.

Next, we explain the strategy to construct quartets satisfying (3.1) for Davies-Meyer based functions,

as commonly applied in the previous literature. An overview of the strategy is provided in Fig. 3.1. We

write h(x) = e(x) + x, where e is an iterative function consisting of n steps. The goal is to find four inputs

xA, xB, xC and xD that constitute the inputs in (3.1) according to Fig. 3.1 (c). In particular, the goal is to

have

xA − xD = xB − xC

e(xA)− e(xB) = e(xD)− e(xC)

(3.2)

where the two values specified by (3.2) are denoted respectively by α and β in Fig. 3.1 (c). In this case, we

have h(xA)−h(xB)+h(xC)−h(xD) = e(xA)+xA− e(xB)−xB + e(xC)+xC − e(xD)−xD = 0. Now,

one can put xA = x, ∆ = xD − xA and ∇ = xB − xA and (3.1) is satisfied.

A preliminary step is to decide on two paths, called the forward path and the backward path. As

shown in Fig. 3.1, these paths are chosen so that for some n0 < n1 < n2 < n3 < n4 < n5, the forward path

has no active bits between steps n3 and n4 and the backward path has no active bits between steps n1 and
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Compression function n0 n1 n2 n3 n4 n5 Reference Message block size

SHA-2 0 6 22 31 47 47 [22] 16× 32
HAVAL 0 2 61 97 157 160 [121] 32× 32

HAS-160 5 13 38 53 78 80 [124] 16× 32

Table 3.1: Overview of some of the previously used boomerang paths

n2. The forward path is enforced on faces (xA, xB) and (xD, xC) (front and back) whereas the backward

differential is enforced on faces (xA, xD) and (xB, xC) (left and right). In the case of MDx-based designs,

the particular n values depend mostly on the message schedule specification.

The procedure can be summarized as follows:

(a) The first step is to construct the middle part of the quartet structure, as shown in Fig. 3.1 (a). The

forward and backward paths end at steps n3 and n2, respectively. In steps n2 to n3, the two paths need

to be compatible for this stage to succeed.

(b) Following Fig. 3.1 (b), the paths are extended to steps n1 backward and n4 forward with probability

1, due to the absence of disturbances in the corresponding steps.

(c) Some of the middle-step words are randomized and the quartet is recomputed backward and forward,

verifying if (3.2) is satisfied. If yes (see Fig. 3.1 (c)), return the quartet, otherwise, repeat this step.

This strategy, with variations, has been applied in several previous works, such as [22, 121, 123, 124]. In

Table 3.1, we provide the forward/backward path parameters for the previous boomerang distinguishers on

some of the MDx/SHA-x based compression functions following the single-pipe design strategy.

In [22,124], the number of steps in the middle was 9 and 16 steps, respectively. It can be observed that

these numbers of middle steps are suboptimal, since simple message modification allows trivially satisfying

16 steps in the case of SHA-2 and HAS-160. Since the forward and backward paths are sparse towards steps

n3 and n2, one can easily imagine satisfying more than 16 steps, while there remains enough freedom to

randomize the inner state although some penalty in probability has to be paid. In the case of HAVAL [121],

simple message modification allows passing through 32 steps and the middle part consists of as many as 36

steps. However, it should be noted that this is due to the particular property of HAVAL that allows narrow

paths [70].
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δ(x, x′) meaning (0,0) (0,1) (1,0) (1,1)

? anything
√ √ √ √

- x = x′
√

- -
√

x x 6= x′ -
√ √

-

0 x = x′ = 0
√

- - -

u (x, x′) = (0, 1) -
√

- -

n (x, x′) = (1, 0) - -
√

-

1 x = x′ = 1 - - -
√

# - - - -

δ(x, x′) meaning (0,0) (0,1) (1,0) (1,1)

3 x = 0
√ √

- -

5 x′ = 0
√

-
√

-

7
√ √ √

-

A x′ = 1 -
√

-
√

B
√ √

-
√

C x = 1 - -
√ √

D
√

-
√ √

E -
√ √ √

Table 3.2: Symbols used to express 1-bit conditions [35]

3.1.2 Review of the de Cannière and Rechberger search heuristic

This search heuristic is used to find differential paths that describe pairs of compression function

executions. The symbols used for expressing differential paths are provided in Table 3.2. For example,

when we write -x-u, we mean a set of 4-bit pairs

-x-u = {T, T ′ ∈ F 4
2 |T3 = T ′

3, T2 6= T ′
2, T1 = T ′

1, T0 = 0, T ′
0 = 1}

where Ti denotes i-th bit in word T .

Next, an example of condition propagation is provided. Suppose that a small differential path over

one modular addition is given by

----+ ---x = ---x (3.3)

Here (3.3) describes a pair of additions: x + y = z and x′ + y′ = z′, and from this “path” we have that

x = x′ and also that y and y′ are different only in the least significant bit (likewise for z and z′). However,

this can happen only if x0 = x′
0 = 0, i.e. if the lsb of x and x′ is equal to 0. We thus propagate a condition
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by replacing (3.3) with

---0+ ---x = ---x

The de Cannière and Rechberger heuristic [35] searches for differential paths over some number of com-

pression function steps. It starts from a partially specified path which typically means that the path is fully

specified at some steps (i.e., consisting of symbols {-,u,n}) and unspecified at other steps (i.e., symbol

‘?’). The heuristic attempts to complete the path, so that the final result is non-contradictory by proceeding

as follows:

- Guess: select randomly a bit position containing ‘?’ or ‘x’. Substitute the symbol in the chosen bit

position by ‘-’ and {u,n}, respectively.

- Propagate: deduce new information introduced by the Guess step.

When a contradiction is detected, the search backtracks by jumping back to one of the guesses and attempts

different choices.

3.1.3 HAS-160 specification

The HAS-160 hash function follows the MDx/SHA-x hash function design strategy. Its compression

function can be seen as a block cipher in Davies-Meyer mode, mapping 160-bit chaining values and 512-bit

messages into 160-bit digests. To process arbitrary-length messages, the compression function is plugged in

the Merkle-Damgård mode.

Before hashing, the message is padded so that its length becomes multiple of 512 bits. Since here

padding is not relevant, we refer the reader to [1] for further details. The underlying HAS-160 block cipher

consists of two parts: message expansion and state update transformation.

Message expansion: The input to the compression function is a message m = (m0, . . . m15) represented

as 16 32-bit words. The output of the message expansion is a sequence of 32-bit words W0, . . .W79. The

expansion is specified in Table 3.3. For example, W26 = m15.

State update: One compression function step is schematically described by Fig. 3.2 (a). The Boolean
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

m8 ⊕m9 m0 m1 m2 m3
m12 ⊕m13 m4 m5 m6 m7

m0 ⊕m1 m8 m9 m10 m11
m4 ⊕m5 m12 m13 m14 m15⊕m10 ⊕m11 ⊕m14 ⊕m15 ⊕m2 ⊕m3 ⊕m6 ⊕m7

m11 ⊕m14 m3 m6 m9 m12
m7 ⊕m10 m15 m2 m5 m8

m3 ⊕m6 m11 m14 m1 m4
m15 ⊕m2 m7 m10 m13 m0⊕m1 ⊕m4 ⊕m13 ⊕m0 ⊕m9 ⊕m12 ⊕m5 ⊕m8

m4 ⊕m13 m12 m5 m14 m7
m8 ⊕m1 m0 m9 m2 m11

m12 ⊕m5 m4 m13 m6 m15
m0 ⊕m9 m8 m1 m10 m3⊕m6 ⊕m15 ⊕m10 ⊕m3 ⊕m14 ⊕m7 ⊕m2 ⊕m11

m15 ⊕m10 m7 m2 m13 m8
m11 ⊕m6 m3 m14 m9 m4

m7 ⊕m2 m15 m10 m5 m0
m3 ⊕m14 m11 m6 m1 m12⊕m5 ⊕m0 ⊕m1 ⊕m12 ⊕m13 ⊕m8 ⊕m9 ⊕m4

Table 3.3: Message expansion in HAS-160
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Figure 3.2: Two equivalent representations of the state update

functions f used in each step are given by

f0(x, y, z) = (x ∧ y)⊕ (¬x ∧ z)

f1(x, y, z) = x⊕ y ⊕ z

f2(x, y, z) = (x ∨ ¬z)⊕ y

where f0 is used in steps 0-19, f1 is used in steps 20-39 and 60-79 and f2 is used in steps 40-59. The

constant Ki that is added in each step changes every 20 steps, taking the values 0, 5a827999, 6ed9eba1 and

8f1bbcdc. The rotational constant si1 is specified by the following table

i mod 20 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

si1 5 11 7 15 6 13 8 14 7 12 9 11 8 15 6 12 9 14 5 13

The other rotational constant si2 changes only each 20 steps and si2 ∈ {10, 17, 25, 30}. Following the Davies-
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Message quartet

MA F6513317 810F1084 FFB71009 78CC955E C3C09F18 5379FC99 435586DA 9C9AD3B4

00440C80 E174316A 006D1670 2B5CF68A AB3DE600 02C9E9D3 5FE95AFF E351DE04

MB F6513317 810F1084 FFB71009 78CC955E C3C09f18 5379FC99 435786DA 9C9AD3B4

00440C80 E174316A 006D1670 2B5CF68A AB3FE600 02C9E9D3 5FE95AFF E351DE04

MC 76513317 010F1084 FFB71009 78CC955E 43C09F18 5379FC99 435786DA 1C9AD3B4

00440C80 E174316A 006D1670 2B5CF68A AB3FE600 02C9E9D3 5FE95AFF E351DE04

MD 76513317 010F1084 FFB71009 78CC955E 43C09f18 5379FC99 435586DA 1C9AD3B4

00440C80 E174316A 006D1670 2B5CF68A AB3DE600 02C9E9D3 5FE95AFF E351DE04

Chaining values quartet

IVA 1143BE75 9A9CA381 85B3F526 DA6ABE66 70EBE920

IVB 3AF7BD99 D08E2E63 245C2AF0 C4456954 CAC046EA

IVC 3AF7B599 D08E2E63 B45C2AF0 C425694C 3BE146F2

IVD 1143B675 9A9CA381 15B3F526 DA4ABE5E E20CE928

Table 3.4: Second order collision for the full HAS-160 compression function

Meyer mode, feedforward is applied and the output of the compression is

(A80 + A0, B80 + B0, C80 + C0, D80 +D0, E80 + E0)

Alternative description of HAS-160: In Fig. 3.2 (b), the compression function is shown as a recurrence

relation, where Ai+1 plays the role of A in the usual step representation. Namely, A can be considered as the

only new computed word, since the rotation that is applied to B can be compensated by properly adjusting

the rotation constants in the recurrence relation specification. One starts from A−4, A−3, A−2, A−1 and A0,

putting these values to the previous chaining value (or the IV for the first message block) and computes the

recurrence until A80 according to

Ai+1 = Ai−4 <<< ti1 +Ki + fi(Ai−1, Ai−2 <<< ti3, Ai−3 <<< ti2) +Wi + Ai <<< ti4 (3.4)

The rotational values tij , 1 ≤ j ≤ 4 are derived from si1 and si2, where the constants related to the rotation of

B in the usual representation change around the steps 20 × k, k = 0, 1, 2, 3. For instance, to compute A42,

we have t411 = 17, t412 = 17, t413 = 25 and t414 = 11.

3.2 Compatible paths search heuristic and application to HAS-160

In this section, we provide a new search heuristic that can be used to find compatible paths in the

boomerang setting. The particular colliding quartet found by applying the heuristic on HAS-160 is provided

in Table 3.4.

The heuristic uses quartets of 1-bit conditions from Table 3.2 to keep track of the bit differences in

each of the four compression function executions. Apart from the single-path propagations proposed in [35],
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

m8 ⊕m9 m0 m1 m2 m3
m12 ⊕m13 m4 m5 m6 m7

m0⊕m1 m8 m9 m10 m11
m4⊕m5 m12 m13 m14 m15⊕m10 ⊕m11 ⊕m14 ⊕m15 ⊕m2 ⊕m3 ⊕m6⊕m7

m11 ⊕m14 m3 m6 m9 m12
m7 ⊕m10 m15 m2 m5 m8

m3 ⊕m6 m11 m14 m1 m4
m15 ⊕m2 m7 m10 m13 m0

⊕ m1⊕ m4 ⊕m13⊕ m0 ⊕m9 ⊕m12 ⊕m5 ⊕m8

m4 ⊕m13 m12 m5 m14 m7
m8 ⊕m1 m0 m9 m2 m11

m12 ⊕m5 m4 m13 m6 m15
m0 ⊕m9 m8 m1 m10 m3⊕ m6 ⊕m15 ⊕m10 ⊕m3 ⊕m14 ⊕m7 ⊕m2 ⊕m11

m15 ⊕m10 m7 m2 m13 m8
m11⊕m6 m3 m14 m9 m4

m7 ⊕m2 m15 m10 m5 m0
m3 ⊕m14 m11 m6 m1 m12⊕m5 ⊕m0 ⊕m1⊕m12 ⊕m13 ⊕m8 ⊕m9 ⊕m4

Table 3.5: Message differentials. Backward: steps 0-39, forward: steps 40-79

step ∆[A,B] ∆[D,C] ∆[B,C] ∆[A,D] step

9 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 9

10 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 10

11 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 11

12 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 12

13 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 13
...

...
...

... [NO DIFFERENCE]
...

...

29 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 29

30 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 30

31 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 31

32 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 32

33 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 33

34 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 34

35 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 35

36 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 36

37 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 37

38 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 38

39 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 39

40 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 40

41 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 41

42 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 42

43 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 43

44 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 44

45 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 45

46 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 46

47 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 47

48 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 48

49 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 49

50 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 50

51 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 51

52 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 52

53 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 53

54 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 54
...

... [NO DIFFERENCE]
...

...
...

...

76 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 76

77 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 77

Table 3.6: Input for the search heuristic

two additional types of boomerang (cross-path) propagations are added. These boomerang propagations

were previously listed in [89].

To specify the problem on which the heuristic is applied in the context of HAS-160, the forward and

backward message differentials are provided next. Let the forward message differential consist of a one-bit

difference in messages m6 and m12 and the backward differential of a one-bit difference in m0, m1, m4

and m7, as shown in Table 3.5. The particular bit-position of differences is left unspecified. The choice of

these difference positions is justified by the following start/end points of the expanded message differences,

expressed in terms of the notation used in Fig. 3.1: (n0, n1, n2, n3, n4, n5) = (0, 8, 34, 53, 78, 80). It can be

observed that the middle part consists of 20 steps.

Now, the particular problem schematically described by Fig. 3.1 (a) is represented more specifically

by Table 3.6, where the backward and forward message differentials are indicated in the first and the last
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step ∆[A,B] ∆[D,C] ∆[B,C] ∆[A,D] step

29 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 29

30 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 30

31 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 31

32 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 32

33 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 33

34 0??????????????????????????????? 1??????????????????????????????? u------------------------------- u------------------------------- 34

35 0??????????u???????x0???x-0????? 1??????????u???????x0???x-1????? u----------1--------0-----u----- u----------0--------0-----u----- 35

36 1x????????xu?-01B?--0Bx--u0D???? 0x????????xu?-11B?--1Bx--u0D???? n----------1--u1----u----10----- n----------0--u1----u----00----- 36

37 11-0D0B??0n0?101-x-10-01u01C???x 11-0D1B??0n1?100-x-10-00u10C???x 11-0-u---00u-10n---10-0n1un----- 11-0-u---01u-10n---10-0n0un1---- 37

38 00u0nn-1n01uu000uu-011u00nnn-01- 01u0nn-1n01uu110uu-001u10nnn-11- 0u1000-100111uu011-0n11u0000-u1- 0u0011-110100uu000-0n10u0111-u1- 38

39 n101-1000100-0-0000-1---100-010n n110-0010101-0-1001-1---001-100n 01un-n0u010u-0-u00u-1---n0u-un00 11un-n0u010u-0-u00u-1---n0u-un01 39

40 1-100010001-01--0n1-u-0-00--11-1 1-010011101-00--1n1-u-0-10--11-1 1-nu001uu01-0n--u01-1-0-u0--11-1 1-nu001uu01-0n--u11-0-0-u0--11-1 40

41 u--1--00--0-01--0--0u--001-0---1 u--0--00--0-11--1--1u--001-0---1 1--n--00--0-u1--u--u1--001-0---1 0--n--00--0-u1--u--u0--001-0---1 41

42 u---1-01001-110--n01011--n10---1 u---0-11110-011--n00000--n00---0 1---n-u1uun-n1u--00n0nn--0n0---n 0---n-u1uun-n1u--10n0nn--1n0---n 42

43 n------01----0------u------00-un n------00----0------u------01-un 0????--0nD???0x?????1x??x--0u-10 1????--0nD???0x?????0x??x--0u-01 43

44 0-----10----------------1u------ 0------0----------------1u------ 0?????C0????????????????11?????x 0?????C0????????????????10?????x 44

45 ------00------------u------1---- ------00------------u------1---- ??????00????????????1??????1???? ??????00????????????0??????1???? 45

46 u------------------------------- u------------------------------- 1??????????????????????????????? 0??????????????????????????????? 46

47 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 47

48 -------u------------------------ -------u------------------------ ???????1???????????????????????? ???????0???????????????????????? 48

49 -------n------------------------ -------n------------------------ ???????0???????????????????????? ???????1???????????????????????? 49

50 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 50

51 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 51

52 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 52

53 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 53

54 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 54

Table 3.7: Output of the heuristic: compatible paths for HAS-160

Step Conditions

33 A33,14 6= A32,14

34 A34,20 = A33,20

35 A35,0 6= A34,0 , A35,16 6= A33,31 , A35,26 6= A34,26

36 A36,3 = A35,3 , A36,9 6= A35,9 , A36,21 = A35,21 , A36,22 = A34,5 , A36,23 = A35,23

37 A37,0 = A36,0 , A37,1 = A36,1 , A37,2 6= A35,17 , A37,13 = A36,13 , A37,23 6= A36,23

38 A38,25 = A36,8

39 A39,19 ∨ A37,2 = 1

40 A40,17 ∨ A38,0 = 1, A40,30 ∨ A38,13 = 1

41 A41,16 ∨ A39,23 = 1

Table 3.8: Backward differential conditions not shown in Table 3.7

column, respectively. At this point, the only information that is present in the system is that the two paths

end at the corresponding steps n2 = 34 and n3 = 53. The output of the heuristic in the case of HAS-160 is

given in Table 3.7. The full specifications of the two paths intersect at 5 steps, which is the number of inner

state registers in HAS-160. Provided that the paths are compatible, one can now start from step 42 and apply

the usual message modification technique to satisfy both paths, which resolves the middle of the boomerang

as shown in Fig. 3.1 (a).

3.2.1 Search strategy

The approach consists of varying the position of the message difference bit, gradually extending the

two paths, propagating the conditions in the quartet and backtracking in the case of a contradiction. In more

detail, the heuristic proceeds as follows:

(1) Randomize the positions of active bits in the active message words.
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Step Conditions

37 A37,2 = A36,2 , A37,3 6= A36,3 , A37,10 6= A36,10 , A37,13 = A36,28 , A37,15 = 0, A37,25 = A36,8 , A37,29 = A36,12

38 A38,0 = 1

39 A39,4 = 1, A39,8 = 0, A39,9 = 1, A39,12 = 0, A39,17 = 0, A39,19 = 1

40 A40,4 = 0, A40,5 = 0, A40,8 = 0, A40,12 = 1

41 A41,13 = 0, A41,14 = 0

42 A42,7 = 0,

43 A43,6 = 0, A43,7 ∨ A41,14 = 1

44 A44,0 = 0, A44,1 = 0, A44,4 ∨ A42,11 = 1, A44,26 ∨ A42,1 = 1

45 A45,26 = 0

46 A46,4 ∨ A44,11 = 1

47 A47,4 = 1, A47,24 ∨ A45,31 = 1, A47,31 = 1

48 A48,31 = 0

49 A49,17 = 0

50 A50,17 = 0, A50,24 = 1

51 A51,17 = 0

Table 3.9: Forward differential conditions not shown in Table 3.7

step ∆[WA,WB] ∆[WD,WC ] ∆[WB,WC ] ∆[WA,WD]

33 1------------------------------- 0------------------------------- n------------------------------- n-------------------------------

34 1------------------------------- 0------------------------------- n------------------------------- n-------------------------------

35 -------------------------------- -------------------------------- -------------------------------- --------------------------------

36 1------------------------------- 0------------------------------- n------------------------------- n-------------------------------

37 -------------------------------- -------------------------------- -------------------------------- --------------------------------

38 -------------------------------- -------------------------------- -------------------------------- --------------------------------

39 1------------------------------- 0------------------------------- n------------------------------- n-------------------------------

40 0-------------u----------------- 1-------------u----------------- u-------------1----------------- u-------------0-----------------

41 --------0-----u----------------- --------0-----u----------------- --------0-----1----------------- --------0-----0-----------------

42 -------------------------------1 -------------------------------1 -------------------------------1 -------------------------------1

43 -------------------------------- -------------------------------- -------------------------------- --------------------------------

44 1------------------------------- 0------------------------------- n------------------------------- n-------------------------------

45 1------------------------------- 0------------------------------- n------------------------------- n-------------------------------

46 1------------------------------- 0------------------------------- n------------------------------- n-------------------------------

47 -------------------------------- -------------------------------- -------------------------------- --------------------------------

48 -------------------------------- -------------------------------- -------------------------------- --------------------------------

Table 3.10: Message differences after propagation

(2) Extend the specification of the forward/backward path backward/forward, respectively. Ensure that

paths are randomized over different step invocations.

(3) Propagate all new conditions. In the case of contradiction, backtrack

(4) If the paths are fully specified on a sufficient number of steps, return the two paths

In step (1), the message disturbance position in the two differentials is randomized to achieve varia-

tion in the paths. Alternatively, one position can be fixed to bit 31 and the other position randomized at each

step invocation. As for step (2), at the point where the probability of contradiction between the two paths

is negligible, one can extend paths simply by randomly sampling them in the required steps and discard-

ing non-narrow ones. Once the probability of contradiction becomes significant, the substitute/backtrack

strategy according to the Table 3.11 is applied to the remaining steps. In step (3), apart from propagations
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1. ???? 7→ --??

2. ??-- 7→ ----

3. ??xx 7→ --xx

4. xx?? 7→ {uu10,nn01}
5. xx-- 7→ {uu10,nn01}
6. xxxx 7→ {unnu,nuun}

1. ???? 7→ ??--

2. --?? 7→ ----

3. xx?? 7→ xx--

4. ??xx 7→ {01uu,10nn}
5. --xx 7→ {01uu, 10nn}
6. xxxx 7→ {unnu,nuun}

Table 3.11: Substitution rules: adding information to the forward path (left) and backward path (right)

on a single path [35], quartet and quartet addition propagations (explained in Section 3.3) are applied. The

heuristic ends when the full specification of two paths (containing only {-,u,n}) intersects on the number

of words equal to the number of registers in the compression function inner state, as is the case in Table 3.7.

When new constraint information is to be added at a particular bit position, one can either add in-

formation to the forward path or to the backward path. Here, a clarification is necessary regarding the fact

that in Table 3.7, four paths are shown, whereas the heuristic searches for a pair of paths (forward and back-

ward). This is due to the fact that the paths on the opposite faces of the boomerang are equal (up to 0 and

1 symbols) and thus one can consider a pair of paths. Nonetheless, the inner state of the search algorithm

keeps all the four paths explicitly.

The substitutions provided in Table 3.11 represent generalizations of the substitutions used in [35].

The choice whether the information will be added to the forward or the backward path is made randomly

each time. The left-hand and the right-hand tables correspond to adding constraints to the forward and the

backward path, respectively. Consider for example rule xx-- 7→ {uu10,nn01}. In this notation, the

symbols xx-- describe a bit position for which δ[Aj
i , B

j
i ] = x, δ[Dj

i , C
j
i ] = x, δ[Bj

i , C
j
i ] = -, δ[Aj

i , D
j
i ] =

-. The rule simply replaces the ‘x’ symbol in the forward path by ‘u’ or ‘n’, while at the same time

applying the immediate propagation of the ‘-’ symbols to ‘0’ and ‘1’, respectively. This rule represents a

generalization of the x 7→ {u,n} rule used in [35]. Other rules can be explained in a similar manner.

One possible variation of the general heuristic above is as follows. Once the two paths are suffi-

ciently specified so that the contradictions are likely to occur, instead of adding new constraints randomly,

XYZXYZ[graduality] one can choose a parameter k and extend both paths by only k steps. If the heuristic

succeeds in extending the paths by k steps, reporting that there is no contradiction in the system, more steps

can be attempted. If in the intermediate steps of the search, the path was in fact contradictory and this was
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not reported by 1-bit conditions, further attempts to extend or find the messages satisfying the paths will

fail.

3.2.2 Application to HAS-160

In this section, we describe how the above heuristic can be applied in the case of HAS-160. First,

we fix the position of the active bit in the backward differential to b1 = 31. The following sequence of steps

randomizes steps in the light-gray area in Table 3.6:

- Randomize the position of the forward message difference active bit b2.

- With the message difference fully specified by b1, b2, sample narrow paths in the inner state words in

steps denoted by light-gray in Table 3.6.

- Propagate conditions with respect to the three propagation types explained in Section 3.3. This step is

applied repeatedly until none of the three propagation types can be applied at any of the bit positions.

Here, the path sampling is performed simply by initializing randomly the two instances of the path at the

given step, calculating the recurrence over the required number of steps and extracting the path. If the

Hamming weight of the path is greater than some pre-specified threshold, it is discarded and a new path is

sampled. Using the sampling above of partial solution to the paths, the following procedure aims to find the

full solution:

(1) Randomize steps in the light-gray area according to the procedure above (steps 43-49 and 34-37 in

the forward and backward paths, respectively).

(2) Randomly choose (i, j), 0 ≤ i ≤ 31, 38 ≤ j ≤ 42, a position within the steps denoted by dark-grey in

Table 3.6. If applicable, apply the substitution specified by Table 3.11. If not, choose another position.

In the case there is none, return the state.

(3) Propagate conditions and backtrack in the case of contradiction. After a contradiction is reached a

sufficient number of times, go to step (1).

After reducing the number of steps in which the two differentials meet from 5 to 3 (i.e., putting

k = 4, where it should be noted that after the propagation the number of unconstrained bits will be relatively
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small), we receive several paths reported as non-contradictory. At that point, there are two possible routes

to verify the actual correctness of the intermediate result. One is to switch from 1-bit conditions to multi-bit

conditions (such as 1.5-bit or 2.5-bit conditions [89]) that capture more information. ARXtools [89] can

readily be used for this purpose. Each 2.5-bit verification using ARXtools for checking the compatibility

of two paths took around 3-5 minutes. Another option is to continue with the search heuristic towards

extending the specification of the paths to more steps, restarting always from the saved intermediate path

state. As the knowledge in the system grows, the propagations turn a high proportion of bits into 0 and 1,

which diminishes the possibility of contradiction. If the solution cannot be found after some time threshold

t, the path can be abandoned. We experimented with both options above and concluded that both approaches

are successful.

3.2.3 Full complexity of finding the HAS-160 second order collision

Our implementation of the heuristic found a correct pair of compatible paths in less than 5 days of

execution on an 8-core Intel i7 CPU running at 2.67GHz. In more detail, as explained in Section 3.2.2, we

ran the heuristic to search for paths that meet at 3 instead at 5 steps. It should be noted that due to many

propagations, after the search stops, the resulting paths in fact have a small number of remaining unspecified

bits in steps 38-42 (less than 32). The heuristic yielded around 8 solutions per day and among 40 returned

path pairs, one turned out to be compatible and was successfully extended by one step more, as shown in

Table 3.7.

The conditions for the two paths that are not explicitly given as u,n,0,1 bits in Table 3.7 are

provided in Tables 3.8 and 3.9. To find the quartet of message words and inner states that follow the two

differentials in steps 34 to 49, inner state registers in step 42 are chosen to follow the conditions specified

by Tables 3.8,3.9 and Table 3.7 and then the usual message modification procedure is applied backward and

forward.

Once the middle steps of the quartet structure n2 = 34 to n3 = 53 are satisfied, the second order

collision property extends to steps n1 = 8 to n4 = 78 with probability 1 (see Fig. 3.1 (b)). To cover all of the

compression function steps, the middle steps are kept constant and the remaining ones are randomized until

the second order collision property is satisfied. In particular, if m6 and m15 are randomized while m6 ⊕m15

is kept constant, according to the message expansion specification, the inner state will be randomized for
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54 ≤ i ≤ 80 and 0 ≤ i ≤ 35. Similarly, if m6 and m4 are randomized where m6 ⊕m4 is kept constant, the

randomization will happen for 52 ≤ i ≤ 79 and 0 ≤ i ≤ 34. Here, a small penalty in probability is paid due

to the fact that the paths may be corrupted towards the start/end points. The two mentioned randomizations

provide around 64 bits of freedom.

The probability that one randomization explained above yields a second-order collision can be bounded

from below by p2q2, where p and q are the probabilities of two selected sparse differentials in steps 0 ≤ i ≤

n1 and n4 ≤ i < 80, respectively. By counting the number of conditions in sparse paths that happened in

the quartet in Table 3.4, we obtain p = 2−22 and q = 2−3 and the probability lower bound p2q2 = 2−50. The

actual time of execution on the above mentioned PC was less than two days, due to the additional differential

paths which contribute to the exact probability of achieving the second order collision property (previously

named amplified probability [22, 89]).

3.3 Details on condition propagation

The heuristic keeps track of the current state of the system by keeping the following information in

memory:

- Four differential path tables keeping the current state of bit-conditions

- 4× r carry graphs [106] (one carry graph for each of four paths consisting of r steps)

In our implementation, we used r = 16, keeping the information about steps 33-48. The carry graphs model

the carry transitions allowed by the knowledge present in the system. Below, the three types of knowledge

propagation are described. The propagations are applied as long as the system is not fully propagated with

respect to all three types below.

3.3.1 Single-path propagations

An explicit example of a single-path propagation [35] (see also [106, 116]) is provided below. The

constraints and the corresponding carry graphs for a particular bit position are all explicitly shown. The new

propagated constraints as well as the omitted carry graph edges are indicated.

Throughout the compression function execution specified by (3.4), for any 1 ≤ i ≤ 80 and 0 ≤

j ≤ 31, bit Aj
i is computed based on the 5 input bits in Ai−j , 1 ≤ j ≤ 5, the message word bit as well
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. . .

δK 01101110110110011110101110100001

δ[WB,41,WC,41] --------0-----0-----------------

δ[B37, C37] 11-0-u---00u-10n---10-0n1un-----

δ[B38, C38] 0u1000-100111uu011-0n11u0000-u1-

δ[B39, C39] 01un-n0u010u-0-u00u-1---n0u-un00

δ[B40, C40] 1-nu001uu01-0n--u01-1-0-u0--11-1

δ[B41, C41] 1--n--00--0-u1--u--u1--001-0---1

δ[B42, C42] 1---n-u1uun-n1u--00n0nn--0n0---n

δK 01101110110110011110101110100001

δ[WB,41,WC,41] --------0-----0-----------------

δ[B37, C37] 11-0-u---00u-10n---10-0n1un-----

δ[B38, C38] 0u1000-100111uu011-0n11u0000-u1-

δ[B39, C39] 01un-n0u010u-0-u00u-1---n0u-un00

δ[B40, C40] 1-nu001uu01-0n--u01-1-0-u0--11-1

δ[B41, C41] 1--n--00--0-u1--u--u1--001-0---1

δ[B42, C42] 1---n-u1uun-n1u--00n0nn--0n0---n

. . .

c0C

c0B

c1C

c1B

c2C

c2B

Figure 3.3: Extract of single-path path constraints

as a particular constant bit. Moreover, bit Aj
i depends on the carries coming from the computations at bit

positions j < k ≤ 0.

In Fig. 3.3, an extract of the path is provided, borrowed from the ∆[B,C] path in Table 3.7. The

bit positions treated in this case are δ[B1
42, C

1
42] (left) and δ[B0

42, C
0
42] (right). The shaded bits are the bit

positions participating in the computation of the two bits. As for the carry graph, it consists of 32 subgraphs,

each comprising of 5 × 5 nodes. In Fig. 3.3, only the subgraphs corresponding to bit positions 1 (left)

and 0 (right) are shown. Each subgraph node represents a particular carry configuration at the particular

bit position. Due to the fact that there are 5 summands in (3.4), the carry value is limited to {0, . . . 4} and

thus each subgraph contains 5 × 5 nodes. The edges in the graphs represent possible carry configuration

transitions from bit position i to i+ 1.

Next, the edges connecting subgraphs for bit positions i = 0 to i = 1 in Fig. 3.3 are explained.

The edges shown and the corresponding bit-conditions are aligned in the sense that there are no possible

propagations at the particular positions, neither from the bit-conditions to graphs nor vice-versa. According

to the bit-conditions on position 0, we have

c1B|B0
42 = c1B|1 = 1 +W 0

B,41 +B15
37 + f2(1, 1, 1) + 0 = 1 +W 0

B,41 + B15
37

c1C |C0
42 = c1C |0 = 1 +W 0

C,41 + C15
37 + f2(1, 0, 1) + 0 = 1 +W 0

C,41 + C15
37 + 1
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From the above two equalities, it follows that W 0
B,41 = B15

37 and W 0
C,41 = C15

37 . Since δ[W 0
B,41,W

0
C,41] and

δ[B15
37 , C

15
37 ] are set to -, the possible carry configurations are (c1B, c

1
C) ∈ {(0, 1), (1, 2)}, which correspond

to the two edges between the two subgraphs.

Whenever it is possible to deduce new information from what is already present in the system, prop-

agations need to be carried out until no new information can be derived. Continuing with the setting in Fig.

3.3, assume that during the heuristic, the symbol - at position δ[W 0
B,41,W

0
C,41] is replaced by 0. Then, the

propagation at this bit consists of replacing - at position δ[B15
37 , C

15
37 ] by 0 and deleting the (0, 0) 7→ (1, 2)

graph edge. The edge deletion continues to the left and to the right. in the case of Fig. 3.3, this amounts to

deleting the edges coming out of node (1, 2) and continuing in the same manner throughout the rest of the

subgraphs. Next, all of the influenced bit positions, either through carry graphs or through bit-conditions,

need to be repropagated in a manner similar to the process described above.

3.3.2 Quartet propagations

This type of propagation is the simplest of all three types presented in this section, since it does not

involve carry graphs. An example of this type of propagation is as follows. Let (i, j) denote a specific bit

position in the range of the steps being considered. Let the bit-conditions δ[Aj
i , B

j
i ], δ[D

j
i , C

j
i ], δ[B

j
i , C

j
i ],

δ[Aj
i , D

j
i ] in the four paths be equal to u, x, -, and ?, respectively. It follows that Aj

i = 0, Bj
i = 1, Cj

i = 1

and Dj
i = 0 and thus the quartet can be readily replaced by a new one

(ux-?) 7→ (uu10)

Given a quartet of conditions, the substitution quartet is found by going through all the bit value quartets that

satisfy the given condition quartet. The new quartet consists of the symbols from Table 3.2 that represent

minimal sets containing the valid bit value pairs.

3.3.3 Quartet addition propagations

In this subsection, the following terminology is adopted: carry subgraphs as shown in Fig. 3.3 are

called 2-graphs. Nodes with at least one input/output edge in the 2-graphs are called active nodes. During

the execution of the heuristic, each active 2-graph node corresponds to a possible carry configuration that
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Figure 3.4: Example: 2-carry graphs and the corresponding 4-carry graph before and after propagation

has not yet been ruled out by the heuristic.

Quartet addition propagation is illustrated in Fig. 3.4. The four graphs in the top part represent a

particular case of the 2-graphs that correspond to a single bit position (i, j) on paths [A,B], [B,C], [D,C],

[A,D], respectively from left to right. The active nodes are circled and the information about the number

of input/output edges is abstracted from the picture. The quartet addition propagation is based on the fact

that the four different 2-graphs may impose incompatible constraints on the carry configurations at the

considered bit position. For instance, according to the 2-graph corresponding to the path [D,C] (third graph

from the left in Fig. 3.4), since node (cD, cC) = (3, 2) is active, it follows that having a carry equal to 3

at this bit position in the branch D is not ruled out. However, since there are no active nodes in the third

column of the (cA, cD) graph, the node (cD, cC) = (3, 2) should be deactivated.

For the purpose of deciding which 2-carry graph nodes should be deactivated, it is convenient to

introduce another type of carry graph that will be called a 4-carry graph. For each bit-position covered by

the heuristic, the four 2-carry graphs are represented as one 4-carry graph, as shown in the bottom part of

Fig. 3.4. The 4-carry graphs abstract the information about active nodes in the 2-carry graphs.

As shown in Fig. 3.4, the 4-carry graph has four groups of nodes that simply represent the carry

values cA, cB, cC and cD, respectively. The edges in the 4-carry graph are constructed simply by mapping

the active nodes in the corresponding 2-carry graphs to the edges between the corresponding node groups.

This mapping is specified by an example as follows. The active nodes in the (cA, cD) 2-carry graph are (0, 0)
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and (2, 1). This is translated to the edges (0, 0) and (2, 1) between the cA and cD branches in the 4-carry

graph. The other three 2-carry graph active nodes are mapped to the edges analogously.

The 4-carry graph representation allows the quartet addition propagation rules to be expressed in a

natural way. For that purpose, let a cycle denote a closed path connecting four nodes, where no two nodes

are members of the same node group in the 4-graph. The propagation rules are then as follows:

(R1) Remove all “dead-end” edges, i.e., the ones with an end node of degree 1

(R2) Remove all edges that do not participate in any cycle

In the case of the propagation given in Fig. 3.4, the quartet addition propagation consisted of three ap-

plications of (R1) and one application of (R2). Since each 4-graph edge corresponds to a node in the

corresponding 2-graph, the edge removal according to rules (R1) and (R2) amounts to deactivating the cor-

responding nodes in the 2-graph. The node deactivation is done by deleting all input and output edges for

the corresponding 2-graph node. In the case of our HAS-160 search, implementing only rule (R1) turned

out to be sufficient.

3.4 Conclusion

We have proposed a heuristic for searching for compatible differential paths and have applied it to

HAS-160. Instead of working with 0/1 bit values, we used the reasoning on sets of bits described by 1-

bit constraints. The three types of propagation used during the search (single-path propagation, quartet

propagation and quartet addition propagation) are explained through particular examples. Using the 1-bit

constraints along with these propagations yielded an acceptable rate of false positives and the second order

collision was found. One possible future research direction is to evaluate the performance of the proposed

heuristic in the case of SHA-2 with a goal of improving the attack [22] and to assess the impact of a high

rate of contradictory paths reported in [100] in this context.
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4

Boomerang and slide-rotational analysis of the

SM3 hash function

In December of 2007, the Chinese National Cryptographic Administration Bureau released the spec-

ification of a Trusted Cryptography Module, detailing a cryptoprocessor to be used within the Trusted Com-

puting framework in China. The module specifies a set of cryptographic algorithms that include the SMS4

block cipher, the SM2 asymmetric algorithm and SM3, a new cryptographic hash function designed by Xi-

aoyun Wang et al. [62]. The design of SM3 resembles the design of SHA-2 but includes additional fortifying

features such as feeding two message-derived words into each round, as opposed to only one in the case of

SHA-2.

In this chapter, we present a practical 4-sum distinguisher against the compression function of SM3

reduced to 32 rounds. In addition, we point out a slide-rotational property of SM3-XOR, which exists due to

the fact that the constants used in the rounds are not independent. As explained in the previous chapter, the

main idea of the second order differential cryptanalysis of hash functions [22, 23] is to use the boomerang

technique [129], previously used for block ciphers, whereby the additional freedom to choose the key is

exploited by using message modification techniques. Unlike in the context of first order analysis, where

message modification is applied on a pair of messages, in second order analysis, this technique is applied to

a quartet of values. Generally, the aim here is to find zero-sum quartets, i.e., quartets of input-output function

values, for which the four inputs as well as the four outputs sum to zero. In case of a compression function

that follows Davies-Meyer mode, a zero-sum can be seen as a second order collision for the compression

function [22]. Finally, the zero-sum condition can be considered as an evasive property [55]. Such a property

43



is impossible to achieve with a non-negligible probability using oracle accesses to an ideal primitive. Thus,

if it can be shown that the property can be satisfied for a particular construction, then it can be used for

disproving its indifferentiability claims [37]. Another example of evasive properties in the context of hash

functions are rotational properties [67]. Two words are said to be rotational if they are equal up to bit-wise

rotation by some number of positions. If among the outputs for some carefully chosen inputs, the rotational

relations hold with probability higher than the corresponding one for ideal function, then a distinguisher can

be mounted [69].

In the first part of this chapter, we present a practical algorithm to find a second order collision for 32

rounds reduced version of the SM3 compression function. An interesting feature of our approach is that the

two differential paths that are used for the bottom and the top part of the boomerang are not independent,

as was required in [22]. This results in seemingly conflicting bit conditions [107] in the early rounds of the

bottom part of the boomerang. However, as will be shown by the analysis in this chapter, the bit conflict

that occurs is recoverable and it can be bypassed by using a long carry propagation on the left and the

right face of the boomerang. The long carry propagation that is required to happen in order to resolve

the conflicting condition is a relatively low-probability event. However, in our approach, it is ensured by

message modification and does not affect the overall probability of the second-order collision search.

In the second part of the chapter, we note a slide-rotational property of SM3 and, we analyze the SM3-

XOR compression function, which is the SM3 compression function with the addition mod 232 replaced by

XOR. In particular, we show that, for SM3-XOR, one can easily construct input-output pairs satisfying a

simple rotational property. Such a property exists due to the fact that, unlike in SHA-2, the constants in

rounds i, i + 1, for i = 0, . . . , 63, i 6= 15 are computed by bitwise rotation starting from two predefined

independent values. Previously, SHA2-XOR was analyzed in [135].

As for previous work related to the work in this chapter, in [22,23], Biryukov et al. presented second

order analysis of SHA-2 and BLAKE. In particular, for the SHA-2 hash function, a second order collision

for its compression function reduced to 46 rounds was computed [22]. The BLAKE hash function reduced

to 8 rounds was shown to be suspectable to a second order attack which requires around 2242 compression

function calls [23]. Sasaki [121] provided a second order collision for the compression function of the 5-

pass HAVAL. A distinguisher for 32-round Skein-256 [92] requiring 2114 compression function calls was

presented by Leurent et al. Rotational cryptanalysis was introduced by Khovratovich et al [67]. The SHA2-
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Figure 4.1: One round of the SM3 hash function

XOR compression function was analyzed by Yoshida et al. [135], where it was shown that an iterative

differential can be used to detect non-randomness for up to 31 rounds of SHA2-XOR. The probability of

the 31-round iterative differential for SHA2-XOR is 2−246 whereas for a random function the corresponding

probability should be 2−256. This allowed an attack against 32-round SHACAL-2-XOR and also a pseudo-

collision attack for SHA2-XOR reduced to 34 rounds.

The rest of the chapter is organized as follows. The relevant specifications of the SM3 hash function

are briefly reviewed in the next section. In Section 4.2, relevant background on higher order analysis of

hash functions and the notation used throughout the chapter are given. Our second order attack against a

reduced-round SM3 compression function is described in Section 4.3. The slide-rotational property of SM3

is discussed in Section 4.4. Finally, our conclusion is given in Section 4.5.

4.1 Specifications of the SM3 hash function

SM3 is a Merkle-Damgård construction that processes 512-bit input message blocks and returns a

256-bit hash value. Before hashing, the message of length l is padded by a bit set to 1, followed by k bits

set to 0, where k is the smallest integer such that l + 1 + k = 448 mod 512. Finally, the remaining 64 bits

are set to the value of l in the binary form. SM3 consists of two parts: the message expansion and the state

update function (see Fig. 4.1). Below, we describe the two parts. The auxiliary functions, P0 and P1, both
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operating on 32-bit words are used in the specifications and are defined by:

P0(X) = X ⊕ (X <<< 9)⊕ (X <<< 17)

P1(X) = X ⊕ (X <<< 15)⊕ (X <<< 23).

Message expansion: The input here is the 512 message block represented as 16 32-bit words, M0, . . . ,M15.

It is expanded to 68 32-bit words by letting Wi = Mi for 0 ≤ i < 16 and

Wi = P1(Wj−16 ⊕Wj−9 ⊕ (Wj−3 <<< 15))⊕ (Wj−13 <<< 7)⊕Wj−6 (4.1)

for 16 ≤ i < 68. Another expanded message array used in SM3 is W ′
i , 0 ≤ i < 64, defined by

W ′
i = Wi ⊕Wi+4

State update transformation: In SM3, the state update starts from the fixed initial value of 8 32-bit

words [62] and updates them in 64 rounds. Let A,B,C,D,E, F,G and H denote the inner state registers.

As shown in Fig. 4.1, the j-th round transformation is given by

SS1 = ((A <<< 12) + E + (Tj <<< j)) <<< 7,

SS2 = SS1⊕ (A <<< 12)

TT1 = FFj(A,B,C) +D + SS2 +W ′
j

TT2 = GGj(E,F,G) +H + SS1 +Wj

D = C, C = B <<< 9, B = A, A = TT1

H = G, G = F <<< 19, F = E, E = P0(TT2)

(4.2)
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where the functions FFj and GGj are defined by

FFj(X, Y, Z) =







X ⊕ Y ⊕ Z, 0 ≤ j ≤ 15

(X ∧ Y ) ∨ (Y ∧ Z) ∨ (X ∧ Z) 16 ≤ j < 64

GGj(X, Y, Z) =







X ⊕ Y ⊕ Z, 0 ≤ j ≤ 15

(X ∧ Y ) ∨ (¬X ∧ Z) 16 ≤ j < 64

The round constants are Tj = 0x79cc4519 for j ∈ {0, . . . , 15} and Tj = 0x7a879d8a, for j ∈ {16, . . . , 63}.

Comparison with SHA-2: The major difference between SHA-2 and SM3 is that in each round of SM3,

two expanded message words are fed to the inner state, as opposed to just one in SHA-2. Also, the maximal

distance between taps in the message expansion mechanism in SM3 is 4, whereas in SHA-2, it is 8. Another

difference is that while addition modulo 232 is used in the message expansion and the feedforward mecha-

nisms in case of SHA-2, only XOR is used in SM3. Finally, one round of the SM3 hash function contains 8

mod 232 additions, as opposed to 7 such additions in the case of SHA-2.

4.2 Background and notation

The following notation is used throughout the chapter:

- x(b): the bth bit of an n-bit word x

- x(c···b): the word x(c)x(c−1) · · · x(b)

- ei: an n-bit unit vector with 1 in the ith bit position

- x: the bit-wise complemented word (or bit) corresponding to x

- W i
j , 1 ≤ i ≤ 4, 0 ≤ j ≤ 63: expanded message words, where i denotes the boomerang branch. More

precisely, i = 1, 2 signify the left and right branches on the front face and i = 3, 4 signify the left and

right branches on the back face of the boomerang
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Figure 4.2: Boomerang attack against a compression function

- hj , 0 ≤ j ≤ 63: the 256-bit compression function inner state after j rounds (e.g., h0 is the state before

any round has been executed)

- i-th round: the transformation that maps hi into hi+1

- hi
j , 1 ≤ i ≤ 4, 0 ≤ j ≤ 63: the 256-bit inner state after j rounds at the i-th boomerang branch, where

h1
i and h2

i correspond to the front face branches and h3
i and h4

i correspond to the back face branches.

4.2.1 Higher-order analysis of hash functions

In this section, the main idea of how to use the boomerang attack in the context of compression

functions is provided. The goal of this attack on the function f is to find a quartet (x0, x1, x2, x3) such that

x0 ⊕ x1 ⊕ x2 ⊕ x3 = 0

f(x0)⊕ f(x1)⊕ f(x2)⊕ f(x3) = 0

(4.3)

which is called a zero-sum or equivalently, a second-order collision. For a more detailed exposition of these

notions, please refer to the higher order cryptanalysis part of the Section 2.2. The strategies to construct

a second order collision previously applied to SHA-2 and BLAKE [22, 23] varied to some degree. Here,

we review the approach used in [22]. The general idea is to construct a quartet that forms boomerang

structure [129] for a block cipher in the Davis-Meyer mode. The differentials used in the boomerang are

related key differentials, where the secret key of the block cipher corresponds to the message block in the
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case of a compression function. The encryption function is divided into two parts, E1 ◦E0. As shown in Fig.

4.2, for the bottom part of the boomerang, a related-key differential (∆,∆K) → β for E1 with probability

q is constructed. Similarly, another related-key differential (δ, δK) → α with probability p is used for E−1
0 .

Then, an attempt to randomly satisfy the differentials in the boomerang structure, with probability p2q2

would proceed as follows:

- Randomly choose X , the inner state in the middle of the hash function execution, representing the

input to E1 (and the output of E0). Let X∗ = X ⊕∆, Y = X ⊕ δ and Y ∗ = X ⊕∆⊕ δ.

- Compute backward from X , X∗, Y , Y ∗ using E−1
0 to obtain P , P ∗, Q, Q∗, using keys K, K ⊕∆K ,

K ⊕ δK , K ⊕ δK ⊕∆K , respectively.

- Compute forward from X , X∗, Y , Y ∗ using E1 to obtain C, C∗, D, D∗ using keys K, K ⊕ ∆K ,

K ⊕ δK , K ⊕ δK ⊕∆K , respectively.

- Verify whether C ⊕ C∗ = D ⊕D∗ and P ⊕Q = P ∗ ⊕Q∗.

If the last condition is satisfied, a zero-sum quartet is found for the encryption function in Davis-Meyer

mode, since P ⊕Q⊕ P ∗ ⊕Q∗ = 0 and also (C ⊕ P )⊕ (C∗ ⊕ P ∗)⊕ (D ⊕Q)⊕ (D∗ ⊕Q∗) = 0.

To improve the efficiency of the above process, instead of trying to satisfy the boomerang randomly,

message modification can be used for some of the differential paths in the boomerang. For example, in

[22], message modification is applied to satisfy the middle part of the boomerang, i.e., to satisfy the two

differentials paths of the function E1. The other paths in the boomerang are satisfied randomly.

4.3 Zero-sum for reduced-round SM3

Here, a method for finding a zero-sum for the 32-round SM3 compression function is detailed. An

example for the found zero-sum for the 32-round reduced SM3 compression function is given in Table 4.3.

4.3.1 Choosing the differential paths

In what follows, the backward and the forward differential paths used in the boomerang are provided

and we explain why the two chosen paths are favorable. The 32-round block cipher used in the Davis-

Meyer mode in the SM3 compression function is decomposed into E1 ◦ E0. The function E0 consists

49



of rounds r = 0, . . . , 14 and the function E1 consists of rounds 15, . . . , 31. The forward and backward

differential paths for E1 and E0 used in the attack are given at the end of the Appendix (Tables 4.1 and 4.2,

respectively). For example, the last row in Table 4.1 denotes that there is no active bits between the two

inner states representing the output of round 14.

The paths have been found by linearizing the compression function and then applying Coding-

Tool [108], a tool for effective search for low Hamming weight codewords of a given linear code. The

linearization amounted to replacing addition mod 232 by XOR and the functions FFi and GGi, 16 ≤ i < 64

by zero functions. Functions FFi and GGi, 0 ≤ i < 16, have been left unchanged, since they are al-

ready linear. The input to CodingTool is a generating matrix of a linear code and the output is a low

Hamming-weight codeword. Here, the linear code in question is the linear mapping from the message to

the concatenated bit-vectors representing consecutive inner states of the compression function. The matrix

describing this mapping, i.e., the generating matrix of the linear code, is obtained by applying the linearized

compression function to the unit vectors. Then, the matrix is fed to the low Hamming weight codeword

search algorithm. The search is done for both functions E−1
0 and E1.

The probabilities for the provided differentials are obtained by multiplying the round probabilities

provided in Tables 4.1 and 4.2. As shown in the tables, the overall probabilities for E−1
0 and E1 paths are

2−25 and 2−57, respectively. Therefore, assuming that the events of satisfying the two differential paths are

independent, by using a naive search, the probability of finding a quartet that yields a zero-sum would be

2−2×(25+57) = 2−164. Instead of applying a naive search, message modification allows a major improvement

to this complexity. The differential path for E1 in rounds 15− 19 is satisfied by using message modification

and the rest, that is, rounds 0 − 4 and also round 31, is satisfied by a random search. Then, the search

complexity drops to 22×(25+2) = 254.

To clarify the advantage of the paths given in Tables 4.1 and 4.2, first we note that the Hamming

weight of the two paths does not change if the paths are rotated by some fixed number of bit-positions.

Therefore, the rotation amount is a free parameter that can be chosen to maximize the probability of success.

As for the backward path shown in Table 4.1, the choice of the rotation amount is simply due to the fact that

the number of active most significant bits is maximized, which improves the differential probability, given

that the active most significant bits do not affect such probability.

As for the rotational amount used for the forward differential, the number of most significant bits in
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rounds 15− 19 is less important, because in these rounds, the path is satisfied by message modification and

there is no need to minimize the path probability by forcing bits to be on the most significant bit position.

What matters for the forward differential is that one of the active bits in round 31 would correspond to

the most significant bit since, as explained above, this condition is satisfied by a random search, as is the

case with the particular paths in Table 4.2. This reduces the exhaustive search by more than a factor of 2

and when the alternative paths for the path in round 31 are taken into account, the reduction is by a factor

of around 3. This reduction is relatively significant, since our goal is to find a zero-sum efficiently with a

practical complexity.

In addition to the path given in Table 4.2, it can be easily verified that there exist two more paths

obtained by rotating the one in Table 4.2 such that, in round 31, one of the active bits is the most significant

bit. These two paths are obtained using rotation to the left by 17 and 9 positions. However, each of the three

paths have conflicting bit conditions in rounds 15 − 16 with respect to the backward differential, including

the path given in Table 4.2. In the next subsection, we show that the conflict between the backward path and

the forward path given in Table 4.2 is recoverable, i.e., it can be bypassed by message modification, which

is the reason why we focus on this path.

4.3.2 Message modification and the conflicting bits

In this section, we provide some details on the message modification technique in the context of the

boomerang, i.e., where the message modification is performed on a quartet of values, instead of on a pair of

values. The focus is put on resolving the particular conflict between the bit-conditions on the two faces of

boomerang that occurs in our SM3 analysis. A simple general tool for bypassing such conflicts, in the case

when this is possible, is provided.

The message modification procedure that satisfies rounds 15 − 19 of the forward differential on the

front and the back face of the boomerang proceeds as follows. Here, by message modification, we also

assume the modification of the middle inner state registers. Following the notation specified in Section 4.2,

let h1
15 and h2

15 denote the inner states satisfying the difference specified by the first row of Table 4.2. In the

back face of the boomerang, the corresponding inner states are h3
15 = h1

15 and h4
15 = h2

15. The goal is to have

both the front face and back face differences propagate according to Table 4.2.

The modification procedure can start from h1
15. The message words W 1

15,W
2
15 and the inner states
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h1
15, h2

15 are modified so that the difference on the front face between h1
15 and h2

15 propagates according to

Table 4.2. Now, if the bit-conditions for controlling the propagation between h1
15 and h3

15 do not conflict

with the bit-conditions for h1
15 and h2

15, the message modification procedure can be applied again, but this

time on h1
15 and h3

15. Then, clearly, the difference between h3
15 and h4

15 propagates in the exact same way

as the difference between h1
15 and h2

15 and the goal is fulfilled. Also, due to the boomerang property, the

difference between h2
15 and h4

15 propagates in the same way as h1
15 and h3

15.

However, the conflicting bit condition occurs due to the backward and forward paths in Tables 4.1

and 4.2. The conflicting condition and how it is resolved is explained below and also visualized in Fig. 4.3,

where rounds 15 and 16 are shown. As depicted in the figure, the front-side and back-side differences (due

to the forward path) are denoted by ∆ and the left-side and right-side differences (due to the backward path)

by δ. The conflict arises when one attempts to force the bit 22 difference coming from D15 not propagate

to more than one bit in both front-side and back-side of A16. The problem is that bit 22 is also active on

the left-side and the front-side, as shown in Fig. 4.3 beside the W15 ⊕ W19 word. In particular, due to the

message difference specified by the backward differential, we have

(W 1
15 ⊕W 1

19)⊕ (W 3
15 ⊕W 3

19) = e14 ⊕ e22 ⊕ e31 (4.4)

At the same time, due to (4.2), for the active bit 22 of D15 to propagate only to a 1-bit difference in A16 in

both the front and the back face of the boomerang, bits 22 of both

α1 = FF15(A
1
15, B

1
15, C

1
15) + SS2115 + (W 1

15 ⊕W 1
19)

α3 = FF15(A
3
15, B

3
15, C

3
15) + SS2315 + (W 3

15 ⊕W 3
19)

have to be fixed to the bit value b = 0 if there is no carry generated at bit position 21 in neither of the two

additions

A1
16 = α1 +D1

15 (4.5)

A3
16 = α3 +D3

15 (4.6)

If, however, there is a carry generated at position 21 in both (4.5) and (4.6), then the above bit b needs to
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<<< 9 <<< 19

GG16FF16
<<< 7

<<< 12

<<< 12

P0

+W16 W20 W16

∆: -22

C16 F16 G16

C17 D17 G17

<<< 9 <<< 19

GG15FF15
<<< 7

<<< 12

<<< 12

P0

W15 W19 W15

A15 B15 ∆:+29,+27,

+21, +20, -11, 

+9,-6,       -4, -3, 

-2

∆: +29,-27,-21,

+20,   -11,+9,

-6,       -4,-3

∆: +31, -30,    +27,

+23, +20,    -15,

+14,    -12,  +11,

-9, -7, +6, +4,         

+3

∆:  -31, +29,+27, -22,      

+21,   +20, +11, -9, 

+6,+4, +3, -2

F15

∆: +29,+27,

+21,          +20,    

-11, +9,   -6, -4,    

-3, -2

∆: +12 ∆: +29,-27,-21,

+20,-11,+9,

-6,-4,-3

∆: -22
∆:  +12

∆: +31

δ: +14, -22, -31

∆: -29,+27,-21,

-20,+19,+11,             

+6,+4,+3

∆: -29,+27,-21,

-20,+19,+11,     

+6,+4,+3

δ: -14, -15, -16, -17, 

-18, -19,-20 ,-21, +23,+31

Difference  {+14} 

causes carry 

propagation  from bit 

14 to 22 (Lemma 1)

to cancel out  the 

conflict on bit 22

δ: -0, -3, -7, 

-10, -12,  -13,  

-14,  -15,-16, 

+20, -21,-26,-29

δ: -14, -15, -16, 

-17,  -18, -19,-20,

-21, +23, +31

δ: +1,-3,   +7, -9, -11,

-16,-18,-19,

+20,+24,+26,-28
H17

T15 <<< 15

T16 <<< 16

Figure 4.3: Resolving the conflicting bit condition in round 16

be fixed to 1. Thus, under the assumption that the carry is either generated at position 21 in both (4.5) and

(4.6), or not generated in neither of these two additions, both the front and the back face of the boomerang

cannot be satisfied, since bit 22 is active in (4.4).

Thus, to bypass the conflicting bit, the fact that, in (4.4), bit 14 is also active should be utilized. Then,

by using an 8-bit long carry propagation from bit 14 to bit 22 on the left and the right face of the boomerang,

the existence of carry at bit 21 can be ensured in exactly one of the additions (4.5) and (4.6), which cancels

out the activation of bit 22 on the left and the right face of the boomerang.

Next, a simple lemma that ensures long carry propagation for the purpose of deactivating a particular

bit is provided. The lemma can be used during the message modification process, i.e., whenever a deactiva-

tion of a bit by a carry chain is needed. Consider sums of n-bit words X + S and X ′ + S and suppose that

bits k and l, where k < l are active in X . The lemma specifies how to perform message modification on X

so that the bit l in X + S and X ′ + S remains inactive.
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Lemma 3 Let X , X ′, and S be n-bit words. Also, let 0 ≤ k < l ≤ n and X ⊕X ′ = el ⊕ ek. If

2k ≤ X(k−1..0) + S(k..0) < 2k+1 (4.7)

X(k) = X(l) (4.8)

X(l−1..k+1) = S(l−1..k+1) (4.9)

then

(X + S)⊕ (X ′ + S) = el−1 ⊕ . . .⊕ ek+1 ⊕ ek. (4.10)

Proof: Due to (4.7) and the fact that X(k) 6= X
′(k), exactly one of the values in {X(k..0) + S(k..0), X

′(k..0) +

S(k..0)} will have a carry propagation from bit position k to k + 1. Therefore, using (4.9), it is clear that

(X + S)(l−1..k) ⊕ (X ′ + S)(l−1..k) = el−1 ⊕ . . . ⊕ ek+1 ⊕ ek. Since X(l) 6= X
′(l), X + S and X ′ + S will

be equal on bit l. Finally, from (4.8), (X + S)(m) = (X ′ + S)(m) for m > l, m < n, which completes the

proof. 2

To resolve the round 15 bit conflict explained above, the Lemma can be applied by letting X =

(W 1
15 ⊕ W 1

19), X
′ = (W 3

15 ⊕ W 3
19), S = (FF15(A

1
15, B

1
15, C

1
15) + SS2115 + D1

15), k = 14, l = 22, n = 32,

where the active bit 31 in (W 1
15 ⊕ W 1

19) can be ignored since it is on the most significant position. Then,

X = (W 1
15 ⊕ W 1

19) is modified to satisfy requirements (4.7)-(4.9). This message modification is done by

only modifying a subset of bits {21, 20 . . . , 0} of W 1
19. Now, on the front face of the boomerang, A1

16 and

A2
16 will have a signed difference of −22, while, at the back face of the boomerang, A3

16 and A4
16 will have

the same signed difference, as specified by the forward differential, i.e., the conflicting bit condition has

been bypassed.

As can be verified, this is the only conflicting condition in rounds 15 and 16. The application of

Lemma 3 can also be seen as a way to increase the probability of satisfying the paths in the boomerang by

28, since the event of the carry propagation takes place with probability of around 2−8. As for the conflicting

conditions in rounds 17 − 19, they are resolved by repeated applications of Lemma 3. The result of the

message modification procedure described above is a quartet that satisfies the differences in rounds 15− 19.

The quartet is used as input for the next stage of the zero-sum search procedure.
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i Inner state Wi ⊕ Wi+4 Wi Prob

0

A: +22

2
−23

B: −22

C: −31, −22

D: −31, +29, +27,

+22, +21, +20, −29, +27, −29, +27,

+11, +9, −6, +21, +20, +21, +20

−4, +3, −2 +19, −11, −19, +11,

E: +12 −6, +4, −3 +6, −4, −3

F: −12

G: −31, +12

H: +31, −29, −27,

+21, +20, +12,

−11, −9, +6,

−4, +3

1

B: +22

2
−2

C: −31

D: −31, −22

F: +12

G: −31

H: −31, +12

2

C: +31

1
D: −31

G: +31

H: −31

3
D: +31

-31 -31 1
H: +31

4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

15

Table 4.1: Backward differential path with probability 2−25

4.3.3 Searching for the zero-sum

After the differences in rounds 15−19 have been satisfied, the remaining paths in the boomerang are

satisfied randomly. The corresponding search procedure is facilitated due to the existence of many neutral

bits with respect to the majority of already satisfied conditions. Namely, all the bits in words W8, . . . ,W14

are neutral with respect to the rounds 15 − 19. The search proceeds by randomly satisfying the remaining

conditions, i.e., the path given in Table 4.1 and also the last round of the path in Table 4.2. Although the

nominal probability is as low as 22×(25+2) = 2−54, this probability does not take into account the alternative

differential paths that are similar to the ones specified above. Due to these additional paths, the actual

probability is much larger, as was confirmed by executing the search procedure. Similar observation have

been reported in for example in [23, 92].

The zero-sum for 32 rounds of the SM3 compression function, given in Table 4.3, was found after

around 20 days of computation using 4 workstations, each with four 2.4 GHz Dual-Core AMD Opteron

processors.

A natural way to extend the attack to more rounds would be to increase the number of rounds on
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i Inner state Wi ⊕ Wi+4 Wi Prob

15

C: +29, +27, +21,

+20, −11, +9,

−6, −4, −3, −2

D: −31, +29, +27,

−22, +21, +20,

+11, −9, +6,

+4, +3, −2

G: +29, −27, −21, +31 2
−26

+20, −11, +9,

−6, −4, −3,

H: +31, −30, +27,

+23, +20, −15,

+14, −12, +11,

−9, −7, +6, +4, +3

16

A: −22

D: +29, +27, +21,

+20, −11, +9, −29, +27, −29, +27,

−6, −4, −3, −2 −21, −20, +21, −20,

E: +12 +19, +11, +19, +11, 2
−25

H: +29, −27, −21, +6, +4, +3 +6, +4, +3

+20, −11, +9,

−6, −4, −3

17
B: −22

2
−2

F: +12

18 C: −31
2
−2

G: +31

19 D: −31
−31 −31 1

H: +31

20

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

31 −31, −22, +14 2
−2

32 A: −31, −22, +14

Table 4.2: Forward differential path with probability 2−57

which the message modification is performed. Namely, it should be noted that the consequence of the

neutral bits described above is the fact that the complexities to satisfy the bottom and the top differential

add up and do not multiply, similar as in [22]. Thus, one can imagine extending the middle rounds so

that the message modification procedure terminates after a practical amount of computation. However,

caution should be exercised when estimating the number of rounds that can be added since the number of

conflicting bits grows quickly which consequently increases the number of necessary applications of Lemma

3. According to our experience, satisfying the conditions in the boomerang becomes increasingly difficult

without an automated systematic procedure as the number of conflicting conditions grows. Thus, extending

the number of rounds to be dealt with by an automated message modification procedure is the goal of our

future research. Such a procedure would also be relevant for the SHA-2 boomerang analysis [22].
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A1, B1, . . . , H1
0x7a0d7b2f 0x776a25d5 0xcff768ac 0xd2eb20d5

0xd2c08d9b 0x744d3e5c 0xdf04e2ba 0x2cd3bb94

W1
0 , . . . ,W1

15

0x31c2ba4f 0x336fa0d6 0x94a32431 0x9d3caeaa

0x814d29d5 0xc8ebf2e6 0x7a41c51f 0x3aa0bedd

0xaac4fb81 0xd584f8b 0x619690c2 0xfac9a4d1

0x2a28a333 0x175fb61c 0x6133d9ab 0x81e48a5e

A2, B2, . . . , H2
0x3c6a7d6d 0xbbdf98c0 0x5da6c569 0x89c62255

0xd75bec0e 0x6117de9c 0xb3f56bd3 0x3445d8b4

W2
0 , . . . ,W2

15

0x2dc2be4f 0x33efa256 0xbc9b2c69 0x3d6cfeaa

0x3cea950 0x48ebf2e6 0x7241ad1f 0x32a0bedd

0xaac4fb81 0xbd083f9b 0x618698ca 0xfac9a4d1

0xaa28a333 0x1f5f9e1c 0x6133d9ab 0x81e48a5e

A3, B3, . . . , H3
0x7a4d7b2f 0x772a25d5 0x4fb768ac 0x6a7b1aa9

0xd2c09d9b 0x744d2e5c 0x5f04d2ba 0xc493b1cc

W3
0 , . . . ,W3

15

0x19fab217 0x336fa0d6 0x94a32431 0x1d3caeaa

0x814d29d5 0xc8ebf2e6 0x7a41c51f 0x3aa0bedd

0xaac4fb81 0xd584f8b 0x619690c2 0xfac9a4d1

0x2a28a333 0x175fb61c 0x6133d9ab 0x81e48a5e

A4, B4, . . . , H4
0x3c2a7d6d 0xbb9f98c0 0xdde6c569 0x31561829

0xd75bfc0e 0x6117ce9c 0x33f55bd3 0xdc05d2ec

W4
0 , . . . ,W4

15

0x5fab617 0x33efa256 0xbc9b2c69 0xbd6cfeaa

0x3cea950 0x48ebf2e6 0x7241ad1f 0x32a0bedd

0xaac4fb81 0xbd083f9b 0x618698ca 0xfac9a4d1

0xaa28a333 0x1f5f9e1c 0x6133d9ab 0x81e48a5e

Table 4.3: An example for a zero-sum for 32 rounds of the SM3 compression function

A1, B1, . . . , H1
0x565060b7 0x125d5655 0x285c7653 0xeaf5fe1e

0xda8bd7dd 0xb8bb1904 0x43bcaf18 0x7cf88895

W1
0 , . . . ,W1

15

0x8f450bbd 0x4a0c9922 0x73dd44f8 0x9eceaaf8

0x33b13e20 0xb59d9c33 0x6b5a5f23 0xc0d2b468

0x7a9a1e16 0xaff62878 0x3fbb01f4 0x75278787

0xac0b849e 0x498f3045 0x62687c15 0xd3498eb

A2, B2, . . . , H2
0x24baacaa 0x53285c76 0xd5ebfc3d 0xdf1ee2a6

0x71763209 0x2bc610ef 0xf9f1112a 0xffeb86a4

W2
0 , . . . ,W2

15

0x7efa7542 0x1e8a177b 0x94193244 0xe7ba89f0

0x3d9d55f1 0x67627c40 0x6b3b3867 0xd6b4be46

0x81a568d1 0xf5343c2c 0x5fec50f1 0x7f7603e8

0xea4f0f0e 0x5817093d 0x931e608a 0xc4d0f82a

Table 4.4: An example for a slide-rotational pair for the SM3-XOR compression function

4.4 A slide-rotational property of SM3-XOR

As mentioned at the beginning of this chapter, the SHA2-XOR compression function was previously

studied by Yoshida et al. [135]. In this section, we show that, in the case of the full SM3-XOR, pairs

satisfying a certain rotational relation can be easily generated. An example of such a pair for the SM3-

XOR is provided in Table 4.4. The possibility of practical generation of such evasive [55] SM3-XOR pairs

demonstrates the existence of a non-trivial property which is not known to exist in SHA2-XOR.

The above mentioned property exists due to the fact that the constants over the 64 rounds of SM3 are

related. According to the SM3 specification, in rounds j ∈ {0, . . . , 15}, one constant rotated by j is utilized,

whereas the other constant rotated by j is used in rounds j ∈ {16, . . . , 63}. Since operations like XOR,
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FFi, GGi, 0 ≤ i < 64, that are used in the SM3-XOR round function preserve the rotational property, it is

natural to attempt a rotational attack, as provided below. We note that if instead of SM3-XOR, the original

SM3 compression function is used, the addition mod 232 transforms the attack into a probabilistic one, as

outlined below. Due to the high number of additions per round, it appears difficult to exploit this rotational

property directly and therefore the security of the SM3 compression function, at this stage of analysis, does

not seem to be directly affected.

Two 32-bit words X, Y are said to be rotational if X = Y <<< n. Let messages W and W ∗ satisfy

W ∗
1 = W0 <<< 1,W ∗

2 = W1 <<< 1, . . . ,W ∗
16 = W15 <<< 1. Below, a procedure for the instant generation of

pairs v, v∗ such that

v∗1 = v0 <<< 1, v∗2 = v1 <<< 8, v∗3 = v2 <<< 1

v∗5 = v4 <<< 1, v∗6 = v5 <<< 18, v∗7 = v6 <<< 1

V ∗
1 = V0 <<< 1, V ∗

2 = V1 <<< 8, V ∗
3 = V2 <<< 1

V ∗
5 = V4 <<< 1, V ∗

6 = V5 <<< 18, V ∗
7 = V6 <<< 1

(4.11)

is provided, where V = SM3-XOR(v,W ), V ∗ = SM3-XOR(v∗,W ∗) and vi, Vi for 0 ≤ i ≤ 7 denote

i-th 32-bit word in the v and V , respectively. For a random function, a random (v,W ), (v∗,W ∗) satisfying

the above constraints will yield the corresponding V and V ∗ with probability 2−6×32 = 2−192, since (4.11)

imposes 6 32-bit conditions on V , V ∗.

4.4.1 Constructing a slide-rotational pair

We start by the following observations:

- The slide rotational messages expand to slide-rotational expanded messages with probability 1. In

particular, fix W0, . . . ,W15 and let

W ∗
1 = W0 <<< 1,W ∗

2 = W1 <<< 1, . . . ,W ∗
16 = W15 <<< 1 (4.12)

After expanding both W and W ∗, we have W ∗
i+1 = Wi <<< 1, for i = {0, 1, . . . , 62} and also

W
′∗
i+1 = W ′

i <<< 1, for i = {0, 1, . . . , 66}.
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Figure 4.4: The slide-rotational attack against SM3-XOR

- We recall that Ti, 0 ≤ i ≤ 63 are the round constants. If we have

W ∗
i+1 = Wi <<< 1,W

′∗
i+1 = W ′

i <<< 1, Ti+1 = Ti <<< 1 (4.13)

A∗
i+1 = Ai <<< 1, B∗

i+1 = Bi <<< 1, . . . , H∗
i+1 = Hi <<< 1 (4.14)

for i = k, then (4.14) will also hold for i = k + 1, where k = 0, . . . , 62.

The observations above suggest that sliding can be introduced, as depicted in Fig. 4.4. Namely, consider

randomly initializing W and letting W ∗ satisfy (4.12). Moreover, A0, B0 . . . , H0 is chosen randomly and the

inner state registers after the first round in the second instance of the hash function are initialized according

to (4.14). Then, until round 15, due to (4.13), the rotational property in the inner state registers will be

preserved. Once the two instances reach rounds 15 and 16, respectively, a different round transformation

is applied in the two instances and the rotational property may discontinue. This problem is bypassed by

starting from the middle, i.e., by populating the inner states entering the critical rounds 15 and 16 (see Fig.

4.4).

Next, we explain how to bypass the critical rounds 15 and 16 which may discontinue the rotational

property. That way, it is possible to have the slide property hold over all rounds of the two hash function

instances. The idea is to start by populating the inner states entering the critical rounds 15 and 16 (see Fig.

4.4). In particular, a rotational pair (A15, . . . , H15), (A
∗
16, . . . , H

∗
16) is carefully chosen so that (A16, . . . , H16)

and (A∗
17, . . . , H

∗
17) satisfy relation (4.14). It should be noted that the rotational property may be destroyed

only between A16 and A∗
17 and between E16 and E∗

17, since the other registers go through identical rotational-

preserving transformations in round 15 and round 16. As for A16 and A∗
17, for the purpose of tracking the

possible rotational disturbance between the two registers, the equation to compute these two registers can
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be rewritten as

A16 = FF15(A15, B15, C15)⊕ (T15 <<< 22)⊕ α (4.15)

A∗
17 = FF16(A

∗
16, B

∗
16, C

∗
16)⊕ (T16 <<< 23)⊕ α∗ (4.16)

where α = D15⊕W15⊕W19⊕(((A15 <<< 12)⊕E15) <<< 7)⊕(A15 <<< 12) and α∗ = D∗
16⊕W ∗

16⊕W ∗
20⊕

(((A∗
16 <<< 12) ⊕ E∗

16) <<< 7) ⊕ (A∗
16 <<< 12). Since (4.14) and (4.13) hold for i = 15, α∗ = α <<< 1.

Therefore, to have A16 and A∗
17 be a rotational pair, it suffices to make FF15(A15, B15, C15)⊕ (T15 <<< 22)

and FF16(A
∗
16, B

∗
16, C

∗
16) ⊕ (T16 <<< 23) satisfy the rotational property. After expressing A∗

16, B∗
16, C∗

16 in

terms of A15, B15, C15 and using that FF15 and FF16 preserve the rotational property, the condition can be

expressed in terms of A15, B15, C15 as follows:

FF15(A15, B15, C15)⊕ FF16(A15, B15, C15) = (T15 ⊕ T16) <<< 22 (4.17)

When applied on 1-bit values X , Y and Z, the equation FF15(X, Y, Z) ⊕ FF16(X, Y, Z) = 0 is satisfied

for 2 out of 8 (X, Y, Z) values. Since the Hamming weight of the right-hand side of (4.17) is equal to 14,

the number of solutions to the equation is 218 × 614 = 232 × 314. As for preserving the rotational property

between E16 and E∗
17, developing the registers as in (4.15) and then forming the equation of the form (4.17)

yields that the number of solutions E15, F15 and G15 is 432 = 264. Therefore, the number of solutions for

(A15, . . . , H15) that pass the disturbance in rounds 15 and 16 is 232 × 314 × 264 × 264 ≈ 2182.19, since D15

and H15 are free variables. For such pairs, it follows that relations (4.11) are satisfied.

When instead of SM3-XOR, the SM3 compression function is considered, this property turns into a

probabilistic one. Following [68], if pr = P [(x <<< r) + (y <<< r) = (x+ y) <<< r] where x and y are 32-

bit words, then p1 = 2−1.415. Since there exists 8 additions in one SM3 round, the probability that one round

and its corresponding slided round will preserve the rotational property is given by (p1)
8 = 2−11.320 [68].

4.5 Conclusion

In this chapter, a second order collision for the SM3 compression function reduced to 32 rounds

is presented. The top and the bottom differentials, used in the boomerang, impose seemingly conflicting
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conditions. The novelty of our method is that these conditions are resolved during message modification by

using long carry propagation on the left and right face of the boomerang. In the second part of the chapter,

a slide-rotational property of SM3-XOR function is exposed and an example of a slide-rotational pair for

SM3-XOR compression function is given.
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5

Cryptanalysis of the Loiss stream cipher

Several word-oriented LFSR-based stream ciphers have been recently proposed and standardized.

Examples include ZUC [50], proposed for use in the 4G mobile networks and also SNOW 3G [51], which is

deployed in the 3GPP networks. The usual word-oriented LFSR-based design consists of a linear part, which

produces sequences with good statistical properties and a finite state machine which provides non-linearity

for the state transition function.

In 2011, the Loiss stream cipher [53] was proposed by a team from the State Key Laboratory of

Information Security in China. The cipher follows the above mentioned design approach: it includes a byte-

oriented LFSR and an FSM. The novelty in the design of Loiss is that its FSM includes a structure called

a Byte Oriented-Mixer with Memory (BOMM) which is a 16 byte array adopted from the idea of the RC4

inner state. The BOMM structure is updated in a pseudorandom manner.

The Loiss key scheduling algorithm utilizes a usual approach to provide non-linearity over all the

inner state bits. During the initialization phase, the FSM output is connected to the LFSR update function.

This ensures that after the initialization process, the LFSR content depends non-linearly on the key and the

IV. Such an approach has been previously used in several LFSR-based word-oriented constructions such

as the SNOW family of ciphers [51]. In Loiss, however, the FSM contains the BOMM element which is

updated slowly in a pseudo-random manner. The feedback to the LFSR, used in the initialization phase,

passes through this BOMM which turns out to be exploitable in a differential-style attack since the BOMM

does not properly diffuse differences.

In this chapter, we provide a related-key attack of a practical complexity against the Loiss stream

cipher by exploiting this weakness in its key scheduling algorithm (see also [93] for a work that was done
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independently of our results). The attack requires two related keys differing in one byte, a computational

work of around 226 Loiss initializations, 225.8 chosen-IVs for both of the related keys, offline precomputation

of around 226 Loiss initializations and a storage space of 232 words. This shows that the additional design

complication, i.e., the addition of the BOMM mechanism, weakens the cipher instead of strengthening it.

We also discuss the possibility of extending such a related-key attack into a resynchronization single-key

attack. Finally, we show that Loiss does not properly resist to slide attacks.

The rest of the chapter is organized as follows. In section 5.1, we briefly review relevant specifications

of the Loiss stream cipher. Our related-key attack is detailed in section 5.2 where we also discuss the

possibility of extending the attack to the single-key scenario. In section 5.3, we show that Loiss is not

resistant to slide attacks. Finally, our conclusion is given in section 5.4.

5.1 Specifications of Loiss

Figure 5.1 shows a schematic description of the Loiss stream cipher. In here, we briefly review
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Figure 5.1: Loiss stream cipher

relevant components of the cipher. Let F28 denote the quotient field F2[x]/(π(x)), where the corresponding

primitive polynomial π(x) = x8 + x7 + x5 + x3 + 1. If α is a root of the polynomial π(x) in F28 , then the

LFSR of Loiss is defined over F28 using the characteristic polynomial

f(x) = x32 + x29 + αx24 + α−1x17 + x15 + x11 + αx5 + x2 + α−1.

The usual bijection between the elements of F28 and 8-bit binary values is used. The LFSR consists of 32

byte registers denoted by si, 0 ≤ i ≤ 31. Restating the above equation, if st0, . . . , s
t
31 denote the LFSR
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registers after t LFSR clocks, then the LFSR update function is defined by

st+1
31 = st29 ⊕ αst24 ⊕ α−1st17 ⊕ st15 ⊕ st11 ⊕ αst5 ⊕ st2 ⊕ α−1st0 (5.1)

and st+1
i = sti+1 for 0 ≤ i ≤ 30.

The FSM consists of the function F and the BOMM. The function F compresses 32-bit words into

8-bit values. It utilizes a 32-bit memory unit R and takes LFSR registers s31, s26, s20 and s7 as input. In

particular, in each step, the output of F is taken to be the 8 leftmost bits of the register R, after which the R

value is updated by

X = st31|st26|st20|st7

Rt+1 = θ(γ(X ⊕ Rt))

where γ is the S-box layer which uses 8× 8 S-box S1 and is defined by

γ(x1|x2|x3|x4) = S1(x1)|S1(x2)|S1(x3)|S1(x4)

and θ is a linear transformation layer defined by

θ(x) = x⊕ (x <<< 2)⊕ (x <<< 10)⊕ (x <<< 18)⊕ (x <<< 24)

Since the attack technique provided in this work does not depend on the particular choice of the used S-

boxes, we refer the reader to [53] for the specifications of S1 and S2.

As for the BOMM structure, it utilizes 16 memory units, i.e., bytes y0, . . . , y15. The BOMM function

maps 8-bit values to 8-bit values. Let w and v denote the input and output of the BOMM function. Denote

the nibbles of its input w as h = w >> 4 and l = w mod 16. Then, the BOMM function returns v = yth ⊕w,

after which the update of its memory units takes place as follows:

yt+1
l = ytl ⊕ S2(w)

If h 6= l, then

yt+1
h = yth ⊕ S2(y

t+1
l )
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else

yt+1
h = yt+1

l ⊕ S2(y
t+1
l )

yt+1
i = yti , for 0 ≤ i ≤ 15 and i /∈ {h, l}

where S2 is an 8 × 8 S-box. In the FSM update step, the input to the BOMM function, i.e., the w

value, is taken to be leftmost byte of the output of the F function.

The initialization procedure of Loiss proceeds as follows. The register R is set to zero, i.e., R0 = 0.

If the key K and the initialization vector IV are represented byte-wise as

K = K15|K14| · · · |K0

IV = IV15|IV14| · · · |IV0,

(5.2)

then the starting inner state (s031, . . . , s
0
0, R

0, y015, . . . , y
0
0) is loaded with the K and IV as follows:

s0i = Ki, s0i+16 = Ki ⊕ IVi, y0i = IVi (5.3)

for 0 ≤ i ≤ 15. Then, Loiss runs for 64 steps and the output of the BOMM takes part in the LFSR update

step. In other words, instead of (5.1), the following LFSR update function is used:

st+1
31 = st29 ⊕ αst24 ⊕ α−1st17 ⊕ st15 ⊕ st11 ⊕ αst5 ⊕ st2 ⊕ α−1st0 ⊕ v

t (5.4)

Then, the keystream generation stage starts. Loiss generator produces one byte of keystream per step:

zt = st0 ⊕ vt.

In general, except for the new BOMM component, the whole Loiss design is very similar to the design of

the SNOW 3G cipher. It is also interesting to note that the same θ linear layer has been used in the SMS4

block cipher [2] and also in ZUC [50].
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5.2 Proposed Attack

In this section, a differential-style attack against the Loiss key scheduling algorithm is presented.

The attack requires two related keys that differ in one byte. It also requires the ability to resynchronize the

cipher under the two keys with chosen IV values.

The attack starts by having the pair of inner states right after the key loading step differ only in one

LFSR byte and one BOMM byte. Then, the idea is to have the LFSR difference fully cancelled. We use the

fact that the BOMM output participates in the LFSR update step during the initialization and the BOMM

difference helps us to cancel out the LFSR difference through the feedback. Once the difference in the LFSR

is fully cancelled, only the BOMM component is active and moreover, with a single byte difference. Then,

since the BOMM does not have proper diffusion properties, the single-byte difference stays localized in the

BOMM until the end of the initialization, which can be detected from the keystream.

The probability of the event that a given BOMM byte is not used during the initialization is (15
16
)128 ≈

2−12, since a BOMM element is consulted 128 times during the 64 initialization steps. If the active byte

has not been used until the end of the initialization, the two instances of the cipher generate several equal

keystream bytes with high probability. Namely, the difference at the point where the keystream is to be

produced will be of low-weight and localized in the BOMM. Therefore, spotting large number of zero bytes

in the starting keystream byte difference indicates that the LFSR difference cancellations described above

took place. These cancellations happen only when certain equations in the starting LFSR bytes are satisfied

and consequently, since the starting LFSR bits are related to the key bits, information about the key bits

leaks.

Let K and K ′ differ only in the byte K3. The steps of the attack can be summarized as follows:

- Construct a list of (IV, IV ′) pairs for which the LFSR state difference cancellation happens. The

cancellation event is described in section 5.2.1, the distinguisher used to detect this event is given in

section 5.2.2 and a procedure for collecting the (IV, IV ′) pairs is provided in section 5.2.3.

- Use this collection of IVs as input to the filtering procedure to filter the wrong key candidates, as

described in section 5.2.4.

The attack recovers 92 bits of the key and the remaining 128− 92 = 36 bits can be obtained by brute force.

In another variant of the attack, 112 bits of the key are recovered and the rest are found by brute-force.
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5.2.1 Cancelling the LFSR difference

In this section, a necessary and sufficient condition for the starting inner state difference to be fully

cancelled in the LFSR after 4 steps is provided. The condition is specified in terms of the leftmost byte of

the R register in the first 4 steps. Then, the conditions on the R register as provided by Observation 1 below

leak information on the early LFSR bytes and thus about the secret key.

The key-loading mechanism (5.3) allows having a chosen difference only at bytes s3 and y3 at time

t = 0. Namely, it suffices to have

K3 ⊕K ′
3 = IV3 ⊕ IV ′

3 = δ (5.5)

and the rest of the K,K ′ and also IV, IV ′ bytes to have a zero-difference. Moreover, the key-loading

mechanism trivially allows choosing the starting values of the y3 register. This is done by choosing the

IV3 byte, since the IV is simply copied into the BOMM. This shows that the assumptions required by

Observation 1 (i.e., the particular difference value 0x02 in s3 and y3 and also the y3 = 0x9d constant) can

be satisfied. Recall that wt denotes the leftmost byte of the R register at time t ≥ 0.

Observation 1 Let a pair of Loiss inner states have only s3 and y3 bytes active, both with difference 0x02.

Also, let y3 = 0x9d. Then, after 4 steps, the LFSR does not contain any active byte if and only if

(w0, w1, w2, w3) = (0x00, 0x33, 0xK?, 0x3?) (5.6)

where K is any hexadecimal digit different from 0x3 and the symbol ‘?” denotes any hexadecimal digit.

Proof: From the cipher specification, w0 = 0x00 is true regardless of the condition on the left-hand side.

The two directions of the proof are provided as follows.

(⇐): The change of the difference in the BOMM is described in Figure 5.2. In the first step, since w0 =

0x00, both the value and the difference of y03 remain unchanged and the LFSR difference is moved from

s3 to s2. Since w1 = 0x33 and both s2 and y13 are active with the same difference, they cancel out and the

corresponding LFSR byte becomes inactive. As for the LFSR difference, it is just moved to s1. Another

effect of the second step is the change of the difference in y3 byte from 0x02 to α−1×2. Namely, expanding

the difference in the y3 byte and substituting the initial choice of y03 = 0x9d and also the choice of the
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starting difference δ = 0x02 gives

y23 ⊕ y
′2
3 = δ ⊕ S2(y

0
3 ⊕ S2(0x33))⊕ S2(y

0
3 ⊕ δ ⊕ S2(0x33)) = α−1 × 0x02 (5.7)

The third step moves the s1 active byte to s0, since w2 >> 4 6= 3 and leaves the y3 difference unchanged.

Finally, since w3 >> 4 = 0x3, the difference in y3 cancels out the difference in the LFSR update function

(5.4) in the fourth step and this direction of the proof follows.

(⇒): Clearly, w1 >> 4 = 0x3 since otherwise s131 would be active and the LFSR after 4 steps would

necessarily have at least one active byte. Moreover, K = w2 >> 4 6= 0x3 holds since y23 is necessarily

active and otherwise there would be a difference introduced to the LFSR on byte s231.

To show that w1 mod 4 = 0x3, assume the contrary. In that case, the full LFSR cancellation in the

fourth step cannot happen. Namely, in the second step, the difference in register y13 remains unchanged, i.e.,

it remains equal to 0x02. Therefore, during the third step, the existing one byte difference in the BOMM has

to evolve to α−1 × 2 in order for the LFSR cancellation to happen in the fourth step. However, according

to the S2 specification, the input S2 difference 0x02 cannot be transformed to the output difference α−1 × 2

and thus w1 mod 4 = 0x3.

Now, according to the (⇐) direction of the proof, (5.7) holds. To show that w3 >> 4 = 0x3, suppose

the contrary. Since the LFSR byte s0 is active at the fourth step (with the difference 0x2), for this difference

to be cancelled out, the BOMM output byte at step four has to be active with the same difference. Thus,

the difference in y23 which is equal to α−1 × 0x02 has to remain α−1 × 0x02 after passing through the S2

S-box. This difference will necessarily be induced on some other BOMM byte since K 6= 3. However, such

a possibility is ruled out by the S2 specification: the S2 S-box cannot map the input difference α−1 × 2 to

α−1×2 output difference. It should be noted that this was possible in (5.7), since the same byte was updated

twice in step 1. Therefore, w3 >> 4 = 0x3 has to hold. �

A descriptive overview of the cancellation specified by Observation 1 is as follows. In Figure 5.2,

the BOMM and the LFSR bytes s3, s2, s1, s0 are shown during the first four steps. In the second and the

fourth states in the figure, the cancellation of the LFSR difference by the feedback byte to the LFSR update

is denoted. In the first step, the difference does not enter neither the LFSR update function nor the feedback

value (since w0 = 0x00). In the second step, it is required that w1 = 0x33 for the difference to be cancelled

and also to be updated to the next necessary BOMM difference value, 2α−1. In the third step, the difference
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Figure 5.2: Illustration of the differences in the BOMM structure at times t = 0, 1, 2, 3

is neither passed to the LFSR nor changed in the BOMM. Finally, in the fourth step, the difference in the

LFSR byte s0 is cancelled and the LFSR becomes fully inactive.

It should be noted that Observation 1 holds for other difference values apart from δ = 0x02. This set

is give explicitely:

∆ = {2, 5, 7, 9, d, 10, 11, 13, 15, 16, 18, 19, 1a, 1c, 1d, 1f, 20, 21, 25, 27, 2a, 2b, 2c, 2e, 2f, 31,

32, 37, 38, 39, 3d, 3e, 45, 48, 4a, 4b, 4d, 4f, 50, 54, 56, 57, 5b, 5c, 5d, 60, 61, 63, 64, 65, 66, 69, 6a,

6b, 6c, 6f, 70, 72, 74, 75, 77, 79, 7a, 7b, 7d, 7f, 80, 81, 82, 87, 89, 8b, 8d, 8e, 92, 94, 96, 97, 98, 99,

9a, 9c, 9d, 9e, a0, a1, a9, aa, ac, ae, af, b0, b2, b5, b8, ba, bc, bd, bf, c0, c1, c3, c4, c5, c7, ca, cd,

d1, d2, d3, d4, d6, d7, d8, da, dc, de, df, e1, e2, e8, eb, ed, f0, f1, f2, f3, f4, f7, f9, fb, fc, ff}

In particular, Observation 1 is true for any δ ∈ F 8
2 such that the input differences α−1 × δ and δ cannot be

mapped to the output differences α−1×δ by the S2 S-box (see the (⇒) part of the proof). For each difference

from the set ∆, the initial constant for y30 is calculated from (5.7).

The overall probability that there will be only one BOMM byte, y3, active after all of the 64 steps of

the key scheduling procedure is estimated next. For this event to happen, it suffices to have (5.6) satisfied

in addition to ensuring that the y3 difference does not propagate to other bytes during the initialization

procedure. The event (5.6) happens with probability pw = 2−8 × 15
16

× 2−4 ≈ 2−12.1. The event by which

the y3 difference does not propagate to any other byte is equivalent to the event of wt mod 16 6= 0x3 and

wt >> 4 6= 0x3 for 4 ≤ t ≤ 63, and w2 mod 16 6= 3. The latter condition is included since Observation 1

does not rule out the possibility of the spreading of the y3 difference to another byte during step 3. Thus, the

probability that y3 does not spread to any other byte is ps = (15
16
)2×60+1 ≈ 2−11.3. Thus, a randomly chosen
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key-IV pair satisfying (5.5) such that the assumptions of Observation 1 are satisfied produces a pair of inner

states with only one active byte with probability

p = ps × pw = 2−12.1 × 2−11.3 = 2−23.4 (5.8)

under the usual independence assumption.

5.2.2 Distinguishing Loiss pairs

In the previous subsection, we showed that it is possible to have a pair of Loiss inner states with

only one active byte (located in the BOMM) after the initialization. Here, a distinguisher for the keystreams

generated by a pair of such states is provided. The goal is to minimize the probability of false positives and

false negatives.

Let the time at which the two instances of the cipher differ by only one BOMM byte be t = 0. Since

at this time most of the words are inactive, it is natural to attempt distinguishing Loiss key stream pairs

from random keystream pairs by simply counting the number of equal bytes in the two outputs. Such a

distinguisher depends on parameters n and m, where n is the number of keystream generation steps that will

be considered and m is the number of equal corresponding words in steps 0, . . . , n − 1. The distinguisher

can be formulated as:

- Count the number of indices 0 ≤ i < n such that zi = z′i

- If this count is ≥ m return Loiss keystreams, otherwise return Random.

Good values for (n,m) can be chosen by consulting Table 5.1. In this table, the probability of false positives

and false negatives for some representative (n,m) points has been tabulated. Details on how the values in

the table have been calculated are provided below.

The false positive probability signifies the probability that in two random sequences of n bytes, more

than m corresponding bytes will be equal. On the other hand, the false negative probability signifies the

probability that two Loiss instances with only one active byte located in the BOMM, will produce strictly

less than m equal bytes. For the purpose of the attack above, it is necessary to keep the probability of false

positives low, since a false positive would lead to generating equations that have incorrect key values as

solutions.
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(n,m) P[false positive] ≈ P[false negative] ≈

(16, 6) 2−35.1 2−22.41

(16, 8) 2−50.4 2−16.00

(24, 8) 2−44.6 2−24.01

(24, 10) 2−59.2 2−19.91

(32, 10) 2−54.2 2−27.6

(32, 12) 2−68.3 2−20.68

Table 5.1: Effectiveness of the distinguisher for different (n,m) parameters

As for the false positive probability, it has been calculated by using the formula describing the prob-

ability that in n randomly generated bytes, at least m of them are equal to zero. Namely, if l denotes the

number of zeros in the sample, then P [false positive] = P [l ≥ m] =
∑

l=m,...,n

(
n
l

) (
1

256

)l (255
256

)n−l
.

The false negative probability has been calculated experimentally by randomly generating a pair of

equal Loiss inner states and then inducing a random difference at a random BOMM byte. After running the

cipher for n steps, the number of equal bytes is counted. If such number is strictly smaller than m, a counter

is incremented. After repeating the previous procedure for 228 times and dividing the resulting counter by

228, an approximation of the probability of a false negatives is obtained.

For the purpose of the distinguisher used in the next subsection, taking (n,m) = (32, 10) makes the

probability of the attack failure marginally small, i.e., equal to around 225.8 × 2−54.2, since the distinguisher

is applied for around 225.8 times and a false positive answer would lead to wrong conclusions about the value

of key bytes.

5.2.3 Finding the correct IVs

According to the cancellation probability (5.8), for around one in 223.4 randomly chosen IVs, if the

key-IV pair satisfies (5.5), the inner state right after the initialization will have only the y3 BOMM byte

active. Given the choices for the distinguisher given in Table 5.1, such event can be reliably detected.

Hereafter, such IVs will be called correct IVs. In this section, it is shown that the correct IVs can be found

with probability better than 2−23.4, which helps us reduce the final number of chosen-IVs required for the

attack.

In particular, once one correct IV is obtained, more such correct IVs can be found with better prob-
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ability. Namely, changing certain IV bytes in a correct IV does not influence all w1, w2 and w3 bytes. For

instance, perturbing byte IV11 in a correct IV does not change w1 = 0x33 value and the the probability

(5.8) that the new IV will also be a correct one increases by a factor of 28. More precisely, let T1 denote a

collection of IV bytes such that any change in bytes from T1 leaves R1 unchanged, but changes Rt, t ≥ 2.

It is easy to verify that T1 = {IV1, IV5, IV8, IV11, IV13}.

Thus, after finding one correct IV, varying only the bytes from T1 can serve to find more correct

IVs with better probability. Such a set of IVs would result in the IVs for which the R1 word is constant.

However, the attack step provided in subsection 5.2.4, which takes the correct IV set as its input, requires

that the IVs produce about 5 different R1 values. Similarly, there have to be around 360 different R2 values.

These two numbers of required different R1 and R2 values are necessary to minimize the number of key

byte candidates that will be recovered, as will be explained in the next subsection. Therefore, the search

procedure that produces the input to the procedure in the next subsection can proceed as follows:

- Let sets L0 = L1 = L2 = L3 = L4 = ∅.

- Generate 5 correct IVs randomly and place them in sets Li, 0 ≤ i ≤ 4, respectively. In more detail,

for each randomly generated IV , compute IV ′ according to (5.5) and apply the distinguisher from

subsection 5.2.2. If the distinguisher returns a positive answer, a correct IV has been found.

- For 0 ≤ i ≤ 4

- Using the IV from each Li, generate more corrects IVs such that the Li sets contain 72 IVs each.

In particular, the new correct IVs are generated by randomizing the starting IV bytes specified

by T1 and applying the distinguisher.

The output of the above procedure are sets Li, 0 ≤ i ≤ 3, each containing 72 IVs for which the R1 is

constant. This procedure takes around 5× 223.4 + 5× 72× 223.4−8 ≈ 226 chosen-IV queries on both Loiss

instances. If instead of applying the previous procedure, all of the 5× 72 = 360 correct IVs were generated

randomly, the number of chosen IV queries would be 360× 223.4 ≈ 231.9.

5.2.4 Filtering the key bytes

In each Loiss step, the function F updates the register R by a transformation similar to one round of

a block cipher, where the R value plays the role of the plaintext and the four LFSR registers play the role
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Figure 5.3: The R register in times 0 ≤ t ≤ 3

of the round key. The goal hereafter is to recover the LFSR registers fed to F in the first three initialization

steps, i.e., s7+i, s20+i, s26+i, s31+i for 0 ≤ i ≤ 2. In particular, since the LFSR bytes in question can be

represented as a sum of the key and the IV, the goal is to recover the key part in these bytes. First, the

application of the F function in the first three steps is represented in the form of

Ri+1 = F (Ri, ki
3 ⊕ ivi3|ki

2 ⊕ ivi2|ki
1 ⊕ ivi1|ki

0) (5.9)

for 0 ≤ i ≤ 2, where ki
3, ki

2, ki
1 and ki

0 depend only on the original key bytes and ivi3, ivi2 and ivi1 depend

only on the IV bytes. More precisely, in the first step

k0
3 = K15, k

0
2 = K10, k

0
1 = K4, k

0
0 = K7

iv03 = IV15, iv
0
2 = IV10, iv

0
1 = IV4

(5.10)

In the second step, we have

k1
3 = K13 ⊕ αK8 ⊕ α−1K1 ⊕K15 ⊕K11 ⊕ αK5 ⊕K2 ⊕ α−1K0

k1
2 = K11, k

1
1 = K5, k

1
0 = K8

iv13 = IV13 ⊕ αIV8 ⊕ α−1IV1 ⊕ IV15 ⊕ IV11 ⊕ αIV5 ⊕ (5.11)

IV2 ⊕ α−1IV0 ⊕ f 1

iv12 = IV11, iv
1
1 = IV5
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and in the third step

k2
3 = K14 ⊕ αK9 ⊕ α−1K2 ⊕K0 ⊕K12 ⊕ αK6 ⊕K3 ⊕ α−1K1

k2
2 = K12, k

2
1 = K6, k

2
0 = K9

iv23 = IV14 ⊕ αIV9 ⊕ α−1IV2 ⊕ IV0 ⊕ IV12 ⊕ αIV6 ⊕ IV3 ⊕ (5.12)

α−1IV1 ⊕ f 2

iv22 = IV12, iv
2
1 = IV6

where f 1, f 2 represent the feedback bytes. If the IV bytes in the right-hand side of (5.10), (5.11) and (5.12)

are taken from a correct IV, then (5.6) will hold. In that case, also, the feedback bytes will be f 1 = IV0

and f 2 = IV3 ⊕ 0x33. The first three steps of the F function when a correct IV is used are represented

schematically in Figure 5.3.

Then, the filtering procedure for recovering ki
j , 0 ≤ i ≤ 2, 0 ≤ j ≤ 3 amounts to substituting the F

function key guesses into (5.9) along with the iv bytes derived from a correct IV and then verifying whether

(5.6) holds. In particular, the filtering procedure is done round by round. As for the first F round, (5.6)

amounts to R1 >> 24 = 0x33 and thus a candidate for k0 = k0
3|k0

2|k0
1|k0

0 passes the criterion with probability

2−8, which implies that 5 correct IVs are sufficient to uniquely determine k0 with a good probability. We

have verified experimentally that there is enough diffusion in one F -round to find the key uniquely with just

5 correct IVs.

As for the second step of the initialization phase, where (5.9) is executed for i = 1, first it should

be noted that R1 is known for each IV since k0
3|k0

2|k0
1|k0

0 is known. According to (5.6), the second F round

criterion amounts to R2 >> 28 6= 3. Thus, a guess for k1 = k1
3|k1

2|k1
1|k1

0 passes the criterion with probability

15
16

. Assuming that all the wrong key bits can be eliminated, around 332 correct IV values will be required,

since 232 × (15
16
)332 ≈ 1. In the previous section, 360 correct IVs has been generated, which ensures the

unique recovery of k1 with good probability. Throughout all our experiments, the number of candidates

for k1 that pass the test was consistently equal to 16. Without going into why 16 candidates always pass

the test, it is noted that these candidates can be eliminated during the third F round filtering. The third F

round criterion is R3 >> 28 = 3 and one can expect that the candidate for k2 = k2
3|k2

2|k2
1|k2

0 passes with

probability 2−4, meaning that around 8 correct IV values will be required. The filtering is done for each of
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the 16 candidates for k1. Again, experimentally, it was found that 16 candidates for k2 always pass the test

and therefore there will be 16 candidates at the end of the filtering procedure.

It remains to state how the correct IVs are drawn from Li, 0 ≤ i ≤ 4 to derive the ivi values specified

by (5.10), (5.11) and (5.12). For the first F round filtering, the 5 IVs are chosen from L0, L1, L2, L3 and L4,

respectively, which ensures that different 5 iv0 values will be derived and that the filtering procedure will

properly work. The second and third round choice of the IVs is arbitrary.

Attack complexity: After the filtering procedure described above, there will remain 16 candidates for ki
j ,

0 ≤ i ≤ 2, 0 ≤ j ≤ 3 (96 bits). Each of the 16 candidates yields a linear system in the cipher key bytes

determined by (5.10), (5.11) and (5.12). Since the linear equations in the system are independent, it follows

that a 96− 4 = 92-bit constraint on the key K is specified. At this point, the attacker can either brute-force

the remaining 128− 92 = 36 key bits or continue with the filtering process described above to deduce more

key bits. In case of brute-forcing the 36 bits, the total complexity of the attack is dominated by around 236

Loiss initialization procedures.

In the case where the filtering process is continued, the criterion R4 >> 28 6= 3 can be used to

filter out more key bits. Namely, expanding the corresponding iv3 and k3 values in a way analogous to

(5.10)-(5.12), while taking into account the feedback byte in the LFSR update, reveals that altogether 20

more key bits can be recovered. In that case, the total complexity is dominated by the complexity of the

above filtering procedures. The most expensive step is the filtering based on the second F round. We recall

that in this filtering step, for each of the 360 correct IVs, each 32-bit key value is tested and eliminated if

R2 >> 28 6= 3 does not hold. Instead of applying the F function 232 × 360 ≈ 240.5 times, one can go

through all key candidates for a particular IV, eliminate around 15
16

of them and then, for the next IV, only go

through the remaining candidates. In such a case, the number of applications of F is
∑360

i=0(
15
16
)i232 ≈ 236.

To have further optimization, a table containing 232 entries and representing F function can be prepared

in advance. To measure the computational complexity of the attack in terms of Loiss initializations, a

conservative estimate that one table lookup costs around 2−4 of a reasonable implementation of one Loiss

initialization step could be accepted. Then, since there are 64 = 26 steps in the initialization, the final

complexity amounts to around 226 Loiss initializations, 225.8 chosen-IVs for both keys, storage space of 232

32-bit words and offline precomputation of 232 applications of F , which is less than 226 Loiss initializations,

since each Loiss initialization includes 26 F computations.
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Our attack was implemented and tested on a PC with 3 GHz Intel Pentium 4 processor with one

core. Our implementation takes less than one hour to recover 92 bits of the key information and the attack

procedure was successful on all the tested 32 randomly generated keys.

5.2.5 Towards a resynchronization attack

Here, some preliminary observations on the possibility of adapting the above attack to the single-key

model are provided. In the single-key resynchronization attack, only the IV can have active bytes, which

means that only the left-hand half of the LFSR, i.e., registers s16, . . . , s31 as well as the BOMM will contain

active bytes. As in the related-key attack above, the strategy is to have the difference cancelled out in the

LFSR and localized only in the BOMM early during the initialization. One of the obstacles is that the R

register will necessarily be activated when the difference reaches byte s7, since the left-hand half of the LFSR

contains active bytes. We note that this obstacle can be bypassed by cancelling the introduced R difference

by having more than one LFSR byte active. Let LFSR bytes s9, s8 and s7 be active with differences δ2, δ1,

δ0 at some time t during the initialization procedure. Also, assume that the word R and the BOMM bytes

to be used in the next three steps are inactive. Below, we determine how many of the (δ2, δ1, δ0) values can

leave R inactive after 3 steps (after having passed through s7) and also the probability of occurrence of such

an event. For this purpose, note that the R cancellation event occurs if

γ(F (xt)⊕ ut+1)⊕ γ(F (xt ⊕ δ0)⊕ ut+1 ⊕ δ1) = θ−1δ2 (5.13)

where xt = Rt ⊕ ut and ut denotes the 32-bit words fed to the F function from the LFSR in t-th step.

By using a precomputed table for the S-box S1 that, for each input and output difference, contains the

information whether it is possible to achieve the input-output difference pair or not, we exhaustively checked

for which values of (δ2, δ1, δ0) equation (5.13) has solutions in xt and ut+1. The result of the finding is

that only 2−12.861 of (δ2, δ1, δ0) values cannot yield an R difference cancellation event. For the remaining

(δ2, δ1, δ0), for which (5.13) does have a solution, the probability of the R difference cancellation is 2−4 ×

2−28 = 2−32.

The analysis above indicates that attackers can choose almost any (δ2, δ1, δ0) starting difference at

three consecutive LFSR bytes and then bypass an R activation with a probability of 2−32. A possible favor-
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able position to introduce such (δ2, δ1, δ0) difference can be in registers s18, s17, s16, since the R register will

only be activated through byte s7. This can be done by activating IV2, IV1, IV0 bytes. The 3-byte difference

that arises in the BOMM then needs to be used for cancellations whenever some of the active LFSR bytes

pass through the taps. Due to the relatively high number of cancellations that need to happen as the differ-

ence moves towards the right, we have not been able to bring the cancellation probability sufficiently high

enough to have a practical attack. Controlling the difference propagation as done in [79] may be useful for

that purpose. It is left for future research to verify whether a practical resynchronization single-key attack

can be mounted against Loiss.

5.3 Sliding properties of Loiss

In [73], a slide attack on SNOW 3G and SNOW 2.0 was provided. This attack is a related-key attack

and involves a key-IV pair (K, IV ) and (K ′, IV ′). The idea is to have the inner state of the (K, IV ) instance

after n ≥ 1 steps be a starting inner state. Then, the corresponding (K ′, IV ′) initializes to this starting state

and the equality of the inner states is preserved until the end of the procedure. The similarity between the

two keystreams is detected and this provides a basis for the key-recovery attack. Since LFSR-based word-

oriented stream ciphers usually do not use counters which are the usual countermeasure against this kind

of slide attacks, one way to protect against sliding is to have the initial inner state populated by the key, IV

and constants so that it disallows the next several states to be starting states. For example, in ZUC [50],

constants are loaded in a way that makes it difficult to mount a slide attack.

In the following, we point out that Loiss, similar to SNOW 2.0 and SNOW 3G, does not properly

defend against sliding. If C0 = S−1
1 (0) and C1 = S2(0), a slide by one step can be achieved as follows.

Observation 2 Let K = (K15, . . . , K0) and IV = (A, . . . , A,B), where

A = (α⊕ α−1 ⊕ 1)−1(K0 ⊕ α−1K0 ⊕ α−1K1 ⊕K2 ⊕ αK5 ⊕ αK8 ⊕K11 ⊕K13 ⊕ C0)

and B is determined by B ⊕ C1 ⊕ S2(B ⊕ C1) = A. Also, assume that K7 = C0 and K4 = K10 = K15 =

C0 ⊕ A. Then, for K ′ = (K0 ⊕B,K15, . . . , K1) and IV ′ = (A, . . . , A), we have

z′0 = z1 (5.14)
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Proof: We will show that

IS1 = (s131, . . . , s
1
0, R

1, y116, . . . , y
1
0)

= (s
′0
31, . . . , s

′0
0 , R

′0, y
′0
16, . . . , y

′0
0 ) = IS

′0

(5.15)

As for the BOMM bytes yi, 15 ≤ i ≤ 0, in the (K, IV ) instance of the cipher, only y0 will be updated since

R0 = 0. In other words, y1i = A for 15 ≤ i ≤ 1. Moreover, from the specification of B, it follows that

y10 = A. Since IV ′ = (A, . . . , A), y
′0
i = A for 15 ≤ i ≤ 0 as well, i.e., (5.15) holds for the BOMM bytes.

As for the equality between R1 and R
′0, by the initialization procedure, R

′0 = 0. To have R1 = 0 as well, it

suffices to have each of the four LFSR registers s031, s
0
26, s

0
20, s

0
7 equal to C0 = S−1(0), which is exactly the

case due to the values to which bytes K15, K8, K4 and K7 are set. Finally, to establish the equality of the

LFSR values in (5.15), the expression defining A are substituted into the way the LFSR is updated during

the initialization procedure with the feed-forward, verifying that s131 = s
′0
31 = K15 ⊕ A. As for the other

LFSR values, s1i = s
′0
i holds directly due to the specification of K, IV,K ′, IV ′.

Thus, the initialization procedures of the two cipher instances are slided, i.e., ISt = IS
′t−1 for

1 ≤ t ≤ 64. At time t = 64, in the (K, IV ) instance of the cipher, a regular keystream step is applied,

whereas in the (K ′, IV ′) instance, an initialization step is applied which destroys the slide property by

introducing a difference between s6531 and s
′64
31 . However, it can be verified that this difference does not affect

the two corresponding first keystream words, which proves (5.14). �

It should be noted that, as we verified by solving B ⊕C1 ⊕ S2(B ⊕C1) = A for each A ∈ F 8
2 , there

always exists a byte B specified by this observation.

Due to the requirement on bytes K7, K4, K10 and K15 from the formulation of the observation above,

a Loiss key K has a related key pair specified by the observation above with probability 2−32. For the related

keys K and K ′ satisfying the conditions above, the attack can be performed by going through all A ∈ F 8
2

and verifying whether the relation (5.14) is satisfied for IV = (A, . . . , A,B), and IV ′ = (A, . . . , A). If yes,

then such an A byte is a candidate for the right-hand side of the equation above specifying A, which depends

only on K bytes. Each false candidate out of 28 candidates for A will pass the test (5.14) with probability

2−8. That way, around one byte of the key information leaks. Slides by more than one step may also be

possible.
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5.4 Conclusion

We presented a practical-complexity related-key attack on the Loiss stream cipher. The fact that a

slowly changing array (the BOMM) has been added as a part of the FSM in Loiss allowed the difference

to be contained (i.e., do not propagate) during a large number of inner state update steps with a relatively

high probability. The attack was implemented and our implementation takes less than one hour on a PC

with 3GHz Intel Pentium 4 processor to recover 92 bits of the 128-bit key. The possibility of extending the

attack to a resynchronization attack in a single-key model was discussed. We also showed that a slide attack

is possible for the Loiss stream cipher.
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6

On the sliding property of SNOW 3G and

SNOW 2.0

In response to concerns about the security of the 3GPP encryption primitive KASUMI [3], [16]

(see also [47]), the Security Algorithms Group of Experts (SAGE) proposed a possible replacement for

KASUMI which is currently used in 3G systems as a component of the UEA1 confidentiality algorithm.

The core primitive of the new confidentiality algorithm, UEA2, is the SNOW 3G stream cipher [51]. The

design of SNOW 3G is based on SNOW 2.0 [49], a stream cipher which is chosen for the ISO/IEC standard

IS 18033-4 along with Decim [11], MUGI [132] and Rabbit [28]. SNOW 3G passed extensive internal

cryptanalytic efforts, surveyed in [52], but the full evaluation has not been released to public. Externally,

SNOW 3G was analyzed in [25].

In this chapter, we show that the initialization procedure of the two ciphers admits a sliding property,

resulting in several sets of related-key pairs. In case of SNOW 3G, a set of 232 related key pairs is presented,

whereas in case of SNOW 2.0, several such sets are found, out of which the largest are of size 264 and

2192 for the 128-bit and 256-bit variant of the cipher, respectively. In addition to allowing related-key key

recovery attacks against SNOW 2.0 with 256-bit keys, the presented properties reveal non-random behavior

which yields related-key distinguishers and also questions the validity of the security proofs of protocols

that are based on the assumption that SNOW 3G and SNOW 2.0 behave like perfect random functions of

the key-IV.

Biham et al. [16] showed that KASUMI does not behave randomly when examined in the related-key

model. As stated in [16], this renders the previous security proofs based on the assumption that KASUMI
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behaves like a perfect random function [63] as invalid and puts into question the security of the whole 3GPP

system. In [34], [118] the sliding properties of stream ciphers were used to find sets of related keys where

it was shown that a stream cipher may be slidable, in the sense that there exist key-IV values such that the

inner state of the cipher at some time t > 0 corresponds to another key-IV value. Such key-IV pairs produce

equal keystreams up to a slide by some number of positions and represent related keys.

We show that a similar strategy is also applicable to SNOW 3G and SNOW 2.0 due to the way the

key and the IV are written to the inner state before the first initialization step. More precisely, in this chapter,

it is shown that it is possible to find key-IV pairs such that after iterating the cipher for several initialization

steps, the inner state represents a starting inner state for some other key-IV value. Due to the nature of the of

the initialization processes of SNOW 3G and SNOW 2.0, such related keys do not generate slid keystreams,

but only keystreams that have several equal words. However, this still allows distinguishing the produced

keystream from random keystreams. The found sets of keys that have (not necessarily unique) related keys

for different SNOW variants are summarized in Table 6.1.

A feature of the related keys presented in this chapter is that, given a key for which a corresponding

key pair exists, it is straightforward to derive this related key, as opposed to related keys from [118] where

the relation was non-obvious and the keys corresponded to a solution of a complex system of equations.

XYZXYZ(related key relation) The simplicity of the related keys makes the potential related-key attack

more realistic, since if the encryption scheme is used in protocols with related keys, it is unlikely that the

relation will be complex and represent solutions to complex systems of equations. We also show that in

the case of SNOW 2.0 with 256-bit key, the presented properties allow related-key attacks with complexity

smaller than the exhaustive search. Finally, by using a property of the related keys by which given a (K, IV )

value, the related key K ′ depends on the value of IV , we present a simple time-memory trade-off for the

case where the attackers position is weakened with respect to the assumptions on the two related keys.

The rest of the chapter is organized as follows. In Section 6.1, we briefly review the specifications

of SNOW 3G and SNOW 2.0. The sets of related-keys are specified in Sections 6.2 and 6.3. The attacks

against SNOW 2.0 with 256-bit key are examined in Section 6.4 and the conclusion is given in Section 6.5.

81



⊕

1−
α α

⊕

⊕ ⊕

2S
1S

⊕

tz

1R 2R

0s2s5s11s
15s

3R

Figure 6.1: The SNOW 3G stream cipher

Snow Variant Source # of related key pairs # of slide steps Key recovery attack

SNOW 3G Th. 1 232 3 -

SNOW 2.0 (128-bit key) Th. 2 232 2 -

SNOW 2.0 (128-bit key) Th. 3 264 3 -

SNOW 2.0 (256-bit key) Th. 4 2160 2
√

SNOW 2.0 (256-bit key) Th. 5 2192 3
√

SNOW 2.0 (256-bit key) Th. 6 2192 4
√

Table 6.1: Summary of results

6.1 Specifications of SNOW 3G and SNOW 2.0

Both SNOW 3G and SNOW 2.0 contain two main components: a Linear Feedback Shift Register

(LFSR) and a Finite State Machine (FSM). The inner state of SNOW 3G (see Fig. 6.1) can be represented

by (st0, . . . s
t
15, R

t
1, R

t
2, R

t
3), where the s values represent 32-bit LFSR registers, the R values represent the

32-bit FSM registers and t denotes the number of iterations that have been executed so far. In SNOW 2.0,

the FSM contains only two 32-bit registers and the inner state can be represented by (st0, . . . s
t
15, R

t
1, R

t
2).
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Unlike SNOW 3G which supports only 128-bit keys, SNOW 2.0 can be used with 128-bit and 256-bit

keys. The size of the IV in both ciphers is 128 bits. In what follows, we briefly review the FSM and the

LFSR update steps for the two ciphers.

SNOW 3G: The FSM update step is given by

Rt+1
3 = S2(R

t
2), Rt+1

2 = S1(R
t
1)

Rt+1
1 = Rt

2 ⊞ (Rt
3 ⊕ st5)

(6.1)

where S1 and S2 are two different 32 × 32 S-boxes, made of four parallel 8-bit S-boxes followed by a

multiplication by a 4× 4 matrix over GF(28) and ⊞ denotes addition modulo 232.

The LFSR update is given by

st+1
15 =







α−1 · st11 ⊕ st2 ⊕ α · st0 ⊕ F t, t < 32

α−1 · st11 ⊕ st2 ⊕ α · st0 t ≥ 32

(6.2)

where α is a root of the GF (28)[x] polynomial x4+β23x3+β245x2+β48x+β239, β is a root of the GF (2)[x]

polynomial x8 + x7 + x5 + x3 + 1, α−1 is the multiplicative inverse of α and Ft is the FSM output which is

given by

F t = (st15 ⊞Rt
1)⊕Rt

2.

Let 1 denote the all-one 32-bit word. The cipher operates as follows: the secret inner state is popu-

lated by K = (K0, . . . K4) and IV = (IV0, . . . IV4) according to

s015 = K3 ⊕ IV0, s014 = K2, s013 = K1, s012 = K0 ⊕ IV1

s011 = K3 ⊕ 1, s010 = K2 ⊕ 1 ⊕ IV2,

s09 = K1 ⊕ 1 ⊕ IV3, s08 = K0 ⊕ 1 (6.3)

s07 = K3, s06 = K2, s05 = K1, s04 = K0

s03 = K3 ⊕ 1, s02 = K2 ⊕ 1, s01 = K1 ⊕ 1, s00 = K0 ⊕ 1

and the FSM registers are reset to zero, i.e., R0
1 = R0

2 = R0
3 = 0. The cipher is then iterated by executing
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Figure 6.2: (K, IV ) and (K ′, IV ′) LFSR at times 3 and 0, respectively. For example, row 4 contains

K3 ⊕ 1 = s30 and K ′
0 ⊕ 1 = s

′0
0

(6.1) and (6.2) for 33 times without generating any output. Note that for t < 32, according to (6.2), the FSM

output Ft participates in the LFSR update, contrary to step t = 32. Finally, the keystream words (z0, z1, . . .)

are produced by

zt−33 = st0 ⊕ F t, t ≥ 33. (6.4)

In each such step, after generating the keystream word, the FSM and subsequently the LFSR are updated by

(6.1) and (6.2).

SNOW 2.0: The FSM update function is defined by

Rt+1
1 = s5 ⊞Rt

2, Rt+1
2 = S(Rt

1) (6.5)

where S is a permutation of Z232 based on the round function of Rijndael [44]. The LFSR update function,

and the FSM output Ft are defined in the same way as for SNOW 3G.
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For the 128-bit version of SNOW 2.0 with K = (K3, K2, K1, K0) and IV = (IV3, IV2, IV1, IV0),

the starting inner state is populated according to (6.3). For SNOW 2.0 with 256-bit key, K = (K7, . . . K0),

the LFSR is populated by

s15 = K7 ⊕ IV0, s14 = K6, s13 = K5, s12 = K4 ⊕ IV1

s11 = K3, s10 = K2 ⊕ IV2, s9 = K1 ⊕ IV3, s8 = K0 (6.6)

s7 = K7 ⊕ 1, s6 = K6 ⊕ 1, . . . , s0 = K0 ⊕ 1

The initialization process and the keystream generation are done the same way as in SNOW 3G.

The following notation will be used throughout the rest of the chapter. For both SNOW 3G and

SNOW 2.0, two instances of the cipher will be considered: one is initialized by (K, IV ) and the other one is

initialized by (K ′, IV ′). Adding “′” as a suffix to the word will distinguish whether it relates to the (K, IV )

or the (K ′, IV ′) instance of the cipher. For example, z′i, s
′t
j , R

′t
k denote the keystream and the inner state

of the (K ′, IV ′) instance of the cipher. Let ISt denote the complete inner state of the (K, IV ) instance of

cipher at time t ≥ 0. For example IS ′
0 represents the inner state of the cipher initialized by (K ′, IV ′), after

applying equations (6.3) and before executing any initialization steps.

The inner state at t = 0, i.e., the state right after applying (6.3) or (6.6) will be referred to as the

starting inner state. The iteration in which the cipher goes from time t to time t + 1 is denoted by step t.

Step t will be referred to as an initialization step if 0 ≤ t ≤ 31. If t ≥ 32, the step will be called a keystream

generation step. The operators ⊞ and ⊟ denote addition and subtraction modulo 232, respectively.

6.2 Related-key pairs for SNOW 3G

In this section, we show that it is possible to initialize SNOW 3G by (K, IV ) so that its inner state

at time t = 3 represents a valid starting inner state corresponding to another (K ′, IV ′). More precisely, we

show that there exists a set of 232 (K, IV ) values such that for each such value, a unique (K ′, IV ′) exists so

that IS3 = IS ′
0.

The initial equality IS3 = IS ′
0 is preserved until step 32, i.e., ISt = IS ′

t−3, 3 ≤ t ≤ 32. At that

point, a difference occurs due to the fact that in the (K, IV ) instance an initialization step is applied to

update the inner state whereas in the (K ′, IV ′) instance, a keystream generation step is applied according to
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(6.2). Nevertheless, due to the high degree of similarity among the corresponding inner states at the point

where the keystream words are produced, several such words will be equal, contrary to how a perfect stream

cipher should behave.

Define C1 = S−1
1 (S−1

2 (0)), C2 = (S−1
1 (0) ⊟ S1(0)) ⊕ S2(0) and C3 = (⊟S1(S

−1
1 (S−1

2 (0)))) ⊕

S2(S1(0)) and let a0, b0, b1, b′0 be 32-bit words. The following theorem specifies a set of 232 related keys for

SNOW 3G.

Theorem 1 Let K = (a0, C1, C2, C3) and K ′ = (C3, a0 ⊕ 1, C1 ⊕ 1, C2 ⊕ 1). Then, there exist unique

IV = (b0, b1, 0, 0) and IV ′ = (b′0, b0, 0, b1) such that ISt = IS ′
t−3, 3 ≤ t ≤ 32 and

z3 = z′0, z4 = z′1, z8 = z′5, z9 = z′6. (6.7)

Proof: First, we show that there exist unique IV and IV ′ of the form above so that K and K ′ satisfy

IS3 = IS ′
0, i.e.,

(s30, . . . s
3
15, R

3
1, R

3
2, R

3
3) = (s

′0
0 , . . . s

′0
15, R

′0
1 , R

′0
2 , R

′0
3 ) (6.8)

Unfolding the FSM registers at t = 3 yields

R3
1 = s07 ⊕ S2(S1(0))⊞ S1(s

0
5),

R3
2 = S1(s

0
6 ⊕ S2(0)⊞ S1(0)) , R

3
3 = S2(S1(s

0
5)).

Substituting the values s05, s06 and s07 according to s05 = K1 = C1, s06 = K2 = C2 and s07 = K3 = C3 (which

follows by (6.2) and by the theorem formulation) shows that R3
1 = 0, R3

2 = 0 and R3
3 = 0. Since R

′0
1 = 0,

R
′0
2 = 0 and R

′0
3 = 0 by the SNOW 3G specification, the equality of the FSM words is established.

As for the LFSR values of equality (6.8), the problem is depicted in Fig. 6.2. It suffices to equate the

expressions shown inside the rows using the keys specified by the theorem, skipping the first 3 rows. For

example, row 4 corresponds to s30 = s
′0
0 . This is trivially satisfied by the K and K ′ specified by the theorem

by setting K3 ⊕ 1 = C3 ⊕ 1 = K ′
0 ⊕ 1, without imposing any constraint on IV , IV ′. It is straightforward to

verify that the same holds for rows 5, 6, 7, 8, 9, 12, 15. However, equating rows 10, 11, 13, 14 and 16 yields

IV3 = IV2 = 0, IV1 = IV ′
3 , IV

′
2 = 0, IV0 = IV ′

1 (6.9)
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Finally, equating rows 17, 18, 19 and substituting values for s115, s215, s315 we have

α(K0 ⊕ 1)⊕K2 ⊕ 1 ⊕ α−1(K3 ⊕ 1)⊕K3 ⊕ IV0 = K0 ⊕ 1 (6.10)

α(K1 ⊕ 1)⊕K3 ⊕ 1 ⊕ α−1(K0 ⊕ IV1)⊕

((K0 ⊕ 1)⊞K1)⊕ S1(0) = K1 ⊕ 1

(6.11)

α(K2 ⊕ 1)⊕K0 ⊕ α−1(K1)⊕

((K1 ⊕ 1)⊞ (K2 ⊕ S2(0)⊞ S1(0))⊕ (6.12)

S1(K1) = K2 ⊕ 1 ⊕ IV ′
0 .

It is clear that equations (6.10)-(6.12) can be solved explicitly in IV0, IV1 and IV ′
0 . In other words, by letting

K = (a0, C1, C2, C3) and K ′ = (C3, a0⊕ 1, C1⊕ 1, C2⊕ 1) as specified by the theorem and fixing a0, these

three equations yield a unique IV0, IV1 and IV ′
0 , which take the place of b0, b1 and b′0, respectively, showing

that for K, K ′, there exist unique IV , IV ′ of the form specified by the theorem, satisfying (6.8).

To complete the proof it suffices to show that (6.8) implies (6.7). From (6.8), using (6.2), it follows

that ISt = IS ′
t−3 for 3 < t ≤ 32. Again, according to (6.2), it follows that the difference in times

t = 33, 34, 35 is present in registers {s15}, {s15, s14}, {s15, s14, s13}, respectively. As for times t = 36, 37,

the difference in the inner states stays only in {s14, s13, s12}, {s13, s12, s11}, respectively. Then, using (6.4),

it follows that z3 = z′0, z4 = z′1. By following the difference propagation, it is straightforward to see that at

t = 41, 42 the active registers are {s14, s13, s12, s9, s8, s7} and {s13, s12, s11, s8, s7, s6}, respectively, which,

using (6.4), completes the proof of (6.7). 2

In the previous Theorem, related keys due to the slide of 3 steps are described. An attempt to change

the number of sliding steps is unlikely to yield new interesting sets of related keys for SNOW 3G. Namely,

slide pairs on the distance of 2 steps do not exist due to the fact that R2
3 = S2(S1(0)) is a constant different

than zero, which means that the inner state after 2 initialization steps cannot represent a starting inner state

of another slid instance of the cipher. As for the slide by 4 steps, the FSM constraint restricts the key K

to 232 possible values. Then, the K candidates are restricted by an additional 64-bit filter due to the LFSR

constraint, i.e., by equations s413 = s
′0
13 and s414 = s

′0
14. The two constraints together render the related-keys

highly unlikely to exist. Finally, an eventual slide by more than 4 steps does not produce related keys since
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the difference between the initialization and the keystream generation steps for longer than 4 steps destroys

the equivalence between the inner states which is needed to have some equal words in the corresponding

output sequences.

6.3 Related-key pairs for SNOW 2.0

In this section, we show that the strategy from Section 6.2 is also applicable against SNOW 2.0. In

particular, for SNOW 2.0 with 128-bit keys, we show that two different related key sets exist due to the slide

by 2 and by 3 steps. As for the 256-bit key version of SNOW 2.0, each of the slides by 2, 3 and 4 steps yield

related key sets.

6.3.1 SNOW 2.0 with 128-bit keys

The following theorem reveals a set of 232 related key pairs for the 128-bit version of SNOW 2.0,

due to the slide by 2 steps. Let C1 = S−1(0) and C2 = ⊟S(0) and let a0, a3, b1 and b′0 be 32-bit words.

Note that, according to the SNOW 2.0 specification, K and IV are are indexed in reverse order.

Theorem 2 Let a0 and a3 satisfy

α(a0 ⊕ 1)⊕ C2 ⊕ α−1(a3 ⊕ 1)⊕ a3 = a0 (6.13)

Let K = (a3, C2, C1, a0) and K ′ = (C1 ⊕ 1, a0 ⊕ 1, a3, C2). Then, for any IV = (0, 0, b1, 0), there exists a

unique IV ′ = (0, b1, 0, b
′
0) so that for SNOW 2.0 with 128-bit key, we have ISt = IS ′

t−2 for 2 ≤ t ≤ 32 and

z2 = z′0, z3 = z′1, z4 = z′2

z7 = z′5, z8 = z′6, z9 = z′7

(6.14)

Proof: Similar to the proof of Theorem 1, it will be shown that the K, K ′, IV and IV ′ values obeying the

conditions of the theorem imply IS2 = IS ′
0. Since R2

1 = s6⊞S(0) = K2⊞S(0) = ⊟S(0)⊞S(0) = 0 = R
′0
1

and R2
2 = S(s5) = S(K1) = S(S−1(0)) = 0 = R

′0
2 , the equality of the FSM registers is established. The
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LFSR constraint amounts to showing that

s2i = s
′0
i , 0 ≤ i ≤ 15 (6.15)

By substituting s2i = s0i+2 for i ≤ 13 and substituting s0i+2 and s
′0
i according to (6.3), it easy to verify that for

i ∈ {0, 1, 2, 3, 4, 5, 6, 11}, (6.15) is satisfied without imposing any constraints on IV and IV ′. On the other

hand, using the same substitutions, due to (6.15) for i ∈ {7, 8, 9, 10, 12, 13}, it follows that

IV3 = 0, IV2 = 0, IV ′
3 = 0,

IV1 = IV ′
2 , IV

′
1 = 0, IV0 = 0

(6.16)

which leaves both IV1 = IV ′
2 and IV ′

0 unspecified. As for (6.15) for i = 14, it is satisfied due to (6.13).

From (6.15), for i = 15, it follows that for any IV1 = b1, IV ′
0 = b′0 is uniquely determined.

From IS2 = IS ′
0, by (6.2), it follows that ISt = IS ′

t−2 for 2 < t ≤ 32. In times t = 33, 34, the

difference is present in {s15}, {s15, s14} registers, respectively. In times t = 35, 36, 37 the difference in

the inner states is present only in {s14, s13}, {s13, s12}, {s12, s11}, respectively. Following the propagation

further reveals that in times t = 40, 41, 42, the difference is only in {s14, s13, s9, s8}, {s13, s12, s8, s7} and

{s12, s11, s7, s6}, respectively. Taking into account (6.4), (6.14) follows. 2

The number of K values for which related key-IVs exist is equal to the number of possible a0, a3

that satisfy the linear equation (6.13), i.e. 232 values.

The next theorem reveals a larger set of 264 related key pairs for 128-bit keyed SNOW 2.0, due

to the slide by 3 steps. Let a0, a1 be arbitrary 32-bit words and let A3 = ⊟S(a1). Define the constant

C1 = S−1(0)⊟ S(0).

Theorem 3 Let K = (A3, C1, a1, a0) and K ′ = (C1 ⊕ 1, a1 ⊕ 1, a0 ⊕ 1, A3). Then, there exist unique

IV = (0, 0, b1, b0) and IV ′ = (b1, 0, b0, b
′
0), for SNOW 2.0 with 128-bit key, such that ISt = IS ′

t−3 for

3 ≤ t ≤ 32 and that

z3 = z′0, z4 = z′1, z8 = z′5, z9 = z′6

As for the sliding by 4 steps, the FSM constraint imposes a 64-bit constraint on the key K and the equations

s413 = s
′0
13 and s414 = s

′0
14 provide another 64-bit constraint. Since the expected number of such related key

pairs is 1, they are less relevant and their treatment is omitted. As for sliding by more than 4 steps, the
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difference between the initialization and the keystream generation steps for longer than 4 steps destroys the

equivalence between the inner states which consequently prevents having equal words in the corresponding

output sequences.

6.3.2 SNOW 2.0 with 256-bit keys

The theorem that follows uses sliding by 2 steps to describe a set of 2160 related key pairs for SNOW

2.0 with 256-bit key. Define the constants C1 = S−1(0) ⊕ 1, C2 = (⊟S(0)) ⊕ 1 and let a0, a1, a2, a3, a4,

a7, b1, b3 and b′0 be 32-bit words.

Theorem 4 Assume that

α(a0 ⊕ 1)⊕ a2 ⊕ α−1(a3)⊕ a7 = a0 (6.17)

Let K = (a7, C2, C1, a4, a3, a2, a1, a0) and K ′ = (a1 ⊕ b3 ⊕ 1, a0 ⊕ 1, a7, C2, C1, a4, a3, a2). If IV =

(b3, 0, b1, 0), there exists a unique IV ′ = (0, b1, 0, b
′
0) such that for SNOW 2.0 with a 256-bit key, we have

ISt = IS ′
t−2 for 2 ≤ t ≤ 32 and

z2 = z′0, z3 = z′1, z4 = z′2

z7 = z′5, z8 = z′6, z9 = z′7

(6.18)

Due to (6.17), the number of K values for which related key-IV s exist is 2160.

Next, a set of 2192 related key pairs due to the slide by 3 steps is described. Let a0, a1, a2, a3,

a4, a5, b2 and b3 be arbitrary 32-bit words. Let A7 = (⊟S(a5 ⊕ 1)) ⊕ 1 and define the constant C1 =

(S−1(0)⊟ S(0))⊕ 1.

Theorem 5 Let K = (A7, C1, a5, a4, a3, a2, a1, a0) and K ′ = (a2⊕b2⊕1, a1⊕b3⊕1, a0⊕1, A7, C1, a5, a4, a3).

Then, there exist unique b1, b0 and b′0 such that with IV = (b3, b2, b1, b0) and IV ′ = (b1, 0, b0, b
′
0), for SNOW

2.0 with a 256-key, we have ISt = IS ′
t−3 for 3 ≤ t ≤ 32 and

z3 = z′0, z4 = z′1, z8 = z′5, z9 = z′6 (6.19)

Finally, another set of 2192 related key pairs is described by using a slide of 4 steps for SNOW 2.0 with

256-bit keys. Let a1, a2, a3, a4, a5 and a6 be arbitrary 32-bit values. Define A7 = (S−1(0)⊟S(a5 ⊕ 1))⊕ 1
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and A0 = ⊟S((a6 ⊕ 1)⊞ S(0)).

Theorem 6 Let K = (A7, a6, a5, a4, a3, a2, a1, A0). Then, there exist unique b3, b2, b
′
1 and b′0 such that for

K ′ = (a3 ⊕ 1, a2 ⊕ b2 ⊕ 1, a1 ⊕ b3 ⊕ 1, A0 ⊕ 1, A7, a6, a5, a4), IV = (b3, b2, 0, 0) and IV ′ = (0, 0, b′1, b
′
0)

for SNOW 2.0 with 256-bit key, we have ISt = IS ′
t−4 for 4 ≤ t ≤ 32 and

z4 = z′0, z9 = z′5

6.4 Related-key attacks

Theorems 4, 5 and 6 allow generic attacks against SNOW 2.0 with 256-bit key in which the attacker

queries the two instances of the cipher initialized by K and its related K ′ to find the IV and IV ′ that give

slide pairs. Then, the found IV and IV ′ are plugged in the equations that are necessary to be satisfied if

the slide is to happen. Since the equations are only in secret key bits and are easy to solve given that they

establish equivalence between the LFSR register values on the distance of only small number of steps less

than the number of slid steps, the key space is restricted.

Moreover, in case of SNOW 2.0 with 256-bit key, variations of the generic attack stated above, by

which related-key setting is relaxed up to some point, are possible. Namely, it can be observed that in

Theorems 4, 5 and 6, K ′ depends on the IV , the initialization vector of key K. It follows that, by varying

IV in (K, IV ), the key K is related to different related keys K ′, which in turn indicates that, given a cipher

instance initialized by K, it is not necessary for the attacker to have access to a single K ′ cipher instance,

but rather to a set of possible K ′ values. Furthermore, as shown below, in the scenario less favorable for the

attacker in which the difference between parts of K and K ′ is unknown, it is possible to reduce some of the

additional attack complexity at the expense of additional memory.

Let K[i] and K ′[j] be the two corresponding key subwords in the keys specified by one of the Theo-

rems 4, 5 or 6. In case K ′[j] does not depend on the IV , for the attack to work, the difference K[i]⊕K ′[j]

has to be equal to the constant specified by the Theorem. For example, in case of Theorem 6, the difference

K[0] ⊕ K ′[4] has to be equal to 1. Such a scenario between the two keys is common for the classical re-

lated key model. On the other hand, if K ′[j] depends on the IV , we distinguish the following two possible

scenarios:
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(a) K[i]⊕K ′[j] is an arbitrary value known to the attacker

(b) K[i]⊕K ′[j] is an arbitrary value unknown to the attacker

Clearly, scenario (b) is less favorable for the attacker than the scenario (a). In what follow, we examine

possible attacks when scenarios (a) and (b) are assumed for the key subwords in question. It should be noted

that the number of unknown key bits in the two related keys can be taken to be the smaller of the numbers

of unknown bits in the two keys. Since, in what follows, every two related keys have the same number of

unknown bits, the number of bits in the key is equal to the number of unknown bits in one (any) of the two

keys.

Let the attacker have access to two instances of the cipher, as specified by Theorem 4 and let K[1]

and K ′[7] be related by scenario (a), i.e. let b3 be known to the attacker. To find the IV and IV ′ such that

(K, IV ) and (K ′, IV ′) yield a slide pair, the attacker queries the K instance with IV = (b3, 0, 0, 0) once

and the K ′ instance around 232 times by varying b′0 in IV ′ = (0, 0, 0, b′0), i.e., until (6.18) is satisfied. Then,

due to (6.15) for i = 15, after simplifying the equation and substituting s115 = a0 ⊕ 1, we have

α(a1)⊕ a1 ⊕ a3 ⊕ α−1(a4)⊕ ((a0 ⊕ 1)⊞ C1)⊕ S(0)⊕ α(1) = α−1(b1)⊕ b3 ⊕ b′0 (6.20)

Since b1 = 0, b3 and b′0 are known, the equation above introduces a 32-bit constraint on key bits, reducing

the unknown key bits number from 160 to 128. In case we assume the scenario (b) between K[1] and K ′[7],

the following process can be applied:

- For each b3, query the K instance of the cipher using IV = (b3, 0, 0, 0). Save each (z2, z3, z4, z7, z8, z9)

as a row of table T .

- Sort table T

- For each b′0, query the K ′ instance of the cipher using IV ′ = (0, 0, 0, b′0) and search for (z′0, z
′
1, z

′
2, z

′
5, z

′
6, z

′
7)

value in table T . If found, return the corresponding (b3, b
′
0)

The advantage of the latter attack is that it does not assume any relation between K[1] and K ′[7]. It requires

232 chosen-IV queries to each of the two oracles, storage of size 232 and the computational effort dominated

by a key search over the space of 2128 keys.
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As for the attack based on Theorem 5, assume a relation of type (a) between K[1] and K ′[6] and also

between K[2] and K ′[7], where K and K ′ are the keys of the two instances of the cipher available to the

attacker. Since values b3 and b2 are known, trying all possible guesses for b1, b0 and b′0 yields the IV and

IV ′ that correspond to the slid inner states. The cost of such a procedure is 264 queries to the K instance

of the cipher and 296 queries to the K ′ oracle. Out of 296 (b1, b0, b
′
0) values, only the triplet that produces

slide inner states is expected to pass, since (6.19) represents a 128-bit constraint. Once the b1, b0 and b′0 have

been found, equations s313 = s
′0
13, s314 = s

′0
14 and s315 = s

′0
15 that hold for slide pairs can be expanded. After

simplifying the equations and substituting s115 = a0 ⊕ 1 and s215 = a1 ⊕ b3 ⊕ 1, we have

α(a0)⊕ a2 ⊕ α−1(a3)⊕ (⊟S(a5 ⊕ 1))⊕ a0 ⊕ α(1)⊕ 1 = b0 (6.21)

α(a1)⊕ a3 ⊕ α−1(a4)⊕ ((a0 ⊕ 1)⊞ (a5 ⊕ 1))⊕ a1 ⊕ α(1)⊕ S(0) = α−1(b1)⊕ b3 (6.22)

α(a2)⊕ a4 ⊕ α−1(a5)⊕ ((a1 ⊕ b3 ⊕ 1)⊞ (C1 ⊕ 1)⊞ S(0))⊕

⊕ S(a5 ⊕ 1)⊕ a2 ⊕ α(1) = b′0 ⊕ b2

(6.23)

By guessing a0, a1 and a5 the system is linearized in GF (232) and can be rewritten as

a2 ⊕ α−1(a3) = L1, a3 ⊕ α−1(a4) = L2, (α⊕ 1)(a2)⊕ a4 = L3

where L1, L2 and L3 are known constants. These three equations above are independent and easy to solve

in a2, a3, a4. Consequently, the number of unknown key bits is reduced from 192 to 96. To summarize,

to attack 192 bits of the secret key in the related key scenario, we require 264 chosen-IV queries to the first

instance and 296 chosen-IV queries to the second instance of the cipher and finally a brute force over 296

values to find the two secret keys. Note that given the key of form K, it is sufficient for the attacker to

have access to any of the 264 possible keys related to K ′, as long as the difference between K[1] and K ′[6]

and also between K[2] and K ′[7] is known, i.e. scenario (a) is assumed for both pairs for key subwords. If

instead of (a), scenario (b) is assumed for one of the two key subword pairs in question, say for K[1] and

K ′[6], the attack proceeds as follows:

- For each b1, b0

- Create a table T with rows containing (z3, z4, z8, z9) generated by (K, IV ) where b3 is varying
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in IV = (b3, b2, b1, b0) and b2 is known and fixed

- Sort table T

- For each b′0 search (z′0, z
′
1, z

′
5, z

′
6) generated using K ′ and IV ′ = (b1, 0, b0, b

′
0) in T . If found,

return values for b3, b1, b0 and b′1

- Otherwise: delete table T

On average one incorrect candidate for b3, b1, b0 and b′1 will be returned by the procedure above since (6.19)

is a 128-bit constraint. The procedure requires sorting 264 tables, each table containing 232 rows, storage

size of 232, 296 chosen-IV queries to both instances of the cipher and finally, an exhaustive search over 296

possible key values. If both of the key subwords pairs in question are assumed to follow relation (b), around

232 false candidates for b3, b2, b1, b0 and b′1 out of possible 232×5 values are expected to pass the 128-bit

constraint (6.19), which augments the computational effort of exhaustive search to 296 × 232. Since for each

b1, b0 a table containing (z3, z4, z8, z9) is formed, there is an additional cost of sorting 264 tables, each table

containing 264 rows and a storage requirement of 264. The number of the chosen IV queries is 2128 and 296

to the K and K ′ instances of the cipher, respectively.

Compared to Theorems 4 and 5, Theorem 6 is less favorable for attacks since, for keys K of the

form specified by the theorem, the related key K ′ exists only for unique b3 and b2 which depend on the

key K. Moreover, the b3 and b2 values participate in the expressions for the key subwords K ′[5] and K ′[6],

respectively. In other words, given an instance with a key K, there exists no simple transformation, such

as rotation or exclusive-or with a constant, to obtain K ′. Thus, given an instance with an unknown key K,

the attacker does not know which transformation has to be applied on K to obtain K ′. Instead of assuming

that, nonetheless, the attacker has access to two instances with related K and K ′, we present the attack in

the following more relevant scenario. Let the attacker know the left-hand side values in equations s413 = s
′0
13

and s414 = s
′0
14 that determine the correct b3 and b2:

α(a1)⊕ a3 ⊕ α−1(a4)⊕ (((⊟S((a6 ⊕ 1)⊞ S(0)))⊕ 1 ⊕ b′1)⊞ (a5 ⊕ 1))⊕ S(0)⊕ a1 ⊕ α(1) = b3

α(a2)⊕ a4 ⊕ α−1(a5)⊕ ((a1 ⊕ 1 ⊕ b3)⊞ (a6 ⊕ 1)⊞ S(0))⊕ S(a5 ⊕ 1)⊕ a2 ⊕ α(1) = b2
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The assumption lowers the number of starting unknown key bits from 192 to 128. For a perfect stream

cipher, recovering 128 unknown bits of the keys should not be possible in less than 2128 operations. By

having the knowledge about the key, the attacker also has the values of correct b2 and b3. Now the b′1 and

b′0 values that produce a slide pair are found by applying 264 queries to the K ′ oracle and comparing with

the corresponding output with the output of the K instance of the cipher, used with the IV = (b3, b2, 0, 0).

After the correct b′1 and b′0 have been found, the equations s412 = s
′0
12 and s415 = s

′0
15 can be used to restrict the

key space:

α(⊟S((a6 ⊕ 1)⊞ S(0)))⊕ a2 ⊕ α−1(a3)⊕ (S−1(0)⊟ S(a5 ⊕ 1))⊕

⊕(⊟S((a6 ⊕ 1)⊞ S(0)))⊕ 1 ⊕ α(1) = b′1

α(a3)⊕ a5 ⊕ α−1(a6)⊕ (a2 ⊕ b2 ⊕ 1 ⊞ (S−1(0)⊟ S(a5 ⊕ 1))⊞ S(a5 ⊕ 1))⊕

⊕S((a6 ⊕ 1)⊞ S(0))⊕ a3 ⊕ α(1) = b′0

The key space is reduced to 128 − 64 = 64 bits. Since it is expected that one false b′0 and b′1 will pass the

test, the exhaustive search over 265 keys and 264 queries to the second oracle suffice to attack 128 unknown

key.

In the case of related key sets due to Theorem 1 and 2 for SNOW 3G and SNOW 2.0 with 128-bits,

the attacks are unrelevant since the number of initial unkown key bits is only 232. The attack against keys

specified by Theorem 3 is also less relevant since the exhaustive search over the initial unknown 64 bits is

more effective than the attack, since it would require around 296 chosen-IV queries.

Finally, it should be noted that equations that reduce the key space considered in this section contain

operations tat are not linear in GF (232). For example, (6.20) contains operation ⊞ and (6.21) contains an S-

box S application. So, in the attack based on Theorem 5, another key K ′′ equal to K ′ on all subwords except

on a5 would allow another equation of the form (6.21), with a′5 instead of a5, which would in turn reveal

(⊟S(a5⊕1))⊕ (⊟S(a′5⊕1)). However, in each case above, exploiting the non-linearity for obtaining more

key bit information requires introducing more related keys. For example, changing b3 in (6.23) requires new

related key K ′, since K ′ depends on b3. Moreover, introducing more related keys does not lower the number

of required chosen-IV queries. Since in this section the focus has been on extending the flexibility of the

related key attack, adding more related keys without improving the practicality of the related key attack
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scenarios has been omitted.

6.5 Discussion and conclusions

We presented related key pair sets for SNOW 3G and SNOW 2.0 cipher by using a sliding technique.

For several of the presented related key sets, the transformation from the key K to its related key K ′ is

simple and amounts to rotation and bit inversion.

Using the derived related key sets, related-key key recovery attacks against SNOW 2.0 with 256-bit

in complexity smaller than the exhaustive search can be mounted. Moreover, the fact that the K ′ depends

on the IV of its related key was used to mount attacks under different assumptions on the related keys.

Furthermore, the existence of the related keys exhibits non-random behavior of the ciphers, which questions

the validity of the security proofs of protocols (such as the ones used in the 3GPP networks [63]) that are

based on the assumption that SNOW 3G and SNOW 2.0 behave like ideal random functions when regarded

as functions of the key-IV. For a more detailed discussion on related-key and known-key distinguishers,

attacks, their security models and notions, the reader is referred to [81], [20].
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7

Differential fault analysis of HC-128

The ECRYPT stream cipher project, also known as eSTREAM, is a project that aimed to identify new

promising stream ciphers. The first call for stream cipher submissions was made in 2004 and it consisted

of profile 1 and profile 2: software oriented ciphers and hardware oriented ciphers. The ciphers were put

through a three-phase elimination process, finalizing in 2008, when four software oriented ciphers, includ-

ing HC-128 and Rabbit, and three hardware oriented ciphers were selected as members of the eSTREAM

portfolio. In this and the following chapter, we provide differential fault analysis of HC-128 and Rabbit

stream ciphers.

HC-128 [134] is a high speed stream cipher that has passed all the three phases of the ECRYPT

eSTREAM competition and is currently a member of the eSTREAM software portfolio. The cipher design

is suitable for modern super-scalar processors. It uses a 128-bit secret key and 128-bit initialization vector.

At each step, it produces a 32-bit keystream output word. The inner state of the cipher is relatively large

and amounts to 32768 bits, consisting of two arrays, P and Q, of 512 32-bit words, each. HC-256 [133] is

another cipher similar in structure to HC-128 but uses a 256-bit key and 256-bit IV.

In this chapter, we present a differential fault analysis attack on HC-128. The fault model in which

we analyze the cipher is the one in which the attacker is able to fault a random word of the inner state of the

cipher but cannot control its exact location nor its new faulted value. To perform the attack, we exploit the

fact that some of the inner state words in HC-128 may be utilized several times without being updated. Our

attack requires about 7968 faults and recovers the complete internal state of HC-128 by solving a set of 32

systems of linear equations over Z2 in 1024 variables.

Along with the HC-128 proposal [134], an initial security analysis pointed out to a small bias in the
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least significant bit of the output words which allows a distinguisher based on 2151 outputs. Contrary to the

claims of the cipher designer [134], in [95] it was shown that the distinguisher can be extended to other bits

as well, due to the bias occurring in the operation of addition of three n-bit integers, which is utilized in

HC-128. However, the initial security claim [134] that there exists no distinguisher for HC-128 that uses

less than 264 bits [134] has not been even nearly contradicted. In [138], Zenner presented a cache timing

analysis of HC-256 but this attack is not directly applicable to HC-128.

Our attack presented in this chapter requires around half the number of fault injections when com-

pared to the attack [58] on RC4 in the equivalent fault model. In general, fault analysis attacks [30] fall under

the category of implementation dependent attacks, which include side channel attacks such as timing analy-

sis and power analysis. In fault analysis attacks, some kind of physical influence such as ionizing radiation

is applied to the cryptographic device, resulting in a corruption of the internal memory or the computation

process. The examination of the results under such faults often reveals some information about the cipher

key or the secret inner state. The first fault analysis attack targeted the RSA cryptosystem in 1996 [30]

and subsequently, fault analysis attacks were expanded to block ciphers (e.g., [19], [48]) and stream ciphers

(e.g., [58], [74]). The threat of fault analysis attacks became more realistic after cheap and low-tech methods

were found to induce faults.

Throughout our attack, we introduce a new technique which exploits what can be called the reuse of

inner state words in different iterations of the cipher. Unlike in the fault analysis model which assumes that

every fault inverts exactly one bit of the inner state, the fault model assumed in this chapter allows only the

assumption that the fault will be localized in one of the 32-bit inner state words and no assumption on the

distribution of the newly induced value, which impedes the differential analysis. The reuse of inner state

words allows us to overcome this difficulty as follows. After faulting the inner state value, at one of the next

iterations of the cipher, say at iteration r, the faulty value participates in the output. Based on the output at

iteration r, some information about the difference between the original and the faulty value can be learned.

If the same inner state value is reused at iteration r + t without being updated in the meantime, the faulty

value enters the output transformation with a partially known difference and the differential analysis can be

applied to deduce information about the other values that participated in the output. It follows that the reuse

of inner state values without updating it may facilitate fault analysis in weaker fault analysis models.
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7.1 HC-128 specifications and definitions

The following notation is used throughout the chapter:

+ and ⊟ : addition mod 232 and subtraction mod 512.

⊕: bit-wise XOR.

<<, >>: left and right shift, respectively, defined on 32 bit values.

<<<, >>>: left and right rotation, respectively, defined on 32 bit values.

xb: The bth bit of a word x.

xc..b, where c > b: The word xc|xc−1|..|xb.

s′i〈P [f ]〉, s′i〈Q[f ]〉: The faulty keystream, where the fault is inserted while

the cipher is in state i = 268 and occurs at P [f ], Q[f ], respectively.

The HC-128 Keystream Generation Algorithm

1: i = 0
2: repeat until enough keystream bits are generated

3: j = i mod 512
4: if (i mod 1024) < 512
5: P [j] = P [j] + g1(P [j ⊟ 3], P [j ⊟ 10], P [j ⊟ 511])
6: si = h1(P [j ⊟ 12])⊕ P [j]
7: else

8: Q[j] = Q[j] + g2(Q[j ⊟ 3], Q[j ⊟ 10], Q[j ⊟ 511])
9: si = h2(Q[j ⊟ 12])⊕Q[j]
10: i = i+ 1

Figure 7.1: The HC-128 Keystream Generation Algorithm

The secret inner state of HC-128 consists of the tables P and Q, each containing 512 32-bit words.

The execution of the cipher is governed by two public counters i and j. The functions g1, g2, h1 and h2 in

Fig. 7.1, are defined as follows:

g1(x, y, z) = ((x >>> 10)⊕ (z >>> 23)) + (y >>> 8),

g2(x, y, z) = ((x <<< 10)⊕ (z <<< 23)) + (y <<< 8),

h1(x) = Q[x7..0] +Q[256 + x23..16], h2(x) = P [x7..0] + P [256 + x23..16].

The key and IV initialization procedures are omitted since they are not relevant to our attack. We say that

99



HC-128 is in state i, if i steps have been executed, counting from the initial inner state. We will denote the

iteration in which the cipher goes from state i to i+ 1 by step i.

Definition 2 Let Ps[j] denote the P [j] value after it has been updated for s times by the HC-128 KGA.

Similarly, let Qs[j] denote the Q[j] value after it has been updated for s times, j = 0, . . . 511.

Definition 2 allows representing P and Q values at different cipher states as follows. If s ∈ {1, 2, . . .},

j ∈ {0, . . . 511} and HC-128 is in state i, then

P [j] =







P0[j], i ∈ {0, . . . j}

Ps[j], i ∈ {1024× (s− 1) + j + 1, . . . 1024× s+ j}

Q[j] =







Q0[j], i ∈ {0, . . . 512 + j}

Qs[j], i ∈ {1024× (s− 1) + 512 + j + 1, . . .

1024× s+ 512 + j}

To simplify the notation, regardless of whether h1 or h2 was called, the input value will be called the h input

value. Both functions take a 32-bit word on the input. However, only the least significant byte and third least

significant byte of the input value are used. Let x denote the input to the corresponding h function called in

step i. Define Ai = x7..0 and Bi = 256 + x23..16.

7.2 The attack overview

The fault model in which we analyze the cipher is the one in which the attacker is able to fault a

random word of the inner state tables P and Q but cannot control its exact location nor its new faulted value.

We also assume that the attacker is able to reset the cipher arbitrary number of times. To perform the attack,

the faults are induced while the cipher is in state 268 instead of state 0. Such a choice reduces the number

of required faults to perform the attack. Throughout the rest of the chapter, whenever it is referred to a fault

occurrence, it is assumed that the fault occurs when the cipher is in step i = 268. The aim of the attack

is to recover the tables P1 and Q1, i.e. P and Q tables of the cipher in step i = 1024. Since the iteration
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function of HC-128 is 1− 1, the inner state can then be rewind to the initial state i = 0. The attack can now

be summarized as follows. First, the faults are induced and the corresponding output is collected as follows:

- Repeat the following steps until all of the P , Q words have been faulted at least once

- Reset the cipher, iterate it for 268 steps and then induce the fault

- Store the resulting faulty keystream words s′i, i = 268, . . . 1535

Then, the h input values, as defined in the previous section, are recovered for certain steps as follows:

- Recover the h input values in steps 512, . . . 1023 (details are provided in section 7.4.1)

- Recover a subset of the h input values in steps 1024, . . . 1535 (the size of the recovered subset is

quantified in section 7.4.2)

The inner state is recovered, bit by bit, in 32 phases. In phase b = 0, the bits P 0
1 [i], Q

0
1[i], i =

0, . . . 512 are recovered. Then, in phases b = 1, . . . 30, assuming the knowledge of P b−1..0
1 [i], Qb−1..0

1 [i],

i = 0, . . . 512, the bits P b
1 [i], Q

b
1[i] are recovered. In each phase, a system of linear equations over Z2 in

P b
1 [i], Q

b
1[i] is generated as follows:

- Generate 512 equations of the form (P b
1 [Ai] + P b

1 [Bi])⊕Qb
1[i] = sbi , i = 512, . . . 1023 (section 7.4.3)

- Recover a subset of the P b
1 [0], . . . P

b
1 [255] and a subset of Qb

1[0], . . . Q
b
1[255] values and add the recov-

ered information to the system (section 7.4.4)

- Generate more equations in P b
1 [i], Q

b
1[i] values by considering the relations between faulty and non-

faulty keystreams (section 7.4.5)

- Solve the obtained system of linear equations

Finally, the most significant bits of all the P and Q words are recovered by phase b = 31.

7.3 The faulty value position and difference

In this section, two algorithms are provided. The first one is used to recover the XOR difference

between certain faulty and non-faulty inner state values after the fault has been induced and the cipher is
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iterated for certain number of steps. The algorithm is useful since the XOR differences between the non-

faulty and the faulty inner state values is used to perform differential cryptanlaysis when the corresponding

inner state values are reused in future cipher iterations. The second algorithm is used to recover the position

of the induced fault. Before describing these two algorithms, an analysis of how the fault propagates as

the cipher iterates is provided. Namely, we show that the position of the fault in the P or the Q tables

uniquely determines the way by which the difference propagates through the corresponding table. This is

due to the fact that, in HC-128, the update steps 5 and 8 in Fig. 7.1 use indices which are independent of

the current state. Furthermore, although the indices used in the keystream output generation steps 6 and 9

depend on the inner state information, this does not impede the recovery of initial fault position, as will be

shown below. To illustrate the above argument, assume that the fault occurred at Q[f ] while the cipher is in

state i = 268. Since, according to line 5 of Fig. 7.1, the faulty value Q′[f ] is surely not referenced is during

steps i = 0, . . . 511, it follows that P ′
1[l] = P1[l], l = 0, . . . 511. Also, according to the update line 8 of Fig.

7.1, by which values Q[j], Q[j ⊟ 3], Q[j ⊟ 10] and Q[j ⊟ 511] are referenced, the first time in which Q′[f ]

will be referenced is during the state in which Q[f − 1] is updated, i.e., in step i = 512 + f − 1. Thus,

Q1[f − 1] 6= Q′
1[f − 1]. More generally, define

∆Q1[j] =







0, if Q1[j] = Q′
1[j]

1, if Q1[j] 6= Q′
1[j].

(7.1)

Applying the same logic to follow the propagation until state 1024, for 1 ≤ f ≤ 501, it is straightforward to

check that

(∆Q1[j])
512
j=0 = 00 . . . 0

︸ ︷︷ ︸

j=0,...f−2

110110110 111 . . . 11
︸ ︷︷ ︸

j=f+8,...511

The difference propagation in the inner state is also partially projected to the keystream. For instance,

if the fault occurs at Q[f ], then sj = s′j holds for 512 ≤ j < 512 + f − 1. The first difference occurs at

i = 512 + j, j = f − 1, after the value Q[f − 1] is affected and then referenced for the output in the same
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step. We define

∆si =







0 if si = s′i

1 if si 6= s′i

(7.2)

to track the difference propagation in the keystream output. In the presented reasoning, we implicitly assume

that any difference in the right-hand side values of lines 5,6,8 or 9 of Fig. 7.1 always causes a difference in

the corresponding left-hand sides. For 100, 000 times, the inner state of HC-128 has been randomly initial-

ized, iterated for 268 times and then faulted at random word. In all the 100, 000 experiments, the correctness

of our assumption was verified. The following Lemmas provide the complete difference propagation pat-

terns for both the inner state and the keystream. The proofs are omitted since they are straightforward.

Lemma 4 If the fault occurred in the P table, its position f uniquely determines the sequence (∆P1[j])
512
j=0.

Similarly, if the fault occurred in the Q table, its position f uniquely determines the sequence (∆Q1[j])
512
j=0.

The corresponding sequences, depending on the fault positions, are given in Table 7.1.

Lemma 5 If the fault occurred in the P table, the fault position uniquely determines (∆si)
511
i=256|(∆si)

1279
i=1024.

Similarly, if the fault occurred in the Q table, the fault position uniquely determines sequence (∆si)
1023
i=512.

The corresponding sequences, depending on the fault position, are provided in Table 7.2.

7.3.1 Recovering the differences between faulty and non-faulty words

After a fault is introduced, other P and Q values are affected as the cipher iterates. In this section,

we show how to derive the difference between these affected faulty values and their original counterparts.

For illustration, assume that the fault occurred at Q[f ]. In step i = 512 + f − 1, the faulty and non-faulty

keystream words will be produced by

s512+f−1 = h2(Q[f − 13])⊕Q[f − 1], s′512+f−1 = h2(Q
′[f − 13])⊕Q′[f − 1].
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Fault at P [f ] (∆P1[j])
512
j=0

f = 0 1 0 . . . 0
︸ ︷︷ ︸

j=1...510

1

f ∈ {1, . . . 257} 0 . . . 0
︸ ︷︷ ︸

j=0...f−1

1 0 . . . 0
︸ ︷︷ ︸

j=f+1...511

f ∈ {258, . . . 264} 0 . . . 0
︸ ︷︷ ︸

j=0...f−1

1000000000100100100110110110 1 . . . 1
︸ ︷︷ ︸

j=f+28...511

f ∈ {265, 266, 267, 268} 0 . . . 0
︸ ︷︷ ︸

j=0...f−1

100100100110110110 1 . . . 1
︸ ︷︷ ︸

j=f+18...511

f ∈ {269, . . . 511} 0 . . . 0
︸ ︷︷ ︸

j=0...f−2

110110110 1 . . . 1
︸ ︷︷ ︸

j=f+8...511

Fault at Q[f ] (∆Q1[j])
512
j=0

f = 0 100100100110110110 1 . . . 1
︸ ︷︷ ︸

j=18...511

f ∈ {1, . . . 501} 0 . . . 0
︸ ︷︷ ︸

j=0...f−2

110110110 1 . . . 1
︸ ︷︷ ︸

j=f+8...511

f ∈ {502, . . . 508} 0 . . . 0
︸ ︷︷ ︸

j=0...f−503

100100100110110110 1 . . . 1
︸ ︷︷ ︸

j=f−484...511

f ∈ {509, 510, 511} 0 . . . 0
︸ ︷︷ ︸

j=0...f−510

100100110110110 1 . . . 1
︸ ︷︷ ︸

j=f−493...511

Table 7.1: The effect of faults induced during state 268 on the P and Q tables

However, since Q′[f − 13] = Q[f − 13], it follows that s512+f−1 ⊕ s′512+f−1 = Q[f − 1]⊕Q′[f − 1], which

allows the recovery of Q1[f − 1]⊕Q′
1[f − 1]. For a fault position f , define the set S(f) as follows:

l ∈ S(f) ⇔ 0 ≤ l ≤ 511 and l ∈ {f − 1, f, f + 2, f + 3, f + 5, f + 6, (7.3)

f + 8, f + 9, f + 10, f + 13, f + 16, f + 19}

where “+” and “-” denote addition and subtraction in the set of integers Z. In other words, given a fault at

position f in the P or Q tables, the set S(f) defines the set of positions for which the difference from the

original counterpart words can be recovered as given by the following two Lemmas.

Lemma 6 Let HC-128 be in step 268 when a fault occurs in P [f ], 269 ≤ f ≤ 511. Then, for l ∈ S(f), we

have

P1[l]⊕ P ′
1[l] = sl ⊕ s′l (7.4)
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Fault at Q[f ] (∆si)
1023
i=512

f = 0 100100100110110110 1 . . . 1
︸ ︷︷ ︸

i=18...511

f ∈ {1, . . . 499} 0 . . . 0
︸ ︷︷ ︸

i=0...f−2

110110110 1 . . . 1
︸ ︷︷ ︸

i=f+8...511

f = {500, 501} 0 . . . 0
︸ ︷︷ ︸

i=0..f−501

1 0 . . . 0
︸ ︷︷ ︸

i=f−499...498

1101101101111

f ∈ {502, . . . 508} 0 . . . 0
︸ ︷︷ ︸

i=0...f−503

101100100110110110 1 . . . 1
︸ ︷︷ ︸

i=f−484...511

f = {509, 510, 511} 0 . . . 0
︸ ︷︷ ︸

0..f−510

100100110110110 1 . . . 1
︸ ︷︷ ︸

i=f−494...511

Fault at P [f ] (∆si)
511
i=256|(∆si)

1279
i=1024

f ∈ {0, . . . 247} 0 . . . 0
︸ ︷︷ ︸

i=0...254+f

110110110 1 . . . 1
︸ ︷︷ ︸

i=263+f...511

f ∈ {248, . . . 255} 0 . . . 0
︸ ︷︷ ︸

i=0...254+f

110110110
︸ ︷︷ ︸

i=255+f...511

f = 256 0 . . . 0
︸ ︷︷ ︸

i=0...11

1 0 . . . 0
︸ ︷︷ ︸

i=13...510

1

f = 257 0 . . . 0
︸ ︷︷ ︸

i=0...12

1 0 . . . 0
︸ ︷︷ ︸

i=14...511

f ∈ {258, . . . 264} 0 . . . 0
︸ ︷︷ ︸

i=0...f−247

101100100110110110 1 . . . 1
︸ ︷︷ ︸

i=f−228...511

f ∈ {265, . . . 267} 0 . . . 0
︸ ︷︷ ︸

i=0...f−254

100100110110110 1 . . . 1
︸ ︷︷ ︸

i=f−238...511

f = 268 0 . . . 0
︸ ︷︷ ︸

i=0...11

100100100110110110 1 . . . 1
︸ ︷︷ ︸

i=30...511

f ∈ {269, . . . 511} 0 . . . 0
︸ ︷︷ ︸

i=0...f−258

110110110 1 . . . 1
︸ ︷︷ ︸

i=f−248...511

Table 7.2: The effect of faults induced during state 268 on the keystream

Proof: The distribution of corrupted values in P1 when f ≥ 269 is provided in Table 7.1. If l = f − 1,

then

sf−1 = h1(P1[f − 13])⊕ P1[f − 1], s′f−1 = h1(P
′
1[f − 13])⊕ P ′

1[f − 1]

According to Table 7.1, P1[f − 13] = P ′
1[f − 13] and since there is no corrupted values in the Q table, (7.4)

follows. Similar proof follows for the other l ∈ S(f) values, 269 ≤ f ≤ 511.
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Lemma 7 Let HC-128 be in state 268, when a fault occurs in word Q[f ], 0 ≤ f ≤ 501. Then, for l ∈ S(f),

we have

Q1[l]⊕Q′
1[l] = s512+l ⊕ s′512+l (7.5)

The proof of Lemma 7 is analogous to the proof of Lemma 6. Note that the upper bound on f in Lemma

7 allows a simplified treatment of recoverable differences. Namely, if the fault is on Q[f ] for f > 501, the

propagation starts as early as in step i = 512 and the set of recoverable differences differs from S(f).

Given the fault position P [f ] or Q[f ], the above two Lemmas establish that for l ∈ S(f), P [l]⊕P ′[l]

or Q[l] ⊕ Q′[l] can be recovered. A converse question can also be posed: Given a position, say Q[l], which

fault positions in the Q table will allow the recovery of Q1[l] ⊕ Q′
1[l]? For that purpose, it is convenient to

define the set S−1
Q (l) for 0 ≤ l ≤ 511 as follows

f ∈ S−1
Q (l) ⇔ 0 ≤ f ≤ 501 and f ∈ {l + 1, l, l − 2, l − 3, l − 5, l − 6, (7.6)

l − 8, l − 9, l − 10, l − 13, l − 16, l − 19}

Now, given a position Q[l], the set S−1
Q (l) provides all fault positions such that Q1[l]⊕Q′

1[l] = s512+l⊕s′512+l

according to Lemma 7. Similarly, given a position 268 ≤ l ≤ 511 in the P table, the set S−1
P (l) defined by

f ∈ S−1
P (l) ⇔ 269 ≤ f ≤ 511 and f ∈ {l + 1, l, l − 2, l − 3, l − 5, l − 6, (7.7)

l − 8, l − 9, l − 10, l − 13, l − 16, l − 19}

provides the fault positions f such that P1[l]⊕ P ′
1[l] = sl ⊕ s′l can be recovered according to Lemma 6.

7.3.2 Recovering the position of the fault

In this section, we provide an algorithm to deduce the position where the fault occurred. Since,

according to Lemmas 4 and 5, the fault position uniquely determines the corresponding sequences, the

following functions can be defined:

φP : f 7→ (∆si)
511
i=256|(∆si)

1279
i=1024, φQ : f 7→ (∆si)

1023
i=512
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Algorithm 1: Fault Position Recovery

INPUT: (∆si)
1279
i=256 = (si ⊕ s′i)

1279
i=256

OUTPUT: The position where the fault occurred

1: If both (∆si)
1023
512 ∈ ∆P and (∆si)

511
i=256|(∆si)

1279
i=1024 ∈ ∆Q, return undefined

2: If (∆si)
1023
i=512 ∈ ∆P , return φ−1

P ((∆si)
1023
i=512)

3: If (∆si)
511
i=256|(∆si)

1279
i=1024 ∈ ∆Q, return φ−1

Q ((∆si)
511
i=256|(∆si)

1279
i=1024)

The functions are explicitly given in Table 7.2. By checking that no two right-hand side sequences in both

parts of the Table 7.2 are equal, it follows that

Lemma 8 The functions φP and φQ are 1-1.

Let ∆P = φP ({0, . . . 511}) and ∆Q = φQ({0, . . . 511}). If the fault does not cause (∆si)
1023
512 ∈ ∆P and

(∆si)
511
i=256|(∆si)

1279
i=1024 ∈ ∆Q at the same time, which, as will be shown, happens with negligible probability,

then Algorithm 1 returns the fault position.

From line 1 of Algorithm 1, if there is conflicting information on whether the fault occurred in the P

or the Q table, the algorithm returns undefined. To estimate the probability of this unwanted event, let FP [f ]

and FQ[f ] denote the event that the fault occurs at position P [f ] and Q[f ], respectively. Let U denote the

event that Algorithm 1 returns undefined. Then we have

Prob[U ] =
511∑

f=0

Prob[U ∩ FP [f ]] +
511∑

f=0

Prob[U ∩ FQ[f ]] =

1

1024
(
511∑

f=0

Prob[U |FP [f ]] +
511∑

f=0

Prob[U |FQ[f ]]) (7.8)

where Prob[U ∩ FP [f ]] = Prob[FP [f ]]Prob[U |FP [f ]] and also Prob[U ∩ FQ[f ]] = Prob[FQ[f ]]Prob[U |FQ[f ]].

To expand the probability Prob[U |FP [f ]], let n0 and n1 denote the number of faulty values among the values

P [0], . . . P [255] and P [256] . . . P [511], respectively, at state 512, given that the fault occurred at P [f ]. Also,

let p = n0+n1

256
− n0n1

2562
. If n(δ′i) is the number of 1 values in a 512-element sequence δ′i ∈ ∆Q, then

Prob[U |FP [f ]] =
∑

δ′i∈∆
Q

Prob[(∆si)
1023
i=512 = δ′i|FP [f ]] =

∑

δ′i∈∆
Q

pn(δ
′
i)(1− p)512−n(δ′i)
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As for the probability Prob[U |FQ[f ]], let n0 and n1 denote the number of faulty words among Q[0], . . . Q[255]

and Q[256], . . . Q[511], respectively, at state 268, given that the fault occurred at Q[f ]. Let n2 and n3 denote

the number of faulty words among Q[0], . . . Q[255] and among Q[256], . . . Q[511], respectively, at state

1024, given that the fault occurred at Q[f ]. Let p0 = n0+n1

256
− n0n1

2562
and p1 = n2+n3

256
− n2n3

2562
. If m0(δ

′
i) and

m1(δ
′
i), denote the number of 1 values among δ′12, . . . δ

′
255 and δ′256, . . . δ

′
511, respectively, where δ′i ∈ ∆P ,

then

Prob[U |FQ[f ]] =
∑

δ′i∈∆
P

Prob[(∆si)
511
i=256|(∆si)

1279
i=1024 = δ′i|FQ[f ]] =

=
∑

δ′i∈∆
P

p
m0(δ′i)
0 (1− p0)

244−m0(δ′i)p
m1(δ′i)
1 (1− p1)

256−m1(δ′i)

Calculating the sets ∆P and ∆Q and substituting the corresponding values using Table 7.2 allows the com-

putation of the sums in Eq. (7.8) as 1
1024

∑511
f=0 Prob[U |FP [f ]] = 2−66.293 and 1

1024

∑511
f=0 Prob[U |FQ[f ]] =

2−30.406. Thus, the probability that Algorithm 1 returns undefined as fault position is is Prob[U ] = 2−30.406.

7.4 Using DFA to generate equations

As described in section 7.2, the attack is performed by introducing faults until every P and Q word

is faulted. Let T be the number of fault injections required to fault each of the 1024 words in the P and Q

tables at least once. The expected number of required faults, E(T ), is given by E(T ) = 7698.4 (see the

coupons’ collector problem in [105].) After inducing that number of faults, the average number of faults at a

particular word P [i] or Q[i] will be 7698.4/1024 ≈ 7.52. As stated in section 7.2, the attack proceeds in 32

phases. Each phase b relies on the knowledge of P b−1..0
1 [i], Qb−1..0

1 [i], i = 0, . . . 511, recovered in previous

phases. Only the first phase, b = 0, does not require any previous bit knowledge. In each phase, a linear

system of equations over Z2 in P b
1 [i], Q

b
1[i], i = 0, . . . 511 is generated and solved. Phase b = 31 proceeds

with minor modifications compared to phases 0 ≤ b ≤ 30, as explained below.
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7.4.1 The recovery of h input values for steps 512, . . . 1023

In every HC-128 step, one of the two h functions is called, i.e., either h1 or h2. The input for the h

functions is a 32-bit value, out of which only 16 bits, Ai, Bi, play a role in the computation. In this section,

we describe a method to recover all of the Ai, Bi values, for i = 512, . . . 1023.

To recover Ai, assume that the fault occurred at P [f ] while the cipher was in state 268. As can be

seen from Table 7.1, if 1 ≤ f ≤ 255, then as the cipher iterates through steps i = 512, . . . 1023, no other P

values gets corrupted. Also, the Q table does not get corrupted. Thus, in case 1 ≤ f ≤ 255, the non-faulty

and the faulty keystream words in step 512 ≤ i ≤ 1023 are

si = (P1[Ai] + P1[Bi])⊕Q1[j], s
′
i〈P [f ]〉 = (P ′

1[Ai] + P1[Bi])⊕Q1[j]

Since P ′
1[Ai] 6= P1[Ai] implies that Ai = f , then we have

si 6= s′i〈P1[f ]〉 ⇒ Ai = f (7.9)

In case f = 0, the fault does propagate to P [511] and if si 6= s′i〈P [0]〉, then it is unclear whether Ai = 0

or Bi = 511, or both equalities hold. However, if there exists no faulty keystream for 1 ≤ f ≤ 255 such

that (7.9) is true, then Ai = 0. As for Bi, assume that a fault is inserted at word P [f ], 256 ≤ f ≤ 268,

while the cipher is in state 268. From Table 7.1, it is clear that at state 1024, none of the P [0], . . . P [f − 1]

values will be corrupted and the value P [f ] will necessarily be corrupted. Similarly, if the fault is inserted

at P [f ] where 269 ≤ f ≤ 511, none of the values P [0], . . . P [f − 2] get corrupted and the value P [f − 1]

will necessarily be corrupted. Thus, if fmax denotes the maximal f such that si 6= si〈P [f ]〉, then

Bi =







fmax if fmax ∈ {256, . . . 268}

fmax − 1 if fmax ∈ {269, . . . 510}

Finally, if fmax = 511, it is not clear whether Bi = 510 or Bi = 511. To differentiate between these two

cases, it should be verified whether si 6= s′i also holds for any f which does not corrupt P [511], for instance

for f = 507. The recovery of Ai, Bi, for all 512 ≤ i ≤ 1023 is given by Algorithm 2.
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Algorithm 2: Recovery of Ai and Bi, for some i = 512, . . . 1023

INPUT: Step i ∈ {512, . . . 1023}
OUTPUT: Ai, Bi

1: If exists 1 ≤ f ≤ 255 such that si 6= s′i〈P [f ]〉: Ai = f
2: else Ai = 0
3: Find fmax, the maximum f such that si 6= si〈P [f ]〉
4: If 256 ≤ fmax ≤ 268: Bi = fmax

5: else if 269 ≤ fmax ≤ 510: B′
i = fmax − 1

6: else if si = si〈P [507]〉: Bi = 510
7: else Bi = 511
9: Return Ai, Bi

Given the definition of h2 and by noting that j = i mod 512, the recovered Ai and Bi values are in fact

Ai =







Q7..0
0 [j ⊟ 12] if i ∈ {512..523}

Q7..0
1 [j ⊟ 12] if i ∈ {524..1023}

(7.10)

Bi =







Q23..16
0 [j ⊟ 12] + 256 if i ∈ {512..523}

Q23..16
1 [j ⊟ 12] + 256 if i ∈ {524..1023}

(7.11)

7.4.2 The recovery of the h input values for steps 1024, . . . 1535

In this subsection, Ai, Bi values for a subset of i = 1024, . . . 1535 are recovered. While Bi values

will be recovered by a method similar to the one from the previous subsection, the same method is not

applicable for Ai recovery and we will utilize the reuse of inner state words to recover the Ai values.

As for the recovery of Bi for i = 1024, . . . 1535, from Table 7.1 it can be observed that if for some

1 ≤ f ≤ 501, Q[f ] is faulted at step 268, the value Q[f + 7] will remain unchanged and the values

Q[f + 8], . . . Q[511] will surely be corrupted. Thus, if fmin denotes the minimal 249 ≤ f ≤ 501 such that

si = s′i〈Q[f ]〉, then Bi = fmin + 7. Also, since Q[509], Q[510] and Q[511] will get corrupted regardless of

the fault position in Q, it is not possible to distinguish which of values 509, 510 or 511 Bi was equal to.

Thus, if for given step i, Bi < 509 holds, Bi will be recovered. Moreover, if Bi < 500, Q7..0
1 [Bi] will

be recovered by (7.11). Assuming that Bi < 500 for step i, then Ai can be recovered as follows. Consider
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the faulty keystream s′i〈Q[f ]〉 where f ∈ S−1
Q (Bi). According to Lemma 7 and (7.6)

Q1[Bi]⊕Q′
1[Bi] = s512+Bi

⊕ s′512+Bi

Thus, Q
′7..0
1 [Bi] can be recovered by Q

′7..0
1 [Bi]= Q7..0

1 [Bi] ⊕ s7..0512+Bi
⊕ s

′7..0
512+Bi

. After being used in step

512 +Bi, the value Q[Bi] is reused in step i as follows

si = (Q1[Ai] +Q1[Bi])⊕ P2[j], s
′
i〈Q[f ]〉 = (Q′

1[Ai] +Q′
1[Bi])⊕ P ′

2[j]

If 257 ≤ f ≤ 501, Q1[Ai] = Q′
1[Ai] holds according to Table 7.1. Also, the P table remains uncorrupted

and thus P2[j] = P ′
2[j]. Thus, focusing on the least significant byte and XORing the previous two values

yields

s7..0i ⊕ s
′7..0
i 〈Q[f ]〉 = (Q7..0

1 [Ai] +Q7..0
1 [Bi])⊕ (Q7..0

1 [Ai] +Q
′7..0
1 [Bi]) (7.12)

Since s7..0i ⊕ s
′7..0
i , Q7..0

1 [Bi] and Q
′7..0
1 [Bi] are known, (7.12) represents a test that allows eliminating some

wrong candidates for Q7..0
1 [Ai] value. One test of the form (7.12) will be generated for each faulty instance

for which the fault position is Q[f ], where f ∈ S−1
Q (Bi). Consequently, an 0 ≤ Ai ≤ 255 can be discarded

if the corresponding Q7..0
1 [Ai] recovered by (7.11) does not satisfy (7.12).

Algorithm 3: Recovery of Ai and Bi, for some i = 1024, . . . 1535

INPUT: Step i ∈ {1024, . . . 1535}
OUTPUT: Ai or undef , Bi or undef

1: Calculate F = {257 ≤ f ≤ 501|si = s′i〈Q[f ]〉}
2: If |F | = 0: Bi = undef
3: Else Bi = min(F ) + 7
4: If Bi > 500 Ai = undef ; Return Ai, Bi

5: Else: let Cand(Ai) = {0, 1, ..255}
6: For each f ∈ S−1

Q (Bi)

7: Deduce Q
′7..0
1 [Bi] = Q7..0

1 [Bi]⊕ s7..0512+Bi
⊕ s

′7..0
512+Bi

8: For Ai = 0, . . . 255
9: If s7..0i ⊕ s

′7..0
i 6= (Q7..0

1 [Ai] +Q7..0
1 [Bi])⊕ (Q7..0

1 [Ai] +Q
′7..0
1 [Bi])

10: Eliminate Ai from Cand(Ai)
11: If for every σi,σ

′
i ∈ {0, 1}, s23..16i ⊕ s

′23..16
i 6= d, where

12: d = (Q23..16
1 [Ai] +Q23..16

1 [Bi] + σi)⊕ (Q23..16
1 [Ai] +Q

′23..16
1 [Bi] + σ′

i)
13: Eliminate Ai from Cand(Ai)
14: If |cand(Ai)| = 1, let Ai be the unique cand(Ai) member

15: Else: Ai = undef
16: Return Ai, Bi
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The test (7.12) can be reformulated so that the third least significant byte is used as follows

s23..16i ⊕ s
′23..16
i =

(Q23..16
1 [Ai] +Q23..16

1 [Bi] + σi)⊕ (Q23..16
1 [Ai] +Q

′23..16
1 [Bi] + σ′

i) (7.13)

where σi is a carry corrector defined to be 1 if Q15..0
1 [Ai] + Q15..0

1 [Bi] ≥ 216 and 0 otherwise. Another

carry corrector, σ′
i, is defined analogously. The value Q

′23..16
1 [Bi] is obtained in the same way as the value

Q
′7..0
1 [Bi] above. If 0 ≤ Ai ≤ 255 and the corresponding Q23..16

1 [Ai] are substituted in (7.13) and none of

σi, σ
′
i ∈ {0, 1} satisfy the test, then Ai is discarded.

In what follows, we estimate the expected number of steps for which both the Ai and Bi values are

recovered by the presented method. Let 1024 ≤ i ≤ 1535 be a step of HC-128. If, for example, for step i,

257 ≤ Bi ≤ 492, then the Bi value will surely be recovered as provided by the above method. Furthermore,

for such a particular value Bi, |S−1
Q (Bi)| = 12 will hold. Since for each f ∈ S−1

Q (Bi) around 7.52 faults

occur at Q[f ], as shown at the beginning of section 7.4, around 7.52× 12 = 90.24 tests given by Eq. (7.12)

and the same number of tests given by Eq. (7.13) will be applied to the set of candidates for Ai. According

to our experimental results, such a number of tests is sufficient to discard all the false candidates for Ai.

In particular, an experiment in which Algorithm 3 was executed for all 512 steps i ∈ {1024, . . . 1535} for

10, 000 times, with random HC-128 instantiations, was conducted. On average, in 472.7 out of the 512 steps,

both Ai and Bi values were recovered.

7.4.3 Equations of the form P b
1 [Ai]⊕ P b

1 [Bi]⊕Qb
1[j] = sbi ⊕ ci,b

After the steps given by subsections 7.4.1 and 7.4.2 have been executed, the attack proceeds in 32

phases, each consisting of 3 parts, as presented by the attack overview in section 7.2. In this subsection, the

first part of b-th attack phase is presented.

The first part of b-th phase, in which starting 512 equations are generated, proceeds as follows. In

steps i ∈ {512, . . . 1023}, the keystream output word is generated as (P1[Ai] + P1[Bi])⊕Q1[j] = si where

j = i mod 512. Since Ai and Bi for i ∈ {512, . . . 1023} have been recovered in subsection (7.4.1), focusing
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on the b-th bit yields 512 bits equations of the form

P b
1 [Ai]⊕ P b

1 [Bi]⊕Qb
1[j] = sbi ⊕ ci,b, i = 512, . . . 1023 (7.14)

where ci,b is a known carry corrector which is equal to 1 if there is carry in (P b−1..0
1 [Ai] + P b−1..0

1 [Bi])

and 0 otherwise. In case b ∈ {0, . . . 7} or b ∈ {16, . . . 23}, relying on the knowledge obtained by (7.10)

and (7.11), the system can be extended by adding information Qb
1[w] = aw, w = 0, . . . 499, regarded as

equations. However, for b /∈ {0, . . . 7, 16, . . . 23} such equations are unavailable. Hence, a method to

systematically add more equations to the system (7.14) that works for all b = 0, . . . 31, i.e., that makes the

corresponding system of rank 1024, is necessary. In order to provide a generic treatment for all b values, in

what follows, equations derived from information given by (7.10) and (7.11) will not be utilized.

7.4.4 Recovering bits P b
1 [0], . . . P

b
1 [255] and Qb

1[0], . . . Q
b
1[255]

In the second part of the b-th phase of the attack, the system of equations given by (7.14) is expanded.

Note that in steps 512 ≤ i ≤ 1023, the output is generated by si = (P1[Ai] + P1[Bi]) ⊕ Q1[j], whereas in

steps 1024 ≤ i ≤ 1535, the output is generated by si = (Q1[Ai] + Q1[Bi]) ⊕ P2[j]. The idea is to corrupt

P1[Bi] and Q1[Bi] in the previous two relations and recover P1[Ai] and Q1[Ai] by observing how these

values react to addition of different values. The difference of the corrupted values is controlled by utilizing

the reuse of P1[Bi] and Q1[Bi] over different states of the cipher. The analysis results in the recovery of a

subset of the P b
1 [0], . . . P

b
1 [255] and also a subset of the Qb

1[0], . . . Q
b
1[255] values.

As for recovering P b
1 [0], . . . P

b
1 [255], let 512 ≤ i ≤ 1023 and 268 ≤ Bi ≤ 511. Consider a fault at

position P [f ], so that f ∈ S−1
P (Bi). Using Lemma 6 and (7.7), define δ = sBi

⊕ s′Bi
= P1[Bi] ⊕ P ′

1[Bi].

Assume that for the faulty cipher instance in question, δb = 1. Consider the difference

∆ = si ⊕ s′i = (P1[Ai] + P1[Bi])⊕ (P1[Ai] + P ′
1[Bi]),

and denote by cb and c′b the carry from the b− 1 to b-th bit in the sums P1[Ai] +P1[Bi] and P1[Ai] +P ′
1[Bi],
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respectively. If cb = c′b, then the bit P b[Ai] is recovered as follows

P b
1 [Ai] =







δb+1 ⊕∆b+1, if cb = c′b = 0

δb+1 ⊕∆b+1 ⊕ 1, if cb = c′b = 1

(7.15)

If cb 6= c′b, the bit P b
1 [Bi] is not uniquely determined and will not be recovered.

Algorithm 4: Recovery of P b
1 [Ai], for some i = 512, . . . 1023

INPUT: Step i ∈ {512, . . . 1023}
OUTPUT: Bit P b

1 [Ai], or undef

1: For every faulty keystream, where the fault occurred at P [f ], f ∈ S−1
P (Bi)

2: Calculate δ = sBi
⊕ s′Bi

and ∆ = si ⊕ s′i
3: If P b−1..0

1 [x] + P b−1..0
1 [Bi] < 2b, set cb = 0, else set cb = 1

4: If P b−1..0
1 [x] + P ′b−1..0

1 [Bi] < 2b, set c′b = 0, else set c′b = 1
5: If cb = c′b:
6: Return P b

1 [Ai] calculated according to (7.15)

7: Return undef

To recover P b
1 [Ai], the explained procedure is repeatedly applied using each fault occurring at P [f ],

f ∈ S−1
P (Bi). Let p1 = Prob[δb = 1] and p2 = Prob[cb = c′b], then the probability of success can be lower

bounded as follows:

Prob[P b
1 [Ai] recovery succeeds] ≥

511∑

Bi=256

1

256

(

1− (1− p1p2)
|S−1

P
(Bi)|

)

(7.16)

The values |S−1
P (Bi)| are given by Table 7.4 and Prob[δb = 1] = 1

2
. As for Prob[cb = c′b], it can

be modelled as the probability that there exists a carry at bit b in two random sums [127]. It achieves a

minimum for b = 31 and thus the lower bound for the success probability over possible bit positions is

given by Prob[Recovery of P b
1 [Ai] succeeds] ≥ 0.908.

Now, the probability that for some particular k ∈ {0, . . . 255}, the value P b
1 [k] will not be recovered

in some particular step i is then less than 1 − 1
256

× 0.908. Let Zk = 1 if P b
1 [k] has not been recovered

after applying the algorithm for all steps i = 512, . . . 1023. Otherwise, let Zk = 0. The number of P b
1 [k],
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0 ≤ k ≤ 255 values not recovered can then be estimated as

E(
255∑

k=0

Zk) =
255∑

k=0

E(Zk) ≤ 256× (1− 1

256
× 0.908)512 = 41.511 (7.17)

Thus, the method presented in this section when applied on steps i = 512, . . . 1023, is expected to recover

more than 256 − 41.511 = 214.49 of the P b
1 [0], . . . P

b
1 [255] values. The exact procedure is presented by

Algorithm 4.

As for recovering Qb
1[0], . . . Q

b
1[255], an analogous technique, applied on steps i = 1024, . . . 1535, is

used. The exact procedure is presented by Algorithm 5. The expected number of recovered values is calcu-

lated analogously to (7.16), whereas it needs to be taken into account that Ai and Bi, i ∈ {1024, . . . 1535},

need to be successfully recovered by subsection 7.4.2. The |S−1
Q (Bi)| values, given at Table 7.3, are more

favorable than the corresponding |S−1
P (Bi)| values in (7.16). The expected number of Qb

1[0], . . . Q
b
1[255]

values to be recovered is 218.01.

Algorithm 5: Recovery of Qb
1[Ai], for some i = 1024, . . . 1535

INPUT: Step i ∈ {1024, . . . 1535}
OUTPUT: Bit Qb

1[Ai], or undef

1: If Ai or Bi are unknown, return undef

2: For every faulty keystream, where the fault occurred at Q[f ], Q ∈ S−1
Q (Bi)

3: Calculate δ = s512+Bi
⊕ s′512+Bi

and ∆ = si ⊕ s′i
4: If Qb−1..0

1 [x] +Qb−1..0
1 [Bi] < 2b, set cb = 0, else set cb = 1

5: If Qb−1..0
1 [x] +Q′b−1..0

1 [Bi] < 2b, set c′b = 0, else set c′b = 1
6: If cb = c′b = 0: Return: δb+1 ⊕∆b+1

6: If cb = c′b = 1: Return δb+1 ⊕∆b+1 ⊕ 1
8: Return undef

l 0 1 2 3 4 5 6 7 8 9

|S−1
Q (l)| 2 2 3 4 4 5 6 6 7 8

l 10 11 12 13 14 15 16 17 18 19, . . . 500

|S−1
Q (l)| 9 9 9 10 10 10 11 11 11 12

l 501 502 503 504 505 506 507 508 509 510 511

|S−1
Q (l)| 11 10 10 9 8 8 7 6 6 5 4

Table 7.3: The number of fault positions which allow the recovery of Q1[l]⊕Q′
1[l]
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l 268 269 270 271 272 273 274 275 276 277 278

|S−1
P (l)| 1 2 2 3 4 4 5 6 6 7 8

l 279 280 281 282 283 284 285 286 287 288, . . . 510 511

|S−1
P (l)| 9 9 9 10 10 10 11 11 11 12 11

Table 7.4: The number of fault positions which allow the recovery of P1[l]⊕ P ′
1[l]

7.4.5 Utilizing equations in faulty bits

In this subsection, the system constructed in subsections 7.4.3 and 7.4.4 is expanded further for the

purpose of attaining the full rank of the system. Consider the faulty output word in steps 512, . . . 1023,

s′i = h2(Q
′
1[j ⊟ 12]) ⊕ Q′

1[j]. Evidently, regarding the previous relation as an equation is useless since it

includes faulty inner state bits. Below, a method to transform the faulty inner state bits participating in the

equation to original inner state bits is provided. Again, the reuse of inner state words is utilized.

Let the fault position be Q[f ], where f ∈ S−1
Q (l) and 244 ≤ l ≤ 499. The non-faulty and the faulty

instances of the cipher in step i0 = 512 + l + 12 are

si0 = h2(Q1[l])⊕Q1[l + 12], s′i0 = h2(Q
′
1[l])⊕Q′

1[l + 12] (7.18)

Note that Q7..0
1 [l] = Ai0 and Q23..16

1 [l] = Bi0 − 256 are known according to subsection 7.4.1 and that the

difference Q′
1[l] ⊕ Q1[l] can be calculated as δ = Q′

1[l] ⊕ Q1[l] = s512+l ⊕ s′512+l, according to Lemma 7.

Thus, A′
i0

and B′
i0

can be recovered as

A′
i0

= Q7..0
1 [l]⊕ δ7..0, B′

i0
= Q23..16[l]⊕ δ23..16 + 256 (7.19)

So, the second equation in line (7.18), considering only bit b, can be rewritten as

s
′b
i0
⊕ ci0,b = P b

1 [A
′
i0
]⊕ P b

1 [B
′
i0
]⊕Q

′b
1 [l + 12] (7.20)

where A′
i0

and B′
i0

are known and ci0,b is an indicator of the carry in P b−1..0
1 [A′

i0
] + P b−1..0

1 [B′
i0
] which is

also known due to the assumption that bits b − 1, . . . 0 of all the P and Q words are known. Finally, to

add equation (7.20) to the system constructed in the previous sections, the variable Q
′b
1 [l + 12] needs to be
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eliminated. Once again, to reexpress Q
′b
1 [l + 12], the idea is to wait for this value to be reused once more

during steps 1024, . . . 1535.

Due to the assumed lower bound 244 ≤ l, it follows that l + 12 ≥ 256. Hence, it is possible for

the Bi index in some step 1024 ≤ i ≤ 1535 to take the value l + 12 which was used in step i0. If such

a step exists, denote it by i1. Also, assume that Ai1 < f − 1, so that Q1[Ai1 ] = Q′
1[Ai1 ]. Finally, assume

that both Ai1 and Bi1 have been successfully recovered by the procedure given in subsection 7.4.2. Then,

if j1 = i1 mod 512, the non-faulty and faulty keystream words are si1 = (Q1[Ai1 ] + Q1[Bi1 ]) ⊕ P2[j1] and

s′i1 = (Q1[Ai1 ] +Q′
1[Bi1 ])⊕ P2[j1] and the difference can be computed as

si1 ⊕ s′i1 = (Q1[Ai1 ] +Q1[Bi1 ])⊕ (Q1[Ai1 ] +Q′
1[Bi1 ]) (7.21)

Extracting bit b from (7.21) and cancelling out Q1[Ai1 ] yields

sbi1 ⊕ s
′b
i1
= Qb

1[Bi1 ]⊕ ci1,b ⊕Q
′b
1 [Bi1 ]⊕ c′i1,b (7.22)

where ci1,b and c′i1,b are carry indicators for Qb−1..0
1 [Ai1 ] + Qb−1..0

1 [Bi1 ] and Qb−1..0
1 [Ai1 ] + Q

′b−1..0
1 [Bi1 ],

respectively. The carry indicator ci1,b is calculated trivially and as for c′i1,b, it is necessary to find Q
′b−1..0
1 [Bi1 ].

For that, it suffices to focus on the bits b− 1, . . . 0 in equation (7.21), since all values except Q
′b−1..0
1 [Bi1 ] are

known and the required value can be calculated as

Q
′b−1..0
1 [Bi1]=((sb−1..0

i1
⊕ s

′b−1..0
i1

)⊕(Qb−1..0
1 [Ai1]+Qb−1..0

1 [Bi1]))−Qb−1..0
1 [Ai1] (7.23)

After finding ci1,b and c′i1,b, from (7.22) and since Bi1 = l + 12, Q′
1[l + 12] can be expressed in terms of Q1

bits as

Q
′b
1 [l + 12] = sbi1 ⊕ s

′b
i1
⊕Qb

1[Bi1 ]⊕ ci1,b ⊕ c′i1,b (7.24)

Substituting (7.24) in (7.20) yields

s
′b
i0
⊕ ci0,b = P b

1 [A
′
i0
]⊕ P b

1 [B
′
i0
]⊕ sbi1 ⊕ s

′b
i1
⊕Qb

1[Bi1 ]⊕ ci1,b ⊕ c′i1,b (7.25)

which is added to the system of equations without introducing any new variables. The described procedure
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is summarized by Algorithm 6.

Algorithm 6: Add equations by expressing the faulty with non-faulty bits

INPUT: Faulty keystream for a fault occuring at Q[f ], f ∈ S−1
P (l), 244 ≤ l ≤ 499

OUTPUT: An equation of form (7.25)

1: Let δ = s512+l ⊕ s′512+l and i0 = 512 + l + 12
2: Calculate A′

i0
and B′

i0
according to (7.19)

3: If P b−1..0
1 [A′

i0
] + P b−1..0

1 [B′
i0
] < 2b set ci0,b = 0, else ci0,b = 1

4: For 1024 ≤ i1 ≤ 1535 such that Ai0 and Bi0 are known

5: If Bi0 = l + 12 and Ai0 < f − 1
6: If Qb−1..0

1 [Ai1 ] +Qb−1..0
1 [Bi1 ] < 2b, let ci1,b = 0, else ci1,b = 1

7: Calculate Q
′b−1..0
1 [Bi1 ] according to (7.23)

8: If Qb−1..0
1 [Ai1 ] +Q

′b−1..0
1 [Bi1 ] < 2b, let c′i1,b = 0, else c′i1,b = 1

9: Return equation (7.25)

Let N denote the number of equations generated by repeating the procedure above for all f ∈ S−1
Q (l)

and 244 ≤ l ≤ 499. To estimate E(N), let ρ(l + 12) be the step number i, 1024 ≤ i ≤ 1535, for which

Bi = l + 12, if such a step exists. Also, let I denote the indicator function, returning 1 if the condition

in question is true and returning 0 otherwise. Finally, let FLTQ[f ] be the number of faults that occurr at

position Q[f ]. Then

N =
499∑

l=244

∑

f∈S−1

Q
(l)

FLTQ[f ] × I[ρ(l + 12) exists]× I[Aρ(l+12) < f − 1]

× I[Aρ(l+12), Bρ(l+12) known]

Recall that E(FLTQ[f ]) = 7.52. Also, E(I[ρ(l+12) exists]) ≈ 1−(255
256

)512. If f > 257, E(I[Aρ(l+12) < f−

1]) = 1 and otherwise f−2
256

. Finally, according to subsection 7.4.2, E(I[Aρ(l+12), Bρ(l+12) known]) ≥ 472.7
512

.

Substituting the values above and using additivity of E(·) yields that E(N) ≥ 18380.1.

7.5 Attack complexity and experimental results

Adding the number of equations generated by the algorithms presented in subsections 7.4.3, 7.4.4

and 7.4.5 gives a lower bound of 512 + 214.49 + 218.01 + 18380.1 = 19324.6 equations expected to be in

the final system for bits b ∈ {0, . . . 30}. The correctness of the system and the uniqueness of the solution

have been verified experimentally as follows. For 100 times HC-128 was randomly initialized and the faults

have been simulated as specified by the attack. The procedures specified by by subsections 7.4.3, 7.4.4
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and 7.4.5 have been executed and the rank of the resulting system of equations for bits b ∈ {0, . . . 30}

was verified to be 1024 in all the 100 times. As for bit b = 31, the procedures from subsection 7.4.4 are

not applicable, leaving out the system to be generated only by subsections 7.4.3 and 7.4.5, yielding about

512 + 18380.1 = 18892.1 equations. Again, throughout the 100 experiments, the rank of resulting system

for bit b = 31 was 1022 each time. Thus, to yield a complete HC-128 inner state, the missing two bits need

to be guessed. The correctness of the guessed bits is easily verified by running the cipher and comparing the

resulting key stream with the observed one. As for the attack complexity, around 7698.4 faults at random

inner state words are required, as given by the beginning of section 7.4. The most expensive computational

factor in the attack is solving the linear system of equations in 1024 bit variables for 32 times.

7.6 Conclusion

In this chapter, a DFA attack on HC-128 was presented. The adopted attack model assumes that the

attacker is able to fault a random word of the inner state of the cipher but cannot control its exact location

nor its new faulted value. The attack operates by constructing 32 systems of linear equations over Z2, each

of 1024 bit variables representing the inner state values. It also utilizes what we called the reuse of inner

state words in different states of the cipher in order to facilitate the differential fault analysis.
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8

Differential fault analysis of Rabbit

After passing all three phases of the eStream candidate elimination process, Rabbit [27] (also see

RFC 4503) has become a member of profile 1 eSTREAM portfolio. While originally designed with high

software performance in mind, Rabbit turns out to be also very fast and compact in hardware. Fully op-

timized software implementations achieve an encryption speed of up to 3.7 clock cycles per byte (CPB)

on a Pentium 3, and of 9.7 CPB on an ARM7. It uses a 128-bit secret key, 64-bit IV and generates 128

pseudo-random bits as keystream output at each iteration. The size of the secret internal state amounts to

513 bits, consisting of two sets of 8 32-bit words and one additional 1-bit value.

In this chapter, we present a practical fault analysis attack on Rabbit. The fault model in which

we analyze the cipher is the one in which the attacker is assumed to be able to fault a random bit of the

internal state of the cipher but cannot control the exact location of injected faults. Our attack requires

around 128 − 256 faults, precomputed table of size 241.6 bytes and recovers the complete internal state of

Rabbit in about 238 steps.

The security of Rabbit has been thoroughly investigated in the series of white papers published by

the crypto lab at Cryptico A/S. These papers include analysis of the key setup function [39], analysis of

IV-setup [42], mod n cryptanalysis [40], algebraic cryptanalysis [38] and periodic properties [41]. Also, a

distinguishing attack requiring 2247 128-bit samples was reported in [9]. The bias utilized in this attack was

resulting from the bias in the Rabbit core function where it was shown that images of the Rabbit core func-

tion, g, have significantly less zeros than ones at each offset and this was used to show that there exists a bias

in the least significant bit of certain keystream subblocks. This work was extended in [94], where the prob-

ability distribution of several keystream bits together was calculated by means of Fast Fourier Transform,
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using the techniques described in [97]. The complexity of the latter attack is 2158. The authors also pre-

sented an attack in which the 251.5 instantiations of the cipher are analyzed based on the first three keystream

output blocks of each instantiation. The additional assumption is that certain differences expressed in terms

of XOR among these 251.5 internal states are known. This attack recovers all 251.5 keys and requires 232

precomputation steps, 232 memory, and 297.5 steps. According to the authors, the attack is given under an

unusual cryptanalytic assumption. This attack was considered the first known key recovery attack on Rabbit.

The fault model is the one in which an attacker is assumed to be able to cause a bit-flip at a random

location in the internal state of the cipher. However, the exact position of the flipped bit is unknown to the

attacker. The attacker is also assumed to be able reinitialize the cipher sufficient amount of times, iterate

and obtain keystream words. The main idea of the attack is to gain information on the input value of the g

function based on its input-output differences obtained during fault analysis.

8.1 Fault analysis

Cryptanalytic attacks can be broadly classified into two classes. In the first class of attacks, the

attacker tries to exploit any weakness in the underlying mathematical structure of the cipher. This type

includes, for example, differential cryptanalysis, linear cryptanalysis and algebraic attacks. The second

class of attacks are implementation dependent attacks, which include side channel attacks, such as timing

analysis [83] and power analysis [84], and fault analysis attacks. In fault analysis attacks [30], the attacker

applies some kind of physical influence on the internal state of the cryptosystem, such as ionizing radiation

which flips random bits in devices’ memory. By examining the results of cryptographic operations under

such faults, it is often possible to deduce information about the secret key or the secret internal state of the

cipher.

Fault attacks were first introduced by Boneh et al. [30] in 1996 where they described attacks that

targeted the RSA public key cryptosystem by exploiting a faulty Chinese remainder theorem computation

to factor the modulus n. Subsequently, fault analysis attacks were extended to symmetric systems such as

DES [19] and later to AES [48] and other primitives. Fault analysis attacks became a more realistic serious

threat after cheap and low-tech methods of applying faults were presented (e.g., [6, 126]).

Hoch and Shamir [58] showed that fault analysis attacks present a powerful tool against stream

ciphers as well. Stream ciphers based on LFSRs, LILI-128 and SOBER-t32 as well as RC4 were shown to be
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insecure in a fault analysis model in which the attacker does not have the ability to choose the exact location

of the induced fault. In the case of RC4, the key recovery attack requires 216 faults and 226 keystream words.

In [17], RC4 was assessed using a different fault model in which the attacker may specify the location at

which the fault is induced but can not specify the value of injected faults. The attack requires 216 induced

faults. Another more advanced fault analysis attack on RC4 which requires 210 faults was also introduced

in the same paper.

Hojsı́k and Rudolf [59] presented an attack on another eSTREAM cipher, Trivium [33]. The attack

recovers the secret internal state using 42 fault injections. The fault model used is the one in which the

attacker is able to flip a random bit in the internal state of Trivium without being able to exactly control

its location. This work was subsequently improved in [60], providing an attack that recovers Trivium inner

state with only 3.2 fault injections on average. The authors used different cipher representation and were

able to reduce high-degree equations to linear ones, concluding that a change in the way by which the cipher

is represented may result in a better attack.

In this chapter, we use the same model as the one used in fault analysis of Trivium [59, 60]. The

attacker is assumed to be able to flip a random bit in the internal state of the cipher without being able to

exactly control its location. In other words, the exact location of induced fault is assumed to be unknown to

the attacker.

The rest of the chapter is organized as follows. The Rabbit specifications that are relevant to our

attack are briefly reviewed in the next section. The main idea behind our attack is presented in section 8.3.1.

The procedure used to determine the location of induced faults is described in section 8.3.2 and the complete

attack is described in section 8.3.3. Finally, the attack success probability and its associated complexity are

analyzed in section 8.4.

8.2 Specification of Rabbit stream cipher

Internal state of Rabbit consists of 513 bits. It includes: eight 32-bit values: x0,t, · · · x7,t, eight 32-bit

counters, c0,t, . . . c7,t, and one additional bit φ7,t, used in the counter update. When the cipher steps from

time t to time t+ 1, the counter is updated independently of x values, by adding known ai values, corrected

122



with carries φ as follows:

c0,t+1 = c0,t + a0 + φ7,t

cj,t+1 = cj,t + aj + φj−1,t+1, 1 ≤ j ≤ 7

where

φj,t+1 =







1− 1Z/232Z(c0,t + a0 + φ7,t) if j = 0

1− 1Z/232Z(cj,t + aj + φj−1,t+1) if j > 0

and a0 = a3 = a6 = 4D34D34D, a1 = a4 = a7 = D34D34D3, a2 = a5 = 34D34D34D. Function

1Z/232Z is defined by

1Z/232Z(x) =







0 if x ≥ 232

1 if x < 232

The x values are updated by

x0,t+1 = g0,t + (g7,t <<< 16) + (g6,t <<< 16)

x1,t+1 = g1,t + (g0,t <<< 8) + g7,t

x2,t+1 = g2,t + (g1,t <<< 16) + (g0,t <<< 16)

x3,t+1 = g3,t + (g2,t <<< 8) + g1,t

x4,t+1 = g4,t + (g3,t <<< 16) + (g2,t <<< 16)

x5,t+1 = g5,t + (g4,t <<< 8) + g3,t

x6,t+1 = g6,t + (g5,t <<< 16) + (g4,t <<< 16)

x7,t+1 = g7,t + (g6,t <<< 8) + g5,t

(8.1)

where
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Figure 8.1: Simplified view of the state update function of Rabbit, rotations omitted

gj,t = (xj,t + cj,t+1)
2 ⊕ [(xj,t + cj,t+1)

2 >> 32] (8.2)

The 128-bit keystream output block s
[127..0]
t+1 , is constructed as follows:

s
[15..0]
t+1 = x

[15..0]
0,t+1 ⊕ x

[31..16]
5,t+1 , s

[31..16]
t+1 = x

[31..16]
0,t+1 ⊕ x

[15..0]
3,t+1

s
[47..32]
t+1 = x

[15..0]
2,t+1 ⊕ x

[31..16]
7,t+1 , s

[63..48]
t+1 = x

[31..16]
2,t+1 ⊕ x

[15..0]
5,t+1

s
[79..64]
t+1 = x

[15..0]
4,t+1 ⊕ x

[31..16]
1,t+1 , s

[95..80]
t+1 = x

[31..16]
4,t+1 ⊕ x

[15..0]
7,t+1

s
[111..96]
t+1 = x

[15..0]
6,t+1 ⊕ x

[31..16]
3,t+1 , s

[127..112]
t+1 = x

[31..16]
6,t+1 ⊕ x

[15..0]
1,t+1

(8.3)

Figure 8.1 shows a simplified view the Rabbit state update function. The description of the key setup scheme

of Rabbit is omitted since it does not play a role in the attack outlined in this chapter.

8.3 Differential fault analysis attack

Throughout the rest of this chapter, faulty words will be denoted same as non-faulty ones, except that

a “′” sign will be added. This way, faulty Rabbit internal state words at time t will be denoted by x′
i,t, c

′
j,t,

φ′
7,t. The whole Rabbit internal state at time t, consisting of [(xi,t)i=0...7, (ci,t)i=0...7, φ7,t], will be denoted by

St. Accordingly, its faulty counterpart will be denoted by S ′
t. We will also use “ + ” to denote addition mod

32, unless otherwise stated.
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Faulty keystream output at step t will be denoted by s
′

t. The i-th 16-bit segment of word s will be

denoted by s(i). For example s
(1)
t denotes s[31..16], i.e., bits 16 to 31 of word st.

According to our fault analysis model, the attacker has the power to flip a bit within the internal state

of the cipher, that is xi,t, ci,t, i = 0, . . . 7, φ7,t but the attacker can not control or know the exact location of

the induced fault (both at the bit and at the word level).

8.3.1 The Main Idea

Before stating the complete attack procedure, we provide a motivational example that illustrates

the idea behind the attack. Let states of Rabbit at step t, St and S ′
t, differ only in i-th bit of word x0,t.

Consequently, x′
0,t + c′0,t+1 = x0,t + c0,t+1 + σ2i, for some unknown σ ∈ {−1,+1} and i ∈ {0, . . . 31}.

Then, with high probability, g′0,t 6= g0,t and g′i,t = gi,t for i = 1..7. This implies that x′
i,t+1 6= xi,t+1, for

i = 0, 1, 2 and x′
i,t+1 = xi,t+1 for i = 3..7. In particular, since x

′[31..16]
5,t+1 = x

[31..16]
5,t+1 and x

′[15..0]
3,t+1 = x

′[15..0]
3,t+1 , then

using the first line in Eq. (8.3), the following holds

s
′[15..0]
t+1 = x

′[15..0]
0,t+1 ⊕ x

[31..16]
5,t+1 s

[15..0]
t+1 = x

[15..0]
0,t+1 ⊕ x

[31..16]
5,t+1

s
′[31..16]
t+1 = x

′[31..16]
0,t+1 ⊕ x

[15..0]
3,t+1 s

[31..16]
t+1 = x

[31..16]
0,t+1 ⊕ x

[15..0]
3,t+1

Thus guessing x
[31..16]
5,t+1 and x

[15..0]
3,t+1 makes a candidate for values x0,t+1 and x′

0,t+1 and consequently, using Eq.

(8.1), a candidate for

x0,t+1 − x′
0,t+1 =

(g0,t + g7,t <<< 16 + g6,t <<< 16)− (g′0,t + g′7,t <<< 16 + g′6,t <<< 16) = g′0,t − g′0,t

Since inputs to g0,t and g′0,t differ by ±2i for some unknown i = 0, . . . 31, this constraint can be described

by a set of g function additive differentials {(±2i, δ)|i = 0, . . . 31}.

Suppose now the attacker obtains two more faulted keystream words s′′t+1 and s′′′t+1, derived from

states S ′′
t and S ′′′

t differing from St on bits j and k of word x0,t, where k 6= j, k 6= i, j 6= i. Since in all

three cases, values x
[31..16]
5,t+1 and x

[15..0]
3,t+1 do not change, using st+1, s

′
t+1, s

′′
t+1 and s′′′t+1 three sets of differentials

{(±2i, δ1)|i = 0, . . . 31}, {(±2i, δ2)|i = 0, . . . 31} and {(±2i, δ3)|i = 0, . . . 31} are obtained using the same
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guess in the way described above. As will be shown later, the probability that there exists an input x for

the g function such that it satisfies all three sets of differentials at once, i.e., such that there exist mutually

different i1, i2 and i3 such that

g(x)− g(x± 2i1) = δ1,

g(x)− g(x± 2i2) = δ2,

g(x)− g(x± 2i3) = δ3

is small if the guess above is not correct. Thus, the attacker is able to discard wrong guesses for x
[31..16]
5,t+1 and

x
[15..0]
3,t+1 . Also, if the guess is a correct one, the attacker obtains candidates for g input value x0,t + c0,t+1. In

the following we provide a full internal state recovery algorithm.

8.3.2 Determining the position of the fault

In the attack proposed in this chapter, the first step after inducing a fault is to make restrictions on

the position where the fault took place. The induced bit flipping can happen at one of the bits of words

x0,t, . . . x7,t, c0,t, . . . c7,t as well as at the 1-bit value φ7,t.

In the following we provide a tool for deducing important information on the location at which the

fault occurred. Based on difference among faulty and non-faulty keystreams, information on the difference

among internal states St and S ′
t is deduced. More precisely, only keystream words st and s′t will be used and

according to the fault model, it will be assumed that internal states St and S ′
t differ exactly on one bit.

To express these differences in a convenient way, we introduce the function dST , describing dif-

ferences on the internal states and the function dKS , describing differences among faulty and non-faulty

keystream words. Let

dST (S, S
′) =







0, if a fault occured either at x0,t, c0,t or φ7,t

1 ≤ i ≤ 7, if a fault accured either at xi,t or ci,t

The function dST is defined for every pair of states (S, S ′) that differ exactly on one bit. If s and s′ are two

128-bit keystream words at some step, then we define
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dKS(s, s
′) =







0, s(5) = s′(5), s(6) = s′(6) and s(i) 6= s′(i) for i 6= 5, 6

1, s(0) = s′(0), s(5) = s′(5) and s(i) 6= s′(i) for i 6= 0, 5

2, s(0) = s′(0), s(7) = s′(7) and s(i) 6= s′(i) for i 6= 0, 7

3, s(2) = s′(2), s(7) = s′(7) and s(i) 6= s′(i) for i 6= 2, 7

4, s(1) = s′(1), s(2) = s′(2) and s(i) 6= s′(i) for i 6= 1, 2

5, s(1) = s′(1), s(4) = s′(4) and s(i) 6= s′(i) for i 6= 1, 4

6, s(3) = s′(3), s(4) = s′(4) and s(i) 6= s′(i) for i 6= 3, 4

7, s(3) = s′(3), s(6) = s′(6) and s(i) 6= s′(i) for i 6= 3, 6

If a pair of 128 bit (s, s′) words does not satisfy any of the conditions proposed by the right-hand side

of the equation above, function dKS(s, s
′) is undefined.

To understand the motivation behind the above definition, assume that the injected fault affected the

input to the function g0,t. From Figure 8.1, it is clear that such fault directly affects the computation of x0,t+1,

x1,t+1 and x2,t+1. From Eq. (8.3), it follows that these three terms also directly affect the computation of all

words on the output stream except s′
[95..80]
t+1 = s′(5) and s′

[111..96]
t+1 = s′(6) which explains the first line in the

above definition. A similar argument applies to to rest of entries in the definition of dKS(s, s
′).

The criterion for determining the position of the fault dST (St, S
′
t) based on the first keystream word

can now be simply stated as follows:

- If dKS(st+1, s
′
t+1) is defined, put dST (St, S

′
t) = dKS(st+1, s

′
t+1)

- Otherwise, leave dST (St, S
′
t) undefined

During the attack, when after a fault dST (St, S
′
t) value is undefined, the fault will be discarded and the

attacker proceeds by inducing another fault.

The successfulness of this criterion can be measured by two types of errors, pincorr and pundef . Error

pincorr is defined as the probability that the criterion returns a wrong dST (S, S
′) value, while error pundef

is be defined as the probability that the criterion will leave dST (S, S
′) undefined. The probability that the
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criterion returns correct dST (S, S
′) value will be denoted as pcorr.

Estimating pcorr, pincorr and pundef The estimates for the above defined probabilities are derived analyti-

cally. Firstly, we estimate the probability that a fault in one of the ci,t, i = 0..6 values propagates to ci+1,t+1

and not only to ci,t+1 during the update step, via carry transfer mechanism implemented by auxiliary φi,t+1

value. Suppose the fault occurred at position ci,t, the probability that ci,t + ai + φi−1,t+1 will have a carry at

32-nd bit place is approximately equal to

pcr ≈
1

32

32∑

i=1

1

2i
= 0.03125.

This probability is given by the event that that addition of ±2i, i = 0..31 to a random 32-bit number

x changes value of 1Z/232Z(x). While the ai values in the actual cipher are fixed (ai ∈ {4D34D34D,

D34D34D3,34D34D34D}), our experimental results confirmed the accuracy of the above approximation.

Then, values pcorr, pincorr, pundef are estimated in what follows. Suppose the a random fault was

induced in the internal state of the cipher. Then, the position of the bit-flip can be at

- xi,t, i ∈ {0, . . . 7} with probability 256
513

. In this case, our criterion will return a correct dST (S, S
′) value

if g(xi,t + ci,t+1) 6= g(x′
i,t + ci,t+1), i.e., with probability 232−1

232
. In case that is not true, the criterion

leaves dST (S, S
′) undefined.

- φ7,t with probability 1
513

. In this case, c′0,t+1 6= c0,t+1 with probability 1. Let z ∈ {0, . . . 7} such that

c′j,t+1 6= cj,t+1 for j = 0, ..z and c′j,t+1 = cj,t+1 for j = z + 1, ..7. If

- z = 0, which happens with probability 232−1
232

, and g(x0,t+c0,t+1) 6= g(x′
0,t+c0,t+1), for which the

probability is 232−1
232

, then our criterion returns a correct value. If, however, in this case g(x0,t +

c0,t+1) = g(x′
0,t + c0,t+1) which happens with probability 1

232
, the criterion leaves dST (S, S

′)

undefined.

- z = 1 which happens with probability 1
232

. In this case, we consider only the case g(xi,t +

ci,t+1) 6= g(x′
i,t + ci,t+1), i = 0, 1, probability being (2

32−1
232

)3 and in this case again our criterion

leaves dST (S, S
′) undefined. Other possibilities within the case z = 1 are highly improbable and

hence do not have any practical implications on the success probability of our attack.

- z ≥ 2 occurs with probability ( 1
232

)2× 232−1
232

. We do not go into further consideration since these
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events are highly improbable.

- ci,t, i ∈ {0, . . . 7}, with probability 256
513

. Again, let z ∈ {0, . . . 7} such that c′j,t+1 6= cj,t+1 for j =

i, . . . i+ z and c′j,t+1 = cj,t+1 for j = i+ z + 1, ..7. If

- z = 0, which happens with probability 1 − pcr if i ≤ 6 and with probability 1 if i = 7, the

same analysis as with a fault on xi,t values applies. Namely, the correct dST (S, S
′) value will be

returned with probability 232−1
232

and otherwise criterion value in question will be left undefined

- z = 1, which happens with probability pcr × 232−1
232

if i ≤ 5, with probability pcr if i = 6

and with probability 0 if i = 7, the following analysis applies. If values g(xj,t + cj,t+1) and

g(xj+1,t+cj+1,t+1) are both equal to, or both different than g(x′
j,t+cj,t+1) and g(x′

j+1,t+cj+1,t+1),

respectively, the criterion leaves dST (S, S
′) undefined and the probability for this to happen is

(2
32−1
232

)2 + ( 1
232

)2. However, if g(xj,t + cj,t+1) = g(xj,t + c′j,t+1) and g(xj+1,t + cj+1,t+1) 6=

g(xj+1,t + c′j+1,t+1) the criterion returns the wrong value as an answer. The probability for this

to happen is 1
232

× 232−1
232

. In case g(xj,t + cj,t+1) 6= g(xj,t + c′j,t+1) and g(xj+1,t + cj+1,t+1) =

g(xj+1,t+c′j+1,t+1), which occurs with the same probability, the criterion returns the right answer.

- z = 2, which happens with probability pcr × 1
232

× 232−1
232

if i ≤ 4, with probability pcr × 1
232

if

i = 5 and with probability 0 if i ≥ 6, the following consideration applies. In the case where all

three g values are changed, dST (S, S
′) value is left undefined and the probability for this case is

(2
32−1
232

)3. Other cases are highly improbable and we do not consider them.

- z ≥ 3 occurs with probability pcr × 1
232

× 232−1
232

. We do not go into consideration of further cases

since their corresponding probabilities are negligible.

Using the probabilities from the discussion above, but ignoring parts that are less than 1
232

, provides a

practically accurate estimate for the probability that the criterion will return a correct dST (S, S
′) value as

follows:

pcorr ≈
256

513

232 − 1

232
+

1

513
(
232 − 1

232
)2 +

7× 32

513
(1− pcr)

232 − 1

232
+

32

513
(1× 232 − 1

232
) = 0.98635
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Again, ignoring terms that are less than 1
232

, probability of dST (S, S
′) being left undefined is given by

pundef ≈ 6× 32

513
× pcr ×

232 − 1

232
((
232 − 1

232
)2 + (

1

232
)2) +

32

513
× pcr × ((

232 − 1

232
)2 + (

1

232
)2) = 0.013645

Finally, ignoring terms less than 1
232

yields probability for the criterion to return a false dST (S, S
′) value is

pincorr ≈ 0.

To confirm the previous theoretical estimates pcorr ≈ 0.98635, pundef ≈ 0.013645 and pincorr ≈ 0,

the following experiment was conducted. A Rabbit internal state was randomly initialized and a random

fault was induced. The criterion was applied and it was noted which of the three options happened: correct

position of the fault returned, incorrect position of the fault returned or position of the fault left undefined.

After repeating the experiment for 106 times, the probabilities were obtained as pcorr = 0.98408, pundef =

0.015924, and pincorr = 0. Hence, given, say 100 faults, correct position will be determined for around 98

faults and 2 faults will be discarded. For no faults the incorrect position will be returned. Thus, it can be

concluded that the proposed criterion represents reliable means for determining the position of faults.

8.3.3 The complete attack

Before stating the complete attack we introduce following definitions. Throughout the following

three definitions, let k ∈ {0, 1, 2} and σ ∈ {−1,+1} be fixed values and let x be restricted to set Z232 .

By (σ2i, δ)k we denote a g function additive differential where the input difference is σ2i and the output

difference δ, taken after rotating g function output for 8× k bits.

Definition 3 An x value will be considered to satisfy differential (σ2i, δ)k if

[g(x) <<< (8k)]− [g(x+ σ2i) <<< (8k)] = δ

Definition 4 A set of differentials

(±2i, δ)k|31i=0 := {(σ2i, δ)k|i = 0..31, σ = −1,+1}

130



will be called a generalized differential. An x value will be considered to satisfy generalized differential

(±2i, δ)k|31i=0 if it satisfies any of the differentials contained in the set.

Definition 5 A set of generalized differentials

∆ = {(±2i, δ1)k|31i=0, (±2i, δ2)k|31i=0, . . . (±2i, δn)k|31i=0)}

will be considered satisfiable if at least one x value satisfies them all, i.e., if there exists an x value as well

as distinct values d1, . . . dn, chosen from the set {±2i|i = 0..31}, such that

[g(x) <<< 8k]− [g(x+ dj) <<< 8k] = δj, j = 1, . . . n

For such an x, we shall say that it satisfies set ∆.

The following procedure, flt init(t) induces a sufficient number of faults at the internal state of

the cipher at step t and arranges faulty keystream words to appropriate sets, using the mechanism described

in Section 8.3.2.

- Let FLTSi = Ø, i = 0..7.

- While |FLTSi| < 3 for any i = 0..7

- Reinitialize the cipher, forward to step t and induce a fault. Obtain s′t+1. If dKS(s
′
t+1, st+1) is

defined, let i = dKS(s
′
t+1, st+1) and add s′t+1 to FLTSi.

The procedure that follows, derive inf(i,k), utilizes information in FLTSi to deduce the set of pos-

sible values for xi,t + ci,t+1. Parameter k can take values 0,1 and 2 and it determines the way xi,t + ci,t+1

value will be recovered. Namely, as will be seen from the algorithm, there are three different ways to

derive candidates for this value and the logic of these three ways is encoded through values of αi,k, βi,k,

k = 0, 1, 2 in Table 8.1. The values for αi,k, βi,k have been derived utilizing Eq. (8.3). For exam-

ple, running derive inf(0,0), returns the set of candidates for x0,t + c0,t+1 by working on values

s
(0)
t+1 and s

(1)
t+1, i.e., guessing values x

[15..0]
3,t+1 and x

[31..16]
5,t+1 , creating the set of generalized differentials using

g0,t − g′0,t = x0,t+1 − x′
0,t+1 and finally finding g-input values that satisfy it. On the other hand running

derive inf(0,1) aims to recover the same value x0,t + c0,t+1, but in a different way. Namely, in this
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case, the procedure operates on values s
(4)
t+1 and s

(7)
t+1, i.e., guesses x

[15..0]
4,t+1 and x

[31..16]
6,t+1 , derives the general-

ized differential set by g0,t <<< 8 − g′0,t <<< 8 = x2,t+1 − x′
2,t+1 and then searches for g-input values that

satisfy the set. The objective of obtaining the same value in three different ways is to take the intersection

afterwards and hence minimize redundant candidates. Also, in the first case, a difference with no rotation

was obtained and in the second, a difference after 8-bit rotations was found. The table is encoded so that

whenever k = 0, k = 1 and k = 2, the number of rotations in the obtained difference will be 0, 8 and 16,

respectively. This justifies the same value k present as index both for α, β and for generalized differentials

themselves from ∆k
i (A) sets in the procedure below.

The complete procedure derive inf(i,k) follows:

- Let Sat(∆k
i ) = Ø

- For A = 0, . . . 232 − 1

- Form the set of generalized differentials as follows:

∆k
i (A) = { (±2l, ([s(αi,k)||s(βi,k)]⊕ A)− ([s′(αi,k)||s′(βi,k)]⊕ A))k|31l=0

| s′ ∈ FLTSi }

- Let Sat(∆k
i ) = Sat(∆k

i ) ∪ Sat(∆k
i (A)), where Sat(∆k

i (A)) is the set of x values that satisfy

∆k
i (A)

where αi,k, βi,k, i = 0..7, k = 0, 1, 2 are defined by Table 8.1. The Derivation of Sat(∆k
i (A)) sets is

done using precomputation, as explained in Section 8.4.2. To recover g input values at step t, i.e., values

xi,t + ci,t+1, the procedure g inp(t) can be invoked, as follows:

- flt init(t)

- For i = 0, . . . 7

- Call derive inf(i,0), derive inf(i,1) and derive inf(i,2) to find Sat(∆0
i ),

Sat(∆1
i ) and Sat(∆2

i )

- Cand(xi,t + ci,t+1) = Sat(∆0
i ) ∩ Sat(∆1

i ) ∩ Sat(∆2
i )
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i 0 1 2 3 4 5 6 7

αi,0 1 4 3 6 5 0 7 2

βi,0 0 7 2 1 4 3 6 5

αi,1 4 3 6 5 0 7 2 1

βi,1 7 2 1 4 3 6 5 0

αi,2 3 6 5 0 7 2 1 4

βi,2 2 1 4 3 6 5 0 7

Table 8.1: α and β index values used during the attack

In the next section it will be shown that the probability that there will be more than one candidate for

xi,t + ci,t+1, i.e., that there will be more than 1 elements in the set Cand(xi,t + ci,t+1), is small.

Finally, the complete internal state at time t = 1 can be recovered by invoking the previous procedure

for t = 0 which yields values xi,0 + ci,1, i = 0..7. This in turn yields gi,0, i = 0..7 values, which yield xi,1,

i = 0..7, by Eq. 8.1. Invoking the previous procedure once again for t = 1 yields values xi,1 + ci,2, i = 0..7.

Subtracting according values reveals ci,2, i = 0..7. Now ci,1 values can be recovered by reversing the counter

one step backward, according to the specification of counter update step. Whether φ7,1 = 0 or φ7,1 = 1 is

found by mere trying both options and comparing the resulting keystream words.

8.4 Attack success probability and complexity

8.4.1 Success Probability

In this section we show that the procedure from previous section determines the internal state uniquely.

More precisely, it will be shown that |Cand(xi,t + ci,t+1)| = 1, for any i = 0 . . . 7 and t ≥ 0 with high

probability. This will be done by modelling g as a random function and then showing that if differences

([s(αi,k)||s(βi,k)] ⊕ A) - ([s′(αi,k)||s′(βi,k)] ⊕ A) are chosen uniformly randomly, i.e., not corresponding to the

actual values produced by the attack procedure, this set of candidates will have 0 elements with high prob-

ability. Then, this probability can be taken as probability that |Cand(xi,t + ci,t+1)| = 1 since following the

procedure with actual differences and using the real g function guarantees existence of one correct candi-

date for xi,t + ci,t+1. According to the way complete internal state is recovered from g input values at times
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t = 0 and t = 1, as described by the last paragraph of the previous section, it is clear that from uniqueness

and correctness of g input values, uniqueness and correctness of the recovered internal state at step t = 1

follows.

Since during the algorithm, Cand(xi,t+ci,t+1) is derived as the intersection of Sat(∆0
i ), Sat(∆

1
i ) and

Sat(∆2
i ), the probability distribution of the number of elements in these three sets is first examined. Assume

g is a randomly chosen function and differences (s(αi,k)|s(βi,k))⊕A−(s′(αi,k)|s′(βi,k))⊕A are chosen randomly

uniformly. Sets Sat(∆k
i ), k = 0, 1, 2 are formed as follows, as described by derive inf(i,k):

Sat(∆k
i ) = Sat(∆k

i (0)) ∪ . . . ∪ Sat(∆k
i (2

32 − 1))

For a given A, consider a generalized differential from ∆k
i (A). The probability that random 32-bit x value

will satisfy it is 63/232. Since each set of generalized differentials ∆k
i (A) contains at least three generalized

differentials

P [ x satisfies ∆k
i (A) ] ≤ (63/232)3 = 2−78.068

The probability that among 232 possible x values there exists at least one that will satisfy ∆k
i (A), i.e., the

probability that ∆k
i (A) is satisfiable, is

P [ Some x ∈ {0, ..232 − 1} satisfies ∆k
i (A) ] ≤ 1− (1− 2−78.068)2

32 ≈ 2−46

Finally, the probability that for at least one A there will exist an x that will satisfy ∆k
i (A), i.e., the probability

that Sat(∆k
i ) is nonempty in a random model, is

P [ Sat(∆k
i ) is empty ] ≥ (1− 2−46)2

32

= 1− 2−14 (8.4)

The final set of candidates for xi,t + ci,t+1 in procedure g inp is derived as an intersection of Sat(∆0
i ),

Sat(∆1
i ) and Sat(∆2

i ). The probability that, in a random model, the intersection of these three sets is

non-empty is

P [ Randomly modelled Cand(xi,t + ci,t+1) nonempty ] ≤ (2−14)3 = 2−42 (8.5)
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This can finally be taken as an upper bound for the probability that there will be an element other than the

correct one in Cand(xi,t + ci+1,t). Since Cand(xi,t + ci,t+1) is calculated for i = 0, . . . 7 at times t = 0, 1

during the attack procedure, it can be concluded that there will be no redundant candidates for the internal

state after the procedure is completed.

8.4.2 Attack complexity

The attack complexity can be measured by the number of faults required, computational complexity

as well as storage complexity. First, we examine the number of faults necessary to undertake an attack.

As described above, the input for the attack is a non-faulty keystream word st+1 as well as certain

number of faulty keystream words s′t+1. Also, the set of faulty states from which s′t+1 values are produced

needs to satisfy certain properties. More precisely, as specified by the flt init procedure, at each of the

following groups of bits

x0,t, c0,t, φ7,t

x1,t, c1,t

x2,t, c2,t

...
...

x7,t, c7,t

(8.6)

the attacker has to produce at least three different faults and obtain three corresponding s′t+1 values. It

follows that the minimal number of required faults that will need to be induced is 3 × 8 = 24. However,

since an attacker does not have the possibility to choose locations of faults he induces, the number of

necessary faults will be higher.

Let n denote the overall number of induced faults. Let p(n) denote the probability that that there will

be at least 3 faults at each one of the 8 groups of bits above. Let Ai be the event that after inducing n random

faults there will be at most 2 faults at xi,t, ci,t, or xi,t, ci,t, φ7,t if i = 0. Then, Ai = B0
i ∪B1

i ∪B2
i where Bj

i ,

j = 0, 1, 2, i = 0..7 is an event that at xi,t, ci,t or xi,t, ci,t, φ7,t if i = 0 there will be 0,1 or 2 different faults.
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Then, p(n) can be approximated as follows:

p(n) =

1− P [A0 ∪ . . . ∪ A7] =

1− P [(B0
0 ∪ B1

0 ∪B2
0) ∪ . . . ∪ (B0

7 ∪B1
7 ∪B2

7)] ≈

1− (
7∑

i=0

2∑

j=0

P [Bj
i ])− (

7∑

i1=0

2∑

j1=0

7∑

i2=i1+1

2∑

j2=0

P [Bj1
i1
∩ Bj2

i2
])

where the fact that P [Bj1
i ∩ Bj2

i ] = 0 for j1 6= j2 has been used. For i = 0 . . . 7

P [B0
i ] = (

7

8
)n, i = 0 . . . 7

P [B1
i ] =

∑

k1+k2=n−1

(
7

8
)k1(

1

8
)(
7× 32 + 1

8× 32
)k2

P [B2
i ] =

∑

k1+k2+k3=n−2

(
7

8
)k1(

1

8
)(
7× 32 + 1

8× 32
)k2(

31

8× 32
)(
7× 32 + 2

8× 32
)k3

The second order probabilities are provided as follows:

P [B0
i1
∩B0

i2
] = (

6

8
)n

P [B0
i1
∩B1

i2
] =

∑

k1+k2=n−1

(
6

8
)k1

1

8
(
6× 32 + 1

8× 32
)k2

P [B0
i1
∩B2

i2
] =

∑

k1+k2+k3=n−2

(
6

8
)k1

1

8
(
6× 32 + 1

8× 32
)k2

31

8× 32
(
6× 32 + 2

8× 32
)k3

P [B1
i1
∩B2

i2
] =

3×
∑

k1+k2+k3+k4=n−3

(
6

8
)k1

1

8
(
6× 32 + 1

8× 32
)k2

1

8
(
6× 32 + 2

8× 32
)k3

31

8× 32
(
6× 32 + 3

8× 32
)k4

P [B2
i1
∩B2

i2
] =

6×
∑

k1+k2+k3+k4+k5=n−4

(
6

8
)k1

1

8
(
6× 32 + 1

8× 32
)k2

1

8
(
6× 32 + 2

8× 32
)k3

31

8× 32
(
6× 32 + 3

8× 32
)k4

31

8× 32
(
6× 32 + 4

8× 32
)k5

Substituting the according values of n yields p(64) = 0.900, p(96) = 0.997 and p(128) = 0.999. The

quality of the approximation above has been verified by the following experiment. For 105 times, a data

structure equivalent to Rabbit internal state was initialized with zeros and n faults were simulated by writing
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1 to a uniformly random chosen bit location. After each iteration, if there was at least three 1-bits at each

of the groups of bits in question, a counter was incremented. At the end of the experiment, the probability

was obtained by dividing the counter by 105. Obtained ratios for n = 64, 96, 128 were 0.900, 0.996, 0.999

respectively. Consequently, throughout the rest of the chapter, we assume that 64-128 faults are practically

sufficient to grantee that there will be at least 3 faults at each one of the 8 groups of bits defined in Eq. (8.6).

Since during the attack, as described in Section 8.3.3, procedure flt init is called two times, the

number of necessary faults is around 128− 256.

As for computational and storage complexity, the flt init procedure can make use of precom-

putation. In particular, 32 tables T+
0 , . . . T+

31 can be created, such that cell T+
i [j] contains all the x val-

ues such that j = g(x) − g(x + 2i). Another 32 tables T−
0 , . . . T−

31 can be created, such that cell T−
i [j]

contains all the x values such that j = g(x) − g(x − 2i). Analogous sets of tables can be created for

[g(x) <<< 8] − g(x ± 2i) <<< 8] and [g(x) <<< 16] − g(x ± 2i) <<< 16]. Thus, the storage complexity is

given by 3 × 64 × 232 = 239.6 words, i.e., 241.6 bytes, and now the computational complexity for a query

for x such that it satisfies a generalized differential is O(1). Since around 2 × 8× 3 × 232 such queries are

made, the computational complexity of the attack is about 238 steps.

To summarize, the proposed attack requires around 128− 256 faults, precomputed table of size 241.6

bytes, and recovers the cipher internal state in about 238 steps.
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9

Summary and future research directions

9.1 Summary of contributions

This section briefly summarizes the contributions of this thesis. In the first two chapters, the mo-

tivation and the background for this work was presented. In addition, basic approaches to constructing

symmetric key primitives and the corresponding cryptanalytic methods were explained.

In Chapter 3, a new heuristic for searching for compatible differential paths was presented. Our

work shows that more hash function rounds can be reached if one applies automated reasoning to resolve

the middle part of the boomerang structure. We have applied the proposed search heuristic to HAS-160

hash function. The heuristic has been explain by providing examples for the three types of propagations

used during the search (single-path propagations, quartet propagations and quartet addition propagations).

Using the 1-bit constraints along with these propagations yielded an acceptable rate of false positives and

the second order collision was successfully found. A particular colliding quartet found by the heuristic has

been provided.

In Chapter 4, a reduced-round SM3 compression function was studied in terms of resistance to second

order collision attacks. We provided an example of a second order collision for the function reduced to 32

out of 64 steps. In particular, the interaction between the top and the bottom differential was studied in

detail and by using a long carry propagation in one of the differentials, the contradictions were avoided. We

also pointed out a property that does not exist in the function that SM3 is built on, SHA-2. In particular, a

slide-rotational property of the SM3-XOR function is exposed. SM3-XOR is the SM3 hash function where

modular addition is replaced by XOR. An example of a slide-rotational pair for SM3-XOR compression
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function is given.

In Chapter 5, we presented a practical-complexity related-key attack on the Loiss stream cipher that

recovers the full secret key. The attack was implemented and our implementation takes less than one hour on

a PC with 3GHz Intel Pentium 4 processor to recover 92 bits of the 128-bit key. The possibility of extending

the attack to a resynchronization attack in a single-key model was discussed. The main problem in the

cipher is the innovation that has been added as a part of the Finite State Machine in the cipher structure. The

new component is a slowly changing array reminiscent of the RC4 stream cipher. This component allowed

differences to be contained (i.e., do not propagate) during a large number of inner state update steps with a

relatively high probability thus allowing certain form of differential cryptanalysis to be efficient against all

of the initial procedure steps. We also showed that a slide attack is possible for the Loiss stream cipher.

In Chapter 6, we studied the security of the two LFSR-based software oriented stream ciphers. In

particular, we presented related key pair sets for SNOW 3G and SNOW 2.0 cipher by using the sliding

technique. For several of the presented related key sets, the transformation from the key K to its related

key K ′ is simple and amounts to rotation and bit inversion. Using the derived related key sets, related-key

key recovery attacks against SNOW 2.0 with 256-bit in complexity smaller than the exhaustive search can

be mounted. Moreover, the fact that the K ′ depends on the IV of its related key was used to mount attacks

under different assumptions on the related keys. Furthermore, the existence of the related keys exhibits

non-random behavior of the ciphers, which questions the validity of the security proofs of protocols (such

as the ones used in the 3GPP networks [63]) that are based on the assumption that SNOW 3G and SNOW

2.0 behave like ideal random functions when regarded as functions of the key-IV.

In Chapter 7, a differential fault analysis attack was studied in the context of HC-128 cipher, which

is based on a slow-changing array with comparatively large inner state. The adopted attack model assumes

that the attacker is able to fault a random word of the inner state of the cipher but cannot control its exact

location nor its new faulted value. The attack operates by constructing 32 systems of linear equations over

Z2, each of 1024 bit variables representing the inner state values. It also utilizes what we called the reuse of

inner state words in different states of the cipher in order to facilitate the differential fault analysis.

In Chapter 8, differential fault analysis attack was devised for the Rabbit stream cipher which is an

eStream final portfolio member. Unlike in the Chapter 7, the adopted fault model assumes that the attacker

is able to fault a random bit of the inner state. Given this scenario and the different architecture of the Rabbit
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stream cipher, the proposed attack requires around 128 − 256 faults, precomputed table of size 241.6 bytes,

and recovers the cipher internal state in about 238 steps.

9.2 Future work

In what follows, we list some of the possible topics of interest for future extension of our work:

- In the context of our work on second order analysis of hash functions provided in Chapters 3 and 4, it

would be interesting to apply the proposed compatible differential search heuristic against other hash

functions such as SHA-2 or SM3. A successful application of the heuristic would increase the number

of steps for which the second order collision can be constructed. One possible direction would be to

attempt to extend the attacks provided in [22] and [10]. The impact of the high rate of contradictory

paths reported in the first order collision attack [100] should be investigated and re-measured in the

context of the second order analysis of these hashes.

- When it comes to cryptanalysis of stream ciphers, it would be interesting to work on improving the

attacks provided in Chapter 6 on the SNOW family. In particular, techniques for recovering the inner

state given a known-LFSR difference would be of use in this context [24]. This is relevant since that

after a slide pair of the inner states has been obtained, the difference in the LFSR typically has low

Hamming weight, e.g., it is localized in one 32-bit word, as is the case in some of the related keys

provided in 6. The same idea may also be evaluated in the context of our slide attack on Loiss stream

cipher provided in Chapter 5.

- In the fault analysis of stream ciphers, certain constructions appear to require more faults to recover the

inner state than others. One such construction is the construction based on slow-changing arrays and

particularly the one with comparatively large state, e.g., HC-128 (analyzed in Chapter 7) or RC4 (see

the respective fault attack [17]). The obstacle in applying the typical differential analysis approach

is that the faulty inner state words pass only through a small portion of the inner state before control

over the differences in the state is lost. The differential analysis in such a case allows only a small

portion of inner state information per fault to be extracted. Investigating methods to overcome this

problem in random-position fault models for the goal of reducing the overall number of random faults

is a possible research direction.
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