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Abstract 
 

A Bi-Objective Tactical Planning Model for the Reverse Supply Chain 
 Of 

 Durable Products 
 

Amir Khajavi Bajestani 
 

Recent environmental legislations and customer awareness on environmental impacts of landfill 

activities as well as the profitability of reverse supply chains (RSC) have drawn the attention of 

researchers and companies to RSC management. RSCs include the series of activities from acquiring 

a used product until its recovery and sending it back to the market. In this thesis, we propose an 

integrated RSC tactical planning model under the context of complex durable products. The durable 

products consist of various types of components. This attribute makes them subject to the all 

disposition options including remanufacturing, part harvesting, material and bulk recycling. The 

proposed model decides on the coordinated decisions on acquisition, disassembly, grading, and 

disposition activities in the reverse supply chain. Unlike the majority of works in the literature, our 

contributions include two objective functions addressing both financial and environmental criteria. 

Furthermore, we also consider two quality levels for returns, as well as a multi-indenture structure 

for the end-of-life (EOL) products, and consequently all possible recovery options in the RSC. We 

formulate the problem as a bi-objective, multi-period mixed integer linear programming (MILP) 

model. We applied the proposed model to an academic case study in the context of an EOL 

electronic device. The bi-objective model is solved by the aid of the epsilon constraint method and a 

set of non-dominated solutions are provided. Finally, we conduct a set of sensitivity analysis tests for 

each objective function in order to determine the most significant parameters that affect the financial 

and environmental criteria in this problem. 

Keywords: Reverse supply chain; remanufacturing; production planning; durable products, bi -

objective optimization; epsilon-constraint method.
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Chapter 1 Introduction 

1.1 Foreword 

During a United Nations conference on human environment in 1972, in which developed 

and developing nations had been gathered to discuss the preservation and enhancement of 

the human environment, the concept of sustainability was brought out. The concept has 

been further developed to the point that a global consciousness regarding the 

environmental issues such as earth, natural resources and human life threats has been 

aroused [18]. This awareness has been enforced recently by government’s participation in 

the sustainable development. Therefore, new legislations are enacted that require 

producer’s responsibility of their waste and emission to achieve environmental 

sustainability. Many European countries created a system, called ERP (Extended 

Producer Responsibility), by which the producers require to take-back, recycle and 

dispose their end-of-life (EOL) products. 

Sustainability includes three pillars: 1) environmental, 2) social and 3) economical ones. 

Firms’ contribution could be along the three mentioned pillars by increasing the profit 

generated and decreasing the environmental and social footprints. As the result, closed 

loop supply chains (CLSC), has drawn the attention of researchers and companies. In the 

reverse side of CLSC’s, environmental responsibilities could be met by the recovery of 

EOL products and diverting them from landfill to reuse. Products are the source of 

environmental issues, because in order to create a product, natural resources are 

consumed, manufacturers’ machineries exhaust and pollute water and earth. Eventually 

the EOL products could damage the environment by leaving their hazardous and non-

hazardous compounds on the earth. 
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Socially wise, green activities help the producer to build a good creditability among the 

consumers who reasonably expect them to eliminate their environmental harm. Another 

advantage of the EOL recovery practices is the Profitability and the value generated by 

the firms. Producing a brand new unit of product is always more expensive than 

remanufacturing it. Moreover, by remanufacturing, many parts and components could be 

reused, therefore resources would be preserved. Further, upon reuse, firms are extending 

the product’s life cycle by keeping them out of landfill [14].For instance, over the last 

decade Kodak has recycled more than 310 million single-cameras in more than 20 

countries [16]. 

According to the above mentioned advantages, reverse supply chains are becoming an 

essential part of businesses, among which the OEMs (original equipment manufacturers) 

of automotive parts, cranes and forklifts, furniture, medical equipment, pallets, personal 

computers, photocopiers, telephones, televisions, tires, and toner cartridges are ahead of 

others [14]. Recovering the EOL products could vary significantly from one industry to 

another. This deference roots back to the nature of the products. Some products, such as 

sand and paper are simple and they do not contain hazardous materials. On the other hand, 

complex products such as electronic wastes consist of a considerable amount of materials 

and parts, some of which are hazardous. Also, the recovery of such components in the 

underlying industry is expected to be profitable. Therefore, maintaining an efficient and 

effective reverse supply chain system is the key factor that gives the firm the ability to 

succeed and stay competitive in the market, both financially and environmentally. 

Reverse supply chain includes the series of activities from acquiring a used product until 

recovering and sending it back to the consumer market. In the process of a typical RSC to 
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recover a complex product, such as an electronic waste core, there are several key 

decisions involved, namely product acquisition, grading (inspection), and disposition, 

including disassembly, remanufacturing, recycling, part harvesting, and disposal. 

Regarding the acquisition, firms could passively accept all returned items or exert control 

over the acquired products through acquisition decisions [16]. Grading decisions are 

directly influenced by the acquisition policies. When the firms accept all the returns 

without exerting control over the quality levels of returns, the evaluation responsibility 

burden the grading center. Generally, grading unit is the link between acquisition and 

disposition decisions. The Disposition problem can be defined as “a given set of cores 

and a set of available recovery options” [24]. 

In order to have an efficient RSC, an integrated tactical planning to combine all the 

sections in the above mentioned RSC is required. Another important aspect is raised from 

the environmental viewpoint, in which by acquiring more of EOLs, firms would be able 

to prevent the waste placement into the landfill. Thus, first as a social result, a good 

public reputation would be built up based on the fact that companies are environmentally 

friendly. And second, it helps the manufacturer financially because if the OEMs fail to 

take back a certain amount of their products, they will end up paying high penalties.  

1.2 Goal of the study 

The goal in the underlying study is to propose an integrated tactical planning tool in a 

RSC corresponding to durable products. Durable products, such as computers, mobile 

phones, copy machines, washing machines and automobiles, require to be treated 

differently than other wastes such as papers, containers, etc. EOL durable products are 

distinguished by their high recoverable value and long product life cycle. They often 
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consist of multiple and various types of components. The specific characteristic of 

durable products rises to the challenge of choosing a proper RSC setting. In this context, 

our reverse supply chain consists of different facilities, such as collection, disassembly 

and inspection, disposition and redistribution. We are also interested to integrate all the 

reverse supply chain tactical-level decisions. In other words, we aim for integrating all 

the tactical level decisions from collecting the EOL to selling the recovered items to the 

market. Demand is estimated over a multiple period setting, and returns are assumed 

belonging to two different quality levels, good and poor qualities, where the proportion is 

known in advance. The tactical level decisions in this study correspond to a complete 

bill-of-material of a durable product in electronic industry and include all the possible 

recovery options. The decision variables in each period in the planning horizon are as 

follows: 

� Number of products of different quality levels purchased and disassembled.  

� Number of modules and parts to remanufacture and harvest. 

� Mass of each material to recycle. 

� Inventory of products, modules, parts, materials, residues and disposal. 

� Sales amount of recovered modules, parts and materials. 

To formulate the underlying problem mathematically, a MILP (mixed integer 

programming model) is proposed that includes two objective functions: 1) financial and 2) 

environmental ones. According to the current literature, most of the researchers and firms 

try to maximize their profit (or minimize the cost), but the environmental criteria is 

seemed to be overlooked from the common practice. Investigating the solution of two 

objective functions is a challenge, given the fact that our financial and environmental 
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objectives are in conflict. Therefore, there is a need to find a set of “most-preferred” 

solutions by the aim of multi-objective optimization methods. In this study we apply the 

epsilon-constraint method to find a pareto-front for the trade-off between the two 

objective functions. 

Finally, we also conduct a set of sensitivity analysis tests for each objective function in 

order to determine the most significant parameters that affect the financial and 

environmental criteria in this problem. 

1.3 Research contribution 

According to the literature, the majority of works that have been done in the context of 

RSC tactical planning only addressed the financial aspects of the problem (profit 

maximization/cost minimization) and they failed to consider the minimization of negative 

environmental impacts, although RSC activities, target the reduction of environmental 

footprint by its nature. Furthermore, considering the most possible recovery options and 

different quality levels of EOL returns are other shortcomings of the current contributions 

in the literature. 

The key considerations in this study that contribute to the existing literature are as 

follows: 

� An integrated tactical planning model including acquisition, grading and 

disposition (remanufacturing, harvesting, recycling and disposal) decisions in the 

context of a durable product RSC proposed. 

� A multi-indenture structure is considered for the EOL products. Consequently, all 

possible recovery options are taken into account. 

� Two objective functions addressing both financial and environmental criteria are 
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proposed. 

� Two quality levels for returns are considered. They differ in the acquisition price, 

recovery and processing costs, and the amounts of recoverable components. 

This study contributes to a valid and strong tool for researchers and practitioners in the 

RSC related fields. The tactical planning model proposed in this thesis is applicable in the 

durable products context. Since sustainability is a fairly new concept and most companies 

seem to be unaware of their environmental footprint, by the aim of this tool companies 

will be able to increase their profit while eliminating their environmental footprint. 

1.4 Thesis outline 

Following the introductory chapter, a literature review is provided in chapter 2. In chapter 

3, problem description, model formulation and solution methodology are presented. 

Chapter 4 includes our case study and the experimental results. Finally, conclusions and 

recommendations for future contributions are discussed in chapter 5. 
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Chapter 2 Literature review 

2.1 Introduction 

Profitability and the value generated by reverse supply chains (RSC), as well as recent 

increase in legislations and customer awareness on environmental impacts of landfill 

activities have drawn the attention of researchers to RSC’s management. Environmental 

responsibilities could be met through improving the recovery of end-of-life (EOL) 

products and diverting them from landfilling to reuse which is the main motivation of 

RSC management. According to the growing concerns, the producers need to take 

advantage of practicing in closed loop and reverse supply chains. In this chapter, relevant 

literature of reverse supply chains is discussed. Prior to describe the current literature, we 

briefly review the features of supply chains and RCS’s, as follows: 

2.1.2  Supply chains 

A supply-chain encompasses all activities associated with the flow of goods from 

acquiring the raw material, adding value through manufacturing, and delivering the final 

goods to the end user. There are five entities in every supply chain: 1) raw material 

suppliers, 2) manufacturers, 3) wholesalers/distributors 4) retailers, and 5) customers. The 

objective of every supply chain could be seen from different perspectives, but the 

consensus is to maximize the overall value generated. This value is the difference 

between what the final product worth to the customer and the costs that supply chain 

incurs in filling the customer’s request. This generated value is a measure of profitability. 

The higher the supply chain profitability is, the more successful the supply chain would 

be [15]. 
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Successful supply chain management requires making many decisions relating to the 

flow of information, product, and funds. According to Chopra and Meindl [15], these 

decisions fall into three basic categories in which we consider activities over specific 

time horizon. These categories are as follows: 

1) Supply chain strategic planning: during this phase company decides how to structure 

and design the supply chain over a long period of time (years). The decisions are mainly 

focused on the location and capacity of the production, and the warehousing facilities, the 

quantity of products to be manufactured and stored at various locations, the mode of 

transportation and the type of information system to be utilized. These decisions are long 

term and are very expensive to change. 

2) supply chain tactical planning: The time frame considered in SC tactical planning is a 

quarter to a year. Company decides on medium-term decisions, such as procurement 

planning, supplier selection, production, inventory and distribution planning. Given a 

shorter time frame and better forecasts than the design phase, companies in the tactical 

planning level, try to incorporate any flexibility built into the supply chain in the design 

phase, and exploit it to optimize performance. 

3) Supply chain operation planning: these decisions are short-term (daily or weekly) 

plans. Companies make decisions regarding individual customer orders, allocating 

inventory or production to individual orders, set a date that an order is to be filled, 

generate pick lists at a warehouse, set delivery schedule of trucks and place 

replenishment orders. Given a shorter time frame than the tactical planning phase, the 

goal is to exploit the reduction of uncertainty and optimize performance. 
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2.1.3 Closed-loop and reverse supply chains 

Reverse supply chains are supply chains where in addition to the typical forward flow of 

materials from suppliers to the end customers, there are flows of products back to 

manufacturers [14]. A reverse supply chain network begins with the collection of used 

products from end-user. According to Aras et al. [17], there are different structures of the 

reverse supply chains in practice, and the nature of the used product and the type of 

recovery activity play an important bearing on the structure of the RSC. However, 

collecting or acquisition, grading and disposition decisions are the major elements of a 

RSC.  

Product acquisition activities represent the supply side of CLSCs and include feeding the 

products back into the supply chain [24]. There are two types of acquisition systems, 

market-driven and waste-stream. In the market-driven case, firms exert control over the 

quality of acquired items via different methods. This control could be through pricing 

decisions. In a waste-stream system, firms accept all the returns without exerting careful 

control over the quality levels of returns, therefore the role of acquisition management is 

not significant. In this situation, the focus is more on the grading activities after 

acquisition. In the grading activities, the used products are evaluated and tested for proper 

recovery decisions. Different grading methods exist in order to define the quality status of 

products. Once the quality of products is known they are classified for further treatments. 

The objective is to optimize the performance by determining the right grading decisions. 

The grading unit is the link between acquisition and disposition activities. After grading, 

a RSC is faced with multiple options for further treatment depending on the type of the 

products. These decisions are recalled as disposition decisions. The disposition problem 
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is straightforward for a single core, but when disassembling a product yields multiple 

components, a good disposition decision has to take into account all of these components 

and seek global optimum among them. The simplest form of disposition decision for a 

core is the choice of remanufacturing and disposal [24]. However for a more complex 

product, this could be a combination of remanufacturing, refurbishing, recycling, part 

harvesting, land filling, incineration, internal reuse, and resale. Remanufacturing or 

refurbishing is the highest profitable, and at the same time the most costly recovery 

activity among the disposition options. Remanufacturing includes disassembly, cleaning, 

repairing, replacing parts and reassembly and consists of bringing the used product to a 

common operating and aesthetic standard [25]. Refurbishing is defined as ‘light’ 

remanufacturing and it include a minor disassembly. The parts recovery includes cleaning 

and repairing a used part in order to reuse it. Incineration could be used to reduce the 

landfill amount and energy recovery, however there exist some disadvantages such as 

emission and pollution in the incineration practices. Resale and reuse refer to activities 

where there is no need for treatment and the equipment could be used as-is. 

A comprehensive literature on the aforementioned elements of RSC’s are described as 

follows. 

2.2 Current literature 

In this section, we briefly review the existing literature on acquisition, grading, and 

disposition planning in reverse and closed-loop supply chains, as follow. 

2.2.1 Acquisition planning 

Guide and Van Wassenhove [16] stated that firms could passively accept all returned 

items or exert control over the acquired products through acquisition decisions. Different 
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works in this regard have been done. Some addressed the optimal acquisition price 

regardless of different quality levels of returns [19-22], while others discussed a situation 

where manufacturer must grade the collected items to effectively manage the quality 

variability [2-4]. 

Robotis et al. [3], studied the effect of remanufacturing on procurement decisions for 

resellers in the secondary markets. At first, it is assumed that the reseller procures used 

products from two classes of suppliers and after sorting them, she sells those products 

whose quality is higher than the acceptable quality level for that class, and then disposes 

off the rest. In the proposed model framework, the reseller observes the quality of 

returned products and decides to remanufacture some of them. They have considered two 

quality levels of products and the objective is to maximize the profit. They concluded that 

using remanufacturing to serve secondary markets reduces the number of units procured 

from the suppliers and it is always better to use remanufacturing to a certain extent. They 

also showed that by using remanufacturing, resellers can eliminate some of their 

suppliers who may be providing items of low quality. 

Atasu and cetinkaya [1] presented a RSC study on lot sizing and optimal collection and 

use of remanufactruable returns over a finite life-cycle. They considered a setting where a 

collector obtains used product at a constant return rate. The collector then, ships these 

returns to the manufacturer regularly. Since all remanufactured products are substitutable 

for satisfying the demand for new products, the manufacturer would like to cover demand 

using as many remanufactured products as possible. The model concentrates on the case 

where a single production lot of new items are produced by the manufacturer early in the 

active market demand period. They also provided a method for making better use of 
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returns by taking advantage of their time value in the manufacturer-collector 

collaboration. 

Zikopolous and Tagaras [4] investigated the impact of uncertainty in the quality of 

returns on the profitability of a RSC. They developed a stochastic programming model 

for a single-period reverse supply chain planning. The underlying reverse network 

includes two collection facilities and one refurbishing site. Returns are conveyed to the 

refurbishing facility from two collection sites. The authors took into account two 

different uncertain quality levels of returns such that qualities are revealed only after 

being received by the refurbishing center. The uncertainty in quality of returns is 

considered as a continuous random variable. Returned units are sorted upon arrival to the 

refurbishing facility and disposed if they do not meet the quality standards for 

refurbishing. Refurbished items are sold to the market. The demand for the refurbished 

items is assumed to be continuous random variables. The problem in this study contains 

three decision variables, including the quantities to transport from each collection site to 

the refurbishing center and the quantity to be refurbished. The objective function is to 

maximize the expected profit. They concluded that the quality of returns has a significant 

effect on the profitability of the reverse supply chain. Furthermore, they proposed 

splitting the total procurement quantity between the two collection sites is beneficial to 

the system. 

Galbreth and blackburn [2] studied the optimal acquisition quantities in remanufacturing. 

The remanufacturer should decide on the quantity of used items to acquire for 

remanufacturing and the quantity to scrap. These used items are classified into different 

quality levels which are widely varying and uncertain. The condition variability was 
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described by a continuum as well as two discrete categories of remanufacturable used 

items. Acquiring higher volume of used products results in having more of better quality 

products and therefore remanufacturing costs would decrease, but this reduction in cost 

would incur higher acquisition cost. Hence, in this work, the tradeoff between acquisition, 

scrapping and remanufacturing costs is examined. The objective was to minimize the 

total cost. Data were taken from a cell phone remanufacturer. They concluded that when 

costs are linear, the optimal acquisition quantity has a closed form and increases with the 

square root of the degree of condition variability.  

2.2.2 Grading and disposition planning 

Black burn et al. [23] discussed the appropriate location of grading operations, in term of 

testing returns at the centralized and decentralized facilities. Guide et al. [19] proposed an 

analytical model to quantify the trade-offs in the grading location decisions. Denizel et al. 

[5] investigated a remanufacturing environment where returns are graded and grouped 

into a number of different quality levels. A promising work in the closed loop supply 

chain is done by Sheu et al. [10]. In this work, an integrated logistics operational model 

for green supply chain management was proposed. A linear programming model was 

formulated to optimize the operations of both integrated forward and reverse logistics in a 

green-supply chain. Their comprehensive framework is classified into manufacturing 

supply chain and used-product reverse supply chain. The manufacturing supply chain 

includes raw material supply unit, manufacturing facility, whole sale unit, retailing and 

end-customers. Similarly, the reverse supply chain consists of collection centers, 

recycling plants, disassembly plants, secondary material markets and final disposal 

locations of wastes. The objective is to find equilibrium solution to maximize the net 
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profit for the both forward and reverse supply chain. For the numerical study a real case 

of notebook computer manufacturer was considered. Their findings showed that, in an 

integrated forward-reverse supply chain, increased profit from the reverse supply chain is 

relatively small compared to the forward manufacturing chain. However, reverse supply 

chains can be benefited from the governmental subsidy policies and ultimately lead to 

prevention of environmental legislation expenses. 

Sodhi and Reimer [11] presented a model for RSC of recycling EOL electronics. In the 

proposed model, the reverse channels for the recycling of electronics are represented as a 

network of flow between generators, recyclers and material processors. The recyclers 

collect electronics waste from different sources and manufacturers. Then, through further 

processes, such as disassembly and separation, products are broken down to different 

parts and components. From there, they are forwarded to smelters to process into pure 

stream of metal and plastics. A typical electronics recycling network includes three 

processing units, mixed material sources, recyclers and smelters. Linear mathematical 

models were formulated to optimize the profit for each processing unit, separately. At the 

recycler’s level, an integrated disassembly and material recovery problem was formulated.  

Jayaraman  [9] addressed production planning for closed-loop supply chains with product 

recovery and reuse options. In this framework, first, products are returned from the end 

users. Once the products are returned, there are several options to treat them such as sell, 

clean and repair, refurbish and sell, remanufacture, retrieve valuable parts, recycle and 

disposal. It is profitable to employ all of the mentioned treatment options except disposal, 

which has to be minimized or eliminated. The profitability of such systems also depends 

on the ability to minimize the environmental impact of used products. They assumed the 
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incoming products have different quality levels. Decision variables in their model include 

the number of unit cores acquired in each period, the number of unit core disassembled in 

each period, the number of unit cores and modules remanufactured in each period, the 

number of unit cores and modules disposed in each period, and the number of cores, 

modules and remanufactured cores, remaining in the inventory at the end of each period. 

A linear programming model was formulated to minimize the total cost of the reverse 

supply chain in a multi period setting. They collected the data from a cellular phone 

manufacturer for their case study. It was concluded that the acquisition price affects the 

acquisition quantity of used products. 

Walther and Spengler [12], examined the impacts of waste electrical and electronics 

equipment (WEEE) directives on reverse logistics in Germany. The adoption of these 

directives causes essential changes in the field of electronic scrap recycling. Hence, they 

developed a mixed integer optimization model for integrated disassembly and recycling 

planning to predict relevant impact of the legislations on the treatment of discarded 

electronic products. The decision variables include the masses of products to acquire, 

masses of products or disassembly fraction accepted from another disassembly company, 

number of executions of disassembly activities and masses of disassembly fraction 

delivered to recycling or disposal site. The objective is to maximize annual marginal 

income of the network. The data were collected from a real case study in entertainment 

electronics in Germany. Some of their findings include that by increasing centralization 

tendencies, transportation costs and thus emissions will rise which contradicts the 

sustainability practices, therefore small companies need to cooperate and bundle 
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capacities and acquisition processes. Joint utilization of vehicles and joint investments in 

vehicles with higher capacity are other possibilities for network cooperation. 

Ferguson et al [6] investigated the value of grading in remanufacturing. They considered 

a tactical production planning problem in a remanufacturing firm. In this study, products 

are returned to the firm’s return facility. Returned products are coming from a broad 

range of different quality levels. Afterward, they are graded to three different quality 

levels. Grading procedure determines the proper disposition option for the product to 

undergo. The decision variables are the number of products to remanufacture, the 

quantity of returns to salvage and inventory of both returned and remanufactured 

products. Demand is forecasted for the remanufactured products but it is considered to be 

different than the demand for new products. They collected the data from a mailing 

equipment manufacturer. A greedy heuristic solution algorithm was developed to solve 

the problem. Based on their analysis, grading the returns would increase profit by 

4 %.They proposed a number of managerial insights as follows. First, the ratio of return 

rates to demand rates has a direct relation with the value of grading. Second, the major 

benefits of applying a grading system in remanufacturing occur when there are no more 

than five quality levels for grading. 

In a comprehensive work regarding grading and disposition planning, Doh and Lee [8] 

proposed a grading and production planning model in a reverse supply chain. In their 

problem, the used products are collected through the collection facilities and stored at the 

“collected items” inventory. Then in the grading step, they are inspected, and tested to 

determine if products are remanufacturable or not. Remanufacturable products are 

disassembled to parts and components and are stored in the inventory for further 



17 
 

processing and reassembly. Non-remanufacturable products are sent to disposal units. 

The decision variables are the number of products to be disassembled or disposed, the 

number of parts or components to remanufacture or dispose and the number of products 

to be reassembled in each period. The objective is to maximize the profit. They 

formulated the problem as a mixed integer programming model. They also provided two 

heuristic solution algorithms. 

Kim et al [7] proposed a supply planning model for remanufacturing in a reverse logistics 

network. In this framework, end-of-life products are returned to the collection facility, 

then, they are disassembled and disposed to different parts. Disassembled parts are 

classified into reusable and non-reusable parts. In this study, only one disposition option, 

refurbishing, is considered and the products beyond the capacity are sent to external 

remanufacturing subcontractors. Non-usable parts are sent to disposal. The author also 

considered the possibility of obtaining some new parts from an external supplier. The 

decision variables include the number of disassembled products, the number of 

refurbished and disposed products in each period and the inventory level of products and 

parts. Moreover the manager has to decide on the number of purchased new parts as well 

as the number of outsourced products. The objective function is to maximizing the profit 

and the problem was formulated as a mixed integer programming model. The data were 

taken from a real case study. Sensitivity analyses were also performed to examine the 

different ways of cost savings. 

Denizel et al [5] proposed a multi-period remanufacturing planning model with uncertain 

quality of inputs. In this model, one type of product with the uncertain quality levels is 

considered. Demand is forecasted and known for different periods. They assumed that 
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cores arrive at the firm and are graded, then after observing the outcome of the grading 

process, the manager decides upon the amount to salvage and refurbish for each quality 

grade. Decision variables are the number of products to grade, the graded core to 

remanufacture as well as the number of cores to salvage. A multi-stage stochastic 

programming model was proposed to formulate this problem. The objective function is to 

maximize the total expected profit. Data were obtained from a real business case study, 

namely remanufacturing mailing equipment. The authors also did a broad numerical 

study and regression analysis to measure the relative impact of each parameter on profit. 

Some of their findings can be summarized as follows: firm’s profit is vastly related to the 

quality of the cores, the salvage value of unused products and the cost of grading. 

Furthermore, most of the times it is more profitable to remanufacture all of the higher 

quality cores, except when the cost of grading is high and firms have to grade and 

remanufacture only enough to meet the demand. 

According to the literature review in this section, the characteristics of different reverse 

and closed-loop supply chains studied in the literature are summarized in table1. The last 

row of the table contains the features of the RSC investigated in this thesis.
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Reference Different 
quality 
levels 

of returns 

Objective function Multi 
period 
setting 

Disposition decision Acquisition 
Decision 

Case study 

  Bi 
objective 

Single 
objective 

 remanufacturing Part harvesting 
/refurbishing 

Material 
recycling 

Disposal   

[1]   �  �    �  

[2] �  �  �   � � cellphone 

[3] �  �  �   � �  

[4] �  �  �   � �  

[5] �  � � �   �  Mailing equipment 

[6] �  �  � �  �  Mailing equipment 

[7] �  � � �   �   

[8] �  �  �   � � Cellular 

[9]   � � �   �  Notebook 
manufacturer 

[10]    �    � �  Electronic 
products 

This thesis � �  � � � � � � Electronic 
waste(academic) 

Table  2-1 Characteristics of the closed-loop supply chains in the current literature 
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2.3 Conclusion 

In this chapter, we reviewed the most recent literature in the field of CLCS’s and RSC’s 

tactical planning. Firms in many industries are trying to increase their activities on 

reverse supply chain according to the new legislations. Existing models have tried to 

capture different aspects of closed-loop and reverse supply chains. However, a clear gap 

in the literature still exists according to the different structures of a CLSC or RSC. For 

instance, in the content of complex product, after disassembly, different types of 

components, namely, modules, parts, residues, materials and disposal would be yielded. 

Therefore different types of disposition options can be considered. In contrary, when a 

product is simple such as sand, paper, etc. only a limited number of disposition options 

are possible. The current literature covers only a few of disposition options. For instance, 

some authors have addressed only one disposition option [1], while others focused on two 

or three options [1-10], nevertheless, none have investigated all of the possible 

disposition options in the RSC. Secondly, another important setting to be considered in 

the RSC and CLSC studies is the alignment with environmental concerns. Hence we 

expect firms make an effort to acquire used-products from different quality levels in 

order to reduce the environmental impacts of landfill. While one of the key 

considerations to minimize the environmental impact in the RSC’s is to maximize the 

acquired used-products among various qualities, to the best of our knowledge, current 

literature in the RSC tactical planning only investigates the acquisition activities from the 

economic perspective (profit maximization).  

In the literature, it can be observed that some of the contributions developed a setting that 

returns are from different quality levels. This variation in incoming quality levels are 
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tackled by deterministic and stochastic mathematical programming approaches [2-8]. 

While most of the works did not study the control over acquisition quality, only a few 

considered a setting with acquisition decisions of different quality levels [2-4]. 

Nonetheless, to the best of our knowledge, none of the available contributions considered 

different quality levels in an integrated tactical planning problem in a RSC, as 

investigated in this thesis. 
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Chapter 3  Problem definition and model formulation 

In this chapter, we first describe the features of the problem investigated in this thesis. 

Then, we provide the problem formulation. 

3.1 Problem description 

In this thesis, we are focused on a RSC corresponding to durable products. Hence, we 

first elaborate on the main features of such products. Then we provide the characteristics 

of the corresponding RSC. 

3.1.1 Product features 

In the underlying research, we considered a complex durable product. Durable products, 

such as computers, mobile phones, copy machines, washing machine and automobiles, 

require to be treated differently than other wastes such as papers, containers, etc. EOL 

durable products are distinguished by their high recoverable value and long product life 

cycle. They often consist of multiple and various types of components that can be 

recovered by different methods. The modular structure of the product is shown in figure 

3-1. When the durable product is disassembled, it yields modules, parts, residues, some 

precious materials and other hazardous and non-recoverable components. Modules are 

units of products which would undergo remanufacturing. Remanufacturing is the highest 

profitable and at the same time most costly recovery decision among all disposition 

options. Remanufacturing include disassembly, cleaning, repairing, replacing parts and 

reassembly and consists of bringing the used product to a common operating and 

aesthetic standard [25]. Good quality EOL products consist of more remanufacturable 

modules. On the other hand, poor quality returns include less number of 

remanufacturable modules. Good quality and poor quality modules are different in terms 
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of remanufacturing costs, as well. Poor quality modules are processed at high cost while 

good qualities require low cost of remanufacturing. However, both quality levels would 

be brought up to the same quality level through the remanufacturing processes. Poor 

quality modules are nominated for remanufacturing at high cost or being sent to bulk 

recycling. Spare parts are another sub-component of the disassembly process. These 

spare parts are entities that would undergo the harvesting process if they meet certain 

criteria for the harvesting. In this process, used parts are recovered to be sold in spare part 

markets. Each product yields different numbers of a specific part, based on its quality 

level. Good quality products yield more harvestable parts than poor quality ones. If parts 

are not qualified for harvesting, they will be sent to bulk recycling. Other disassembly 

outputs are materials. Materials such as plastic, iron, copper and aluminum are separated 

after the product is shredded. Some materials could be easily extracted as they exist in 

solid forms. But a big fraction of materials are combined with other compounds and it is 

not easy to extract them through simple activities in material recycling’s unit. Therefore, 

the residues remained after removing the hazardous and valuable materials from the 

product are bulk recycled. In bulk recycling facilities, the remainder of the product is 

shredded into flakes. Further, different separation methods based on physical properties 

of materials are used to classify them into different categories of materials. For example, 

metals are removed by magnets and eddy currents, plastics are separated based on 

physical properties such as mass, density or particle size [11]. There exist other 

techniques such as sink-float separation, air classification [26], and ultrasonic methods 

[27] that could be used in this regard. Bulk recycling is relatively costly comparing to 

material recycling and it can process large amounts of residues. The remainder of 
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products with no value as well as potentially hazardous components are disposed (e.g. 

landfilled).

Disassembly

Modules Parts Residues Material Hazardous 
components

Remanufacturable

Good 
quality

Poor 
quality

Marketable

Remanufacturing
 (low cost)

Bulk 
recycling

Material 
recycling

Bulk 
recycling

Disposal Material 
recycling

Material 
recycling Disposal

Non-recoverable 
components

Disposal

Remanufacturing
 (high cost)

Non-
Marketable

Bulk 
recycling DisposalHarvesting

Disposal

 

Figure 3-1 Modular structure of a durable product 

3.1.2 Reverse supply chain characteristics 

Based on the features of the complex durable products, discussed previously, the 

structure of our reverse supply chain is defined as follows. The reverse supply chain 

includes different facilities, such as collection, disassembly and inspection, disposition 

and redistribution ones. End-of-life returns are collected in the collection facility as it can 

be seen in figure 3-2. These returns are assumed belonging to two different quality levels, 

good and poor quality. As an example of good quality returns, we can refer to 

guaranty/warranty returns. In reality, a greater percentage of these returns are from poor 

quality and the rest are good qualities, as good quality EOL products are scarce and 

limited. At the collection centers, the firm decides what quantity of EOL products of each 

quality should be purchased in each period. Good quality products are purchased at high 

price while we can acquire poor quality products at low cost and in high amount. The 
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purchased amounts of each product are stored in the inventory of acquired products and 

they are sent to disassembly facilities. All the acquired products are disassembled to their 

components. Disassembly activities are mostly done manually and are labor intensive. As 

mentioned before, good quality products yield more useful modules and parts rather than 

poor quality products. On the other hand, more residues and consequently more materials 

could be extracted from poor quality products. Disassembled outputs are inspected for 

assigning to proper disposition categories. In this step, the yielded components are 

categorized into the good and poor quality modules, harvestable parts, residues for bulk 

recycling, recyclable materials and both hazardous and non-hazardous disposal. Each 

category of items is kept in its inventory until they are transferred to their corresponding 

processing facility. The model also decides if there is a need to transfer some of the low 

quality modules to the bulk recycling because of the limited capacity. Remanufactured 

items are raised to the same quality level and they will be sold in the market. Harvestable 

parts are stored in the inventory until they are transferred to the harvesting facility. 

Harvested parts are sold to the market at a lower price than the brand new parts. 

According to the capacity restriction it is not possible to hold all the harvestable parts in 

inventory, therefore we consider some flows to the bulk recycling from inventory of 

harvestable parts. Through the disassembly process, some of the targeted materials such 

as metal and plastic are removed from the product and they only need minor care and 

repair, which would occur at the material recycling facility. At this facility, a fraction of 

useless materials are sent to disposal facilities and the rest would be shipped to the 

recycled material inventory in order to be sold in the market. Material recycling facility is 
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a labor intensive facility where most of the works are done manually. Another recycling 

facility which is machine intensive is bulk recycling.  

Disassembly and
grading

Bulk recycling

Part harvesting

Remanufacturing
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Market (part)
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Inventory for acquired
products

Market (material)

Modules
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Remanufactured modules

Harvested parts
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Figure 3-2 Reverse supply chain configuration 
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3.2 Problem formulation 

Under the RSC, described in sub-section 3.1.2, we are looking for a medium-term tactical 

planning model. More precisely, the following decisions must be taken. We have 

considered two types of objective functions in this research: the environmental and 

Decision 
Variable 

Description 

,
prod

k tX  Number of Products purchased with quality k in period t 

,
disa
k tX  Number of Products disassembled with quality k in period t 

, ,
rem
k m tX  Number of module m of quality k to remanufacturing period t 

,
part

a tX  Number of part “a” of quality k to harvest in period t 

,
recm
l tX  Mass of material “l” to recycle in period t (Kg) 

bulk
tX  Mass of residues sent to bulk recycling facility in period t (Kg) 

, ,
rem res
k m tX �  Number of modules that flow from inventory of modules to residues 

, ,
part res

k a tX �  Number of parts that flow from inventory of parts to residues 
disp
tX  Amount to dispose in each period 

,
prod

k tI  Inventory level of product with quality k in period t 

,
part

a tI  Inventory level of part a, in period t 

,
harv
a tI  Inventory level of harvested part a quality k in period t 
mod
, ,k m tI  Inventory of module m quality k in period t 

,
rem
m tI  Inventory level of remanufactured module m in period t 
res
tI  Inventory level of residues in period t 

,
mat
l tI  Inventory level of material l in period t 

,
recm
l tI  Inventory level of recycled material l in period t 
disp
tI  Inventory level of disposal in each period 
mod

,m tS  Sale amount of module m in period t 

,
part

a tS  Sale amount of part a in period t 

,
mat
l tS  Sale amount of material l in period t 

rem
tY   1, if remanufacturing facility is used during time t. 

0, otherwise. 
harv

tY   1, if harvesting facility is used during time t. 
0, otherwise. 

bulk
tY  1, if bulk recycling facility is used during time t. 

0, otherwise. 

Table  3-1  Decision variables 
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financial ones. Regarding the environmental concerns, we aim to maximize the total 

quantity of the EOL product acquisition. On the other hand, the financial objective 

function seeks to maximize the profit. Since these two objective functions are conflicting, 

improvement in one of them requires degradation in the other. Therefore we apply the 

epsilon constraint method to find the pareto-front solutions and the trade-off between the 

two objective functions. The epsilon-constraint method is explained in sub-section 3.3. 

The following assumptions are considered in formulating the problem. 

� One type of product is considered. 

� No back order cost is considered in the model. 

� Products of good quality yield good quality modules with less remanufacturing 

cost. 

� Products of poor quality yield poor quality modules with more remanufacturing 

cost. 

� Different quality levels of modules are brought up to one standard quality level 

after remanufacturing. 

� A set-up cost is considered in order to use a facility in each period. 

� Each facility consists of a number of machines and workers to process different 

tasks. The capacity of machines and labors is assumed to be limited. 

�  Demand is forecasted for the entire time period in a deterministic manner and 

each time period could be a month. 

The mathematical model is explained in the following. 
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3.2.1 Mathematical model 

In this section, we propose an integrated acquisition and recovery production planning 

model under the context of durable products reverse supply chain. The model integrates 

the acquisition, disassembly, production, sales and inventory planning decisions. We 

formulate this multi-period tactical planning problem as a mixed integer linear 

programming model as follows: 

The notions are described in appendix I. 

3.2.2 Objective functions 

The first financial objective function (3.1) aims at maximizing the total revenue minus 

the cost of recovery and inventory over the planning horizon. Total revenue is calculated 

as the income obtained from selling the remanufactured modules, harvested parts and 

recycled materials. 

Objective Function 1: 

Max Profit = REV-COR-IHC        (3.1) 

Revenue (REV) is the income obtained by selling the recovered entities to the market. 

Cost of recovery activities (COR) consist of the cost of buying used products from both 

quality levels, disassembly process, remanufacturing as well as set-up fixed costs for 

remanufacturing in each period, harvesting and refurbishing costs which are mostly labor 

intensive, besides harvesting set-up cost, material and bulk recycling processing cost. It 

also includes the cost associated with the disposal of useless residues. Inventory costs 

(IHC) include the overall cost of keeping the products, modules (before and after 

remanufacturing), parts (before and after harvesting), materials (before and after 

recycling), residues and disposal over the entire planning periods. 
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Cost of recovery activities: 

COR:   , , , ,

, ,

( )

( ) ( )

prod prod disa disa rem rem rem rem
k k t k k t fix t m k m t

k K t T k K t T k K m M t T

harv harv harv part bulk bulk bulk bulk recm recm disp disp
fix t a a t fix t t l l t t

a A t T t T l L t T t T

C X C X C Y C X

C Y C X C Y C X C X C X

� � � � � � �

� � � � � �

� � � �

� � � � �

�� �� ���

�� � �� �

   

Inventory holding cost: 

IHC:   
mod mod

, , , , ,

, , ,

prod prod rem rem part part
k k t m k m t m m t a a t

k K t T k K m M t T m M t T a A t T

harv harv res res mat mat recm recm dis disp
a a t t l l t l l t t

a A t T t T l L t T l L t T t T

h I h I h I h I

h I h I h I h I h I

� � � � � � � � �

� � � � � � � �

� � � �

� � � �

�� � �� �� ��

�� � �� �� �

    

Revenues             

REV:   mod
, , ,

rem part harv mat recm
m t m a t a l t l

m M t T a A t T l L t T
S p S p S p

� � � � � �

� ��� �� ��       

The second environmental objective function (3.2) ensures that firm has tried to acquire 

maximum amount of returned products. 

Objective function 2: 

Max 
,

prod
k t

k K t T
X

� �
��

         (3.2)
 

3.2.3 Constraints 

We consider three categories of constraints, including inventory balance constraints, set-

up constraints, and capacity constraints. The capacity constraints include machine 

capacity, labor capacity and inventory capacity. Each set of constraints are explained in 

the following. 

3.2.3.1  Inventory balance constraints: 

Constraint (3.3) ensures that the total inventory of the products for each quality level at 

the end of period t is equal to its inventory in the previous period plus the quantity of 
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products of the same quality level acquired ( ,
prod

k tX  ) at the beginning of that period minus 

the quantity of products that are sent to disassembly ( ,
disa
k tX ), in that period. Constraint 

(3.4) ensures that the total inventory for each module of quality k at the end of period t is 

equal to its inventory in the previous period plus the quantity of the modules of the same 

quality extracted after disassembly, minus the amount of modules shipped from the 

inventory to the remanufacturing facility ( , ,
rem
k m tX  ) and the bulk recycling ( , ,

rem res
k m tX �  ) 

facility in that period. In this constraint, ,k m�  is the number of module type m available in 

each product quality k. Hence, by multiplying this number by the number of product 

disassembled in each period ( ,
disa
k tX ), we calculate the total number of extracted modules. 

Constraint (3.5) requires that the total inventory for each part at the end of period t is 

equal to its inventory in the previous period plus the quantity of all the same type parts 

yielded after disassembly, minus the number of parts shipped out to refurbishing facility 

( ,
part

a tX  ) and residues inventory ( ,
part res

a tX �  ) in that period. In this constraint, , ,a k t�  is the 

number of part type a available in each product quality k. By multiplying this number by

,
disa
k tX  which is the number of products disassembled the total number of parts yielded 

after disassembly is calculated. Constraint (3.6) sets the amount of residues in the 

inventory at the end of period t equal to the amount of residues carried over from 

previous period plus the amount of residues produced after disassembly, as well as 

amounts of modules and parts coming from modules and parts inventories, minus the 

amount of residues sent to bulk recycling in that period ( bulk
tX ). In this constraint, k	  is 

the mass of residues in each product of quality k in kg. mod
m
  and part

a
  are weights of 

each module m and part a, respectively. Constraint (3.7) ensures that the total inventory 
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for each material at the end of period t is equal to its inventory in the previous period plus 

the amount of the same material extracted from disassembly  and bulk recycling in that 

period minus the amount sent to material recycling ( ,
recm
l tX  ). In this constraint, ,k l�  is the 

mass of material l remained after disassembly of product quality k in kg and l�  is the 

percentage of bulk recycled residues in material l. Constraint (3.8) requires that the 

inventory of remanufactured modules at the end of period t is equal to its inventory from 

previous period plus the amount of remanufactured modules added to the inventory in the 

same period minus the quantity sold in that period. Constraint (3.9) sets the inventory of 

harvested parts at the end of period t equal to its inventory from previous period plus the 

amount of harvested parts at the harvesting facility in the same period minus the sale 

amount. Constraint (3.10) ensures the inventory of recycled materials at the end of period 

t is equal to its inventory from previous period plus a fraction of recycled material at the 

manual recycling facility  minus the amount sold to the market in that period. In this 

constraint, the fraction of recycled material sent to inventory is calculated by multiplying 

(1-
 ) by the total amount of material type l recycled, whereas 
  is the percentage of 

recycled material sent to disposal. Constraint (3.11) balances the inventory of disposal in 

each period. Disposal inventory in each period is equal to the inventory carried over from 

previous period plus the disposal generated from different processes such as disassembly, 

material (
 ) and bulk recycling, minus the amount which is disposed from stock in that 

period. In this constraint, k�  is the mass of disassembled product of quality k sent to 

disposal in kg, and �  is the percentage of recycled residues sent to disposal. Constraints 

(3.12) - (3.14) require that the sale amount in each period does not exceed the demand in 

that period. 



33 

Returned products:    

, 1 , , ,
prod prod disa prod

k t k t k t k tI X X I� � � �  
,k t�  (3.3) 

Modules:   

mod mod
, , 1 , , , , , , , ,

disa rem rem res
k m t k m k t k m t k m t k m tI X X X I� �

� � � � �
 

 
, ,k m t�  (3.4) 

Parts:   

, 1 , , , , ,
part disa part part res part

a t k a k t a t a t a t
k K

I X X X I� �
�

�

� � � ��   ,a t�  (3.5) 

Residues:   

mod
1 , ,

, ,

res rem res
t m k m t

k K m M

disa part part res bulk res
k k t a a t t t

k K k K a A

I X

X X X I




	 


�
�

� �

�

� � �

�

� � � �

� �

� ��

 t�  (3.6) 

Materials:   

, 1 , , , ,(1 )mat disa bulk recm mat
l t k l k t l t l t l t

k K
I X X X I� � ��

�

� � � � ��  ,l t�  (3.7) 

Remanufactured products:   

mod
, 1 , , , ,

rem rem rem
m t m t k m t m t

k K
I S X I�

�

� � ��    ,m t�  (3.8) 

Harvested parts:   

, 1 , , ,
harv part part harv
a t a t a t a tI X S I� � � �    ,a t�  (3.9) 

Recycled materials:   

, 1 , , ,(1 )recm recm mat recm
l t l t l t l tI X S I
� � � � �   ,l t�  (3.10) 

Disposal:   

1 , ,
disp disa recm bulk disp disp
t k k t l t t t t

k K l L
I X X X X I� �
�

� �

� � � � �� �  t�  (3.11) 
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mod max mod
, ,m t m tS d�     

,m t�  (3.12) 

max
, ,

part part
a t a tS d�     

,a t�  (3.13) 

max
, ,
mat mat
l t l tS d�     

,l t�  (3.14) 

3.2.3.2 Set-up constraints: 

Constraints (3.15) - (3.17) represent set-up constraints. The binary variables rem
tY , harv

tY  

and bulk
tY  take 1 if we use the facility and otherwise they take zero. If these variables take 

1, the cost of facility set-up is included in the objective function. M is a big positive 

number. 

, ,
rem rem
k m t tX M Y� �          (3.15)

 

,
part harv

a t tX M Y� �           (3.16)
 

bulk bulk
t tX M Y� �           (3.17)  

3.2.3.3 Capacity constraints: 

Constraints (3.18) and (3.19) require that the remanufacturing quantity does not exceed 

machine and labor capacities. Constraint (3.20) ensures the refurbishing and harvesting 

quantity is less than the labor capacity to refurbish the parts. Constraints (3.21) and (3.22) 

require recycling amounts of the materials are not more than the available labor and 

machine capacities. Constraints (3.23) and (3.24) represent the capacity constraints for 

bulk recycling which should not be more than available labor and machine capacities. 

Similarly constraints (3.25) and (3.26) are regarding the capacity constraints for the 

disassembly process. 
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Labor/machine capacity: 

, , ,
rem lab rem lab rem
k m t m t t

k K m M
X W� � �

� �

�� �  t�  (3.18) 

, , ,
rem mach rem mach rem
k m t m t t

k K m M
X W� � �

� �

�� �  t�  (3.19) 

, ,
part lab part lab part

a t a t t
a A

X W� � �

�

��  t�  (3.20) 

, ,
recm lab recm lab recm
l t l t t

l L
X W� � �

�

��  t�  (3.21) 

, ,
recm mach recm mach recm
l t l t t

l L
X W� � �

�

��  t�  (3.22) 

bulk lab bulk lab bulk
t t tX W� � ��  

t�  (3.23) 

bulk mach bulk mach bulk
t t tX W� � ��  t�  (3.24) 

, ,
disa lab disa lab disa
k t k t t

k K
X W� � �

�

��  t�  (3.25) 

, ,
disa mach disa machin disa
k t k t t

k K
X W� � �

�

��  t�  (3.26) 

Constraint (3.27) ensures that the inventory of products for both quality levels does not 

exceed the total available space of the stock in each period. In a very similar way 

constraints (3.28) - (3.35) require that the inventory of disassembled parts, harvested 

parts, modules, remanufactured modules, residues, material, recycled materials and 

disposal does not exceed their total available inventory capacity.  

Inventory capacity: 

, ,
prod inv prod inv prod

k t k t t
k K

I W� � �

�

��  t�  (3.27) 
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, ,
part inv part inv part

a t a t t
a A

I W� � �

�

��  t�  (3.28) 

, ,
harv inv harv inv harv
a t a t t

a A
I W� � �

�

��  t�  (3.29) 

mod mod mod
, , ,

inv inv
k m t m t t

k K m M
I W� � �

� �

�� �  t�  (3.30) 

, ,
rem inv rem inv rem
m t m t t

m M
I W� � �

�

��  t�  (3.31) 

res inv res inv res
t t tI W� � ��  

t�  (3.32) 

, ,
mat inv mat inv mat
l t l t t

l L
I W� � �

�

��  t�  (3.33) 

, ,
recm inv recm inv recm
l t l t t

l L
I W� � �

�

��  t�  (3.34) 

disp inv dis inv dis
t t tI W� � ��  

t�  (3.35) 

3.3 Solution approach 

In tackling multi-objective problems, different methods have been developed. The 

specific attribute of all the multi-objective problems is that, there are more than one 

objective function and there is no single optimal solution that simultaneously optimizes 

all the objective functions. The most common method in order to solve these kinds of 

problems is the epsilon-constraint method, weighting method and goal programming 

method [30].  
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In the weighting method, different weights are assigned to each objective function. Then 

theses objective functions are combined and transferred to one objective function to 

produce a set of non-dominated solutions. 

Goal programming is an effective method to find a definite solution rather than a set of 

non-dominated solutions. In this method a goal value is set for each objective function 

and the deviations from the goal value are minimized. 

In this research, we applied the epsilon constraint method in order to solve the bi-

objective model. In this method, one objective function is optimized while the other 

objective functions are considered as constraints. These constraints are bounded with 

some values, and by varying these bounds, a set of “most-preferred” solutions are 

obtained. The most preferred solutions are the ones that improve at least one of the 

objective functions; these are also called pareto-optimal, non-dominated and non-inferior 

solutions. On the other hand, the solutions that do not improve any of the objective 

functions and are dominated by better solutions would be eliminated [32-33]. To gain a 

better insight into this method, this method is explained in details for a bi-objective 

optimization problem, as follows: 

First, the optimization model for each objective function is solved individually, 1X and 

2X  are the optimal solutions corresponding to the each objective. * 1
1 ( )Z X  and 1

2 ( )Z X  

are the objective function values associated with solution 1X . Similarly, the objective 

function value for 2X  are 2
1( )Z X and * 2

2 ( )Z X . 

Second, a pay-off table is constructed as it is shown in table 3-2. The pay-off table values 

are calculated as follows. In this method, one objective function is chosen as primary 

objective function, the second objective is transferred into the constraint of the first 
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model. dF  is the feasible region and nL is the lower bound of 2 ( )Z X . Similarly, by 

transferring * 1
1 ( )Z X  into the constraint of the second model, the optimum solution is 

calculated [30]. 

 Maximize 1( )Z X  

s.t. 

dX F�   

2 ( ) nZ X L�  

 

 

Table  3-2 Pay-off table 

 
1( )kZ X   2 ( )kZ X  

1X   * 1
1 ( )Z X  1

2 ( )Z X  

2X   2
1( )Z X  * 2

2 ( )Z X  

Third, a range should be defined in order to find a set of non-dominated solutions by 

adapting into the single objective function model. This range ( nL ) is generated by taking 

an arbitrary number 
  and using the following formula: 

1 * 2 1
2 2 2( ) [ / ( 1)] [ ( ) ( )]nL Z X h Z X Z X
� � � � �   

Where h=0,1,2,…, ( 1)
 �  

In other words, the upper bound of nL  is * 2
2 ( )Z X  and the lower bound of it is 1

2 ( )Z X . 

Forth, Solving the single objective function problem for all possible nL . 
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Chapter 4 Case study and computational experiment 

In this chapter we first provide the details of our case study, and then we present the 

numerical results of applying the proposed model and solution methodology on the case 

study. A sensitivity analysis is also conducted for both objective functions at the end of 

this chapter. 

4.1 Case study 

It is worth mentioning that finding a case study with representative data was one of the 

most important challenges in this study. The reason lies behind the fact that none of the 

existing RSC tactical planning models in the literature are formulated based on a 

complete bill-of-material similar to the one investigated in this thesis. Consequently, 

none of them include all recovery options with their corresponding parameters. 

The case study considered in this research is an academic case focused on electronic used 

products. The corresponding data are inspired by the real business case data available in 

the literature [7, 28, 9, and 6]. Furthermore, they are also validated and tested several 

times according to some of the real business data available on internet. In the following, 

the problem data are presented. 

4.1.2 Problem data 

Returns 

Table 4-1 shows the amount of returns for the used products that are collected at the 

collection site at each period. This table is calculated from data based on the real returns 

data from the work of Jayaraman [9]. There are two different quality levels of returned 

products. Good quality and poor quality. We have considered an estimated value of 30% 

of our returns as good quality products, and the rest (70%) belongs to the poor quality. 
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Table  4-1 Number of returns for each quality levels of returned products 

period quality 1 quality2 total return 
1 171 400 571 
2 194 453 647 
3 244 570 814 
4 202 470 672 
5 197 459 656 
6 255 594 849 
7 184 429 613 
8 108 253 361 
9 156 364 520 
10 113 265 378 
11 126 294 420 
12 166 388 554 

Bill-of-materials 

Tables 4-2 and 4-3 illustrate the bill-of-material (BOM) of the product under 

investigation. These tables indicate the quantities of modules and parts as well as the 

masses of residues and material in the product. These numbers are different for each 

quality level of product. The related weights are also calculated based on the disassembly 

of each product, i.e., the existing numbers of modules and parts. We consider that the 

product, regardless of its quality level, has a weight of approximately 5 kilograms. 

According to the calculations, each good quality product contains around 3.1 kilograms 

of modules and about 0.252 kg of parts. The remaining mass, which has a weight of 

1.648 kg, contains residues and materials. Close to 70% of the remaining mass undergo 

the bulk recycling, around 20% would be sent to material recycling and the rest are sent 

to the disposal facilities. The amounts of residues/materials that are generated after the 

disassembly are different for poor quality products. These products include fewer 

numbers of re-usable modules and parts. The calculated amount of residues/materials 

after disassembling of a poor quality product is estimated as 3.867 kg. The masses of 
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residues, materials and disposal corresponding to both qualities are illustrated in table 4-3. 

Based on a study provided by Sodhi and Reimer [11], the percentages of recovered 

materials in this table are estimated. Hence, in our entire experiment, we set the fractions 

of the recovered materials to 30% and 70% for plastic and metal, respectively. 

 

Table  4-2 The number and weights of parts and modules (BOM) 

part quantity weight module quantity weight 
quality1 qulity2 quality1 qulity2 

part1 1 1 0.05 module1 1 1 0.25 
part2 3 1 0.05 module2 3 1 0.5 
part3 2 1 0.05 
part4 6 5 0.05 
part5 2 1 0.05 
part6 4 1 0.05 
part7 2 1 0.05 
part8 3 2 0.05 
part9 2 1 0.05 
part10 2 1 0.05 

 

 

Table  4-3 Mass of residues, materials and disposal after disassembly 

Quality Mass of 
disposal(kg) 

Mass sent to  material 
(kg) recycling 

Mass sent 
to bulk 

recycling 
(kg) 

  metal plastic  
quality1 0.1648 0.23072 0.09888 1.1536 
quality2 0.3867 0.54138 0.23202 2.7069 

Prices 

The selling prices of the recovered modules and parts are inspired from the work of 

Srivastava [28]. We also used different internet sources [29], and the work of Sodhi and 
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Reimer [11] to validate the prices for materials. Table 4-4 illustrates the proposed selling 

prices for each component of the used product. 

Table  4-4 Selling prices 

module1 module2 material1 material2 part1 part2-5 part6-9 part10 
price 30 35 9 6 5 6 7 3 

Costs 

Costs in this study are categorized into three classes: 1) acquisition 2) processing and 3) 

inventory costs. Acquisition and processing costs are derived from a real case study [28], 

and holding costs are calculated based on a fraction (10 %) of selling prices adopted from 

a case study [5]. Unit acquisition costs for good quality and poor quality products are set 

to be $200 and $50, respectively. Processing costs include disassembly, remanufacturing, 

harvesting, material and bulk recycling cost. The disassembly cost is considered to be 

$100 for one entity of product, regardless of its quality level. Remanufacturing set-up 

fixed cost is set to $100, and the remanufacturing variable cost is set to be $5 for good 

quality modules and for poor quality this value is $15. Remanufacturing costs are the 

same for all types of modules. Part harvesting fixed cost is $50, and part harvesting 

variable cost for each unit of different parts is illustrated in table 4-5. The costs for 

material recycling are calculated per kilograms of weight. Recycling 1 kg of plastic will 

cost $0.03 while recycling the same amount of metal incurs $0.02. Fixed cost for bulk 

recycling is considered to be $40 and variable cost for each kilogram of residues is $1. 

Table  4-5 Harvesting costs 

 part1 part2 part3 part4 part5 part6 part7 part8 part9 part10 
harvesting 

cost 
0.03 0.05 0.32 0.04 0.38 0.06 0.37 0.06 0.05 0.19 
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Table 4-6 indicates the inventory costs for each unit of different parts, modules, material 

and products. These costs are defined based on the quality and size of each module/part. 

The Initial inventory for each part is considered to be zero. Holding costs are assumed to 

be the same for remanufactured modules, harvested parts and recycled materials with 

modules, parts and materials before being processed. 

Table  4-6 Inventory costs 

module1 module2 material1 material2 
Product 
quality1 

Product 
quality2 

holding 
cost 3 3.5 0.9 0.6 20 5 

 
part1 part2 part3-5 part6-9 part10 

holding 
cost 0.5 0.6 0.6 0.7 0.3 

Demand 

In order to find the demand for each module/part, we multiplied the number of product 

demand by the number of modules/parts that exist in that product, based on the BMO of 

this product. We assume the demand for a (hypothetical) electronic product (e.g., PC) in 

each period has a uniform distribution ranging between 250-500 units. According to 

tables 4-2 and 4-3, the demand for each module and part is calculated. In order to find the 

demand for each material in each period, a fraction of a product’s weight is considered. 

This fraction is 40% and 30% for metal and plastic. 

Capacity consumptions are considered not to be the same for different modules. Capacity 

consumption for poor quality modules are twice as the capacity consumption of good 

quality modules for both machine and labor. This quantity is 2 units for poor quality 

modules and 1 unit for good quality modules. Labor and machine part harvesting capacity 

is assumed to be the same for all the parts and it is set to 1. Labor, machine and inventory 
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consumption for each kg of materials are considered to be 1. We consider a large storage 

capacity for the inventory of modules, parts and residues (i.e., 10000, 10000 and 20000, 

respectively).  

4.2 Numerical results 

4.2.1 Experimental details 

Experiments were conducted using computer 2.8 GHz Pentium® Dual-Core Opteron 64-

bit processors and 4 GB RAM. The bi-objective mixed integer Linear Programming 

model is coded and solved with CPLEX OPL version 12.3, 32 bit and we have 

implemented the sensitivity analysis by the aid of Minitab16.2.3. The bi-objective 

problem includes 576 inventory balance constraints, 216 capacity constraints and 984 

decision variables. 

4.2.2  Epsilon-constraint method results 

As explained in section 3.3 of this thesis, the epsilon-constraint method is used to solve 

the bi-objective tactical planning models. In this sub-section we provide the results of the 

application of the epsilon-constraint method in our case study. For this purpose a payoff 

table is calculated, as it can be seen in table 4-7. 

Table  4-7 Payoff table for two objectives 

 
1( )kZ X  2 ( )kZ X  

1X  * 1
1 ( )Z X =247,809 1

2 ( )Z X =5,723 

2X  2
1( )Z X =188,972 * 2

2 ( )Z X =7,055 

 

The payoff table is calculated by finding the individual optimum of each objective 

function. Further, by adding the other objective function as a constraint to the primary 

objective function we find the upper and lower bounds for the second objective function. 
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In table 4-7, 1
2 ( )Z X =5723 and * 2

2 ( )Z X =7055 are the lower and upper bounds of the 

second objective function, respectively. By picking 20 as the value for 
  and using the 

following equation, we divided the range of the second objective to 20 equivalent 

intervals. 

1 * 2 1
2 1 2 2( ) [ / ( 1)] [ ( ) ( )]nL Z X h Z X Z X
� � � � �  

By plugging different values of each nL  as the lower bound of the corresponding 

constraint (i.e., second objective function) into the bi-objective model, we generated 20 

non-dominated solutions. Table 4-8 illustrates the range of both objective function values 

over the range of non-dominated solutions. It can be observed that while moving from 

one pareto solution to the other, one objective is improved and the other is degraded. The 

last two columns in table 4-8, represent the deviation (%) from the optimal objective 

value for each non-dominated solution. 
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Table  4-8 Payoff table for gamma=20 

Z2  Z1   Z2 % Z1% 

7055  188972   100 76.25712 

6985  194882   99.0063 78.64202 

6915  200010   98.01261 80.71135 

6845  205052   97.01891 82.74599 

6775  209847   96.02522 84.68094 

6704  214408   95.03152 86.52147 

6634  218517   94.03782 88.17961 

6564  222401   93.04413 89.74694 

6494  226070   92.05043 91.22752 

6424  229418   91.05673 92.57856 

6354  232798   90.06304 93.94251 

6284  236178   89.06934 95.30647 

6214  239131   88.07565 96.49811 

6144  241462   87.08195 97.43875 

6074  243573   86.08825 98.29062 

6003  245486   85.09456 99.06258 

5933  246804   84.10086 99.59445 

5863  247508   83.10717 99.87854 

5793  247809   82.11347 100 

5723  247809   81.11977 100 

4.2.3 Analysis of the results 

The decision maker has to choose the best compromise solution among the set of pareto-

optimal non-dominated solutions. In order to facilitate the process of decision making, we 

have shown the results in terms of the percentage of deviation from optimal objective 

value for each objective function in figure 4-1. This figure illustrates the relationship 

between the two competing objective functions. The top left point represent the optimum 
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acquisition quantity (second objective) and the bottom right point indicates the optimum 

profit (first objective). 

Generally, good quality returned products are all purchased due to their low recovery cost, 

more recoverable modules and high profitability. High quality returned products are also 

scarce and limited, comparing to the poor quality products. Hence, the maximization of 

our environmental objective function would target the acquisition of poor quality 

products. With the same reasoning, it would be able to prevent the high penalties that the 

producer is charged by legislation due to landfilling of the EOL products. Based on the 

experimental results, it can be concluded that if the decision maker aims for maximum 

profit, he is lacking 18% of maximum acquisition which mainly include poor quality 

products. Furthermore, by increasing the acquisition quantity to 8%, the firm’s profit 

would be decreased by 6% from its optimal value. Therefore, it is crucial to utilize the 

tradeoffs between both objectives prior to make decisions on acquisition amounts of 

returned products. Due to the fact that firms are required to participate in environmentally 

friendly activities, acquiring more amounts of used product not only decreases the landfill 

amounts of EOL’s, but also prevents the firm from paying high penalties to governments. 

By using figure 4-1, the manager would be able to choose the best solution according to 

the profit and acquisition amounts that the firm is willing to obtain. 
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Figure  4-1 Trade-off graph for two objective functions 

4.3 Sensitivity analysis 

In order to determine how different model parameters affect each objective function, a set 

of sensitivity analysis tests are conducted. In the present work, we are interested into 

studying the simultaneous influence of several parameters on the both objective functions. 

Therefore, we have used the full factorial design for this purpose. 

Factorial design 

Factorial experiments involve the analysis of two or more factors on a response variable. 

A full factorial design allows for studying of the effect of each factor and their interaction 

on the response variable [20]. 
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The sensitivity analysis, on both models is conducted based on factorial design, where the 

factors are fixed at two levels, and two replications for each set of experiments are run. 

Inspired by the common practice in the literature and also according to the order of 

magnitude of nominal values of different parameters, variations of parameters (factors) 

have been considered as +20% and -20% of their nominal values. In total there are  

different combinations of factors in the experiment. By considering two replications for 

each experiment we ran × 2=128 different experiments. Each replication is generated 

based on a random demand that follows a uniform distribution ranging between 

[250,500]. Hence, in each replication we generate a new demand profile based on the 

uniform distribution. 

4.3.1 Sensitivity analysis on the financial objective function- Profit 

maximization 

 In this experiment, we study six different factors, such as total demand, quantity of 

returns, price, acquisition costs, holding costs and the ratio of good to poor quality return. 

We are interested to investigate the influence of mentioned factors on the two key 

performance indicators (KPIs). These KPIs are profit and total acquisition amount.  

4.3.1.1 Factors effect on profit (KPI 1) 

According to figure 4-2 and table 4-9 (ANOVA table), following conclusions are made: 
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Figure  4-2 Normal plot of the effect on Total profit 

 

Table  4-9 ANOVA table for profit 

Term Effect Coef SE Coef T P 
Constant  291,951 635.7 459.26 0.000 

Demand 23,054 11527 635.7 18.13 0.000 

Quantity of 
returns 

79,756 39878 635.7 62.73 0.000 

Price 475,795 237897 635.7 374.23 0.000 
Acquisition 
Cost 

-142,090 -71045 635.7 -111.76 0.000 

Holding 
cost 

-5,181 -2591 635.7 -4.08 0.000 

Good 
quality/ 
Poor 
quality 

21,445 10723 635.7 16.87 0.000 

 

� The most influential factors affecting the profit are selling price of recovered 

items, quantity of returns and the acquisition cost.  
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� Price and quantity of returns have a positive effect while acquisition cost has a 

negative influence on the profit. 
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Figure  4-3 Main effect plot for total profit 

According to the main effects plot for total profit (figure 4-3), it is worth to discuss the 

effects of price, quantity of returns and acquisition costs more thoroughly. 

Based on figure 4-3 and table 4-9, it can be concluded that by increasing the selling 

prices of recovered items, profit would be increased significantly, this is due to the fact 

that increase in price lead to the revenue increase while the costs remain the same.  

Figure 4-3 also indicates that by increasing the quantity of returns, profit is increased. 

However, this effect is relatively small comparing to the effects of changes in the selling 

price.  

Unlike selling price and quantity of returns, acquisition cost has a negative impact on the 

profit. By increasing the acquisition price, the profit would be decreased and vice versa.  
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Figure  4-4 Interactions plot for total profit 

An interesting finding from the interaction plot in figure 4-4, shows that some factors 

such as price and holding cost or price and ratio of good to poor quality returns are totally 

independent. Parallel graphs prove that changes in one factor could not affect the 

objective function resulted by other factor. In contrary, some factors such as return 

quantity and price happen to have an interaction. More precisely, when the price is low, 

changes in the quantity of returns do not affect the profit. But when the price is increased, 

profit will increase for more amounts of returns.  

According to the same plot in figure 4-4, it can be concluded that the quantity of returns 

has no interaction with other factors in affecting the profit except for the ratio of qualities. 

In other words, for low level of returns, changes in the ratio of good to poor quality of 

returns do not affect the profit. Whereas for larger amounts of returns the profit would be 
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increased significantly by increasing the ratio of good to poor quality. Moreover, when 

the price is low, changes in the ratio of good quality to poor quality would not affect the 

total acquisition of poor quality returns but for a higher price it may decrease the poor 

quality return acquisition to some extent. 

4.3.1.2 Factors Effect on total acquisition amount (KPI2) 

According to the normal plot for total acquisition which is shown in figure 4-5 and the 

ANOVA table 4-10, important factors affecting the total acquisition incorporate price and 

quantity of returns positively and acquisition cost and ratio of good to poor quality 

returns negatively. 

As it is shown in figure 4-6 and 4-7, increasing the price of recovered items would 

increase the acquisition amounts of both poor and good quality. The reason is that by 

acquiring more returned items higher revenue is expected due to higher prices of 

recovered items. 

By analyzing the main effect plots in figures 4-6 and 4-7, it can be observed that by 

increasing the quantity of products return, the acquisition quantity of good quality 

products is increased while the acquisition of poor qualities does not change. An 

important key point could be concluded that by increasing the quantity of returns, the 

model tends to acquire more of good quality rather than poor quality. This is based on the 

fact that recovering good quality products are more profitable. In other words, the model 

does not tend to acquire poor quality ones because of their high processing cost and low 

value. 

Another finding from the normal plot (figure 4-5) and table 4-10 is that by increasing the 

ratio of good to poor quality, total acquisition would be decreased. This is due to the fact 
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that by increasing the ratio of qualities while the total amount is fixed, there would be 

more amounts of good quality which produce more recovered items and fewer amounts 

of poor quality products which are more costly. Therefore, the model does not need to 

acquire high amounts of returns when the ratio of good to poor quality is high. 

Another observation regarding total acquisition, is that increasing the acquisition cost, 

remarkably decrease the good quality acquisition amount but it does not change the 

acquisition of poor quality ones significantly. It could be interpreted based on the 

considerable difference between the acquisition price of good and poor qualities.  
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Figure  4-5 Normal plot for total acquisition 
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Table  4-10 ANOVA table for total acquisition 

Term Effect Coef SE Coef T P 
Constant  3162.5     10.55   299.75   0.000 

Demand 342.9    171.4     10.55    16.25   0.000 

Quantity 
of returns 

768.7 384.4     10.55    36.43   0.000 

Price 3,560.7 1780.1     10.55   168.71   0.000 
Acquisition 
Cost 

-1015.6 -507.8     
 

10.55   -48.13   0.000 

Holding 
cost 

-45.9 -23.0     10.55    -2.18   0.033 

Good 
quality/ 
Poor 
quality 

-836.8   -418.4     10.55   -39.65   0.000 
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Figure  4-6 Main effects plot for good quality acquisition 
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Figure  4-7 Main effects plot for poor quality acquisition 

4.3.2 Sensitivity analysis on the environmental objective function- acquisition 

amount maximization 

In this set of experiment, we consider total acquisition amount as the only objective 

function and we are only interested to investigate the effects of three factors on the total 

acquisition. These factors include quantity of returns, demand and ratio of good to poor 

quality products. 
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Figure  4-8 Main effects plot for total acquisition 

According to the figure 4-8, it can be concluded that only the quantity of returns and the 

ratio of good to poor quality returns are affecting the amount of acquisition. 

Since total acquisition is the summation of both good and poor quality returns, we are 

going to explain the effects of each factor on each quality level separately. Figures 4-9 

and 4-10, indicate that by increasing the quantity of returns, the acquisition amount of 

both good and poor qualities would be increased. More importantly, by increasing the 

ratio of good to poor quality, the model tends to acquire more from the better quality 

products. On the other hand, this increase would result in a decrease in the acquisition 

amounts of poor quality returns. But according to the main plot effect (figure 4-8), poor 

quality returns are more influential by this ratio comparing to the good quality returns. 

This fact suggests increasing the ratio of poor over good quality returns will result in a 

higher total acquisition amount. While the profit element is excluded in this section, this 



58 

could be explained according to capacity consumptions, inventory and demand 

constraints. 
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Figure  4-9 Main effects plot for good quality acquisition 
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Figure  4-10 Main effects plot for good quality acquisition 
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Figure  4-11 Interaction plot for total acquisition 

According to the interaction plot in figure 4-11, it can be concluded that there is no 

relation between changes in demand with both quantity of returns and ratio of qualities. 

Moreover, there is a relation between quantity of returns and ratio of good to poor quality 

in such a way that when the quantity of returns is at its high level, having more poor 

quality than good quality products (bigger ratio of poor to good quality) will increase the 

acquisition amount. 
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Chapter 5 Conclusions and future research 

In this chapter, we present a summary of the thesis. We also provide several concluding 

remarks based on the problem solution and sensitivity analysis. Future research in this 

area is discussed at the end. 

5.1 Conclusion 

In this research, we developed a bi-objective, multi-period mixed integer linear 

programming model for tactical planning in a RSC. We considered two objective 

functions, including profit maximization as well as total acquisition amount 

maximization. In this problem, the returns are assumed to be durable products which 

consist of multiple and various types of components that can be recovered by different 

recovery methods. The modular structure of durable products makes them subject to the 

all disposition options, such as remanufacturing, harvesting, material and bulk recycling, 

and disposal. The proposed model decides on the integrated tactical level decisions such 

as acquisition, disassembly and grading, and production planning of different disposition 

activities as well as, sales and inventory planning in the reverse supply chain. 

The multi-indenture structure of durable products which leads to a complex RSC network 

increases the complexity of the proposed model. The model incorporates numerous 

decision variables and constraints which are formulated based on a complex bill of 

material corresponding to a durable product. In order to validate and test the model, it is 

applied on an EOL electronic device. Nevertheless, the model is applicable to similar 

RSC networks corresponding to durable products. 
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Furthermore, the bi-objective model is solved by the aid of the epsilon-constraint method. 

A set of non-dominated solutions are presented for the decision maker and the following 

conclusions were obtained: 

� The good quality acquisition amount reaches 100% in all the solutions, because of 

the profitability of the recovery of good quality products. 

� By increasing the acquisition quantity, more poor quality products are acquired, 

consequently the recovery cost is increased and profit is decreased. 

� The profit reaches its maximum value while the total acquisition takes the lowest 

amount among all the possible solutions. Keeping the acquisition at lower 

quantities protect the company against high costs of poor quality products 

recovery. 

� The acquisition amount reaches it maximum by scarifying the profit around 25% 

of its optimal value. In return, acquiring poor quality products help the company 

to get aligned with the legislations and environmental concerns, particularly, 

when the company is obliged to reach a certain amount of EOL recovery. 

� By the aid of the non-dominated solutions, the decision maker would be able to 

choose the best solution according to the profit and acquisition amounts that the 

firm is willing to obtain. The latter also depends on the legislation regarding the 

target amount of EOL recovery. 

In order to determine how different model parameters affect each objective function and 

other KPIs, a set of sensitivity analysis tests are conducted. The following conclusions 

are derived for the problem with profit maximization objective: 
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� The most influential factors affecting the profit are selling price of recovered 

items and quantity of returns positively, and the acquisition cost negatively.  

� When the price is low, changes in the quantity of returns do not affect the profit. 

But when the price is increased, profit will increase for more amounts of returns. 

� For low amounts of returns, changes in the ratio of good to poor quality of returns 

do not affect the profit, whereas for large amount of returns the profit would be 

increased significantly. 

� When the price is low, changes in the ratio of good to poor quality would not 

affect the total acquisition of poor quality returns but for a higher price it may 

decrease the poor quality return acquisition to some extent. 

� Considering the total acquisition amount as the second KPI, we observed that 

increasing the price would increase the acquisition amounts of both poor quality 

and good quality  

� Another key point could be concluded that by increasing the quantity of returns, 

the model tends to acquire more of good quality rather than poor quality returns. 

This justifies the fact that recovering good quality products are more profitable.  

The following conclusions were obtained based on the sensitivity analysis regarding the 

environmental objective function (acquisition amount maximization): 

� Increasing the ratio of poor over good quality products will result in a higher total 

acquisition amount. While the profit element is excluded in this section, this could 

be explained according to capacity consumptions, inventory and sales constraints. 
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� When the total quantity of returns is at its highest level, having more poor quality 

than good quality products (bigger ratio of poor to good quality) results in larger 

acquisition amounts, comparing to the low levels of returns quantity. 

The key considerations in this study that contribute to the existing literature are as follows: 

� An integrated tactical planning model including acquisition, grading and 

disposition (remanufacturing, harvesting, recycling and disposal) decisions in the 

context of a durable product RSC is proposed. 

� A multi-indenture structure is considered for the EOL products. Consequently, all 

possible recovery options are taken into account. 

� Two objective functions addressing both financial and environmental criteria are 

proposed. 

� Two quality levels for returns are considered. They differ in the acquisition price, 

recovery and processing costs, and the amounts of recoverable components. 

5.2 Future research  

There are several directions to extend the model presented in this study. Our suggestions 

for future research in this area are as follows: 

� To consider the uncertainty in the quality of returns. More precisely, considering 

the proportions of reusable modules, parts and materials in a returned item of a 

given quality level as a random variable instead of a deterministic one, as we did 

in the current study. 

� To reformulate the problem as a stochastic program or a robust optimization 

model while considering the uncertain quality of returns. 
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� To integrate the return acquisition pricing problem into the current RSC tactical 

planning model. The latter will lead to a non-linear optimization problem. 

� To integrate the proposed RSC tactical planning model with the forward supply 

chain planning model in the context of a closed-loop supply chain. The idea is to 

align the forward and backward flow decisions in such a network. 

� To address the RSC tactical planning model in a multi-product setting. 
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Appendix I 

Notions of the mathematical model. 

Indice Description 

a : Part, a = {1… A} 

m : Modules, m = {1… M} 

k : Quality level, k = {1… K} 

t : Time period, t = {1… T} 

l  : Material, l = {1… L} 

 

Parameter Description 

,k tQ  Quantity of collected products of quality k period t 

prod
kh  Unit holding cost of product quality k 

part
ah  Unit holding cost of part a  

harv
ah  Unit holding cost of harvested part a 

mod
mh  Unit holding cost of module m 

rem
mh  Unit holding cost of remanufactured module m 

resh  Holding cost of residues (/kg) 

mat
lh  Holding cost of material l 

recm
lh  Holding cost of recycled material l 

dish  Holding cost for disposal (/kg) 

,
rem
m tD  Demand for remanufactured module m in period t 

,
part

a tD  Demand for harvested part a in period t 

,
recm
l tD  Demand for recycled material l in period t 

rem
mp  Price of selling remanufactured module m 
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Parameter Description 

harv
ap  Price of selling harvested part a 

recm
lp  Price of selling recycled material l 

,k m�  Number of module type m available in each product quality k 

,k a�   Number of part type a  available in each product quality k  

k	  Mass of residues in each product of quality k (kg) 

,k l�   Mass of material l remained after disassembly of product quality k (kg) 

k�   Mass of disassembled product of quality k sent to disposal (kg) 

mod
m
  Weight of each module m (kg) 

part
a
  Weight of each part a (kg) 

l�   Percentage of bulk recycled residues that is material l 


   Percentage of recycled material sent to disposal 

�  Percentage of recycled residues sent to disposal 

prod
kc  Cost of purchasing product with quality k 

disa
kc  Cost of disassembly each product quality k 

bulkc  Cost of bulk recycling of residues (/Kg) 

rem
mc  Unit cost of remanufacturing of module m 

harv
ac  Cost of harvesting of part a 

recm
lc  Cost of recycling material l 

dispc  Cost of dispose (/Kg) 
rem
fixC  Fixed cost for setting up and using remanufacturing facility in each period 

harv
fixC  Fixed cost for setting up and using harvesting facility in each period 

bulk
fixC  Fixed cost for setting up and using recycling facility in each period 

lab disa
tW �  Total labor hours available for disassembly 

machin disa
tW �  Total machine hours available for disassembly 
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Parameter Description 

lab recm
tW �  Total labor hours available for material recycling 

mach recm
tW �  Total machine hours available for material recycling 
lab bulk

tW �  Total labor hours available for bulk recycling  

lab part
tW �  Total labor hours available for harvesting parts 
lab rem

tW �  Total labor hours available for remanufacturing 
mach rem

tW �  Total machine hours available for remanufacturing 
mach bulk

tW �  Total machine hours available for bulk recycling 

inv prod
tW �  Total Inventory capacity for product (sqft) 

modinv
tW �  Total inventory capacity for modules (sqft) 

inv rem
tW �  Total inventory capacity for remanufactured modules 

inv part
tW �  Total inventory capacity for parts (sqft) 

inv res
tW �  Total inventory capacity for residues (kg) 

inv harv
tW �  Total inventory capacity for harvested parts (sqft) 

inv dis
tW �  Total inventory capacity for disposal (kg) 

inv mat
tW �  Total inventory capacity for materials 

,
inv recm

l tW �  Total inventory capacity for recycled materials 

,
lab rem
m t� �

 Labor hour needed to remanufacture module m 

,
mach rem
m t� �

 Machine hour needed to remanufacture module m 

,
lab part
a t� �  Labor hour needed to harvest part a 

lab bulk
t�

�
 Labor hour required to bulk recycle residues 

mach bulk
t�

�
 Machine hour required to bulk recycle residues 

,
lab recm
l t� �  Labor hour required to recycle material l  

,
mach recm
l t� �  Machine hour required to recycle material l 

,
lab disa
k t� �  Labor hour needed to disassemble product of quality k 

,
mach disa
k t� �  Machine hour needed to disassemble product of quality k 
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Parameter Description 

inv prod
t�

�  Inventory area occupation by each product (sqft) 

mod
, ,

inv
k m t� �  Inventory area occupation by each module m quality k (sqft) 

,
inv rem
m t� �  Inventory area occupation by each remanufactured module m 

,
inv part
a t� �  Inventory area occupation by each part a (sqft) 

,
inv harv
a t� �  Inventory area occupation by each harvested part a (sqft)  

Could be same as ,
inv part
a t� � ) 

inv res
t�

�  Inventory occupation by each kg of residues 

inv dis
t�

�  Inventory occupation by each kg of disposal 

,
inv mat
l t� �

 Inventory occupation by each kg of material l 

,
inv recm
l t� �  Inventory occupation by each kg of recycled  

max mod
,m td  Demand upper bound for module m 

max
,

part
a td  Demand upper bound for part a 

max
,

mat
l td  Demand upper bound for material l 

 

 


