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ABSTRACT

The Minimum Flow Cost Hamiltonian Tour Problem

Camilo Ortiz

In this thesis we introduce the minimum flow cost Hamiltonian tour problem

(FCHT). Given a graph and positive flow between pairs of vertices, the FCHT con-

sists of finding a Hamiltonian cycle that minimizes the total cost for sending flows

between pairs of vertices thorough the shortest path on the cycle. We prove that the

FCHT belongs to the class of NP -hard problems and study the polyhedral structure

of its set of feasible solutions. In particular, we present five different MIP formula-

tions which are theoretically and computationally compared. We also develop some

approximate and exact solution procedures to solve the FCHT. We present a combi-

natorial bound and two heuristic procedures: a greedy deterministic method and a

greedy randomized adaptive search procedure. Finally, a branch-and-cut algorithm

is also proposed to solve the problem exactly.
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Chapter 1

Introduction

Combinatorial optimization has emerged as a major research area in discrete and

applied mathematics. It deals with the solution of optimization problems over dis-

crete structures by integrating techniques from combinatorics, linear programming

and the theory of algorithms. It has played an important role in the development of

mathematical results and theories for the past few decades and it has shown a great

impact on a wide variety of applications in science and engineering such as produc-

tion planning, transportation, telecommunications, computer science, statistics, and

biology, among others (see, Cook et al., 1998; Schrijver, 2003; Bazaraa et al., 2009).

A natural and systematic way to study combinatorial optimization problems is to

express them as integer programming problems. Integer programming refers to the

class of constrained optimization problems in which some or all of the variables are

restricted to take integer values. In the most studied and used integer programs the

objective function is linear and the constraints are linear inequalities. Often, the main

issue for the solution of integer programs lies on the efficiency of the mathematical

model and the methodology used to solve it, since we usually deal with a finite but

very large set of feasible solutions. Therefore, evaluating all solutions one by one
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and selecting the best one is not an option and more efficient methods should be

found. Many combinatorial optimization problems are known to be in the class NP -

hard, which means that, unless P = NP , no solution method, with a running time

bounded by a polynomial in the size of the representation exists to optimally solve

them. As a consequence, for most real size applications, combinatorial optimization

problems cannot be solved by general purpose methods or solvers and thus, ad hoc

mathematical models and specialized solution algorithms are needed to efficiently

solve them.

One of the most intensively studied combinatorial optimization problems over the

past fifty years is the so-called traveling salesman problem (TSP) (for a recent survey

see Öncan et al., 2009). Given a weighted graph G, the TSP consists of finding a

cycle visiting all the vertices of G exactly once, i.e. a Hamiltonian tour, for which

the sum of the cost of the edges is minimized. The TSP focuses on the design costs

of the cycle and despite its apparent simplicity, it is known to be NP -hard. Its wide

range of applications as well as the complexity to optimally solve it have made of

the TSP a symbol for this field. Many exact and approximate solution techniques

have risen trying to provide (near-) optimal solutions to this problem. Nowadays,

state-of-the-art algorithms can solve TSP instances with up to thousands of nodes on

a desktop computer (Cook, 2011).

In this thesis we introduce the minimum flow cost Hamiltonian tour problem

(FCHT), which can be stated as follows. Given a weighted graph G and a posi-

tive flow between pairs of vertices of G, the FCHT consists of finding a Hamiltonian

cycle of G that minimizes the total cost for sending flows between pairs of vertices

through their shortest path on the cycle. The FCHT is a combinatorial optimiza-

tion problem closely related to the TSP. Note that the set of feasible solutions (all

Hamiltonian cycles in G) of both the TSP and the FCHT is the same. However, the
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FCHT focuses on the operational costs of the network whereas the TSP focuses on

the design costs. Therefore, the set of optimal solutions of both problems will be

different because of their different objective functions.

The goal of this thesis is twofold. The first one is to introduce and study a new

challenging combinatorial optimization problem, refereed to as the FCHT. We show

that it belongs to the class of NP -hard problems and study the polyhedral struc-

ture of its set of feasible solutions. In particular, five different integer programming

formulations are presented and theoretically compared with respect to the quality

of their linear programming (LP) relaxation bounds. The first two formulations are

based on constructing the paths between pairs of origin/destination vertices, one of

them requiring a number of decision variables given by a polynomial function and the

other requiring an exponential one. The third formulation is based on determining

the amount of flow passing through every arc of the network, coming from a particular

origin vertex. This formulation requires fewer variables and constraints to model the

problem than the previous two formulations, but at the expense of producing weaker

LP bounds. The last two formulations contain the least number of decision variables

among all proposed formulations, however, the bounds are shown to be rather weak.

The second contribution is to develop some approximate and exact solution meth-

ods to solve the FCHT. We first present a combinatorial bound based on shortest

paths and two heuristic methods that can be used to obtain lower and upper bounds,

respectively, on the optimal solution value of the problem. The first heuristic uses

a greedy deterministic approach to construct an initial feasible solution whereas the

second one uses a greedy randomized adaptive search procedure (see, Gendreau and

Potvin, 2010). Both heuristics use a simple local search method to improve the initial

solutions. We then present an exact branch-and-cut method to obtain optimal so-

lutions for the FCHT. This algorithm employs the flow-based formulation and some
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families of valid inequalities as a bounding procedure at the root node of the enumer-

ation tree. Finally, we present a series of computational experiments to evaluate the

practical performance of some of the proposed mathematical models and the solution

algorithms.

The remainder of this thesis is organized as follows. In chapter 2 we introduce

some relevant concepts of convex analysis, combinatorial optimization, integer pro-

gramming and complexity theory, needed for making this document self-contained.

In chapter 3 we formally define the FCHT and in chapter 4 we introduce five different

integer programming formulations and a comparison of their LP bounds. Chapter 5

presents the proposed approximate and exact solution methods. In chapter 6 we show

the main computational results. Finally, in chapter 7 we summarize our conclusions

and point out future research directions on the topic.
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Chapter 2

Preliminaries

In this chapter we present some relevant definitions and mathematical results from

convex analysis, linear programming, integer programming, combinatorial optimiza-

tion, and complexity theory. The results presented in this section are derived from

the books of Bazaraa et al. (2009); Nemhauser and Wolsey (1988); Wolsey (1998),

and Cook et al. (1998).

2.1 Convex Analysis

In this section we review some of the basic results from convex analysis, including the

notions of convex sets, hyperplanes, and polyhedral sets used to describe linear and

integer programs.

Definition 2.1. A set X ⊆ Rn is called a convex set if given any two points x1

and x2 in X then λx1 + (1 − λ)x2 ∈ X for any λ ∈ [0, 1]. Any point of the form

λx1 + (1− λ)x2 is called a convex combination of x1 and x2.

Definition 2.2. A point x in a convex set X is called an extreme point of X if x

cannot be represented as a convex combination of two distinct points in X.
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Consider now a nonzero vector p in Rn and a scalar k. Then, we have the following

definitions.

Definition 2.3. A hyperplane H in Rn is a set of the form {x : px = k}.

Definition 2.4. A half-space is a collection of points of the form {x ∈ Rn : px ≥ k}.

Definition 2.5. A polyhedral set (or polyhedron) is the intersection of a finite number

of half-spaces.

Also a polyhedron can be defined as a subset P ⊆ Rn described by a finite number

of linear constraints P = {x ∈ Rn : Ax ≤ b}, with A ∈ Rm×n and b ∈ Rm. The poly-

hedral set corresponding to the constraints in an optimization problem is called the

feasible region and its elements are called feasible solutions i.e. the points satisfying

all constraints. Finally, we present the formal definition of convex hull.

Definition 2.6. Given a set X ⊆ Rn, the convex hull of X, denoted conv(X) is

defined as:

conv(X) = {x : x =
t∑
i=1

λix
i,

t∑
i=1

λi = 1, λi ≥ 0 for i = 1, · · · , t with {x1, · · · , xt} ⊆ X}.

In other words, the conv(X) is the (unique) minimal convex set containing X.

2.2 Linear, Integer and Combinatorial Optimiza-

tion

In this section we focus on the definitions of linear and integer programs, combina-

torial optimization problems, formulations, and relaxations. We also provide some

definitions that will help us compare integer programming formulations.

6



Definition 2.7. Consider a finite set N = {1, · · · , n} with corresponding weights

cj for each j ∈ N and a set F of feasible subsets of N . The problem of finding a

minimum weight feasible subset is the combinatorial optimization problem

min
S⊆N
{
∑
j∈S

cj : S ∈ F}.

Given the discrete nature of combinatorial optimization problems, they are gener-

ally formulated as integer programs where some or all the variables must be integer-

valued. Consider the linear mixed integer programming problem defined as follows.

Definition 2.8. If some but not all variables are integer, we have the (linear) mixed

integer program (MIP)

min{cx+ dy : Ax+By ≤ b, x ∈ Rn
+ and y ∈ Zp+},

where x = (x1, · · · , xn) is a vector of real variables and y = (y1, · · · , yp) is a vector

of integer variables. An instance of MIP is specified by the data (c, d, A,B, b). The

feasible region of MIP is given by the set S = {(x, y) ∈ Rn
+ × Zp+ : Ax + By ≤ b}.

The function z = cx + dy is called the objective function and an optimal solution

z∗ = (x∗, y∗) is a feasible point for which the objective value is minimum, i.e.,

cx∗ + dy∗ ≤ cx+ dy, ∀(x, y) ∈ S.

An special case of MIP is the following linear program.

Definition 2.9. If all variables are in R+, we have the linear program (LP)

min{cx : Ax ≤ b and x ∈ Rp
+}.
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Also, a linear programming problem can be described as the optimization prob-

lem of a linear objective function while satisfying a set of linear equality or inequality

constraints. Classical techniques such as the simplex method as well as more sophis-

ticated polynomial time algorithms, such as interior point methods, are nowadays

capable of solving large-scale LP problems with millions of variables and constraints.

When we restrict all the variables to be integer-valued, we have another special

case of a MIP.

Definition 2.10. If all variables are in Z+, we have the (linear) integer program (IP)

min{cx : Ax ≤ b and x ∈ Zn+}.

In general, the solution of integer programming models is a challenging task. We

cannot use classical machinery of convex optimization because S = {x ∈ Zn+ : Ax ≤ b}

is not a convex set and a linear function over Zn+ is convex but non-differentiable.

Therefore, we must resort in other mathematical techniques to prove that a particular

solution is optimal by arguments other than convexity and differentiability.

When using integer programming, the first step is usually to represent the set of

feasible solutions of an optimization problem with a polyhedron.

Definition 2.11. A polyhedron P ⊆ Rn+p is a formulation for a set X ⊆ Zn ×Rp if

and only if X = P ∩ (Zn × Rp).

From the previous definition, it is clear that there is not a unique formulation for

an optimization problem. This leads us to the following definition in order to be able

to compare between the different formulations of a particular problem.

Definition 2.12. Given a set X ⊆ Rn and two formulations P1 and P2 for X then

we say that P1 is a better formulation than P2, if P1 ⊂ P2.
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According to this definition, we can conclude that no other formulation for a

given problem X is better than conv(X). Given that conv(X) is a polyhedral set,

it can be represented by a finite set of linear constraints and thus, solved as a linear

program. For some particular classes of combinatorial optimization problems the

characterization of conv(X) is known. However, for the vast majority of the problems

that belong to the class NP -hard, the representation of conv(X) remains unknown.

Several algorithms have been developed to solve MIPs. The key idea to this

methods is usually to construct a sequence of lower bounds z ≤ z∗ and upper bounds

z ≥ z∗ such that z = z = z. In practice, algorithms find an (not necessarily)

increasing sequence of lower bounds and a (not necessarily) decreasing sequence of

upper bounds, and stop when the difference between the lower bound and the upper

bound is within a threshold value. We then need to find ways for obtaining such

bounds. Following this idea, we must have in mind that in real applications we

usually look for a balance between the time consumed by a model and its exactness.

This means, if we can get a good approximation efficiently, sometimes is better than

taking a long time to find the exact optimal solution. Obviously, this depends on the

requirements of the problem and the particular application.

Many integer programming techniques use the simple idea of replacing a difficult

MIP by an easier optimization problem whose optimal solution value is a lower bound

for the MIP optimal solution value.

Definition 2.13. A problem (R) zR = min{f(x) : x ∈ T ⊆ Rn} is a relaxation of

the integer program (IP) z = min{g(x) : x ∈ X ⊆ Rn} if the following two conditions

are satisfied:

• X ⊆ T

• f(x) ≤ g(x) for all x ∈ X.

9



An immediate result of this definition is that if (R) is a relaxation of (IP) then

zR ≤ z. This means that any relaxation of the original problem will give us a lower

bound if we are minimizing (an upper bound if we are maximizing). In the case of

upper bounds when minimizing, every feasible solution is an upper bound and the

problem lies in finding the smallest one. We present some methods to find upper

bounds in later sections.

One of the most common relaxations of integer programs consists in dropping the

integrality conditions.

Definition 2.14. For an (IP) z = min{cx : x ∈ S} with S = X ∩ Zn+ the linear

programming relaxation is given by zLP = min{cx : x ∈ X}.

We present in the next proposition a known result that links the comparison

between formulations and the LP relaxations.

Proposition 2.1. Consider P1 and P2 two different formulations for an integer pro-

gram and assume that P1 is better than P2. If zLPi = min{cx : x ∈ Pi} are the values

of the associated linear programming relaxations, then zLP1 ≥ zLP2 .

Another relaxation widely used for MIP is called the Lagrangean relaxation. The

main idea lies in the fact that sometimes it is “easy” to handle a set of constraints

but we face a set of “difficult” constraints as well. In this case, we drop the difficult

constraints and we add them to the objective function using Lagrangean multipliers.

So, if we consider the (IP) z = min{cx : Dx ≤ d and x ∈ X} then for any value of

λ = (λ1, λ2, · · · , λm) we define the problem IP (λ):

z(λ) = min{cx+ λ(Dx− d) : x ∈ X}.

Proposition 2.2. The problem IP(λ) is a relaxation of the original IP for all λ ≥ 0.
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Definition 2.15. The problem of finding the best (largest) Lagrangean lower bound

on the optimal solution value of IP is

(LR) max
λ≥0

IP (λ).

It is called the Lagrangean dual of (IP).

Proposition 2.3. The Lagrangean dual (LR) is equivalent to the primal relaxation

(PR)

minimize cx

subject to Dx− d

x ∈ conv({x ∈ Zn+ : Ax ≤ b})

in the sense that z∗LR = z∗PR.

Definition 2.16. We say that (LR) has the Integrality Property if

conv({x ∈ Zn+ : Ax ≤ b}) = {x ∈ Rn
+ : Ax ≤ b}

These definitions and results imply that if a Lagrangean dual (LR) has the inte-

grality property then z∗LP = z∗PR = z∗LR ≤ z∗IP .

Given that the LP relaxations are generally easier that the original MIP, and the

fact that zLP ≤ z, we are interested in knowing under which conditions a solution

for the LP relaxation will coincide with the solution of the IP. We next present some

definitions that will help us characterize some sufficient conditions.

Definition 2.17. A matrix A is totally unimodular (TU) if every square sub-matrix

of A has a determinant +1,-1 or 0.
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We present sufficient conditions for a matrix to be TU in the following proposition.

Proposition 2.4. A matrix A is TU if

• aij ∈ {1, 0,−1} for all i, j and

• for any subset M of the rows, there exists a partition (M1,M2) of M such that

each column j satisfies |
∑
i∈M1

aij −
∑
i∈M2

aij| ≤ 1.

Finally, we present the following result where sufficient and necessary conditions

are given in order to solve an integer program using its LP relaxation.

Proposition 2.5. The linear program min{cx : Ax ≤ b, x ∈ X} has an integral

optimal solution for all integer vectors b for which it has a finite optimal value if and

only if A is totally unimodular.

2.3 Solution Methodologies

In this section we review some of the most common and broadly used methods to

solve IPs and MIPs. In particular, we present a brief description of approximate

methods such as heuristic and meta-heuristic as well as exact algorithms such as

branch-and-bound and cutting plane methods.

A heuristic method can be described as a procedure that is based on a set of

rules that seem to be of some utility for finding feasible solutions for a given problem.

The most simple heuristics are greedy and local search procedures. The aim of a

greedy heuristic is to construct an initial feasible solution, while in a local search

procedure is to improve some initial solution. A greedy method works on the basis

of a rule which serves to identify elements, one at a time, to build a feasible solution

for a problem. It has the inconvenient of being myopic, in the sense that earlier

selections of promising elements could yield to the selection of very bad elements at
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some point of the constructive procedure. A local search procedure is an iterative

method that terminates when there are no solutions immediately accessible that could

improve the last one found. However, it has the disadvantage of getting trapped in

local optima. A lot of research has been done to develop heuristic methods that

overcome local optimality. This search for improved heuristics combined with the

development of computer technology have given rise to the so-called meta-heuristic

methods. They refer to a master strategy that seeks to overcome local optimality and

provide a general framework for the development of solution methods (see Gendreau

and Potvin, 2010). One of the most used meta-heuristics is the greedy randomized

adaptive search procedure (Festa and Resende, 2011).

One can find in theory the optimal solution for a given combinatorial optimization

problem by enumerating all feasible solutions and evaluating the objective function.

However, this is not efficient for most cases because usually, there is a huge number

of feasible solutions. Therefore, exact methodologies have been developed to solve

IPs without having to resort on a complete enumeration. Among them, we find the

branch-and-bound method and the cutting plane algorithm. Broadly speaking, the

branch-and-bound algorithm consists of dividing the set of feasible solutions, so that

we have to handle smaller (“easier”) problems, while the cutting plane algorithm looks

for additional constraints that might reduce the set of feasible solutions by “cutting”

parts of the set that are not part of the convex hull of integer solutions.

Proposition 2.6. Let z = min{cx : x ∈ S} and S = S1 ∪ · · · ∪Sk be a decomposition

of S into smaller sets, and let zk = min{cx : x ∈ Sk} for k = 1, · · · , K. Then,

z = mink z
k.

The branch-and-bound is interpreted as a tree, where each node corresponds to a

given set Si and the root node is the entire set S. Usually this method involves the

use of LP relaxations to find lower bounds on each set Si and compare them with the
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best upper bound found to that point, in order to discard sets of feasible points (i.e.

when zk > z) and thus, reduce the size of the problem.

We now present a few definitions necessary for the the cutting plane method. We

begin with the concepts of valid inequalities and separation problems.

Definition 2.18. An inequality αx ≤ α0 is a valid inequality for X ⊆ Rn if αx ≤ α0

for all x ∈ X.

Definition 2.19. The separation problem associated to a combinatorial optimization

problem is the following: given x∗ ∈ Rn, is x∗ ∈ conv(X)? If not, find an inequality

αx ≤ α0 satisfied by all points in X but violated by the point x∗.

In order to explain the cutting plane algorithm, we must have in mind that for a

given (IP) min{cx : x ∈ X} where X = {x ∈ Zn+ : Ax ≤ b} we can in theory, find the

convex hull of X, i.e., conv(X) = {x ∈ Zn+ : Âx ≤ b̂}, which would lead us to simply

solve its LP relaxation. However, finding conv(X) is not generally easy (or efficient)

task. What we can do in practice is to reduce the size of the set of feasible solutions

by means of valid inequalities. Valid inequalities that are useful are the ones that are

valid for X but are violated for the linear programming relaxation of (IP ). Suppose

that X = P ∩ Zn and let V be a set of valid inequalities of X.

14



Cutting Plane Algorithm.

Start: Set i = 0, T = 0 and P 0 = P .

while(T 6= 1) do
Solve the linear program zi = min{cx : x ∈ P i}.

if(The optimal solution xi is integer)
T=1.
else
Solve the separation problem for xi and V.

if (There is an inequality that cuts off xi)
P i+1 = P i ∩ {x : αix ≤ αi0} and i = i+ 1.
else
T = 1.
end if

end if
end do

If the output of the separation problem is a valid inequality that cuts off the

optimal point for the current linear program, we will improve the formulation. The

issue is that sometimes the separation problem is also NP -hard and therefore, is not

easy to solve. This is usually handled by using approximation techniques, so that we

find violated inequalities but not necessarily the most violated one.

A very interesting process to find the convex hull of a given set for any IP is the so-

called Chvátal-Gomory procedure (Chvátal, 1973; Gomory, 1958), which constructs,

in a finite number of iterations, the conv(X) through sets of valid inequalities that

at every step improve the formulation. The problem with this procedure is that

in practice it can take a very large number of iterations to converge to an optimal

solution.
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2.4 Complexity Theory

One of the most studied open questions for the last decades in mathematics and com-

puter science, particularly in complexity theory, is the P vs NP problem. Complexity

theory is related to the classification of optimization problems in terms of their diffi-

culty to solve them. For each optimization problem, an associated (YES-NO) decision

problem, of the form: “Is there an x ∈ S with value cx ≤ k for a given k?” is used

to define the class of legitimate problems.

Definition 2.20. NP is the class of decision problems with the property that: for any

instance for which the answer to the problem is yes, there is a (“quick”) polynomial

proof of the yes.

Definition 2.21. P is the class of decision problems in NP for which there exits a

polynomial algorithm to answer the problem.

Definition 2.22. If Q,R ∈ NP and if an instance of Q can be converted in polyno-

mial time to an instance of R, then Q is polynomially reducible to R.

Definition 2.23. The class of NP-Complete problems, is the subset of problems Q ∈

NP such that for all R ∈ NP , R is polynomially reducible to Q.

Definition 2.24. An optimization problem for which its corresponding decision prob-

lem is NP-Complete is called NP-hard.

The problem of P vs. NP consists in determining whether P = NP or P 6= NP .

By definition we already know that P ⊆ NP . However, to this date, there are

problems in NP for which an algorithm running in polynomial time that can answer

them has not been found yet. This does not imply that they do not exist nor that

they do, so the question remains open.
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In Cook (1971) the author showed that the satisfiability problem is NP -Com-

plete, therefore the class is not empty. In order to prove that a given problem Q

belongs to the class NP -Complete we have to prove that Q ∈ NP and that an NP -

Complete problem can be polynomially reduced to Q. We are particularly interested

in describing to which class the FCHT belongs to.
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Chapter 3

The Minimum Flow Cost

Hamiltonian Tour Problem

In this chapter we first introduce the formal definition of the FCHT and show that the

problem is NP -hard. We then describe several optimization problems that have been

studied in the literature that relate to the FCHT. The main goal is not to provide a

comprehensive literature review on these problems but to point out their similarities,

differences and connections with the FCHT. Finally, some potential application for

the FCHT are provided.

3.1 Problem Definition

Let G = (V,E) be a complete and undirected graph where V is the set of vertices

with |V | = n > 3 and E is the set of edges. Let c denote a given function on E

such that cij is the cost (usually also called distance) between i and j. Also, for each

pair of vertices i, j ∈ V , let wij be the amount of flow that need to be routed from

origin i to destination j. When no flow exists for a given pair i, j ∈ V , i 6= j, we have

wij = 0. We assume that wii = 0, for all i ∈ V . Now, for every Hamiltonian tour
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H of G and for each pair of vertices i, j ∈ V , let dH(i, j) denote the length of the

shortest path in H from i to j. Given that H is a cycle, we always have exactly two

possible directed paths from i to j, and dH(i, j) is defined as the shortest of them.

The flow cost from i to j in H is thus given by wijdH(i, j), and the total flow cost of

H is the sum of the flow costs for all pairs of vertices. The FCHT consist of finding a

Hamiltonian cycle that minimizes the total flow cost and thus, can be stated as the

following combinatorial optimization problem,

(FCHT) min
H⊆E

{∑
i,j∈V

wijdH(i, j) : H is a Hamiltonian tour

}
.

The following instance of the FCTH will be used throughout the subsequent sec-

tions to illustrate some results and differences with other problems found in the

literature.

Example 3.1. Consider a complete graph with n = 4 and the following cost matrix

C and the corresponding flow matrix W .

C =



0 10 20 10

10 0 10 5

20 10 0 10

10 5 10 0


W =



0 10 10 100

0 0 100 200

0 0 0 10

0 0 0 0



In this case we can easily enumerate the three feasible Hamiltonian cycles for the

FCHT (see, Figure 3.1). For each one, we can compute the shortest path dH(i, j)

for every pair of vertices and evaluate the total flow cost by multiplying the shortest

distance times the flow requirement. The optimal solution is given by the Hamilto-

nian tour formed by the edges {{1, 3}, {3, 4}, {4, 2}, {1, 2}} with an objective value of
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3, 500.

Figure 3.1: Feasible solutions.

In order to study the complexity of the FCHT we need first to introduce the

decision version of the problem, denoted by FCHT-D, which can be stated as: is

there a Hamiltonian cycle with total flow cost less than or equal to a given value

k? Also, consider the Hamiltonian Cycle (HC-D) decision problem as: given an

undirected graph, does it have a Hamiltonian cycle?

This problem is known to be NP -Complete (see Garey and Johnson (1990) and

Cook et al. (1998)) and can be used to prove the following result.

Proposition 3.1. The FCHT-D is NP-Complete.

Proof. We give a polynomial-time reduction of the HC-D to the FCHT-D. Let Q =

(A,B) be an undirected graph. Let Q′ be the complete graph on A. Define the flows

for each pair of vertices as a positive constant w and the costs of the edges in Q′ as
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follows. Let ce = 0 for each e ∈ (Q∩Q′) and ce = 1 for each e ∈ Q′\Q. Then Q has a

Hamiltonian cycle, if and only if there exists a Hamiltonian cycle in Q′ of total flow

cost less than or equal to zero.

As a result, the FCHT belongs to the challenging class of NP -hard optimization

problems and ad hoc mathematical models and solution methods should be used to

solve it.

3.2 Related Optimization Problems

Network optimization is probably one of the most important and heavily studied

research areas within combinatorial optimization. Broadly speaking, network design

problems (NDP) consist in identifying an optimal subgraph of an undirected graph

and routing flows between origin and destination vertices, subject to some feasibility

conditions (Johnson et al., 1978; Ahuja et al., 1993). These problems frequently arise

in the design of transportation or telecommunication networks, where commodities

between pairs of vertices must be routed through the network. Two types of costs are

usually considered in NDPs. The first one is the design cost, which is related to the

activation (or construction) of the edges and/or vertices of the network. The second

one is the operational cost, which corresponds to the routing of flow through the

network. Some NDPs such as the minimum spanning tree problem (Kruskal, 1956) and

the maximum weight matching problem (Edmonds, 1965), focus on the design costs.

Other NDPs such as the shortest path problem (Bellman, 1958; Dijkstra, 1959), the

minimum flow cost problem (see Ahuja et al., 1993), and the optimum communication

spanning tree problem (Hu, 1974), focus on the operational costs of the network. A

combination of both, design and operational costs has also been considered in several

NDPs such as the fixed-charge network flow problem (Rardin and Wolsey, 1993) and
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the multicommodity network design problem (Gendron et al., 1999).

As mentioned, one of the most well studied NP -hard problems is the Traveling

Salesman Problem (see Dantzig et al., 1954; Öncan et al., 2009; Cook, 2011) and can

be defined as follows. Let G = (V,E) be an undirected graph where |V | = n and

consider a cost function c such that cij represents the cost between i and j. If cij = cji

∀i, j ∈ V , the symmetric traveling salesman problem (STSP) can be defined as:

(STSP) min
H⊆E

 ∑
{i,j}∈H

cij : H is a Hamiltonian tour

 .

The FCHT and TSP have the same set of feasible solutions, i.e., the set of all

Hamiltonian cycles in G. However, an optimal solution for one problem may not

be optimal for the other. Let us illustrate this situation with the instance used in

example 3.1.

Example 3.2. As previously stated we can enumerate the three Hamiltonian cycles

corresponding to the feasible solutions for both the FCHT and STSP. Evaluating those

solutions into the STSP objective function we observe that the optimal cycle is formed

with the edges {{1, 2}, {2, 3}, {3, 4}, {4, 1}} and with an objective value equal to 40.

From Example 3.1, we know that optimal cycle for the FCHT contains the edges

{{1, 3}, {3, 4}, {4, 2}, {1, 2}}. In Figure 3.2 the Hamiltonian cycles corresponding to

the optimal solutions of both problems are shown.
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(a) Optimal Solution TSP (b) Optimal Solution FCHT

Figure 3.2: Comparison TSP and FCHT

From the previous example, we observe that the set of optimal solutions of the

TSP and FCHT do not necessarily coincide and thus, an optimal solution for one

problem may not be optimal for the other. In Table 3.1 we compare the objective

values for the total flow cost as well as the total design cost for the three Hamiltonian

tours.

Design Cost Flow Cost
TSP solution 40 6400

FCHT solution 45 3500
3rd solution 45 4400

Table 3.1: Objective values for all feasible solutions in Example 3.1.

Due to the importance of having Hamiltonian cycle structures, several variants,

extensions and generalizations of the TSP have been studied. For instance, the gen-

eralized traveling salesman problem (Laporte et al., 1987), the bottleneck traveling

salesman problem (Garfinkel and Gilbert, 1978), and vehicle routing problems (see

Dantzig and Ramser, 1959; Solomon and Desrosiers, 1988; Laporte, 2009), are well

known variants and generalizations of the TSP. A review on network design problems

involving the Hamiltonian cycle structure can be found in Laporte and Rodŕıguez-

Mart́ın (2007). Lawler et al. (1985); Gutin and Punnen (2002); Applegate et al.

(2006) are books providing an in-depth treatment on the TSP.
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Another combinatorial optimization problem closely related to the FCHT is the

optimum communication spanning tree problem (OCT). It considers the same opera-

tional costs as in the FCHT but has as the set of feasible solutions the set of spanning

trees. Let G = (V,E) be an undirected graph and let T be a tree associated with G.

Consider the same definitions of W and C as before and let dT (i, j) denote the cost

of the unique path from i to j in T . The OCT consists of finding a spanning tree

that minimizes the total flow cost. The OCT can thus be defined as (see Hu, 1974):

(OCT ) min
T

∑
{i,j}∈E

wijdT (i, j).

This problem is also known to be NP -hard. However, it is important to note

that the minimum spanning tree problem (MST), which focuses on the design costs

rather than on the operational costs, can be solved in polynomial time with several

greedy algorithms (see Ahuja et al., 1993). The OCT was introduced by Hu (1974)

and several works have focused on developing approximate and solution methods for

it (Ahuja and Murty, 1987; Rothlauf, 2009; Contreras et al., 2010).

Another similar problem to the FCHT is the well-known quadratic assignment

problem (QAP). Let F be a set of facilities and L a set of locations. Assume |F | =

|L| = n and also consider the matrices W = [wij]n×n and D = [dij]n×n corresponding

to the flow between facilities and the distances between locations, respectively. That

is, w : F × F → R and d : L × L → R. The QAP considers the assignment of

all facilities to different location with the objective of minimizing the sum of the

distances times the corresponding flows. (see Koopmans and Beckmann, 1957; Frieze

and Yadegar, 1983; Loiola et al., 2007). It can thus be defined as

(QAP ) min
φ∈Sn

n∑
i=1

n∑
j=1

wijdφ(i)φ(j),
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where Sn is the set of all possible permutations of the set {1, · · · , n}.

We note that the definition of the FCHT and the QAP are quite similar. However,

notice that the distance in the QAP is defined between locations and in the FCHT

we define it between vertices (facilities). To better illustrate this difference consider

the following interpretation of the QAP. Let F be a set of professors and L a set of

offices located in a circular hall. There is a flow or transit (wij) between every pair of

professors and there is a distance between every pair of offices dij. The objective is to

minimize the total flow cost of locating all professors to the offices. Take for instance,

that we locate professors 1, 3 and 7 in the first 3 offices, say 1, 2 and 3, respectively.

Then the distance dφ(1)φ(7) = d13. Now, if we switch professor 3 with professor 6 the

distance between professors 1 and 7 will not change (d13). On the other hand, if we do

the same exercise with the FCHT we see that if we change one vertex of its ordering

position it will affect the costs between every other pair of vertices since we have

to recalculate the costs in the new Hamiltonian cycle. It is worth mentioning that

until today, the QAP is considered one of the most difficult problems in combinatorial

optimization. Instances with only 30 vetices were finally solved to optimality just a

year ago (see Nyberg and Westerlund, 2012) and some instances with 60 vertices and

one instance with 128 vertices were solved recently (see Fischetti et al., 2012).

The FCHT is also related to the uncapacitated fixed-charge network flow problem

(UFC). This problem has been studied in the literature (see Rardin and Wolsey, 1993;

Ortega and Wolsey, 2003) and it is well known to be NP -hard as well. Consider a

digraph D = (V,A), where V is the set of vertices and A is the set of arcs. One of the

costs involved is the fixed cost fij of using the arc (i, j) to send flow and the other is

a variable cost cij dependent on the amount of flow sent through the arc (i, j). The
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objective is to minimize the total cost. The UFC can be stated as:

(UFC) min
B⊆A

∑
i,j∈V

wijdB(i, j) +
∑

(i,j)∈B

fij,

where dB(i, j) is the distance between i and j in the subset of arcs B.

If we set all fixed costs equal to zero and we add the constraint that the subset

B should be a Hamiltonian cycle, we have that the FCHT is indeed a particular case

of the UFC. Several mathematical models as well as different approximate and exact

solution techniques have been proposed for solving UFCs (Gendron et al., 1999).

3.3 Applications

Potential applications of the FCHT arise naturally in telecommunications network

design and in rapid transit systems planning. In the former case, cycle topologies

are usually preferred when designing reliable networks. If an edge connecting two

vertices fails for some reason, a cycle topology guarantees connectivity of the remain-

ing subnetwork, and allows flows to be routed through alternative paths. For these

problems usually it is assumed that a forecast of the amount of communication re-

quirements between origin/destination pairs is known in advance and the objective is

to minimize the communication cost after the network is built (see, Xu et al., 1998,

for an example in data service design). Also, an extensive review of models and

telecommunications applications considering the location of a cycle topology is given

in Laporte and Rodŕıguez-Mart́ın (2007). In the case of rapid transit systems, bus

routes and metro lines are sometimes designed with a cycle structure (see Tanash

et al., 2013) and the objective is to minimize the total travel time to serve users.

The design of automated guided vehicles (AGV) networks is another relevant trans-

portation application of the FCHT. The design of AGV networks consists in selecting
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the optimal route for an automated vehicle that will visit a set of stations within a

manufacturing or distribution facility. The network must provide a connection func-

tion (not necessarily in a direct way) between all pairs of stations to send and receive

various commodities and the objective is to minimize the total flow cost. For some

examples and a review of advantages of a cycle topology in AGV systems, such as the

easiness to handle vehicle conflicts and having a less complicated network, we refer

the reader to Asef-Vaziri and Goetschalckx (2008), Asef-Vaziri et al. (2007) and Qiu

et al. (2002).
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Chapter 4

Integer Programming Formulations

In this chapter we present five different mixed integer programming formulations for

the FCHT. We analytically compare the quality of their linear programming relax-

ation bounds to establish a dominance (or equivalence) relationship between all of

them.

We define the graph of flows GF , as the undirected graph with vertex set V and

an edge associated with each pair (i, j) ∈ V × V such that wij +wji > 0. We assume

that GF has one single connected component since, otherwise, the problem can be

decomposed into several independent FCHTs, one for each connected component in

GF . In the case that a particular application requires one single cycle and the graph

of flow contains more than one connected component, we would replace those flows

equal to zero by wij = ε sufficiently small.

The objective of the FCHT is the minimization of the total cost of sending flow

between pairs of vertices on an undirected Hamiltonian cycle. Contrary to the TSP,

knowing the set of edges that define the cycle topology is not enough to evaluate

the objective function. The length of the paths between pairs of vertices have to

be computed to calculate the flow cost. For each pair of vertices, there are exactly
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two possible paths on the cycle and, given that there are no capacity restrictions

on the amount of flow routed on each edge, each flow has to be routed through the

shortest path (among the two possible) containing an undetermined number of edges.

Therefore, the formulations must be able to model (or reproduce) the shortest path

used for routing each flow and guarantee that the subgraph associated with the arcs

used in all the paths defines a Hamiltonian cycle. We present five different ways to

do so.

4.1 A Path Based Formulation

One way of modeling the origin/destination (O/D) paths is by using path-based vari-

ables commonly used in network design problems (see for instance, Gendron et al.,

1999). In particular, we consider two sets of binary decision variables, one to deter-

mine which arcs are used in a specific path and the other to determine whether an

edge will be in the Hamiltonian tour or not. For each i, j, r, s ∈ V , we define binary

variables

xrsij =


1 if arc (i, j) is used in the path between vertices r and s,

0 otherwise.

and for each edge {i, j} ∈ E, we introduce binary variables

yij =


1 if edge {i, j} is selected,

0 otherwise.

Note that the definition of the x (path defining) variables are directed while the y

(design) variables are not. The FCHT can be formulated as follows:
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(PBF) minimize
∑
r∈V

∑
s∈V

∑
i∈V

∑
j∈V

wrscijx
rs
ij

subject to
∑

i∈V−{r}

xrsri = 1 ∀r, s ∈ V (4.1)

∑
i∈V−{j}

xrsji −
∑

i∈V−{j}

xrsij = 0 ∀j, r, s ∈ V, j 6= r, s (4.2)

∑
i∈V−{s}

xrsis = 1 ∀r, s ∈ V (4.3)

xrsij + xrsji ≤ yij ∀r, s, i, j ∈ V, j > i (4.4)∑
j>i

yij +
∑
j<i

yji = 2 ∀i ∈ V (4.5)

xrsij ∈ R+ ∀r, s, i, j ∈ V (4.6)

yij ∈ {0, 1} ∀i, j ∈ V. (4.7)

Constraints (4.1) – (4.3) are the well-known flow conservation constraints for each pair

of vertices r, s ∈ V . The set of inequalities in (4.4) ensure that if the edge {i, j} is not

used in the final network then no flow must pass through it. Constraints (4.5) ensure

that there will only be n edges in the final network and that each vertex must have

degree equal to two. The combination of all constraints (4.1)–(4.7) will create paths

between all pair of vertices and will be a subgraph with a single connected component

with exactly n edges, and thus any feasible solution of this system of constraints will be

a Hamiltonian cycle of G. As a consequence, classical subtour elimination constraints,

commonly required to model the TSP, are not necessary when using this formulation.

Finally, note that this formulation requires O(n4) variables and O(n4) constraints to

model the problem.

In order to illustrate the previous formulation we refer to the instance of Example

3.1. For this instance, the x variables that take value one in the optimal solution are

{x1214, x1242, x1313, x1414, x2323, x2424, x3431, x3414} and the rest of them are equal to zero.
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4.2 A Second Path Based Formulation

This formulation also considers decision variables to model the path between pairs

of vertices. However, we now define the set of all possible paths between any two

vertices r and s, denoted as Prs = {p1, . . . , pk, . . . , pq}. For each r, s ∈ V and each

pk ∈ Prs, we define binary decision variables

zrspk =


1 if path pk is used to connect vertices r and s,

0 otherwise.

Combining these variables with the y design variables previously presented, the

FCHT can be stated as:

(PBF2) minimize
∑
r,s∈V

∑
pk∈Prs

wrs

 ∑
(i,j)∈pk

cij

 zrspk

subject to
∑
pk∈Prs

zrspk = 1 ∀r, s ∈ V (4.8)∑
pk∈Prs:(i,j)∈pk

zrspk ≤ yij ∀r, s, i, j ∈ V (4.9)

∑
j>i

yij +
∑
j<i

yji = 2 ∀i ∈ V (4.10)

zrspk ∈ R+ ∀r, s ∈ V and ∀pk ∈ Prs (4.11)

yij ∈ {0, 1} ∀i, j ∈ V. (4.12)

Constraints (4.8) ensure that exactly one path is assigned for each pair of vertices

while constraints (4.9) ensure that if the edge {i, j} is not in the final network, then

no path containing (i, j) will be used. Constraints (4.10) are the same as defined

in PBF and FBF to guarantee the degree of each vertex. Similar to the previous

formulation, the combination of all constraints (4.8)–(4.12) will create paths between
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all pair of vertices and thus, subtour elimination constraints are not necessary for this

formulation. Finally, observe that the number of variables in this formulation grows

exponentially with the number of vertices. In particular, there is one variable for each

possible path between vertices r and s, and the number of simple paths between two

vertices in a complete graph (worst-case scenario) is given by
∑n−2

i=0
(n−2)!

(n−2−i)! (Rosen,

2007). Therefore, the formulation contains O(nn−2) variables and thus column gen-

eration techniques are needed to handle it.

Taking the instance of Example 3.1, the zrspk variables that take value one in the

optimal solution are {z12pk , z
13
pk
, z14pk , z

23
pk
, z24pk , z

34
pk
} with the corresponding paths shown in

table 4.1. The rest of the zrspk variables take value zero.

r s pk
1 2 {{1,4},{4,2}}
1 3 {{1,3}}
1 4 {{1,4}}
2 3 {{2,3}}
2 4 {{2,4}}
3 4 {{3,1},{1,4}}

Table 4.1: Path variables

4.3 A Flow Based Formulation

Another common way to model network design problems is to use flow based variables

that compute the amount of flow that is routed on a particular arc (see Frangioni and

Gendron, 2007). In particular, for each r, i, j ∈ V we define the real-valued decision

variables

xrij : amount of flow going through arc (i, j) originated at vertex r.
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Combining these variables with the y design variables previously presented, the FCHT

can be formulated as:

(FBF) minimize
∑
r∈V

∑
i∈V

∑
j∈V,j 6=i

cijxrij

subject to
∑
i∈V

xrij −
∑
i∈V

xrji = wrj ∀r, j ∈ V r 6= j (4.13)

xrji + xrij ≤Mryij ∀r, i, j ∈ V i < j (4.14)∑
j>i

yij +
∑
j<i

yji = 2 ∀i ∈ V (4.15)

xrij ∈ R+ ∀r, i, j ∈ V (4.16)

yij ∈ {0, 1} ∀i, j ∈ V, (4.17)

where Mr =
∑

s∈V wrs is the total outgoing flow from vertex r. Constraints (4.13) are

the flow conservation constraints for each pair of vertices r, j ∈ V while constraints

(4.14) ensure that if we do not use the edge between i and j in the final network then

it will not be used to send any amount of flow. The set of constraints (4.15) are the

same ones as in the previous formulations. The assumption that the graph of flows

GF contains a single connected component together with constraints (4.13)–(4.17)

eliminates the need of including subtour elimination constraints to obtain a valid

formulation. Finally, note that this formulation requires O(n3) variables and O(n3)

constraints to model the problem, a considerable reduction with respect to previous

formulations.

Using the instance of Example 3.1, the xrij variables with a non-zero value are

shown in Table 4.2.

33



r i j xrij
1 1 4 110
1 1 3 10
1 4 2 10
2 2 3 100
2 2 4 200
3 2 4 10
3 3 2 10

Table 4.2: Flow variables

4.4 A Two-index Formulation

The following formulation is able to further reduce the number of variables to O(n2)

at the expense of considerably increasing the number of constraints. However, for this

formulation to be valid, we need to assume that costs are symmetric, i.e., cij = cji.

The main idea of this formulation is to construct a directed Hamiltonian cycle and to

compute the length of the unique directed path between all pairs of vertices using a

set of continuous (real-valued) decision variables. Then, another set of variables will

determine which path is the shortest one to go from an origin vertex r to a destination

vertex s, the directed path from r to s or the directed path from s to r. To this end,

for each r, s ∈ V we define the real-valued decision variables

drs : directed distance from vertex r to vertex s on the cycle

For each i, j ∈ V , we also define binary decision variables

xij =


1 if arc (i, j) is selected,

0 otherwise.
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Note that the new (design) variables xij are directed while the previous yij vari-

ables are not. The FCHT can then be formulated as:

(NL2IF) minimize
∑
r∈V

∑
s∈V

wrs min{drs, dsr} (4.18)

subject to
∑
i∈V

xij = 1 ∀j ∈ V (4.19)∑
j∈V

xij = 1 ∀i ∈ V (4.20)∑
i∈S

∑
j∈S

xij ≤ |S| − 1 ∀S ⊆ V, 2 ≤ |S| < n (4.21)

drs ≥

1− |pk|+
∑

(i,j)∈pk

xij

 ∑
(i,j)∈pk

cij


∀r, s ∈ V and ∀pk ∈ Prs (4.22)

drs ∈ R+ ∀r, s ∈ V (4.23)

xi,j ∈ {0, 1} ∀i, j ∈ V (4.24)

where Prs denotes the set of all possible paths between vertices r and s and |pk|

denotes the number of edges in the path pk. Constraints (4.19), (4.20) are the degree

constraints stating that each vertex has exactly one arc entering and one arc leaving

the vertex. Constrains (4.21) are the so-called subtour elimination constraints that

forbid cycles containing less than n arcs. Constraints (4.22) compute the directed

distance between two vertices, given by the sum of the individual costs of all edges

contained in the solution path.

It is worth mentioning that constraints (4.19)–(4.21), (4.24) are known as the TSP

polytope which is precisely the classical formulation of the TSP (Dantzig et al., 1954).

However, in the case of the FCHT constraints (4.22) are needed in order to compute

the flow cost and they grow exponentially with the number of vertices, since there is

one for each possible path between every pair of vertices. In addition, the objective
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function (4.18) is nonlinear due to the min function. The solution of nonlinear integer

programs with general purpose methods is still very limited and a common approach

is to linearize the nonlinear terms. This can be done in our case by adding some

extra decision variables and constraints. For each r, s ∈ V we define the real-valued

decision variables

dminrs : minimum undirected distance between vertices r and s on the cycle,

and the binary decision variables

zrs =


1 if the flow from r to s is sent according with the direction of the cycle,

0 otherwise.

The FCHT can be formulated as the following linear integer program:

(2IF) minimize
∑
r∈V

∑
s∈V

wrsd
min
rs

subject to (4.19)− (4.24)

dminrs ≥ drs −M(1− zrs) ∀r, s ∈ V, r 6= s (4.25)

dminrs ≥ dsr −M(1− zsr) ∀r, s ∈ V, r 6= s (4.26)

zrs + zsr = 1 ∀r, s ∈ V, r 6= s (4.27)

dminrs ∈ R+ ∀r, s ∈ V. (4.28)

where M is a sufficiently large number, in this case M =
∑

i,j∈V :i<j cij. The sets

of constraints (4.25) and (4.26) ensure that for each pair of vertices we consider the

distance cost of one of the two possible paths in the solution cycle. Constraints (4.27)

ensure that exactly one of them will be selected, which together with the fact that we

are minimizing the objective (4.25), the shortest path is always going to be selected.
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To illustrate this formulation consider the instance of Example 3.1. The optimal

solution values for the dminrs and zrs variables are

r s dminrs zrs
1 2 15 0
1 3 20 1
1 4 10 0
2 3 10 0
2 4 5 1
3 4 15 1

Table 4.3: Solution example 3.1

4.5 A Second Two-index Formulation

This last formulation is able to model the problem with only O(n2) variables and

O(n2) constraints, a considerable reduction with respect to the previous formulations.

It is based on the idea of using an arbitrary origin vertex and compute the directed

distance on the solution cycle from this vertex to the rest of them. By doing so we can

model the directed distance between pair of vertices without using an exponentially

growing number of constraints that considers all possible paths. In particular, for

each j ∈ V we define the real-valued decision variables

gj : distance between vertex 1 and vertex j.

Also we use xij and drs variables previously used in section 4.4. The FCHT can be

stated as:
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(NL2IF2) minimize
∑
r∈V

∑
s∈V

wrs min{drs, dsr} (4.29)

subject to
∑
i∈V

xij = 1 ∀j ∈ V (4.30)∑
j∈V

xij = 1 ∀i ∈ V (4.31)

gj ≥ (gi + cij)xij ∀i, j ∈ V, j 6= 1 (4.32)

drs =


gs − gr, if gs ≥ gr,∑
i∈V

∑
j∈V

cijxij − (gr − gs), if gs < gr.
(4.33)

∀r, s ∈ V

drs ∈ R+ ∀r, s ∈ V (4.34)

gj ∈ R+ ∀j ∈ V (4.35)

xij ∈ {0, 1} ∀i, j ∈ V (4.36)

Constraints (4.30)–(4.31) have the same meaning as in the previous formulation.

Constraints (4.32) compute the cumulative cost between vertex 1 and the rest of the

vertices. Constraints (4.33) evaluate the directed distance between two vertices using

the cumulative distance given in gj variables.

This model is nonlinear due to the objective function (4.29) and the set of con-

straints (4.32) and (4.33). We linearize the objective function as in the previous

formulation. To linearize the constraints, we need to define additional variables. For

each r, s,∈ V , we define binary decision variables

frs =


1 if vertex r precedes vertex s in the solution cycle,

0 otherwise.
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Using as well the dminrs and zrs variables presented in the previous model, the

FCHT can be stated as:

(2IF2) minimize
∑
i∈V

∑
j∈V

wrsd
min
rs

subject to (4.19)− (4.20), (4.25)− (4.27)

gj ≥ gi + cij −M(1− xij) ∀i, j ∈ V (4.37)

gj ≤ gi + cij +M(1− xij) ∀i, j ∈ V (4.38)

drs ≥ gs − gr ∀r, s ∈ V (4.39)

drs ≥
∑
i,j∈V

cijxij − (gr − gs)−M(1− fsr) ∀r, s ∈ V (4.40)

frs ≥
gs − gr
M

∀r, s ∈ V (4.41)

frs ≤ 1 +
gs − gr
M

∀r, s ∈ V (4.42)

drs, d
min
rs ∈ R+ ∀r, s ∈ V (4.43)

xij, zrs, frs ∈ {0, 1} ∀r, s, i, j ∈ V (4.44)

where M is a sufficiently large number, in this case M =
∑

i,j∈V :i<j cij. Constraints

(4.37) and (4.38) compute the accumulated cost from vertex 1 to every other vertex

j. Constraints (4.39) and (4.40) evaluate the cost of the two possible paths in the

final network between vertices r and s. Constraints (4.41) and (4.42) ensure the

correct computation of the distances for all pairs of vertices by considering only the

case when fij = 1, i.e., when gj ≥ gi. Note that constraints (4.37) are similar to the

sub-tour elimination constraints proposed in Miller et al. (1960). It is known that

these guarantee that there are no subtours when working on a complete graph G,

since cij 6= 0 for i 6= j ensures the ordering of the vertices by their corresponding

accumulated distance to vertex 1.
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Using the instance of Example 3.1 we obtain the following optimal solution values

for the variables:

r s dminrs zrs frs gs
1 2 15 0 1 30
1 3 20 1 1 20
1 4 10 0 1 35
2 3 10 0 0
2 4 5 1 1
3 4 15 1 1

Table 4.4: Solution example 3.1

4.6 A Comparison of Bounds

We now analytically compare the quality of the LP relaxation bounds of the five

MIP formulations previously introduced. By doing so, we provide a dominance (or

equivalence) relationship between all of them. For this purpose we use the definitions

presented in Section 2.2.

Proposition 4.1. The value of the LP relaxation for the PBF coincides with the

value of the LP relaxation for PBF2.
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Proof. Let L1(λ) be the following Lagrangian relaxation for PBF.

L1(λ) = min
∑
r∈V

∑
s∈V

∑
i∈V

∑
j∈V

wrscijx
rs
ij (4.45)

+
∑
r∈V

∑
s∈V

∑
i∈V

∑
j∈V

λrsij (xrsij + xrsji − yij)

subject to
∑

i∈V−{r}

xrsri = 1 ∀r, s ∈ V (4.46)

∑
i∈V−{j}

xrsji −
∑

i∈V−{j}

xrsij = 0 ∀r, s, j ∈ V for j 6= r, s (4.47)

∑
i∈V−{s}

xrsis = 1 ∀r, s ∈ V (4.48)

∑
j>i

yij +
∑
j<i

yji = 2 ∀i ∈ V (4.49)

xrsij ∈ R+ ∀r, s, i, j ∈ V (4.50)

yij ∈ {0, 1} ∀i, j ∈ V . (4.51)

Note that L1(λ) can be separated into two subproblems: (i) a problem in the x

variables (4.46)–(4.48) and (4.50), and (ii) a problem in the y variables (4.49) and

(4.51). Subproblem (i) can be decomposed into |R| shortest path subproblems, each

one has to select between two possible paths, where R = {(r, s) : r, s ∈ V, wrs > 0}. It

is well known that the LP relaxation of the given formulation for (i) will coincide with

the integer optimal solution (Wolsey, 1998). Furthermore, constraints of subproblem

(ii) can be rewritten as
∑

j 6=i yij = 2 ∀i ∈ V and we can show that the associated

matrix is totally unimodular. To prove this, we need to check that all entries in the

matrix are 0 or 1 and that for any subset F of the rows, there is a partition (F1, F2)

of F such that each column j satisfies |
∑

i∈F1 aij −
∑

i∈F1 aij| ≤ 1. Take for instance

F1 = F and F2 = ∅. Then, this Lagrangian problem has the integrality property

and thus, the bound obtained with the Lagrangian dual coincides with the value of

the LP relaxation of PBF.
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On the other hand, consider the following Lagrangian problem resulting from

relaxing constraints (4.9) in PBF2.

L2(λ) = minimize
∑
r,s∈V

∑
pk∈Prs

∑
(i,j)∈pk

wrscijz
rs
pk

(4.52)

+
∑
r,s∈V

∑
i,j∈V

λrsij

 ∑
pk∈Prs:(i,j)∈pk

zrspk − yij


subject to

∑
pk∈Prs

zrspk = 1 ∀r, s ∈ V (4.53)∑
j>i

yij +
∑
j<i

yji = 2 ∀i ∈ V (4.54)

zrspk ∈ {0, 1} ∀r, s ∈ V (4.55)

yij ∈ {0, 1} ∀i, j ∈ V (4.56)

Note that this problem can also be decomposed into two subproblems: (i) a sub-

problem in the space of the z variables with (4.53) and (4.55), and (ii) a subproblem

in the y variables with (4.54) and (4.56). Subproblem (ii) was explained in the pre-

vious part of the proof for L1(λ). Now, subproblem (i) can be decomposed into |R|

semi-assignment problems, one for each pair {r, s} with wrs > 0. It is known that

for this formulation of (i) the LP solution is integral. Then, this Lagrangian problem

also has the integrality property and thus, the bound obtained with its Lagrangian

dual coincides with the value of the LP relaxation of PBF2.

Finally, since both Lagrangean relaxations coincide with their corresponding LP

relaxations, we compare L1 and L2 in order to complete the proof. Given a binary

vector ŷ, let Trs = {pk ∈ Prs : conditions (4.49) are satisfied} be a family of feasible

paths. This uniquely defines a feasible solution x̂ to L1(λ) and a feasible solution ẑ

to L2(λ). In particular, x̂rsij = 1 if and only if (i, j) ∈ pk ∈ Trs and ẑrspk = 1 if and only
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if pk ∈ Trs. Now, the contribution of x̂ to the objective function of L1(λ) is given by

∑
r,s∈V

∑
(i,j)∈pk:pk∈Trs

(
wrscij + λrsij

)

which coincides with the contribution of the ẑ variables to L2(λ) and the result

follows.

Proposition 4.2. The value of the LP relaxation of the PBF is at least as good as

the value of the LP relaxation of the FBF. That is, LPFBF ≤ LPPBF .

Proof. To prove this result we need to show that every feasible solution that is in the

LP relaxation of PBF is also in the LP relaxation of FBF. Let x̂ be a feasible solution

to the LP relaxation of PBF. After multiplying (4.2) and (4.3) by wrs we obtain the

following result

wrs

 ∑
i∈V \{j}

x̂rsji −
∑

i∈V \{j}

x̂rsij

 = 0 ∀r, s, j ∈ V with j 6= r, s (4.57)

wrj

(∑
i6=s

x̂rsis

)
= wrj for j = s ∀r, s, j ∈ V (4.58)

Summing (4.57) over all s ∈ V \{j} and then adding (4.58) we have

wrj =
∑
s6=r,j

[
wrs(

∑
i6=j

x̂rsji −
∑
i6=j

x̂rsij )

]
+ wrj

∑
i6=j

x̂rjij

=
∑
s6=r,j

[
wrs(

∑
i6=j

x̂rsji −
∑
i6=j

x̂rsij )

]
+ wrj

[∑
i6=j

x̂rjij − 0

]

=
∑
s6=r,j

[
wrs(

∑
i6=j

x̂rsji −
∑
i6=j

x̂rsij )

]
+ wrj

[∑
i6=j

x̂rjij −
∑
i6=j

x̂rjji

]

=
∑
s6=r

[
wrs(

∑
i6=j

x̂rsji −
∑
i6=j

x̂rsij )

]
=
∑
i6=j

∑
s6=r

wrsx̂
rs
ij −

∑
i6=j

∑
s6=r

wrsx̂
rs
ji .
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Recall that in Section 4.3 we define the flow variables for FBF as xrij. Abusing

the notation, in this proof we use Xrij to represent the same variables in order to

avoid any conflict with the xrsij variables. Thus, we consider the term

X̂rij =
∑
s6=r

wrsx̂
rs
ij , (4.59)

then we can rewrite the previous expression as

wrj =
∑
i6=j

X̂rij −
∑
i6=j

X̂rji ∀r, j ∈ V with r 6= j.

Which corresponds to the set of constraints given in (4.13). On the other hand, we

have that for all r, s, i, j ∈ V with i < j and r 6= s, after multiplying (4.4) by wrs(≥ 0)

the following expression holds

wrsx̂
rs
ij + wrsx̂

rs
ji ≤ wrsŷij.

Summing over all s ∈ V we obtain

∑
s6=r

wrsx̂
rs
ij +

∑
s6=r

wrsx̂
rs
ji ≤

∑
s6=r

wrsŷij = ŷijMr,

and after rewriting the expression using (4.59) we obtain

X̂rij + X̂rji ≤Mrŷij.

Since any feasible solution of the LP relaxation of PBF defines a feasible solution for

the LP relaxation of FBF, the result follows.

Proposition 4.3. The value of the LP relaxation of the 2IF is equal to zero.
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Proof. Note that, without loss of generality, we can transform an instance with an

even number of vertices in V to an instance with an odd number of vertices. This

may be done by adding an extra vertex with cost c1n+1 = 0 and the same distances

as vertex 1 to the others vertices (i.e. c1j = c(n+1)j). The flow might be considered

as a constant w1n+1 to vertex one but zero to the rest. This process will produce an

equivalent problem with the same objective value and the same optimal solution. For

this reason, we only prove the result when |V | is odd. We recall that the FCHT is

defined for n > 3.

For any instance with |V | > 3 and odd, we define for each i ∈ V the xij variables

with a strictly positive value as follows

x̂ii+1 = x̂ii+3 = · · · = x̂ii+(n−2) = x̂ii−2 = x̂ii−4 = · · · = x̂ii−(n−1) =
1

(n− 1)/2
, (4.60)

and the rest of the xij variables are set to zero.

We now prove that for any odd number n, constraints (4.19), (4.20) and (4.21),

are satisfied with the previous definition of x̂. Note that for each j ∈ V there are

exactly n−1
2

non-zero xij (and xji) variables.

∑
i∈V

x̂ij =
n− 1

2

2

n− 1
= 1 ∀j ∈ V,

∑
j∈V

x̂ij =
n− 1

2

2

n− 1
= 1 ∀i ∈ V.

Also we have that for any set S ⊆ V with 2 ≤ |S| < n,

∑
i∈S

∑
j∈S

x̂ij ≤
(|S| − 1)|S|

2

2

(n− 1)
≤ (|S| − 1)(n− 1)

2((n− 1)/2)
= |S| − 1.

We now construct the sets of the remaining variables (i.e., dminrs ) that will give an
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objective value equal to zero. Notice that for any pair of vertices r and s and any

path pk between them, when |pk| > 1, the distance constraint (4.22) becomes drs = 0,

since 0 ≤
∑

(i,j)∈pk

x̂ij ≤ |pk| − 1, because for each edge added to the path the sum of

the x̂ variables in the path will increase at most 2/(n − 1) < 1. Considering also

the non-negativity constraints for the x variables, the inequality will then take value

drs = 0. For the case of |pk| = 1, i.e., when the vertices r and s are directly connected,

the value of the directed distance drs will be strictly greater than zero (2/(n − 1)).

However the distance dsr will be zero because by definition of the X = [x̂ij] matrix

if r and s are connected by an arc then s and r are not, which means there will be

more than one arc in the path from s to r, therefore dminrs = 0 and the total objective

value will also be zero.

For instance, for n = 5, using (4.60) the X matrix is given by:



0 1/2 0 1/2 0

0 0 1/2 0 1/2

1/2 0 0 1/2 0

0 1/2 0 0 1/2

1/2 0 1/2 0 0



Although the previous proof does not require us to compute the X matrix for the

case when n is even, we have obtained the result for a few instances with n even.

However, we have not yet been able to generalize such matrix. One solution for n = 6

would be
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

0 1/3 0 1/3 0 1/3

0 0 2/3 0 1/3 0

1/3 0 0 0 0 2/3

0 1/3 0 0 2/3 0

2/3 0 1/3 0 0 0

0 1/3 0 2/3 0 0



Proposition 4.4. The value of the LP relaxation for the 2IF2 is zero.

Proof. We recall that for this formulation we assume cij 6= 0 for i 6= j, andM =
∑

i,j∈V :i<j

cij.

We define the following fractional values for the xij (structural) variables.

x̂ii = 0 ∀i = 1, · · ·n.

For q = 2, · · · , n− 2 we have

x̂i(i+q) = x̂nq = x̂(n−1)(q−1) = · · · = x̂(n−(q−1))1 =
∑
k>q+1

c(q+1)k/M ∀i = 1, · · ·n− q.

Also, for q = 1 and q = n− 1 we have, respectively,

x̂n1 = x̂i(i+1) =
∑
k>2

(c2k/M) + c1n/M ∀i = 1, · · · , n− 1,

x̂1n = x̂i(i−1) =
∑
k>1

(c1k/M)− c1n/M ∀i = 2, · · · , n.

We need this particular definition of the x̂1n and x̂n1 variables when proving that

the accumulated distances are zero.

We first prove that constraints (4.30) and (4.31) are satisfied using this definition.
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It is possible to check that for each row and for each column in the X = [xij]n×n

matrix there is exactly one variable with value
∑

k>α cαk for α ∈ {2, · · · , n− 1} and

one variable with the corresponding values of x1n and xn1. Furthermore, each row and

each column contain all possible values of
∑

k>α cαk, then if we take the respective

sums we will get
∑

i∈V xij = M/M = 1 and
∑

j∈V xij = M/M = 1

Now, we show that the objective value for the LP relaxation is zero using the x̂

variables and the fact that g1 = 0. For all j 6= 1 we have that (4.37) holds, i.e.

gj ≥ g1 + c1j −M(1− x1j).

This implies that for j 6= n, using the x̂ variables, we get

gj ≥ c1j −M +M(
∑
k>α

cαk/M)

gj ≥ c1j −M +
∑
k>α

cαk with α ∈ {2, · · · , n− 1}.

Since c1j −M +
∑

k>α cαk ≤ 0 then gj = 0 due to the non-negativity constraints.

This is also the case for j = n because we define x1n without c1n ensuring that the total

value is less than or equal to zero. Therefore all gj = 0 and thus the dminrs = 0.

Combining all the results from this section, we obtain the following corollary.

Corollary 4.1. 0 = LP2IF1 = LP2IF2 ≤ LPFPF ≤ LPPBF = LPPBF2.

This means, that in terms of the linear programming relaxation bounds, the best

formulations are the path based formulations (PBF) and (PBF2). Also, the two-

index formulations have the worst lower bound possible, even if we have an number

of constraints growing exponentially with n.
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Chapter 5

Solution Methods

In this chapter we present some approximate and exact solution methods to solve

the FCHT. The need to develop specialized methods arises not only from the fact

that the problem is NP -hard, but because as it is shown in the next chapter, state-

of-the-art commercial solvers can only solve small size instances. We first present a

combinatorial bound based on shortest paths and two heuristic methods that can be

used to obtain lower and upper bounds, respectively, on the optimal solution of the

problem. We then present an exact branch-and-cut method to obtain the optimal

solution for the FCHT.

5.1 Combinatorial Bounds

The main idea behind this combinatorial bound is to use the information on the

length of shortest paths between all pair of vertices. In particular, we compute the

shortest path for every r, s ∈ V and then we use this value as the distance to compute

the flow cost for routing the flow wrs. We define the shortest path distance between

r and s on G as d∗rs.
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Proposition 5.1. The shortest path relaxation (SPR) problem

∑
r,s∈V

wrsd
∗
rs ≡ minimize

∑
r,s∈V

wrs

(∑
i,j∈V

cijx
rs
ij

)
subject to

∑
i∈V−{r}

xrsri = 1 ∀r, s ∈ V

∑
i∈V−{j}

xrsji −
∑

i∈V−{j}

xrsij = 0 ∀j, r, s ∈ V j 6= r, s

∑
i∈V−{s}

xrsis = 1 ∀r, s ∈ V

xrsij ∈ {0, 1} ∀r, s, i, j ∈ V

is a relaxation of FCHT and thus,
∑
r,s∈V

wrsd
∗
rs is a lower bound on the optimal solution

value of FCHT.

Proof. Following Definition 2.13, the first condition is satisfied trivially. In order to

prove that
∑
r,s∈V

wrsd
∗
rs is always less than or equal to the optimal solution of FCHT,

observe that the product of the flow wrs times the distance of the shortest path for

any two vertices r and s in the graph G is the smallest possible flow cost for the pair

r and s in any FCHT solution and since we are adding up all the flow costs the result

follows.

Note that in the SPR we do not consider the structure of the solution network

(a cycle) and we basically end up with an all pair shortest path problem, which can

be efficiently solved in O(n3) (see, Floyd, 1962; Warshall, 1962). For instance, in

Example 3.1 we have that the solution for the SPR corresponds to:

∑
r,s∈V

wrsd
∗
rs = 10 ∗ 10 + 10 ∗ 20 + 100 ∗ 10 + 100 ∗ 10 + 200 ∗ 5 + 10 ∗ 10 = 3, 400.

The optimal solution value of this instance is 3,500 and thus the combinatorial

bound turns out to be quite close to the optimal.
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5.2 Approximate Methods

In this section we present two different heuristic methods to obtain feasible solutions

of the FCHT and thus, upper bounds on the optimal solution value. In this case, we

cannot guarantee the optimality of the solution obtained. The first heuristic consists

of a greedy deterministic constructive procedure to obtain an initial feasible solution,

which is later improved with a simple local search procedure. The second heuristic

is a greedy randomized adaptive search procedure (GRASP), a multi-start procedure

that uses a greedy randomized constructive phase to obtain an initial feasible solution

that is later improved with a local search.

5.2.1 Greedy Deterministic Heuristic

In order to obtain an initial feasible solution, we use a greedy deterministic iterative

procedure in which a Hamiltonian cycle is constructed by adding one edge at every

iteration. It starts from an empty solution and selects one vertex at each iteration.

The first vertex added is vertex 1 and the corresponding vertex j to the cheapest

edge with cost c1j. The next iterations consist of selecting the vertex associated to

the edge with the lowest cost cij adjacent to at least one of the two current vertices

with degree one in the partial solution. The procedure continues until selecting n

edges. Observe that in this way, we make sure that the set of edges will define a

Hamiltonian circuit. To evaluate the objective function, we still need to compute the

shortest path between all pairs of vertices. This can be done efficiently in O(n3) time

by using the Floyd-Warshall algorithm (see Floyd, 1962; Warshall, 1962).

The initial solution is then used as the starting point for a local improvement pro-

cedure. We use one of the most common local search techniques for cycle topologies,

the 2-opt algorithm (Croes, 1958; Wolsey, 1998). It consists of iteratively removing
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two non-adjacent edges and replacing them with two different edges that will create a

new cycle (see Figure 5.1 ). If a new improved solution is found, the algorithm moves

to that solution and continues the edge-interchange movement until the method fin-

ishes to explore all possible changes and there is no further improvement.

Figure 5.1: 2-Opt algorithm

The general description of the greedy deterministic constructive phase is shown

in Algorithm 1.

Algorithm 1: Greedy Deterministic Constructive Procedure

H = {1}.
k1 = arg min

j∈V j 6=1
c1j.

e1 = 1 e2 = k1.
while (|H| < n) do

k1 = arg min
j∈V j /∈H

ce1j and k2 = arg min
j∈V j /∈H

ce2j.

if(ce1k1 < ce2k2)
H ← H ∪ {k1}
e1 = k1.

else
H ← H ∪ {k2}
e2 = k2.

end if
end do
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5.2.2 GRASP

The GRASP meta-heuristic is an iterative procedure consisting of two phases: the

first one is a greedy randomized procedure to construct an initial feasible solution

while the second is a local search procedure used to improve the initial solution.

At each iteration of the construction phase an edge is randomly selected from a

subset of edges, called the restricted candidate list (RCL), adjacent to vertices with

degree equal to one. The elements in the RCL are defined as the edges with cost cij

less than or equal to a threshold value

c̄ = α

 ∑
j∈V \H

(ce1j + ce2j) /(n− |H|)

 ,

where e1 and e2 are the only two vertices with degree one at each iteration and α

is a parameter used to control the size of the RLC. The choice of the next edge to

enter the solution is determined by randomly selecting one element from the RCL.

The construction phase terminates when n edges are selected.

The randomized greedy algorithm is depicted in Algorithm 2.
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Algorithm 2: Constructive phase of GRASP

r ← random number between 1 and n.
H = {r}.
c̄ =

∑
j∈V j 6=1

crj
n− 1

.

RCL = {i ∈ V : cri ≤ c̄ and i 6= r}
Select a random element k from RCL.
e1 = r e2 = k.
while (|H| < n) do

c̄ = α
∑
j∈V \H

(ce1j + ce2j) /(n− |H|).

RCL = {i ∈ V \H : ce1i ≤ c̄ or ce2i ≤ c̄} ∪ arg min
i∈V \H

{ce1i, ce2i}

Select a random element k from RCL.
H ← H ∪ {k}

if(ce1k < ce2k)
e1 = k.

else
e2 = k.

end if
end do

The local search phase of the GRASP is also the 2-opt algorithm applied in the

same way as in the previous heuristic. Given that GRASP is a multi-start algorithm, it

is applied a number of iterations and due to the randomized nature of the constructive

phase, it will usually generate different initial feasible solutions. The algorithm also

uses different values of α ∈ {0.1, 0.2, · · · , 1.0}, and it intensifies the search with more

iterations with the two values of α in which the best solutions are obtained. Notice

that when α = 0 we are in the case of the deterministic greedy heuristic described

in the previous section. The use of different α values is a diversification scheme that

permits the method to sample more areas of the solution space, whereas the use of the

two most promising α values is an intensification scheme that focuses on particular
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areas of the solution space.

5.3 An Exact Solution Method

In this section we present an exact branch-and-cut method to solve the FCHT. It is

based on the flow-based formulation introduced in Section 4.3 plus some families of

valid inequalities that are able to improve the quality of the LP relaxation bound. We

first introduce the inequalities and show their validity. We then define the separation

problem and some solution methods associated with these inequalities. Finally, we

describe the branch-and-cut method.

5.3.1 Valid Inequalities

We present several families of valid inequalities for the FBF formulation of the FCHT.

The first three families are an extension of the dicut and mixed dicut inequalities of

the uncapacitated fixed charge network flow problem (see Rardin and Wolsey, 1993;

Ortega and Wolsey, 2003). Consider the following dicut inequality. Recall that when

we say it is valid for FBF we mean it is valid for the polyhedral set of (mixed 0-1)

feasible solutions of the FBF. Let δ−(S) = {(i, j) ∈ A : j ∈ S, i /∈ S}, where A

denotes the set of directed arcs associated with the set of edges E and S is a subset

of V .

Proposition 5.2. Let k, j ∈ V and F ⊆ δ−({j}) then

∑
(i,j)∈δ−({j})\F

xkij + wkj
∑

(i,j)∈F

yij ≥ wkj (5.1)

is valid for FBF.
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Proof. Let k, j ∈ V and F ⊆ δ−({j}). We know that (4.13) is valid for FBF. Then

∑
i∈V

xkij −
∑
i∈V

xkji = wkj,∑
i∈V

xkij ≥ wkj,∑
(i,j)δ−({j})\F

xkij +
∑

(i,j)∈F

xkij ≥ wkj.

Now, given that in Hamiltonian cycles the degree of each vertex is equal to two,

only one of the two summations in the left hand side of the last inequality can be

different from zero because the flow will enter vertex j from exactly one edge. When

the second term in the left hand side is zero, the first one must be greater than zero

and satisfy the inequality. In terms of the flows, this means that the flow entering

the destination vertex j through the arcs outside F must be greater than or equal

to wkj. On the other hand, if the second summation is positive, the first one will be

zero. Then
∑

(i,j)∈F xkij ≥ wkj can be replaced by wkj

(∑
(i,j)∈F yij

)
≥ wkj because

we are certain that
(∑

(i,j)∈F yij

)
6= 0 since at least one yij with (i, j) ∈ F must be

set to one and the result follows.

Figure 5.2: Graphical interpretation
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A graphical interpretation of the dicut inequalities is given in Figure 5.2. It is im-

portant to note that although all feasible integer solutions of FBF satisfy constraints

(5.1), fractional solutions may violate them. That is, there might be more than two

arcs yij entering vertex j with a strictly positive value.

We now generalize the previous dicut inequalities by considering more than one

destination vertex. These inequalities are known as mixed dicut inequalities.

Proposition 5.3. Let k ∈ V , S ⊆ V \{k} and F ⊆ δ−(S) the mixed dicut inequality

∑
(i,j)∈δ−(S)\F

xkij +

(∑
m∈S

wkm

) ∑
(i,j)∈F

yij ≥
∑
m∈S

wkm (5.2)

is valid for FBF.

Proof. Once more we start from the fact that (4.13) is valid for FBF, hence for all

k, j ∈ V , S ⊆ V \{k} and for all F ⊆ δ−(S) we have:

∑
i∈V

xkij −
∑
i∈V

xkji = wkj ∀j ∈ V
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Then, summing over all j ∈ S we get

∑
j∈S

∑
i∈V

xkij −
∑
j∈S

∑
i∈V

xkji =
∑
m∈S

wkm∑
j∈S

∑
i∈V \S

xkij −
∑
j∈S

∑
i∈V \S

xkji =
∑
m∈S

wkm∑
(i,j)∈δ−(S)

xkij −
∑

(i,j)∈δ−(S)

xkji =
∑
m∈S

wkm∑
(i,j)∈δ−(S)

xkij ≥
∑
m∈S

wkm∑
(i,j)∈δ−(S)\F

xkij +
∑

(i,j)∈F

xkij ≥
∑
m∈S

wkm

∑
(i,j)∈δ−(S)\F

xkij +

(∑
m∈S

wkm

) ∑
(i,j)∈F

yij

 ≥∑
m∈S

wkm

The last step can be justified in a similar manner as with the previous proposition.

In this case, if at least one of the y variables in the set F is set to one then the

inequality is satisfied. In case all the y variables in F are zero all the flow must enter

through the x variables in the complement of F .
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Figure 5.3: Graphical interpretation mixed dicuts

A graphical interpretation of the mixed dicut inequalities is given in Figure 5.3.

A more general set of valid inequalities which represents an extension of the mixed

dicut with outflow inequalities from Ortega and Wolsey (2003) is the following.

Proposition 5.4. For k ∈ V , S ⊆ V \{k}, F ⊆ δ−(S) and C ⊆ δ+(S), the mixed

dicut with outflow inequality

∑
(i,j)∈δ−(S)\F

xkij +

(∑
m∈S

wkm

) ∑
(i,j)∈F

yij

 ≥
∑
m∈S

wkm +
∑

(i,j)∈C

xkij −

(∑
m∈V

wkm −
∑
m∈S

wkm

) ∑
(i,j)∈C

yij


is valid for FBF, with δ+(S) = {(i, j) ∈ A : i ∈ S, j /∈ S}.

Proof. We know (4.13) is valid for FBF. Then for all k, j ∈ V , S ⊆ V \{k}, F ⊆ δ−(S)
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and for all C ⊆ δ+(S) we have:

∑
i∈V

xkij −
∑
i∈V

xkji = wkj

Summing over all j ∈ S we obtain

∑
j∈S

∑
i∈V \S

xkij −
∑
j∈S

∑
i∈V \S

xkji =
∑
m∈S

wkm∑
(i,j)∈δ−(S)

xkij −
∑

(i,j)∈δ−(S)

xkji =
∑
m∈S

wkm∑
(i,j)∈δ−(S)

xkij −
∑

(i,j)∈δ+(S)

xkij =
∑
m∈S

wkm∑
(i,j)∈δ−(S)\F

xkij +
∑

(i,j)∈F

xkij =
∑
m∈S

wkm +
∑

(i,j)∈δ+(S)

xkij

Since ∀k, i, j ∈ V we have that xkij ≤Mkyij, then
∑

(i,j)∈F

xkij ≤Mk

∑
(i,j)∈F

yij and thus

∑
(i,j)∈δ−(S)\F

xkij +Mk

∑
(i,j)∈F

yij ≥
∑
m∈S

wkm +
∑

(i,j)∈δ+(S)

xkij∑
(i,j)∈δ−(S)\F

xkij +Mk

∑
(i,j)∈F

yij ≥
∑
m∈S

wkm +
∑

(i,j)∈C

xkij

Considering x̄kij = Mkyij − xkij and ȳij = 1 − yij, and substituting for the variables

in the summation over C we obtain

∑
(i,j)∈δ−(S)\F

xkij +Mk

∑
(i,j)∈F

yij ≥
∑
m∈S

wkm + |C|Mk −Mk

∑
(i,j)∈C

ȳij −
∑

(i,j)∈C

x̄kij.

Applying the mixed integer rounding procedure (MIR) (Nemhauser and Wolsey, 1988)
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we have

∑
(i,j)∈δ−(S)\F

xkij +
∑

(i,j)∈C

x̄kij ≥

(∑
m∈S

wkm

)1 + |C| −
∑

(i,j)∈C

ȳij −
∑

(i,j)∈F

yij

 .

Finally, after substitution back we get

∑
(i,j)∈δ−(S)\F

xkij+

(∑
m∈S

wkm

) ∑
(i,j)∈F

yij

 ≥∑
m∈S

wkm+
∑

(i,j)∈C

xkij−

 ∑
m∈V \S

wkm

 ∑
(i,j)∈C

yij

 .

Figure 5.4: Graphical interpretation of mixed dicuts with outflow.

A graphical interpretation of the mixed dicut with outflow inequalities is given in

Figure 5.4.

Finally, we present two more sets of valid inequalities where the cycle structure of

the solution network is exploited. We present them in the following two propositions.

Proposition 5.5. For all k, i, j ∈ V with k 6= i, j and i < j, the inequality

xkij ≤ (Mk − wki)yij (5.3)
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is valid for FBF.

Proof. Recall that Mk =
∑
s∈V

wks. Also, we know that (4.14) is valid for FBF. There-

fore, for all k, i, j ∈ V with k 6= i, j and i < j we have:

xkij + xkji ≤ Mkyij

xkij ≤ Mkyij

xkij ≤ (Mk − wki)yij

Since, the flow sent to vertex i with origin k will not be part of the flow going

through arc (i, j) with origin k.

Proposition 5.6. For all k, i, j ∈ V with k 6= i, j and i < j, the inequality

xkij ≤ (Mk−wki)yij−
∑

q1∈V :q1 6=i,j

wkq1 (yq1i + yij − 1)−
∑
q1∈V

∑
q2∈V

wkq2 (yq1i + yq2q1 + yij − 2)

(5.4)

is valid for FBF.

Proof. The first term in the right hand side of the inequality correspond to the previ-

ous valid inequality. Following the same idea, we can say that in the case where edge

{i, j} is part of the final network, the flow sent from k going to the unique vertex

adjacent to i (call it q̂), that is not j, is not going to pass through arc (i, j). This is

because if the shortest path to go from k to q̂ is not using the edge {i, j} then the

result is obvious. On the other hand, if the shortest path to go from k to q̂ contains

the edge {i, j} this means the flow will pass through arc (j, i) and not (i, j) which is

the one in consideration.

We can generalize this idea for a larger number of vertices. We would go from

vertex i until we reach vertex k. For this particular case we only wrote the inequality

of 2 vertices before i.
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5.3.2 Separation of Inequalities

As we described in Chapter 2, given a point, a set of feasible solutions and a family

of valid inequalities, the problem of finding the most violated inequality (if any) is

called the separation problem. Given that the dicut inequalities are a particular case

of the mixed dicut inequalities, we directly introduce the separation problem of the

former ones. For the particular set of inequalities (5.1), given an LP solution (x̂, ŷ)

for every k, j ∈ V , we need to find a set F ⊆ δ−({j}) such that the inequalities are

violated, i.e., ∑
(i,j)∈δ−({j})\F

x̂kij + wkj
∑

(i,j)∈F

ŷij < wkj.

In order to find such set F we define the following decision variables and the corre-

sponding separation problem for each pair of vertices k, j ∈ V :

zij =


1 if (i, j) ∈ F,

0 otherwise.

ξkj = min

 ∑
(i,j)∈δ−({j})

x̂kij(1− zij) + wkj
∑

(i,j)∈δ−({j})

ŷijzij : zij ∈ {0, 1}

 .

There is going to be a violated inequality whenever ξkj < 0. Otherwise, all

inequalities will be satisfied at that particular point (x̂, ŷ). Notice that when the

values wkj ŷij− x̂kij are negative the variable zij will be set to one in order to minimize

the function. Then, we can define the set

F̂ = {(i, j) ∈ δ−({j}) :
x̂kij
ŷij

> wkj},
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Hence, the optimal solution of ξkj is given by F = F̂ .

We now generalize this idea for the mixed dicut inequalities presented in (5.2).

Recall that in this case we consider a set S of destination vertices and a set F of arcs

incident to S. Therefore, the separation problem consists of finding the two sets S

and F that minimize the value of the left hand side for a given LP solution (x̂, ŷ).

We define hereafter the value Q =
∑
m∈S

wkm to simplify the notation.

The following proposition indicates how to choose the best F subset for a given

value of Q (i.e. for a given set S) and thus, to optimally solve the separation problem.

Proposition 5.7. Let k, j ∈ V , Q ≥ 0 and (x̂, ŷ) be a given LP solution. Then, a

set F̂ ⊆ δ−(S) that minimizes the value of

L(Q) = min
F⊆δ−(S)

∑
(i,j)∈δ−(S)\F

x̂kij +Q

 ∑
(i,j)∈F

ŷij



is given by F̂ = {(i, j) ∈ δ−(S) :
x̂kij
ŷij
≥ Q}.

Proof. The set F̂ can be obtained by solving the following optimization problem

min

 ∑
(i,j)∈δ−(S)

x̂kij(1− γij) +Q ∗

 ∑
(i,j)∈δ−(S)

ŷijγij


with γij ∈ {0, 1}.

Then, the result follows since the objective function can be rewritten as

∑
(i,j)∈δ−(S)

x̂kij + min

 ∑
(i,j)∈δ−(S)

(Qŷij − x̂kij) γij

 .
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Consequently, for a given value of Q, the function L(Q) will be

∑
(i,j)∈/∈F̂

x̂kij +Q ∗

 ∑
(i,j)∈F̂

ŷij


which is a piecewise linear function. Therefore, we can define intervals It = [At, Bt]

for t = 1, · · · , l with A1 = 0, At = Bt−1 and Bl =∞ and a series of sets F̂ t such that

for all Q ∈ It, L(Q) = at +Qbt with at =
∑

(i,j)/∈F̂ t

x̂kij and bt =
∑

(i,j)∈F̂ t

ŷij.

In order to solve the separation problem we know that the possible values of Q

are given by Q =
∑
m∈V

wkmβm with βm ∈ {0, 1}. Then, we can present the following

proposition.

Proposition 5.8. Let k ∈ V , and (x̂, ŷ) be given. There exists a violated mixed dicut

inequality by (x̂, ŷ) if and only if η < 0, where

η = minL

(∑
m∈V

wkmβm

)
−
∑
m∈V

wkmβm

βm ∈ {0, 1}.

Since the function L(Q) is piecewise linear, the value of η depends on the interval

It, where the value
∑
m∈V

wkmβm lies. For the purpose of solving the separation problem

we consider the value of Bl =
∑
m∈V

wkm which is the highest value it can take and we

proceed as follows:

1. Define the intervals It that determine the expression of the piecewise linear

function L as well as F̂ t which denote the optimal solution for a given Q in It.
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2. For t = 1, · · · , l solve the optimization problem

ηt = min

[
at +

(∑
m∈V

wkmβm

)
bt

]
−
∑
m∈V

wrmβm

At ≤
∑
m∈V

wkmβm ≤ Bt

βm ∈ {0, 1} ∀m ∈ V

3. If min{ηt : 1, · · · , l} ≥ 0 then no inequality is violated by (x̂, ŷ).

From the above analysis, the separation problem considers the solution of a num-

ber of independent knapsack problems with lower bounds which are known to be

NP -hard. From a practical point of view it is also important to have efficient solution

methods able to identify violated inequalities without optimally solving the sepa-

ration problem. Hence, we develop a simple heuristic algorithm for approximately

solving the separation problem. The main idea of this algorithm is to iteratively con-

struct a set S and by checking the values x̂kij, ŷij we can obtain the best possible F

for a given set S using the procedure previously presented. The algorithm does not

guaranty optimality because it does not check all possible sets S.

For each vertex k ∈ V , we initially consider all the other vertices of V to be in S

and we obtain the optimal set F associated with Q =
∑

m∈S wkm. Let

∆(S) =
∑

(i,j)∈δ−(S)\F

x̂kij +

(∑
m∈S

wkm

) ∑
(i,j)∈F

ŷij −
∑
m∈S

wkm.

We then arbitrarily remove one element of S at a time if ∆(S) strictly decreases.

After this process is completed, we add the corresponding inequality if violated, i.e.,

∆(S) < 0.

The separation problem for the mixed dicut inequalities with outflow is very sim-

ilar to the one of the mixed dicuts. Analogously, in order to determine the best set
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C ⊆ δ+(S) for a given S, we simply add (i, j) ∈ δ+(S) to C if and only if

x̂kij −

 ∑
m∈V \S

wkm

 ŷij > 0.

5.3.3 A Branch-and-Cut Algorithm

We next introduce an exact solution method for the FCHT based on the flow-based

formulation FBF presented in Chapter 4. It is a branch and cut method that uses

the valid inequalities and their corresponding separation problems introduced in the

previous sections to tighten the LP bound at some nodes of the enumeration tree in

the branch-and-bound process.

The idea is to first solve the LP relaxation of (4.13)–(4.17) at the root node of

the tree. We then iteratively add valid inequalities that are violated by the cur-

rent LP solution. When no more violated inequalities exist, we resort to CPLEX

for solving the resulting formulation by enumeration, using a call-back function for

generating additional violated constraints at some nodes of the enumeration tree. In

the computational experiments section, we provide additional details on which subset

of inequalities are added and their impact in terms of improving the LP bound and

the CPU time.

We use the best feasible solution obtained with the heuristics presented in Section

5.2 as an initial upper bound for the branch-and-cut. The heuristic introduced in

section 5.3.1 for the separation problem of the mixed dicut inequalities is used to

quickly find violated inequalities. We also added a tolerance parameter in order to

determine the minimum absolute violation an inequality should have to add to the

current LP relaxation. If the tolerance is set to zero, then all violated valid inequalities

would be added.
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Chapter 6

Computational Experiments

A computational study has been carried out in order to test the performance of the

models and solution methodologies introduced in previous sections. In the first part of

the computational experiments, we focus on a comparison of the three most promising

MIP formulations of Chapter 3. In the second part we analyze the performance of

the different heuristic methods presented in Section 5.2. In the final part, we present

the results of the branch-and cut method and the effect of adding different families

of valid inequalities. The algorithms were coded in C and run on Windows with a

Pentium Dual-Core processor at 2.80 GHz and 4GB of RAM. The formulations and

the branch-and-cut method were implemented using the callable library of CPLEX

12.5.

We have performed the computational experiments using well-known instances for

the closely related optimum communication spanning tree problem and hub location

problems as well as some randomly generated instances. The instances we use are

the following:

• Three instances from Palmer (1994) with to 6, 12 and 24 vertices. The ver-

tices correspond to cities in the United States of America and the demands are
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inversely proportional to their costs (distances).

• Two instances attributed to Raidl and found in Rothlauf (2009) with 10 and

20 vertices respectively. The distances and demands are uniformly distributed

in [0, 100].

• Three instances from Berry et al. (1995). One with 6 vertices and the other two

with 35 vertices.

• Three instances generated by us. One with 4 vertices, from Example 3.1 and

two random instances generated with 15 and 20 vertices.

• Four instances from the well-known OR-Library (http://people.brunel.ac.uk/ mas-

tjjb/jeb/info.html) called AP (Australian Post) which contain information on

the 200 most important cities in Australia and their corresponding postal flows.

We set the CPU time limit to 86,400 seconds (one day). Whenever CPLEX is not

able to solve an instance within the time limit, we write TIME in the corresponding

entry of the table. If the algorithm runs out of memory we write MEM.

6.1 MIP Formulations and Combinatorial Bounds

In this section we summarize the results obtained when implementing in CPLEX

the path-based formulation PBF , the flow-based formulation FBF , and the second

two-index formulation 2IF2. The second path-based formulation PBF2 and the

first two-index formulation 2IF cannot be directly solved by a general purpose solver

(such as CPLEX) because they require the development of ad hoc column generation

and branch-and-cut methods, respectively. Given that we are already testing other

formulations that obtain similar bounds as well as the limited scope of this thesis,

they were not considered in these computational experiments. We also show the
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results from the combinatorial bounds to assess their quality. The detailed results

of the comparison are provided in Table 6.1. The first column contains the name

of the instance. The next three columns correspond to the CPU time in seconds

needed to obtain an optimal solution and the duality gap relative to the LP bound

obtained with the PBF, FBF and 2IF2, respectively. The optimality gap is computed

as LPGap = 100(OPT − LBF )/OPT , where OPT is the optimal value and LBF

is the lower bound obtained with PBF , FBF , and 2IF2, respectively. The fifth

column provides the optimal value of the considered instances or the best upper

bound obtained with any method (indicated with an ∗ for the cases when the optimal

is not obtained). The last column shows the optimality gap associated with the

combinatorial bounds and the best known upper bound.

PBF FBF 2IF2 optimal value Comb. bound
Instance time(s) LP Gap(%) time(s) LP Gap (%) time(s) LP Gap (%) (%)

4 Vertices 0.56 0.00 0.59 2.14 1.01 100.00 3500 2.85
Palmer6 1.96 0.00 1.92 19.12 4.58 100.00 679976 20.25
Palmer12 85.00 10.66 25.00 36.10 TIME 100.00 3631576 37.46
Palmer24 TIME 4.23 101.00 12.54 MEM 100.00 1442336 24.65
Radil10 8.00 22.87 3.28 43.47 TIME 100.00 91567 46.79
Radil20 TIME 57.97 MEM 68.97 MEM 100.00 456571(*) 70.52
Berry6 3.60 7.26 2.14 15.44 6.43 100.00 608 24.17
Berry35 MEM MEM MEM 65.44 MEM 100.00 51227(*) 66.98
Berry35u MEM MEM MEM 77.54 MEM 100.00 54412(*) 78.69

Random15 2612.00 42.04 1040.00 56.45 TIME 100.00 24536 56.89
Random20 TIME 47.60 TIME 60.87 TIME 100.00 50855(*) 61.16

10ll 4.39 10.75 3.12 30.24 TIME 100.00 72550 31.00
20ll TIME 42.69 TIME 54.32 TIME 100.00 117955(*) 54.87
25ll TIME 50.97 TIME 60.56 TIME 100.00 133605(*) 60.87
40ll MEM MEM MEM 68.30 MEM 100.00 154621(*) 68.45

Table 6.1: Comparison of the three MIP formulations.
(*)Best upper bound known.

Table 6.1 shows that in terms of CPU time the best formulation is the FBF, as

in terms of the LP relaxation we are observing the theoretical result presented in

the previous chapter, where the PBF is able to obtain the tightest LP bounds. We

can see that the 2IF2 turned out to be the worst of the three formulations in terms
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of CPU time and LP relaxation, even though it has less variables and the number

of constraints is polynomially bounded. These results can be partially explained by

the fact that 2IF2 uses a large number of constraints with a big M coefficient. It

is common in MIP that such type of formulations usually provide very weak lower

bounds associated with their LP relaxations.

For many instances we were not able to find the optimal solution (*), either

because we run out of memory or because we reached the time limit. When the latter

happened, the optimality gap in CPLEX remained at least above 20%. In terms

of the combinatorial bound from Section 5.1, we can see that although this bound

represents a good improvement to the LP bound of 2IF , in most instances, the LP

relaxation of the PBF and the FBF provides better lower bounds. However, it is

important to mention that the combinatorial bound requires a very small amount of

memory and can be obtained much more efficiently than the LP relaxation of any

formulation.

6.2 Heuristics

In this section we present the computational results from the implementation of the

greedy deterministic heuristic and the GRASP metaheuristic. We present the optimal

solution obtained with CPLEX and for those instances not solved to optimality yet,

we show the best upper bound found so far (indicated with *). We also show the

upper bound given with the TSP solution. That is, we evaluate the flow cost objective

of the FCHT on the optimal solution of the TSP given by the minimization of the

design cost objective.

Table 6.2 compares the optimal value obtained by CPLEX (or the best upper

bound known) with the corresponding values obtained by the approximation methods.
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In the case of the GRASP algorithm, we used 1, 000 iterations for each instance and

we record the best solution obtained, whereas in the other deterministic methods

they are executed only one time. The CPU time of both the greedy and the GRASP

algorithms did not exceed 3 minutes for any instance, whereas for the smaller instances

(i.e. less than 15 vertices) the CPU time was less than 10 seconds. Therefore, the

results associated with the running times are omitted from the table.

Instance optimal TSP solution greedy heuristic GRASP heuristic
4 vertices 3500 45.31 20.40 0.00
Palmer6 679976 6.27 0.00 0.00
Palmer12 3631576 3.00 0.00 0.00
Palmer24 1442336 46.37 3.76 3.17
Radil10 91567 18.61 18.61 0.00

Radil20(*) 456571 0.00 21.32 4.15
Berry6 608 0.00 8.01 0.00

Berry35(*) 34593 - 32.47 0.00
Berry35u(*) 54412 0.00 37.41 9.30
Random15 24536 11.36 14.62 0.00

Random20(*) 50855 0.00 39.45 1.07
10ll 72550 0.00 10.72 0.00

20ll(*) 117955 6.05 6.15 0.00
25ll(*) 133605 1.72 8.94 0.00
40ll(*) 154621 6.47 7.48 0.00

Table 6.2: Optimality Gap (%) for FCHT.

The results presented in Table 6.2 show that the GRASP method dominates the

others with the exception of instances Radil20 and Berry35u. An interesting obser-

vation is that, even though the TSP solution is far from optimal on several instances,

it provides the best known bound for four instances.

6.3 Branch-and-Cut

We next present the results obtained with the branch-and-cut method using various

sets of valid inequalities. Table 6.3 is a comparison between the basic formulation
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and the formulation strengthened with the mixed dicut inequalities only at the root

node of the enumeration tree as well as with two other branch-and-cut methods. The

first one is the branch-and-cut of CPLEX, which tries to incorporate general valid

inequalities such as flow cover and lifted cover inequalities, MIR inequalities, and

Gomory cuts, among others. The second one is a combination of the previous one

with the addition of the mixed dicut inequalities.
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No cuts Mixed dicuts CPLEX cuts CPLEX cuts + Mixed dicuts
Instance LP Gap time BB nodes LP Gap time BB nodes mixed cuts LP Gap time BB nodes LP Gap time BB nodes mixed cuts
4 vertices 2.14 0.05 0 0.00 0.02 0 2 0.00 0.03 0 0.00 0.02 0 2
Palmer6 19.12 0.03 16 8.90 0.05 7 21 0.68 0.08 0 0.01 0.08 0 8
Palmer12 36.10 15.48 8148 24.70 93.35 9961 281 12.62 52.48 1574 12.00 51.81 1385 39
Palmer24 12.54 125.00 14985 8.15 1855.00 25358 3163 12.25 191.00 16152 8.15 778.00 11013 2274
Radil10 43.47 0.35 410 39.81 1.41 379 196 24.80 1.55 161 24.56 1.59 145 74

Radil20(*) 68.97 TIME TIME 67.26 TIME TIME TIME 60.78 TIME TIME 60.59 TIME TIME TIME
Berry6 15.44 0.22 14 12.44 0.07 17 16 7.15 0.12 8 7.15 0.07 7 7

Berry35(*) 65.44 MEM MEM 65.12 MEM MEM MEM 55.41 MEM MEM 55.36 MEM MEM MEM
Berry35u(*) 77.54 MEM MEM 77.40 MEM MEM MEM 72.02 MEM MEM 71.57 MEM MEM MEM
random15 56.45 588.00 179703 54.72 4704.00 180315 2179 43.61 956.00 27248 43.55 1583.00 36667 252

random20(*) 60.87 TIME TIME 59.45 TIME TIME TIME 50.15 TIME TIME 50.15 TIME TIME TIME
10ll 30.24 3.91 1345 20.87 12.86 534 339 11.02 0.89 69 11.12 1.08 82 53

20ll(*) 54.32 TIME TIME 49.65 TIME TIME TIME 44.34 TIME TIME 44.23 TIME TIME TIME
25ll(*) 60.56 TIME TIME 56.95 TIME TIME TIME 52.84 TIME TIME 52.82 TIME TIME TIME
40ll(*) 68.30 MEM MEM 65.98 MEM MEM MEM 62.03 MEM MEM 61.32 MEM MEM MEM

Table 6.3: Branch-and-cut
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Table 6.3 shows that the implementation of the branch-and-cut method using the

valid inequalities from proposition 5.3, provides improved LP relaxation bounds at

the root node of the enumeration tree. However, a somehow unexpected result is

that this improvement seems not to have a positive impact on the CPU time. The

results show that the LP value improves for all three approaches comparing with no

cuts added. Moreover, the best LP gap in all instances is the one when we apply

CPLEX’s cuts and the mixed dicuts inequalities at the same time, however the CPU

time increases for most instances.

We also implemented the mixed dicuts with outflow from proposition 5.4 and the

lower bound in most instances increased compared with the mixed dicuts alone. How-

ever, the improvement was small (from 0.1% to 0.9%) and there was no significant

change in the time spent to solve the instances. Whereas for inequalities (5.3) and

(5.4), we executed the FBF exchanging them with (4.14), showing that for the in-

stances compiled the results did not improve significantly. However, inequalities (5.3)

might always be used instead of (4.14) since the number of them does not change.
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Chapter 7

Conclusions and Further Research

In this thesis we introduced the minimum flow cost Hamiltonian tour problem. It is a

combinatorial optimization problem that, to the best of our knowledge, has not been

addressed in the literature before. One of the main contributions of this work was

to study the polyhedron associated with the set of feasible solutions of the FCHT.

We proved that the FCHT belongs to the class of NP -hard problems and proposed

five different MIP formulations. These formulations were theoretically compared with

respect to the quality of their LP relaxation bounds as well as computationally using

commercial solvers such as CPLEX 12.5. The results showed that, in terms of the LP

bounds, the two path-based formulations are the most promising ones while the FBF

seemed to be more efficient when proving optimality with a general purpose solver.

Another important contribution of this thesis was the development of approxi-

mate and exact methodologies in order to solve the FCHT or to find good feasible

solutions. In particular, we provided combinatorial bounds, two heuristics, a deter-

ministic greedy heuristic and a GRASP meta-heuristic. The combinatorial bounds

as well as the heuristic methods were able to efficiently obtain reasonable lower and

upper bounds, respectively, within a few minutes for the worst case of the consid-
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ered instances. A branch-and-cut algorithm based on the FBF was also presented.

We proved the validity of various extended mixed dicut inequalities as well as other

classes of inequalities for the FCHT. We also introduced their separation problems

and algorithms to solve them. The results obtained in the computational experiments

showed that the lower bounds at the root node of the enumeration tree were consid-

erably improved when using the mixed dicut inequalities. Unfortunately, they were

not very efficient in reducing the overall CPU time required to prove optimality.

The FCHT turned out to be a very difficult optimization problem. Instances with

up to 24 vertices were optimally solved in one day of CPU time. However, formulations

and solution methods failed in proving the optimality of the solutions when dealing

with some 20 vertices and larger instances. This is particularly interesting when

comparing the difficulty with the closely related TSP problem, for which instances

with hundreds of vertices can be optimally solved with CPLEX using standard MIP

formulations.

There are several aspects of this research topic that are worth further research. It

is of theoretical interest to find special cases for which the problem is polynomially

solvable. Moreover, we strongly believe that the performance of the branch-and-cut

algorithm can be improved by using other families of valid inequalities and lifting

procedures. Further exploiting the cycle structure of the network might be useful for

finding strong valid inequalities.

Adapting well-known decomposition techniques, such as column generation or

benders decomposition, might seem an interesting way to use the quality of the LP

bounds associated with the path-based formulations. These methods can exploit the

structure of the network in order to efficiently solve larger instances. In terms of ap-

proximation techniques, it is clear that more sophisticated meta-heuristic procedures

may be developed to obtain and guarantee high quality solutions for the FCHT.
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