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Abstract

In this paper, we describe the formal verification of an industrial hard-
ware design from PMC-Sierra, Inc. The design under investigation is a
Telecom System Block, which processes a portion of the SONET (Syn-
chronous Optical Network) line overhead of a received data stream. We
adopted a hierarchical modeling and verification approach which follows
the natural design hierarchy. The formal specification and verification
have been carried out based on MDG (Multiway Decision Graphs), a new
decision diagram subsuming the traditional binary decision diagrams and
allowing abstract data and functions. The verification has been performed
using both equivalence and model checking. To measure the performance
of the MDG based model checker, we also conducted a comparative veri-
fication of the same design using Cadence FormalCheck.

1 Introduction

Simulation-based methods are currently being used by the industrial commu-
nity for system-level verification, since they can handle the entire design at a
time. Simulation, however, cannot provide a high coverage ratio due to the
exponential number of test cases to be developed and verified. This handicap
is the reason why new methods are needed for the economical and reliable veri-
fication of digital systems. Formal verification [12] have recently paved a path,
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showing the utility of finding bugs early in the design cycle. Formal verifica-
tion techniques are usually classified in two categories [12]: interactive theorem
proving and automatic decision diagram based model checking and equivalence
checking. In model checking, one checks if the design satisfies some properties
(formal specification). With equivalence checking, we check if two designs ex-
hibit the same behavior. The latter techniques have been successfully applied
to various industrial designs. However, since most tools are based on Reduced
Ordered Binary Decision Diagrams (ROBDDs [7]), they require the design to be
described at the Boolean level. In practice, they often fail to verify a large-scale
design because of the so-called state space explosion [12].

In this paper, we present a methodology for the formal verification of a
real industrial design using the Multiway Decision Graphs (MDG) [9] tools.
MDGs subsume the traditional binary decision diagrams while extending them
with abstract data sorts and uninterrupted function symbols [9]. The design
we considered is a Telecom System Block (TSB) from PMC-Sierra, Inc., called
RASE—Receive, Automatic Protection Switch Control, Synchronization Status
Extraction and Bit Error Rate Monitor [16]. It processes a portion of the
SONET (Synchronous Optical Network) [5] line overhead of a received data
stream. The main aspect of this paper is to illustrate the ability to carry out the
verification of an industrial size design using MDGs. Furthermore, we conducted
a comparison between the experimental results obtained with the MDG model
checker and the model checking of the same design using Cadence FormalCheck
[8].

The rest of this paper is organized as follows: Section 2 reviews some related
work. Section 3 gives an overview of Multiway Decision Graphs (MDGs). In
Section 4 we describe the functionality and structure of the RASE TSB and
discuss their modelings with MDG. Section 5 describes our hierarchical verifi-
cation methodology using both MDG equivalence and model checking. Section
6 presents a comparison of the verification process between MDG and For-
malCheck. Section 7 finally concludes the paper.

2 Related Work

There exists a few related work on the application of the MDG tools in veri-
fication of telecommunication systems. For instance, Tahar et al. [18] verified
the Fairisle [13] ATM (Asynchronous Transfer Mode [11]) switch fabric in an
automatic fashion using MDGs by property and equivalence checking. The
original design was modeled in Qudos HDL, containing 4200 equivalent gates
implemented in Xilinx FPGAs. The authors used model abstraction techniques
to reduce the state space of the gate level netlist based on abstract sorts and
uninterpreted functions within MDG. They were then able to verify the whole
switch fabric without experiencing any state space explosion problem. In com-
parison to the above ATM switch fabric, our investigated design represents with
its 11400 equivalent gates [16] a significantly larger case study. Moreover, unlike
the design presented in [18] in which an academic ATM switch fabric designed
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at Cambridge University is investigated, our work presents a telecommunication
design which is a commercial product. Furthermore, we performed both safety
and liveness properties model checking on the investigated design, but for the
work in [18], the authors applied only invariant (safety) property checking on
the ATM design. Hence, in difference to [18], we were able to make a direct
comparison with other model checking tools such as Cadence FormalCheck.

Another notable related work is the one done by Balakrishnan and Tahar
[3]. The authors used the MDG tools to model and verify an embedded system
of a mouse control application based on the PIC 16C71 Microcontroller from
Microchip Technology, Inc. [15] They modeled the system at different levels
of design hierarchy. The verification was conducted using equivalence checking
and property checking. They detected inconsistencies in the assembly code
with respect to the specification during the verification phase. Although this
work represents the sole commercial design verified by MDGs before ours, its
application was concerned with software assembly aspects rather than hardware
design and implementation.

Zhou et al. [21] demonstrated the MDG-based formal verification on the
example of an Island Tunnel Controller design. In this work, they studied in
detail the non-termination problem of abstract state enumeration [9] and pre-
sented a heuristic state generalization technique to solve this problem. They
also provided comparative experimental results for the verification of a num-
ber of safety properties using two well-known ROBDD-based verification tools,
SMV [14] and VIS [6]. We are conducting a similar comparison with a more
sophisticated tool, FormalCheck of Cadence, to check the efficiency of our MDG
based verification.

Besides the above MDG related work, several other projects on the model
checking of different moderate sized telecommunications digital systems are re-
ported in the open literature. Some of these case studies are used to illustrate
the limitations of current formal verification techniques in verifying industrial
like designs. Among these limitations, state space explosion is the well-known
problem faced by model checking methods when verifying designs with a sub-
stantial datapath. Researchers of these work presented different reduction and
abstraction techniques to cope with this limitation. We discuss in following
those work most related to ours.

Barakatain and Tahar [4] applied model checking techniques for the formal
verification of a SCI-PHY Level 2 protocol engine (SCI-PHY is a super set of
UTOPIA standard [2]). The authors used FormalCheck to formally verify the
RTL (Register Transfer Level) implementation of the Receive Slave SCI-PHY
mode of the Transmit Master/Receive Slave (TMRS) design [17]. The TMRS
is a commercial industrial design of PMC-Sierra, Inc., with a 7500 equivalent
gate-count. During the verification process, they used several model abstraction
and reduction techniques within FormalCheck to avoid state space explosion,
and then verified a number of relevant liveness and safety properties on the
TMRS. They succeeded the discovery of a number of mismatches between the
TMRS RTL design, its document specification and the UTOPIA Level 2 proto-
col standard.
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Xu et al. [20] verified a Frame Multiplexer /Demultiplexer (FMD) chip from
Nortel Semiconductors using FormalCheck. The FMD chip is part of a sys-
tem used in multiplexing/demultiplexing framed data between various channels
and a SONET line [5]. The authors constructed a non-deterministic model to
simulate the normal operating environment. Tool guided model reduction was
used to build an abstracted model which in turn reduced the state space of the
original design. During the verification process, they detected two errors in the
implementation of the FMD model.

3 Multiway Decision Graphs

Multiway Decision Graphs (MDG) [9] have been proposed to solve the state
space explosion problem of ROBDD (Reduced Ordered Binary Decision Dia-
gram) [7] based verification. While accommodating a higher level of abstraction
as with theorem proving, the MDG tools offer automation in the verification
process like ROBDD based tools. The formal logic underlying MDGs is a
many-sorted first-order logic, augmented with a distinction between concrete
and abstract sorts. This is motivated by the traditional division of datapath
and control circuitry of RTL (Register Transfer Level) design. A concrete sort
has an enumeration while an abstract sort does not. A small example of a
multiplexer is given in Figure 1, illustrating its ROBDD, concrete and abstract
MDG encodings.

x1
x2

mux —

x0

ifx0 =1theny = x1
elsey = x2

ROBDD MDG with concrete MDG with abstract data
(bool) data

Figure 1: ROBDD and MDGs for a Multiplexer

An MDG is a finite, directed acyclic graph. An internal node of an MDG can
be a variable of concrete sort with its edge labels being the individual constants
in the enumeration of the sort; or it can be a variable of abstract sort and its
edges are labeled with abstract terms of the same sort; or it can be a cross-
term (whose function symbol is a cross-operator). For example, given z and
y two variables of the same abstract sort, we can define, leg (z,y), for less-
or-equal as an uninterpreted cross-operator which supports a Boolean value.
Variables of concrete and abstract sort can be used to model control and data
signals, respectively, while uninterpreted function symbols and cross-operators
denote data operations and feedback from the datapath to the control circuitry,
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respectively [9]. Hence, a data signal can be represented by a single variable of
abstract sort, rather than a vector of Boolean variables, and data operations can
be viewed as black-boxes and represented by uninterpreted function symbols [9].
An MDG may have only one leaf node denoted as T, which means all paths in
an MDG are true formulae. Thus, MDGs essentially represent relations rather
than functions in a canonical form. MDGs can also represent sets of states. Like
ROBDDs, MDGs must be reduced and ordered.

Based on MDGs, abstract descriptions of state machines, called Abstract
State Machines (ASM)! are used to model the system. An ASM is obtained
by letting some data inputs, states or output variables be of abstract sort,
and the datapath operations are uninterpreted function symbols. They admit
non-finite state machines as models in addition to their intended finite inter-
pretations. The MDG tools [22] provide algorithms for equivalence checking,
invariant checking and model checking, which are based on the reachability
analysis of all states. The equivalence verification procedures are combinational
and sequential verification. The model checking supports a first-order temporal
logic, called Lapg [19], which is an extension of universally quantified branch-
ing time first-order temporal logic. The MDG tools run on a Prolog platform
and accepts a Prolog-style HDL (Hardware Description Language) as its input
language, called MDG-HDL [22], which allows the use of abstract variables for
representing data signals. MDG-HDL supports structural descriptions, behav-
ioral descriptions, or a mixture of both. A structural description is usually
a (hierarchical) network of components (modules) connected by signals. The
MDG-HDL comes with a large library of predefined, commonly used, basic
components (such as logic gates, multiplexers, registers, bus drivers, etc.). A
behavioral description can be given by high-level constructs such as ITE (If-
Then-Else) or CASE statements, which are based on MDG tables. An MDG
table is similar to a truth table but allows first-order terms in rows. The internal
MDG data structure compiles this MDG-HDL description into the ASM model
before building the MDGs for the particular verification procedure.

The MDG tools have some significant practical limitations: For instance, due
to the non-interpretation of data operators, the reachability analysis of abstract
states may not terminate. If this situation occurs, a dedicated heuristic has to
be used from a set of algorithms developed in [1] and [21]. Another practical
drawback of the MDG tools with respect to an industrial setting is that they
do not accept VHDL or Verilog HDL as input language. However a project is
currently underway to translate Verilog to MDG-HDL which will be available
in the near future. This paper is to advocate MDG, where we will hence use
small examples from the RASE TSB model to illustrate the MDG modeling of
behavior and structure.

!The notion of Abstract State Machines (ASM) has been defined in the MDG literature
[9], which by coincidence matches the same naming as the widely known ASM introduced by
Gurevich [10].
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4 The RASE Telecom System Block

The design under investigation is the RASE Telecom System Block (TSB). It
processes a portion of the SONET (Synchronous Optical Network) [5] line over-
head of a received SONET data stream. The RASE TSB consists of three types
of components: Transport overhead extraction and manipulation, Bit Error
Rate Monitoring (BERM) and Interrupt Server (see Figure 2) [16]. In addition
to these blocks, it has an interface to a Common Bus Interface (CBI) block which
is used mainly for the configuration and testing of the TSB interface and two
inputs/outputs multiplexers. The transport overhead extraction and manipu-
lation functions are implemented by three sub-modules (Transport Overhead
bytes extractor, Automatic Protection Switch (APS) control and Synchroniza-
tion Status filtering).
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Figure 2: The RASE Telecom System Block

The RASE TSB extracts the Automatic Protection Switch (APS) bytes,
i.e., K1 and K2 bytes, and the Synchronization Status byte, i.e., S1 byte, from
a SONET frame (see Figure 3). After extracting the above bytes, it processes
them according to some requirements set by the SONET standard. The APS
control block filters and captures the received APS channel bytes (K1 and K2),
allowing them to be read via the CBI bus. The synchronization status filtering
block captures and filters the S1 status bytes, allowing them to be read via
the CBI bus. The RASE TSB also performs Bit Error Rate Monitoring using
the Bit Interleaved Parity (BIP)-24/8 line of a frame, i.e., B2 bytes (Figure 3).
The received line BIP error detection code is based on the line overhead and
synchronous payload envelope of the received data stream. The line BIP code
is a bit interleaved parity calculation using even parity. The calculated BIP
code (predefined by programmable registers) is compared with the BIP code
extracted from the B2 bytes of the following frame. Any differences indicate
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that a line layer bit error has occurred and an interrupt signal will be activated
in response to this error. The interrupt server activates an interrupt signal if
there is a change in APS bytes, a protection switch byte failure, a change in
the synchronization status, or a change in the status of Bit Error Rate Monitor
(BERM).

1 2 3 4 5 6 iiaiaanans 89 90 Bytes
. 1 [ ]
Overhead | 2
3 | —
4
— Payload
5/B2 | K1 | K2
Line 6
Overhead 7 —
8 | —
9|81
Transport Path
Overhead Overhead
SPE

Figure 3: The STS-1 SONET Frame Structure

We propose a hierarchical approach to model the TSB behavior at different
levels of the design hierarchy which in turn enables the verification process to be
done at different levels. The detail descriptions of this approach can be found
in [23]. Figure 4 displays a tree showing the level of design hierarchy of the
RASE TSB. Inspired by [16], we derived a behavioral model of the RASE TSB
which consists of five main functional blocks — Transport Overhead Extractor
(TOH), Automatic Protection Switch (APS), Synchronization Status Filtering,
Bit Error Rate Monitoring (BERM) and Interrupt Server. These are the basic
building blocks of the TSB. We composed the behavioral model of each basic
building block in a bottom-up fashion until we reached the top-level specification
of the RASE telecom system block. For the formal verification, we are interested
in the above five control blocks only to eliminate the possibility of state space
explosion. During our modeling of the verification, we eliminated those blocks
which have no effect on the functionality of the TSB.

4.1 MDG Modeling of the RASE Implementation

In this section, we describe the implementation of the TSB at the Register
Transfer Level (RTL). For the MDG-based verification, we translated the origi-
nal VHDL models into very similar models using MDG-HDL. One of the major
advantages in using MDGs is the ability to handle abstract descriptions. This
avoids all the ponderous procedure of defining each bit of a vector of Boolean
variables. Rather, a vector of Boolean variables can be viewed as a single ab-
stract variable. Thus a 24-bit frame-counter can be modeled as a variable of
abstract sort, say worda24, instead of a concrete sort with enumeration 0, 1, . .
., 16777215. Another advantage in using MDG is the ability to represent data
operations by uninterpreted function symbols. This enables the arithmetic and
logical blocks to be viewed as black-boxes. As a special case of uninterpreted
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Figure 4: The RASE TSB Design Hierarchy
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function, cross-operators are useful for modeling feedback from the datapath to
the control circuitry. To handle the complexity of the design, we hence adopted
a module abstraction technique for the RTL model in MDG. This idea is illus-
trated using an example (see Figure 5) from our case study.
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Figure 5: An Example of Module Abstraction

The circuit in the example is performing data operations over two operands
of different size. It is concatenating 5-bits for matching the size of the operands
to be used for addition and extracting twelve bits from the least significant bit
positions of the output by truncating the upper bits. Using MDG-HDL, we can
abstract the width of the datapath as well as the functionality of the original
model. The data operations (e.g., addition, concatenation) can be modeled
using uninterpreted function symbols applied to the operands (e.g. Add_17,
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Concat_5). Similarly, we can define feedback signals using uninterpreted cross-
operators, e.g. a function geq (dcount,declare_th), whitch models a greater-
or-equal test for the counter dcount against a threshold value, declare_th and
outputs a Boolean result.

4.2 MDG Modeling of the RASE Behavior

Based on the product documentation [16] provided to us, we derived a high-
level MDG behavioral model of the RASE TSB using Abstract State Machines
(ASMs). To illustrate the behavioral modeling approach adopted for the RASE
TSB, we are presenting here only the BIP counting abstract state machine and
its MGD-HDL model in pseudo-code (see Figure 6). The BIP line counter has
three possible states—S0, S1 and S2. The state variable Bcount of abstract sort
wordal2, stores the current count value of the BIP line. The symbol n_Becount
in Figure 6 represents the next state value of the BIP line counter. The symbols
st and bip are the inputs to the state machine. They represent the saturation
threshold value of the counter and the received BIP line, respectively. In state
S0, the counter has been initialized to zero, which is a generic constant of
abstract sort worda12. After initialization, if the input bip = “1” then the next
state will be S1, where the counter is incremented until it reaches the threshold.
The uninterpreted function inc_12 denotes the increment-by-one operation of
abstract words. When the count value is equal to the saturation threshold value
st, there will be a transition to state S2. In state S2, the value of the counter
will remain unchanged until Beount is not equal to st.

An abstract state machine can have an infinite number of states due to the
abstract nature of some variables and function symbols. The reachability anal-
ysis algorithm of the MDG tools is based on abstract implicit state enumeration
[9]. Due to the non-termination of abstract state enumeration all states may
not be reached [1]. To illustrate this limitation of MDG-based verification, we
can look at the example of Figure 6, where a generic constant zero of the ab-
stract sort denotes the initial value of Becount. The MDG representing the set
of reachable states of the BIP counting ASM would contain states of the form
(Bcount, inc_12(. . . inc-12(zero). . .)) for a number of infinite iterations.
As a consequence, there is no finite MDG representation of the set of reachable
states and the reachability algorithm will not terminate, since the structure of
the MDG will become arbitrarily large. This typical form of non-termination
can be avoided by using some heuristic techniques described, e.g., in [1] and
[21]. One such method is based on the generalization of initial state that causes
divergence, like the variable Bcount in Figure 6. Rather than starting the reach-
ability analysis with an abstract constant zero as the initial value of Bcount,
a fresh? abstract variable (e.g., C) is assigned to Bcount at the beginning of
the analysis. Because of this fresh variable, the initial set of states represented
by Bcount thus represents any state, hence any increment of Bcount leads the
ASM to a state where the new value of Beount is an instance of its arbitrary

2A fresh variable is disjoint from all other variables.
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ASM of the BIP line counter

~ reset

Bcount := zero

bip Bcount = st

bip
Bcount = st

Bcount = st
Bcount := inc_12(Bcount) Bcount := Beount

MDG-HDL model

initialize Bcount := C
initialize state := SO
case state := S0 if Bcount = st
then next (state) := S2
n_Bcount := Bcount
else if bip = 1
then next (state) := S1
n_Bcount :=inc_12 (Bcount)
case state := S1:if bip =1
then next (state) := S1
n_Bcount := inc_12 (Bcount)
else if B_count = st
then next (state) := S2
n_Bcount := Bcount
case state := S2: if Bcount = st
then next (state) := S2
n_Bcount := Bcount
else next (state) := SO
n_Bcount := zero

Figure 6: Example of an ASM with its MDG-HDL Model

value of the initial state.

5 Verification of the RASE TSB

The functional simulation for the TSB was performed using a VHDL test bench.
Two different types of data structure have been used. These data structures are
implemented for two different functions: the SONET frame data information
and the BIP line data. In contrast to simulation, formal verification has a built-
in technique that allows a non-deterministic choice of values for the primary
inputs. This non-determinism will eliminate the use of (explicit) deterministic
data structure as used for simulation. We have used a non-deterministic envi-
ronment to perform the MDG model checking and equivalence checking of the
TSB. The non-deterministic environment refers to that fact that no constraints
are applied on the primary input of the systems. But in the case of FormalCheck,
we required to constraint some of the primary inputs of the system, which was
essential for terminating some properties verification.
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Figure 7: Hierarchical Proof Methodology for Equivalence Checking

5.1 Hierarchical Verification Approach

Based on the hierarchy of the design, we adopted a hierarchical proof method-
ology for the verification of the proposed design. To illustrate our hierarchical
proof methodology, we can have system, S, having three sub-modules, named
B1, B2 and B3, which may or may not be interconnected between them by
control signals Figure 7. In the verification phases, first we proved that the
implementation of each sub-module (i.e., Bi[impl], where i = 1,.., 3) is equiv-
alent to its specification, (i.e. Bi[spec], where i = 1,.., 3), which can be done
automatically within the MDG system. Then we derive a specification for the
whole system, S[spec], as a conjunction of the specification of each sub-module.
Similarly, we also derive an implementation of the whole system, S[impl], as
a conjunction of the implementation of each sub-module. The current version
of the MDG system does not support an automatic conjunction procedure of
sub-modules. To cope with this limitation, we need manual interventions to
compose all of the sub-modules (both specification and implementation) until
the top level of the system is reached. This is done naturally using our MDG-
HDL, which is Prolog based, and hence provides a predicate description of the
design components. Finally, we deduce that the specification of the whole sys-
tem is equivalent to the top level implementation of the system. It is to be noted
that we must also ensure that the specification itself is correct with respect to
its desired behavior. This is done by model checking a set of properties.

The RASE TSB has five modules, each module in the design was verified
separately using both property and equivalence checking facilities provided by
the MDG tools. At first, we applied property checking on the block level of the
TSB. We sorted the properties according to the features that are generated by
the specific block. To illustrate this idea, we can have an example in Figure 8,
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Figure 8: Hierarchical Proof Methodology for Model Checking

where properties P1, P2 and P83 are the features for the blocks B1, B2, and B3,
respectively. To perform a hierarchical verification, first we will verify all of these
properties on their specific blocks. Finally, we will merge all of these properties
into a set of properties to be checked on the top level of the design, i.e., S[spec]
and S[impl]. In the following two sub-sections, we describe the verification
process for the Telecom System Block using MDG equivalence checking and
model checking, respectively. More details of the overall verification approach
can be found in [23].

5.2 Model Checking of the RASE TSB

We first applied property checking to ascertain that both the specification and
the implementation of the Telecom System Block satisfy some specific charac-
teristics of the system. The verification of the properties has been carried out
using the model checking facility of MDG [19].

The properties are described using a property specification language called
L mpg [19], which is a universally quantified first-order temporal logic. We have
verified a set of 12 properties. For illustration purposes, in the following, we
present three sample properties on the RASE TSB, Property 1, Property 7 and
Property 12. A complete description of a longer list of properties can be found
in Appendix A. In the properties description, the temporal operators, AG, X,
and F mean always, in the next state, and eventually in the future, respectively.
The symbols “I”, “&”, “|”, and “=" mean logical not, and, or and implication,
respectively.

Property 1: According to the specification of SONET Transport System
[5], the filtered S1 byte of a SONET frame needs to be identical for seven con-
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secutive frames. If seven consecutive frames do not contain identical S1 bytes,
an interrupt is generated to indicate that the filtered S1 value has changed.

AG((!(rstb = 0) & (rclk = 1) & (toh_ready = 1) & (((sl_cap = 1) &
(state_ssd = 6) & (sl_in = sl_last_reg) & (!(sl_in = si1_filter_reg)))
=> (X(s1i = 1))

where state_ssd = 6 means that no seven consecutive frames contain identical
S1 bytes. s1_in is the synchronization status byte of input SONET data stream,
and sl_last_reg and sl_filter reg are the previous and filtered values of the S1
bytes, respectively. sIi is the interrupt signal which should not go high if the
next frame does not contain identical S1 bytes.

Property 7: When the calculated Bit Error Rate (BER) counters (dcount
and ccount) exceed their programmable alarm declaration threshold value (de-
clare_th) and alarm clearing threshold value (clear_th), respectively, an alarm
(berv) will be triggered to indicate that the calculated BER on the SONET
input data stream exceeds its programmable threshold value.

AG(('( rstb = 0) & (bipclk = 1) & (berten = 1) & (declare_thm = 1)
& (mclear_th = 0)) => ( X (berv = 1)))

where Bipclk is the BIP line referenced clock and, dcount and ccount counters
count up to 4k depending on the configuration of the threshold values. These
counters are modeled with abstract data sorts, hence removing the possibility
of state space explosion in MDG.

Property 12: When the value of BERM declaration threshold alarm is sta-
ble, we need to make sure that the interrupt lines related to this value eventually
goes low.

AG(((berv = berv_last_reg) & (!(rstb = 0)) & (bipclk = 1)) =>
(F (beri = 0)))

where berv is the Bit Error Rate declaration threshold value. beri is the in-
terrupt signal which will go high if the calculated threshold value exceeds its
programmable one.

We applied model checking in a hierarchical fashion on both the block and
top levels of the TSB. As there are five blocks in our TSB design, we grouped
the properties into five block-level properties and finally merged them into a
set of twelve properties featuring the top level verification of the TSB. The
experimental results from the verification of a set of 12 properties on both the
RASE specification and implementation, are given in Table 1, including the
particular module affected, the CPU time in seconds, memory usage in MB
and the number of generated MDG nodes. Experimental results in Table 1 and
subsequent tables have been carried out on a Sun Ultra Sparc 2 machine with
768 MB of memory.
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Table 1: Model Checking Results using MDG
Implementation Specification

Property | Module |CPU Time | Memory | MDG || CPU Time | Memory | MDG
(sec.) (MB) | Nodes (sec.) (MB) | Nodes
Property 1 | S1 Filter 82.47 15.60 53139 59.91 13.22 21690
Property 2 APSC 82.62 14.98 52094 71.43 13.70 21333
Property 3 APSC 54.31 17.12 52375 55.39 12.46 20984
Property 4 APSC 78.05 15.24 51354 56.67 12.01 21060
Property 5 | TOH Proc. 76.57 15.53 51533 45.59 13.19 51527
Property 6 | TOH Ext. 81.65 15.80 52094 53.59 14.50 20837
Property 7 BERM 82.54 15.86 51482 52.76 12.92 21243
Property 8 BERM 64.30 15.72 51410 44.83 14.34 21060
Property 9 RASE 78.06 16.65 51330 56.28 12.37 21036
Property 10| RASE 58.41 16.12 51277 54.06 13.29 51253
Property 11 APSC 81.42 16.22 51530 54.99 12.59 51214
Property 12 BERM 85.72 15.98 51564 87.66 12.46 21178

5.3 Equivalence Checking of the RASE TSB

Once a certain confidence in the correctness of the models has been established,
we proceed with the verification of the RASE TSB models using equivalence
checking following the bottom-up hierarchical approach described earlier. For
instance, we verified that the RTL implementation of each module complied
with the specification of its behavioral model. Thanks to the many abstractions
we adopted to the overall RASE TSB, we also succeeded to verify the top level
specification of the RASE TSB against its total implementation. Experimental
results for the equivalence checking between the behavioral models against their
RTL implementations are given in Table 2, including the module verified, CPU
time in seconds, memory usage in MB and the number of MDG nodes generated.

The verifications of the first four modules consumed less CPU time and
memory, because they are less complex and have less abstract state variables
and cross-operators than those of the last three modules (see Table 2). The
BERM module consumed more CPU time and memory during the verification
as it performs complex arithmetic operations on abstract data. On the other
hand, the verification of the TOH Process module consumed less CPU time and
memory, even though it needs more MDG components to model than the BERM
module. This is because of the fact that the TOH Process module is a state
machine based design and in contrast to BERM does not perform any complex
data operation. To model the complex arithmetic operations of the BERM,
we need more abstract state variables and uninterpreted functions, especially
cross-operators, which have significant effects on the verification of this module.
As the top level of the design comprises all the bottom level sub-modules, it
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obviously takes more CPU time and memory during the verification process
than the other modules.

Table 2: Equivalence Checking Results Using MDG

Module CPU Time (sec.) | Memory (MB) | MDG Nodes

TOH Extractor 3.88 2.33 2806
APSC 17.37 7.91 9974

S1 Filter 22.22 6.81 14831
Interrupt Server 0.48 0.09 180
BERM 80.53 21.31 35799
TOH Processor 89.03 27.79 60068

RASE TSB 437.15 47.36 135658

6 Comparison with FormalCheck

One of the motivations of this work was to compare the model checking of
the RASE TSB using the MDG model checker with existing commercial model
checking tools, here Cadence FormalCheck [8]. The performance metrics of the
comparison were CPU time, memory usages and state variables. Similar to our
MDG verification, we also eliminated here some blocks which do not affect the
behavior of the system. Based on the design hierarchy, the model checking of
the lower level modules has been done in first place. Finally, we integrated all
sub-modules into a top level structural model of the RASE TSB and performed
the model checking on it. In our performance comparison between FormalCheck
and MDG model checking, we consider only the top level verification. A full
specification of the properties in the FormalCheck syntax, as well as the defined
constraints and macros are given in Appendix B.

The summary of the comparison between these two verification systems are
given in Table 3, where ‘*> means that the verification did not terminate af-
ter a substantial run-time (several days). Some properties verification in For-
malCheck (Properties 5, 7, 8, 9, 10 and 12) did not terminate due to state space
explosion, even though we used different tool guided reduction and abstraction
techniques in FormalCheck. The number of state variables used in FormalCheck
is less than MDG, because FormalCheck has a built-in state reduction technique
which is not available within the MDG system.

Properties 7, 8 and 12 belong to the BERM module, which is the largest
and most complex of the RASE TSB. The verification of Properties 7, 8 and 12
did not terminate as these are dealing with control signals having width of 12
to 24 bits. Moreover, some complex data operations between large sized state
variables were involved. For instance, if the control information needs n bits,
then it is impossible to reduce the datapath width to less than n. Hence, in this
case ROBDD-based datapath reduction technique is no more feasible. On the
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other hand, using the MDG-based approach, we naturally allow the abstract
representation of data while the control information is extracted from the dat-
apath using cross-operators. In general, ROBDD-based verification cannot be
directly applied to a mixed control-datapath design which has large data words
as the size of an ROBDD grows exponentially with the width of the Boolean
variables. The verification of the BERM module falls into the above mentioned
category which comprises lots of wide state variables.

Our experimental results show that FormalCheck whose underlying structure
is automata oriented [12] is more efficient in verifying FSM-based modules, i.e.,
concrete variables, than the MDG tools. For instance, Table 1 shows that
Properties 1, 2, 3, 4, 6 and 11 take less verification time in FormalCheck than
in MDG. These properties are related to the APSC, Synchronization status and
TOH Extraction modules which are completely FSM-based designs. Properties
5, 9 and 10 did not terminate on the top level using FormalCheck, as these
properties are verifying the integrated functionality of several modules.

Table 3: Comparative Model Checking Results using MDG and FormalCheck

MDG FormalCheck
Property | CPU Time | Memory State CPU Time | Memory State
(sec.) (MB) | Variables (sec.) (MB) | Variables
Property 1 82.47 15.60 57 60 16.08 54
Property 2 82.62 14.98 57 32 12.81 71
Property 3 54.31 17.12 57 44 14.45 43
Property 4 78.05 15.24 57 44 14.49 44
Property 5 76.57 15.53 56 * * *
Property 6 81.65 15.80 55 10 11.75 28
Property 7 82.54 15.86 57 * * *
Property 8 64.30 15.72 57 * * *
Property 9 78.06 16.65 55 * * *
Property 10 58.41 16.12 55 * * *
Property 11|  81.42 16.22 56 9 2.66 2
Property 12 85.72 15.98 56 * * *

Human effort to formal verification of any design is an important issue to
the industrial community. In FormalCheck, we do not need any intervention for
variable ordering while for the MDG tools, we used manual variable ordering
since no heuristic ordering algorithm is available in the current version. The
translation of the original VHDL design description to MDG-HDL structural
model was also time consuming. In contrast to this, no time was spent on the
RTL modeling for FormalCheck which accepts the original VHDL structural
model without any translation.
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7 Conclusions

In this paper, we demonstrated that the MDG tools have the capability to ver-
ify a moderate size industrial telecommunication hardware, the RASE TSB.
Based on the product documentation provided by PMC-Sierra, Inc., we derived
a behavioral model of the Telecom System Block. The specification was given
as English text which was modeled in terms of Abstract State Machines using
MDG-HDL. To handle the complexity of the RTL model, the module was ab-
stracted by using MDG based abstract sorts and uninterpreted functions. We
adopted a hierarchical verification approach to verify the whole TSB through
MDG-based equivalence and model checking. Our verification did not find any
errors in the existing design.

Although some of the ideas presented in this paper may be well known, this
is the first time the MDG tool has been applied to a commercial telecommu-
nication system. Unlike other conventional (simulation) tools, applying MDG
to a design verification is not straight forward or well defined. To apply this
tool, especially for a design like the RASE TSB, one needs to come up with
a methodology on “how to apply” MDG to this kind of large telecommunica-
tion hardware. On the other hand, one of the motivations of this work was to
compare the verification of the TSB using MDGs with the verification done by
a sophisticated formal verification tool, Cadence FormalCheck. The verifica-
tion in FormalCheck has one major practical advantage over MDG@G, namely the
VHDL/Verilog front-end which enables a seamless integration with the design
flow. The MDG-based approach on the other hand can handle arbitrary data
widths using abstract sort and uninterpreted functions which is a solution to
the state space explosion problem. Finally, our experimental results show that
in some cases, FormalCheck fails short due to state space explosion for wider
datapath.

The experimental results in this work suggest that a hybrid MDG-Formal
Check model checking approach can be applied to improve the efficiency of
formal verification in an industrial setting. This hybrid approach can be widely
applicable in verifying industrial size designs where the circuit is composed of
FSM-based control and datapath oriented modules.
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A MDG Properties Description

Property 1: According to the specification of SONET Transport System in [5]:
The filtered S1 byte of a SONET frame needs to be identical for eight consecutive
frames. If eight consecutive frames do not contain identical S1 bytes an interrupt
is generated to indicate that the filtered S1 value has changed. When the TSB
is in state_ssd = 6, it means that no seven consecutive frames contain identical
S1 bytes. If the next frame does not have identical byte, interrupt sfi will go
to high in the next cycle. In Laqpg this safety property is expressed as follows:

AG(('(rstb = 0) & (xrclk = 1) & (toh_ready = 1) & (sl_cap = 1) &
(state_ssd = 6) & (sl_in = sl1_last_reg) & (!(sl_in = s1_filter_reg)))
=> (X (s1i = 1)))

Property 2: According to the specification of the SONET Transport System
in [5]: The APS bytes, i.e., K1 and K2 bytes, should be identical for three con-
secutive frames. If there is a change in these APS bytes within three consecutive
frames, an interrupt will be generated to indicate that a change in APS bytes
has occurred. When the TSB in state_aps = 1 and the current values of APS
bytes are not identical with their previous filtered values, the interrupt will go
to high to indicate a change in APS bytes. In Laypg this safety property is
expressed as follows:

AG(((!(rstb = 0)) & (rclk = 1) & (toh_ready = 1) & (state_aps = 1) &
(('(k1_fil_reg = k1_in)) | (' (k2_fil_reg = k2_in)))) => (X (coapsi = 1)))

Property 3: According to the specification of SONET Transport System in
[5]: An alarm for the automatic protection switch failure will be triggered, i.e.,
psbfv = 1, whenever the TSB receives 12 frames in which three consecutive
frames do not contain identical K1 or K2 bytes. In Laqpg this safety property
is expressed as follows:

AG(((state_psf = 10) & (state_aps = 0) & (!(rstb = 0)) & (rclk=1)
& (toh_ready=1)) => (X (psbfv=1)))

Property 4: The TSB generates the protection switch failure interrupt, i.e.,
psbfi = 1, if the protection switch failure alarm is not stable. This means that
an interrupt will never be triggered whenever the current alarm value does not
differ from its previous value, i.e., in stable condition. The expression of this
safety property in Laqpg is as follows:

AG((((psbfv = 0) & (psbfv_last_reg = 1)) | ((psbfv = 1) &
((psbfv_last_reg = 0)))) => (X (psbfi = 1)))

Property 5: The toh_ready input is used as a synchronization signal. It must
be high for only one clock cycle per SONET frame. The kl.in, k2_in and
sl_in inputs are observed only when toh_ready is high. When this signal is
low, eventually all the inputs related to the transport overhead processing of
the TSB will be low. The Laqpg expression of these liveness properties are as
follows:
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AG((toh_ready = 0) => (F((s1li = 0) & (coapsi = 0))))

Property 6: In this property, we define the overhead byte extraction behavior
of the TSB. As the £Lapg syntax does not support abstract variables in the left
hand term of the formula, we need to create a concrete variable using original sig-
nals related to design elements and an MDG table. A cross-operator eq_ex and
two abstract variables indicating the location of the overhead bytes are used to
create this extra variable of concrete sort. In the following formula, s1_rin_equal
is a concrete signal generated by two cross-operators eq-ex(column, zero) and
eq-ex(row, eight). The variable s1_rin_equal = 1, if both of the cross-operators
give an output equal to 1. The non-filtered value of S1 bytes will be available
on the output port, i.e., s1_tsb, if the byte extractor extracts the overhead bytes
from the first column of the ninth row within a frame. In Laqpg this safety
property is expressed as follows:

AG(((!'(rstb = 0)) & (rclk = 1) & (sl_rin_equal = 1)) => (sl_tsb = rin))

Property 7: The function of the BERM is to monitor the BIP error line over
a defined declaration period and set an alarm if the declaration threshold is
exceeded. When the calculated BER exceeds a declaration threshold value, i.e.,
declare_th, the BERM status alarm berv goes high. If the calculated BER value
is under the clearing threshold, the alarm will reset. To check this threshold
value, i.e., dcount, the BERM module needs to perform several arithmetic op-
erations which include additions and incrementing of larger sized data. In the
following expression, we use expressions declare_thm = 1 and mclear_th = 0
instead of (declare_th < dcount) and (count > clear_th), respectively. To get
the value of declare_thm and mclear_th, we use an additional MDG table which
contains cross-operator to compare the input signals. In £4pg this safety prop-
erty is expressed as follows:

AGC(('( rstdb
& (mclear_th = 0)) => ( X (berv

0)) & (bipclk = 1) & (berten = 1) & (declare_thm = 1)
= 1))

Property 8: The TSB generates an interrupt, whenever the berv status is
changed, i.e., becomes unstable. This means that the interrupt will never be
triggered, i.e., beri = 1, if the current value of berv does not differ from its
previous value, i.e., stable condition. In £Lapg this safety property is expressed
as follows:

AG(((!(rstb = 0)) & (bipclk = 1) & ((( berv = 1) & (berv_last_reg = 0))
| ((berv = 0) & (berv_last_reg = 1)))) => (X (beri = 1)))

Property 9: When an event occurs on the inputs of the interrupt server, the
interrupt output of the TSB goes high. The inputs of the interrupt server
are connected to the interrupt lines of the BERM, APSC and other modules.
Whenever any of these interrupt lines, i.e., beri, psbfi, s1i and coapsi, goes high,
the interrupt line of the TSB will be set, i.e., int = 1. In Laqpg this safety
property is expressed as follows:
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AGC((!'(rstb = 0)) & (int_rd = 0) & ((rclk = 1) & ((s1i = 1) |
(coapsi = 1) | (psbfi = 1))) & ((biclk = 1) & (beri = 1)) => (int = 1))

Property 10: This property checks the reset behavior of the TSB. When the
asynchronous active low reset line is active, i.e., rstb = 0, all the outputs of the
TSB should remain low. In Lapg this safety property is expressed as follows:

AG((rstb = 0) => (s1i = 0) & (coapsi = 0) & (psbfi = 0) &
(psbfv = 0) & (berv = 0) & (beri = 0))

Property 11: When the values of an APS failure alarm are stable, we need to
make sure that the interrupt line related to this value eventually goes low. In
L mpg this liveness property is expressed as follows:

AG(((psbfv = psbfv_last_reg) & (!(rstb = 0)) & (rclk = 1)) =>
(F (psbfi = 0)))

Property 12: When the value of BERM declaration threshold alarm is stable,
we need to make sure that the interrupt lines related to this value eventually
goes low. In Laqpg this liveness property is expressed as follows:

AG(((berv = berv_last_reg) & (!(rstb = 0)) & (bipclk = 1)) =>
(F (beri = 0)))
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B FormalCheck Properties Description

1. Constraints for Property Checking in FormalCheck:

Clock Constraint: Rclk
Signal: Rclk
Extract: No
Default: No
Start: Low
1st Duration: 1
2nd Duration: 1

Clock Constraint: Bipclk
Signal: Bipclk
Extract: No
Default: No
Start: Low
1st Duration: 1
2nd Duration: 1

Reset Constraint: Rstb
Signal: Rstb
Default: Yes

Start: Low
Transition Duration Value
Start 2 0

forever 1

2. Properties Description in FormalCheck:
Property 1

Property: Property_1

Type: Always

After: (@sl_ready)and (Toh_Process_Inst: Sync_Status_Inst :
Filter: Match_Count = 6) and
(Toh_Process_Inst:Sync_Status_Inst:Templ = TRUE) and
(Toh_Process_Inst:Sync_Status_Inst:Temp2 = FALSE)

Always: Toh_Process_Inst:S1i = 1

Options: Fulfill Delay: O Duration: 1 counts of

Toh_Process_Inst : Rclk = rising

Property 2:
Property: Property_2

Type: Always
After: Q@k_filter and @k_ready and @k_last

23



B FORMALCHECK PROPERTIES DESCRIPTION 24

and Toh_Process_Inst:Apsc_Inst:Filter_Kik2:Match_Count = 1
Always: Toh_Process_Inst:Coapsi = 1
Options: Fulfill Delay: O Duration: 1 counts of Rclk = rising

Property 3:

Property: Property_3

Type: Always

After: G@k_ready and (Toh_Process_Inst : Apsc_Inst :
Psbf_Monitor : Mismatch_Count = 10) and

((Toh_Process_Inst : Apsc_Inst : Psbf_Monitor : Match_Count = 0) or

(Toh_Process_Inst : Apsc_Inst : Psbf_Monitor : Match_Count = 1 and
@k1_neq ))

Always: Toh_Process_Inst : Psbfv = 1

Options: Fulfill Delay: O Duration: 1 counts of Rclk = rising

Property 4:

Property: Property_4

Type: Never

Never: Toh_Process_Inst :Psbfi =1 and

(Toh_Process_Inst : Apsc_Inst : Psbf_Monitor : Temp_Psbfv =
Toh_Process_Inst : Apsc_Inst : Psbf_Interrupt : Psbfv_Last_Reg) and
@k_ready

Options: (None)

Property 5:

Property: Property_b5

Type: Eventually

After: Toh_Process_Inst : Toh_Ready = 0

Eventually: Toh_Process_Inst : Coapsi = 0 and
Toh_Process_Inst :S1i = 0

Options: (None)

Property 6:

Property: Property_6

Type: Always

After: Toh_Process_Inst : Toh_Extract_Inst :Column = 0 and
Toh_Process_Inst : Toh_Extract_Inst :Row = 8 and

Rclk = 1 and Rstb /= 0

Always: S1 = S1_Tsb

Options: Fulfill Delay: O Duration: 1 counts of Rclk = rising
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Property 7:

Property: Property_7

Type: Always

After: ( Q@Enable_berm ) and

(Berm_Inst:Declare_Th <= Berm_Inst:Dcount) and
(Berm_Inst : Ccount_Tst >= Berm_Inst : Clear_Th)

Always: Berm_Inst : Berv = 1

Unless: (Berm_Inst : Declare_Th >= Berm_Inst : Dcount) or
(Berm_Inst: Clear_Th <= Berm_Inst :Ccount)

Options: (None)

Property 8:

Property: Property_8

Type: Always

After: Rstb /= 0 and Bipclk = 1 and

Berm_Inst :Berv /= stable and @Enable_berm

Always: Berm_Inst :Beri = 1

Options: Fulfill Delay: O Duration: 1 counts of Bipclk = rising

Property 9:

Property: Property_9

Type: Always

After: Rstb /= 0 and Int_Rd = 0 and (Rclk = 1
and (Toh_Process_Inst : Sync_Status_Inst :S1i = 1 or
Toh_Process_Ins t: Apsc_Inst :Coapsi = 1 or
Toh_Process_Inst : Apsc_Inst :Psbfi=1)) and
(Bipclk=1 and Berm_Inst :Beri = 1)

Always: Int = 1

Unless: Int_Rd = 1

Options: (None)

Property 10:

Property: Property_10

Type: Always

After: Rstb = 0

Always: Toh_Process_Inst : Apsc_Inst :Coapsi = 0 and

Toh_Process_Inst : Apsc_Inst :Psbfi = 0 and

Toh_Process_Inst : Apsc_Inst :Psbfv = 0 and
Toh_Process_Inst : Sync_Status_Inst :S1i = 0 and
Berm_Inst :Berv = 0 and Berm_Inst :Beri = 0

Unless: Rstb /= 0

Options: (None)
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Property 11:

Property: Property_11

Type: Eventually

After: Rstb /= 0 and Rclk = 1 and Toh_Process_Inst : Apsc_Inst :
Psbfv = stable

Eventually: Toh_Process_Inst : Apsc_Inst :Psbfi = 0

Options: (None)

Property 12:

Property: Property_12

Type: Eventually

After: Rstb/=0 and Bipclk=1 and Berm_Inst :Berv=stable
Eventually: Berm_Inst :beri = 0

Options: (None)

3. Macros Expressions used in the Properties:

@sl_ready : ((Toh_Process_Inst :Rclk = 1) and (Toh_Process_Inst :Rstb /= 0))
and (Toh_Process_Inst : Sync_Status_Inst : S1_Ready = 1)

@k_filter : (Toh_Process_Inst : Apsc_Inst : Ki_In /=
Toh_Process_Inst : Apsc_Inst : Kl_Filter_Reg) or
(Toh_Process_Inst : Apsc_Inst : K2_In /=
Toh_Process_Inst : Apsc_Inst : K2_Filter_Reg)

@k_last : (Toh_Process_Inst : Apsc_Inst : K1_In =
Toh_Process_Inst : Apsc_Inst : K1_Last_Reg) and
(Toh_Process_Inst : Apsc_Inst : K2_In =
Toh_Process_Inst : Apsc_Inst : K2_Last_Reg)

@k_ready : ((Toh_Process_Inst : Apsc_Inst :Rclk = 1) and
(Toh_Process_Inst : Apsc_Inst :Rstb = 1)) and
(Toh_Process_Inst : Apsc_Inst : K_Ready = 1)

@kl_neq : Toh_Process_Inst : Apsc_Inst : Ki_In /=
Toh_Process_Inst : Apsc_Inst : K1_Last_Reg

@Enable_berm : ((Rstb /= 0) and (Bipclk = 1)) and (berten= 1)



