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ABSTRACT

Slope Conditions for Stability of ACIMs of Dynamical Systems

Zhenyang Li, Ph.D.

Concordia University, 2013

The family of W−shaped maps was introduced in 1982 by G. Keller. Based on the

investigation of the properties of the maps, it was conjectured that instability of the

absolutely continuous invariant measure (acim) can result only from the existence of

small invariant neighbourhoods of the fixed critical point of the limiting map. We

show that the conjecture is not true by constructing a family of W−shaped maps

with acims supported on the entire interval, whose limiting dynamical behavior is

described by a singular measure. We then generalize the above result by constructing

families of W−shaped maps {Wa} with a turning fixed point having slope s1 on one

side and −s2 on the other. Each such Wa map has an acim μa. Depending on whether

1
s1

+ 1
s2

is larger, equal, or smaller than 1, we show that the limit of μa is a singular

measure, a combination of singular and absolutely continuous measure or an acim,

respectively. We also consider W -shaped maps satisfying 1
s1

+ 1
s2

= 1 and show that

the eigenvalue 1 of the associated Perron-Frobenius operator is not stable, which in

turn implies the instability of the isolated spectrum. Motivated by the above results,
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we introduce the harmonic average of slopes condition, with which we obtain new

explicit constants for the upper and lower bounds of the invariant probability density

function associated with the map, as well as a bound for the speed of convergence to

the density. Moreover, we prove stability results using Rychlik’s Theorem together

with the harmonic average of slopes condition for piecewise expanding maps.
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Chapter 1

Preliminaries

1.1 Absolutely continuous invariant measures and

some functional spaces

Let X be a set equipped with a metric; X is usually assumed to be a compact metric

space. Let a family B of subsets of X be a σ−algebra.

Definition 1.1.1. A function μ : B → R+ is called a measure on B if and only if:

1. μ(∅) = 0;

2. for any sequence {Bn} of disjoint measurable sets, where Bn ∈ B, n = 1, 2, 3, . . . ,

μ

(
∞⋃
n=1

Bn

)
=

∞∑
n=1

μ(Bn).

The triplet (X,B, μ) is called a measure space. We call it a normalized measure

space or probability space if μ(X) = 1.

1



Definition 1.1.2. A measure is called σ−finite if X is the countable union of mea-

surable sets with finite measure.

Definition 1.1.3. Suppose there are two measures, μ and ν, on the same measure

space (X,B). We say that μ is absolutely continuous with respect to ν if for any

B ∈ B satisfying ν(B) = 0, it follows that μ(B) = 0. We write μ << ν.

Definition 1.1.4. Let 1 ≤ p < ∞, and (X,B, μ) be a measure space. Consider the

family of real valued measurable functions f : X → R satisfying

∫
X

| f(x) |p dμ < ∞ .

This family of functions can be made into a normed space by taking quotient space

with respect to the kernel of ‖ · ‖p, where for each function f in this family,

‖ f ‖p=
(∫

X

| f(x) |p dμ

) 1
p

.

This space is called the Lp(X,B, μ) space. It will be denoted by Lp(μ) when the

underlying space is clearly known, and by Lp when both the space and the measure

are known.

The Radon-Nikodym Theorem allows us to represent μ in terms of ν if μ << ν.

Theorem 1.1.1. Let μ and ν be two normalized measures on (X,B). If μ << ν,

then there exists a unique f ∈ L1(X,B, ν) such that for every A ∈ B,

μ(A) =

∫
A

f d ν.

The function f is called the Radon-Nikodym derivative and is denoted by dμ
dν
.
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Let us introduce the measure-preserving transformation.

Definition 1.1.5. We say that the measurable transformation τ : X → X preserves

the measure μ or that μ is τ−invariant if μ(τ−1(B)) = μ(B) for all B ∈ B.

If a measure μ is invariant and also μ << ν, where ν is the underlying measure,

then we call μ an absolutely continuous invariant measure (acim). Now, we can

present the definition of a dynamical system.

Definition 1.1.6. Let τ : X → X preserve the measure μ. We call the quadruple

(X,B, μ, τ) a dynamical system.

Let τ : X → X be a measure-preserving transformation. Its nth iteration is

denoted by τn: τn(x) = τ ◦ · · · ◦ τ(x) n times. We are interested in properties of the

orbit {τn(x)}n≥0. The Poincaré Recurrence Theorem states that a dynamical system

will return to a state very close to the initial state after a sufficiently long time.

Theorem 1.1.2. Let τ be a measure-preserving transformation on a normalized mea-

sure space (X,B, μ). Let E ∈ B such that μ(E) > 0. Then almost all points of E

return infinitely often to E under iterations of τ , i.e.,

μ ({x ∈ E | There exists N such that τn(x) /∈ E for all n > N}) = 0.

Definition 1.1.7. Let τ : (X,B, μ) → (X,B, μ) be a transformation preserving the

measure μ; we call it

1. ergodic if for any B ∈ B such that τ−1(B) = B, we have μ(B) = 0 or μ(X\B) =

0;
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2. mixing if for all A, B ∈ B, μ(τ−n(A) ∩B) → μ(A)μ(B) as n → ∞;

3. exact if for all B ∈ B, τ(B) ∈ B, and moreover, if μ(B) > 0, lim
n→∞

μ(τn(A)) = 1.

Ergodicity is a very useful concept since it reveals the property of indecomposability

for measure-preserving transformations. There are some other properties equivalent

to the ergodicity [Boyarsky and Góra, 1997]:

Theorem 1.1.3. Let τ : (X,B, μ) → (X,B, μ) be measure-preserving. Then the

following statements are equivalent:

1. τ is ergodic.

2. If f is measurable and (f ◦ τ)(x) = f(x) a.e., then f is constant a.e..

3. If f ∈ L2(μ) and (f ◦ τ)(x) = f(x) a.e., then f is constant a.e..

The Birkhoff Ergodic Theorem [Birkhoff, 1931] is the fundamental theorem in er-

godic theory.

Theorem 1.1.4. Suppose τ : (X,B, μ) → (X,B, μ) is measure-preserving, where

(X,B, μ) is σ−finite, and f ∈ L1(μ). Then there exists a function f ∗ ∈ L1(μ) such

that

1

n

n−1∑
k=0

f(τk(x)) → f ∗, μ− a.e.

Furthermore,

f ∗ ◦ τ = f ∗ μ− a.e.

and if μ(X) < ∞, then ∫
X

f ∗ d μ =

∫
X

f d μ

4



By Theorem 1.1.3, we obtain the following corollary.

Corollary 1.1.1. If τ is ergodic, then f ∗ is constant μ−a.e. and if μ(X) < ∞, then

f ∗ =
1

μ(X)

∫
X

f d μ a.e.

Thus, if μ(X) = 1 and τ is ergodic, for E ∈ B we have

1

n

n−1∑
k=0

χ
E
(τk(x)) → μ(E), μ− a.e.,

and thus the orbit of almost every point of X occurs in the set E with asymptotic

relative frequency μ(E).

Theorem 1.1.4 together with Corollary 1.1.1 shows that for an ergodic transforma-

tion τ : (X,B, μ) → (X,B, μ), we have

lim
n→∞

1

n

n−1∑
k=0

f(τk(x)) =
1

μ(X)

∫
X

f d μ a.e.,

i.e. the time average of f ∈ L1(μ) equals its space average.

1.2 Functions of bounded variations and the Frobenius-

Perron operator

We first introduce the total variation of f : [a, b] → R.

Definition 1.2.1. Let f : [a, b] → R be a function. The number

∨
[a,b]

f = sup
P

{
n∑

k=1

|f(xk)− f(xk−1)|
}
,

where the sup is taken over all partitions P of the interval [a, b], is called the total

variation or the variation of f on [a, b].
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We denote the space of functions of bounded variation by

BV ([a, b]) =

⎧⎨⎩f ∈ L1([a, b])| inf
f1=f a.e.

∨
[a,b]

f1 < ∞
⎫⎬⎭ .

For any f ∈ BV ([a, b]), the norm on BV ([a, b]) is defined as follows:

‖ f ‖BV=‖ f ‖1 + inf
f1=f a.e.

∨
[a,b]

f1.

Let X be an interval, I = [a, b]. We call a transformation τ : I → I nonsingular if

L(A) = 0 implies L(τ−1(A)) = 0 whenever A ∈ B, and where L is Lebesgue measure.

With the aid of Theorem 1.1.1, we now define the Frobenius-Perron operator:

Definition 1.2.2. Let τ : I → I be a nonsingular transformation. For any f ∈

L1([a, b]), Pτf is the unique function in L1([a, b]) such that

∫
A

Pτf dL =

∫
τ−1(A)

f dL ,

for any A ∈ B. The existence and uniqueness of Pτf follows from Theorem 1.1.1.

For more details, we refer interested readers to the book [Boyarsky and Góra, 1997].

If τ ∈ T(I), the class of piecewise expanding transformations (see Definition 5.2.1),

Pτ has the explicit representation:

Pτf =

q∑
i=1

f(τ−1
i (x))∣∣τ ′(τ−1
i (x))

∣∣χτ([ai−1,ai])
(x) ,

where f ∈ L1(I). It is well known that the fixed point (normalized one) of Pτ is the

density of a τ−invariant absolutely continuous measure. We call it the τ invariant

probability density function (pdf).

To show the existence of the invariant pdf, the following lemma is important.
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Lemma 1.2.1. Let τ ∈ T(I) and let g(x) = 1
|τ ′(x)|

, δ = min
1≤i≤q

L(Ii). Then, for any

f ∈ BV (I), ∨
I

(Pτf) ≤ A
∨
I

f +B

∫
I

|f | dL ,

where A = 2
α
+ max

1≤i≤q

∨
Ii

g, B = 2
αδ

+ 1
δ
max
1≤i≤q

∨
Ii

g, and inf
x∈I

|τ ′(x)| ≥ α > 1.

Now, we introduce the well-known Lasota-Yorke Inequality which plays a crucial

role in showing the existence of an acim.

Lemma 1.2.2. Let τ ∈ T(I). Then there exist constants 0 < r < 1, C > 0, and

R > 0 such that for any f ∈ BV (I) and any n ≥ 1,

‖ P n
τ f ‖BV≤ Crn ‖ f ‖BV +R ‖ f ‖1 .

Remark 1.2.1. Lemmas 1.2.1 and 1.2.2 show that the Frobenius-Perron operator Pτ

can be viewed as an operator from BV (I) into BV (I), and that it is quasi-compact

[Keller, 1982].

With the help of Lemmas 1.2.1 and 1.2.2, we have the following result for the

existence of an acim for a piecewise expanding map.

Theorem 1.2.1. Let τ ∈ T(I). Then τ admits an acim whose density is of bounded

variation.

Remark 1.2.2. On the one hand, the constant R in Lemma 1.2.2 depends on the

constant B in Lemma 1.2.1, and the latter again depends on the quantity δ which

can be small if the partition of the map τ is very fine. On the other hand, in practice,

to make the calculations easier, we consider the iterated system τn for some n ≥ 1.
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Moreover, we would like to study the stability of a system. In either of the cases, δ

is small, and may even approach 0 as the perturbation goes to zero. See Fig. 4.1 in

Chapter 4 for an example. This is why it is relatively easier to show the existence of

acim than to show the stability of acim.

1.3 Analysis of dynamical systems: acims and their

stability

It is well known that complicated behavior can be exhibited by deterministic dynam-

ical systems. A popular example of deterministic chaotic behavior is the butterfly

effect, which dates back to Lorenz’s numerical model of a weather prediction [Lorenz,

1963]. Roughly speaking, chaos is a very spectacular long-term behavior of dynamical

systems that are highly sensitive to initial conditions. For these kinds of dynamical

systems, small differences in initial conditions can result in large differences to future

outcomes. In reality, due to external noise or roundoff errors in computation, when

we deal with a chaotic dynamical system, it is very hard or even impossible to predict

its state past a certain short time range. Thus, we cannot study the limiting behavior

following individual orbits which are generated by iterating the system from starting

points.

Instead of viewing orbits in the phase space X, we apply the Frobenius-Perron

operator Pτ associated with the transformation τ , which defines the evolution of the

probability density function under τ . It is an operator acting on L1(X), the space of

8



Lebesgue integrable functions. The fixed point of Pτ , say f(x) which is a pdf, describes

how all the orbits will distribute in the future. This invariant density function f

defines an invariant measure μ(B) =
∫
B
fdL for B ∈ B, where L is Lebesgue measure.

Among invariant measures of a dynamical system, the acim (usually it is absolutely

continuous with respect to Lebesgue measure) is of the greatest practical importance,

as it is a “physical” measure and can be simulated by computer. With the help of

the acim, we can study the ergodic properties of the dynamical system, for example,

the Birkhoff Ergodic Theorem 1.1.4 and the Poincaré Recurrence Theorem 1.1.2.

In practice, there is a natural interest in the stability of properties of chaotic

dynamical systems under small perturbations. If we consider a family of piecewise

expanding maps τa : I → I, a > 0 with acims {μa}, converging to a piecewise

expanding map τ0 with acim μ0, then under general assumptions μa’s converge to

μ0. One such assumption is that inf |τ ′a| > 2 for all a > 0 (see [Baladi and Smania,

2010], [Góra, 1979], [Góra and Boyarsky, 1989a] or [Keller and Liverani, 1999]). This

is useful in the study of the metastable systems [Gonzaléz-Tokman et al., 2011], or

to approximate the invariant densities [Góra and Boyarsky, 1989b].

[Keller, 1982] introduced the family of {Wa} maps that are piecewise expanding,

ergodic transformations with a “stochastic singularity”, i.e. the μa’s converge to

a singular measure. This occurs because of the existence of diminishing invariant

neighborhoods of the turning fixed point. The slopes of the Wa maps converge to 2

and -2 on the left and right hand sides of the turning fixed point, respectively. In

Chapter 2 we will present more details.

Given two numbers, s1 and s2, greater than 1, we consider a W -shaped map

9



with one turning fixed point having slope s1 on one side and −s2 on the other.

A W−shaped map is a map with a graph in the shape of the letter W for which

the middle vertex is a fixed point. More precisely, it is a map τ : I → I, piecewise

monotonic on the partition {I1, I2, I3, I4} of I, Ii = [ai−1, ai], i = 1, 2, 3, 4, such that

τ(a0) = τ(a4) = 1, τ(a1) = τ(a3) = 0 and τ(a2) = a2.

In Chapter 2 [Li et al., 2013], we consider the special case where s1 = s2 = 2.

The perturbed maps Wa are piecewise expanding with slopes strictly greater than 2

in modulus and are exact with their acims supported on all of [0, 1]. The standard

bounded variation method [Boyarsky and Góra, 1997] cannot be applied in this setting

as the slopes of the maps in that family are not uniformly bounded away from 2. Other

methods, for example, those studied in [Dellnitz et al., 2000], [Kowalski, 1979] and

[Murray, 2005] cannot be applied either. Using the main result of [Góra, 2009], it can

be shown that the μa’s converge to
2
3
μ0+

1
3
δ( 1

2
), where δ( 1

2
) is the Dirac measure at the

point 1/2 and μ0 is the acim of theW0 map. Thus, the family of measures μa approach

a combination of an absolutely continuous and a singular measure rather than the

acim of the limit map. Similar instability was also shown in [Eslami and Misiurewicz,

2012] for a countable family of transitive Markov maps approaching Keller’s W0 map.

The result of Chapter 2 is generalized in Chapter 3, where a family of W−shaped

maps is constructed, and various instabilities are presented. Depending on whether

1
s1

+ 1
s2

is larger, equal, or smaller than 1, we show that the limiting measure is a

singular measure, a combination of singular and absolutely continuous measure or

an absolutely continuous measure, respectively. The main result is Theorem 3.2.1.

More importantly, this result inspired the introduction of the harmonic average of

10



slopes condition, which motivated the result concerning a stronger Lasota-Yorke type

inequality in [Eslami and Góra, 2012]. It is also applied in Chapter 5 and Chapter 6.

In Chapter 4, we study the instability of the W−shaped map by observing the

unstable spectrum of its Frobenius-Perron operator. The second eigenvalues of the

perturbed Frobenius-Perron operators converge to 1, which is the maximal eigenvalue

of the Frobenius-Perron operator. We also discuss the relation between an unstable

second eigenvalue and a metastable dynamical system.

In Chapter 5, whose main results are also presented in the joint work [Góra et al.,

2012b], we apply the harmonic average of slopes condition to the transformation in

the class T(I), the class of piecewise expanding transformations. Here we use the

weak covering property, weak mixing and a generalized Lasota-Yorke type inequality

[Eslami and Góra, 2012]. We weaken the slope 2 condition to ensure stability, obtain

the explicit constants concerning the lower bound of the invariant pdf, and the explicit

constants for the decay of correlations. We also extend our results to families of maps.

In Chapter 6, whose main results can also be found in the joint work [Góra et al.,

2012a], we continue to use the harmonic average of slopes condition. Instead of

the bounded variation technique (Lasota-Yorke type inequality), we introduce the

summable oscillation condition, and use Rychlik’s Theorem (see, e.g., [Boyarsky and

Góra, 1997]) to show the existence of an acim and its stability.

11



Chapter 2

W−shaped Maps Having Singular Mea-

sure as a Limit of Acims

2.1 Introduction

Usually, the acim of a piecewise expanding map of an interval is stable under de-

terministic or even random perturbations. This means that if we consider a family

of piecewise expanding maps τa, a > 0, with acims μa, converging to a piecewise

expanding map τ0 with acim μ0, then under general assumptions μa’s converge to μ0.

As we already discussed in Chapter 1, one such assumption is that for some positive

ε, |τ ′a| > 2 + ε for all a ≥ 0.

[Keller, 1982] introduced a family of W -maps that are piecewise expanding and

exhibit a wide variety of behaviour. This was done to understand whether in di-

mension one the expanding constant ensuring stability is really 2 rather than 1 as

12



for zero-dimensional systems [Góra, 1979]. This regularity was later confirmed in

[Góra and Boyarsky, 1989a] by showing that this constant for a piecewise expanding

n-dimensional system with rectangular partition is n+ 1.

Key to the complexity of Keller’s families is the fact that, as the parameter ap-

proaches 0, say, the behavior near a folded turning point plays a crucial role. This

turning point has slope 2 on one side and −2 on the other. Thus, the entire family

is uniformly piecewise expanding and each member has a unique acim. However, the

stability of probability density functions that one might expect in families of uni-

formly piecewise expanding maps does not occur. Keller provided an example of a

family for which the limit of acims is a singular measure. This occurred because of

the existence of diminishing invariant neighbourhoods of the turning point. Keller

conjectured that this is the only mechanism which can cause such limiting behaviour.

In this chapter we construct a family of simple W -maps which disproves Keller’s

conjecture. All our maps are piecewise expanding with slopes strictly greater than 2

in magnitude and are exact with their acims supported on all of [0, 1], but the limiting

dynamical behaviour is captured by a singular measure.

Standard bounded variation methods [Boyarsky and Góra, 1997; Dellnitz et al.,

2000; Kowalski, 1979; Murray, 2005] cannot be applied in this setting as the slopes of

maps in our family are not uniformly bounded away from 2. In this chapter we shall

utilize the main result of [Góra, 2009], which proves that the invariant probability

density function (pdf) for any piecewise linear map which is eventually expanding

has a convenient infinite series expansion. The estimates on the family of pdf’s

derived from this representation allows us to prove our main result, that the acims

13



of the family of W -maps approach a combination of an absolutely continuous and a

singular measure rather than the acim of the limit map.

In Section 2.2 we introduce our family and state the main theorem, which is proved

in Section 2.4. In Section 2.5, we show computational results for some pdf’s of the

Wa maps when a is small.

The results obtained in this chapter (Sections , 2.4 and 2.5) were, after some

modifications, published in the paper [Li et al., 2013].

2.2 Family of Wa maps and the main result

We consider the family {Wa : 0 ≤ a} of maps of [0, 1] onto itself defined by

Wa(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− 4x , for 0 ≤ x < 1/4 ;

(2 + a)(x− 1/4) , for 1/4 ≤ x < 1/2 ;

1/2 + a/4− (2 + a)(x− 1/2) , for 1/2 ≤ x < 3/4 ;

4(x− 3/4) , for 3/4 ≤ x ≤ 1 .

(2.1)

The map W0 is Keller’s W -map [Keller, 1982]. We consider only small a > 0 as we

are interested in the limiting behaviour of the Wa’s as a → 0. Fig. 1 shows the graphs

of Wa for a = 0 and a > 0. Every Wa is a piecewise linear, piecewise expanding map

with minimal modulus of the slope equal to 2 + a. Every Wa has a unique acim μa

supported on [0, 1] and is exact with respect to this measure. The transitivity of such

maps is proven in [Eslami and Misiurewicz, 2012]. The uniqueness of the acim and

exactness follow directly from the Li-Yorke paper [Li and Yorke, 1978].
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Figure 2.1: a) map W0, b) map Wa, a > 0, with a few first points of the trajectory of

1/2.

Let ha denote the normalized density of μa, a ≥ 0. It is easy to check that for W0,

μ0 has density

h0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3
2
, for 0 ≤ x < 1/2 ;

1
2
, for 1/2 ≤ x ≤ 1 .

(2.2)

Our goal is to prove the following theorem:

Theorem 2.2.1. As a → 0 the measures μa converge ∗-weakly to the measure

2

3
μ0 +

1

3
δ( 1

2
) ,

where δ( 1
2
) is the Dirac measure at point 1/2.

The proof relies on the general formula for invariant densities of piecewise linear

maps [Góra, 2009] and direct calculations. The calculations depend on the parameter

a, but we suppress it whenever there is no confusion.
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We spent some time on finding the proof to support this theorem. The first crucial

step was finding a special sequence of a’s, such that the W−shaped map is approxi-

mated by Markov ones, and then observing what happens as a approaches 0.

2.3 Markov subfamily, the heuristic idea for the

proof of the general theorem

In this section we consider a Markov subfamily of the family {Wa}a≥0. We consider

a’s such that for some finite m ≥ 2, Wm
a (1/2) = 1/4. For these a’s all calculations

can be made in a finite form. Our method is different from the standard Markov

map approach. Other Markov subfamilies can be considered in a similar way. A 3-

parameter family of transitive Markov maps converging to the W -map was considered

in [Eslami and Misiurewicz, 2012].

Let Wa,i denote the i-th branch of the Wa map, i = 1, 2, 3, 4. Let si = W−1
a,i , i =

1, 2, 3, 4; I0 = [0, 1
2
+ a

4
]. The associated Frobenius-Perron operator of Wa is

Paf =
1

4
f ◦ s1 + 1

2 + a
(f ◦ s2)χI0 +

1

2 + a
(f ◦ s3)χI0 +

1

4
f ◦ s4

Notice that χI0 ◦ s1 = 1, χI0 ◦ s2 = χI0, χI0 ◦ s3 = [(2 + a)(1
4
− a

4
), 1

2
+ a

4
], χI0 ◦ s4 = 0;

let I1 := [(2 + a)(1
4
− a

4
), 1

2
+ a

4
] whose left end point is W 2

a (
1
2
), i.e. Wa(

1
2
+ a

4
).

Let a satisfy:

Wm
a (

1

2
) =

1

4
, (2.3)

where m ≥ 2 is the first time the trajectory of 1
2
reaches 1

4
.
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Let us take 1 as the initial function to do the iteration P n
a 1 which will be denoted

by fn,m. Let

Ii = [W i
a(
1

2
+

a

4
),
1

2
+

a

4
], i = 1, 2, · · · , m.

After a certain number of iterations, using (2.3) we will get:

fn,m = cn,0 + αn,0χI0 + αn,1χI1 + αn,2χI2 + · · ·+ αn,m−1χIm−1 + αn,mχIm,

where cn,0 and αn,i(i = 0, 1, · · · , m) are constants. Now let us look at the fn+1,m. By

straightforward calculations, we obtain the following proposition.

Proposition 2.3.1. (1) cn,0 ◦s1 and cn,0 ◦s4 are again constant functions, cn,0 ◦s2χI0

and cn,0 ◦ s3χI0 are the characteristic function χI0;

(2) χI0 ◦ s1 is a constant function, χI0 ◦ s2χI0 = χI0, χI0 ◦ s3χI0 = χI1, χI0 ◦ s4 is 0;

(3) For i = 1, 2, · · · , m−1, χIi◦s1 and χIi◦s4 are 0, χIi◦s2χI0 = χIi+1
, χIi◦s3χI0 =

χI1;

(4) χIm ◦ s1 and χIm ◦ s4 are 0, χIm ◦ s2χI0 = χI0, χIm ◦ s3χI0 = χI1.

Thus, we have the following proposition.

Proposition 2.3.2. For n sufficiently large, fn,m always has the form:

fn,m = cn,0 + αn,0χI0 + αn,1χI1 + αn,2χI2 + · · ·+ αn,m−1χIm−1 + αn,mχIm,
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and ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cn+1,0

αn+1,0

αn+1,1

...

αn+1,m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Am

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cn,0

αn,0

αn,1

...

αn,m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Am is given by

Am =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
4

0 0 0 · · · 0 0

2
2+a

1
2+a

0 0 0 · · · 0 1
2+a

0 1
2+a

1
2+a

1
2+a

1
2+a

· · · 1
2+a

1
2+a

0 0 1
2+a

0 0 · · · 0 0

0 0 0 1
2+a

0 · · · 0 0

...
...

...
...

...
. . .

...
...

0 0 0 0 0 · · · 0 0

0 0 0 0 0 · · · 1
2+a

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where Am is (m+ 2)× (m+ 2).

We also need the following proposition.

Proposition 2.3.3. (2.3) is equivalent to:

(2 + a)m −
m−1∑
i=0

(2 + a)i =
1

a
. (2.4)
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Proof. Actually, equation (2.4) is:

a(2 + a)m + 1

1 + a
=

1

a
,

which is equivalent to

−1

4
a
a(2 + a)m + 1

1 + a
+

1

2
=

1

4
.

By equation (2.3) and Lemma 2.4.3(I), we finish the proof.

Using Proposition 2.3.3, we can find the fixed vector of Am. If we denote it by

(c, α0, α1, · · · , αm)
T , then up to a multiplicative constant the invariant function of Pa

is

g∗m = c+ α0χI0 + α1χI1 + α2χI2 + · · ·+ αm−1χIm−1 + αmχIm ,

where

c =
1

2a

α0 =
1

a

α1 = (2 + a)m−1

α2 = (2 + a)m−2

· · ·

αm−2 = (2 + a)2

αm−1 = 2 + a

αm = 1.

Let us normalize g∗m. First, we multiply g∗m by a, and denote the new function by

f ∗
m:

f ∗
m = C + β0χI0 + β1χI1 + β2χI2 + · · ·+ βm−1χIm−1 + βmχIm,
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where

C =
1

2

β0 = 1

β1 = a(2 + a)m−1

β2 = a(2 + a)m−2

· · ·

βm−2 = a(2 + a)2

βm−1 = a(2 + a)

βm = a.

It follows from (2.4) that (2 + a)m = 1
a2
, so

a(2 + a)m−1 =
1

a(2 + a)
→ ∞ as a → 0.

The length of Ik is

|Ik| = 1

4
a((2 + a)k −

k−1∑
i=1

(2 + a)i), k = 1, 2, · · · , m,

and ∫ 1

0

βkχIk dL =

∫ 1

0

a(2 + a)m−kχIk dL

=
1

4

a3(2 + a)m + a2(2 + a)m−k+1

1 + a

=
1

4

a+ 1
(2+a)k−1

1 + a)
:= Ak, k = 1, 2, · · · , m.

Thus,

m∑
k=1

∫ 1

0

βkχIk dL =
m∑
k=1

Ak
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=
1

4

ma +
1− 1

(2+a)m

1− 1
2+a

1 + a

=
1

4

ma + 1−a2

1− 1
2+a

1 + a
.

Now, let us look at the term ma. By (2.4) we obtain:

lim
a→0

ma = lim
a→0

−2a ln a

ln(2 + a)

= lim
a→0

2

ln(2 + a)
(−a ln a)

= 0 .

This implies that lim
m→∞

m∑
k=1

Ak =
1
2
.

On the other hand, let m1 = [m/2]. We have

lim
m1→∞

m1∑
k=1

Ak = lim
m1→∞

1

4

m1a+
1− 1

(2+a)m1

1− 1
2+a

1 + a

= lim
m1→∞

1

4

m1a+
1−a

1− 1
2+a

1 + a

=
1

2
.

Moreover,

|Ik| = 1

4
a((2 + a)k −

k−1∑
i=1

(2 + a)i) >
a

4
, k = 1, 2, · · · , m .

The left endpoint of Ik will be smaller than 1
2
since the right endpoint of Ik is 1

2
+ a

4
,

for k = 1, 2, · · · , m. Notice that the length |Ik| is increasing as k is increasing.

|Im1 | =
1

4

a2(2 + a)m1 + a(2 + a)

1 + a

=
1

4

a + a(2 + a)

1 + a
→ 0, as a → 0,

so all the intervals I1, I2, · · · , Im1 concentrate at 1
2
.
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On the interval [0, 1
2
) and (1

2
, 1], we have∫ 1

2

0

C + β0χI0 dL =
3

4

and ∫ 1

1
2

C + β0χI0 dL =
1

4
+

a

4
→ 1

4
, as a → 0,

so the invariant measure is

3

4
· 2
3
· 2L |[0, 1

2
) +

1

2
· 2
3
δ | 1

2
+
1

4
· 2
3
· 2L |( 1

2
,1]= L |[0, 1

2
) +

1

3
δ | 1

2
+
1

3
�L |( 1

2
,1],

where L and δ denote the Lebesgue measure and Dirac measure, respectively.

2.4 Proof of Theorem 2.2.1

This section contains the proof of Theorem 2.2.1, divided into a number of steps.

2.4.1 Formula for non-normalized invariant density of Wa

We adapt the general formulas of [Góra, 2009] to our case and obtain the following

formula for fa:

Lemma 2.4.1. For small a > 0 there exists A < −1 such that

fa = 1 + 2A

(
∞∑
n=1

χs(β(1/2, n),W n
a (1/2))

|β(1/2, n)|

)
. (2.5)

is a Wa-invariant non-normalized density.

Here,

χs(t, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
χ[0,y] for t > 0 ;

χ[y,1] for t < 0 ,
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and β(1/2, n) is the cumulative slope along the n steps of the trajectory of 1/2 defined

by:

β(1/2, 1) = 2 + a, and

β(1/2, n) = (2 + a) ·W ′
a(Wa(1/2)) ·W ′

a(W
2
a (1/2)) · · ·W ′

a(W
n−1
a (1/2)), for n ≥ 2.

The detailed justification of formula (2.5) is in Subsection 2.4.2.

For small positive a, the first image of 1/2 is Wa(1/2) = 1/2 + a/4 and the next

image lands just below the fixed point slightly less than 1/2. The following forward

images of 1/2 form a decreasing sequence until they go below 1/4. Let k be the first

iterate j when W j
a (1/2) is less than 1/4. That is, k = min{j ≥ 1 : W j

a (1/2) ≤ 1/4}.

Then, the consecutive cumulative slopes of 1/2, namely β(1/2, j), 1 ≤ j ≤ k, are

(2 + a),−(2 + a)2,−(2 + a)3, . . . ,−(2 + a)k ,

and

fa = 1 + 2A

(
χ[0,Wa(1/2)]

(2 + a)
+

k∑
j=2

χ[W j
a(1/2),1]

(2 + a)j
+ . . .

)
. (2.6)

2.4.2 Justification of the formula for fa

Using the notation of [Góra, 2009], we have the following lemma:

Lemma 2.4.2. (a) N=4, K=2, L=0;

(b) α = (1, 1/2 + a/4, 1/2 + a/4, 1), β = (−4, 2 + a,−(2 + a), 4), γ = (0, 0, 0, 0);

(c) The digits A = (a1, a2, a3, a4), where a1 = −1, a2 = 1/2 + a/4, a3 = −3/2 −

3a/4, a4 = 3;
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(d) There are two ci’s, which are c1 = (1/2, 2) and c2 = (1/2, 3), and j(c1) = 2,

j(c2) = 3. Then, Wu = {c1, c2},Wl = ∅, Ul = {c2},Ur = {c1}.

(e) β(c1, 1) = 2 + a since j(c1) = 2, then β(c1, 2) = −(2 + a)2 and β(c1, k) =

−(2 + a)k up to k defined in Subsection 2.4.1, k = min{j ≥ 1 : W j
a (1/2) ≤ 1/4};

(f) β(c2, 1) = −(2 + a) since j(c2) = 3, then β(c2, 2) = (2 + a)2 and β(c2, k) =

(2 + a)k up to the same k in part (e), W n
a (c1) = W n

a (c2) for all n;

(g) Based on (f), we have the following for the matrix S = Si,j,i, j = 1, 2:

For c1 ∈ Ur

S1,1 =
∞∑
n=1

δ(β((c1, n) > 0))δ(W n
a (c1) > 1/2) + δ(β((c1, n) < 0))δ(W n

a (c1) < 1/2)

|β(c1, n)| ,

S1,2 =

∞∑
n=1

δ(β((c1, n) > 0))δ(W n
a (c1) > 1/2) + δ(β((c1, n) < 0))δ(W n

a (c1) < 1/2)

|β(c1, n)| .

For c2 ∈ Ul

S2,1 =
∞∑
n=1

δ(β((c2, n) < 0))δ(W n
a (c2) > 1/2) + δ(β((c2, n) > 0))δ(W n

a (c2) < 1/2)

|β(c2, n)| ,

S2,2 =

∞∑
n=1

δ(β((c2, n) < 0))δ(W n
a (c2) > 1/2) + δ(β((c2, n) > 0))δ(W n

a (c2) < 1/2)

|β(c2, n)| ,

where δ(“condition”) is equal to 1 if the “condition” holds and to 0 if it does not.

Remark 2.4.1. It follows from (e, f) of Lemma 2.4.2 that Si,j are equal for i, j = 1, 2.

Let Id be the 2× 2 identity matrix, V = [1, 1]. Then, for the solution, D = [D1, D2],

of the following system : (−ST + Id
)
DT = V T , (2.7)

we have D1 = D2. Let us denote them by A.
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Let I1, I2, I3, I4 be the partition of I = [0, 1], where I1 = [0, 1/4), I2 = (1/4, 1/2), I3 =

(1/2, 3/4) and I4 = (3/4, 1]. Let β1 = −4, β2 = 2 + a, β3 = −(2 + a), and β4 = 4.We

define the following index:

j(x) = j for x ∈ Ij, j = 1, 2, 3, 4,

and

j(c1) = 2, j(c2) = 3.

Already defined for Lemma 2.4.1 we have cumulative slopes for iterates of points:

β(x, 1) = βj(x), and β(x, n) = β(x, n− 1) · βj(Wn−1
a (x)), n ≥ 2 ,

and

χs(t, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
χ[0,y] for t > 0 ;

χ[y,1] for t < 0 .

Using Theorem 2 in [Góra, 2009] directly, we obtain Lemma 2.4.2. Now, we can prove

Lemma 2.4.1:

Proof. First, by part (g) of Lemma 2.4.2, since the first and fourth branches of Wa

have slope of modulus 4 > 2 + a,

Si,j ≤
∞∑
n=1

1

(2 + a)n
=

1

1 + a
< 1 .

On the other hand, for small a

Si,j ≥ 1

2 + a
+

1

(2 + a)2
> 1/2.
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Now, the solution of the system (2.7) will be D1 = D2 =
1

1−2S1,1
< −1. By Theorem

2 in [Góra, 2009], it follows from (d, e, f) of Lemma 2.4.2 that:

fa = 1 +D1

∞∑
n=1

χs(β(c1, n),W
n
a (c1))

|β(c1, n)| +D2

∞∑
n=1

χs(−β(c2, n),W
n
a (c2))

|β(c2, n)|

= 1 + A
∞∑
n=1

χs(β(c1, n),W
n
a (1/2))

|β(c1, n)| + A
∞∑
n=1

χs(−β(c2, n),W
n
a (1/2))

|β(c2, n)|

= 1 + 2A

(
∞∑
n=1

χs(β(1/2, n),W n
a (1/2))

|β(1/2, n)|

)
,

which completes the proof.

2.4.3 Estimates on fa

Recall that k = min{j ≥ 1 : W j
a (1/2) ≤ 1/4}. Clearly, k > 1. Furthermore, we have

the following lemma:

Lemma 2.4.3. (I) for 2 ≤ m ≤ k, Wm
a (1/2) = −1

4
aa(2+a)m−1+1

1+a
+ 1

2
;

(II) lim
a→0

ak = 0;

(III) lim
a→0

1
a(2+a)k

= 0.

Moreover, if we let k1 = [2
3
k] (integer part of 2k/3), we have

(IV ) lim
a→0

1
a(2+a)k1

= 0;

(V ) lim
a→0

a2(2 + a)k1 = 0;

(V I) lim
a→0

W k1
a (1

2
) = 1

2
.

Proof. Suppose (I) is true. By the definition of k, 0 ≤ W k−1
a (1/2) ≤ 1/4. That is,

0 ≤ −1

4
a
a(2 + a)k−1 + 1

1 + a
+

1

2
≤ 1

4
. (2.8)

The first inequality of (2.8) implies

a2(2 + a)k−2 ≤ 1. (2.9)
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Thus

ak ≤ a
ln(2 + a)− 2 ln a

ln(2 + a)
+ a = 2a− 2a ln a

ln(2 + a)
,

a ≤ 2 + a

(2 + a)
k
2

,

a2(2 + a)k1 ≤ (2 + a)2

(2 + a)k−k1
,

so we obtain (V), and since lim
a→0

a ln a = 0, we obtain (II). and the second inequality

of (2.8) implies

1

a(2 + a)k
≤ a

2 + a
, (2.10)

letting a → 0, we obtain (III).

On the other hand, (2.10) implies that

1

a(2 + a)k1
≤ a(2 + a)k−k1

2 + a
≤

2+a

(2+a)
k
2
(2 + a)k−k1

2 + a
=

1

(2 + a)k1−
k
2

.

By the definition of k1, we obtain (IV). Finally (VI) follows from (I) and (V).

Now, let us prove (I). For m = 2, it is easy to check that W 2
a (1/2) =

2−a−a2

4
which

is the same as −1
4
aa(2+a)+1

1+a
+ 1

2
. Suppose (I) holds for m = i < k, that is

W i
a(1/2) = −1

4
a
a(2 + a)i−1 + 1

1 + a
+

1

2
.

Then, for m = i+ 1,

W i+1
a (1/2) = (2 + a)(−1

4
a
a(2 + a)i−1 + 1

1 + a
+

1

2
− 1

4
)

= −1

4
a
a(2 + a)i + 2 + a

1 + a
+

1

2
+

a

4

= −1

4
a
a(2 + a)i + 1

1 + a
+

1

2
.

This completes the proof.
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Let δ(“condition”) be equal to 1 if the “condition” holds and to 0 if it does not.

Lemma 2.4.2 implies that

S1,1 =

∞∑
n=1

δ(β((1/2, n) > 0))δ(W n
a (1/2) > 1/2) + δ(β((1/2, n) < 0))δ(W n

a (1/2) < 1/2)

|β(1/2, n)| .

Also, it was shown there that A = 1
1−2S1,1

. Since

S1,1 ≥
k1∑
n=1

1

(2 + a)n
=

1
2+a

− 1
(2+a)k1+1

1− 1
2+a

,

and

S1,1 ≤
∞∑
n=1

1

(2 + a)n
=

1

1 + a
,

we have

Al =
1 + a

a− 1 + 2
(2+a)k1

≤ A ≤ 1 + a

a− 1
= Ah . (2.11)

Note that, for small a, both estimates Al and Ah are smaller that −1.

Let us define,

gl =
χ[0,Wa(1/2)]

(2 + a)
+

k1∑
j=2

χ[W j
a (1/2),1]

(2 + a)j
,

and

gh = gl +
∞∑

j=k1+1

1

(2 + a)j
= gl +

1

(1 + a)(2 + a)k1
.

Let us further define fl = 1 + 2Algh and fh = 1 + 2Ahgl. It follows from (2.6) and

(2.11) that

fl ≤ fa ≤ fh . (2.12)

Let χ1 = χ[0,1/2+a/4], χj = χ[W j
a (1/2),1/2+a/4], j = 2, 3, . . . , k1, χc = χ(1/2+a/4,1]. Now

we will represent the functions fl and fh as combinations of functions χj , j = 1, . . . , k1

and χc. After some calculations, we obtain:

fl =

(
2

2 + a
Al + 1

)
χ1 + 2Al

k1∑
n=2

χn

(2 + a)n
+
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+

(
2Al

1
2+a

− 1
(2+a)k1

1 + a
+ 1

)
χc + 2Al

1

(1 + a)(2 + a)k1
;

fh =

[
Ah

2

2 + a
+ 1

]
χ1 + 2Ah

k1∑
n=2

χn

(2 + a)n
+

(
2

1
2+a

− 1
(2+a)k1

a− 1
+ 1

)
χc.

Note that (2.11) implies that both Al, Ah are smaller than −(1 + 2a). Using this we

can show that all the coefficients in the representation of fl and fh are negative for

sufficiently small a.

2.4.4 Normalization

Let us define J1 = [0,W k1
a (1/2)], J2 = (W k1

a (1/2), 1/2+ a/4], J3 = (1/2+ a/4, 1]. We

will calculate integrals of fh over each of these intervals and use them to normalize

fh. We have

C1 =

∫
J1

fh dL =

∫
J1

[
2

(
1 + a

a− 1

1

2 + a

)
+ 1

]
χ1 dL

=

[
2

(
1 + a

a− 1

1

2 + a

)
+ 1

]
W k1

a (
1

2
) =

a2 + 3a

(a− 1)(2 + a)
W k1

a (
1

2
) .

Using Lemma 2.4.3, we have lim
a→0

C1

a
= −3

4
. In the same way we can see that for any

0 < α < 1/2, we obtain

lim
a→0

1

a

∫ α

0

fh dL = −3

2
α . (2.13)

On the interval J2, the integral of fh is:

C2 =

∫
J2

fh dL =

∫
J2

[
2

(
1 + a

a− 1

1

2 + a

)
+ 1

]
χ1 dL+ 2

1 + a

a− 1

k1∑
j=2

∫
J2

χj

(2 + a)j
dL
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=
a2 + 3a

(a− 1)(2 + a)

(
1

2
+

a

4
−W k1

a (
1

2
)

)
+2

1 + a

a− 1

[
(k1 − 1)a2

4(2 + a)(1 + a)
+

a

4(1 + a)

1− 1
(2+a)k1−1

1 + a

]
.

Using Lemma 2.4.3, we have

lim
a→0

C2

a
= −1

2
. (2.14)

On the interval J3, the integral of fh is:

C3 =

∫
J3

fh dL =

∫
J3

(
2

1
2+a

− 1
(2+a)k1

a− 1
+ 1

)
χc dL

=

(
2

1
2+a

− 1
(2+a)k1

a− 1
+ 1

)
(
1

2
− a

4
) .

Using Lemma 2.4.3, we have

lim
a→0

C3

a
= −1

4
.

In the same way we can see that for any 0 < α < 1/2, we obtain

lim
a→0

1

a

∫ 1

1/2+α

fh dL = −1

2

(
1

2
− α

)
. (2.15)

If we define B = C1 + C2 + C3, then
fh
B

is a normalized density. We see that

lim
a→0

B

a
= −3

2
.

2.4.5 Conclusion of the proof

Now, we will use our foregoing calculations to show that the normalized measures

(fh/B) · L converge ∗-weakly to the measure 2
3
μ0 +

1
3
δ( 1

2
), as a → 0.
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For any interval [0, α], 0 < α < 1/2 as a → 0, formula (2.13) implies

lim
a→0

∫ α

0

fh
B

dL =
−3

2
α

−3
2

= α . (2.16)

For J2, which converges to the point 1/2, formula (2.14) implies

lim
a→0

∫
J2

fh
B

dL =
−1

2

−3
2

=
1

3
. (2.17)

For any interval [1/2 + α, 1], 0 < α < 1/2, formula (2.15) implies

lim
a→0

∫ 1

1/2+α

fh
B

dL =
−1

2

(
1
2
− α

)
−3

2

=
1

3

(
1

2
− α

)
. (2.18)

Formulas (2.16), (2.17) and (2.18) together show that measures (fh/B) · L converge

∗-weakly to the sum of the measure with density χ[0,1/2] +
1
3
χ[1/2,1] and

1
3
of a unit

point mass at 1/2, i.e., to the measure 2
3
μ0 +

1
3
δ( 1

2
).

Now, we will show the same for the normalized measure defined using fl. To this

end, let us note that

fh − fl = 2Ahgl − 2Algh = 2(Ah − Al)gl − 2Al
1

(1 + a)(2 + a)k1

= 2
1 + a

a− 1

−2/(2 + a)k1

a− 1 + 2/(2 + a)k1
gl − 2Al

1

(1 + a)(2 + a)k1
,

where |gl| ≤ 1 and lima→0Al = −1. Using Lemma 2.4.3 once again, we can show

that, for any subinterval J ⊂ [0, 1], we have

lim
a→0

1

a

∫
J

(fh − fl) dL = 0 .

For J = [0, 1] this means that the normalizations of fl and fh are asymptotically the

same. Thus, the limit for a general J implies that the ∗-weak limit of normalized

measures defined using fl is the same as for those defined using fh. Together with

inequality (2.12) this proves Theorem 2.2.1.
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2.5 Computational results

We present in Fig. 2 graphs of Wa normalized invariant densities for a): a = 0.1,

b): a = 0.05 and c): a = 0.01. They were obtained using Maple 13. Note that the

vertical scales of the graphs are very different.

Figure 2.2: Wa-invariant pdf’s for a): a = 0.1, b): a = 0.05 and c): a = 0.01.
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Chapter 3

W−shaped Maps with Various In-

stabilities of Acims

3.1 Introduction

In this chapter, we construct a family of maps for which the instability of the acims

has a global character, not a local one. In the more general case considered in this

chapter, with s1, s2 not necessarily equal to 2, we will discuss the limits of the acims

μa of the {Wa} maps. We have three cases:

(I) If 1
s1
+ 1

s2
> 1, then μa’s converge ∗-weakly to δ( 1

2
).

(II) If 1
s1
+ 1

s2
= 1, then μa’s converge ∗-weakly to

(qs1 + ps2 − p− q)(s2 + 2)

(qs1 + ps2 − p− q)(s2 + 2) + 2rs1s
2
2

μ0 +
2rs1s

2
2

(qs1 + ps2 − p− q)(s2 + 2) + 2rs1s
2
2

δ( 1
2
),

where p, q and r are parameters defining our family of maps.

(III) If 1
s1
+ 1

s2
< 1, then μa’s converge to μ0.
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Additionally, in Theorem 3.2.2, we prove that in case (III) the densities of the μa’s

are uniformly bounded. The first case of our result contains the example in which

Keller [Keller, 1982] obtained the “stochastic singularity.” In the second case, the

limit measure is a combination of an absolutely continuous and a singular measure,

and this combination is varying according to p, q and r for fixed s1 and s2. This is a

generalization of the result of Chapter 2 [Li et al., 2013]. In the third case, we have

a map with a stable acim.

At the end of this chapter, we use our main results to provide an interesting ex-

ample. [Keller, 1978] and [Kowalski, 1979] proved that for a piecewise expanding

map τ : I → I with 1
|τ ′(x)|

being a function of bounded variation, the density of the

acim of τ has a uniform positive lower bound on its support. We construct a family

of piecewise expanding, piecewise linear maps τn such that τn are exact on [0, 1], τn

converge to τ = W0 (s1 = s2 = 2), |τ ′n| > 2 for all n but the densities of the acims

μn’s do not have a uniform positive lower bound.

In Section 3.2, we introduce our family of Wa maps and state the main result. In

Section 3.3 we present the proofs. In Section 3.4, we show the example related to the

results of [Keller, 1978] and [Kowalski, 1979].

The results obtained in this chapter (Sections 3.2, 3.3 and 3.4) were, after some

modifications, published in the paper [Li, 2013].
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3.2 Family of Wa maps and the main result

Let s1, s2 > 1 and p, q, r > 0. We consider the family {Wa : 0 ≤ a} of maps of [0, 1]

onto itself defined by

Wa(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− 2(s1+pa)
s1−1+pa−2ra

x , for 0 ≤ x < 1
2
− 1

2
+ra

s1+pa
;

(s1 + pa)(x− 1/2) + 1/2 + ra , for 1
2
− 1

2
+ra

s1+pa
≤ x < 1/2 ;

−(s2 + qa)(x− 1/2) + 1/2 + ra , for 1/2 ≤ x < 1
2
+

1
2
+ra

s2+qa
;

1 + 2(s2+qa)
s2−1+qa−2ra

(x− 1) , for 1
2
+

1
2
+ra

s2+qa
≤ x ≤ 1 .

(3.1)

For each choice of s1, s2 > 1, p, q, r > 0, we consider only a > 0 such that 0 ≤

Wa(x) ≤ 1 for x ∈ [0, 1].

An example of a Wa map is shown in Fig.3.1. Fig.3.1(a) is the unperturbed W0

map with turning fixed point at 1/2 and s1 = 3/2, s2 = 3. Fig.3.1(b) is the perturbed

map Wa, with a = 0.05, r = 2, p = 3, q = 2. The slope of the second branch is

s1 + pa = 1.65, the slope of the third branch is s2 + qa = 3.1, and W0.05(1/2) =

1/2 + ra = 0.6.

Every Wa has a unique acim μa since all the slopes are greater than 1 in modulus.

We will show later that, for 1
s1
+ 1

s2
≤ 1, μa is supported on [0, 1] and for 1

s1
+ 1

s2
> 1 it

is supported on a subinterval around 1/2. Wa is an exact map with the measure μa.

Let ha denote the normalized density of μa, a ≥ 0. Since the W0 map is a Markov
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(b)

Figure 3.1: The W -shaped maps with 1
s1
+ 1

s2
= 1: (a) W0 with s1 = 3/2 and s2 = 3,

(b) Wa with s1 = 3/2, s2 = 3; a = 0.05; r = 2, p = 3, q = 2; also several initial points

of the trajectory of 1/2.

one, it is easy to check that

h0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2s1(s2+1)

2s1s2+s1−s2
, for 0 ≤ x < 1/2 ;

2s2(s1−1)
2s1s2+s1−s2

, for 1/2 ≤ x ≤ 1 .

(3.2)

Our main result is the following theorem

Theorem 3.2.1. As a → 0 the measures μa converge ∗-weakly to the measure

(I) δ( 1
2
), if

1
s1
+ 1

s2
> 1;

(II) (qs1+ps2−p−q)(s2+2)

(qs1+ps2−p−q)(s2+2)+2rs1s22
μ0 +

2rs1s22
(qs1+ps2−p−q)(s2+2)+2rs1s22

δ( 1
2
), if

1
s1
+ 1

s2
= 1;

(III) μ0, if
1
s1
+ 1

s2
< 1,

where δ( 1
2
) is the Dirac measure at point 1/2.

The proof relies on the general formula for invariant densities of piecewise linear

maps [Góra, 2009] and direct calculations. Most objects and quantities we use depend

on the parameter a. We suppress a from the notation to make it simpler.
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In case (III), we actually prove a little more:

Theorem 3.2.2. If 1
s1

+ 1
s2

< 1, then the normalized invariant densities {ha} are

uniformly bounded for given p, q and r. Consequently, we obtain Theorem 3.2.1(III).

3.3 Proofs of Theorem 3.2.1 and Theorem 3.2.2

This section contains the proofs of Theorems 3.2.1 and 3.2.2, divided into a number

of steps.

3.3.1 Assume 1

s1

+ 1

s2

> 1

Let

x∗
l =

s1 − 1 + pa− 2ra

2(s1 − 1 + pa)

and

x∗
r =

s2s1 − s2 + (2rs1 − q + ps2 + qs1)a+ (2rp+ pq)a2

2(s1 − 1 + pa)(s2 + qa)
.

x∗
l is the fixed point on the second branch of Wa, and x∗

r is the preimage of x∗
l under

the third branch of Wa. Both x∗
r and x∗

l converge to 1
2
as a approaches 0. For small

a, we have

Wa(1/2)− x∗
r =

ra [s1s2 − s1 − s2 + a(qs1 + ps2 − p− q + pqa)]

(s1 − 1 + pa)(s2 + qa)
< 0.

In this case, we have Wa([x
∗
l , x

∗
r ]) ⊆ [x∗

l , x
∗
r]. Wa|[x∗

l
,x∗r ] is a skewed tent map with

Wa(1/2) > 1/2; it is known that with acim μa, it is ergodic on [W 2
a (1/2),Wa(1/2)].

Since μa is concentrated on [x∗
l , x

∗
r ], we conclude that μa converge ∗-weakly to δ( 1

2
).

This proves Theorem 3.2.1(I).
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Fig.3.2 shows an example with a = 0.05, r = 2, p = 3, q = 2; s1 = 4/3, s2 = 5/2.

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

Figure 3.2: The Wa map with 1
s1
+ 1

s2
> 1

3.3.2 Formula for the non-normalized invariant density of Wa

if 1

s1

+ 1

s2

≤ 1

An example of a map Wa is shown in Fig.3.1. We have the following proposition.

Proposition 3.3.1. For 1
s1
+ 1

s2
≤ 1, the map Wa has an acim μa supported on [0, 1]

and the map Wa with respect to μa is exact.

Proof. Wa is a piecewise expanding transformation. From the general theory (see for

example [Boyarsky and Góra, 1997]), it follows that it is enough to show that the

images W n
a (J) grow to cover all [0, 1] as n → ∞, for any interval J ⊂ [0, 1]. Since Wa

is expanding, W n
a (J) grow until some image W n0

a (J) contains an internal partition

point. If this point is not 1/2, then W n0+2
a (J) contains the repelling fixed point 1.

Then its images grow to cover all of [0, 1]. If this point is 1/2, we proceed as follows.
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First, assume that 1
s1

+ 1
s2

< 1. Consider a small neighborhood J = (z1, z2) around

1/2 with length 
, then

min
z2−z1=�

max

{
(
1

2
− z1)(s1 + pa), (z2 − 1

2
)(s2 + qa)

}
=

1
1

s1+pa
+ 1

s2+qa


 > 
.

Thus, the interval J will grow until its image covers two partition points of Wa. Then

the second iteration afterward will cover [0, 1]. Therefore, Wa is exact with respect

ot μa.

Assume 1
s1
+ 1

s2
= 1. If a �= 0, then 1

1
s1+pa

+ 1
s2+qa

> 1, which implies Wa is exact with

respect to μa. In the case a = 0, we first note that 1/2 is a turning fixed point. Take

again a small interval J = (z1, z2) � 1/2. Its image is an interval (z, 1/2). It will grow

under iteration and its iterations still contain 1/2. It will grow until its image covers

another partition point of Wa. Then, the second iteration afterward will covers all of

[0, 1]. Thus, Wa is again exact with respect to μa.

We adapt the general formulas of [Góra, 2009] to our case and obtain the following

lemma:

Lemma 3.3.1. (I) N=4, K=2, L=0 ;

(II) α = (1, 1/2 + ra, 1/2 + ra, 1), β = (β1, β2, β3, β4), where β1 = − 2(s1+pa)
s1−1+pa−2ra

,

β2 = s1 + pa, β3 = −(s2 + qa) and β4 =
2(s2+qa)

s2−1+qa−2ra
, γ = (0, 0, 0, 0) ;

(III) The digits A = (a1, a2, a3, a4), where a1 = −1, a2 =
s1−1+pa−2ra

2
, a3 = −s2+1+qa+2ra

2
,

a4 =
s2+1+qa+2ra
s1−1+pa−2ra

;

(IV ) There are two ci’s, which are c1 = (1/2, 2) and c2 = (1/2, 3), and j(c1) = 2,

j(c2) = 3. Then, Wu = {c1, c2},Wl = ∅, Ul = {c2},Ur = {c1} ;

(V ) β(c1, 1) = s1 + pa since j(c1) = 2, then β(c1, 2) = −(s1 + pa)(s2 + qa) and
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β(c1, k) = −(s2 + qa)(s1 + pa)k−1 up to some k which is the first moment j when the

W j
a (1/2) is less than 1

2
− 1/2+ra

s1+pa
, and is the same one defined in Lemma 3.3.4 ;

(V I) β(c2, 1) = −(s2 + qa) since j(c2) = 3, then β(c2, 2) = (s2 + qa)2 and β(c2, k) =

(s2 + qa)2(s1 + pa)k−2 up to the same k in part (e), W n
a (c1) = W n

a (c2) for all n ;

(V II) Based on (V I), we have the following for the matrix S = (Si,j)1≤i,j≤2 :

For c1 ∈ Ur

S1,1 =
∞∑
n=1

δ(β(c1, n) > 0)δ(W n
a (c1) > 1/2) + δ(β(c1, n) < 0)δ(W n

a (c1) < 1/2)

|β(c1, n)| ,

S1,2 =

∞∑
n=1

δ(β(c1, n) > 0)δ(W n
a (c1) > 1/2) + δ(β(c1, n) < 0)δ(W n

a (c1) < 1/2)

|β(c1, n)| .

For c2 ∈ Ul

S2,1 =

∞∑
n=1

δ(β(c2, n) < 0)δ(W n
a (c2) > 1/2) + δ(β(c2, n) > 0)δ(W n

a (c2) < 1/2)

|β(c2, n)| ,

S2,2 =
∞∑
n=1

δ(β(c2, n) < 0)δ(W n
a (c2) > 1/2) + δ(β(c2, n) > 0)δ(W n

a (c2) < 1/2)

|β(c2, n)| .

Remark 3.3.1. It follows from (V, V I) of Lemma 1 that

S1,1 = S1,2 , S2,1 = S2,2 and S1,1 =
s2 + qa

s1 + pa
S2,2 .

Let Id be the 2 × 2 identity matrix and let V = [1, 1]. Then, for the solution,

D = [D1, D2], of the system :

(−ST + Id
)
DT = V T , (1)

we have D1 = D2. Let us denote them by Λ.

Let I1, I2, I3, I4 be the partition of I = [0, 1] into maximal intervals of monotonicity

of Wa: I1 = [0, s1−1+pa−2ra
2(s1+pa)

), I2 = ( s1−1+pa−2ra
2(s1+pa)

, 1/2), I3 = (1/2, s2+1+qa+2ra
2(s2+qa)

) and I4 =
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( s2+1+qa+2ra
2(s2+qa)

, 1]. We define the following index function:

j(x) = i for x ∈ Ii, i = 1, 2, 3, 4,

and

j(c1) = 2, j(c2) = 3.

We define the cumulative slopes for iterates of points as follows:

β(x, 1) = βj(x), and β(x, n) = β(x, n− 1) · βj(Wn−1
a (x)), n ≥ 2.

In particular, we have

β(1/2, n) = (s1 + pa) ·W ′
a(Wa(1/2)) ·W ′

a(W
2
a (1/2)) · · ·W ′

a(W
n−1
a (1/2)) ,

which is the cumulative slope along the n steps of trajectory of 1/2. Recall that k

is the first moment j when the W j
a (1/2) is less than 1

2
− 1/2+ra

s1+pa
. Let k1 = [2

3
k] (the

integer part of 2k/3). Note that k1 → ∞ as a → 0. Let

χs(t, x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
χ[0,x] for t > 0 ;

χ[x,1] for t < 0 .

Now, we can obtain the following formula for fa:

Lemma 3.3.2. Let

fa = 1 + (1 +
s1 + pa

s2 + qa
)Λ

(
∞∑
n=1

χs(β(1/2, n),W n
a (1/2))

|β(1/2, n)|

)
.

Then fa is Wa invariant non-normalized density. Furthermore, for small a > 0, we

have:

(I) If 1
s1

+ 1
s2

= 1, then Λ < −1 ;
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(II) If 1
s1
+ 1

s2
< 1, the sign of Λ depends on s1 and s2, can be either positive or negative

depending on the sign of ϑ = 1 −
(

s1+s2
s1s2

+ s1+s2
s22(s1−1)

)
= 1 − s1+s2

s1s2

(
1 + s1

s2(s1−1)

)
. The

case when ϑ = 0 is discussed at the end of Section 3.3.

Proof. By the Theorem 2 in [Góra, 2009], it follows from (IV, V, V I) of Lemma 3.3.1

that:

fa = 1 +D1

∞∑
n=1

χs(β(c1, n),W
n
a (c1))

|β(c1, n)| +D2

∞∑
n=1

χs(−β(c2, n),W
n
a (c2))

|β(c2, n)|

= 1 + Λ

∞∑
n=1

χs(β(c1, n),W
n
a (1/2))

|β(c1, n)| + Λ

∞∑
n=1

χs(−β(c2, n),W
n
a (1/2))

|β(c2, n)|

= 1 + (1 +
s1 + pa

s2 + qa
)Λ

(
∞∑
n=1

χs(β(1/2, n),W n
a (1/2))

|β(1/2, n)|

)
.

Let s = min
{

2s1
s1−1

, 2s2
s2−1

, s1, s2

}
. Note that s > 1. Since

S1,1 ≥ 1

s1 + pa
+

1

s2 + qa

k1−1∑
n=1

1

(s1 + pa)n
=

1

s1 + pa
+

1

s2 + qa

1− 1
(s1+pa)k1−1

s1 + pa− 1
,

S1,1 ≤ 1

s1 + pa
+

1

s2 + qa

(
k1−1∑
n=1

1

(s1 + pa)n
+

1

(s1 + pa)k1−1

∞∑
n=1

1

sn

)

=
1

s1 + pa
+

1

s2 + qa

(
1− 1

(s1+pa)k1−1

s1 + pa− 1
+

1

(s1 + pa)k1−1

1

s− 1

)
,

and Λ = 1

1−
s1+s2+pa+qa

s2+qa
S1,1

, we have

Λl =
1

1− (κ+ η(1− 1
(s1+pa)k1−1 ))

≤ Λ ≤ 1

1− (κ+ η(1− 1
(s1+pa)k1−1 ) + ω)

= Λh ,

(3.3)

where κ = s1+s2+pa+qa
(s1+pa)(s2+qa)

, η = s1+s2+pa+qa
(s2+qa)2(s1+pa−1)

, ω = s1+s2+pa+qa
(s2+qa)2

1
(s1+pa)k1−1

1
s−1

.

(I) Note that for small a both estimates Λl and Λh are smaller than −1 since both

κ and η are smaller than 1 and close to 1. Furthermore, as a approaches 0, both κ

and η approach 1, ω approaches 0.
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(II) As a approaches 0, κ and η approach s1+s2
s1s2

and s1+s2
s22(s1−1)

, respectively. Again,

note that for small a, estimates Λl and Λh can be either positive or negative, and

they have the same sign.

For small positive a, the first image of 1/2 is Wa(1/2) = 1/2+ ra and the next one

falls just below the fixed point x∗
l slightly less than 1/2. The following images form

a decreasing sequence until they go below 1
2
− 1/2+ra

s1+pa
. Since k is the first iteration j

when the W j
a (1/2) is less than 1

2
− 1/2+ra

s1+pa
, the consecutive cumulative slopes of 1/2

are

(s1 + pa),−(s1 + pa)(s2 + qa),−(s1 + pa)2(s2 + qa), . . . ,−(s1 + pa)k−1(s2 + qa) ,

and

fa = 1 + (1 +
s1 + pa

s2 + qa
)Λ

(
χ[0,Wa(1/2)]

(s1 + pa)
+

k∑
j=2

χ[W j
a(1/2),1]

(s1 + pa)j−1(s2 + qa)
+ . . .

)
. (3.4)

3.3.3 Estimates, normalizations and integrals on fa for 1

s1

+

1

s2

≤ 1

Remembering that k = min{j ≥ 1 : W j
a (1/2) ≤ 1

2
− 1/2+ra

s1+pa
} and k1 = [2

3
k] (the integer

part of 2k/3), we will give the estimates on fa.

Let us define

gl =
χ[0,Wa(1/2)]

s1 + pa
+

1

s2 + qa

k1∑
j=2

χ[W j
a (1/2),1]

(s1 + pa)j−1
,

and

gh = gl +
1

s2 + qa

∞∑
j=1

1

(s1 + pa)k1−1sj
= gl +

1

(s2 + qa)(s− 1)(s1 + pa)k1−1
.

Also, let χ1 = χ[0,1/2+ra], χj = χ[W j
a(1/2),1/2+ra], j = 2, 3, . . . , k1, χc = χ(1/2+ra,1].
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3.3.3.1 Estimates on fa if 1
s1
+ 1

s2
= 1

We have the following lemma:

Lemma 3.3.3. For the family of Wa maps, if 1
s1
+ 1

s2
= 1, we have

(I) Wa(1/2) = 1/2+ ra, W 2
a (1/2) = −ra(s2 + qa) + 1/2+ ra, and for 3 ≤ m ≤ k, we

have Wm
a (1/2) = −a2(s1 + pa)m−2 r(qs1+ps2−p−q)+rpqa

s1+pa−1
+ s1−1+pa−2ra

2(s1+pa−1)
;

(II) lim
a→0

ak = 0;

(III) lim
a→0

1
a(s1+pa)k

= 0;

(IV ) lim
a→0

1
a(s1+pa)k1

= 0;

(V ) lim
a→0

a2(s1 + pa)k1 = 0;

(V I) lim
a→0

W k1
a (1

2
) = 1

2
.

Proof. Suppose (I) is true. Let us first prove that (II) and (III) are true.

By the definition of k, we have:

0 ≤ −a2(s1+pa)k−2 r(qs1 + ps2 − p− q) + rpqa

s1 + pa− 1
+
s1 − 1 + pa− 2ra

2(s1 + pa− 1)
≤ 1

2
− 1/2 + ra

s1 + pa
.

(3.5)

The first inequality of (3.5) implies that (s1 + pa)k−2 ≤ s1−1+pa−2ra
2a2(r(qs1+ps2−p−q)+rpqa)

, thus

ak ≤ a
ln(s1 − 1 + pa− 2ra)− ln 2− 2 ln a− ln(r(qs1 + ps2 − p− q) + rpqa)

ln(s1 + pa)
+ 2a,

a ≤
√
s1 − 1 + pa− 2ra(s1 + pa)√

2(r(qs1 + ps2 − p− q) + rpqa)(s1 + pa)k/2
,

a2(s1 + pa)k1 ≤ (s1 − 1 + pa− 2ra)(s1 + pa)2

2(r(qs1 + ps2 − p− q) + rpqa)(s1 + pa)k−k1
,

so we obtain (V), and since lim
a→0

a ln a = 0, we obtain (II).
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The second inequality of (3.5) implies

1

a(s1 + pa)k−2
≤ 2a(r(qs1 + ps2 − p− q) + rpqa)(s1 + pa)

s1 − 1 + pa− 2ra
.

Therefore,

1

a(s1 + pa)k
≤ 2a(r(qs1 + ps2 − p− q) + rpqa)

(s1 − 1 + pa− 2ra)(s1 + pa)
, (3.6)

and as a → 0, we obtain (III).

On the other hand, (3.6) implies

1

a(s1 + pa)k1
≤ 2a(r(qs1 + ps2 − p− q) + rpqa)(s1 + pa)k−k1

(s1 + pa− 2ra− 1)(s1 + pa)

≤
√

2(r(qs1 + ps2 − p− q) + rpqa)(s1 + pa)k−k1

√
s1 + pa− 2ra− 1(s1 + pa)k/2

=

√
2(r(qs1 + ps2 − p− q) + rpqa)√
s1 + pa− 2ra− 1(s1 + pa)k1−k/2

.

By the definition of k1, we obtain (IV). (VI) follows from (V).

Now, let us prove (I).

The fixed point slightly less than 1/2 is x∗
l =

s1−1+pa−2ra
2(s1−1+pa)

, and

x∗
l −W 2

a (1/2) =
ra2(q(s1 − 1) + p(s2 − 1) + apq)

s1 − 1 + pa
> 0,

which implies that Wm
a (1/2) are all in the domain of the second branch of Wa for

3 ≤ m ≤ k. For a linear map T (x) = m0x+ b0, we have T
n(x) = mn

0x+
mn

0−1

m0−1
b0. This

proves (I).

Using (3.4) and (3.3) we see that for the functions fl = 1 + (1 + s1+pa
s2+qa

)Λlgh and

fh = 1 + (1 + s1+pa
s2+qa

)Λhgl, we have

fl ≤ fa ≤ fh . (3.7)
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Now, we will represent functions fl and fc as combinations of functions χj , j =

1, . . . , k1 and χc. After some calculations, we obtain

fl = 1 + (1 +
s1 + pa

s2 + qa
)Λl

(
χ[0,Wa(1/2)]

s1 + pa
+

1

s2 + qa

k1∑
j=2

χ[W j
a (1/2),1]

(s1 + pa)j−1

+
1

(s2 + qa)(s− 1)(s1 + pa)k1−1

)
=

(
s1 + s2 + pa + qa

(s2 + qa)(s1 + pa)
Λl + 1

)
χ1 +

s1 + s2 + pa+ qa

(s2 + qa)2
Λl

k1∑
j=2

χj

(s1 + pa)j−1

+

(
s1 + s2 + pa + qa

(s2 + pa)2
Λl

1− 1
(s1+pa)k1−1

s1 + pa− 1
+ 1

)
χc

+

s1+s2+pa+qa
s2+qa

Λl

(s2 + qa)(s− 1)(s1 + pa)k1−1
,

fh = 1 + (1 +
s1 + pa

s2 + qa
)Λh

(
χ[0,Wa(1/2)]

s1 + pa
+

1

s2 + qa

k1∑
j=2

χ[W j
a(1/2),1]

(s1 + pa)j−1

)

=

(
s1 + s2 + pa+ qa

(s2 + qa)(s1 + pa)
Λh + 1

)
χ1 +

s1 + s2 + pa+ qa

(s2 + qa)2
Λh

k1∑
j=2

χj

(s1 + pa)j−1

+

(
s1 + s2 + pa+ qa

(s2 + qa)2
Λh

1− 1
(s1+pa)k1−1

s1 + pa− 1
+ 1

)
χc .

In the case we are considering, (3.3) implies that both Λl, Λh are smaller than -1.

Using this, one can show that all the coefficients in the representation of fl and fh

are negative for sufficiently small a. For example, let us consider the coefficient of χ1

in fh:

s1 + s2 + pa + qa

(s2 + qa)(s1 + pa)
Λh + 1 =

κ

1− (κ+ η(1− 1
(s1+pa)k1−1 ) + ω)

+ 1

=
1− η + η

(s1+pa)k1−1 − ω

1− (κ+ η(1− 1
(s1+pa)k1−1 ) + ω)

< 0 .
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3.3.3.2 Normalizations and integrals if 1
s1

+ 1
s2

= 1

Let us define J1 = [0,W k1
a (1/2)], J2 = (W k1

a (1/2), 1/2 + ra], J3 = (1/2 + ra, 1]. We

will calculate integrals of fh over each of these intervals J1, J2 and J3, and use them

to normalize fh. We have

C1 =

∫
J1

fh dL =

∫
J1

[
s1 + s2 + pa + qa

(s2 + qa)(s1 + pa)
Λh + 1

]
χ1 dL

=

[
s1 + s2 + pa + qa

(s2 + qa)(s1 + pa)
Λh + 1

]
W k1

a (
1

2
)

=

[
κ

1− (κ + η(1− 1
(s1+pa)k1−1 ) + ω)

+ 1

]
W k1

a (
1

2
)

=

[
a(2qs1s2 + ps22 − 2qs2 − p− q)

(1− (κ+ η(1− 1
(s1+pa)k1−1 ) + ω))(s2 + qa)2(s1 + pa− 1)

+
a2(2pqs2 − q2 + q2s1) + pq2a3

(1− (κ+ η(1− 1
(s1+pa)k1−1 ) + ω))(s2 + qa)2(s1 + pa− 1)

+

η
(s1+pa)k1−1 − ω

1− (κ+ η(1− 1
(s1+pa)k1−1 ) + ω)

]
W k1

a (
1

2
) .

Using Lemma 3.3.3, we obtain

lim
a→0

C1

a
= −2qs1s2 + ps22 − 2qs2 − p− q

2s22(s1 − 1)
= −2qs1 + ps22 − p− q

2s2s1
.

In the same way, we can see that for any 0 < θ < 1/2, we obtain

lim
a→0

1

a

∫ θ

0

fh dL = −2qs1 + ps22 − p− q

s2s1
θ .

On the interval J2, the integral of fh is:

C2 =

∫
J2

fh dL =

∫
J2

[
s1 + s2 + pa+ qa

(s2 + qa)(s1 + pa)
Λh + 1

]
χ1 dL

+
s1 + s2 + pa+ qa

(s2 + qa)2
Λh

k1∑
j=2

∫
J2

χj

(s1 + a)j−1
dL

=
1− η + η

(s1+pa)k1−1 − ω

1− (κ+ η(1− 1
(s1+pa)k1−1 ) + ω)

(
1

2
+ ra−W k1

a (
1

2
)

)
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+
s1 + s2 + pa+ qa

(s2 + qa)2
Λh

[
ra(s2 + qa)

s1 + pa
+

ra(1− 1
(s1+pa)k1−2 )

(s1 + pa− 1)2

+
a2(k1 − 2)

s1 + pa

r(qs1 + ps2 − p− q) + rpqa

s1 + pa− 1

]
.

Using Lemma 3.3.3, we obtain

lim
a→0

C2

a
= −s1 + s2

s22

[
rs2
s1

+
r

(s1 − 1)2

]
= −rs2.

On the interval J3, the integral of fh is:

C3 =

∫
J3

fh dL =

∫
J3

(
s1 + s2 + pa+ qa

(s2 + qa)2
Λh

1− 1
(s1+pa)k1−1

s1 + pa− 1
+ 1

)
χc dL

=

⎡⎣
(
1− 1

(s1+pa)k1−1

)
η

1− (κ+ η(1− 1
(s1+pa)k1−1 ) + ω)

+ 1

⎤⎦ (
1

2
− ra)

=

a(qs1+ps2−p−q)+pqa2

(s1+pa)(s2+qa)
− ω

1− (κ + η(1− 1
(s1+pa)k1−1 ) + ω)

(
1

2
− ra) .

Using Lemma 3.3.3, we obtain

lim
a→0

C3

a
= −qs1 + ps2 − p− q

2s1s2
.

In the same way, we can see that for any 0 < θ < 1/2, we obtain

lim
a→0

1

a

∫ 1

1/2+θ

fh dL = −qs1 + ps2 − p− q

s1s2

(
1

2
− θ

)
.

If we define B = C1 + C2 + C3, then
fh
B

is a normalized density. We see that

lim
a→0

B

a
= −(qs1 + ps2 − p− q)(s2 + 2) + 2rs1s

2
2

2s1s2
.

Our calculations show that the normalized measures {(fh/B)·L} converge ∗-weakly

to the measure

(qs1 + ps2 − p− q)(s2 + 2)

(qs1 + ps2 − p− q)(s2 + 2) + 2rs1s22
μ0 +

2rs1s
2
2

(qs1 + ps2 − p− q)(s2 + 2) + 2rs1s22
δ( 1

2
) .
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Now, we will show the same holds for the normalized measure defined by fl. To

this end, let us notice that

fh − fl = (1 +
s1 + pa

s2 + qa
)Λhgl − (1 +

s1 + pa

s2 + qa
)Λlgh

= (1 +
s1 + pa

s2 + qa
)(Λh − Λl)gl − Λl

1 + s1+pa
s2+qa

(s2 + qa)(s− 1)(s1 + pa)k1−1

=
ω(1 + s1+pa

s2+qa
)

(1− (κ+ η(1− 1
(s1+pa)k1−1 ) + ω))(1− κ− η(1− 1

(s1+pa)k1−1 ))
gl

−Λl

1 + s1+pa
s2+qa

(s2 + qa)(s− 1)(s1 + pa)k1−1
,

where |gl| ≤ 2
s1

and lim
a→0

Λl = −1. Using Lemma 3.3.3 once again, we can show that

for any subinterval J ⊂ [0, 1], we have

lim
a→0

1

a

∫
J

(fh − fl) dL = 0 .

For J = [0, 1] this means that the normalizations of fl and fh are asymptotically the

same. With this, the limit for a general J means in particular that the ∗-weak limit

of normalized measures defined using fl is the same as for those defined using fh. In

view of inequality (3.7), this proves Theorem 3.2.1(II).

3.3.3.3 Estimates on fa if 1
s1
+ 1

s2
< 1

We have the following lemma:

Lemma 3.3.4. For the family of Wa maps, if 1
s1
+ 1

s2
< 1, we have

(I) Wa(1/2) = 1/2+ ra, W 2
a (1/2) = −ra(s2 + qa) + 1/2+ ra, and for 3 ≤ m ≤ k, we

have Wm
a (1/2) = −a(s1 + pa)m−2 r[s1s2−s1−s2+a(qs1+ps2−p−q+pqa)]

s1+pa−1
+ s1−1+pa−2ra

2(s1+pa−1)
;

(II) lim
a→0

ak = 0;
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(III) lim
a→0

a(s1 + pa)k1 = 0;

(IV ) lim
a→0

W k1
a (1

2
) = 1

2
.

Proof. Suppose (I) is true. Let us first prove that (II) and (III) are true.

By the definition of k, we have:

0 ≤− a(s1 + pa)k−2 r [s1s2 − s1 − s2 + a(qs1 + ps2 − p− q + pqa)]

s1 + pa− 1

+
s1 − 1 + pa− 2ra

2(s1 + pa− 1)
.

(3.8)

The inequality (3.8) implies a(s1 + pa)k−2 ≤ s1−1+pa−2ra
2r[s1s2−s1−s2+a(qs1+ps2−p−q+pqa)]

, thus

ak ≤ a
ln(s1 − 1 + pa− 2ra)− ln 2 + 2 ln(s1 + pa)− ln r − ln a

ln(s1 + pa)

−a
ln(2r [s1s2 − s1 − s2 + a(qs1 + ps2 − p− q + pqa)])

ln(s1 + pa)
,

a(s1 + pa)k1 ≤ (s1 − 1 + pa− 2ra)(s1 + pa)2

2r [s1s2 − s1 − s2 + a(qs1 + ps2 − p− q + pqa)] (s1 + pa)k−k1
,

and since lim
a→0

a ln a = 0, we obtain (II) and (III). (IV) follows from (III).

Now, let us prove (I).

The fixed point slightly less than 1/2 is x∗
l =

s1−1+pa−2ra
2(s1−1+pa)

, and

x∗
l −W 2

a (1/2) =
ra [s1s2 − s1 − s2 + a(qs1 + ps2 − p− q + pqa)]

s1 − 1 + pa
> 0,

which implies that Wm
a (1/2) are all in the domain of the second branch of Wa for

3 ≤ m ≤ k. Now, (I) follows by the same reasoning as in Lemma 3.3.3.

Lemma 3.3.5. If the normalized densities {ha}a<a0, for some a0 > 0, are uniformly

bounded, then ha → h0 in L1.

Proof. The uniform boundedness implies {ha}a<a0 is a weakly precompact set in L1.

Thus, any limit of {ha}a<a0 is a invariant density by Proposition 11.3.1 [Boyarsky
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and Góra, 1997]. At the same time, this limit is an L1 function, thus defines an acim.

Since the map W0 is exact and has only one acim, we conclude that ha → h0 in

L1.

Now, we will prove Theorem 3.2.2:

The main idea of the proof is the following: since non-normalized densities {fa} are

uniformly bounded (formulas (3.9, 3.10, 3.11)), it is enough to show that {∫ 1

0
fa dL}

are uniformly separated from zero.

For small a, by Lemma 3.3.2, Λ (and then both Λl and Λh) can be either positive

or negative. Thus, we can have the following cases.

Case (i): Λl < 0:

Comparing with (3.4) and (3.3), we see that for the functions f̂l = 1+(1+ s1+pa
s2+qa

)Λlgh

and f̂h = 1 + (1 + s1+pa
s2+qa

)Λhgl, we have

f̂l ≤ fa ≤ f̂h . (3.9)

Note that f̂l and f̂h have the same form as fl and fh in Section 3.3.3.1, so their

representations as combinations of functions χj , j = 1, . . . , k1 and χc are similar to

that of fl and fh. At the same time, now we have 1
s1

+ 1
s2

< 1, so the representation

is as follows:

f̂l =

(
s1 + s2 + pa + qa

(s2 + qa)(s1 + pa)
Λl + 1

)
χ1 +

s1 + s2 + pa+ qa

(s2 + qa)2
Λl

k1∑
j=2

χj

(s1 + pa)j−1

+

(
s1 + s2 + pa + qa

(s2 + pa)2
Λl

1− 1
(s1+pa)k1−1

s1 + pa− 1
+ 1

)
χc

+

s1+s2+pa+qa
s2+qa

Λl

(s2 + qa)(s− 1)(s1 + pa)k1−1
,
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f̂h =

(
s1 + s2 + pa+ qa

(s2 + qa)(s1 + pa)
Λh + 1

)
χ1 +

s1 + s2 + pa+ qa

(s2 + qa)2
Λh

k1∑
j=2

χj

(s1 + pa)j−1

+

(
s1 + s2 + pa+ qa

(s2 + qa)2
Λh

1− 1
(s1+pa)k1−1

s1 + pa− 1
+ 1

)
χc .

(3.3) implies that all the coefficients in the representation of f̂l and f̂h are negative

for sufficiently small a.

We use the same notations J1, J2 and J3 as in Section 3.3.3.2. First, we do the

calculations assuming that ϑ = 1−
(

s1+s2
s1s2

+ s1+s2
s22(s1−1)

)
�= 0.

We will calculate the integrals of f̂h over each of J1, J2 and J3, and use them to

normalize f̂h. We have

Ĉ1 =

∫
J1

f̂h dL =

∫
J1

[
s1 + s2 + pa + qa

(s2 + qa)(s1 + pa)
Λh + 1

]
χ1 dL

=

[
s1 + s2 + pa+ qa

(s2 + qa)(s1 + pa)
Λh + 1

]
W k1

a (
1

2
)

=

[
κ

1− (κ+ η(1− 1
(s1+pa)k1−1 ) + ω)

+ 1

]
W k1

a (
1

2
)

=

[
s1s

2
2 − s1 − s2 − s22

1− (κ+ η(1− 1
(s1+pa)k1−1 ) + ω))(s2 + qa)2(s1 + pa− 1)

+
a(2qs1s2 + ps22 − 2qs2 − p− q)

(1− (κ+ η(1− 1
(s1+pa)k1−1 ) + ω))(s2 + qa)2(s1 + pa− 1)

+
a2(2pqs2 − q2 + q2s1) + pq2a3

(1− (κ+ η(1− 1
(s1+pa)k1−1 ) + ω))(s2 + qa)2(s1 + pa− 1)

+

η
(s1+pa)k1−1 − ω

1− (κ+ η(1− 1
(s1+pa)k1−1 ) + ω)

]
W k1

a (
1

2
) .

Using Lemma 3.3.4, we have

lim
a→0

Ĉ1 =
1

2

s1s22−s1−s2−s22
s22(s1−1)

1−
(

s1+s2
s1s2

+ s1+s2
s22(s1−1)

) =
1

2

1− s1+s2
s22(s1−1)

1−
(

s1+s2
s1s2

+ s1+s2
s22(s1−1)

) .
On the interval J2, the integral of f̂h is:

Ĉ2 =

∫
J2

f̂h dL =

∫
J2

[
s1 + s2 + pa+ qa

(s2 + qa)(s1 + pa)
Λh + 1

]
χ1 dL
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+
s1 + s2 + pa+ qa

(s2 + qa)2
Λh

k1∑
j=2

∫
J2

χj

(s1 + pa)j−1
dL

=
1− η(1− 1

(s1+pa)k1−1 )− ω

1− (κ+ η(1− 1
(s1+pa)k1−1 ) + ω)

(
1

2
+ ra−W k1

a (
1

2
)

)

+
s1 + s2 + pa+ qa

(s2 + qa)2
Λh

[
ra(s2 + qa)

s1 + pa
+

ra(1− 1
(s1+pa)k1−2 )

(s1 + pa− 1)2

+
a(k1 − 2)

s1 + pa

r(s1s2 − s1 − s2 + a(qs1 + ps2 − p− q + pqa))

s1 + pa− 1

]
.

Using Lemma 3.3.4, we have lim
a→0

Ĉ2 = 0.

On the interval J3, the integral of f̂h is:

Ĉ3 =

∫
J3

f̂h dL =

∫
J3

(
s1 + s2 + pa+ qa

(s2 + qa)2
Λh

1− 1
(s1+pa)k1−1

s1 + pa− 1
+ 1

)
χc dL

=

⎡⎣ η
(
1− 1

(s1+pa)k1−1

)
1− (κ+ η(1− 1

(s1+pa)k1−1 ) + ω)
+ 1

⎤⎦ (
1

2
− ra)

=

s1s2−s1−s2+a(qs1+ps2−p−q)+pqa2

(s1+pa)(s2+qa)
− ω

1− (κ+ η(1− 1
(s1+pa)k1−1 ) + ω)

(
1

2
− ra) .

Using Lemma 3.3.4 once again, we have

lim
a→0

Ĉ3 =
1

2

1− s1+s2
s1s2

1−
(

s1+s2
s1s2

+ s1+s2
s22(s1−1)

) .

Note that if we define B̂ = Ĉ1 + Ĉ2 + Ĉ3, then

lim
a→0

B̂ =
1

2

2−
(

s1+s2
s1s2

+ s1+s2
s22(s1−1)

)
1−

(
s1+s2
s1s2

+ s1+s2
s22(s1−1)

) ,

which is not 0. Since {f̂h} are uniformly bounded, we conclude that the normalized

{f̂h} are also uniformly bounded.

Now, we will show that the normalized {f̂l} are also uniformly bounded. To this

end, let us notice that

f̂h − f̂l = (1 +
s1 + pa

s2 + qa
)Λhgl − (1 +

s1 + pa

s2 + qa
)Λlgh
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= (1 +
s1 + pa

s2 + qa
)(Λh − Λl)gl − Λl

1 + s1+pa
s2+qa

(s2 + qa)(s− 1)(s1 + pa)k1−1

=
ω(1 + s1+pa

s2+qa
)

(1− (κ+ η(1− 1
(s1+pa)k1−1 ) + ω))(1− κ− η(1− 1

(s1+pa)k1−1 ))
gl

−Λl

1 + s1+pa
s2+qa

(s2 + qa)(s− 1)(s1 + pa)k1−1
,

where |gl| ≤ 1
s1
+ 1

s2(s1−1)
and lim

a→0
Λl =

1

1−

(
s1+s2
s1s2

+
s1+s2

s22(s1−1)

) . Thus, lim
a→0

f̂h − f̂l = 0 . We

conclude that the normalized {f̂l} are uniformly bounded since the normalized {f̂h}

are uniformly bounded. Thus, after normalization, {fa} are also uniformly bounded.

Case (ii): Λl > 0:

This case implies that fa given by (3.4) has the following properties:

fa ≥ 1 , (3.10)

and all the coefficients of the characteristic functions appearing in (3.4) are positive.

We note that Λ is always positive for small a. Thus,

fa ≤ 1 + (1 +
s1 + pa

s2 + qa
)Λ

∞∑
n=1

1

|β(1/2, n)| , (3.11)

which is finite since our maps {Wa} are expanding. In view of (3.10), we conclude

that the normalized {fa} are uniformly bounded.

If ϑ = 1 −
(

s1+s2
s1s2

+ s1+s2
s22(s1−1)

)
= 0, then we have lim

a→0

1
Λl

= lim
a→0

1
Λh

= 0, Λl and Λh

are still of the same sign. We can renormalize fa. Let us take the f̂h as an example.

Multiplying it by 1
Λh
, we obtain

1

Λh
f̂h =

(
s1 + s2 + pa+ qa

(s2 + qa)(s1 + pa)
+

1

Λh

)
χ1 +

s1 + s2 + pa+ qa

(s2 + qa)2

k1∑
j=2

χj

(s1 + pa)j−1

+

(
s1 + s2 + pa+ qa

(s2 + qa)2

1− 1
(s1+pa)k1−1

s1 + pa− 1
+

1

Λh

)
χc .
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Note that the coefficients of χ1 and χc converge to s1+s2
s1s2

and s1+s2
s22(s1−1)

, respectively.

Thus, {∫ 1

0
1
Λh
f̂h dL} are separated from 0. This implies { 1

Λh
f̂h} are uniformly bounded.

A similar procedure can be applied to f̂l. We conclude that { 1
Λ
fa} are uniformly

bounded.

3.4 Example

One of the important properties of a piecewise expanding transformation of an interval

is that its invariant density is bounded away from 0 on its support. The following

result was proved, by [Keller, 1978] and by [Kowalski, 1979].

Theorem 3.4.1. Let a transformation τ : I → I be piecewise expanding with 1
|τ ′(x)|

a

function of bounded variation, and let f be a τ -invariant density which can be assumed

to be lower semicontinuous. Then there exists a constant c > 0 such that f |supp f > c.

We provide an example showing that this result cannot be generalized to a family

of expanding maps, even if they all have this property and converge to a limit map

also with this property. Let d(·, ·) be the metric on the weak topology of measures.

Example 3.4.1. Let us fix

s1 = s2 = 2, p = q = 1.

For small a > 0, let Wa,r denote the Wa maps with varying parameter r, and let μa,r

denote the acim of Wa,r. We know that μa,r is supported on [0, 1] and Wa,r with μa,r

is exact. Using Theorem 3.2.1, we know that {μa,r} converge ∗-weakly to the measure

μ0,r =
1

1 + 2r
μ0 +

2r

1 + 2r
δ( 1

2
).
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Let rn = n, n = 1, 2, 3, · · · . Also, let {an}∞1 satisfy rnan < 1/2 and be so small that

d(μan,rn, μ0,rn) <
1

n
.

Now, for the family of maps τn = Wan,rn, n = 1, 2, 3, · · · , τn converge to W0 with

|τ ′n(x)| > 2, but the invariant densities μan,rn converge to δ( 1
2
). This implies that the

invariant densities {fan,rn} corresponding to {μan,rn} have no uniform positive lower

bound.
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Chapter 4

Instability of Isolated Spectrum for

W−shaped Maps

4.1 Introduction

In previous chapters, we discussed one of the most important problems in the theory of

dynamical systems: their stability and possible instability [Boyarsky and Góra, 1997;

Keller, 1982; Keller and Liverani, 1999]. In particular, in the theory of piecewise

expanding maps of an interval, it is interesting whether the given system has a stable

acim, and more generally, if the isolated spectrum of the Perron-Frobenius operator

is stable under small perturbations of the map.

In general, the setting of the stability problem we are interested in is as follows:

let τ0 be a piecewise expanding map of an interval with unique acim μ0 and {τa}a>0 a

family of its perturbations with acims μa, correspondingly. If maps τa converge to τ0
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(say, in Skorokhod metric), do their acims converge (say, in the ∗-weak topology) to

μ0? Or more generally, do the isolated spectra of Pτa converge to the isolated spec-

trum of Pτ0 , including multiplicities and eigenfunctions? Pτ is the Perron-Frobenius

operator induced by τ on the space of functions of bounded variation and by isolated

spectrum we mean the part of the spectrum which lies outside the essential spectral

radius. Papers [Keller, 1982] and [Keller and Liverani, 1999] show that such stability

takes place if the family {τa}a≥0 satisfies the Lasota-Yorke inequality ([Lasota and

Yorke, 1973] or [Eslami and Góra, 2012] for strengthened form) with uniform con-

stants. Usual conditions ensuring this are |τ ′a| > 2 + ε plus the minimal length of

subintervals of defining partitions uniformly separated from 0.

One of the known sources of instability is the presence of a turning fixed or periodic

point touching a map branch with slope 2 or smaller. In previous chapters, we studied

the famous W -shaped map introduced in [Keller, 1982] (see previous chapters for

detailed examples). Because of the turning fixed point we cannot use an iterate

of the map to increase the minimal slope. It causes appearance of arbitrary short

partition intervals in perturbed maps (see the discussion in Remark 1.2.2). This is

depicted in Fig. 4.1.

The Ws1,s2 map is a piecewise linear map of the interval [0, 1] onto itself with a

graph in the shape of letter W. The original W -map of [Keller, 1982] is of W2,2 type,

and in Chapter 2 (see also [Eslami and Misiurewicz, 2012; Li et al., 2013]) we see that

its acim is unstable under some family of localized perturbations. A more general

situation was considered in Chapter 3 [Li, 2013]. The perturbations similar to that

of Chapter 2 [Li et al., 2013] were considered. It was shown there that depending on
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Figure 4.1: The W -shaped maps: a) Wa with s1 = 3/2 and s2 = 3; a = 0.01, b) W 2
a ,

the second iteration of Wa shown in a).

whether 1
s1

+ 1
s2

is larger, equal or smaller than 1 the limit of μa’s is Dirac measure

δ1/2, or a combination of δ1/2 and μ0, or μ0, correspondingly. This result suggested

that condition 1
s1

+ 1
s2

< 1 may actually imply stability which was later proved for a

quite general setting in [Eslami and Góra, 2012].

In this chapter we consider map W0 of type Ws1,s2 with 1
s1
+ 1

s2
= 1 and show that

that eigenvalue 1 is not stable. We do this in a constructive way. For each perturbed

map Wa we show the existence of the “second” eigenvalue λa,

1− 2ra

1 + 2ra
< λa <

1

1 + 2ra
,

where r is a constant independent of a. Thus, as a → 0 the eigenvalues λa → 1 which

shows instability of isolated spectrum of W0. At the same time, the existence of

second eigenvalues close to 1 causes the maps Wa behave in a metastable way. They

have two almost invariant sets and the system spends long periods of consecutive

iterations in each of them with infrequent jumps from one to the other.
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For a fixed small a0 > 0, the slopes of the middle branches of Wa0 satisfy 1/(s1 +

2rs1a0) + 1/(s2 + 2rs2a0) < 1. By the stability result of [Eslami and Góra, 2012],

there exists an ε > 0 such that for all a satisfying |a − a0| < ε, the maps Wa have

eigenvalues close to λa0 . Most of these maps are non-Markov. Thus, our Markov

examples prove the existence of non-Markov examples with similar properties.

The results obtained in this chapter (Sections 4.2, 4.3 and 4.4) were, after some

modifications, published in the paper [Li, 2013].

4.2 Markov Wa maps and their invariant densities

Let s1, s2 > 1 satisfy 1
s1

+ 1
s2

= 1, and r > 0. Let us consider W -shaped map:

W0(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W0,1(x) := 1− 2s2x, 0 ≤ x < 1
2
− 1

2s1
,

W0,2(x) := s1(x− 1
2
+ 1

2s1
), 1

2
− 1

2s1
≤ x < 1

2
,

W0,3(x) := s2(
1
2
+ 1

2s2
− x), 1

2
≤ x < 1

2
+ 1

2s2
,

W0,4(x) := 2s1(x− 1) + 1, 1
2
+ 1

2s2
≤ x < 1,

and its perturbations, Wa maps with parameter a > 0:

Wa(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wa,1(x) := 1− 2s2x, 0 ≤ x < 1
2
− 1

2s1
,

Wa,2(x) := (s1 + 2rs1a)(x− 1
2
+ 1

2s1
), 1

2
− 1

2s1
≤ x < 1

2
,

Wa,3(x) := (s2 + 2rs2a)(
1
2
+ 1

2s2
− x), 1

2
≤ x < 1

2
+ 1

2s2
,

Wa,4(x) := 2s1(x− 1) + 1, 1
2
+ 1

2s2
≤ x < 1.

Let τi = W−1
a,i , i = 1, 2, 3, 4; I0 = [0, 1

2
+ ra]. The Frobenius-Perron operator (see

Definition 1.2.2, or [Boyarsky and Góra, 1997] for more details) associated with Wa
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is

Paf =
1

2s2
f ◦ τ1 + 1

s1 + 2rs1a
(f ◦ τ2)χI0 +

1

s2 + 2rs2a
(f ◦ τ3)χI0

+
1

2s1
f ◦ τ4

Note that

χI0 ◦ τ1 = 1 , χI0 ◦ τ2 = χI0 ,

χI0 ◦ τ3 = χ[W 2
a (1/2),

1
2
+ra] , χI0 ◦ τ4 = 0 .

(4.1)

Let I1 = [W 2
a (1/2),

1
2
+ ra] whose left end point is W 2

a (
1
2
) = Wa(

1
2
+ ra).

We will consider only parameters a such thatWa is a Markov map, i.e., some iterate

of 1/2 falls into an endpoint of the defining partition. Let a satisfy:

Wm
a (

1

2
+ ra) =

1

2
− 1

2s1
, (4.2)

where m ≥ 1 is the first time when the trajectory of Wa(
1
2
) = 1

2
+ ra reaches the

partition point 1
2
− 1

2s1
. Note that 1

2
− 1

2s1
= 1

2s2
. The point Wa(

1
2
+ ra) is just below

the fixed point on the second branch of Wa and the consecutive images W i
a(

1
2
+ ra)

decrease until for i = m the equality (4.2) is satisfied.

Let us take 1 as the initial function and iterate it using operator Pa. Let P n
a 1 be

denoted by fn,m. Let

Ii = [W i
a(
1

2
+ ra),

1

2
+ ra], i = 1, 2, · · · , m.

Because of (4.2)and (4.1), after some number of iterations (n ≥ m+ 1), we have:

fn,m = cn,0 + αn,0χI0 + αn,1χI1 + αn,2χI2 + · · ·+ αn,m−1χIm−1 + αn,mχIm,

where cn,0 and αn,i (i = 0, 1, · · · , m) are constants. Now, let us look at the fn+1,m.

We have the following proposition.
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Proposition 4.2.1. (I) cn,0 ◦ τ1 and cn,0 ◦ τ4 are again constant functions, cn,0 ◦ τ2χI0

and cn,0 ◦ τ3χI0 are the characteristic function χI0;

(II) χI0 ◦ τ1 is constant function, χI0 ◦ τ2χI0 = χI0, χI0 ◦ τ3χI0 = χI1, χI0 ◦ τ4 is 0;

(III) For i = 1, 2, · · · , m − 1, χIi ◦ τ1 and χIi ◦ τ4 are 0, χIi ◦ τ2χI0 = χIi+1
,

χIi ◦ τ3χI0 = χI1;

(IV ) χIm ◦ τ1 and χIm ◦ τ4 are 0, χIm ◦ τ2χI0 = χI0, χIm ◦ τ3χI0 = χI1.

Thus, we have the following proposition.

Proposition 4.2.2. for n big enough, fn,m always has the form:

fn,m = cn,0 + αn,0χI0 + αn,1χI1 + αn,2χI2 + · · ·+ αn,m−1χIm−1 + αn,mχIm,

and ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cn+1,0

αn+1,0

αn+1,1

...

αn+1,m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Am

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cn,0

αn,0

αn,1

...

αn,m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where (m+ 2)× (m+ 2) matrix Am is given by

Am =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2s1

+ 1
2s1

1
2s2

0 0 0 ··· 0 0

1
s1+2rs1a

+ 1
s2+2rs2a

1
s1+2rs1a

0 0 0 ··· 0 1
s1+2rs1a

0 1
s2+2rs2a

1
s2+2rs2a

1
s2+2rs2a

1
s2+2rs2a

··· 1
s2+2rs2a

1
s2+2rs2a

0 0 1
s1+2rs1a

0 0 ··· 0 0

0 0 0 1
s1+2rs1a

0 ··· 0 0

...
...

...
...

...
...

...
...

0 0 0 0 0 ··· 0 0

0 0 0 0 0 ··· 1
s1+2rs1a

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Since 1
s1
+ 1

s2
= 1, we can simplify the Am to the form

Am =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
2s2

0 0 0 · · · 0 0

1
1+2ra

1
s1+2rs1a

0 0 0 · · · 0 1
s1+2rs1a

0 1
s2+2rs2a

1
s2+2rs2a

1
s2+2rs2a

1
s2+2rs2a

· · · 1
s2+2rs2a

1
s2+2rs2a

0 0 1
s1+2rs1a

0 0 · · · 0 0

0 0 0 1
s1+2rs1a

0 · · · 0 0

...
...

...
...

...
. . .

...
...

0 0 0 0 0 · · · 0 0

0 0 0 0 0 · · · 1
s1+2rs1a

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We also need the following proposition.

Proposition 4.2.3. Equation (4.2) is equivalent to:

(s2 + 2rs2a)(s1 + 2rs1a)
m−1 −

m−1∑
i=0

(s1 + 2rs1a)
i =

1

2rs1a
,

or

(s1 + 2rs1a)
m =

1

4r2s22a
2
. (4.3)

Proof. If

(s2 + 2rs2a)(s1 + 2rs1a)
m−1 −

m−1∑
i=0

(s1 + 2rs1a)
i =

1

2rs1a
,

then

(s1 + 2rs1a)
m−1 [(s2 + 2rs2a)(s1 + 2rs1a− 1)− (s1 + 2rs1a)] =

s1 − 1

2rs1a
=

1

2rs2a
,
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Thus, we obtain

(s1 + 2rs1a)
m =

1

4r2s22a
2
.

On the other hand, it is proven in [Li, 2013] that

Wm+1
a (1/2)

= −a2(s1 + 2rs1a)
m−1 r(2rs1s2 + 2rs1s2 − 2rs1 − 2rs2) + 4r3s1s2a

s1 + 2rs1a− 1

+
s1 − 1 + 2rs1a− 2ra

2(s1 + 2rs1a− 1)
.

If equation (4.2) holds, then

a2(s1 + 2rs1a)
m−1 2r

2s1s2 + 4r3s1s2a

s1 + 2rs1a− 1
=

s1 − 1

2s1(s1 + 2rs1a− 1)
,

hence,

(s1 + 2rs1a)
m−1 =

1

a24r2s1s22(1 + 2ra)

which is equivalent to equation (4.3).

Using Proposition 4.2.2, we can find the fixed vector of Am. Let us denote it by

(c, α0, α1, · · · , αm)
T . Then, the fixed function (not necessarily normalized) of Pa is:

g∗m = c+ α0χI0 + α1χI1 + α2χI2 + · · ·+ αm−1χIm−1 + αmχIm ,

where

c =
1

2rs1s2a

α0 =
1

2rs1a

α1 = (s1 + 2rs1a)
m−1

α2 = (s1 + 2rs1a)
m−2
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· · ·

αm−2 = (s1 + 2rs1a)
2

αm−1 = s1 + 2rs1a

αm = 1.

Using equation (4.2) or (4.3), we can directly normalize g∗m and find its limit, which

will give us the convergent invariant density. The idea will be similar to what we did

in Section 2.3. Alternatively, there is an easier way, it was proven in [Li, 2013] that

after normalization the measures g∗m · L converge to the measure

1

2r(s1 + s2)(s2 + 2) + 2rs1s22

(
2r(s1 + s2)(s2 + 2)μ0 + 2rs1s

2
2δ1/2

)
,

where L is Lebesgue measure, μ0 is the acim of W0 and δ1/2 is Dirac measure at 1/2.

4.3 Second eigenvalues for Markov Wa maps

Now, instead for a fixed vector, we will look for an eigenvector corresponding to an

eigenvalue λ < 1. Denote the eigenvector ofAm associated with λ by (c, α0, α1, · · · , αm)
T .

Then, the corresponding eigenfunction of Pa associated with λ is:

hm = c+ α0χI0 + α1χI1 + α2χI2 + · · ·+ αm−1χIm−1 + αmχIm . (4.4)

The equation

Amhm = λhm ,

is equivalent to the system

λc =
1

2
c+

1

2s2
α0
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λα0 =
1

1 + 2ra
(c+

1

s1
α0 +

1

s1
αm)

λα1 =
1

s2(1 + 2ra)
(α0 + α1 + · · ·+ αm)

λα2 =
1

s1(1 + 2ra)
α1

λα3 =
1

s1(1 + 2ra)
α2

· · ·

λαm−2 =
1

s1(1 + 2ra)
αm−3

λαm−1 =
1

s1(1 + 2ra)
αm−2

λαm =
1

s1(1 + 2ra)
αm−1.

We can solve this system starting from the last equation. Let αm = 1. Then,

αm = 1

αm−1 = λs1(1 + 2ra)

αm−2 = λ2s21(1 + 2ra)2

· · ·

α2 = λm−2sm−2
1 (1 + 2ra)m−2

α1 = λm−1sm−1
1 (1 + 2ra)m−1

α0 = λs2(1 + 2ra)α1 − (α1 + α2 + · · ·+ αm)

= λmsm−1
1 s2(1 + 2ra)m − λmsm1 (1 + 2ra)m − 1

λs1(1 + 2ra)− 1

=
λmsm−1

1 (1 + 2ra)m(λs1s2(1 + 2ra)− s1s2) + 1

λs1(1 + 2ra)− 1

c = λ(1 + 2ra)α0 − α0

s1
− 1

s1

c =
α0

s2(2λ− 1)

(4.5)
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We have two expressions for c. The system can be solved only if they are equal. Thus,

we obtain equation

λmsm−2
1 (1 + 2ra)m(λs1s2(1 + 2ra)− s1s2)

=
λmsm−1

1 (1 + 2ra)m(λs1s2(1 + 2ra)− s1s2) + 1

s2(2λ− 1)(λs1(1 + 2ra)− 1)
,

or

λmsm−1
1 s2(1 + 2ra)m(λ(1 + 2ra)− 1) [s2(2λ− 1)(λs1(1 + 2ra)− 1)− s1] = 1 .

We are going to prove that for small a this equation has a solution 1−2ra
1+2ra

< λ < 1
1+2ra

.

Let us introduce an auxiliary function

φ(λ) = λmsm−1
1 s2(1 + 2ra)m(λ(1 + 2ra)− 1) [s2(2λ− 1)(λs1(1 + 2ra)− 1)− s1] .

Obviously φ( 1
1+2ra

) = 0. We will show that φ(1−2ra
1+2ra

) > 1 if a is small enough. We

have

φ

(
1− 2ra

1 + 2ra

)
=

(
1− 2ra

1 + 2ra

)m

sm−1
1 s2 (1 + 2ra)m

((
1− 2ra

1 + 2ra

)
(1 + 2ra)− 1

)
·

·
[
s2

(
2

(
1− 2ra

1 + 2ra

)
− 1

)((
1− 2ra

1 + 2ra

)
s1 (1 + 2ra)− 1

)
− s1

]
= (1− 2ra)msm−1

1 s2(−2ra)
−2ra(s2 + 5s1 − 6s1s2ra)

1 + 2ra

= (1− 2ra)msm−1
1 s24r

2a2
s2 + 5s1 − 6s1s2ra

1 + 2ra
.

Using (4.3) we obtain

φ

(
1− 2ra

1 + 2ra

)
=

(
1− 2ra

1 + 2ra

)m
s2 + 5s1 − 6s1s2ra

s1s2(1 + 2ra)

=

(
1− 2ra

1 + 2ra

)m 1 + 4
s2
− 6ra

1 + 2ra
.

Note that if a < 1
2rs2

, then
1+ 4

s2
−6ra

1+2ra
> 1. Furthermore, lim

a→0

1+ 4
s2

−6ra

1+2ra
= 1 + 4

s2
> 1.
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Using (4.3) again, we can represent m as

m =
−2 ln(2s2ra)

ln(s1 + 2s1ra)
, (4.6)

which gives

φ

(
1− 2ra

1 + 2ra

)
=

1 + 4
s2

− 6ra

1 + 2ra

(
1− 2ra

1 + 2ra

) −2 ln(2s2ra)
ln(s1+2s1ra)

=
1 + 4

s2
− 6ra

1 + 2ra
exp

(
−2 ln

(
1− 2ra

1 + 2ra

)
ln(2s2ra)

ln(s1 + 2s1ra)

)
.

Since lim
a→0

ln
(
1−2ra
1+2ra

)
ln(a) = 0, the argument of exp converges to 0 as a → 0. Thus

lim
a→0

φ

(
1− 2ra

1 + 2ra

)
= 1 +

4

s2
.

This proves our claim for a small enough. We proved the following

Theorem 4.3.1. Assume that a satisfies (4.3), for some integer m, i.e., Wa map is

Markov with Wm+1
a (1/2) = 1

2
− 1

2s1
. For a small enough, Perron-Frobenius operator

Pa has an eigenvalue λa satisfying

1− 2ra

1 + 2ra
< λa <

1

1 + 2ra
. (4.7)

The corresponding eigenfunction is given by equations (4.4) and (4.5), up to a mul-

tiplicative constant.

Remark 4.3.1. Using tedious calculations we were able to show that φ′′ is positive in

a neighbourhood of 1. Since φ
(
1−2ra
1+2ra

)
> 1, φ

(
1

1+2ra

)
= 0 and φ(1) = 1, for small a

there is only one eigenvalue in the interval
(
1−2ra
1+2ra

, 1
)
, i.e., λa we found in Theorem

4.3.1 is really the “second” eigenvalue.
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4.4 Eigenfunction for λa < 1

In this section we take a closer look at the eigenfunction corresponding to the second

eigenvalue λa found in Theorem 4.3.1. We omit the subscript “a” to simplify the

notation. Let (c, α0, α1, · · · , αm) be the λ-eigenvector given by (4.5). We have

αj = λm−jsm−j
1 (1 + 2ra)m−j > 0 , j = 1, . . . , m .

Next,

α0 =
λmsm−1

1 (1 + 2ra)m(λs1s2(1 + 2ra)− s1s2) + 1

λs1(1 + 2ra)− 1
< 0 ,

since λ(1 + 2ra) < 1 but very close to 1 and using formula (4.6) we can show that

λm(1 + 2ra)m approaches 1 as m → ∞ . As α0 < 0, we also have

c =
α0

s2(2λ− 1)
< 0 .

The Pa eigenfunction hm, defined in (4.4), is positive on some intervalGm = [Wm1
a (1/2), 1/2+

a/4] and negative outside this interval. Since, as a decreases, more and more of num-

bers αm, αm−1, αm−2 . . . are necessary to balance α0 + c, we have lima→0(m−m1) =

+∞. This implies, that intervals Gm shrink to the point 1/2 as a → 0.

Since 0 < λ < 1 we have
∫ 1

0
hmdL = 0. Let Km =

∫ 1

0
|hm|dL. The normalized

signed measures 1
Km

hm · L converge ∗-weakly to the measure

−1

2
μ0 +

1

2
δ(1/2) ,

where μ0 is W0-invariant absolutely continuous measure and δ(1/2) is Dirac measure

at point 1/2.
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As it is described in [Froyland and Stančević, 2010] the presence of the eigenvalue

λ close to 1 makes the system behave in a metastable way. The sets A+ = {t :

hm(t) ≥ 0} and A− = {t : hm(t) < 0} are almost invariant with the escape rates

bounded by − lnλ which is close to 0. This means that a typical trajectory stays

for a long time in A+, then jumps to A−, stays there for a long time, then jumps

to A+, spend there long time, etc. Despite the small essential spectral radius (equal

to max{1/s1, 1/s2}), the system converges to equilibrium slowly at the rate given by

Cλn, for some constant C.

Fig. 4.2 shows graphs of normalized functions hm produced using Maple 13. We

used s1 = s2 = 2 and r = 1/4.

a) m = 5, a = 0.14789903570478, λ = 0.8732372308, Km = 3.819456626;

b) m = 7, a = 0.077390319202550, λ = 0.9365803433, Km = 8.987509817.

Figure 4.2: Normalized eigenfunctions hm.

Note that the vertical scales of the pictures are very different.
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4.5 Remarks

In [Li and Góra, 2012], for s1, s2 > 1 satisfying 1
s1

+ 1
s2

= 1, a > 0, the case when

r = 1 was considered for the following perturbing Wa maps:

Wa(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wa,1(x) := 1− 2s2x, 0 ≤ x < 1
2
− 1

2s1
,

Wa,2(x) := (s1 + 2s1a)(x− 1
2
+ 1

2s1
), 1

2
− 1

2s1
≤ x < 1

2
,

Wa,3(x) := (s2 + 2s2a)(
1
2
+ 1

2s2
− x), 1

2
≤ x < 1

2
+ 1

2s2
,

Wa,4(x) := 2s1(x− 1) + 1, 1
2
+ 1

2s2
≤ x < 1.

Now, Wa(
1
2
) = 1

2
+ a for each a. Using the idea above, it can be shown that the

existence of the “second” eigenvalue λa and it satisfies,

1− 2a

1 + 2a
< λa <

1

1 + 2a
.

Figure 4.3 shows graphs of normalized functions hm produced using Maple 13. We

used s1 = s2 = 2.

a) m = 5, a = 0.036974758926197, λ = 0.873237227279931;

b) m = 7, a = 0.019347579800639, λ = 0.936580332073165.

Also note that the vertical scales of the pictures are very different. Thus, as a →

0 the eigenvalues λa still converge to 1. In either case, the instability of isolated

spectrum of W0 is shown although the additional constant r slows the convergence.
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Figure 4.3: Normalized eigenfunctions hm.
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Chapter 5

Harmonic Averages and New Ex-

plicit Constants for Densities of Piece-

wise Expanding Maps of the Inter-

val

5.1 Introduction

Let I = [0, 1] and let P be a finite partition of I. Recall that T(I) denotes the class

of piecewise expanding transformations on I with partition P. We study statistical

properties of the probability density function (pdf) associated with τ in T(I). To

implement our approach we impose two conditions on τ : (1) weak covering, by which

we mean there exists an integer K such that the union of forward images of every
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element of P equals I, and (2) harmonic average of slopes condition, which comes out

motivated by the results in Chapter 3 and means that the harmonic average of the

(inf of ) slopes of every two adjacent intervals (except for the first and last interval)

is strictly less than 2. We use these two conditions to derive explicit constants for the

upper and lower bounds of the pdf as well as the constant that determines the speed

of convergence to the pdf. Related results were obtained by [Liverani, 1995a] under

the assumption that the magnitude of all slopes is strictly greater than 2. Without

this condition many different behaviors for approximating maps can occur as shown

in [Keller, 1982] for W−shaped maps. For example, the acims of approximating

maps can converge to a singular, absolutely continuous or a mixed measure. We have

studied some W−shaped maps in the previous chapters. An example of a W−shaped

map is shown in Fig.5.3.2. W−shaped maps are continuous but our considerations

do not depend on continuity and we do not assume it.

It is one of the objectives of this chapter to show how we can weaken the slope

2 condition with the help of the harmonic average of slopes condition and establish

stability of acim for some W−shaped maps. For standard stability results we refer

the reader to [Li, 2013].

In Section 5.2 we use the weak covering property and the harmonic average of

slopes condition to derive an explicit bound on the number of iterations needed to

obtain weak covering for any subinterval of a partition element. In Section 5.3 we

use this result and a generalized Lasota-Yorke inequality to obtain explicit constants

for the upper bound of the pdf and from this we derive an explicit upper bound for

the pdf. We then show (Theorem 5.3.2) that we can extend our results to families of
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maps. We provide an example to show that the harmonic slope condition is essential.

For a W−shaped map we calculate all the constants necessary to find the lower

bound. In Section 5.4 we assume weak mixing and use our derived constants to find

an explicit constant for the speed of convergence. Finding the rate of convergence

of initial densities to the invariant pdf of the map is an important problem in many

scientific fields. Our methods depend on using equipartitions rather than partitions of

the inverse images of P and, as such, in most situations, results in sharper constants.

We work out an example where the results of [Liverani, 1995a] do not apply.

The results obtained in this chapter (Sections 5.2, 5.3 and 5.4) were, after some

modifications, published in the paper [Góra et al., 2012b].

5.2 Notation and preliminary results

Let I = [0, 1] and let L be Lebesgue measure on I. We present the usual definition

of a piecewise expanding map.

Definition 5.2.1. Suppose there exists a partition P = {Ii := [ai−1, ai], i = 1, . . . , q}

of I such that τ : I → I satisfies the following conditions:

1. τ is monotonic on each interval Ii;

2. τi := τ |Ii is C1 and limx→a+i−1
τ ′(x), limx→a−i

τ ′(x) exist (can be infinite);

3. |τ ′i(x)| ≥ si > 1 for any i and for all x ∈ (ai−1, ai).

Then, we say τ ∈ T(I), the class of piecewise expanding transformations.
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We will also assume that τ is weakly covering, i.e.,

Definition 5.2.2. Map τ ∈ T(I) is called weakly covering if and only if there exists

a K ≥ 1 such that
K⋃

n=0

τn(Ii) = [0, 1] , i = 1, . . . , q . (5.1)

Let

s := min
1≤i≤q

si > 1 . (5.2)

Suppose τ ∈ T(I) satisfies the following condition.

sH = max
i=1,...,q−1

{
1

si
+

1

si+1

}
< 1 . (5.3)

The number H(a, b) = 2
1
a
+ 1

b

is called the harmonic average of a and b. Condition

H(a, b) > 2 is equivalent to condition 1
a
+ 1

b
< 1. If τ satisfies sH < 1 we say that τ

satisfies the harmonic average of slopes condition.

Now, we prove a very simple minimax lemma with interesting consequences.

Lemma 5.2.1. Let z1, z2 > 1 and α + β = c, where α, β > 0. Assume

1

z1
+

1

z2
< 1 .

Then,

min
α,β

max{z1α, z2β} =
1

1
z1

+ 1
z2

c > c .

Proof. We have

min
α,β

max{z1α, z2β} = min
α

max{z1α, z2(c− α)} .
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The line f(α) = z1α is increasing while the line g(α) = z2(c− α) is decreasing. The

minαmax{z1α, z2(c− α)} occurs where the lines intersect, i.e., at

α =
z2c

z1 + z2
,

which gives

min
α,β

max{z1α, z2β} =
z1z2c

z1 + z2
=

1
1
z1
+ 1

z2

c > c .

Remark 5.2.1. If 1
z1

+ 1
z2

= 1, then, minα,β max{z1α, z2β} = c.

Lemma 5.2.1 implies the following

Proposition 5.2.1. If τ ∈ T(I) satisfies the harmonic average of slopes condition,

then for any subinterval J ⊂ I which does not contain two endpoints of partition P

we have

L(τ(J)) ≥ 1

sH
L(J) . (5.4)

Proof. Note that

s = min
1≤i≤q

si ≥ min
1≤i≤q−1

1
1
si
+ 1

si+1

≥ 1

sH
.

If J does not contain any endpoints of partition P, then J ⊂ Ii, for some 1 ≤ i ≤ q,

and

L(τ(J)) ≥ siL(J) ≥ 1

sH
L(J) .

If J contains exactly one endpoint of partition P, then let L(J) = α + β, where α

and β are the lengths of parts of J to the left and to the right of the partition point.

By Lemma 5.2.1 we obtain L(τ(J)) ≥ 1
sH

L(J).
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Proposition 5.2.2. If τ ∈ T(I) satisfies the harmonic average of slopes condition,

then for any subinterval J ⊂ I there exists a positive integer M(J) such that at

least one connected component of τM(J)(J) contains two endpoints of partition P and,

automatically, the interval between them. Moreover,

0 ≤ M(J) ≤ max

{⌈
ln L(J)

δmax

ln(sH)

⌉
, 0

}
, (5.5)

where δmax = max{L(Ii
⋃
Ii+1) | i = 1, 2, . . . , q − 1} and �t� is the smallest integer

equal or larger than t.

Proof. Let J be a subinterval of I. Then,

Case (i): If J contains two or more endpoints of P, then M(J) = 0. In particular,

this happens when L(J) ≥ δmax.

Case (ii): We assume L(J) < δmax and that J contains at most one endpoint of

partition P. First, let us assume that J contains exactly one endpoint of P, and this

endpoint divides J into two subintervals, J0,1 and J0,2. Lemma 5.2.1 implies

max{L(τ(J0,1)), L(τ(J0,2))} ≥ 1

sH
L(J).

We can assume L(τ(J0,1)) ≥ 1
sH

L(J). Notice that τ(J0,1) is also an interval since

τ ∈ T(I).

Second, if J contains no endpoint of P, then τ(J) is again an interval, and L(τ(J)) ≥

sL(J) ≥ 1
sH

L(J).

Thus, for an interval J that contains at most one endpoint of P, we can find an

interval in τ(J), denote it by J1, such that L(J1) ≥ 1
sH

L(J). If J1 contains two

endpoints of P, we stop the iteration. Otherwise, consider τ(J1), we can again find
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one interval in τ(J1), denote it by J2, such that L(J2) ≥ 1
sH

L(J1) ≥ 1
s2H

L(J). Repeat

this procedure, we can find an integer k such that L(Jk) ≥ 1
skH

L(J) ≥ δmax, which

implies τk(J) contains at least two endpoints of P. Therefore, we obtain

M(J) ≥ ln L(J)
δmax

ln(sH)
.

Corollary 5.2.1. If τ ∈ T(I) is weakly covering and satisfies the harmonic average

of slopes condition, then for any subinterval J ⊂ I we have

K⋃
n=0

τM(J)+n(J) = [0, 1] , (5.6)

where M(J) is the number from Proposition 5.2.2.

Remark 5.2.2. Note that the weak covering property plus sH < 1 does not im-

ply topological exactness. The simplest example would be the map τ such that

τ([0, 1/2]) = [1/2, 1] and τ([1/2, 1]) = [0, 1/2], and τ restricted to each of these inter-

vals is a tent map (or other expanding map). An additional assumption is needed for

topological exactness, see Theorem 5.2.1 and Corollary 5.2.2.

We define P(n) = {Ii0 ∩ τ−1(Ii1) ∩ τ−2(Ii2) ∩ · · · ∩ τ−(n−1)(Iin−1) : 1 ≤ i0, i− 1, i −

2, . . . , in−1 ≤ q}. Partition P(n) is the partition of monotonicity of τn. Note that

P = P
(1).

Theorem 5.2.1. Let τ ∈ T(I) be piecewise C1+1 with sH < 1 and satisfies inf φ ≥ β,

where φ is the τ -invariant density. If τ is weakly mixing with respect to Lebesgue

measure, then there exists K1 such that

τK1(Ii) = [0, 1] , i = 1, 2, . . . , q .
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Proof. We follow the proof of a similar theorem from [Liverani, 1995a]. For maps we

consider weak mixing is equivalent to mixing and to exactness [Boyarsky and Góra,

1997]. Let χ = χIi/L(Ii) for some 1 ≤ i ≤ q. Since τ is exact we have P n
τ χ → φ in

L1, as n → ∞. Thus, for any n1 (it will be fixed later) we can find an N(n1) such

that for any n ≥ N(n1) in every interval J of the partition P(n1) there is a point x ∈ J

with P n
τ χ(x) ≥ β/2. On the other hand, the Lasota-Yorke inequality implies that

∨
[0,1]

P k
τ χ ≤ C ,

for all k and some constant C. Let n ≥ N(n1) and

B = {J ∈ P
(n1) : ∃ x∈J P n

τ χ(x) < β/4} .

If J ∈ B, then we have
∨

J P
n
τ χ ≥ β/4 and

∨
[0,1]

P n
τ χ ≥ (β/4)#B .

Thus, #B ≤ 4C/β = L0.

The Perron-Frobenius operator Pτ induced by τ , can be viewed as an operator on

BV (I), the space of functions of bounded variation on I (or more generally on L1(I)).

For τ ∈ T(I), it has the following representation

Pτf =

q∑
i=1

f(τ−1
i (x))∣∣τ ′(τ−1
i (x))

∣∣χτ [ai−1,ai](x) .

For more detailed information about space BV (I), operator Pτ and its properties we

refer the reader to [Boyarsky and Góra, 1997]. Here, the most important will be the

fact that an f is an invariant pdf (or a τ -invariant density) if and only if Pτf = f .
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Using the representation of Pτ , we have the following inequality holding for all

x ∈ [0, 1]:

β ≤ φ(x) =
∑

y∈τ−n(x)

φ(y)

|(τn)′(y)| ≤ sup(φ)#(τ−n(x))s−n .

This shows that #(τ−n(x)) goes to infinity as n goes to infinity, uniformly in x. In

particular we can find an N1 such that for all x ∈ [0, 1]

#(τ−N1(x)) > L0.

Let us fix n1 = N1 and N2 ≥ N(N1). Then,

PN1+N2
τ χ(x) =

∑
y∈τ−N1 (x)

PN2
τ χ(y)

|(τN1)′(y)| ≥
β

4sN1
,

since at least one preimage y ∈ τ−N1(x) belongs to an interval J /∈ B.

We have proved that τN1+N2(Ii) = [0, 1]. We choose K1 as the maximum of con-

stants N1 +N2 over all i = 1, 2, . . . , q to complete the proof.

The following result is an immediate consequence.

Corollary 5.2.2. If τ ∈ T(I) is weakly covering, weakly mixing and satisfies the har-

monic average of slopes condition, then τ is topologically exact. For any subinterval

J ⊂ I we have

τM(J)+K1(J) = [0, 1] , (5.7)

where M(J) is the number from Proposition 5.2.2 and K1 is the constant from The-

orem 5.2.1.
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5.3 Lower bound for the invariant density

From now on we assume that our τ ∈ T(I) is piecewise C1+1, i.e., each τ ′i satisfies

Lipschitz condition with a constant Mi:

|τ ′i(x)− τ ′i(y)| ≤ Mi|x− y| , for all x, y ∈ Ii , i = 1, 2, . . . , q .

This means τ is a piecewise expanding, piecewise C1+1 map of I. We introduce the

following notation

M := max
1≤i≤q

Mi,

and

δ±i := δ{τ(a±i )/∈{0,1}} =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if τ(a±i ) ∈ {0, 1},

1 if τ(a±i ) /∈ {0, 1},

where τ(a±i ) means limx→a±i
τ(ai). For example, δ+i = 1 means that the left endpoint

of the (i+ 1)-st branch of τ is hanging (does not touch 0 or 1).

Also, let

ηi :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
{

δ+0
s1
,
δ+1
s2

}
if i = 1,

max
{

δ−q−1

sq−1
,
δ−q
sq

}
if i = q,

max
{

δ−i−1

si−1
,

δ+i
si+1

}
for i = 2 . . . q − 1.

Now, we present the following proposition from [Eslami and Góra, 2012].

Proposition 5.3.1. Let τ ∈ T(I), and satisfy the above Lipschitz condition. Then,

for every f ∈ BV ([0, 1]),

∨
I

Pτf ≤ η
∨
I

f + γ

∫
I

|f | dm, (5.8)
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where η = max
1≤i≤q

{
1
si
+ ηi

}
, γ =

[
M
s2

+
2 max
1≤i≤q

ηi

min
1≤i≤q

L(Ii)

]
.

Note that we always have

max
1≤i≤q

ηi <
1

s
.

As proved in Theorem 3.2 of [Eslami and Góra, 2012], if τ(0), τ(1) ∈ {0, 1}, then

η ≤ sH < 1. If the condition τ(0), τ(1) ∈ {0, 1} is not satisfied one uses an extension

method to arrive to the similar conclusion, as it is done in Theorem 3.3 of [Eslami

and Góra, 2012]. For completeness, we describe the method. Let Iε = [0 − ε, 1 + ε]

for some fixed small positive ε. We define τ ε on Iε as follows

τ ε(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ε+ 1+ε
ε
(x+ ε) , x ∈ [−ε, 0) ;

τ(x) , x ∈ [0, 1] ;

0 + 1+ε
ε
(x− 1) , x ∈ (1, 1 + ε] .

See Fig. 5.1 for an illustration. The interval [0, 1] is the attractor of τ ε. We

choose ε so small that the constants s and sH are the same for maps τ and τ ε. We

consider the subspace BV ε(Iε) = {f ∈ BV (Iε) : f(x) = 0 outside [0, 1]} of BV (Iε).

It is easy to check that Pτε(BV ε(Iε)) ⊂ BV ε(Iε) and (Pτεf)|[0,1] = Pτ (f|[0,1]) for

f ∈ BV ε(Iε). Now, we obtain inequality (5.8) for Pτε on BV (Iε). In particular it

holds for f ∈ BV ε(Iε). The constants ηi are different but by the choice of ε we still

have η < sH and max
1≤i≤q

ηi < 1
s
. The additional partition subintervals I0 = [−ε, 0]

and Iq+1 = [1, 1+ ε] do not show in the min
1≤i≤q

L(Ii) because the integrals
∫
I0
fdm and∫

Iq+1
fdm are 0 for f ∈ BV ε(Iε). Thus, for f ∈ BV ε(Iε), we obtain inequality

∨
Iε

Pτf ≤ η
∨
Iε

f + γ

∫
I

|f | dm, (5.9)
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Figure 5.1: The extension of map τ to [0− ε, 1 + ε].

with η ≤ sH < 1 and γ = M
s2

+ 2
s· min

1≤i≤q
L(Ii)

.

It is well known (see [Boyarsky and Góra, 1997]) that (5.8) or (5.9) implies that τ

admits an acim with a pdf of bounded variation. We denote this invariant density by

φ. It follows from (5.8) or (5.9) that

∨
I

φ ≤ γ

1− η
. (5.10)

We now consider the uniform partition Pu of [0, 1] into 2([ γ
1−η

]+1) subintervals, where

[ γ
1−η

] is the integer part of γ
1−η

. Thus, for each J ∈ Pu, we have L(J) < 1−η
2γ

. Now,

we prove the following lemma.

Lemma 5.3.1. There exists Ju ∈ Pu such that

φ(x) ≥ 1

2
for all x ∈ Ju .
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Proof. Suppose the conclusion is not true. Then, for each J ∈ P
u, there exists a point

xJ ∈ J such that

φ(xJ) <
1

2
.

Using the inequality (5.10), we obtain

1 =

∫
I

φ dm =
∑
J∈Pu

∫
J

φ dm ≤
∑
J∈Pu

L(J)

(
φ(xJ) +

∨
J

φ

)

<
∑
J∈Pu

(
L(J)

2
+

1− η

2γ

∨
J

φ

)
=

1

2
+

1− η

2γ

∨
I

φ ≤ 1

2
+

1− η

2γ

γ

1− η
= 1 .

The contradiction completes the proof.

Now, we can prove the existence of the lower bound for the invariant density of

τ . This result for individual maps is not new, see [Keller, 1978], [Kowalski, 1979] or

[Boyarsky and Góra, 1997]. What is new are the explicit constants we obtain, which

allows us to prove the existence of the uniform lower bound for the invariant densities

of a family of maps.

Theorem 5.3.1. Let τ ∈ T(I) be piecewise C1+1 and satisfy sH < 1. Then there

exists β > 0 such that inf φ ≥ β, where φ is the τ -invariant density.

Proof. Let Smax denote the biggest value of |τ ′(x)| over I. Since φ is the invariant

density, P n
τ φ = φ for any natural number n. Lemma (5.3.1) implies that there exists

interval Ju ⊆ I with L(Ju) =
1

2([ γ
1−η

]+1)
such that

φ(y) ≥ 1

2
for all y ∈ Ju .

And, by Corollary 5.2.1, for each x ∈ I, we can find an integer nu ≤ M(Ju) +K and
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yu ∈ Ju such that τnu(yu) = x. Therefore,

φ(x) = (P nu

τ φ) (x) =
∑

y∈τ−nu (x)

φ(y)

|(τnu)′(y)| ≥
φ(yu)

|(τnu)′(yu)| ≥
1

2Snu
max

.

Setting β = (2Snu
max)

−1 (or β =
(
2S

M(Ju)+K
max

)−1

for an explicit formula) completes the

proof.

The next theorem generalizes Theorem 5.3.1 to a family of maps uniformly satis-

fying the assumptions.

Theorem 5.3.2. Let {τ (r)} ⊂ T(I) be a family of piecewise C1+1 maps. The defining

partition for τ (r) is P(r) = {I(r)1 , . . . , I
(r)
q(r)}. We assume we can find uniform constants

sH < 1, K, δ > 0, δmax, M , s > 1, Smax such that

sH ≥ s
(r)
H = max{min

I
(r)
i

|(τ (r))′|−1 +min
I
(r)
i+1

|(τ (r))′|−1 : i = 1, 2, . . . , q(r)− 1} ;

K ≥ K(r), where ∪K(r)

n=0 (τ (r))n(I
(r)
i ) = [0, 1] , i = 1, 2, . . . , q(r) ;

δ ≤ δ(r) = min{L(I(r)i ) : i = 1, 2, . . . , q(r)} ;

δmax ≥ δ(r)max = max{L(I(r)i ∪ I
(r)
i+1) : i = 1, 2, . . . , q(r)− 1} ;

M ≥ M (r), the common Lipschitz constant for (τ
(r)
i )′ , i = 1, 2, . . . , q(r) ;

s ≤ s(r) = min

{
min
I
(r)
i

|(τ (r)i )′| , i = 1, 2, . . . , q(r)

}
;

Smax ≥ S(r)
max = max

{
max
I
(r)
i

|(τ (r)i )′| , i = 1, 2, . . . , q(r)

}
.

(5.11)

Let us define

β =

⎛⎜⎝2S
max

{⌈
− ln(2([

γ
1−sH

]+1))−ln(δmax)

ln(sH )

⌉
,0

}
+K

max

⎞⎟⎠
−1

, (5.12)

86



where γ = M
s2

+ 2
s·δ
. Then, for all r, inf φ(r) ≥ β, where φ(r) is the τ (r)-invariant

density.

Proof. This is just a combination of all previous results in this chapter.

Below we refer to an example from [Li, 2013] (or Chapter 3) which shows that

the condition sH < 1 is necessary in Theorem 5.3.2. Another such example was

constructed in [Eslami and Misiurewicz, 2012].

Example 5.3.1.

In [Li, 2013], a family {τ (r)} of W-shaped maps was constructed which converged

to the standard W-map τ0 with a turning fixed point at 1/2 and slopes 2 to the left

of 1/2 and −2 to the right of this point. The uniform constants K, δ > 0, δmax,

M , s > 1, Smax can be found for this family. The constants s
(r)
H converge to 1, as

τ (r) → τ0. Each τ (r) is exact on the whole [0, 1], but the acims of τ (r) converge to

Dirac measure δ(1/2) as τ (r) → τ0. Thus, the uniform positive lower bound cannot

exist for the invariant densities of this family.

We now present here an example of a non-linear W-shaped map and calculate for it

all the constants necessary to find the lower bound. The theoretical one turns out to

be approximately 4× 10−10, while the computer simulation indicates that the actual

lower bound for the invariant density is 0.54.

Example 5.3.2.
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Figure 5.2: W-shaped map of Example 5.3.2

Let the map τ be defined as follows

τ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ1(x) := 1− 40/9x, 0 ≤ x < 9/40,

τ2(x) := 2(x− 9/40), 9/40 ≤ x < 9/20,

τ3(x) := −4(x− 9/16), 9/20 ≤ x < 9/16,

τ4(x) := x2 + 81/112x− 81/112, 9/16 ≤ x < 1.
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The graph of τ is shown in Fig.5.2. We have

τ ′1(x) = −40/9, τ ′2(x) = 2, τ ′3(x) = −4, τ ′4(x) = 2x+ 81/112 ;

s1 = 40/9, s2 = 2, s3 = 4, s4 = 207/112 ;

s = min {40/9, s2 = 2, s3 = 4, s4 = 207/112} = 207/112 ;

L(I1) = L([0, 9/40)) = 9/40, L(I2) = L([9/40, 9/20)) = 9/40 ,

L(I3) = L([9/20, 9/16)) = 9/80, L(I4) = L([9/16, 1]) = 7/16 ;

δ = min {L(I1), L(I2), L(I3), L(I4)} = 9/80 ;

δmax = max {L(I1) + L(I2), L(I2) + L(I3), L(I3) + L(I4)}

= max {9/20, 27/80, 11/20} = 11/20 ;

sH = max {9/40 + 1/2, 1/2 + 1/4, 1/4 + 112/207} = 655/828 ;

M1 = 0, M2 = 0, M3 = 0, M4 = 2 ;

M = max {0, 0, 0, 2} = 2 ;

γ =
M

s2
+

2

s · δ = 437248/42849 ;[
γ

1− sH

]
=

[
1748992

35811

]
= 48 ;

Smax = 40/9 ;

L(Ju) =
1

98
;

K = 2 .

The estimate for number Nu of iterations needed for any interval Ju to expand to

the entire interval [0, 1] comes from Corollary 5.2.1 and is

Nu ≥ max

{⌈− ln(2([ γ
1−sH

] + 1))− ln(δmax)

ln(sH)

⌉
, 0

}
+K
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=

[
ln(539/10)

ln(828/655)

]
+ 1 + 2 = 20 .

which gives

β ≥ (
2SNu

max

)−1
=
(
2(40/9)20

)−1 ≈ 5.53× 10−14 .

With the aid of a computer we found the actual value Nu = 8, which gives a much

better, although still perhaps unsatisfactory estimate β ≥ 3.28× 10−6.

5.4 Explicit convergence constants

In this section we assume that τ ∈ T(I) is weakly covering, weakly mixing and piece-

wise of class C1+1 with sH < 1. In particular, this implies Theorem 5.2.1, Corollary

5.2.2 and Theorem 5.3.1. To obtain the exact convergence constants we follow the

method of Liverani [Liverani, 1995a] with small improvements. For more information

on Hilbert metrics and the use of cones in the theory of piecewise expanding maps

we refer the reader to [Liverani, 1995b], [Baladi, 2000] or [Schmitt, 1986].

We consider the following cone:

Cκ =

⎧⎨⎩g(x) ∈ BV (I) | g(x) �= 0, g(x) ≥ 0 for all x ∈ [0, 1];
∨
[0,1]

g ≤ κ

∫
[0,1]

g dm

⎫⎬⎭ .

Let θ = η + γ
κ
.

Lemma 5.4.1. If κ > γ
1−η

, then θ < 1 and PτCκ ⊂ Cθκ.

Proof. First, θ = η + γ
κ
< η + γ 1−η

γ
= 1.

If f ∈ Cκ, using (5.8), we obtain

∨
[0,1]

Pτf ≤ η
∨
[0,1]

f + γ

∫
[0,1]

|f |dm ≤ (ηκ+ γ)

∫
[0,1]

|f |dm = κθ

∫
[0,1]

|f |dm.
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Lemma 5.4.1 shows that the cone Cκ is invariant under the action of the operator

Pτ . We now define the Hilbert metric Θ(f, g) on Cκ. For f , g in Cκ we define

α(f, g) = sup {λ > 0|λf ≤ g} ,

β(f, g) = inf {μ > 0|g ≤ μf} ,

Θ(f, g) = ln

[
β(f, g)

α(f, g)

]
,

where we take α = 0 or β = ∞ when the corresponding sets are empty.

We recall the following lemma from [Liverani, 1995a].

Lemma 5.4.2. If Θκ is the Hilbert metric associated with the cone Cκ, then for each

ν < 1 and g ∈ Cκν

Θκ(g, 1) ≤ ln

⎛⎜⎜⎜⎜⎝
max

{
(1 + ν)

∫
[0,1]

g dm, sup
x∈[0,1]

g(x)

}

min

{
(1− ν)

∫
[0,1]

g dm, inf
x∈[0,1]

g(x)

}
⎞⎟⎟⎟⎟⎠ .

A slight change of Lemma 5.3.1 leads to the following lemma.

Lemma 5.4.3. Let Pu be the uniform partition of [0, 1] into 2([ γ
1−η

]+1) subintervals.

For each g ∈ Cκ, there exists Ju∗ ∈ Pu such that

g(x) ≥ 1

2

∫
[0,1]

g dm for all x ∈ Ju∗ .

Proof. Consider the normalized function, g(x)∫
[0,1] g dm

, which is a density function and

also in Cκ. Lemma 5.3.1 implies that there exists Ju∗ ∈ Pu such that

g(x)∫
[0,1]

g dm
≥ 1

2
for all x ∈ Ju∗ .

This completes the proof.
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Let numbers M(Ju∗) and K1 be as in Proposition 5.2.2 and Theorem 5.2.1. Now,

we now prove

Lemma 5.4.4. For each κ > γ
1−η

, there exists Nu∗ ≤ M(Ju∗) +K1 and Δ > 0 such

that

diam
(
PNu∗

τ (Cκ)
) ≤ Δ < ∞ .

Proof. Let g(x) ∈ Cκ, Lemma 5.4.3 implies that there exists Ju∗ ∈ Pu such that

g(x)∫
[0,1]

g dm
≥ 1

2
for all x ∈ Ju∗ . Corollary 5.2.2 implies that we can find an integer

Nu∗ ≤ M(Ju∗) +K1 and yu∗ ∈ Ju∗ such that τNu∗ (yu∗) = x. Therefore,

(
PNu∗

τ g
)
(x) =

∑
y∈τ−Nu∗ (x)

g(y)

|(τNu∗ )′(y)| ≥
g(yu∗)

|(τNu∗ )′(yu∗)|

≥
∫
[0,1]

g dm

2SNu∗
max

≥
∫
[0,1]

g dm

2S
M(Ju∗)+K1
max

.

Using Lemma 5.4.1, we obtain PNu∗

τ Cκ ⊂ Cθ1κ, where

θ1 = ηNu∗ +
1− ηNu∗

1− η

γ

κ
. (5.13)

Let

ω(g) =

inf
x∈[0,1]

(
PNu∗

τ g
)
(x)∫

[0,1]
g dm

.

Then,

1

2S
M(Ju∗)+K1
max

≤ ω(g) ≤ 1 .

Note that ∨
I

PNu∗

τ g ≤ ηNu∗
∨
I

g +
1− ηNu∗

1− η
γ

∫
[0,1]

g dm ,

which implies ∨
I P

Nu∗

τ g∫
[0,1]

g dm
≤ κθ1 .
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Using Lemma 5.4.2, we obtain

diam
(
PNu∗

τ (Cκ)
) ≤

≤ sup
g∈P

Nu∗
τ (Cκ)

2 ln

⎡⎢⎢⎢⎢⎣
max

{
(1 + θ1)

∫
[0,1]

PNu∗

τ g dm, sup
x∈[0,1]

(
PNu∗

τ g
)
(x)

}

min

{
(1− θ1)

∫
[0,1]

PNu∗
τ g dm, inf

x∈[0,1]

(
PNu∗
τ g

)
(x)

}
⎤⎥⎥⎥⎥⎦

≤ sup
g∈P

Nu∗
τ (Cκ)

2 ln

⎡⎢⎢⎣max

{
(1 + θ1)

∫
[0,1]

g dm, inf
x∈[0,1]

(
PNu∗

τ g
)
(x) +

∨
I P

Nu∗

τ g

}
min

{
(1− θ1)

∫
[0,1]

g dm, inf
x∈[0,1]

(
PNu∗
τ g

)
(x)

}
⎤⎥⎥⎦

≤ 2 ln

⎡⎢⎣ max {1 + θ1, 1 + κθ1}
min

{
1− θ1,

1

2S
M(Ju∗ )+K1
max

}
⎤⎥⎦ = Δ .

Thus, exactly as in [Liverani, 1995a], we can obtain the following theorem on the

decay of correlations.

Theorem 5.4.1. Let τ ∈ T(I) be weakly covering, weakly mixing and piecewise of

class C1+1 with sH < 1. Then, for each f ∈ L1([0, 1]) and a density g ∈ BV ([0, 1]),∣∣∣∣∫
[0,1]

g · f ◦ τn dm−
∫
[0,1]

fdμ

∣∣∣∣ ≤ KnΛ
n||f ||1

⎛⎝1 + b
∨
[0,1]

g

⎞⎠ ,

where

Λ = tanh

(
Δ

4

) 1
Nu∗

,

Kn =
{
exp

[
ΔΛn−Nu∗

]}
Λ−Nu∗Δ||φ||∞ ,

b =

(
κ− γ

1− η

)−1

.

Note that φ ≤ ∨
[0,1] φ + ||φ||1

1−0
≤ κ + 1 and since Λ < 1, we have lim

n→∞
Kn ≤

Λ−Nu∗Δ(κ+ 1). Although we may not have an explicit formula for Nu∗ , we can give

the upper bound using Proposition 5.2.2.
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In [Liverani, 1995a] the convergence constants are calculated for an example. We

calculated them for the same example and obtained the same numbers. For maps with

constant modulus of slope and without turning periodic points our method does not

offer any advantages over the methods of [Liverani, 1995a] or [Keller, 1999]. Below,

we continue Example 5.3.2 to which the methods of [Liverani, 1995a] and [Keller,

1999] do not apply.

Example 5.3.2. (continued) We use the directly calculated Nu∗ = 8. We have

γ
1−η

= γ
1−sH

= 1748992
35811

. We choose κ = 1748995
35811

. By equation (5.13), we have θ1 ∼

0.9999985478 and

Δ = 2 ln
(
(1 + κθ1)2S

Nu∗

max

) ∼ 33.07038934 .

Then, Λ ∼ 0.9999999835, b = 11937 and Kn ≤∼ 1648 exp(33 · 0.9999999835n−8).

Since all the constants in Theorem 5.4.1 are explicit we obtain a similar theorem

for families.

Theorem 5.4.2. Let a family {τ (r)} satisfy the assumptions of Theorem 5.3.2. We

assume that all maps τ (r) are weakly mixing with uniform constant K1 of Theorem

5.2.1. Then, Theorem 5.4.1 holds for family {τ (r)} with uniform constants Λ, b and

Kn.
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Chapter 6

Harmonic Average of Slopes and the

Stability of Acim

6.1 Introduction

The main motivation for this chapter is to prove stability of the acims for some maps

with fixed or periodic turning points, for example, the so called W−shaped maps

introduced in previous chapters. The difficulty caused by periodic turning points was

first noticed by [Keller, 1982]. We will study classes of maps more general than the

W−shaped maps.

For almost forty years the Lasota-Yorke inequality [Boyarsky and Góra, 1997; La-

sota and Yorke, 1973] has played a crucial role in establishing existence of acims and

in studying properties of these measures. More precisely, in the setting where we have

a single piecewise expanding map τ :I → I, the Lasota-Yorke method requires that
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we use an iterate τn for which we have inf |(τn)′| > 2. Then, the partition P
(n) of τn

is used in an argument where the magnitude of the minimum length of P(n) appears

in the denominator of a term. This works if we are dealing with a single map or with

a family of maps for which the n th iterate of all members of the family has slopes

uniformly bounded away from 2 in modulus. Stability of acim in this situation was

considered in [Keller, 1982; Keller and Liverani, 1999]. However, in some important

situations this does not happen. Consider the example of W−shaped maps in pre-

vious chapters, where the limit map has |slope| = 2 at a turning fixed point 1/2. In

this situation the standard Lasota-Yorke inequality cannot be applied to a family of

approximating maps since taking an iteration of these maps creates partition elements

which go to 0 length. The papers [Eslami and Misiurewicz, 2012; Li et al., 2013] show

instability of acim for this map. In the paper [Li, 2013] (Chapter 3), stability of a

more general W shaped map has been considered. The results of this paper inspired

the introduction of the harmonic average of slopes condition.

Recently the Lasota-Yorke inequality has been strengthened [Eslami and Góra,

2012] by using the harmonic average of the slopes on each side of the partition points

rather than the doubled reciprocal of the minimal slope. This allows us to show

stability of the acim of the limit map for a larger class of maps. The smoothness

assumption in [Eslami and Góra, 2012] is piecewise C1+1.

In this chapter we generalize the use of the harmonic average of slopes condition to

maps with much weaker smoothness properties, namely we assume only the summable

oscillation condition for the reciprocal of the derivative. Unlike [Eslami and Góra,

2012], we do not use the bounded variation technique. Our main tool is Rychlik’s
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Theorem (see, e.g., [Boyarsky and Góra, 1997]). We show that the invariant densities

of families of perturbed maps form a uniformly bounded set in L∞ which implies that

it is weakly compact in L1. From this compactness property it follows that we have

stability of the acim associated with the limit map.

In section 6.2 we will define the class of maps we will consider and introduce the

harmonic average slope condition. Then, we will recall Rychlik’s Theorem [Boyarsky

and Góra, 1997, Theorem 6.2.1]. In section 6.3 we rewrite Rychlik’s proof and show

that the harmonic average condition is enough for the result to hold. In section 6.4

we prove the main result of this chapter, which establishes weak compactness in L1

of the densities associated with the perturbing family of maps. This in turn proves

stability of acim of the limit map. This result stays true in many situation not covered

by previous works. An example is presented in section 6.5.

The results obtained in this chapter (Sections 6.2, 6.3, 6.4 and 6.5) were, after some

modifications, published in the paper [Góra et al., 2012a].

6.2 Notation and preliminary results

Let I = [0, 1] and let L be Lebesgue measure on I. In this chapter, we consider

piecewise expanding map τ ∈ T(I), see the Definition 5.2.1 for T(I). And, the

condition 2 will be strengthened as:

2′.τi := τ |Ii is C1 and lim
x→a+i−1

τ ′(x), lim
x→a−i

τ ′(x) exist ; let M = max
x∈I

|τ ′(x)|.

Let s and sH be the same as defined in (5.2) and (5.3), respectively. The definition
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of the harmonic average of slopes condition is the same as defined in Chapter 5. Let

δ := min
2≤i≤q−1

L(Ii) . (6.1)

Note, that to calculate the δ we do not use the first and the last subintervals of the

partition.

Let

gn =
1

|(τn)′| ,

wherever (τn)′ is defined. Let P(n) =
∨n−1

i=0 τ−i(P). Note that P = P(1). For any

measurable subset A of [a, b], let

P(A) = {J ∈ P : λ(J ∩ A) > 0} .

Let γn =
∑

J∈P(n) supJ gn.

For J ∈ P(n), we define oscJ
1
|τ ′|

= maxJ
1
|τ ′|

−minJ
1
|τ ′|

and

dn = max
J∈P(n)

oscJ
1

|τ ′| .

Definition 6.2.1. We say that a map τ ∈ T(I) satisfies the summable oscillation

condition, or τ ∈ TΣ(I), if ∑
n≥1

dn ≤ D < +∞ .

Note that usually the summable oscillation condition means a similar condition for

|τ ′| (e.g., [Góra, 1994]) and not 1
|τ ′|

as here.

This condition is satisfied for example for the following maps:

(i) piecewise in C1+ε, i.e., with bounded derivative satisfying a Hölder condition;
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(ii) piecewise satisfying Collet’s condition [Collet and Eckmann, 1985], i.e, the

modulus of continuity of τ ′ satisfies

ω(t) ≤ K

(1 + log |t|)1+γ
,

as t → 0, for some K, γ > 0 (γ = 0 is not enough);

(iii) satisfying Schmitt’s condition [Góra, 1994; Schmitt, 1986], i.e, summable os-

cillation condition for |τ ′|.

6.3 Main result

We now recall Rychlik’s Theorem. The proof can be found in [Rychlik, 1983] or

[Boyarsky and Góra, 1997, Theorem 6.2.1].

Theorem 6.3.1. Let τ be a piecewise monotonic transformation of an interval [a, b]

satisfying the following three conditions:

1. There exists d > 0 such that for any n ≥ 1 and any J ∈ P(n),

sup
J

gn ≤ d · inf
J

gn;

2. There exist ε > 0 and r ∈ (0, 1) such that for any n ≥ 1 and any J ∈ P
(n),

L(τn(J)) < ε ⇒
∑

J ′∈P(τn(J))

sup
J ′

g ≤ r;

3. γ1 =
∑

J∈P supJ g < +∞.

Then τ admits an acim. Moreover, if f is a τ -invariant density then

‖f‖∞ ≤ γ1
d

ε(1− r)
. (6.2)
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Theorem 6.3.2. If τ ∈ TΣ and satisfies the harmonic average of slopes condition

sH < 1, then it satisfies the assumptions of Rychlik’s Theorem.

Proof. Condition (1): Note that sup g ≤ 1
s
. Let J ∈ P(n), x, y ∈ J . We have

gn(x)

gn(y)
=

g(τn−1(x))g(τn−2(x)) . . . g(τ(x))g(x)

g(τn−1(y))g(τn−2(y)) . . . g(τ(y))g(y)
.

For any k = 0, . . . , n − 1, τk(x) and τk(y) belong to the same element Jk of P(n−k).

Using the inequality

a

b
= 1 +

a− b

b
≤ exp

(
|a− b

b
|
)
,

we get

g(τk(x))

g(τk(y))
≤ exp

(
1

g (τk(x))
|g(τk(x))− g(τk(y))|

)
≤ exp (M dn−k) ,

and thus,

gn(x)

gn(y)
≤ exp

(
M

n−1∑
k=0

dn−k

)
≤ exp (M ·D) .

We have established condition (1) with

d = exp (M ·D) .

We now invoke the harmonic average of slopes condition to prove condition (2): let

ε = 1
2
δ and r = sH < 1. (It is important to note that we did not use the lengths of

the first and the last interval of the partition to define δ.) It is enough to notice that,

for any J ′ ∈ P(n), τn(J ′) is an interval and if L(τnJ ′) < ε, then τnJ ′ can intersect at

most two intervals of P. Thus,
∑

J∈P(τnJ ′) sup g ≤ sH = r < 1.

Condition (3) is satisfied by definition. This completes the proof.
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Remark 6.3.1. Note that in the above proof, if we use the usual summable oscillation

condition for |τ ′| (e.g., [Góra, 1994]), we can alternatively obtain the following:

g(τk(x))

g(τk(y))
=

1
g(τk(y))

1
g(τk(x))

≤ exp

(
g
(
τk(x)

) | 1

g(τk(x))
− 1

g(τk(y))
|
)

≤ exp

(
1

s
dn−k

)
,

and thus,

gn(x)

gn(y)
≤ exp

(
1

s

n−1∑
k=0

dn−k

)
≤ exp

(
D

s

)
.

Therefore, we can establish condition (1) in Theorem 6.3.1 with

d = exp

(
D

s

)
.

6.4 Stability of acim for families of maps

The main motivation for this investigation is to prove stability of the acim for maps

with turning fixed or periodic points. The general setting is as follows. Let τ0 be a

map with an invariant density f0 and and {τγ}γ>0 a family of maps with invariant

densities fγ such that τγ converge to τ0 in some sense as γ converges to 0. Question:

under what conditions does fγ → f0 in some sense? Such problems were investigated

in many articles but usually using bounded variation technique [Keller, 1982; Keller

and Liverani, 1999].

Theorem 6.4.1. Let the family {τγ}γ>0 ⊂ TΣ satisfies the assumptions of Rychlik’s

Theorem in a uniform way, i.e, with the same constants and τγ → τ0 almost uniformly

101



as γ → 0. If τ0 has exactly one acim, then fγ → f0 in L1 as γ → 0. In the general

case every limit point of the family {fγ}, as γ → 0, is an invariant density of τ0.

Proof. The proof follows from Theorem 11.2.3 of [Boyarsky and Góra, 1997] which

we recall below with appropriate changes.

Theorem 6.4.2. Let τγ ∈ T, γ ≥ 0. Let the invariant densities of {fγ}γ≥0 be

uniformly bounded in L∞. If τγ → τ0 almost uniformly as γ → 0, then any limit

point of {fγ}γ>0, as γ → 0, is a τ0-invariant density. If {τ0, f · L} is ergodic, then

fγ → f0 in L1.

We now describe two families of maps for which Theorem 6.4.1 applies.

Proposition 6.4.1. Let τ0 ∈ TΣ satisfy the harmonic average condition sH < 1.

Let τγ be defined on the same partition P = {I1, I2, . . . , Iq} and τγ → τ0, as γ → 0,

in C1(int(Ii)) for all i = 1, 2, . . . , q. We also assume that the summable oscillation

condition is satisfied uniformly for {τγ}γ≥0. Then, the family {τγ}γ≥0 satisfies the

assumptions of Theorem 6.4.1.

Proposition 6.4.2. Let τ0 ∈ TΣ satisfy the harmonic average condition sH < 1.

Let each τγ be piecewise expanding on the partition Pγ = {I(γ)0 , I
(γ)
2 , . . . , I

(γ)
q+1}, I(γ)i =

[a
(γ)
i−1, a

(γ)
i ], i = 0, 1, 2, . . . , q + 1. We allow the possibility that I

(γ)
0 or I

(γ)
q+1 or both of

them are empty. We assume a
(γ)
i → a

(0)
i as γ → 0, i = 0, 1, 2, . . . , q. Then, automati-

cally a
(γ)
−1 → a

(0)
0 and a

(γ)
q+1 → a

(0)
q as γ → 0. We also assume that the summable oscil-

lation condition and harmonic average condition are satisfied uniformly for {τγ}γ≥0.

If τγ → τ0 almost uniformly as γ → 0, then the family {τγ}a≥0 satisfies the assump-

tions of Theorem 6.4.1.
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Results similar to those above were derived in [Góra and Boyarsky, 1989c] under

additional much stronger conditions on the family of transformations. The two main

stronger conditions assumed in [Góra and Boyarsky, 1989c] are

(i) There exists a constant δ > 0 such that for any τγ in the family of maps there

exists a finite partition Kγ such that for any J ∈ Kγ, τγ|J is one-to-one, τγ(J) is an

interval, and

min
J∈Kγ

diam(J) > δ .

(ii) For any m ≥ 1, there exists δm > 0 such that if

K
(m)
γ =

m−1∨
j=0

τ−j
γ (Kγ)

then

min
J∈K

(m)
γ

diam(Jm) ≥ δm > 0 .

From these conditions it follows that the family of densities is weakly compact in

L1.

6.5 Example

The results of this chapter allow us to answer a question posed in [Eslami and Misi-

urewicz, 2012], which is also studied in [Pendev, 2012].

Example 6.5.1.
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Figure 6.1: The graph of Example 6.5.1 for γ = 0.

Let τγ , 0 ≤ γ < ε0 < 1/2, be a map defined by

τγ(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2
− γ + (1 + 2γ)t , 0 ≤ t < 1

2
;

2− 2t , 1
2
≤ t ≤ 1 .

τ0, which is shown in Fig. 6.1, is exact with invariant density f0 =
2
3
χ[0,1/2]+

4
3
χ[1/2,1].

Is this acim stable under perturbation given by the family {τγ}γ>0? τ0 has a turning

point 1/2 which is periodic with period 3. Previously known methods did not give

an answer to this question.

We will consider the family of third iterates {τ 3γ}γ>0. τ
3
0 is shown in Fig. 6.2 (a) and

a typical τ 3γ is shown in Fig. 6.2 (b). The slopes of τ 3γ are s1 = s3 = s7 = 2+8γ+8γ2,

s2 = s4 = s6 = 4 + 8γ, and s5 = 8. Since τ0 is exact, τ 30 is also exact with the same

acim and stability of acim for τ 30 implies the same for τ0. We can see that the family

{τ 3γ}γ>0 satisfies the conditions of Proposition 6.4.2. Thus, τ0 has a stable acim.
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Figure 6.2: The 3rd iterates of maps of Example 6.5.1: (a) τ 30 , (b) τ
3
0.05.
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