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Abstract

Stochastic Mortality Modelling with Lévy Processes based on

GLM’s and Applications

Seyed Saeed Ahmadi, Ph.D.

Concordia University, 2013

Mortality rates have shown a gradual and steady decline over the last

decades. In this thesis, we propose a stochastic process for the force

of mortality. Similarly to Renshaw et al. (1996), the force of mortality

will be defined using an exponential function of Legendre polynomi-

als. In order to model perturbations in the force of mortality, we use

the approach of Ballotta and Haberman (2006) and add a stochastic

process which follows a one-dimensional Ornstein-Uhlenbeck process.

We show how Generalized Linear Models can be used to estimate coeffi-

cients of the explanatory variables as well as the value of the coefficient

of the Ornstein-Uhlenbeck process. For this purpose, the estimator of

this coefficient is obtained by minimizing the residual deviance.

Next we change the structure of the perturbed term in the Ornstein-

Uhlenbeck process by replacing Brownian motion with Lévy processes.

We give some examples to clarify the fitting process and show the

advantages of using stochastic forces of mortality. Predictions of the

probabilities of death will be investigated to show how the model can

be used in actuarial applications. Life annuities are then priced and

compared using the proposed model based on Lévy processes and the

model in Renshaw et al. (1996).

In this thesis, we also reconsider the two-factor stochastic mortality

model introduced by Cairns, Blake and Dowd (2006). We first show

that the underlying normality assumption of the error terms does not

hold for the considered data set. We suggest to model the error terms

using bivariate Generalized Hyperbolic distribution that includes four

non-Gaussian, fat-tailed distributions. Our empirical analysis shows

how the model can provide a better fit for the considered data.
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In addition, we try to model age adjusted death rates embedded in

the Swiss Re mortality bond using generalized least squares approach.

We use the variable length Markov chains (VLMC) model proposed by

Mächler and Bühlmann (2004) to model the incidence of catastrophic

events. The proposed model is compared to the current recognized

models in the literature. Finally, we perform a simulation study to

estimate the market price of risk that can be used to fairly price the

Swiss Re bond.
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Introduction

Trends in Longevity

Life expectancy is the expected number of years of life remaining at a given age.

As mentioned in Rorabaugh et al. (2004), during the early 1600s in England, life

expectancy was only about thirty-five years, and two-thirds of all children died

before the age of four. In the seventeenth century, bacterial stomach infections,

intestinal worms, epidemic diseases, contaminated food and water, neglect and

carelessness all contributed to explain why 40 percent of children failed to reach

adulthood in New England. In 1900, the world life expectancy for a newborn was

approximately 30 years and in 1985 it was about 62 years. During the industrial

revolution, the life expectancy of children increased dramatically. The percentage

of children born in London who died before the age of five decreased from 74.5%

in 1730-1749 to 31.8% in 1810-1829; see Kumar (2011) and Buer (1926). During

the 20th century, the average lifespan in the United States increased by more than

30 years. In other words, life expectancy has increased from 1950 till 2010. It is

now clear that mortality rates have a decreasing trend over time. However the

evolution of these rates differs for different ages and calendar years.

This behavior has an impact on two major areas: social policies and insurance

companies. State welfare, social security and pensions are some examples of social

policies. Social security systems have begun to experience some problems because

of the evolution in life expectancy. Also, earlier defined benefit pension systems are

experiencing sustainability problems due to the increased longevity. For instance,

in pension plans, when life expectancy of retirees increases, the fund has to pay

pensions for longer periods. This demographic process threatens the actuarial

balance of the fund and changes are needed accordingly. Therefore, fluctuations

in longevity have a considerable influence on the management of a large portfolios

of elderly people.

If insurance companies that provide annuity products rely on current standard

life tables and use them to obtain premium rates and reserves, then they may

undercharge their policyholders. This is due to the fact that these life tables do

not capture the mortality improvement over time and underestimate the liabilities
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of the insurance company. Hence they will encounter some losses. In the United

Kingdom, at the end of 1990’s, an unanticipated decline in mortality rates as well

as falling market interest rates has led to the bankruptcy of Equitable Life (the

world’s oldest life insurance company) in 2000 due to their insolvency problems.

Among others, Ballotta and Haberman (2003), Pitacco (2003), Boyle and Hardy

(2003) and Olivieri (2001) studied the effects of changing forces of mortality1 on

insurance products such as annuities and life insurances.

There is a vast literature on models for the force of mortality. See for example:

De Moivre (1725), Gompertz (1825), Makeham (1860), Perks (1932), Weibull

(1939), Heligman and Pollard (1980) and Anderson and Ashwood (1985). The

most important concept missing in almost all these models is the time effect. In

order to make the transition from one mortality model to another and get a good

approximation of future life expectancy, we need to include a time effect.

Lee-Carter Model

Since 1980, many authors have tried to estimate dynamic (in time) mortality rates.

Among previous works, Lee and Carter (1992) (LC) is the most prominent. They

try to model central mortality rates as a linear combination of age effects and ran-

dom periodic effects. Singular value decomposition and time series techniques are

used in order to model the central death rates. In their model, they investigate the

effect of time in the force of mortality. The LC model reduces the dimensionality

of the problem using a single time index, which affects the force of mortality at

each time for all ages simultaneously. As pointed out by Cairns et al. (2008, 2009,

2011), the LC age-period model has several disadvantages:

• It is a one-factor model leading to a correlation of mortality improvements

at all ages (trivial correlation structure).

• The model gives a poor fit to historical data if a cohort effect is observed in

the past.

• The uncertainty in future death rates is proportional to the average improve-

ment rate. This can cause the uncertainty being too low for higher ages, since

historical improvement rates have often been lower at higher ages.

• If the basic version of the model is used, then a lack of smoothness can occur

in the estimated age effect.

Many authors have tried to fix the problems of the LC model by some additions

or modifications, e.g. Lee and Miller (2001), Brouhns et al. (2002), Renshaw and

1Force of mortality is known under different names in reliability theory and survival analysis
including failure rate or hazard rate as mentioned in Bowers et al. (1997, Chapter 3).
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Haberman (2003a), Booth et al. (2002), Jong and Tickle (2006), Delwarde et

al. (2007). Renshaw and Haberman (2006) extended the LC modeling framework

through the introduction of a wider class of generalized, parametric, non-linear

models. They add a cohort effect for the first time to the LC model. This leads

to a significant fit improvement when a cohort effect is observed in the past data.

However, as mentioned by Cairns et al. (2009, 2011) and Plat (2009), the model

proposed by Renshaw and Haberman (2006) has some robustness problems in pa-

rameter estimates relative to the range of data employed. Currie (2006) considered

a special case of the model in Renshaw and Haberman (2006).

Cairns et al. (2009) suppose eight different stochastic mortality models. The

Bayes Information Criterion (BIC) is used to find the models that best fit the

data. Haberman and Renshaw (2009) generalize LC’s model to include an age

modulated cohort index, in addition to the standard age modulated period index.

They compare annuity value predictions as well as the life expectancy for different

pensioner ages and for various periods. For a comprehensive review of mortality

estimation see Booth and Tickle (2008). In addition to the problems mentioned

above, the estimated parameters in age-periodic-cohort models are highly corre-

lated, which leads to large variations in the forecasts.

Generalized Linear Modelling

Generalized Linear Models (GLM’s) can be used also to forecast mortality rates.

The most important difference between GLM and LC models is that the time

effect in a GLM framework will appear as an explicit covariate random variable,

whereas in LC models, time is a factor represented by a series. GLM’s have been

used in actuarial applications since the early 1980s, see McCullagh and Nelder

(1989). They fit GLM models to different data sets, including motor insurance

and marine insurance.

Prior to 1991, not much attention was paid to the link between GLM’s and

previous models used for graduation purposes. Renshaw (1991) stated that many

of the models used by actuaries were special cases of GLMs. For example the

Gompertz’ model can be obtained by a Poisson GLM. Regarding these models in

the context of GLM helps generalizations, such as extensions by including a time

effect for predictions. Haberman and Renshaw (1996) reviewed some applications

of GLM in actuarial problems. Renshaw, Haberman and Hatzoupoulos (1996)

develop a model (RHH) which incorporates both an age variation and time trend

in the force of mortality. They use a Poisson GLM to model the force of mortality

as an exponential function. They show that for the considered data, this model

provides a good fit. Sithole et al. (2000) predict the UK annuitant and pensioner

3



mortality with qualified success. They use a similar modelling structure as the

RHH model. Renshaw and Haberman (2000) model the mortality improvement

factor using GLM’s. They also introduce some conditions under which the form of

their model is the same as LC’s model. A parallel methodology to the LC model

based on GLM’s is proposed by Renshaw and Haberman (2003b). The LC time

series approach is adopted and modified in Renshaw and Haberman (2003c) to

forecast the behavior of mortality reduction factors by an alternative regression

type model. Renshaw and Haberman (2003a) generalize mortality forecasts on

the basis of the first two sets of single value decomposition vectors rather than

just on the first such set of vectors. Also, obtained forecasts have been compared

with two similar approaches based on generalized linear and bilinear models with

Poisson error structures.

Lévy Stochastic Mortality Modelling

Chen and Cox (2009) include a jump process into the original LC model and use it

to forecast mortality rates. Biffis (2005) proposes affine jump diffusion processes to

model asset prices and mortality dynamics. However, this model cannot guarantee

a nonnegative force of mortality as pointed out by Chen and Cox (2009).

Wang et al. (2010) claim that mortality indices in the LC model have tails

thicker than a normal distribution and appear to be skewed. Therefore they

suggest two infinitely divisible distributions, Generalized Hyperbolic and Classical

Tempered Stable distributions to model the mortality indices in the LC model.

They also apply different criteria such as the Akaike information criterion, Bayes

information criterion, Kolmogorov-Smirnov tests and mean absolute percentage

errors, in their projections to show the advantages of two proposed models over

the LC model.

Hainaut and Devolder (2008) consider the force of mortality as a combination

of one deterministic component and a stochastic part. This dynamic part is the

solution to a stochastic differential equation with respect to some Lévy processes.

They investigate intensities that have a mean reverting stochastic property. More-

over, some special cases of Lévy processes have been considered to obtain closed

expressions for the survival probabilities. In addition, they show that their pro-

posed models were able to capture some of the observed mortality tendencies such

as rectangularization. It means that the survival function has an increasing con-

centration of death around the mode (at old ages). This property entails that the

shape of the survival function evolves toward a rectangle. However, they did not

estimate parameters of the dynamic part appearing in the stochastic differential

4



equation. Obviously not enough applied mortality models have yet used Lévy

processes and studied their adequacy.

Other Models

Currie et al. (2004) generalized P-spline (penalized b-splines) techniques to fore-

cast two-dimensional mortality tables. They use a penalized generalized linear

model (PGLM) with Poisson errors and show how to construct regression and

penalty matrices appropriate for two-dimensional modelling. Cairns et al. (2006)

propose a stochastic mortality model with two factors. Logistic regression is a

special case of GLM and can be used to model mortality rates as well. Butler

and Park (1987) use a logistic regression model for the analysis of proportionate

mortality data. They suppose that the occupational exposure, if it has an effect

on mortality, develops the rate of death by a multiplicative factor. Perks (1932)

and Kannisto (1992) also suggest logistic models for the force of mortality which

provide a better fit to mortality data of people aged over 85 than Makeham’s

model. However it is difficult to estimate the parameters of these two models

by using maximum likelihood estimators. More recently Doray (2008) proposed

a weighted least-squares estimator for Kannisto’s model. Also the estimator has

been shown to be consistent, asymptotically unbiased and normally distributed.

Moreover, for Perks’s model, Doray (2008) uses Taylor series expansion to reduce

the estimation problem to a least-squares problem.

Much work has been done in estimating the parameters in the force of mor-

tality, either with LC’s model or within the GLM’s framework, in contrast to the

estimation of the parameters for the dynamic part of the model. Renshaw et

al. (1996) develop a model which includes both age and time trends in the force of

mortality. They show its advantages over the ad hoc method of first fitting a model

with respect to age, and then trying to find the time trend in each model sepa-

rately. Sithole et al. (2000) also defined similar models as Renshaw et al. (1996)

concerning age and time. They show that if a trend adjustment term is linear in

time on the log scale and its coefficient is linear in age effects, then the models

proposed by Renshaw et al. (1996) could be used for prediction purposes. They

used a quasi likelihood approach for their estimation. However, their models do

not include a stochastic term that develops according to a stochastic differential

equation (SDE).

In the following two chapters, we follow Ballotta and Haberman (2006) and add

a perturbation term to the force of mortality. We believe that by including this

perturbation term, the model can better capture the time trend. The perturbation

term follows a one-dimensional Ornstein-Uhlenbeck (OU) process. The SDE itself

5



depends on 3 different parameters. As an example, we first simplify this SDE

as those of Ballotta and Haberman (2006), by reducing the proposed SDE to a

1-parameter case (OU parameter).

Poisson GLM’s have been considered to link this unknown parameter with

other explanatory random variables. Here we estimate all the parameters appear-

ing in the GLM as follows. We first fix the OU parameter and fit different GLM

models by assuming a Poisson distribution. We record the corresponding residual

deviances for each model. Residual deviances are minimized to obtain the best

possible value for the OU parameter.

Our main goal in this chapter is to propose an estimation method for the OU

parameter and all the coefficients in the GLM. In addition to the Poisson GLM,

we will also use a perturbed logit regression model for the force of mortality.

Projections will be carried out for both models and will be compared with real

data.

As mentioned in Pitacco et al. (2009), the choice of calendar years and ages in

the mortality fitting is a crucial step. This means that in future analysis, we may

reduce dimensionality of the data used to get a better model fit.

The outline of Chapter 1 is as follows: in Section 1.2, we will specify the pro-

posed models and the data used. The error term will be added to the model that

follows an Ornstein-Uhlenbeck (OU) process based on Brownian motion (BM).

Section 1.3 is for model fitting and testing model adequacy. Here we will ex-

plain how to choose the best model as well as how to project the death rates and

compare them to the real data available in the life table. We also compare two

proposed model in terms of their capabilities to do the projections. Section 1.4

gives the conclusions for Chapter 1.

In Chapter 2, we will replace the BM by a Lévy process. Specifically, in

Section 2.1 we provide the definition of the Lévy process and explain why we use

this instead of the BM. We summarize some additional definitions and results

in Appendix A. In Section 2.2, we state our proposed model. Some numerical

examples have been included in Section 2.3.3 to show how the Lévy process can

lead to a significantly improved mortality fit in comparison to the results obtained

in Chapter 1. The conclusions of Chapter 2 are given in Section 2.4.

In Chapter 3, we evaluate life annuities using the model developed in Chapter

2. The data set is introduced in Section 3.2. We fit our models in Section 3.3.

Model comparisons are given in Section 3.4 and life annuities are evaluated in

Section 3.5. The conclusions for this chapter are provided in Section 3.6.

In Chapter 4, we focus on two-factor stochastic mortality modeling developed

by Cairns et al. (2006). The outline of this chapter is as follows. In Section 4.2, a

brief review of the CBD model is given together with the data set that we used to fit
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our model. Then, we test the assumptions given in the CBD model by applying

Doornik-Hansen’s multivariate normality test in Section 4.3. Next, generalized

hyperbolic distributions are defined in Section 4.4. We propose and fit our model

in Section 4.5. Section 4.6 is devoted to model comparisons. Conclusions are given

in Section 4.7.

Chapter 5 is devoted to model age adjusted death rates embedded in the Swiss

Re mortality bond. We use two approaches namely Generalized Least Squares and

Variable Length Markov Chains to construct our model. The data is described in

Section 5.2 and variable length Markov chains in Section 5.3. A brief review of

the generalized least square approach is given in Section 5.4. The proposed model

is explained in Section 5.5. We fit our model and present the results in Section

5.6. Model comparisons are carried out in Section 5.7. The design of the Swiss Re

bond and estimation of the market price is given in Section 5.8. Section 5.9 gives

conclusion of this study.
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Chapter 1

Ornstein-Uhlenbeck Process

1.1 Introduction

The idea of having a perturbed term in the force of mortality is first introduced by

Ballotta and Haberman (2006). They assume that this perturbation term follows a

one-dimensional Ornstein-Uhlenbeck process. In this chapter, we follow the same

idea and add a random variable to the force of mortality. Moreover, we provide a

new approach to estimate the parameters of the model. The structure of the force

of mortality given in this chapter is similar but not identical to that of Ballotta

and Haberman (2006). However, the same argument as given in this chapter can

be applied to their model.

In Section 1.2, we propose a Poisson GLM to model the force of mortality.

Legendre polynomials, an alternative Logistic Regression Model and the required

data are also introduced. Section 1.3 gives the details of the model fitting. Here

we explain how to construct the linear form in the model that enables us to

apply GLM’s for the estimation and forecasting. Some examples are provided to

show applications of the results. Section 1.4 gives conclusions of this chapter and

discusses briefly some possible future research.
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1.2 Model Specification

1.2.1 Poisson GLM

Renshaw et al. (1996) use a Poisson GLM to model the force of mortality with a

log link1 function, that is:

lnµ(x, t) = β0 +
s∑

j=1

βjLj(x
′
) +

r∑
i=1

αit
′i

+
r∑

i=1

s∑
j=1

γijLj(x
′
)t

′i
, x ∈ [x1, x2], t ∈ [y1, y2], (1.1)

where µ(x, t) is the force of mortality at age x in year t, [x1, x2] and [y1, y2] define

the range of ages and calendar years, respectively. The unknown parameters αi,

βj, γij need to be estimated, while the Li(x
′
) are Legendre polynomials generated

by

L0(x) = 1, L1(x) = x, (n+ 1)Ln+1(x) = (2n+ 1)xLn(x)− nLn−1(x), n ≥ 1.

Hence, L2(x) = 3x2−1
2

and L3(x) = 5x3−3x
2

. Here x
′

and t
′

are the transformed

ages and transformed calendar years that map x and t onto the interval [-1,1], as

defined by:

x
′
=

2x−max(x)−min(x)

max(x)−min(x)
, t

′
=

2t−max(t)−min(t)

max(t)−min(t)
.

Equation (1.1) explains the fluctuations in the force of mortality through three

different variables. The first and second summations of (1.1) capture the age effect

and the time effect, respectively. The last term of (1.1) has been added to model

interactions between the age and time effects.

Renshaw et al. (1996) proposed a methodology to determine the optimum

values for the Legendre polynomial orders r and s in (1.1). They monitor the

improvement in model residual deviances as the values of r and s are increased.

Here we skip this step to select a similar but not identical model as that suggested

by Sithole et al. (2000), our model of choice, as we would like to compare our results

to those of Ballotta and Haberman (2006) that use the estimated parameters of

Sithole et al. (2000).

We add a conditional perturbation term to (1.1) to capture more efficiently

the evolution of time in the model. Therefore, our proposed model structure is

similar to those of Renshaw et al. (1996) and Sithole et al. (2000), except for this

additional random variable, whose distribution depends on time.

1The log link function ensures that the force of mortality, µ(x, t), is always positive.
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Let D(x, t) and µ(x, t) be the number of deaths and the force of mortality

occurring at aged x and in calendar year t, respectively. We considered D(x, t)

as a Poisson response random variable with E[D(x, t)] = r(x, t)µ(x, t), where E[.]

represents the expected value and r(x, t) is a non-random constant equal to the

number of people exposed to the risk of death. To show the similarity of our results

with those of Ballotta and Haberman (2006), we first let r(x, t) = 1. However for

projection purposes, we must consider ln(r(x, t)) as an offset term1 in our model.

We assume that the conditional expected value of D(x, t), given a random variable

Yt′ , is

E[D(x, t) |Yt′ ] = r(x, t) exp
(
β0 +

3∑
i=1

βiLi(x
′
) + β4t

′
+

2∑
i=1

βi+4Li(x
′
)t

′

+ β7Yt′

)
, x ∈ [x1, x2], t ∈ [y1, y2], (1.2)

where Yt follows an Ornstein-Uhlenbeck process defined as the solution of the

following SDE: {
dYt = a(b− Yt)dt + γdXt, t > 0,

Y0 = 0,
(1.3)

where a, b and γ are unknown constants and (Xt : t ≥ 0) is a standard one-

dimensional Brownian motion. Equation (1.3) is more general than the SDE

proposed by Ballotta and Haberman (2006), which can be obtained by setting

b = 0 and γ = 1 in (1.3). This will enable the comparison of our results with those

of Ballotta and Haberman (2006).

One of the main reasons for using Legendre polynomials is their computa-

tional tractability. Working with real calendar years and ages is time consuming,

especially when fitting several models. Using these transformations, enables us to

reduce computational time significantly. Also, as explained in De Jong and Heller

(2008), if the age variable x is large, then overflow occurs when computing xm for

large values of m. Another consequence is that underflow occurs for the estimation

of the corresponding β̂. This problem can be avoided by scaling ages x and times

t appropriately, using x
′

and t
′
. Collinearity between higher order polynomials

can also be avoided by using orthogonal polynomials. It should be mentioned that

Legendre polynomials are orthogonal and have been used to overcome possible

collinearity.

1 An offset term is an explanatory random variable added to the GLM with a known coeffi-
cient of one.
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1.2.2 Logistic Regression Model

Cairns et al. (2006) introduce a two factor stochastic mortality model:

logit(q̃(t, x)) = ln
( q̃(t, x)

1− q̃(t, x)

)
= A

(1)
t+1 +A

(2)
t+1(x+ t), x ≥ 60, t ∈ [1961, 2002],

where q̃(t, x) is the realized mortality rate at time t for the cohort aged x and

A
(1)
t , A

(2)
t are two stochastic processes. They show that the first factor affects the

mortality rate dynamics at all ages in the same way, whereas the second factor

affects mortality rates much more at higher ages than at lower ages ones.

In this section, we will propose another GLM approach to model the required

death probabilities, rather than the number of deaths. Suppose that D(x, t) has a

binomial distribution with parameters n = r(x, t) and q(x, t). Here, the probability

of success is equal to the corresponding one year probability of death at each age

x and calendar year t, denoted by q(x, t). Moreover, let

logit(q(x, t)) = ln
( q(x, t)

1− q(x, t)

)
, x ∈ [x1, x2], t ∈ [y1, y2]

= β0 +
3∑

i=1

βiLi(x
′
) + β4t

′
+

2∑
i=1

βi+4Li(x
′
)t

′
+ β7

σ2(Yt′ )

2
,(1.4)

where the last term σ2(Yt
′ ) is the variance of Yt

′ and Li(x
′
) are Legendre polyno-

mials defined in Subsection 1.2.1. The reason to include σ2(Yt′ ) in (1.4) will be

explained later in Section 3.

1.2.3 Data

The data considered are 1x1 (i.e. by age1 and year) female’s periodic life tables, for

the United Kingdom during calendar years 1922-2006 and for ages ranging from

0-110 years, obtained from the Human Mortality Database (HMD)2. In this data

set, the most important information that we use to fit our process are: calendar

year, age, q(x, t) and the number of survivors and the number of deaths at exact

age x at time t, denoted by l(x, t) and D(x, t) respectively. Details of the available

HMD information as well as smoothing methods used to graduate probabilities of

death can be found in the explanatory notes3 or in Wilmoth et al. (2007).

1 One-year age groups (or “by age”) means 0, 1, 2,..., 109, 110+.
2 The data are available online at www.mortality.org.
3 Available at: http://www.mortality.org/Public/ExplanatoryNotes.php# Complete-

DataSeries
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1.3 Model Fitting

The first step is to solve the SDE in (1.3) for Yt. By multiplying each side of (1.3)

by eat, we get,

eatdYt + aeatYtdt = abeatdt + γeatdXt.

Hence d(Yte
at) = bd(eat) + γeatdXt and therefore,

Yt = b(1− e−at) + γ

∫ t

0

e−a(t−s)dXs. (1.5)

Equation (1.2) is based on conditional expectation and contains an unobservable

random variable Yt. Consequently, we can not use a GLM approach directly here.

Therefore, we need to find the distribution of Yt in order to express E[D(x, t)] as

a linear function of some observable explanatory random variables. We use the

following lemma.

Lemma 1.1. Let (Xt : t ≥ 0) be a standard one-dimensional Brownian motion

and for every function f ∈ L2(R+)1, define the Wiener-integral as:

Yt =

∫ t

0

f(s)dXs, t ≥ 0.

Then Yt has a normal distribution with mean 0 and variance σ2(Yt) =
∫ t

0
|f(s)|2ds.

Proof. See Applebaum (2009), Chapter 4 for the proof.

To find the distribution of Yt in (1.5), we use Lemma 1.1, where f(s) = e−a(t−s).

Hence Yt has a normal distribution with mean b(1 − e−at) and variance σ2(Yt) =

γ2
(

1−e−2at

2a

)
. Clearly, the variance of Yt depends on the OU’s parameters: a, γ and

t. It means that adding the perturbation term will transfer some properties of the

underlying SDE (1.3) into the GLM. Moreover, σ2(Yt) = γ2

2a
for a > 0 as t → ∞.

This shows the long term behavior of Yt. Using (1.2) with γ2 = β8

β2
7
, we get

ln
(E[D(x, t)]

r(x, t)

)
= β0 +

3∑
i=1

βiLi(x
′
) + β4t

′
+

2∑
i=1

βi+4Li(x
′
)t

′

+ β7b(1− e−at
′

) + β8

(1− e−2at
′

4a

)
. (1.6)

We set σ2(Yt
′ ) = 1−e−2at

′

2a
in (1.4) to be consistent with (1.6). Using (1.6) and

E[D(x, t)] = r(x, t)µ(x, t), we have

µ(x, t) = exp
{
β0 +

3∑
i=1

βiLi(x
′
) + β4t

′
+

2∑
i=1

βi+4Li(x
′
)t

′

+ β7b(1− e−at
′

) + β8

(1− e−2at
′

4a

)}
. (1.7)

1 L2-space of equivalence classes of mappings to R+.
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Our objective in this chapter is to show how we can use Equation (1.7) to esti-

mate all the GLM’s coefficients, βi, appearing in (1.2). Moreover, we predict and

compare the values of q(x, t) as well as µ(x, t) in Equations (1.4) and (1.7), respec-

tively, with the observed and smoothed q(x, t). We end this section by introducing

the residual deviance, R(a). This is equivalent to a residual sum of squares, but

in the context of GLM’s. R(a) is defined for the Poisson GLM as

R(a) = 2
∑

x

∑
t

(
d(x, t) ln

(d(x, t)
d̂(x, t)

)
−

[
d(x, t)− d̂(x, t)

])
, (1.8)

where d̂(x, t) is the predicted number of death at age x and time t obtained by

d̂(x, t) = r(x, t)µ̂(x, t). (1.9)

In Equation (1.9),

µ̂(x, t) = exp
{
β̂0 +

3∑
i=1

β̂iLi(x
′
) + β̂4t

′
+

2∑
i=1

β̂i+4Li(x
′
)t

′

+ β̂7b(1− e−at
′

) + β̂8

(1− e−2at
′

4a

)}
, (1.10)

where β̂i is the estimated value of βi, for i = 0, ..., 8. The interested reader is

referred to Renshaw (1991) for further study on the residual deviance.

Theorem 1.1. The residual deviance of model (1.6) is invariable to homogeneous

transformations T ∗(b) : (1 − e−at
′
) → b(1 − e−at

′
), where b 6= 0 and all other

explanatory random variables remain the same as in (1.6).

Proof: We show that under the new transformed model, d̂(x, t) and R(a)

consequently remain unchanged. For notational convenience, we define vectors

Xi = Li(x
′
), for i = 1, ..., 3, X4 = t

′
, Xi+4 = Li(x

′
)t

′
, for i = 1, 2, X7 = 1− e−at

′
,

X8 = 1−e−2at
′

4a
and X∗

7 = bX7. Now we rewrite (1.10) in the form of a linear

combination:

ln(µ̂(x, t)) = β̂0 +
8∑

j=1

β̂iXj = β̂0 +
6∑

j=1

β̂iXj + β̂7
X∗

7

b
+ β̂8X8. (1.11)

Equation (1.11) shows that under the transformation T ∗(b), the new coefficient

for X∗
7 i.e. β̂∗7 , can be obtained by β̂∗7 = β̂7

b
. Therefore, µ̂(x, t) in (1.10) remains

the same as in model (1.6) and d̂(x, t) in (1.8) is not changed.
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1.3.1 Estimation and Forecasting

In this section we explain how to estimate the unknown parameters. We consider

ages from [x1, x2] and calendar years from [y1, y2] and refer to this subset of data

sets as the historical data. From a practical point of view, we not only have to

estimate death rates, but more importantly, we should forecast these rates. In

general, we perform the following steps to estimate and forecast the mortality

rates:

Step 1: Determine N , the number of years that we need to forecast.

Step 2: Extend all the explanatory random variables in (1.4) and (1.6) for N

years.

Step 3: To compare our results with those of Ballotta and Haberman (2006),

determine b and γ and set an appropriate interval for the parameter a ∈
[a1, a2]\{0}.

Step 4: Fix the parameter a ∈ [a1, a2]\{0} and fit the models (1.6) and (1.4).

Next, find the optimum value for the parameter a by minimizing the residual

deviance R(a).

Theorem 1.1 states that when this optimum value is obtained, then changing

the values of b determined in Step 3, will not change the residual deviance.

The response variables used are d(x, t) and d(x,t)
l(x,t)

in models (1.6) and (1.4),

respectively. Here, we consider r(x, t) = l(x, t) in model (1.6) as an offset

term. Moreover, for the logit model (1.4), since we are modeling the ratios,

and not the number of successes, we use weights = l(x, t) in our program-

ming. By completing this step, we select two models for (1.6) and (1.4) with

their corresponding estimated βi’s.

Step 5: Plug in estimated coefficients, the βi’s, obtained in Step 4, in Equations

(1.10) and (1.4), to forecast. We emphasize the advantage of forecasting

using (1.4) and (1.6). Because we can directly forecast required probabilities

by using the logit model (1.4). Also predictions of the mortality rates can

be obtained from model (1.6).

1.3.2 Examples

Table 1.1 shows the set of parameters for the first example. Data is restricted to

the ages ranging from 65-100 and also calendar years 1958-1994. The reason for

using this subset is that, our data in this case is close in terms of ages and calendar

years to those of Sithole et al. (2000). We set N = 0, since we are not interested
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Table 1.1: Parameters Set for Example 1

x1 = 65 x2 = 100 y1 = 1958 y2 = 1994 N = 0

b = 0 γ = 1 a1 = −1 a2 = 2 r(x, t) = 1
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Figure 1.1: Residual deviances in (1.8) v.s. parameter a. Age ranges from 65 -
100, calendar year ranges from 1958 - 1994

in forecasting the mortality rates at this point and modelling is done only over the

historical data. We also let r(x, t) = 1 to indicate that the number of deaths are

modeled for the historical data. Moreover, we consider b = 0 and γ = 1 to reduce

our model to the SDE proposed by Ballotta and Haberman (2006).

As we explained above, we first fix the parameter a in the interval, [−1, 0)∪(0, 2]

and fit GLM models with the log as the link function in (1.6) and r(x, t) = 1.

Then, the βi’s are estimated using the maximum likelihood method. The next

step is to obtain the residual deviance. The plot of the residual deviance against

parameter a is given in Figure 1.1. We seek the parameter a that minimizes

the residual deviance for each fitted model. Then, we choose the model which

has the smallest residuals deviance. However, other criteria such as the Akaike

Information Criterion (AIC) can be used.

Figure 1.1 shows that the minimum value for the residual deviance in (1.8)

occurs at a = 0.6. Although the model structure for the force of mortality in (1.6)

is different from that of Ballotta and Haberman (2006), the point estimation for

parameter a is unexpectedly close to their choice for this particular parameter.
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Figure 1.2: The observed death rates, d(x, t) (y axis) v.s. fitted values, d̂(x, t) (x
axis), ages 65-100, calendar years 1958-1994

Estimated parameters are given in Table 1.2. Next we check the model adequacy

for this particular model.

Figure 1.2 plots the fitted values, d̂(x, t) that are calculated from the model

using the estimated parameters against the actual number of deaths, d(x, t), i.e.

the historical and observed values for all the ages and calendar years used to fit the

model. Also in Figure 1.3, a residual plot is given, for a fixed age x = 70. Here,

the vertical axis represents the residuals i.e. the difference between the observed

number of deaths and the fitted values. This graph does not show any trend.

Table 1.2: Estimated Parameters for a = 0.60

Intercept β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂8

7.589 -0.565 -1.285 -0.381 0.109 0.473 0.248 0.027

We also obtain the ANOVA table for this model and check the contribution of

each coefficient using a chi square test. Table 1.3 summarizes the results. The 3rd

column in Table 1.3 (Deviance Residual) shows reduction in the residual deviances

as the terms are added sequentially. All the estimated parameters are significant

at α = 0.05. The last row in this table shows that adding the OU process drops

the residual deviance from 3301 to 3276. We should mention that the optimum

value found for parameter a in this section completely depends on both the range

of ages and calendar years used to fit the GLM.

16



●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

1700 1800 1900 2000 2100 2200

−
1

0
1

2
3

Fitted values

R
es

id
ua

ls

Figure 1.3: Residuals v.s. fitted values, x=70, calendar year ranges from 1958-1994

One of the main disadvantages of this model (i.e. a = 0.6) is the large values of

the residual deviances1 which are illustrated in Figure 1.1. Changing the parame-

ters in Table 1.1 has a significant effect on residual deviance. We emphasize that

the numbers r and s appearing in model (1.1) should be increased when modeling

mortality rates for ages more than 50. This is necessary to capture the evolution

of mortality rates for older ages. Hence we focus on younger ages and try to find

3 reasonable models for ages x = 20, 30, 40 years and decrease residual deviance

in Figure 1.1 by using (1.6) and the logistic regression model (1.4).

Table 1.3: ANOVA Table, Significance Codes: ‘***’ 0, ‘**’ 0.001

Df DevianceResidual Df ResidualDeviance P (> |Chi|)
NULL 1331 820992

β̂1 1 70756 1330 750236 2.2× 10−16 ***

β̂2 1 661239 1329 88997 2.2× 10−16 ***

β̂3 1 39563 1328 49437 2.2× 10−16 ***

β̂4 1 1576 1327 47858 2.2× 10−16 ***

β̂5 1 36251 1326 11608 2.2× 10−16 ***

β̂6 1 8307 1325 3301 2.2× 10−16 ***

β̂8 1 25 1324 3276 0.001393 **

1The residual deviance was defined in (1.8).
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Table 1.4: Parameters Set for x=20

x1 = 15 x2 = 25 y1 = 1948 y2 = 2006 N = 20

b = 0, 1 γ = 1 a1 = 0 a2 = 40 r(x, t) = l(x, t)

In Figure 1.4, we compare the model in (1.6) for two cases, b = 0 and b = 1

with the set of parameters provided in Table 1.4. Therefore, we reduce the data

set to ages ranging from 15-25 years and calendar years 1948-2006. Parameter a

ranges in the interval (0, 40]. The same argument as mentioned in the previous

section is considered to select the best model. We fix the parameter a and fit

the model in (1.6). The preferred model is the one that has minimum residual

deviance. We apply an offset term r(x, t) = l(x, t).

Panels (A) and (B) in Figure 1.4 plot the values of parameter a against the

corresponding residual deviances. In panel (A) when b = 1, the residual deviance

has attained its minimum value of 264 at a = 24. However, in panel (B) where

b = 0, residual deviance is minimized at a = 7 with a minimum value of 313. This

shows that we can decrease the residual deviance by about 16% when adding the

parameter b into the SDE proposed by Ballotta and Haberman (2006).

Panels (C) and (D) of Figure 1.4 are assigned to show predicted force of mor-

talities (filled circles) for the optimum value of a and crude mortality rates (empty

circles), respectively. Comparing predicted forces of mortality in panel (C) with

panel (D) of Figure 1.4 indicates that, when b = 1, these forecasts are shifted

downwards slightly to match the crude mortality rates better. This is due to the

reduction of the residual deviance resulting from the inclusion of the term b in the

OU process, as mentioned above. In addition to the said procedure, forecasts are

carried out for 20 years. Both models in Figure 1.4 fit the historical data well.

However, model (1.6) with b = 1 seems to be more adequate.

Figure 1.5 compares the logit model in (1.4) and the GLM in (1.6) with b = 0,

where we fix age x = 20 years. The set of parameters is given in Table 1.4. The

residual deviance is minimized at a = 7, with minimum value of 313, for both

models (1.4) and (1.6) as shown in panels (A) and (B). We indicate predicted

forces of mortality (filled circles) and crude mortality rates (empty circles) in

panels (C) and (D) for the logit model in (1.4) and the GLM in (1.6), respectively.

Forecasting for 20 years shows the same trend for both models. This comes from

the fact that both the logit model in (1.4) and the GLM in (1.6) with b = 0, have

identical explanatory random variables. Comparing minimum residual deviances

in panels (A) of Figure 1.4 and Figure 1.5 reveals that the GLM (1.6) with b = 1

is the dominant model.
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We fix age x = 30 in Figure 1.6 and compare the model (1.6) in two cases

b = 0 and b = 1. We give the set of parameters for this example in Table 1.5.

Since now we are interested in age 30, we changed the historical data to better

capture the evolution of mortality. Ages vary from 25-35 and calendar years range

from 1950-2006. The parameter γ is set to 1 and a is chosen in the interval

[−20, 40]\{0}.
Panel (A) of Figure 1.6 shows that for the case b = 1, the residual deviance

is minimized at a = 7, with minimum value of 230, whereas in Panel (B) where

b = 0, this minimization is found at a = 5 with corresponding minimum value of

233.

Panels (C) and (D) plot predicted forces of mortality (filled circles) for the

optimum value of a found above as well as crude mortality rates (empty circles).

We predict mortality rates for 30 years. One can compare the two upper panels

(A), (B) and the two lower panels (C) and (D) in Figure 1.6, to conclude that

both models have almost the same power in predicting mortality rates. We should

choose model (1.6) with b = 0 if we are interested in a model with fewer parameters

to estimate. However, we would like to emphasize that the model (1.6) with b = 1

would be a strong candidate, by reducing residual deviance significantly if we

change the historical data.

The logit model in (1.4) behaves similarly to the model in (1.6) with b = 1,

both in optimization for parameter a as well as in predictions and, therefore we

did not include a graph for the logit model.

In Figure 1.7, we fix age x = 40 and examine the difference in model (1.6) for

two cases, b = 0 and b = 1. We provide the set of parameters for this example in

Table 1.6 and change the historical data for ages ranging from 37-43 and calendar

years 1948-2006. Parameter a takes its value in the interval (0, 70].

In panel (A) where b = 1, the residual deviance attains its minimum value of

214 at a = 38. However, the corresponding smallest value of the residual deviance

when b = 0 is 221, and it occurs at a = 11. We present forecasting for the forces

of mortality (filled circles) with a = 38 and a = 11, as well as crude mortality

rates (empty circles) in panels (C) and (D), respectively. We carry out predictions

from 2007-2036 for 30 years. Both models fit well, however based on the minimum

value for the residual deviance, we select model (1.6) with b = 1.

Table 1.5: Parameters Set for x=30

x1 = 25 x2 = 35 y1 = 1950 y2 = 2006 N = 30

b = 0, 1 γ = 1 a1 = −20 a2 = 40 r(x, t) = l(x, t)
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Predicted: GLM Model (3.2)

Crude mortality rates 
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Predicted: GLM Model (3.2), b=0

Crude mortality rates 

Figure 1.4: Comparison of model (3.2) with b = 1, b = 0, x = 20
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Predicted: Logit Model (2.3)

Crude mortality rates
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Predicted: GLM Model (3.2), b=0

Crude mortality rates 

Figure 1.5: Comparison of model (3.2) with b = 0 and logit model (2.3)
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Predicted: GLM Model (3.2), b=0

Crude mortality rates 

Figure 1.6: Comparison of model (3.2) with b = 1, b = 0, x = 30
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Crude mortality rates 

●●

●●

●●
●

●●●

●

●

●
●

●●
●

●
●

●●
●

●●

●
●●

●
●

●
●

●

●●●

●●
●

●●
●●

●●
●●●●

●●●●
●

●●
●

●
●●

1960 1980 2000 2020

0.
00

05
0.

00
15

0.
00

25

(D)

Year

q(
 4

0 
, t

)

●

●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

Probabilities Types

 

 

Predicted: GLM Model (3.2), b=0
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Figure 1.7: Comparison of model (3.2) with b = 1, b = 0, x = 40
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Table 1.6: Parameters Set for x=40

x1 = 37 x2 = 43 y1 = 1948 y2 = 2006 N = 30

b = 0, 1 γ = 1 a1 = 0 a2 = 70 r(x, t) = l(x, t)

1.4 Conclusions

In this chapter, we added a random perturbation to the traditional GLM used

to model mortality rates. The evolution of this random variable follows a one-

dimensional Ornstein-Uhlenbeck process. Then, we used the distribution of the

perturbed term to model the number of deaths. Moreover, we proposed a new

approach for finding the parameter associated with the dynamic part of the force

of mortality. We minimized the residual deviance for this purpose. It is worth

mentioning that the optimum value found by this method depends, not only on

the range of ages considered to do the modelling, but also the time period used to

fit the model.

Two models were suggested to project mortality rates. The first model is

based on modelling the number of deaths using GLM techniques and then trying

to project the mortality rates. We consider two cases, b = 0 and b = 1 for

this model. Also logistic regression was defined and used to directly predict the

probability of death. A comparison of these models is carried out for 3 different

ages, 20, 30 and 40 years. The performance of the logit model is similar to that of

the GLM with b = 0. The adequacy of the GLM with b = 1 is much better than

with b = 0 for ages 20 and 40. However, the two GLM models almost have the

same power for age 30.

Further research should consider more complicated SDEs for the dynamic part

of the model. In addition, other data sets can be compared by using this approach.

Also, we can generalize the idea given in this chapter by adding cohort effects to

the model to see their impact on the fit.
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Chapter 2

Jump Diffusion Processes

2.1 Introduction

Jump diffusion processes are stochastic processes that include both jumps and dif-

fusion. For instance these can be combinations of compound Poisson and Brownian

motion. Recently, Lévy processes have been used to model mortality rates. Chen

and Cox (2009) include a jump process into the original LC model. They apply

this model to forecast mortality rates and examine mortality securitization. This

model is useful to study mortality dependent cash flows of life insurance portfolios,

annuity portfolios, and portfolios of mortality derivatives.

As mentioned by Wang et al. (2010), many of the models discussed in Section

1.1, do not include short-term catastrophe mortality shocks, such as the influenza

pandemic in 1918 and the Indonesian tsunami in December 2004, which may lead

to much higher (or lower) mortality rates. This can justify, to some extent, the

reason why we include Lévy processes in modelling mortality rates. Therefore, we

consider Lévy processes in this chapter to capture the effect of shocks in mortality.

Parameters that characterize the Lévy processes can control jump intensities and

play an important role when considering mortality rates at older ages. We give

some examples in Section 2.3.3 to show how this process can provide a better fit to

the data and captures the trend (compared to the model developed in the previous

chapter).

We start with the following definition of a Lévy process given in Cont and

Tankov (2004).

Definition 2.1. A stochastic process (Zt)t≥0 on (Ω,F,P) with values in R such

that Z0 = 0 is called a Lévy process if it posesses the following properties:

1. Independent increments: for every increasing sequence of times t0, ..., tn, the

random variables Zt0 , Zt1 − Zt0 , ..., Ztn − Ztn−1 are independent.
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2. Stationary increments: the law of Zt+h − Zt does not depend on t.

3. Stochastic continuity: ∀ε > 0, lim
h→0

P(|Zt+h − Zt| ≥ ε) = 0.

We provide some additional definitions and results from Kyprianou (2006) in

Appendix A, that will be used in Section 2.2. This includes definitions of an in-

finitely divisible distribution, Lévy measure, Poisson random measure and subordi-

nators. Moreover, we summarize in Appendix A some important results including

the Lévy-Khintchine formula, the bounded variation form of Lévy processes and

a multidimensional Itô formula.

2.2 Model Fitting

Mortality modelling in Chapter 1 is extended to include Lévy processes. We

keep the same structure of conditional expectation as in (1.3). This consistency is

necessary to determine the effect of the generalization in the case of Lévy processes.

Therefore, we assume that

E[D(x, t)|Yt′ ] = r(x, t) exp
(
β0 +

3∑
i=1

βiLi(x
′
) + β4t

′

+
2∑

i=1

βi+4Li(x
′
)t

′
+ β7Yt′

)
, (2.1)

where Yt follows an Ornstein-Uhlenbeck process (OU) with respect to a Lévy

process i.e. {
dYt = a(b− Yt)dt + γdZt

Y0 = 0,
(2.2)

where a, b, γ are constant and (Zt : t ≥ 0) is a subordinator without drift as

defined in (A.4). Hence Zt can be written as (A.3) with d = 0.

Proposition 2.1. For Yt defined in (2.2), we have,

d(Yte
at) = eatdYt + aeatYtdt. (2.3)

Proof. To show (2.3), we need Theorem A.3 in Appendix A from Oksendal and

Sulem (2010). This is known as the multidimensional Itô’s formula. Let n = 2 and

l = 1 in Theorem A.3 and define K(t) = f(t,Yt) = Y
(1)
t Y

(2)
t , where Y

(i)
t , i = 1, 2

are two Itô-Lévy processes of the form (A.4). Hence, ∂f
∂t

= 0, ∂f
∂y(1) = y(2), ∂f

∂y(2) =

y(1), ∂2f
∂y(1)∂y(2) = ∂2f

∂y(2)∂y(1) = 1, ∂2f
∂y(1)∂y(1) = ∂2f

∂y(2)∂y(2) = 0. Now using Theorem A.3,
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we obtain

dK(t) = Y
(2)
t (α1dt+ σ1dBt) + Y

(1)
t (α2dt+ σ2dBt) +

1

2
2σ1σ2dt

+

∫
|z|<R

{
f
(
t,

[
Y

(1)

t− + γ1(t, z)

Y
(2)

t− + γ2(t, z)

] )
− f

(
t,

[
Y

(1)

t−

Y
(2)

t−

] )
−γ1(t, z)Y

(2)

t− − γ2(t, z)Y
(1)

t−

}
ν(dz)dt

+

∫
R

{
f
(
t,

[
Y

(1)

t− + γ1(t, z)

Y
(2)

t− + γ2(t, z)

] )
− f

(
t,

[
Y

(1)

t−

Y
(2)

t−

] )}
N̄(dt, dz).

Therefore,

dK(t) = Y
(2)
t (α1dt+ σ1dBt) + Y

(1)
t (α2dt+ σ2dBt) + σ1σ2dt

+

∫
|z|<R

{(
Y

(1)

t− + γ1(t, z)
)(
Y

(2)

t− + γ2(t, z)
)

−Y (1)

t− Y
(2)

t− − Y
(2)

t− γ1(t, z)− Y
(1)

t− γ2(t, z)
}
ν(dz)dt

+

∫
R

{(
Y

(1)

t− + γ1(t, z)
)(
Y

(2)

t− + γ2(t, z)
)
− Y

(1)

t− Y
(2)

t−

}
N̄(dt, dz).

Hence,

dK(t) = Y
(2)
t (α1dt+ σ1dBt) + Y

(1)
t (α2dt+ σ2dBt) + σ1σ2dt

+

∫
|z|<R

γ1(t, z)γ2(t, z)ν(dz)dt+

∫
R

{
γ1(t, z)γ2(t, z)

+Y
(1)

t− γ2(t, z) + Y
(2)

t− γ1(t, z)
}
N̄(dt, dz). (2.4)

Now we let Y
(1)
t = eat and Y

(2)
t = Yt, where Yt has been defined in (2.2). As a

result, dY
(1)
t = aeatdt and dY

(2)
t = dYt = a(b − Yt)dt + γdZt. Note that both

Y
(1)
t and Y

(2)
t are Itô-Lévy processes with α1(t, ω) = aeat, σ1(t, ω) = γ1(t, z) = 0,

α2(t, ω) = a(b− Yt), σ2(t, ω) = 0 and γ2(t, z) = γz. Next we plug in these values

in (2.4) to obtain

d(eatYt) = Ytae
atdt+ eat

(
a(b− Yt)dt

)
+

∫
R
zγeatN̄(dt, dz). (2.5)

We let R = 0 in

N̄(dt, dz) = N(dt, dz)− χ(|z|<R)ν(dz)dt

to have N̄(dt, dz) = N(dt, dz). Hence (2.5) can be written as:

d(eatYt) = Ytae
atdt+ eat

(
a(b− Yt)dt

)
+

∫
R

zγeatN(dt, dz)

= eat
{
a(b− Yt)dt+ γ

∫
R

zN(dt, dz)
}

+ aYte
atdt. (2.6)
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Since we assumed that Zt in (2.2) is a subordinator without drift, we can use

representation (A.3) to have

Zt =

∫
[0,t]

∫
R
zN(ds, dz), t ≥ 0,

or

dZt =

∫
R
zN(dt, dz), t ≥ 0. (2.7)

From (2.7) we can rewrite (2.2) as:dYt = a(b− Yt)dt + γ
∫

R zN(dt, dz)

Y0 = 0.
(2.8)

From (2.8) and (2.6), we obtain

d(eatYt) = eatdYt + aYte
atdt. (2.9)

Proposition 2.2. The solution to (2.2) for γ = 1
β7

satisfies

Yt = b
(
1− e−at

)
+

1

β7

∫ t

0

e−a(t−u)dZu.

Proof. We solve (2.2), for all s > t and let f(s, Ys) = ηs = eas(b−Ys) = beas−Yse
as.

Using Proposition 2.1 and (2.2) leads to,

dηs = abeasds− d(Yse
as)

= abeasds− easdYs − aeasYsds

= aeas(b− Ys)ds− easdYs

= −γeasdZs. (2.10)

Hence ηs = ηt − γ
∫ s

t
eaudZu. Since ηs = eas(b− Ys), we get

Ys = b− e−asηs = b− e−as
(
ηt − γ

∫ s

t

eaudZu

)
= b− e−as

(
eat(b− Yt)− γ

∫ s

t

eaudZu

)
= b

(
1− e−a(s−t)

)
+ e−a(s−t)Yt + γ

∫ s

t

e−a(s−u)dZu. (2.11)

To find the moments of Yt, we let t = 0, γ = 1
β7

and change the subscript s for

t in (2.11) to have

Yt = b
(
1− e−at

)
+

1

β7

∫ t

0

e−a(t−u)dZu. (2.12)
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We need to find E(eβ7Yt). However this expectation is difficult to evaluate even

for subordinators, Zt. As a result we consider the class of tempered α-stable sub-

ordinators among positive Lévy processes and focus on two special cases, gamma

and inverse Gaussian processes, in the next section.

2.3 Gamma and Inverse Gaussian Processes

The next definition is from Cont and Tankov (2004).

Definition 2.2. A process Zt is said to be an α-stable subordinator, with α ∈ (0, 1]

if for all a > 0, the following holds in distribution:(Zat

a
1
α

)
d
= Zt.

The Lévy measure of the α-stable subordinator is

ν(z) =
c

zα+1
.χz>0, α ∈ (0, 1].

The tempered stable subordinator is an exponentially tempered version of the

α-stable subordinator. In this case we multiply the Lévy measure above with a

decreasing exponential:

ν(z) =
ce−λz

zα+1
.χ(z>0), (2.13)

where c and λ are positive constants, α ∈ [0, 1] and χ(z>0) = 1 if z > 0 and

χ(z>0) = 0 otherwise. The case α = 0 has been included for greater generality,

although it cannot be obtained from an α-stable subordinator. As mentioned in

Cont and Tankov (2004), the parameter c changes the intensity of jumps of all sizes

simultaneously, λ fixes the decay rate of big jumps and α determines the relative

importance of small jumps in the path of the process. If for the subordinator Zt,

we define the cumulant transform

k(θ) = log
(
E(eθZ1)

)
, (2.14)

then we get the following useful closed expressions:

k(θ) =

∫ +∞

0

(
eθz − 1

)
ν(dz) =

{
c.Γ(−α){(λ− θ)α − λα} if α 6= 0

−c. log
(
1− θ

λ

)
if α = 0

(2.15)

When α = 0, we get the gamma process with probability density function:

pZt(z) =
λct

Γ(ct)
zct−1e−λz, ∀z > 0.

For the case α = 0.5, we get the inverse Gaussian process. The following theorem

from Eberlein and Raible (1999) should be used in order to have E(eβ7Yt).
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Theorem 2.1. Let Zt be a subordinator with cumulant transform k(θ) in (2.14)

and f : R+ → C be a complex valued left continuous function such that |Re(f)| ≤
M then

E
(

exp
( ∫ t

0

f(θ)dZϑθ

))
= exp

( ∫ t

0

ϑk(f(θ))dθ
)
. (2.16)

Proof. See Lemma 3.1 in Eberlein and Raible (1999).

It follows from (2.12) that

E(eβYt) = E
(

exp
(
bβ(1− e−at) +

∫ t

0

e−a(t−u)dZu

))
= ebβ(1−e−at)E

(
exp

( ∫ t

0

e−a(t−u)dZu

))
. (2.17)

2.3.1 Gamma Process

Now for the case α = 0, we can use (2.16) and (2.17) with β = β7 to get

E(eβ7Yt) = exp
(
bβ7(1− e−at) +

∫ t

0

{−c log(1− e−a(t−θ)

λ
)}dθ

)
= exp

(
bβ7(1− e−at)− c

dilog(λ−e−at

λ
)− dilog(λ−1

λ
)

a

)
, (2.18)

where dilog(x) is the dilogarithm function and is defined as dilog(x) =
∫ x

1
log(u)
1−u

du.

Taking another expectation from (2.1) with (2.18) implies that

E[D(x, t)] = r(x, t) exp
(
β0 +

3∑
i=1

βiLi(x
′
) + β4t

′
+

2∑
i=1

βi+4Li(x
′
)t

′

+bβ7(1− e−at
′

)− c
dilog(λ−e−at

′

λ
)− dilog(λ−1

λ
)

a

)
(2.19)

2.3.2 Inverse Gaussian Process

Let α = 0.5 and similarly for t > 0 we have:

E(eβYt) = exp
(
bβ(1− e−at) + cΓ(−α)

∫ t

0

{(
λ− e−a(t−θ)

)0.5 − λ0.5
}
dθ

)
, (2.20)

with

∫ t

0

{(
λ− e−a(t−θ)

)0.5 − λ0.5
}
dθ =

−1

a

[{
2
√
e−at(λeat − 1)

−2
√
λ arctanh(

√
e−at(λeat − 1)√

λ
)− 2

√
λ− 1

}
+2
√
λ arctanh(

√
λ− 1√
λ

+ at
√
λ)

]
, (2.21)
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where arctanh is the hyperbolic arctangent function.

We have expressed the expected value of the number of deaths as an exponen-

tial function of some observable random variables in (2.19). Hence we are in a

position to use GLM’s to fit the mortality model.

Note that in (2.19) the parameter c can be treated as β8 in modelling and

estimating from the GLM, although this estimation may not preserve the positivity

condition of c. Whenever this problem happens, we can change the sign of the

corresponding explanatory random variable for parameter c in (2.19) to get a

positive value for c.

Theorem 1.1 implies that the predicted number of deaths will not change and

we can still forecast the mortality rates without having estimation problems. In

addition, we should mention that the main goal of this research is forecasting the

mortality rates rather than estimating the parameters appearing in (2.13).

2.3.3 Examples

In this section, we would like to compare models (1.6) and (2.19). In other words,

we compare the GLM models based on Brownian motion (BM) and the Lévy

tempered stable subordinator. The data has been already presented in Section

1.2.3. Specifically, we used the female mortality rates for the United Kingdom

during calendar years 1922-2006 and for ages ranging from 0-110 years. The

idea of selecting the best model is basically the same as explained there. The

only difference in the case of the Lévy subordinator is its 3 different parameters,

a, b, and λ. By Theorem 1.1, we can fix parameter b = 1, and try to find

the parameters a and λ that minimize the residual deviance. In Table 2.1, we

summarize the parameters values that have been used to obtain the best possible

values for parameters a ∈ [a1, a2]\{0} and λ ∈ [λ1, λ2]\{0}.
The optimization has been carried out over the set of parameters in Table

2.1. In Table 2.2, we provide some subset of the results obtained to compare the

residual deviance in two cases where b = 1. In this table, the column Res.Dev.BM

gives the residual deviance for model (1.6) and the column Res.Dev.Lévy, provides

the residual deviance for model (2.19). The optimization has been carried out over

a wider range of parameters for λ that is mentioned in Table 2.1. Table 2.2 shows

that, for the OU process, model (1.6) with a BM term, we get the minimum value

of 264 for the residual deviance at a = 26. Similarly, for the the model (2.19)

with the Lévy subordinator, we obtain the minimum value of 268 for the residual

deviance occurring at λ = 1 and a = 10.

Now we can fit the models (2.19) and (1.6) with b = 1, λ = 1 and compare the

results. We used the parameters given in Table 2.3, to produce Figure 2.1. Panels
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Table 2.1: Parameters of the OU Process Including BM and Lévy Subordinator,
x=20

x1 = 15 x2 = 25 y1 = 1948 y2 = 2006 b = 1

λ1 = −15 λ2 = 15 a1 = −4 a2 = 50 r(x, t) = l(x, t)

(A) and (B) of Figure 2.1 plot the residual deviance in (1.8) vs. parameter a

with λ = 1, for models (2.19) and (1.6), respectively. It shows that model (1.6) is

slightly better than the Lévy model (2.19) based on the residual deviance. However

comparing panels (C) and (D) in Figure 2.1, indicates that the Lévy model (2.19)

can capture the trend of mortality rates for the historical data, especially over the

calendar years 1960-1980. This property is in contrast to the almost monotone

decreasing trend in forecastings of model (1.6). We have also calculated the error

sum of squares

SS =

x2∑
x=x1

t2∑
t=t1

(
q(x, t)− q̂(x, t)

)2

,

where q̂(x, t) is the predicted probability of death obtained by one of the two

models. For the Lévy model (2.19), SS = 9.310722× 10−8 and for the BM model

(1.6), SS = 9.369733 × 10−8. The model based on a Lévy subordinator has a

smaller SS. Table 2.4 gives the ANOVA table for the Lévy model (2.19). All the

parameters are significant at α = 0.05. Note that for simplicity of notation, we

set

ζ(a, λ, t
′
) =

dilog(λ−e−at
′

λ
)− dilog(λ−1

λ
)

a
.

If we increase the age, then the improvement in using Lévy processes is much

more significant. For example consider modelling mortality rates for age x = 50.

Exactly the same procedure as for age x = 20 was used to estimate parameters a

and λ. With the parameter values given in Table 2.5 we obtain λ = 4, a = 6 for

model (2.19) and a = 4 for model (1.6).

The next step is to forecast mortality rates based on these optimized param-

eters. The corresponding parameter values for predictions are given in Table 2.6.

In Figure 2.2 , we compare the forecasts for the two models (2.19) and (1.6). Panel

(A) shows that the residual deviance is minimimal at a = 6 with a minimum value

of 537. While in panel (B) the corresponding value for parameter a = 4, with a

minimum value of 656 for model (2.19). This means that by using a model based

on a Lévy tempered subordinator, we were able to decrease the residual deviance

by almost 18%. Panels (C) and (D) indicate that the Lévy model is much better

in capturing fluctuations in mortality rates, especially during calendar years 1960-

1980, when more variations in mortality rates have been observed. Finally we
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Predicted: Logit Model (2.3)

Crude mortality rates
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Predicted: LEVY, b=1, L=1

Crude mortality rates 
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Predicted: BM,b=1

Crude mortality rates 

Figure 2.1: Comparison of models (1.6) and (2.19) for x=20, λ = 1, b = 1

mention that for model (2.19), SS = 1.907015×10−6. However the corresponding

value for model (1.6), based on BM is SS = 2.425177 × 10−6. This implies that

by using Lévy processes, we can reduce the error sum of squares of mortality rates

by almost 21%.

We provide two more examples to predict mortality rates for the ages x = 60

and x = 80. Tables 2.7 and 2.8 give the set of parameter values used to find the

optimum values for parameters a and λ. For age x = 60, we conclude that a = 5,

for both models (2.19) and (1.6). Also λ = 1 is the obtained optimum value for

the model in (2.19). Table 2.9 gives a brief summary of the results. Similarly at

age x = 80, we found a = −2, λ = 1 in (2.19) and a = −1 in (1.6). Table 2.11

provides a subset of the results for this optimization.

Panels (A) and (B) of Figure 2.3, give the plot of the residual deviance vs.

31



●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ●

−10 −5 0 5 10 15 20

a

Lo
gi

t R
es

.D
ev

ia
nc

e

−1

925

1067

1209

1351

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

−10 −5 0 5 10 15 20

(A)

a

G
LM

 R
es

.D
ev

ia
nc

e−
LE

V
Y

6

537

782

1027

1272

●

●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

−10 −5 0 5 10 15 20

(B)

a

G
LM

 R
es

.D
ev

ia
nc

e

4

656

872

1088

1304

●
●●

●

●
●●●

●

●

●
●
●

●●●●
●

●

●
●●

●

●

●
●●

●
●

●
●
●

●●
●

●

●●●
●
●
●●

●●
●
●●

●●
●
●
●
●

●
●●●●

1960 1980 2000 2020

0.
00

1
0.

00
2

0.
00

3
0.

00
4

0.
00

5

Year

q(
 5

0 
, t

)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

Probabilities Types

 

 

Predicted: Logit Model (2.3)

Crude mortality rates
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Predicted: LEVY, b=1, L=4

Crude mortality rates 
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Predicted: BM,b=1

Crude mortality rates 

Figure 2.2: Comparison of models (1.6) and (2.19) for x=50, λ = 4, b = 1.
Panels (A) and (B) show the minimization of residual deviance with respect to the
parameter a in models (2.19) and (1.6), respectively. Panels (C) and (D) represent
the observed mortality rates together with the fitted values in in models (2.19) and
(1.6), respectively.
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parameter a, with λ = 1 for models (2.19) and (1.6), respectively. A comparison

of the fitted values (filled circles), i.e. the model values with fitted parameters, in

panels (C) and (D) of Figure 2.3 shows that, prior to calendar year 1980, model

(2.19) again can capture the trend slightly better than the model in (1.6). For the

model (2.19) the sum of square errors of the fitted values is, SS = 2.386065×10−6,

while the corresponding value for the model in (1.6) is SS = 3.000105×10−6. This

indicates that Lévy processes can reduce our estimation error by almost 20%.

In Figure 2.4, panels (A) and (B) show the optimization over parameter a. The

residual deviance is minimized at a = −2 for the model in (2.19), with a minimum

value of 516. For the model in (1.6), we obtained a = 5 with minimum value of

552 for the residual deviance. This means that we reduce the residual deviance by

almost 6% when applying Lévy processes. In the next chapter, we use AIC and

BIC criteria to check for any over parametrization. Panel (C) in Figure 2.4 reveals

that the fitting trend changes at calendar year 1980, while a gradual decreasing

trend in the fitted values is observed in the Panel (D) of Figure 2.4. Moreover,

we can see that as we increase the forecasting period after 2006, the predictions

obtained by Lévy processes decline faster than those of model (1.6).

2.4 Conclusions

In this chapter, we have generalized model (1.6) to include more complex fluc-

tuations based on Lévy tempered subordinators. First we solve the stochastic

differential equation using Itô’s formula. Then we get a closed form for the mo-

ments of the stochastic part, assuming a special case of Lévy processes, the so

called tempered stable processes. For the gamma process presented in Section

2.3.1, we have optimized the parameters.

Finally, GLM’s with Lévy tempered subordinators are compared with the

model in Chapter 1 for 4 different ages x = 20, 50, 60, 80. We observe that the

model in (2.19) based on Lévy processes is better than the OU model in (1.6) with

a BM term to capture the trend, especially at older ages.

Further work on Lévy processes to be considered includes:

(a) Replacing the gamma process with an inverse Gaussian process by changing

α to 0.5.

(b) Studying another mortality data set that includes mortality shocks such as the

influenza pandemic in 1918 or the tsunami in the Indian Ocean of December

2004. This could explain whether Lévy processes can provide a better fit to

the data with some mortality jumps.
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Predicted: Logit Model (2.3)

Crude mortality rates
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Predicted: LEVY, b=1, L=1

Crude mortality rates 
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Predicted: BM,b=1

Crude mortality rates 

Figure 2.3: Comparison of models (1.6) and (2.19) for x=60, λ = 1, b = 1
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Predicted: Logit Model (2.3)

Crude mortality rates
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Predicted: LEVY, b=1, L=1

Crude mortality rates 
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Predicted: BM,b=1

Crude mortality rates 

Figure 2.4: Comparison of models (1.6) and (2.19) for x=80, λ = 1, b = 1
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(c) The Lee-Carter (LC) model can be compared with the results in this chapter.

Note that the probabilities of death can be written in terms of central death

rates, i.e. the quantity that the LC model forecasts.

(d) We can also consider some stochastic interest rates. Hence both the mortality

and the interest return can be considered stochastic simultaneously. Then

we can try to price some insurance products, such as annuities, using these

dual stochastic models.
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Table 2.2: Residual Deviance for Lévy and BM Case, x=20

a b λ Res.Dev.BM Res.Dev.Lévy

-4 1 1 1233.488 1166.486

-2 1 1 978.6552 1094.262

2 1 1 428.5019 921.5472

4 1 1 315.794 730.1289

6 1 1 298.4142 410.4302

8 1 1 312.3271 277.0891

10 1 1 324.013 268.8267

12 1 1 325.2171 279.5556

14 1 1 317.9034 292.3455

16 1 1 306.1661 306.1472

18 1 1 293.4437 321.0396

20 1 1 281.989 336.8455

22 1 1 273.0469 353.2447

24 1 1 267.1593 369.9094

26 1 1 264.424 386.5619

28 1 1 264.6813 402.988

30 1 1 267.6357 419.0321

32 1 1 272.933 434.5867

34 1 1 280.2069 449.5823

36 1 1 289.1054 463.9777

38 1 1 299.3047 477.7526

40 1 1 310.5159 490.9021

42 1 1 322.4865 503.432

44 1 1 334.9995 515.3556

46 1 1 347.8708 526.6914

48 1 1 360.9462 537.4612

50 1 1 374.098 547.6886

Table 2.3: Parameters of Models (1.6) and (2.19), x = 20

x1 = 15 x2 = 25 y1 = 1948 y2 = 2006 b = 1

λ1 = 1 a1 = −4 a2 = 50 r(x, t) = l(x, t) N = 30

37



Table 2.4: Analysis of Deviance for Lévy Model (2.19), Significance Level: ‘.’ 0.1,
‘***’ 0.001

Term Df Deviance Resid. Resid. Df Resid. Dev. P (> |Chi|)
NULL 1 648 6580.5

L1(x
′
) 1 547.5 647 6032.9 < 2.2× 10−16 ***

L2(x
′
) 1 50.4 646 5982.5 < 2.2× 10−16 ***

L3(x
′
) 1 27.3 645 5955.2 8.795× 10−16 ***

t
′

1 3975.7 644 1979.5 < 2.2× 10−16 ***

(1− e−at
′
) 1 962.8 643 1016.7 < 2.2× 10−16 ***

L1(x
′
)t

′
1 50.3 642 966.4 < 2.2× 10−16 ***

L2(x
′
)t

′
1 1.5 641 964.9 0.06225 .

ζ(a, λ, t
′
) 1 696.1 640 268.8 < 2.2× 10−16 ***

Table 2.5: Parameters of OU Process Including BM and Lévy Subordinator, x=50

x1 = 45 x2 = 55 y1 = 1948 y2 = 2006 b = 1

λ1 = −15 λ2 = 15 a1 = −10 a2 = 20 r(x, t) = l(x, t)

Table 2.6: Parameters of Models (1.6) and (2.19), x = 50

x1 = 45 x2 = 55 y1 = 1948 y2 = 2006 b = 1

λ1 = 5 a1 = −10 a2 = 20 r(x, t) = l(x, t) N = 30

Table 2.7: Parameters of OU Process Including BM and Lévy Subordinator, x=60

x1 = 57 x2 = 62 y1 = 1965 y2 = 2006 b = 1

λ1 = −20 λ2 = 20 a1 = −30 a2 = 50 r(x, t) = l(x, t)

Table 2.8: Parameters of OU Process Including BM and Lévy Subordinator, x=80

x1 = 78 x2 = 82 y1 = 1966 y2 = 2006 b = 1

λ1 = −15 λ2 = 15 a1 = −8 a2 = 8 r(x, t) = l(x, t)
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Table 2.9: Residual Deviance for Lévy and BM Case, age x = 60

a b λ Res.Dev.BM Res.Dev.Lévy

-30 1 -20 711.4785 308.7345

15 1 -20 338.2158 311.6731

-30 1 -15 711.4785 299.5461

15 1 -15 338.2158 306.2938

-30 1 -10 711.4785 287.5206

15 1 -10 338.2158 297.7336

-30 1 -5 711.4785 269.5173

15 1 -5 338.2158 280.9678

-30 1 -1 711.4785 239.772

15 1 -1 338.2158 239.3899

5 1 1 212.6875 204.2213

10 1 1 248.86 221.8847

50 1 1 686.2203 420.9371

5 1 5 212.6875 213.4478

45 1 5 661.1342 510.7032

5 1 10 212.6875 212.6886

45 1 10 661.1342 550.8552

5 1 15 212.6875 212.6411

45 1 15 661.1342 576.8543

5 1 20 212.6875 212.6379

45 1 20 661.1342 597.1013

50 1 20 686.2203 554.7021

Table 2.10: Parameters of Models (1.6) and (2.19), x = 60

x1 = 57 x2 = 62 y1 = 1965 y2 = 2006 b = 1

λ1 = 1 a1 = −30 a2 = 50 r(x, t) = l(x, t) N = 30
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Table 2.11: Residual Deviance for Lévy and BM Case, age x = 80

a b λ Res.Dev.BM Res.Dev.Lévy

-8 1 -15 602.1565 603.676

-1 1 -15 580.2943 579.9368

7 1 -15 553.11 552.5092

-3 1 -10 593.485 592.1899

5 1 -10 551.9378 551.7029

-5 1 -5 600.3563 598.3264

3 1 -5 554.6568 555.5176

-7 1 -1 602.2089 596.1682

1 1 -1 564.911 567.1612

8 1 -1 553.7611 550.685

-2 1 1 587.5743 515.552

5 1 1 551.9378 535.225

-5 1 5 600.3563 589.5692

3 1 5 554.6568 553.8153

-7 1 10 602.2089 596.2432

1 1 10 564.911 564.4489

8 1 10 553.7611 555.335

-2 1 15 587.5743 588.3744

6 1 15 552.3451 552.9872
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Chapter 3

Pricing Life Annuities with Lévy

Processes

3.1 Introduction

In this chapter, we consider the pricing of whole life annuities due using the model

developed in Chapter 2 based on Lévy subordinators. In particular, we focus on

the gamma process and show how this model can provide a better fit. Similarly

to Chapter 2, Generalized Linear Models are used to estimate coefficients of the

explanatory variables and the gamma process. For this purpose, the coefficient of

the gamma process is obtained by minimizing the residual deviance.

We use mortality data of males in Japan from 1996-2009, as well as Den-

mark and the U.S. over a long period of time in order to compare our results

with the model proposed by Renshaw et al. (1996). As a reminder, we use RHH

to abbreviate this model. Some preferences are indicated based on Akaike’s in-

formation criterion, the Bayesian information criterion, the likelihood ratio test,

Akaike weights, and the evidence ratio to support the proposed model. We then

use a cubic smoothing spline method to fit the interest rate curve and illustrate

some over(under) estimations in the prices of the annuities under the structure

suggested by Renshaw et al. (1996).

For the Japan data over a short period of time, we find that the model proposed

by Renshaw et al. (1996) can over estimate the liabilities. Also, our analysis

shows that for U.S. mortality rates over a long period of time, the price of whole

life annuities can be under-estimated for the ages above 60 based on the modeling

structure in Renshaw et al. (1996). However, the model from Renshaw et al. (1996)

slightly over-estimates prices for age 50. Finally, in Denmark, we observe an under-

estimation of the prices for all the considered ages according to RHH model. We

explain our data in the next subsection.
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Figure 3.1: Crude mortality rates, q(x, t), for Japan males during 1996-2009

3.2 Data

We use mortality rates for Japan, for males, over the period of 1996-2009 and

for ages 50-100. The data sets are available at the Human Mortality Database1.

Figure 3.1 shows the crude mortality rates for some selected ages from 1996 to

2009. In this plot, it is clear that in some particular calendar years, the observed

mortality rates have had positive or negative fluctuations. For example, there is

a dramatic increase in the mortality rates for age 50 during 1996-1997.

To visualize this positive jump clearly, we use a box plot for the differences

in mortality rates of each consecutive year, as shown in Figure 3.2. The solid

black segments indicate the median of the differences, while the lower and upper

limits of the box represent the lower quartile (Q1) and the upper quartile (Q3),

respectively. The upper (lower) whisker is drawn at the most extreme differences

which is less (greater) than or equal to Q3 + 1.5 × IQ (Q1 − 1.5 × IQ), where

IQ = Q3 −Q1 is the inter-quartile. Any difference outside these whiskers can be

considered as a possible outlier and is indicated with a dot. As an example, for age

50 in Figure 3.2, the dot shows that the difference in mortality rates between 1997

and 1996 is large enough to be assumed as a positive jump. We can also observe

that four points have been indicated for age 90 in Figure 3.2, while there are only

1www.mortality.org.

42



●

●

●

●

●

●

●

50 55 60 64 76

−
0.

00
2

−
0.

00
1

0.
00

0
0.

00
1

Age

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

80 85 87 90 93

−
0.

01
5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

0.
01

0

Age

Figure 3.2: Box plot of the differences in mortality rates, q(x, t + 1)− q(x, t), for
Japan males during 1996-2009

2 positive jumps from 1996-1997 and 1998-1999. The other two points show the

corresponding declines from 1997-1998 and 1999-2000; as explained above, the

consecutive differences have been taken into account to construct the boxplot.

Therefore, this data set contains some outliers, so it is appropriate to fit to it the

Lévy model developed in the previous chapter.

3.3 Fit of RHH Model

For the Japan data set, we first fit (1.1) and determine the optimum values of r,

s, k and l by monitoring the improvements in the residual deviance. See Renshaw

et al. (1996) and Sithole et al. (2000) for a complete explanation of this technique.

The optimum values are r = 2, s = 5, k = 2, l = 2, in addition to the term with

coefficient γ13. The analysis of variance in Table 3.1 reveals that the contribution

of the quadratic term in time, α2, is not significant.

Therefore, we remove this term and fit the following model:

µ(x, t) = exp
[
β0 +

5∑
j=1

βjLj(x
′
) + α1t

′
+

2∑
i=1

2∑
j=1

γijLj(x
′
)t

′i
+ γ13L3(x

′
)t

′
]
. (3.1)

It is observed that all the remaining parameters are statistically significant. See
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Table 3.1: Japan Male, Model (1.1), Significance Levels: ‘**’ 0.01,‘***’ 0.001, ‘ ’ 1

Coefficients Estimate Std. Error z-value p-value

β0 -3.279529 0.001625 -2018.262 2× 10−16 ***

α1 -0.116506 0.001759 -66.246 2× 10−16 ***

α2 -0.001488 0.003162 -0.471 0.637896

β1 2.353283 0.003244 725.500 2× 10−16 ***

β2 0.023110 0.004038 5.723 1.05× 10−8 ***

β3 -0.109831 0.003226 -34.046 2× 10−16 ***

β4 -0.064843 0.003348 -19.369 2× 10−16 ***

β5 0.016582 0.003542 4.681 2.85× 10−6 ***

γ11 0.016555 0.003694 4.482 7.40× 10−6 ***

γ21 0.031235 0.006053 5.160 2.46× 10−7 ***

γ12 0.032895 0.004244 7.752 9.06× 10−15 ***

γ22 -0.025159 0.007510 -3.350 0.000808 ***

γ13 -0.019840 0.004829 -4.109 3.98× 10−5 ***

Table 3.2 for the estimated parameter values, their standard deviations and the

p-values in the revised model.

This is the model that fits the historical data best, regardless of any projections.

As explained in Sithole et al. (2000), the difficulty is not only in finding the

model that provides a good fit to the data, but also produces reasonable mortality

projections. In order to price the whole life annuities accurately, we need to project

mortality rates for 60 years within the range of ages 50-110 years. This means that

we should project the mortality rates outside the range of ages modelled. Two

important properties that the projections should possess are:

• As time increases, the predicted force of mortality should decrease for each

fixed age.

• As age increases, the predicted force of mortality should increase for each

fixed calendar year.

We first fitted (3.1) and found that the projected force of mortality for some of

the considered ages is increasing in time. To fulfill the two properties above and

to obtain reasonable projections, we revise (3.1) and find that adding quadratic

coefficients for time in the multiplicative term, Lj(x
′
)t

′i
, can dramatically affect

the projections. This property was mentioned in Sithole et al. (2000) and the poly-

nomials with lower-order should be tested as well. Therefore, we remove the terms

associated to γ21, γ22, sequentially and at each step we check the corresponding
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Table 3.2: Japan Male, Revised Model (1.1), Significance Level: ‘***’ 0.001

Coefficients Estimate Std. Error z-value p-value

β0 -3.280096 0.001092 -3003.999 2× 10−16 ***

α1 -0.116490 0.001758 -66.272 2× 10−16 ***

β1 2.353777 0.003070 766.692 2× 10−16 ***

β2 0.022472 0.003805 5.906 3.51× 10−9 ***

β3 -0.109832 0.003226 -34.046 2× 10−16 ***

β4 -0.064838 0.003348 -19.368 2× 10−16 ***

β5 0.016581 0.003542 4.681 2.85× 10−6 ***

γ11 0.016438 0.003684 4.462 8.10× 10−6 ***

γ21 0.029943 0.005393 5.552 2.82× 10−8 ***

γ12 0.032876 0.004242 7.750 9.16× 10−15 ***

γ22 -0.023457 0.006581 -3.564 0.000365 ***

γ13 -0.019888 0.004826 -4.121 3.77× 10−5 ***

projections. The final fitted model is

µ(x, t) = exp
[
β0 +

5∑
j=1

βjLj(x
′
) + α1t

′
+

3∑
j=1

γ1jLj(x
′
)t

′
]
. (3.2)

Table 3.3 gives the details of a chi-square test for the reduction in residual deviance.

All the remaining parameters in this model are statistically significant.

Table 3.3: Chi-Square Test, Revised Model (3.2), Significance Level: ‘***’ 0.001

Terms Deviance Residual Df Residual Deviance p-value

Null 713 1618567

α1 853 712 1617714 2.2× 10−16 ***

β1 1614408 711 3306 2.2× 10−16 ***

β2 13 710 3293 0.0002846 ***

β3 1780 709 1513 2.2× 10−16 ***

β4 357 708 1156 2.2× 10−16 ***

β5 21 707 1134 4.119× 10−6 ***

γ11 76 706 1059 2.2× 10−16***

γ12 55 705 1003 9.685× 10−14 ***

γ13 17 704 986 3.393× 10−5 ***

The crude mortality rates together with the predicted rates based on the model

(3.2) are plotted against calendar years 1996-2009 for ages 60, 65, 70, 75, 80 as

shown in Figure 3.3. It shows that RHH model (3.2) fits the historical data well
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Figure 3.3: Crude mortality rates, q(x, t), and predicted force of mortality, µ̂(x, t),
of model (3.2).

within the range of ages considered to fit the model. Figure 3.4 plots the projected

force of mortality on the log scale for model (3.2) at 5-year age intervals from 1996-

2079. The projections satisfy the properties mentioned above and progress at the

same rate that is consistent with the historical annual mortality improvements. In

the following section, we improve the obtained model and investigate the inclusion

of a gamma process in the projections.

3.3.1 GLM with gamma Process

In this section, we study the effect of adding the last term in (2.19) into the RHH

model (3.2). Therefore, we first exclude the term bδ1(1−e−at) in (2.19) and model

the force of mortality as:

µ(x, t) = exp
[
β0 +

5∑
j=1

βjLj(x
′
) + α1t

′
+

2∑
i=1

3∑
j=1

γijLj(x
′
)t

′i

− c
dilog(λ−e−at

λ
)− dilog(λ−1

λ
)

a

]
. (3.3)

The residual deviance is minimized with respect to parameters a and λ by fitting

(3.3) as shown in Figure 3.5. As a reminder, we rewrite the definition of residual
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Figure 3.4: Projected force of mortality based on model (3.2)

deviance in (1.8), R(a, λ) for the Poisson GLM as

R(a, λ) = 2
∑

x

∑
t

(
d(x, t) ln

(d(x, t)
d̂(x, t)

)
− [d(x, t)− d̂(x, t)]

)
, (3.4)

where d̂(x, t) is the predicted number of deaths at age x and time t obtained by

d̂(x, t) = r(x, t)µ̂(x, t). (3.5)

The minimization is carried out over the region a ∈ [−80, 80] and λ ∈ [−15, 15].

We found that the minimum residual deviance is obtained at a = 10 and λ = 15

with the minimum value of 974.93. When we fit model (3.3), the parameter

estimates for this particular pair of a and λ are given in Table 3.4.

We observe that the contribution of the stochastic term c is statistically sig-

nificant. Figure 3.6 shows the predicted force of mortality and the crude rates

for ages 60, 65, 70, 75, 80. The plot of the projected forces of mortality, in the log

scale at 5-year age intervals from 1996-2069, is given in Figure 3.7. We see that by

adding the stochastic term, the forces of mortality progress smoothly for almost

all the ages. Figure 3.7 also shows that the annual mortality improvement rates

based on model (3.3) are lower than in RHH model (3.2).

We further analyze the reduction of the residual deviance by using a chi-square

test for the fit of model (3.3). Table 3.5 summarizes the results. This test shows
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48



that all the reductions in the residual deviances are statistically significant, in-

cluding the term due to the gamma process.

Table 3.4: Japan Male, Model (3.3), Significance Levels: ‘***’ 0.001, ‘*’ 0.05

Coefficients Estimate Std. Error z-value p-value

β0 -3.220402 0.054153 -59.468 2× 10−16 ***

α1 -0.334632 0.089326 -3.746 0.000180 ***

β1 2.745631 0.039298 69.867 2× 10−16 ***

β2 -0.134689 0.042120 -3.198 0.001385 **

β3 -0.426223 0.041781 -10.201 2× 10−16 ***

β4 -0.072493 0.013687 -5.297 1.18× 10−7 ***

β5 0.041257 0.008814 4.681 2.86× 10−6 ***

γ11 0.113158 0.045597 2.482 0.013075 *

γ12 0.110641 0.046832 2.362 0.018153 *

γ13 -0.194401 0.046609 -4.171 3.03× 10−5 ***

c 0.053728 0.015942 3.370 0.000751 ***

Table 3.5: Chi-Square Test for Model (3.3), Significance Level: ‘***’ 0.001

Terms Deviance Residual Df Residual Deviance p-value

Null 713 1618567

α1 853 712 1617714 2.2× 10−16 ***

β1 1614408 711 3306 2.2× 10−16 ***

β2 13 710 3293 0.0002846 ***

β3 1780 709 1513 2.2× 10−16 ***

β4 357 708 1156 2.2× 10−16 ***

β5 21 707 1134 4.119× 10−6 ***

γ11 76 706 1059 2.2× 10−16 ***

γ12 55 705 1003 9.685× 10−14 ***

γ13 17 704 986 3.393× 10−5 ***

c 11 703 975 0.0007541 ***

We test the normality assumption of the residuals for models (3.2) and (3.3)

using the Shapiro-Wilk test of normality. Details of the Shapiro-Wilk’s test can

be found in Royston (1982a, 1982b, 1995). The p-values for RHH model (3.2)

and the proposed model (3.3) are 0.2208 and 0.2391, respectively. Therefore, we

cannot reject the normality assumption at a conventional significance level. We

further check the residuals graphically for constant variance. We did not find any

violation from this assumption as well.
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Figure 3.6: Crude mortality rates and predicted force of mortality for model (3.3),
a = 10 and λ = 15.
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Figure 3.7: Projected force of mortality for model (3.3), a = 10 and λ = 15.
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In addition to the Japanese data set, explained in Subsection (1.2.3), the pro-

posed model in (2.19) and RHH model in (1.1) was fitted to the mortality data

sets for the U.S.1 and Denmark2 as well. We use the range of ages 50-80 to fit

models (3.2) and (3.3) over the period of 1910-2007 for the U.S. and 1910-2009

for Denmark. The projections was obtained for 70 years. The final fitted models

based on the model suggested in Renshaw et al. (1996) for the U.S and Denmark

are:

µ(x, t) = exp
[
β0 +

3∑
j=1

βjLj(x
′
) +

2∑
i=1

αit
′i

+ γ11L1(x
′
)t

′
(3.6)

+
2∑

i=1

γi3L3(x
′
)t

′i
]
,

µ(x, t) = exp
[
β0 +

2∑
j=1

βjLj(x
′
) +

3∑
i=1

αit
′i

+ γ11L1(x
′
)t

′
(3.7)

+
2∑

j=1

γ2jLj(x
′
)t

′2
]
,

respectively. The corresponding proposed models using a Gamma process can be

obtained by adding the last term in (2.19) into (3.6) and (3.7).

3.4 Model Comparisons

In this section, we compare the proposed model (3.3) and RHH model (3.2) by

considering different criteria that includes: Akaike information criterion (AIC),

Bayesian information criterion (BIC), likelihood ratio test, Akaike weights (ωi),

and evidence ratio. See Burnham and Anderson (2002) for the details of each

criteria.

3.4.1 Akaike and Bayesian Information Criterion

The Akaike information criterion is the first criteria that we use to select the better

model and also to check for any over parametrization. The AIC is defined as

AIC = −2LLF + 2NPS, (3.8)

where LLF is the log-likelihood function and NPS is the effective number of param-

eters being estimated. The AIC not only rewards goodness of fit by considering

1Sources: Human Life-Table Database (http://www.lifetable.de) over the period of 1910-
1932 and Human Mortality Database (www.mortality.org) over the period of 1933-2007.

2Source: Human Mortality Database.

51



Table 3.6: AIC and BIC for RHH Model (1.1) (R) and Proposed Model (2.19) (G)

Data Model AIC BIC

Japan
R 7,520 7,566

G 7,511 7,561

U.S.
R 43,827 43,881

G 40,479 40,539

Denmark
R 62,829 62,884

G 55,220 55,281

the log-likelihood function, but also includes a penalty that is an increasing func-

tion of the number of estimated parameters. The Bayesian information criterion

is defined as

BIC = −2LLF +NPS × log (n), (3.9)

where n is the number of observations. The BIC criterion is more conservative

than AIC. Table 3.6 summarizes the AIC and BIC results base on the RHH model

as well as the proposed model including the gamma process. There is not any

evidence of over parameterization based on both AIC and BIC criteria for all

three countries. The differences in the AIC values within each country are in

favor of the proposed model based on the gamma process, according to the cutoff

point given in Burnham and Anderson (2002). This reduction is more significant

in the U.S and Denmark than Japan. Moreover, based on the BIC criteria, there

is strong evidence (for Japan) and conclusive evidence (for the U.S and Denmark),

for the superiority of the model (G) according to the cutoff value1 mentioned in

Raftery (1993).

3.4.2 Likelihood Ratio Test

The null hypothesis in the likelihood ratio test states that the correct model is

RHH model (1.1). The alternative hypothesis includes a more complex model

and states that the proposed model (2.19) is the true model. As an example for

Japan, the null and alternative hypotheses suggest (3.2) and (3.3) as the correct

models, respectively. Under certain regularity conditions, the test statistics, Λ =

2(ˆ̀Lev− ˆ̀
Ren) is asymptotically chi-squared distributed with one degree of freedom,

where ˆ̀
Lev and ˆ̀

Ren represent the maximum log likelihood for the fitted proposed

model and RHH model. We reject the null hypothesis if Λ > χ2
(1,α), where χ2

(1,α)

1 Raftery (1993) suggests that a difference of 5 units in the BIC values indicates a “strong
evidence” to support a model.
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Table 3.7: Results of the Likelihood Ratio Test

Data Λ p-value

Japan 11.35 0.0007

The U.S. 3349.92 2.2× 10−16

Denmark 7611.07 2.2× 10−16

is the quantile of the chi-square distribution with one degree of freedom and α is

the significance level. Table 3.7 contains the test statistics and the p-values. For

all three countries, the null hypothesis is rejected in favor of the proposed model

at α = 0.001.

3.4.3 Akaike Weights and Evidence Ratio

The Akaike weights are easy to calculate and can be be used to assess the relative

likelihood of the models (3.3) and (3.2). They are defined by:

ωi =
exp (−1

2
∆i)∑2

r=1 exp (−1
2
∆r)

, (3.10)

where ∆i = AICi − AICmin is the difference of AIC for the ith model with the

minimum AIC in all of the considered models. The ωi can be easily interpreted.

They show the weight of evidence in favor of model i. To explain further, first we

can see from (3.10) that ωi decreases as ∆i increases. Also the sum of ωi equals one

and as a result we can compare them on a scale of 1. The ωi can be interpreted

as a probability that the ith model is the best among the considered models.

For Japan, the Akaike weights for models (3.3) and (3.2) are ωLev = 0.991 and

ωRen = 0.009, respectively. Based on these results, we can conclude that model

(3.3) is better than RHH model (3.2) with a probability of almost 0.99, according

to the Akaike weights. For the U.S and Denmark, this probability is nearly one

due to the large differences in the AIC’s.

In addition to Akaike weights, we can use the evidence ratio for Japan defined

as ER = ωLev/ωRen. It provides some evidence to select the best model and can

be interpreted as the relative value of evidence in favor of model (3.3). Here,

the evidence ratio is ER = 110. Therefore in this case, with reasonably strong

evidence, we can conclude that model (3.3) is likely to be the better model.

3.5 Pricing Life Annuities

A discrete life annuity due is a series of payments made at the beginning of equal

intervals such as (months, quarters, years) while the beneficiary of initial age x
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survives. These financial products play a major role in pension systems and are

often purchased as part of a retirement plan to ensure income during the retirement

years. Moreover, annuities have a role in disability and workers’ compensation

insurances as well. First, we state the formal definition of a whole life annuity due

from Bowers et al. (1997, Chapter 5). A whole life annuity is a type of annuity

that pays a unit amount at the beginning of each year that the annuitant age x

survives. The present value of future payments is denoted by

Y =

K(x,t)∑
j=0

ν(j), (3.11)

where the random variable K(x, t) is the curtate-future lifetime of age x at time

t and ν(j) = (1 + i)−j is the discount factor, i.e. the present value of $1 payable

at time j. We use the traditional actuarial approach known as the equivalence

principle to price the annuity. This is based on the fact that the insurance com-

pany providing annuities can diversify its mortality risk within a large portfolio of

annuitants.

Let äx,t be the net single premium for a whole life annuity due evaluated at

year t, based on the projected values in model (3.3). Moreover, we denote by qx,t

the probability that an individual with age x at time t will die between t and

t+1. The corresponding one year survival probability is defined by px,t = 1− qx,t.

In order to obtain qx,t, we assume that the force of mortality remains constant

over each calendar year and over each integer age, i.e. µ(x, t) = µ(x + u, t + s),

∀ x, t ∈ N and 0 ≤ u, s < 1. As a result, we can transform the force of mortalities

in (3.2) and (3.3) into qx,t by:

qx,t = 1− exp[−µ(x, t)]. (3.12)

The fair price or the net single premium (äx,t) without considering any expenses

incurred by the insurance company, is in fact the actuarial present value of the

annuity payments and is obtained by:

äM
x,t = E[Y ] =

∞∑
k=0

k∑
j=0

ν(j) kpx,t qx+k,t+k, (3.13)

where kpx,t is the k year survival probability of a life aged x at year t defined by:

kpx,t =
k−1∏
j=0

px+j,t+j, k = 1, 2, ... . (3.14)

The survival probabilities in (3.14) can be recursively estimated by applying (3.12)

together with the projected force of mortalities in RHH model (3.2) as well as the
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proposed stochastic model (3.3). The pricing formula in (3.13) can also be obtained

by using the current life tables for Japan and Denmark along with the U.S life

table. Therefore, in this case (3.13) becomes:

äT
x,t =

∞∑
k=0

k∑
j=0

ν(j)
k−1∏
i=0

px+i,t qx+k,t. (3.15)

Both actuarial present values calculated in (3.13) and (3.15) use the same bond

market assumption but different mortalities tables. In other words, (3.13) is based

on a model table qx+k,t+k for k = 0, ... and (3.15) is based on one of three current

tables qx+k,t for k = 0, ... where t = 2007 for the U.S. and t = 2009 for the Japan

and Denmark. The M in (3.13) stands for model and the T in (3.15) is for current

table. See Pitacco et al. (2009, Chapter 4, Subsection 4.4) for the details of using

the projected tables. To evaluate the prices in (3.13) and (3.15), we assume that

ν(j) = P (0, j), where P (0, j) is the current price of a zero coupon bond that pays

$1 at maturity j. Therefore, the annual price of zero coupon bonds, P (0, t), should

be first estimated to find (3.13) and (3.15). However, the zero coupon bond rates

are normally available at specific maturities. Therefore, to predict the yield curve

for a zero coupon bond, we first obtain the Japanese government bond rates on

March 4th, 2012 from Bloomberg1 as reported in Table 3.8. Then we use a cubic

smoothing spline method and fit the yield curve (see Chambers and Hastie (1993)

for the details). The yield rates for the U.S.2 and Denmark3 were obtained on

June 12, 2012 and July 3th 2012, respectively.

Table 3.8: Japanese Government Bond Rates on March 4th, 2012

Maturity (Years) 0.25 0.5 1 2 3 4 5 6 7 8 9 10 15 20 30

Yield (%) 0.10 0.10 0.11 0.11 0.14 0.21 0.30 0.41 0.56 0.67 0.82 0.99 1.43 1.76 1.95

We then evaluate the prices with three different approaches for each coun-

try. The first one is based on the current life tables according to (3.15) for

x = 55, 60, ..., 100. The other present values are derived using (3.13) with t = 2012

where the projected rates are obtained based on the RHH model (3.2) and our

proposed model (3.3). Since the first summation in (3.13) is not finite, we set a

convergence tolerance of 1% to find the maximum age attained and evaluate the

prices. In all three methods, we use the corresponding fitted yield curve for each

country to obtain the price of a zero coupon bond, as mentioned above. Table

1http://www.bloomberg.com/markets/rates-bonds/government-bonds/japan/
2http://www.bloomberg.com/markets/rates-bonds/government-bonds/us/
3http://www.forexpros.com/rates-bonds/denmark-government-

bonds?maturity from=1&maturity to=29
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Table 3.9: (äx,2012) prices for the Current Life Table and Percentage Changes for
RHH Model (1.1) (R-H) and our Proposed Model (2.19) (G)

Age

Data Model 55 60 65 70 75 80 85 90 95 100

Japan

Life table 2009 ($) 22.3 19.6 16.8 14.1 11.3 8.8 6.6 4.9 3.7 2.8

R-H (%) 6 6 6 6 6 8 9 12 14 14

G (%) 3 3 3 3 4 5 6 10 14 14

U.S.

Life table 2007 ($) 19.1 17.0 14.8 12.5 10.3 8.1 6.2 4.6 3.5 2.7

R-H (%) 5 5 4 5 4 5 6 9 6 0

G (%) 3 7 9 11 13 14 16 17 14 7

Denmark

Life table 2009 ($) 20.3 17.7 15.0 12.3 9.7 7.4 5.5 4.0 3.0 2.4

R-H (%) 12 19 20 19 22 27 33 38 37 29

G (%) 33 31 30 30 33 36 42 48 47 38

3.9 includes the prices based on (3.15) for the current life tables and the relative

percentage changes in the prices, for RHH model (3.2) and our proposed model

(3.3), defined by:

100×
äM

x,2012 − äT
x,t

äT
x,t

, (3.16)

where t = 2007 for the U.S. and t = 2009 for Japan and Denmark. It is apparent

that for all three countries and within each considered model, the prices gradually

decrease as the age increases. This is due to the fact that younger annuitants tend

to live longer than older people and therefore should pay more.

Age by age comparisons of the Japanese percentage changes shows that the

RHH model over-estimates the prices by almost 3% for the ages 50 to 85 com-

pared to the proposed model. This over-estimation will gradually decline as no

differences can be observed in the prices of two models for the ages above 95.

Unlike Japan, we can see a different trend in the U.S. as the prices based on

RHH model show an increase of 5 % at ages 55 and 60. However, the fair prices

based on the proposed model rise by 3 % and 7% at ages 55 and 60, respectively.

In other words, an over-estimation of 2% can be seen at age 55 according to the

RHH model. From age 60 to 90, RHH model under-estimates the prices with an

increasing trend starting from 2% at age 60 with a peak of 10% at age 85. The

RHH model shows an improvement of 9% at age 90 and will reach the same price

of $ 2.7 as provided by the U.S. Life table (2007) at age 100. The proposed model

indicates an increase of 17% at age 90 with a reduction of 7% in the prices at age

100.

For Denmark, RHH model will under-estimate the prices for all the considered

ages with a peak at age 55. The proposed model provides an increase of 33% in

the annuity value at age 55 while RHH model suggests an increase of 12%. This
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Figure 3.8: Price of whole life annuity due, Denmark males in 2012, proposed
model (3.3), RHH model (3.2) & Life Table in 2009.

shows how modeling the mortality rate with the gamma process can significantly

affect the annuity prices. We also see some large percentage changes in Denmark

compared to Japan and the U.S. This means that the annual rates of mortality

improvement in Denmark based on the fitted model are different from those in

Japan and the U.S. Moreover, the highest percentage increase for both models

with respect to the prices based on the current life table, occurs at age 90 with

rises 38% and 48% for the RHH model and our proposed model, respectively.

We illustrate the resulting prices for Denmark based on three different models

in Figure 3.8. The dash-dot line are the prices (triangles) based on the proposed

model (3.3) evaluated at ages 55 to 100. Also, we indicate the prices (dots)

according to RHH model (3.2) with the solid line. The long-dashed line represents

the prices (squares) based on the current life table of Denmark in 2009. We observe

that the under-estimation of the prices in RHH model (3.2) is higher at younger

ages than older ages and this under-estimation gradually decreases towards age

100.
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3.6 Conclusions

In this chapter, we show how to include a perturbation term into the modeling

structure suggested by Renshaw et al. (1996). In particular we focus on a gamma

process, as a special case of α-stable Lévy subordinators to express the force of

mortality as a linear function in terms of regression covariates. The proposed

stochastic model provides a better fit based on criteria like AIC, BIC, likelihood

ratio test, Akaike weights and evidence ratio. Our analysis also indicates that in

Japan with data over a short period of time, the projected rates based on the

suggested model progress more smoothly than the model introduced by Renshaw

et al. (1996).

We also study the pricing of whole life annuities based on three different mor-

tality data under a deterministic interest rate. Our numerical analysis shows how

RHH model can under/over-estimate the annuity prices, depending on the con-

sidered mortality data.

The conclusions given in this chapter are based on the assumption that the

model that provides a better fit can lead to more reliable prices. Unfortunately,

this assumption is not always true and there maybe some models that provide

a good fit but are not useful for the purpose of pricing, due to their low power

in projecting mortality rates. Therefore, comparing the projected rates and their

consistency with historical data should be also considered when pricing the annu-

ities.
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Chapter 4

Two-Factor Stochastic Mortality

Modeling

4.1 Introduction

The results in this chapter are given in Ahmadi and Gaillardetz (2014). Here, we

reconsider the two-factor stochastic mortality model introduced by Cairns, Blake

and Dowd (2006) (CBD). The error terms in the CBD model are assumed to form

a two-dimensional random walk. We first use the Doornik and Hansen (2008) mul-

tivariate normality test to show that the underlying normality assumption does

not hold for the considered data set. Ainou (2011) proposed independent univari-

ate normal inverse Gaussian Lévy processes to model the error terms in the CBD

model. We generalize this idea by introducing a possible dependency between the

2-dimensional random variables, using a bivariate Generalized Hyperbolic distribu-

tion. We propose four non-Gaussian, fat-tailed distributions: Student’s t, normal

inverse Gaussian, hyperbolic and generalized hyperbolic distributions. Our empir-

ical analysis shows some preferences for using the new suggested model, based on

Akaike’s information criterion, the Bayesian information criterion and likelihood

ratio test, as our in-sample model selection criteria, as well as the mean absolute

percentage error for our out-of-sample projection errors. We also develop an al-

ternative representation for the multivariate normal inverse Gaussian process in

Appendix A.3.

As mentioned in Cairns et al. (2006), there are 3 different mortality risks for in-

surance companies that offer annuities and life insurance products. We summarize

them here:

• Mortality risk: that means fluctuations of mortality rates over time.

• Longevity risk: which can be considered as any randomness in the long-term

trend of mortality rates.
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• Short-term, catastrophic mortality risk: that can be explained by any sudden

phenomena like the influenza pandemic in 1918, the tsunami of December

2004 in Indonesia and of 2011 in Japan.

We model longevity risk according to Cairns et al. (2006) that includes two

stochastic factors. They propose a bivariate normal distribution to model the

dynamic of the stochastic factors. However, the error terms of the CBD model

seem to have tails thicker than those of a normal distribution, as we show in

our empirical analysis. Therefore, we consider a family of bivariate generalized

hyperbolic (GH) distributions to model the error terms in the CBD model. This

family of distributions has semi-heavy tails with a dependence structure. We

use this desirable property to model longevity risk. Thus, we suggest using the

bivariate generalized hyperbolic (GH) distribution in the CBD model.

Specifically, we consider four non-Gaussian distributions within the GH class,

which include Student’s t, normal inverse Gaussian, hyperbolic and generalized

hyperbolic distributions. Next, in order to compare our model with the CBD

model, we use the likelihood ratio test, Akaike’s information criterion (AIC) and

the Bayesian information criterion (BIC) as our in-sample model selection crite-

ria. In addition, for the out-of-sample performance, we project mortality rates

and apply the mean absolute percentage error to the proposed model in order to

indicate some preferences.

4.2 Review of the CBD Model

In this section, we summarize the two-factor stochastic mortality model proposed

by Cairns et al. (2006). The realization of the one-year survival probabilities for

the cohort aged x and still alive at time t is denoted by p̃(t, x). Furthermore,

the realized mortality rate is defined by q̃(t, x) = 1 − p̃(t, x). For their empirical

analysis, they choose the following model for the mortality curve:

q̃(t, x) =
eA1

t+1+A2
t+1(x)

1 + eA1
t+1+A2

t+1(x)
, (4.1)

where they assume that At =
(
A1

t , A
2
t

)′
is a two-dimensional random walk with

drift. To make forecasts of the future distribution for At, they propose to model

the factors in At according to,

At+1 = At + µ + CZt+1, (4.2)

where µ is a constant 2× 1 vector, C is a constant 2× 2 upper triangular matrix

and Zt is a two-dimensional standard normal random variable.
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Similarly to Cairns et al. (2006), we use an ordinary least square method to

estimate At. Then, we change the distributional assumption in (4.2); next we

apply the maximum likelihood method to estimate the dynamic properties of the

two factors.

The first contribution of this chapter is that there is a historical data set for

which the normal assumption (4.2) does not hold and should be tested before

making any further inference. We also propose a GH distribution to use in the

CBD model and show that it can provide a better fit. First we describe the data

set that we use for our empirical illustration. We rely on mortality data for Males

in Italy, 1969-2008 and ages 60 to 90. The data set was obtained from the Human

Mortality Database (HMD1). We deliberately consider more recent data, since this

period of time exhibit fewer levels of uncertainty compared to the mortality data

for the first half or two-thirds of the 20th century. This allows us to have data

with less volatility and develop our model accordingly.

4.3 Doornik-Hansen’s Multivariate Normality Test

In order to estimate the mean and the variance-covariance matrix in (4.2), we first

need to estimate At. To do so, the ungraduated mortality rates for each t are

transformed from q̃(t, x) to

log
( q̃(t, x)
p̃(t, x)

)
= A1

t+1 + A2
t+1(x), (4.3)

where x ranges from 60-90 and t covers 1969-2008. Then, the linear regression is

applied in (4.3) to estimate At. It is clear from (4.2) that

E[At+1 −At] = µ,

Var[At+1 −At] = CC
′
. (4.4)

Equation (4.4) shows that the mean and the variance of the first consecutive

differences, At+1 − At, can be used to estimate µ and V = CC
′
, respectively.

The estimations are given in Table 4.1. Generally, the negative value for µ1 shows

mortality improvement. At the same time, the positive value for µ2 indicates that

mortality rates at higher ages are improving at a slower rate. These results are

consistent with those of Cairns et al. (2006) in the original CBD model. Before

explaining the Doornik and Hansen normality test, we need to check our data

(i.e. the increments At+1−At) for any serial autocorrelation, dependency as well

as conditional heteroscedasticity (non-constant variance). These are requirements

for the hypothesis tests that we use in this chapter.

1 The data are available online at www.mortality.org.
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Table 4.1: Estimated Mean and Variance Matrices for the CBD Model in (4.4)

Mortality data µ̂ V̂

Italy

[
−0.056037813

0.000529807

] [
0.0524230293 −0.0006519287

−0.0001527592 0.000002196178

]
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Figure 4.1: Sample ACF Plot for Italy-Data: 1969-1999

In order to test the serial autocorrelation, we obtain the sample autocorrelation

function (ACF), rk at lag k defined by:

rk =

∑n
t=k+1(Yt − Ȳ )(Yt−k − Ȳ )∑n

t=k+1(Yt − Ȳ )2
, k = 1, 2, ..., (4.5)

where Yt = Ai
t+1−Ai

t, i = 1, 2. Figure 4.1 shows the sample ACF of A1
t+1−A1

t and

A2
t+1 − A2

t with the 95 % confidence limits (dotted lines). Looking at this figure,

we can see that the sample ACF’s are not statistically significant. Therefore, there

is no indication of serially autocorrelated increments. The Ljung-Box test (Ljung

and Box (1978)) can be applied to test the independence of the At+1 −At values.

The test statistics is defined as:

Q(k) = n(n+ 2)
k∑

m=1

r̂2
k

n−m
, (4.6)
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where n is the number of observation and r̂k is the estimated sample ACF defined

in (4.5). The null hypothesis is the linear independence in At+1 − At. Under the

null hypothesis, Q(k) has an asymptotic chi-squared distribution with k degrees

of freedom. The null hypothesis is rejected when the value of Q(k) is greater than

the selected critical value of chi-squared distribution with k degrees of freedom.

Table 4.2 shows the value of the test statistic, Q(k), the degrees of freedom, df and

the p-value of the Ljung-Box test. Therefore, we cannot reject the null hypothesis

of linear independence at a significance level of 0.05. We also check the increments

Table 4.2: Ljung-Box Test of Independency

Data Q(k) df p-value

A1
t+1 − A1

t 15.1886 24 0.9151

A2
t+1 − A2

t 19.9168 24 0.7015

for the assumption of identical independent distribution (iid) by applying the test

proposed by McLeod and Li (1983). The null hypothesis assumes that the data

are iid. The test statistic is similar to Ljung-Box test (4.6), except that for the

sample ACF, r̂k, which is replaced by the sample autocorrelations of the squared

data. This is due to the fact that if the data are iid then square of the data

are iid as well. The McLeod-Li test (McLeod and Li (1983)) can also be used

to assess the conditional heteroscedasticity of the data. The test statistic is chi-

square distributed with k degrees of freedom under the null hypothesis of iid.

Figure 4.2 shows the p-values of the McLeod-Li test, evaluated up to lag 14. The

dashed line represents the 5% confidence level. Based on this test, we cannot

reject the null hypothesis of identical independent distribution. We can now test

the bivariate normality assumption in CBD model by using the method, proposed

by Doornik and Hansen (2008). The latter compares their suggested test with four

other tests for multivariate normality and concludes that it has the best size and

power properties over the other tests considered. This test is relatively simple, it

controls most sizes well and can be applied for samples as low as 10 observations.

The Doornik-Hansen’s test for multivariate normality is based on the skewness

and kurtosis of multivariate data that is transformed to ensure independence, as

explained in Appendix A.2. The package and corresponding R functions that we

used to perform the Doornik-Hansen’s test are asbio and DH.test, respectively.

The results are reported in Table 4.3.
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Figure 4.2: P -values of the McLeod-Li test for A1
t+1 − A1

t (left) and A2
t+1 − A2

t

(right), Italy data

The multivariate section of Table 4.3 indicates that the test statistic is sig-

nificant and based on the p-value of the test, the bivariate normality assumption

is rejected at a significance level of 0.05. The table also contains the univariate

tests for normality. The univariate normality assumption is rejected at the 5%

significance level. Consequently, the multivariate normality assumption does not

hold. Moreover, we applied a Shapiro-Wilk test for multivariate data sets using

Table 4.3: Doornik-Hansen Normality Test

Test statistics df p-value

Mortality data for Italy

Multivariate 25.20 4 4.6× 10−4

Univariate
19.74 2 5.2× 10−4

5.46 2 0.065

the R package mvnormtest. Details of Shapiro-Wilk’s test can be found in Royston

(1982a, b, 1995). Table 4.4 summarizes the results. The normality assumption is

rejected based on this multivariate test as well. Here, we address the importance

of the measurement error, as explained in Cannon (2010). It originates from the

fact that the CBD methodology first estimates the factors, then it analyses their

dynamic properties. This may affect the statistical results given in this section.

To propose an appropriate model, we need a more flexible class of distributions,

here we suggest the generalized hyperbolic distributions. We briefly review this

class in the next section.
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Table 4.4: Multivariate Shapiro-Wilk Normality Test

Mortality data Test statistic p-value

Italy 0.7629 1.48× 10−4

4.4 Generalized Hyperbolic Distributions

In this section, we review the definition of the family of generalized hyperbolic

(GH) distributions of McNeil et al. (Chapter 3, 2005).

The random vector X is said to have a d-dimensional GH distribution with pa-

rameters (λ, χ, ψ,µ,Σ,γ), denoted as X ∼ GH(λ, χ, ψ,µ,Σ,γ) if

X
d
= µ +Wγ +

√
WAZ, (4.7)

where
d
= denotes equality in distribution and

(i) Z ∼ Nk(0, Ik),

(ii) A ∈ Rd×k,

(iii) µ,γ ∈ Rd,

(iv) W ≥ 0 is a scalar-valued random variable which is independent of Z and

has a generalized inverse Gaussian distribution, denoted GIG(λ, χ, ψ). (See

Appendix A.3 for details.)

The joint density function of the GH distribution in the non-singular case (Σ has

rank d) is

fX(x) =

∫ ∞

0

fX|W (x|w)fW (w)dw

=

∫ ∞

0

e(x−µ)′Σ−1γ

(2π)
d
2 |Σ| 12

exp
{
− Q(x)

2w
− γ′Σ−1γ

2/w

}
fW (w)dw

= c×
Kλ− d

2

(√
(χ+Q(x))(ψ + γ′Σ−1γ)

)
e(x−µ)′Σ−1γ(√

(χ+Q(x))(ψ + γ′Σ−1γ)
) d

2
−1

, −∞ < x <∞,

(4.8)

where the normalizing constant is

c =
(
√
ψ/χ)λ(ψ + γ′Σ−1γ)

d
2
−λ

(2π)
d
2 |Σ| 12Kλ(

√
χψ)

,

and fW is the density function of the GIG random variable W . Here Kλ(.) is

the modified Bessel function of the third kind and Q(x) denotes the Mahalanobis

distance (x−µ)′Σ−1(x−µ). These parameters admit the following interpretations:
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• λ, χ, ψ specify the shape of the distribution and how much weight is assigned

to the tails compared with the center. The larger those parameters are, the

closer the distribution is to the normal distribution.

• µ is the location parameter.

• Σ = AA
′
is the dispersion-matrix. It controls correlations between compo-

nents of X and has to fulfill the usual conditions for covariance matrices,

i.e., symmetry and positive definiteness as well as a full rank property.

• γ is the skewness parameter. If γ = 0, then the distribution is symmetric.

The characteristic function of the GH distribution can be expressed as:

φX(u) = E
(
eiu′X

)
= eiu′µĤ

(1

2
u′Σu− iu′γ

)
, (4.9)

where Ĥ(θ) =
∫∞

0
e−θνdF (ν) is the Laplace-Stieltjes transform of the distribution

function F of the GIG random variable W . See McNeil et al. (2005) for more

details.

The GH distribution family includes some special cases under different names,

listed as follows:

• If λ = d+1
2

, we have a multivariate hyperbolic (hyp) distribution.

• If λ = −1
2

, a normal inverse Gaussian (NIG) distribution is obtained.

• If χ = 0, λ > 0, we have a variance gamma (VG) distribution.

• If ψ = 0, λ < 0, one gets a generalized hyperbolic Student’s t distribution.

The shape parameter for this particular case is ν = −2λ, which determines

the degrees of freedom.

In the next section, we use GH distributions to model the error terms in the CBD

model.

4.5 Proposed Model

We first define the generalized hyperbolic Lévy process based on the GH distribu-

tion. Then we use this process to model the increments At+1−At. The generalized

hyperbolic Lévy process is defined by

XGH = {X t, t > 0}, (4.10)
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where X0 = 0, with stationary and independent increments and X t has charac-

teristic function,

E
[
exp

(
iuX t

)]
=

(
φX(u)

)t
, (4.11)

where φX(u) is the characteristic function of the GH distribution, defined in (4.9).

Similarly to Cairns et al. (2006), we adopt the following mortality curve:

log
( q̃(t, x)
p̃(t, x)

)
= A1

t+1 + A2
t+1(x), (4.12)

and assume that for t > 0

At+1 −At = X1, (4.13)

where X1 is a bivariate GH Lévy process evaluated at a unit time scale. Here

At = (A1
t , A

2
t )
′ are two stochastic factors. In other words, we change the normality

assumption in the CBD model to a bivariate GH Lévy process, while we keep the

same structure as the CBD model for the evolution of survival probabilities. It

is worth mentioning that the iid assumption of the increments for the GH Lévy

process has already been tested for the selected data set in Section 4.3. Therefore,

we can now fit the proposed model and compare it with the CBD model.

4.6 Model Comparisons

This section compares the CBD model with the proposed model. For the sake of

comparison, we use the log-likelihood function (LLF), Akaike information criterion

(AIC), Bayesian information criterion (BIC), as defined in (3.8) and (3.9), together

with the likelihood ratio test (LRT).

The likelihood-ratio test can be used to check whether a special case of the GH

distribution is the true underlying distribution. The LRT test statistic is defined

as:

Λ =
sup{L(θ|Y ) : θ ∈ Θ0}
sup{L(θ|Y ) : θ ∈ Θ}

, (4.14)

where L denotes the likelihood function with respect to the parameter θ and data

Y , and Θ0 is a subset of the parameter space Θ. The null hypothesis H0 states

that θ ∈ Θ0 and the alternative hypothesis H1 states that θ ∈ Θc
0, where Θc

0 is the

complement of Θ0. Under the null hypothesis and certain regularity conditions,

it can be shown that −2 log Λ is asymptotically chi-square distributed with ν

degrees of freedom. Here ν is the number of free parameters specified in Θ minus

the number of free parameters specified in Θ0. The null hypothesis is rejected if

−2 log Λ exceeds the confidence level-quantile of the chi-square distribution with

ν degrees of freedom. In this study, H0 is the bivariate normal distribution in the

CBD model and H1 is the special case of the GH distribution.
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Table 4.5: In-sample Goodness of Fit Measures

GH Distribution Symm. LLF AIC BIC
LLF AIC BIC

Rank Rank Rank

ghyp T 233.39 -454.79 -446.38 2 1 1

NIG T 231.84 -451.68 -443.27 4 2 3

ghyp F 233.66 -451.32 -440.12 1 3 4

t T 230.53 -451.06 -444.06 6 4 2

hyp T 229.96 -447.93 -439.52 8 5 5

NIG F 231.91 -447.81 -436.60 3 6 7

t F 230.73 -447.46 -437.65 5 7 6

hyp F 230.03 -444.07 -432.86 7 8 8

Normal T 221.29 -432.57 -425.56 9 9 9

4.6.1 Empirical Analysis

For the purpose of measuring the in-sample model performance, we use the mor-

tality data for Males in Italy from 1969-1999 and ages 60-90. Then, to assess the

out-of-sample model performance, we forecast the development of the mortality

rates for the 9 subsequent years. We first estimate At in (4.13) by using the least

square technique, then we fit ten GH distributions with the maximum likelihood

method. The considered distributions are: Student’s t, NIG, hyp and generalized

hyperbolic distributions (ghyp) with density function defined in (4.8), both in the

symmetric and asymmetric cases. We use the R package ghyp in order to fit the

above distributions for X1 defined by (4.13).

Table 4.5 provides the in-sample goodness of fit measures based on the LLF,

the AIC and the BIC statistics, together with their corresponding ranks. A com-

monly used rule of thumb consists in considering that two models are significantly

different if the difference in the AIC is larger than 10, as discussed in Burnham and

Anderson (2002). Raftery (1995) suggests that a model significantly outperforms

a competitor if the difference in their respective BIC values exceeds 5. Therefore,

all three criteria show a preference for GH distributions when comparing to the

normal distribution with the lowest rank. The symmetric ghyp distribution is

the best distribution based on the BIC and the AIC. According to the LLF, the

asymmetric ghyp distribution offers the best fit to our mortality data set.

We use the R function lik.ratio.test1 to perform likelihood ratio tests. Table 4.6

1This function is available in the package ghyp.
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Table 4.6: Likelihood-Ratio Test

Model Symm. L-statistic df p-value

ghyp T 5.52×10−06 1 8.62×10−07

NIG T 2.61×10−06 1 4.30×10−06

ghyp F 4.20×10−06 2 4.20×10−06

hyp T 1.7 ×10−04 1 3.1 ×10−05

NIG F 2.40×10−05 2 2.40×10−05

t F 7.91×10−05 1 1.38×10−05

hyp F 1.59×10−04 2 1.59×10−04

provides the test statistics, degrees of freedom and the p-values. The likelihood

ratio tests are statistically significant for the selected GH distributions. This table

indicates that the considered mortality data set is more likely to come from the

GH distribution than a bivariate normal distribution.

Overall, Tables 4.5 and 4.6 provide some evidence to support the use of GH

distributions for modeling X1 in (4.13).

4.6.2 Mortality Projection

In this section, the out-of-sample performance of the proposed model is investi-

gated. The reference cohort is the set of males aged 65 in 1999. We first explain

how to use (4.12) in order to project the mortality rates for nine years corre-

sponding to t = 2000, 2001, ..., 2008. We generate nine iid copies of X1 from

the fitted symmetric ghyp distribution based on the mortality data over the pe-

riod of 1969-1999. Then, we apply (4.13) together with the estimated value of

A1999 in order to obtain At for t = 2000, 2001, ..., 2008. Next, we use (4.12)

to project the mortality rates for the considered reference cohort, denoted by

q̂(1999 + i, 65 + i), i = 1, 2, ..., 9. Finally, to evaluate the out-of-sample per-

formance, we repeat the above procedure 20,000 times and record the projected

mortality rates. Similarly to Wang et al. (2011), we find the mean absolute per-

centage error (MAPE) for each replication j = 1, 2, ..., 20, 000, defined as follows:

MAPEj = 100%× 1

9

9∑
i=1

∣∣∣ q̃(1999 + i, 65 + i)− q̂(1999 + i, 65 + i)

q̃(1999 + i, 65 + i)

∣∣∣, (4.15)

where q̃(t, x) is the observed mortality rate at time t for the cohort aged x in

simulation j. Table 4.7 illustrates the differences in mortality projection between

69



Table 4.7: Percentile of MAPE of Mortality Projection (Unit: %)

Model Symm. Mean 90% 95%

ghyp T 8.76 14.48 16.55

Normal T 9.74 16.13 18.32

the symmetric ghyp distribution and normal distribution, based on the mean,

90th percentile, and the 95th percentile of the MAPE. In this table, the model

with a better predictive power will have lower mean and percentiles. We find that

the symmetric ghyp distribution provides better mortality projection performance

based on the mean, 90th percentile, and the 95th percentile of MAPE.

In addition to the Italian mortality data set used in this chapter, we also fitted

our model to the Russian, Spanish and U.S. mortality data. Similarly to the

results given in this section, we find that the ghyp distribution fits better to the

data compared to the normal distribution, although these results have not been

reported in this chapter.

4.7 Conclusions

In this chapter, we show that the bivariate normality assumption in the CBD

model is sometimes appropriate for the considered mortality data. We test nor-

mality using the multivariate normality test of Doornik and Hansen (2008) and

the multivariate Shapiro-Wilk normality test. We reject the bivariate normality

assumption based on both tests.

Generalized hyperbolic distributions are proposed to model the increments of

At. We estimate the parameters by maximum likelihood. Four GH distributions,

in the symmetric and asymmetric cases, are compared with the CBD model based

on the AIC, BIC, LLF and the likelihood ratio test. We find that the symmetric

ghyp distribution provides the best fit and also gives better mortality projections

according to the MAPE.

To summarize the chapter, we suggest testing the bivariate normality assump-

tion in the CBD model before using it for projections. In addition, the GH dis-

tributions can be considered as a viable alternative to the Normal distribution in

the CBD model.
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Chapter 5

Modeling Catastrophic Mortality

Bonds

5.1 Introduction

In this chapter, we propose to model age adjusted death rates embedded in the

Swiss Re mortality bond that was offered in 2003 using a generalized least squares

approach. The model allows the error terms to be correlated and includes a binary

random variable that represents the occurrence of mortality jumps (in particular

influenza pandemics). We apply the variable length Markov chains (VLMC) model

proposed by Mächler and Bühlmann (2004) to model the incidence of catastrophic

events. The developed model is then compared to the currently recognized models

in the literature. A simulation study is carried out to estimate the market price

of risk in the Swiss Re bond using the Wang’s transformation.

Catastrophe mortality bonds are designed to transfer a set of specific risks, such

as extreme mortality, from a sponsor to investors. For instance, suppose we would

like to price the Swiss Re bond introduced in December 2003 and consider the

influenza pandemic in 1918 as the catastrophic event that significantly increased

the mortality rates over a short period of time. The first and probably the most

important question that comes to mind is if it could happen again? Modern

virologists and numerous epidemiologists agree that similar events can actually

happen again. See for example Webster and Walker (2003).

Moreover, since the conditions that caused the influenza pandemic in 1918

happened once before, similar conditions can lead to equally disastrous pandemics,

as indicated in Taubenberger and Morens (2006). Also, the prevalence of the virus

can be accelerated by air travels while medical centers can be overfilled. With all

medical advances and the current knowledge in preventing diseases, the return

of influenza pandemic virus in 1918 would probably kill more than 100 million

people across the world, as addressed in Taubenberger and Morens (2006). It

71



is therefore crucial for both investors and (re)insurance companies to take into

account mortality jumps when pricing mortality catastrophe bonds.

In this chapter, we focus on mortality shocks caused by severe influenza pan-

demics and study securitization in regard to extreme mortality risks. Different

approaches have been proposed to model mortality linked securities. Milidonis et

al. (2011) proposed a regime switching model with two states that follows a geo-

metric Brownian motion. Deng et al. (2012) suggest a double-exponential jump

diffusion model in order to model mortality jumps as well as cohort effects. Bauer

and Kramer (2008) introduced a time-continuous model to price catastrophe mor-

tality claims with stochastic force of mortality.

Lin and Cox (2008) use a geometric Brownian motion together with a log-

normal jump size distribution to estimate the market price of Swiss Re bonds.

They consider two consecutive periods of time where a mortality jump can occur.

Each interval may contain a maximum of one jump. As a result, four possible

cases are considered and the likelihood function can be obtained by condition-

ing on the occurrence of a mortality jump within each interval. They construct

a dependency structure among the mortality indexes (in the log scale). They

also approximate the correlation introduced by mortality jumps in the likelihood

function with an additional independence assumption. The model we develop

characterizes this dependency by embedding a time series approach within the

context of generalized least squares. However, our model does not need the extra

independence assumption of Lin and Cox (2008) since the log-likelihood function

is maximized for a single observation that has a multivariate normal distribution.

This approach enables us to jointly estimate the parameters while considering the

correlation imposed by mortality jumps. Also as an application, our model shows

that Swiss Re bonds (issued in 2003) exhibit lower risk premiums for the investors

than those obtained in Lin and Cox (2008).

Furthermore, our model not only improves the models by Milidonis et al. (2011)

and Lin and Cox (2008). We find lower risk premiums than Lin and Cox (2008).

It also provides a clear fitting performance over historical data. To the best of our

knowledge, this property may be difficult to fulfill (if not impossible) by applying

the two above mentioned papers.

In this chapter, we focus on modeling the mortality index of the Swiss Re

bonds. The model that we develop takes into account both the occurrence of

jumps and their magnitude. Our approach is in two stages. In the first stage, we

model the occurrence of jumps by using variable length Markov chains proposed by

Mächler and Bühlmann (2004). These results are then applied, by generalized least

squares, to model the magnitude of jumps (if any) in the mortality index. Overall,

we believe that the model proposed in this chapter can be distinguished from the
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current well known models in the literature by first showing a less restrictive

algorithm to estimate the parameters and at the same time providing a better fit

to the historical data. It also helps the reader to visually evaluate the performance

of the fitted values.

5.2 Data

We use the weighted average of mortality data over five different countries includ-

ing: U.K., France, Italy, Switzerland and the U.S., as introduced in the design of

the Swiss Re mortality bonds in late December 2003. We construct the mortality

index, qt over the period of 1900-2008, according to Krutov (2010) as follows:

qt =
5∑

j=1

Cj

12∑
i=1

Ai

(
Gmqm

ijt +Gfqf
ijt

)
, t = 1900, ..., 2008, (5.1)

where Cj is the weight assigned to country j, Ai is the weight assigned to age

group i, Gm is the weight assigned to males, Gf is the weight assigned to females,

qm
ijt is the mortality rate for male lives in age group i, in country j, in year t, and

qf
ijt is the mortality rate for female lives in age group i, in country j, in year t. The

weights assigned to each country are: 15% of U.K., 7.5% of France, 2.5% of Italy,

5% of Switzerland and 70% of the U.S. Here Gm and Gf are set to be 65% and

35%, respectively. Table 5.1 summarizes the weights assign to each age group.

Table 5.1: Weights Assign to Each Age Group

Age group (i) Ai

20-24 1%

25-29 5%

30-34 12.5%

35-39 20%

40-44 20%

45-49 16%

50-54 12%

55-59 7%

60-64 3%

65-69 2%

70-74 1%

75-79 0.5%

The mortality rates for each gender in (5.1) are obtained by using qijt =
Dijt

Popijt
,

where Dijt and Popijt are the total number of deaths and population size for
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the age group i, country j, in year t, respectively. In order to find qijt, we use

the Human Mortality Database1 to obtain Dijt and Popijt for the U.K, France,

Italy, Switzerland over the period 1900-2008 and during 1933-2008 for the U.S. We

complete the data set for the U.S. for the period 1900-1932 by using the Human

Life Table2 database as our source.

Figure 5.1 illustrates the time series of qt where t = 1900, ..., 2008. There have

been four influenza pandemics during the 20th century including the Spanish flu

(1918), Asian flu (1957), Hong Kong flu (1968) and Russian flu (1977). As Figure

5.1 shows, just the Spanish flu dramatically increased the mortality index.

It is possible to categorize influenza pandemics according to their case-fatality

ratio3 (CFR), when the data are available. The pandemic severity index introduced

by the United States Department of Health and Human Services in 2007 classifies

pandemics into 5 different categories according to their CFR, ranging from less

that 0.1% in Category 1 to 2% or higher in Category 5. The Spanish flu of 1918

is by far the most severe influenza pandemic ever experienced and is placed in

Category 5 while the Asian and Hong Kong flu are set into Category 2.

There have been 13 or more influenza pandemics since 1500. It is difficult to

obtain the pandemic severity index for all the past influenza pandemics since the

data are not readily available. Therefore, we rely on Taubenberger and Morens

(2009) to identify the pandemics in 1557, 1580, 1729, 1889 and 1918 as severe

pandemics with high fatality rates. The VLMC model as defined in Mächler

and Bühlmann (2004) shall be used to predict the occurrence of severe influenza

pandemics. For categorical time series data, the VLMC provides substantial ad-

ditional flexibility when fitting and modelling Markov chains. We later use this

approach in our simulation analysis, as detailed in Subsection 5.8.1.

5.3 Variable Length Markov Chain

This section gives the formal definition of VLMC according to Mächler and Bühlmann

(2004). Let Flut be a stationary process for t ∈ Z taking values in a finite categor-

ical space χ. In this chapter, Flut is a binary time series indicating the occurrence

of highly fatal influenza pandemics at time t. The deterministic values are de-

noted by small letters and let xj
i = (xj, xj−1, xj−2, ..., xi), i ≤ j, be the vector

of deterministic values whose components are written in reverse order. Similarly,

we can define a random vector as Fluj
i = (Fluj, F luj−1, F luj−2, ..., F lui), i ≤ j.

A preliminary function cpre is defined by: cpre : χ∞ →
⋃∞

j=0 χ
j ∪ χ∞ (χ0 = ∅)

1 The data are available online at www.mortality.org.
2 The data are available online at www.lifetable.de.
3The percentage of deaths out of the total reported cases of the disease in the U.S.
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Figure 5.1: Mortality index of Swiss Re bond: 1900-2008
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that maps an infinite sequence (the infinite past) to a possibly shorter string:

cpre : x0
−∞ 7→ x0

−l+1, where l is defined by

l = l(x0
−∞) = min{ k ;P [Flu1 = x1|Flu0

−∞ = x0
−∞]

= P [Flu1 = x1|Flu0
−k+1 = x0

−k+1],∀x1 ∈ χ}, (5.2)

and l ≡ 0 corresponds to independence. The function cpre(.) is called the prelimi-

nary context function. Let 0 ≤ p ≤ ∞ be the smallest integer such that

card
(
cpre(x

0
−∞)

)
= l(x0

−∞) ≤ p, ∀ x0
−∞ ∈ χ∞.

The number p is called the order of the preliminary context function cpre(.) and if

p < ∞, Flut is called a stationary VLMC of order p. A VLMC is a full Markov

chain of order p if the preliminary context function cpre(.) of order p is the full

projection x0
−∞ 7→ x0

−p+1 for all x0
−∞. The final form of a context function is

denoted by c(.) and combines the values of cpre(.) whose last symbols are the

same.

The context tree τ is defined as τ = τc = {w;w = c(x0
−∞), x0

−∞ ∈ χ∞},
where c(.) is the context function of a stationary VLMC. The structure of the

variable length memory should be estimated to fit the VLMC. As this contains non-

trivial steps, we refer interested readers to Section 6.1 of Mächler and Bühlmann

(2004) for the details of fitting VLMC’s. It is worth mentioning that in R (as

our statistical software) the package VLMC can be used to estimate and predict

variable length Markov chains.

5.3.1 Example

The following example clarifies the above definitions. In this example, Ht is a cat-

egorical time series that takes only values {A,B,C} i.e. χ = {A,B,C}. Consider

the following Markov chain model of order 2 where

P [Ht = ht|Ht−1 = ht−1, Ht−2 = ht−2, ...] (5.3)

=


P [Ht = ht|Ht−1 = A] if ht−1 = A

P [Ht = ht|Ht−1 = B] if ht−1 = B

P [Ht = ht|Ht−1 = C,Ht−2 ∈ {A,B}] if ht−1 = C, ht−2 ∈ {A,B}
P [Ht = ht|Ht−1 = C,Ht−2 = C] if ht−1 = C, ht−2 = C.

The preliminary context function with transition probabilities given in (5.3)

is:
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[AB] C 

Figure 5.2: The tree representation of Example 5.3.1

cpre(h
0
−∞) =



A if h0 = A, h−1
−∞ arbitrary

B if h0 = B, h−1
−∞ arbitrary

CA if h0 = C, h−1 = A, h−2
−∞ arbitrary

CB if h0 = C, h−1 = B, h−2
−∞ arbitrary

CC if h0 = C, h−1 = C, h−2
−∞ arbitrary.

(5.4)

The final representation of the context function can be obtained by aggregating

the values of cpre(.) whose second last symbols are the same as given below:

c(h0
−∞) =


A if h0 = A, h−1

−∞ arbitrary

B if h0 = B, h−1
−∞ arbitrary

C[A,B] if h0 = C, h−1 ∈ {A,B} h−2
−∞ arbitrary

CC if h0 = C, h−1 = C, h−2
−∞ arbitrary.

(5.5)

Figure 5.2 show the tree representation of Example 5.3.1.

5.4 Review of Generalized Least Squares

The standard linear regression model assumes that

Y = Xβ + ε, (5.6)
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where Y is the n×1 response vector, X is the n×(k+1) matrix of predictor vari-

ables, β is the (k+ 1)× 1 vector of regression coefficients and ε is an n× 1 vector

of regression errors. For this model, the error sum of squares ε′ε can be mini-

mized to obtain the ordinary least squares estimates of the regression coefficients

i.e. β̂ols = (X ′X)−1X ′Y . Furthermore, if we assume that ε ∼ Nn(0, σ2In), i.e.

the error terms are uncorrelated and follow an n-dimensional multivariate normal

distribution with mean zero and constant variance, then the covariance matrix of

regression coefficients can be written as V ar(β̂ols) = σ2(X ′X)−1. The assump-

tion of uncorrelated errors may not always be true. In this case, we can use a

generalized least squares approach as follows. Let ε ∼ Nn(0,Σ), where Σ is a

symmetric and positive-definite matrix of covariance errors. Then, for the known

Σ, the maximum likelihood estimator of β can be written as

β̂gls = (X ′Σ−1X)−1X ′Σ−1Y , (5.7)

with the covariance matrix V ar(β̂gls) = (X ′Σ−1X)−1. From the practical point

of view, we first need to estimate Σ from the data, in order to estimate the

regression coefficients. This means that the correlation structure within the error

terms should be correctly modeled prior to estimate the regression parameters.

As an example, in the next subsection, we focus in a particular case where the

error terms ε are not independent and will be considered as a time series with a

serially autocorrelated structure.

5.4.1 Stationary Correlated Errors

In this subsection, we assume that the error terms follow a stationary process

with mean zero and constant variance σ2. Also, the covariance structure depends

only on the distance of two error terms, i.e. Cov(εt, εt−s) = Cov(εt, εt+s) = σ2ρs,

where ρs is the error autocorrelation at lag s. Therefore, the error covariance

matrix can be expressed as Σ = [aij]n×n, where aij is the entry in the ith row and

jth column that equals to σ2ρ|i−j|, for i 6= j, and σ2 otherwise. This means that

Σ (and subsequently β̂gls in (5.7)) can be obtained by estimating σ2 and ρs. We

model the error terms according to an Autoregressive Integrated Moving Average

process, ARIMA(p, d, q), such that

(
1−

p∑
i=1

φiL
i
)(

1− L
)d
εt =

(
1 +

q∑
i=1

θiL
i
)
νt, (5.8)

where L is the lag operator, the φi are the parameters of the autoregressive part

of the model, the θi are the parameters of the moving average. Here νt represents

the white noise term that are normally distributed with mean zero and constant
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variance σ2
ν and independent of εt. As an example, if the error terms follow an

autoregressive process of order one, AR(1), i.e. εt = φεt−1 + νt, then we can easily

show that: ρ1 = φ, ρs = φs and σ2 =
σ2

ν

1− φ2
. The log-likelihood of the model can

be written as:

lnL(β) = −n
2

ln 2π − 1

2
ln(detΣ)− 1

2
(Y −Xβ)′Σ−1(Y −Xβ), (5.9)

where n is the number of observations. In the case of AR(1), we can obtain the

maximum likelihood estimates by maximizing the log-likelihood function in (5.9)

to jointly estimate the regression coefficients, β̂gls, φ and σ2
ν .

5.5 Model Specification

For our in-sample analysis, we use the estimated mortality index, qt in Section 5.2

during 1900−19981. For simplicity, we indicate this period of time by t = 1, ..., 99.

We develop our primary model using the standard linear regression in (5.6) based

on orthogonal polynomials of degree q as follows:


Y1

.

.

.

Y99

 =



P0(1) P1(1) . . . PN (1) 0
P0(2) P1(2) . . . PN (2) 0

. . . . . . .

P0(19) P1(19) . . . PN (2) 1
. . . . . . .

P0(99) P1(99) . . . PN (99) 0


×



β0

β1

.

.

βN

βF


+



ε0

ε1

.

.

εN

εF


, (5.10)

where Yt = logit(qt) = log
(

qt

1−qt

)
for t = 1, 2, ..., 99 and Pj(t) is an orthogonal

polynomial2 of degree j that can be calculated using a three-term recursion as

given in Kennedy and Gentle (1980). See Appendix A.4 for the construction of

Pj(t). Equation (5.10) is equivalent to

Yt = logit(qt) =
N∑

j=0

βjPj(t) + βFFlut + εt, t = 1, 2, ..., 99, (5.11)

where Flut is a binary sequence of {0, 1} that indicates the occurrence of influenza

pandemic at time t and εt is a sequence of uncorrelated and normally distributed

random variables with zero-mean and constant variance, σ2. As discussed in Sec-

tion 5.2, the influenza pandemic in 1918 was much more severe than the pandemics

in 1957 1968 and 1977. Therefore, we only mark the influenza pandemic in 1918

with Flu19 = 1 and Flut = 0, otherwise.

1We use this period of time to be consistent with Lin and Cox (2008).
2Using the orthogonal polynomials reduces significantly the multicollinearity in the polyno-

mial regression analysis and avoids any possible numerical problems due to near-singularity.
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Table 5.2: Ordinary Least Square Estimations for Model (5.11) with N = 4

Coefficient Estimates Std. Error t value p-value

β0 -3.172514 0.005062 -626.728 2× 10−16

β1 -3.860225 0.050413 -76.572 2× 10−16

β2 -0.079582 0.050112 -1.588 0.11566

β3 0.138954 0.050298 2.763 0.00691

β4 -0.162132 0.050528 -3.209 0.00183

βF 0.413613 0.051300 8.063 2.51× 10−12

There are two popular procedures to select the order of the polynomial in

(5.11). The first one is to start with a very simple model (i.e. N = 0) and then

try to add higher order of polynomials (forward selection). The second technique

is based on choosing a sufficiently high order and then dropping terms sequentially

(backward elimination). The criterion for adding or dropping terms is usually the

t-test, although other criteria can be considered. We follow the second method

and start by fitting an ordinary linear regression model (5.11) with N = 4. Table

5.2 summarizes the least squares estimation of the regression coefficients together

with their standard errors, t-values and p-values. Based on the the t-test, all the

predictable variables are statistically significant except the quadratic polynomial

at α = 0.01. Prior to drooping any terms for this model we first check adequacy

of the model by inspecting the residuals of the fitted model for any serial autocor-

relation, constant variance and the normality assumption. This is a crucial step;

since if the residuals are serially autocorrelated, then the normal t-test fails to

provide a reliable criteria.

Figure 5.3 shows the time series of the residuals in the fitted model. Here

the residuals are clearly serially autocorrelated and therefore the assumption of

independence is not satisfied. Also, there is a tendency for negative residuals to

follow negative values and positive residuals to follow positive values. Moreover,

the variance of the residuals seems to be constant over time. We use the normality

test proposed by Jarque and Bera (1981) to check the normality assumption of

the residuals. The test statistic is 0.308 with the p-value of 0.8573. Therefore, the

normality assumption of the residuals is not rejected at a 5% level. To correct the

autocorrelation problem, we model the residuals of the fitted regression equation

as an ARIMA(p, d, q) process. Therefore, the orders p, d, and q should be properly

selected.

We next obtain the sample autocorrelation function (ACF), and sample partial

autocorrelation function (PACF) denoted by rk and φkk, respectively, at lag k that
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Figure 5.3: Residuals (εt) of model (5.11) with N = 4

is defined by:

rk =

∑n
t=k+1(εt − ε̄)(εt−k − ε̄)∑n

t=k+1(εt − ε̄)2
, k = 1, 2, ..., (5.12)

φkk =
rk −

∑k−1
j=1 φk−1,j.rk−j

1−
∑k−1

j=1 φk−1,jrj

, (5.13)

where φk,j = φk−1,j − φkkφk−1,k−j for j = 1, 2, ..., k − 1. Figure 5.4 shows the

sample ACF and PACF of the fitted regression model together with the 95 %

confidence limits (dotted lines). There is a sinusoidal decay in the ACF plot and

two spikes at lag 1 and 4 in the PACF. Therefore, this plot suggests an AR(1)

with the coefficient close to one. Alternatively, we can use the Akaike information

criterion (AIC) and Bayesian information criterion (BIC) to select the order p, d

and q, as defined in (3.8) and (3.9). The model with the minimum AIC or BIC can

be considered as the preferred model, given a set of candidate models. Overall, we

fitted 27 ARIMA models with p, d, q ∈ {0, 1, 2} and searched for the model with

the minimum criteria. The best models according to the AIC and BIC criteria,

within the fitted models, are ARIMA(2,0,1) and AR(1), respectively. Table 5.3

summarizes the results for these two candidate models. Here, the differences in

the AIC values are less than one unit and negligible. However, the BIC criterion

for AR(1) is smaller than the BIC for ARIMA(2,0,1) by almost 4.5. This suggests

the use of AR(1) in modeling the residuals of the fitted regression model.
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Figure 5.4: ACF and PACF plot of the residuals in model (5.11) with N = 4

Table 5.3: The Best Two Candidate Models Based on AIC and BIC Criteria

Model AIC BIC

AR(1) -407.11 -401.92

ARIMA(2,0,1) -407.94 -397.56
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Table 5.4: Generalized Least Square Estimations for Model 5.14, φ̂ = 0.803, σ̂ν =
0.0486

Coefficient Estimates Std. Error t value p-value

β0 -3.171424 0.01488672 -213.03714 0.0000

β1 -3.890020 0.13943457 -27.89853 0.0000

β2 -0.065357 0.13212128 -0.49468 0.6220

β3 0.090311 0.11558114 0.78137 0.4366

β4 -0.138227 0.10728056 -1.288469 0.2008

βF 0.349926 0.02334694 14.98809 0.0000

5.6 Model Fit

We now use the generalized least squares approach explained in Subsection 5.4.1

to fit the model

Yt = logit(qt) =
4∑

j=0

βjPj(t) + βFFlut + εt, t = 1, 2, ..., 99, (5.14)

where εt follows an AR(1) process. The maximum likelihood estimates of the re-

gression parameters and their standard errors together with t-values and p-values

are reported in Table 5.4. We find that the standard errors of the regression

coefficients have been adjusted to take into account the correlation structure em-

bedded in the model. Here, in contrast to the results given in Table 5.2, the

t-test indicates that the contribution of the polynomials of order 2, 3 and 4 is not

statistically significant. In order to select the order of polynomials, we update

the model (5.14) by sequentially dropping the non-significant terms. Therefore,

in addition to model (5.14), we fit three more models to the same data set using

a generalized least squares1 according to:

Yt = logit(qt) =
N∑

j=0

βjPj(t) + βFFlut + εt, t = 1, 2, ..., 99, (5.15)

where εt follows an AR(1) process for N = 1, 2, 3.

Figure 5.5 shows the observed mortality index in the log scale (solid dots),

qt during 1900 − 2008 and the fitted curves based on model (5.14) with N = 4

together with models (5.15) using polynomials of order N = 1, 2, 3, as described

above. For each fitted model, we project the mortality index for the next 18

years (i.e. 1999-2016). We can now evaluate the out of sample performance of the

1Similarly to our fitting procedure for model (5.14) and prior to applying the generalized
least squares approach, we first fit these three models using linear regression and found that the
AR(1) is a suitable process to model the error terms.
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Figure 5.5: Observed mortality index and the fitted curves in model (5.15) using
polynomials of order N = 1, 2, 3 and model (5.14) with N = 4

considered models. It is now clear that the model with N = 4 will under-estimates

the mortality index over the projection period, while the models with N = 1 and

N = 3 over-estimate the mortality index. The model with N = 2 seems to fit the

data well and provide a reasonable projection. Therefore, we keep the quadratic

term in the model. In this case, the fitted model is

logit(qt) = −3.17P0(t)− 3.86P1(t)− 0.13P2(t) + 0.35Flut + εt, (5.16)

where εt = 0.83εt−1+νt and νt is normally distributed with mean zero and standard

deviation of 0.053. The inclusion of the Flut in (5.16) is statistically significant at

α = 0.001. This shows that mortality jumps should be taken into account when

modeling the mortality index. Although this conclusion is consistent with Lin and

Cox (2008), here we used a different approach to show the importance of mortality

jumps.

5.7 Model Comparisons

In this section, we compare our model with two other well known models proposed

by Milidonis et al. (2011) and Lin and Cox (2008). Milidonis et al. (2011) proposed

to model the log change rate of the mortality index with a regime switching model
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Table 5.5: Comparison of AIC and BIC Criteria for RS-GBM, GMB and Model
(5.16)

Model AIC BIC

RS-GBM -390.50 -374.98

GMB -383.06 -370.14

Model (5.16) -404.95 -389.38

between two geometric Brownian motions (RS-GBM). They let Zt = log(qt/qt−1)

and defined a Markov process with two states such that 1Zt = µ1t + σ1Wt and
2Zt = µ2t+σ2Wt, whereWt is a standard Brownian motion process. Therefore, the

mortality index changes according to two geometric Brownian motions. Lin and

Cox (2008) use the geometric Brownian motion (GBM) with a discrete Markov

process to model the mortality index. Specifically, the dynamic of mortality index

at time t, when there is no one-time catastrophic event, is modeled as dq̃t =

αdt + σq̃tdWt, where α and σ represent the drift term and the instantaneous

volatility of the mortality index, respectively. Also, the number of catastrophic

events during year t is described by a discrete Markov chain, Nt with N0 = 0 and

Nt+1 =

{
Nt + 1 with probability p,

Nt with probability 1− p,
(5.17)

where p is the probability of having a mortality jump during the period [t, t+ 1].

The percentage change in the mortality rate due to a random shock is denoted by

Rt− 1. Lin and Cox (2008) considered a log-normal distribution with parameters

r1 and r2 to model Rt such that Rt = er1+r2Ut , where Ut is a standard normal

random variable. The mortality index qt is then modeled as:

qt =

{
q̃tRt with probability p,

q̃t with probability 1− p.
(5.18)

We fit our data over the period of 1900−1998 to models RS-GBM and GBM. The

AIC and BIC criteria for RS-GBM, GBM and our model in (5.16) are summarized

in Table 5.5. Both criteria support the fitted model in (5.16).

5.7.1 The VLMC Fit

We fit the VLMC model as explained Section 5.3 to a binary time series of the

highly fatal observed influenza pandemics from 1500-1998 that includes influenza

pandemics in 1557, 1580, 1729, 1889, 1918. The estimated order of the Markov

chain and the estimated number of leaves are p̂ = 178 and 33, respectively. The

estimated context tree size, τ̂ , is 390. The fitted VLMC could correctly predict

four out of five considered severe influenza pandemics.
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5.8 Swiss Re Bond

This section explains the design of the Swiss Re bond. In December 2003, Swiss

Re issued a longevity bond with a principal of $400 million that had a maturity

of three years. It provides the investors with quarterly coupons of three-month

U.S. dollar LIBOR plus 135 basis points. The principal repayment depends on the

performance of the mortality index qt, for the years 2004, 2005, 2006. Specifically,

the loss at year t (losst), is given by:

losst =


0 if qt ≤ 1.3q0,

1− 1.5q0 − qt
0.2q0

if 1.3q0 < qt ≤ 1.5q0,

1 if qt > 1.5q0,

(5.19)

where qt is the mortality index in year t defined in (5.1) and q0 is the level of the

mortality index in 2002. Equation (5.19) shows that the amount of principal paid

to the investors is reduced as the realized mortality index exceeds the threshold

of 1.3q0 and will be completely exhausted for a mortality index greater than 150%

of the 2002 level. For this bond, there will be 12 coupons (i.e. quarterly during 3

years of the bond life time) with a coupon value of

Cj =


(S + Lj

4

)
.F if j = 1

4
, 2

4
, ..., 11

4
,(S + Lj

4
+ α

)
.F if j = 3,

(5.20)

where S and Lj represent the spread values and the LIBOR rates, respectively, F

is the face value of the bond and α is defined as

α = max
(
0, 1−

2006∑
t=2004

losst

)
. (5.21)

Therefore, the discounted cash flow (DC) of the payments is equal to:

DC(r) =
12∑
i=1

C i
4

(1 + r
4
)i
, (5.22)

where r is the nominal annual interest rate.

5.8.1 Estimation of the Market Price

Equations (5.20) and (5.21) show a random payoff for the Swiss Re bond at the

maturity of the contract. Also, we do not have access to any tradable mortality

index to hedge the portfolio for this mortality derivative. As a result, we cannot

use the complete markets approach to price the Swiss Re bond as mentioned in

Lin and Cox (2008). Here, we can apply Wang’s transform, see Wang (2002), to
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handle these problems. Generally speaking, this method requires to first transform

the distribution function of the random variable in (5.21). Then, a discounted

expected value under this new transform distribution provides the price of the

mortality bond. The Wang transform is defined as:

F ∗
X(x) = Φ[Φ−1(FX(x)) + λ], (5.23)

where X is a random payment with a distribution function F , Φ is the standard

normal cumulative distribution function and λ is the market price that can be

considered as the unhedgeable risk factor in the insurance industry. In practice,

we do not know the true distribution function, F , in Equation (5.23) and it should

be estimated. Therefore, Wang (2002) proposed the two-factor transformation as:

F ∗
X(x) = Q[Φ−1(FX(x)) + λ], (5.24)

where Q is the t-distribution. In order to use (5.24) to price the Swiss Re bond,

we should first estimate the distribution function of the random variable α in

(5.21). Hence, we must project the mortality index, qt in (5.16) over the period of

2000− 2006. As mentioned before, to fit the model (5.16), we used the data over

the period of 1900 − 1998. Now, we explain how to simulate the mortality index

for t = 100− 107:

• Step 1: Generate Pj(t) in (5.16) for j = 0, 1, 2 and t = 100− 107 by using

the recursive formula given in the Appendix A.4.

• Step 2: Simulate εt by generating a normal random variable νt with mean

zero and standard deviation 0.053 that was estimated in (5.16). The starting

value of the process should be the final residual1 of the fitted model in (5.16).

• Step 3: Set Flut = 0 for t = 100− 104 as we have not observed any severe

influenza pandemic during 1999− 2003.

• Step 4: Use the fitted VLMC model in Subsection 5.7.1 to simulate the

occurrence of the random variable Flut in (5.16) over the period of 2004 −
2006.

• Step 5: Plug in the obtained predictable variables Pj(t), Flut and εt in

(5.16) to predict qt over 1999− 2006.

We run 50,000 simulations and evaluate the losses in (5.19). Lin and Cox (2008)

approximate the payment at maturity by defining q = max(q2004, q2005, q2006). This

approach requires estimating the empirical distribution function of q that should

1Residuals is the difference of the observed qt and the fitted value in (5.16)
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be next transformed by using Wang’s transform (5.24). In this chapter, as an

alternate to the first approach, we first find the empirical probability distribution

function of the total loss during 2004, ..., 2006, i.e. FX(x) in (5.23), where X =∑2006
t=2004 losst. Then, we transform FX(x) by using a starting value of the market

price λ (that will be solved later), i.e.

F ∗
X(x) = Q[Φ−1(FX(x))− λ]. (5.25)

It is now possible to find the expected value of α in (5.21) under the transformed

distribution function as follows:

E∗λ(α) = 1−
∫ 1

0

(1− F ∗
X(x))dx, (5.26)

where E∗λ is the expected value with respect to the transformed distribution func-

tion F ∗
X(x), given the market price λ. In addition, we evaluate the expected value

of the discounted cash flow of the payments, E∗λ
[
DC(r)

]
in (5.22) with the par

spread of the Swiss Re bond s = 1.35%, the face value (F ) and constant LIBOR

rates as Lj = r = 1% for j = 1, 2, ..., 12. Finally, we numerically solve the equa-

tion of E∗λ
[
DC(r)

]
− F = 0 for λ to estimate the market price as λ̂ = −0.043.

Obtaining the loss using the approximation, i.e. q = max(q2004, q2005, q2006), leads

to the same results.

Wang (2004) estimates the average market price of risk for catastrophic risks

as -0.45. Our estimated market price is lower than the one obtained in Lin and

Cox (2008) in terms of absolute value. Therefore our analysis shows that, unlike

the conclusion given in Lin and Cox (2008), the Swiss Re company did not pay

high risk premiums to the investors despite its extremely successful introduction in

2003. It means that by assuming r = 1% the mortality bond spread of 1.35% was

fair. The difference may be due to the fact that we used the weighted mortality

index while Lin and Cox (2008) used the U.S. age adjusted death rates in order

to estimate the market price.

In order to analyze the sensitivity of the market price with respect to the

interest rate, we fit our model using different values of r, ranging from 1% to 4.5 %.

Table 5.6 gives the estimated market prices for the selected interest rates. Based on

this table, as r increases, the estimated market price rises. This can be explained

as follows. For a fixed value of r, E∗λ
[
DC(r)

]
is a decreasing function of λ for the

assumed spread. This is true since F ∗
X(x) decreases as λ rises in (5.25). As a result

E∗λ(α) decreases in (5.26). Consequently, E∗λ
[
DC(r)

]
declines. In addition, we need

to show that for λ1 = −0.043 and 0.01 ≤ r ≤ 0.045, E∗λ1

[
DC(r)

]
is an increasing

function of r. To show this property, we first obtain E∗−0.043(α) = 0.9586706 .

88



Table 5.6: Estimated Market Price vs. Different Values of Interest Rates

r(%) 1 1.5 2 2.5 3 3.5 4 4.5

λ̂ -0.043 -0.038 -0.033 -0.028 -0.023 -0.018 -0.013 -0.008

Next, we take the derivative of

E∗λ1

[
DC(r)

]
=
F

4

12∑
i=1

0.0135 + r

(1 + r
4
)i

+ F × 0.9586706

(1 + r
4
)12

, (5.27)

with respect to r as follows:

d

dr
E∗λ1

[
DC(r)

]
=
F

4

( 12∑
i=1

1

(1 + r
4
)i
− 1

4

12∑
i=1

i(0.0135 + r)

(1 + r
4
)i+1

)
− 3F (0.9586706)

(1 + r
4
)13

.

(5.28)

We then try to find the roots of Equation (5.28) by using Mathematica 5.1 to

obtain:

d

dr
E∗λ1

[
DC(r)

]
= F.(−0.0135)× (−0.629346 + r)× (14.2515− 0.915218r + r2)×

(39.942 + 4.09275r + r2)× (71.0296 + 10.9624r + r2)×

(98.7726 + 17.3423r + r2)× (115.062 + 21.1472r + r2)×

(4 + r)−13. (5.29)

The only positive critical root on the real line is r = 0.629346. Therefore, the

expected value in (5.27) is increasing for all r < 0.629346, as shown in Figure 5.6.

In this plot, the y-axis represents the expected value of discounted cash flows for

λ1 = −0.043 in (5.27) and the x-axis represents the interest rates, r ranging from

0.01 to 0.9. So we can conclude that E∗λ1

[
DC(r)

]
is an increasing function of r for

0.01 ≤ r ≤ 0.045.

We are now in the position to justify Table 5.6. As we have already shown,

for r1 = 0.01, the estimated market price is λ1 = −0.043, obtained numerically

by solving E∗λ1

[
DC(r1)

]
− F = 0. If we increase r1 to r2 ≤ 0.045, then by the

above arguments, we must have E∗λ1

[
DC(r2)

]
≥ E∗λ1

[
DC(r1)

]
and that leads to

E∗λ1

[
DC(r2)

]
≥ F . Therefore, to estimate the new market price λ2 corresponding

to r2, we should decrease the expected value of discounted cash flows by increasing

the market price, such that it is equal to the face value of the contract, i.e. F .

This means that λ2 should be greater than λ1.

To summarize, the results given in this part show that by increasing the interest

rates, the estimated market price will not change substantially.
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Figure 5.6: Expected value of discounted cash flows for λ1 = −0.043 in (5.27)
(y-axis) v.s. the interest rates 0.01 ≤ r ≤ 0.9. (x-axis )

5.9 Conclusions

In this chapter, we consider modeling the mortality index by combining variable

length Markov chains and the generalized least squares technique. First, the mor-

tality index has been constructed based on the design of the Swiss Re bonds. Then,

we develop a polynomial regression model using the generalized least squares. An

AR(1) process has been identified as the correlation structure of the error terms.

Next, we fit our model and compare it to the models proposed by Milidonis et

al. (2011) and Lin and Cox (2008). Both the AIC and BIC criteria support the

suggested model in this chapter. In addition, we estimate the market price of risk

for the Swiss Re bond by performing a simulation study. Our estimation of the

market price was lower (in absolute value) than the estimated market price in Lin

and Cox (2008). In summary, we suggest modeling the error terms as a time series

model.
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Conclusions

The contributions of the current thesis are divided into four main parts. In the

first part, we add a random variable that follows a one-dimensional OU process

to the force of mortality proposed by Ballotta and Haberman (2006). Similarly to

Renshaw et al. (1996), a Poisson GLM is used to model the force of mortality that

includes both age effects and time trends. The residual deviance is minimized to

estimate coefficient of the explanatory variables and the process. Some examples

explain how to estimate and forecast the mortality rates in details.

In the 2nd part, we extend the idea of including a perturbed term by condi-

tionally adding an α-stable Lévy subordinator in the force of mortality to capture

the effect of shocks in mortality. In particular, we focus on gamma process and

provide some examples to support the proposed approach. The price of whole life

annuities due are compared based on RHH model, our suggested model and the

current life table. The results illustrate some over/under estimations in the prices

of annuities by the RHH model.

In the 3rd part, we first review the CBD model that relies on the Gaussian

distribution to model the error terms. The normality assumption is tested and

rejected for the considered data set. Bivariate GH distributions are proposed to

model the error terms in the CBD model. We show how the suggested model can

provide a better fit to the considered mortality data based on AIC, BIC, LLF and

the likelihood ratio test. In addition, we evaluate the out of sample performance

of the proposed model by obtaining MAPE. These facts support the developed

model according to GH distributions. Furthermore, we develop an alternative

representation for the multivariate normal inverse Gaussian process.

In the last part, we study a catastrophic mortality bond issued by Swiss Re.

The mortality index is constructed according to their design. The incidence of

catastrophic events (severe influenza pandemics) is modeled based on VLMC ap-

proach. We use the generalized least squares technique to model the evolution

of mortality index. In this model, we add the time effects based on orthogonal

polynomials. We compare our proposed model with RS-GBM model introduced

by Milidonis et al. (2011) as well as GMB model suggested by Lin and Cox (2008).
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For the future work, it may be possible to consider credit risk modeling to

estimate the market price of risk for the companies with lower credit rating than

Swiss Re. Here, the liabilities should be modeled by taking into account the rating

of the company.
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Appendix A

A.1 Lévy Processes: Preliminaries

Definition A.1. We say that a real-valued random variable Θ has an infinitely

divisible distribution if for each n = 1, 2, ... there exist a sequence of i.i.d. random

variables Θ1,n, ...,Θn,n such that

Θ
d
= Θ1,n + ...+ Θn,n,

where
d
= is equality in distribution.

Definition A.1 can also be written based on the characteristic exponent; sup-

pose that Θ has characteristic exponent Ψ(u) := −logE(eiuΘ) for all u ∈ R. Then

Θ has an infinitely divisible distribution if for all n ≥ 1 there exists a characteristic

exponent of a probability distribution, say Ψn, such that Ψ(u) = nΨn(u) for all

u ∈ R. The expression for the characteristic exponent Ψ of an infinitely divisible

distribution will be stated in the following theorem, known as the Lévy-Khintchine

formula.

Theorem A.1. A probability law µ of a real-valued random variable is infinitely

divisible with characteristic exponent Ψ,∫
R
eiθxµ(dx) = e−Ψ(θ),

for all θ ∈ R, if and only if there exists a triplet (a, σ,Π), where a ∈ R, σ ≥ 0 and

Π is a measure concentrated on R\{0} satisfying
∫

R(1∧ x2)Π(dx) <∞, such that

Ψ(θ) = −logE(eiθX) = iaθ +
1

2
σ2θ2 +

∫
R
(1− eiθx + iθxχ(|x|<1))Π(dx), ∀θ ∈ R,

where

χ(|x|<1) =

1, |x| < 1

0, o.w.

Definition A.2. The measure Π is called the Lévy (characteristic) measure.
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We should mention that for any t > 0, Zt in Definition 2.1 is a random variable

belonging to the class of infinitely divisible distributions. Moreover the Lévy pro-

cess Zt has the property that for all t ≥ 0, E(eiθZt) = e−tΨ(θ), where Ψ(θ) := Ψ1(θ)

is the characteristic exponent of Z1, which has an infinitely divisible distribution.

Definition A.3. Let (S, S, η) be an arbitrary σ-finite measure space and N :

S → {1, 2, ..., }
⋃
{∞} in such a way that {N(A) : A ∈ S} is a family of random

variables defined on the probability space (Ω,F,P). Then N is called a Poisson

random measure on (S, S, η) (or sometimes a Poisson random measure on S with

intensity η) if

(i) for mutually disjoint A1, ..., An in S, the variables N(A1), ..., N(An) are inde-

pendent,

(ii) for each A ∈ S, N(A) is Poisson distributed with parameter η(A) (here we

allow 0 ≤ η(A) ≤ ∞),

(iii) P-almost surely N is a measure.

Theorem A.2. A Lévy process with Lévy-Khintchine exponent corresponding to

the triplet (a, σ,Π) has paths of bounded variation if and only if

σ = 0 and

∫
R
(1 ∧ |x|)Π(dx) <∞. (A.1)

The finiteness property of the integral in (A.1) allows us to rewrite the Lévy-

Khintchine exponent of any such bounded variation process as

Ψ(θ) = −idθ +

∫
R
(1− eiθx)Π(dx), (A.2)

where the constant d ∈ R relates to the constant a and Π via

d = −
(
a+

∫
|x|<1

xΠ(dx)
)
.

Hence, in this case, the Lévy process can be written in the form of

Zt = dt+

∫
[0,t]

∫
R
zN(ds, dz), t ≥ 0. (A.3)

Definition A.4. A Lévy process is a subordinator if and only if Π(−∞, 0) = 0,∫
(0,∞)

(1 ∧ x)Π(dx) <∞, σ = 0, d = −
(
a+

∫
(0,1)

xΠ(dx)
)
≥ 0.

Condition Π(−∞, 0) = 0 means that the Lévy process has no negative jumps.

If we further assume that
∫

(0,∞)
(1 ∧ x)Π(dx) < ∞, σ = 0 and d ≥ 0 in represen-

tation (A.2) of the characteristic exponent, we will obtain that the Lévy process

has non-decreasing paths. Hence, Lévy processes whose paths are almost surely

non-decreasing (or simply non-decreasing for short) are called subordinators. The

gamma process and the inverse Gaussian process are two examples of subordina-

tors.
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Theorem A.3. Let Yt ∈ Rn be an Itô-Lévy process of the form

dYt = α(t, ω)dt+ σ(t, ω)dBt +

∫
Rl

γ(t, z, ω)N̄(dt, dz), (A.4)

where α : [0, T ]×Ω → Rn, σ : [0, T ]×Ω → Rn×m, and γ : [0, T ]×Rl × ω → Rn×l

are adapted processes such that the integral exists. Let f ∈ C1,2([0, T ] × Rn; R),

i.e., the space of all continous functions with first and 2nd derivatives. Bt in (A.4)

is an m-dimensional Brownian motion and

N̄(dt, dz)T =
(
N̄1(dt, dz1), ..., N̄l(dt, dzl)

)
=

(
N1(dt, dz1)− χ(|z1|<R1)ν1(dz1)dt, ..., Nl(dt, dzl)

−χ(|zl|<Rl)νl(dzl)dt
)
,

where {Nj} are independent Poisson random measures with Lévy measures νj

coming from l independent (one-dimensional) Lévy processes η1, ..., ηl and χ(|z|<R)

is defined as:

χ(|z|<R) =

1, |z| < R

0, otherwise.
(A.5)

Put K(t) = f(t,Yt). Then

dK(t) =
∂f

∂t
dt+

n∑
i=1

∂f

∂y(i)
(αidt+ σidBt) +

1

2

n∑
i,j=1

(σσT )ij
∂2f

∂y(i)∂y(j)
dt

+
l∑

k=1

∫
|zk<Rk|

{
f(t, Yt− + γ(k)(t, zk))− f(t, Yt−)

−
n∑

i=1

γ
(k)
i (t, zk)

∂f

∂y(i)
(Yt−)

}
νk(dzk)dt

+
l∑

k=1

∫
R

{
f(t, Yt− + γ(k)(t, zk))− f(t, Yt−)

}
N̄k(dt, dzk), (A.6)

where γ(k) ∈ Rn is column number k of the n × l matrix γ = [γik] and γ
(k)
i = γik

is the coordinate number i of γ(k).

A.2 Doornik-Hansen’s Test

In this section, we briefly explain the multivariate normality test proposed by

Doornik and Hansen (2008). Denote a p × n matrix of n observations on a p-

dimensional vector by X ′ = (x1, ...,xn) with sample mean x̄ = n−1
∑n

i=1 xi and

sample covariance matrix S = n−1
∑n

i=1(xi−x̄)(xi − x̄)
′
. Let V = diag(σ̂1, ..., σ̂p)

be the diagonal matrix which has the variances on the diagonal and obtain the
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correlation matrix C = V
−1
2 SV

−1
2 . The eigenvalues of C can then be used to define

a diagonal matrix Λ = diag(λ1, ..., λp). Next, each observation is transformed

according to yi = HΛ
−1
2 H ′V

−1
2 (xi − x̄) to obtain a p × n transformed matrix

Y ′ = (y1, ...,yn). Here, the columns of H are the corresponding eigenvectors of C,

such that H
′
H = Ip and Λ = H

′
CH. Denote the univariate skewness and kurtosis

for each of the p-transformed vectors of n observations by B1
′
= (

√
b11, ...,

√
b1p)

and B2
′

= (b11, ..., b1p), respectively. The multivariate Doornik-Hansen’s test

statistic is:

Ep = Z1
′
Z1 + Z2

′
Z2,

that has approximately a chi-square distribution with 2p degrees of freedom, where

Z1
′
= (z11, ..., z1p) and Z2

′
= (z21, ..., z2p) are determined by (A.7) and (A.8) as

follow:

β =
3(n2 + 27n− 70)(n+ 1)(n+ 3)

(n− 2)(n+ 5)(n+ 7)(n+ 9)
,

w2 = −1 +
{

2(β − 1)
} 1

2
,

δ =
1

{log (
√
w2)} 1

2

,

y =
√
b1

{w2 − 1

2

(n+ 1)(n+ 3)

6(n− 2)

} 1
2
,

z1 = δ log {y + (y2 + 1)
1
2}, (A.7)

δ = (n− 3)(n+ 1)(n2 + 15n− 4),

a =
(n− 2)(n+ 5)(n+ 7)(n2 + 27n− 70)

6δ
,

c =
(n− 7)(n+ 5)(n+ 7)(n2 + 2n− 5)

6δ
,

k =
(n+ 7)(n+ 5)(n3 + 37n2 + 11n− 313)

12δ
,

α = a+ b1c,

χ = (b2− 1− b1)2k,

z2 =
{( χ

2α

) 1
3 − 1 +

1

9α

}
(9α)

1
2 . (A.8)

A.3 The Generalized Inverse Gaussian Distribu-

tion

The GIG(λ, χ, ψ), is defined by

fGIG(ω) =
(ψ
χ

)λ
2 ωλ−1

2Kλ

(√
χψ

) exp
{
− 1

2

(χ
ω

+ ψω
)}
, ω > 0, (A.9)
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with parameters satisfying

(χ > 0, ψ ≥ 0, λ < 0), or (χ > 0, ψ > 0, λ = 0), or else (χ ≥ 0, ψ > 0, λ >

0).

Special cases of the GIG distribution are the gamma distribution, when χ = 0

and λ > 0, as well as the inverse gamma distribution, with ψ = 0 and λ < 0.

We start by giving the definition the inverse Gaussian (IG) random variable, from

Schoutens (2003).

Definition A.5. A random variable Y is said to have an IG distribution with

parameters a and b, written as IG(a, b), if it has a characteristic function of the

form:

φY (u; a, b) = exp
{
− a(

√
−2iu+ b2 − b)

}
.

The IG distribution is infinitely divisible and hence we can define the IG process

I = {It, t ≥ 0}, with parameters a, b ≥ 0, as the process which starts at zero and

has independent and stationary increments such that

E[exp(iuYt)] = φY (u; at, b) = exp
{
− at(

√
−2iu+ b2 − b)

}
.

We also mention that for λ = −1
2

the GIG(λ, a2, b2) reduces to the IG(a, b).

In the following theorem, we develop an alternative representation for the mul-

tivariate NIG process that is more convenient to perform Monte Carlo simulations

especially when the problem is path dependent.

Theorem A.4. For t > 0 define

X t = δ2∆ βIt + δIdW It + tµ, (A.10)

where It is an IG process with parameters a = 1 and b = δ
√
α2 − β

′
∆β such

that α, δ > 0 and β ∈ {x ∈ Rd : α2 − β
′
∆β > 0} with ∆ ∈ {A ∈ Rd×d :

|A| = 1}. Here Id is a d-dimensional identity matrix, W t is a d-dimensional

Brownian motion without drift, and diffusion parameter ∆ and µ ∈ Rd. Then

X t ∼ NIG(α,β, tµ, tδ,∆).

Proof: For simplicity we first assume that µ = 0, then the conditional dis-

tribution of WIt is a d-dimensional Gaussian, i.e. given It, WIt ∼ Nd(0, δ
2∆It).

Hence given It, X t ∼ Nd(δ
2∆βIt, δ

2∆It). Therefore, for any u ∈ Rd, we have that

E[exp{δ2u
′
X t|It}] = exp

{
δ2(u

′
∆β +

1

2
u

′
∆u)It

}
.
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Using the characteristic function, or equivalently the moment generating function

of an IG process, we obtain

E
[
exp{δ2u

′
X t}

]
= E

[
exp

{
δ2(u

′
∆β +

1

2
u

′
∆u)It

}]
= exp

(
− tδ

{√
−2u′∆β − u′∆u + α2 − β

′
∆β

−
√
α2 − β

′
∆β

})
= exp

(
− tδ

{√
α2 − (β + u)′∆(β + u)

−
√
α2 − β

′
∆β

})
. (A.11)

Here (A.11) is shown to be the moment generating function of the multivariate NIG

distribution in Barndorff-Nielsen (1997). The location parameter µ can be added

to the process and by the properties of the conditional expectation, Equation

(A.10) holds.

A.4 Orthogonal Polynomials

The orthogonal polynomials in (5.10) can be obtained by the following recursion

formula:

P−1(t) = 0, P0(t) = 1, (A.12)

Pj+1(t) = (t− ρj+1)Pj(t)− γjPj−1(t), (j = 0, 1, ..., q − 1),

where for j > 0,

ρj+1 =

∑99
t=1 t[pj(t)]

2∑99
t=1[pj−1(t)]2

, (A.13)

with ρ1 = t̄ and

γj =

∑99
t=1[pj(t)]

2∑99
t=1[pj−1(t)]2

, (j = 1, 2, ..., 98), (A.14)

where γ0 = 0.
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