
AIOOL 2005 Preliminary Version

On the Transformation of SystemC to AsmL
using Abstract Interpretation

Ali Habibi 1

Electrical and Computer Engineering

Concordia University

Montreal, Canada

Sofiene Tahar 2

Electrical and Computer Engineering

Concordia University

Montreal, Canada

Abstract

SystemC is among a group of system level design languages proposed to raise the
abstraction level for embedded system design and verification. A straight and sound
verification by model checking or theorem proving of SystemC designs is, however,
infeasible given the object-oriented nature of this library and the complexity of its
simulation environment. We illustrated, in a previous work, the feasibility and suc-
cess of performing model checking and assertions monitors generation of SystemC
using a variant of Abstract State Machines (ASM) languages (AsmL). In this pa-
per, we establish the soundness of our approach by proving the correctness of the
transformation from SystemC to AsmL.

Key words: SystemC, Formal Verification, Abstract
Interpretation.

1 Introduction

SystemC [11] is an object-oriented system level language for embedded sys-
tems design and verification. It is expected to make a stronger effect in the
area of architecture, co-design and integration of hardware and software. The
SystemC library is composed from a set of classes and a simulation kernel
extending C++ to enable the modeling of complex systems at a higher level

1 Email: habibi@ece.concordia.ca
2 Email: tahar@ece.concordia.ca

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/211516637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Habibi

of abstraction than state-of-the-art HDL (Hardware Description Languages).
However, except for small models, the verification of SystemC designs is a
serious bottleneck in the system design flow. Direct model checking of Sys-
temC designs is not feasible due to the complexity of the SystemC library and
its simulator. To solve this problem, we proposed in [4] to translate SystemC
models to an intermediate representation in AsmL [8] more suitable for formal
verification. This approach reduced radically the complexity of the design at
the point that we were able to verify a complex PCI architecture using the
SMV model checker [12].

In this paper, we provide a formalization of the SystemC and AsmL se-
mantics in fixpoint based on the OO general case given in [7]. Then, we prove
that, for every SystemC program, there exists an AsmL program preserving
the same properties, w.r.t. an observation function α. The basic concept of
this proof of soundness is based on the systematic design of program trans-
formation frameworks defined in [2]. Such a result will enable using a variety
of formal tools (for e.g., SMV for model checking [12]) or to use AsmL tool
(Asmlt) to generate a finite state machine of the design.

Related work to ours concerns in particular, defining the formal semantics
of SystemC and AsmL. For instance, several approaches have been used to
write the SystemC semantics (e.g., using ASM is [9]). Denotational semantics
[10] is found to be most effective since objects can be expressed as fixpoints
on suitable domains. Salem in [13] proposed a denotational semantics for
SystemC. However, the proposal in [13] was very shallow missing to relate
the semantics of the whole SystemC program to the semantics of its classes.
Therefore, in order to construct a transformation relation between SystemC
and AsmL and to prove its soundness, we define, in this paper, our own
SystemC denotational semantics.

Regarding, the program transformation, the work of Patrick and Radhia
Cousot in [2] is the essence for any program transformation using abstract
interpretation. The tactical choice of using semantics to link the subject pro-
gram to the transformed program is very smart in the sense that it enables
proving the soundness proof of the transformation, related to an observational
semantics. A projection of that generic approach, described in Section 3.9 of
[2] on a SystemC subject program and an AsmL transformed program can be
used to perform the soundness of a transformation and also to construct it. In
both cases, we need to define the syntax, semantics and observation functions
for both AsmL and SystemC.

The rest of this paper is organized as follows: Section 2 and Section 3
present, respectively, the SystemC and AsmL semantics in fixpoint. Section
4 contains the proof of the existence and soundness of the SystemC to AsmL
transformation. Finally, Section 5 concludes the paper.

2

Habibi

2 SystemC Fixpoint Semantics

2.1 Syntactical Domains

SystemC have a large number of syntactical domains. However, they are all
based on the single SC Module domain. Hence, the minimum representation
for a general SystemC program is as a set of modules.

Definition 2.1 (SystemC Module: SC Module)
A SystemC Module is a set 〈DMem, Ports, Chan, Mth, SC Ctr〉, where DMem

is a set of the module data members, Ports is a set of ports, Chan a set of
SystemC Chan, Mth is a set of methods (functions) definition and SC Ctr the
module constructor.

Definition 2.2 (SystemC Port: SC Port)
A SystemC Port is a set 〈IF, N, SC In, SC Out, SC InOut〉, where IF is a set
of the virtual methods declarations, N is the number of interfaces that may be
connected to the port, SC In is an input port (provides only a Read method),
SC Out is an output port (provides only a Write method) and SC InOut is an
input/output port (provides Read and Write functions).

In contrast to default class constructors for OO languages, the SystemC
module constructor SC Ctr contains the information about the processes and
threads that will be executed during simulation.

Definition 2.3 (SystemC Constructor: SC Ctr)
A SystemC Constructor is a set 〈Name, Init, SC Pr, SC SSt〉, where Name is a
string specifying the module name, Init is a default class constructor, SC Pr

a set of processes and SC SSt is a set of sensitivity statements (to set the
process sensitivity list SC SL).

Definition 2.4 (SystemC Process: SC Pr)
A SystemC process is a set 〈PMth, PTh, PCTh〉, where PMth is a method process
(defined as a set 〈Mth, SC SL〉 including the method and its sensitivity list),
PTh is a thread process (accepts a wait statement in comparison to the method
process), PTh is a clocked thread process (sensitive to the clock event).

Definition 2.5 (SystemC Program: SC Pg)
A SystemC program is a set 〈LSC Mod, SC main〉, where LSC Mod is a set
of SystemC modules and SC main is the main function in the program that
performs the simulator initialization and contains the modules declarations.

2.2 Fixpoint Semantics

In this section, we define the semantics of the whole SystemC program, W

〚SC Pg〛, and the SystemC module, MSC〚m sc〛. Then, present the proofs (or
proof sketches) of the soundness and completeness of MSC〚m sc〛.

3

Habibi

Definition 2.6 (Delta Delay: δd)
The SystemC simulator considers two phases evaluate and update. The sepa-
ration between these two phases is called delta delay.

Definition 2.7 (SystemC Environment: SC Env)
The SystemC environment is the summation of the default C++ environment
(Env) as defined in [7] and the signal environment (Sig Store) specific to
SystemC: SC Env = Env + Sig Env = [Var → Addr]+ [SC Sig → Addr,Addr],
where Var is a set of variables, SC Sig is a set of SystemC signals and Addr

⊆ N is a set of addresses.

Definition 2.8 (SystemC Store: SC Store)
The SystemC store is the summation of the default C++ store (Store) as de-
fined in [7] and the signal store (Sig Store): SC Store = Store + Sig Store

= [Addr → Val]+ [(Addr, Addr) → (Val,Val)], where Val is a set of values
such that SC Env ⊆ Val.

Let R0 ∈ P(SC Env×SC Store) be a set of initial states, pcin be the en-
try point of the main function sc main and →⊆: (SC Env × SC Store) ×
(SC Env×SC Store) be a transition relation.

Definition 2.9 (Whole SystemC Program Semantics: W 〚SC Pg〛)
Let SC Pg = 〈LSC Mod, SC main〉 be a SystemC program. Then, the semantics
of SC Pg, W 〚SC Pg 〛∈ P(SC Env×SC Store) → P(T (SC Env× SC Store)) is

W〚SC Pg〛(R0) = lfp ⊆
∅
λX. (R0) ∪ {ρ0 → . . . ρn → ρn+1| ρn+1 ∈ (SC Env×

SC Store) ∧ {ρ0 → . . . ρn} ∈ X ∧ ρn → ρn+1}

Both definitions of the semantics of process declaration (PR 〚SC Pr〛) and
SystemC module constructor (PCtr 〚SC Ctr〛) are given in [6]. In contrast to
the semantics definition of an OO object in [7], a SystemC method can be
activated either by the default context or by the SystemC simulator through
the sensitivity list of the process. A complete definition of the semantics of
a SystemC module object (OSC〚o sc〛) through the definition of a transition
function nextsc(σ)=next(σ)

⋃
nextsig(σ), including both parts C++ re-

lated and SystemC specific functions, can be found in [6].

Theorem 2.10 Let

Fsc = λT . S0〈v, s〉 ∪ {σ0

l0→ . . .
ln−1

→ σn

ln→ σ′|

{σ0

l0→ . . .
ln−1

→ σn ∈ T , nextsc(σn) ∋ 〈σ′, l′〉}

Then OSC〚o sc〛)(vsc, ssc) = ∪ω
n=0Fsc

n(∅)

Proof. The proof is immediate from the fixpoint theorem in [1]. 2

Definition 2.11 (SystemC Module Semantics: MSC〚m sc〛))
Let m sc = 〈DMem, Ports, Chan, Mth, SC Ctr〉 be a SystemC module, then its
semantics MSC〚m sc〛) ∈ P(T (Σ)) is:

4

Habibi

MSC〚m sc〛= {OSC〚o sc〛(vsc, ssc) | o sc is an instance of m sc, v sc ∈ D in,

s sc ∈ SC Store}

Theorem 2.12 (SystemC Module semantics in fixpoint) Let

Gsc〈S〉= λT . {S0〈v, s〉 | 〈v, s〉 ∈ S } ∪ {σ0

l0→ . . .
ln−1

→ σn

l′

→ σ′|

{σ0

l0→ . . .
ln−1

→ σn ∈ T , nextsc(σn) ∋ 〈σ′, l′〉}

Then MSC〚m sc〛(vsc, ssc) = lfp ⊆
∅

Gsc〈 Din×Store〉

Proof. Although the SystemC model presents some additional functionalities
on top of C++, the proof of this theorem is similar to the proof of Theorem
3.2 in [7]. For instance, considering the definition of MSC and applying in
order Definition of a SystemC module object in [6], Theorem 2.10 and the
fixpoint theorem in [1], the proof is straightforward. 2

The last step in the SystemC fixpoint semantics is to relate the module
semantics to the whole SystemC program semantics. Hence, we consider up-
dated version of the function abstract (α◦) as defined in [7]. The new function
is upgraded to support the SystemC simulation semantics, environment and
store. The complete definitions of α SC◦ can be found in [6].

Theorem 2.13 (Soundness of MSC〚m sc〛) Let MSC be a whole SystemC pro-
gram and let mSC ∈ MSC. Then
∀ R0 ∈ SC Env× SC Store. ∀ τ ∈ T (SC Env× SC Store).

τ ∈ W〚SC Pg〛(R0) : ∃τ ′ ∈ MSC〚mSC 〛. α SC◦({τ}) = {τ ′}

Proof. (Sketch) We have to consider both cases when τ contains an object
oSC , instantiation of mSC , and when it does not include any oSC . For the
second situation, the proof of the theorem is trivial considering that τ will be
an empty trace. In the first case, the trace is not empty (let it be τ ′′). Since
SystemC modules are initialized in the main program sc main before the
simulation starts, there exist an initial environment, store and set of variables
that define the initial trace σ0 ∈ τ ′′. The rest of the traces in τ ′′ are interaction
states of oSC because they are obtained by applying α SC◦ on τ . Therefore,
τ ′′ ∈ MSC〚mSC〛. 2

Theorem 2.14 (Completeness of MSC〚〛) Let mSC be a SystemC module.
Then

∀τ ∈ T (Σ). τ ∈ MSC〚mSC 〛: ∃ SC P ∈ 〈LSC Pg〉. ∃ρ0 ∈ SC Env×

SC Store. ∃ oSC instance of mSC. exists τ ′ ∈ T (SC Env×

SC Store). τ ′ ∈ W〚ρ0〛∧ α SC◦({τ ′}) = {τ}

Proof. (Sketch) A SystemC program satisfying the previous theorem can be
constructed by creating and instance of mSC in the sc main function, the
initial state corresponds to the state when the module’s constructor, SC Ctr,

5

Habibi

was executed. An execution of a method of mSC corresponds to executing
a method thread (setting of the events in its sensitivity list to Active) and a
change of a port corresponds to updating its internal signal by the new values.
Hence, it is always possible to construct both SC P and ρ0. For instance, there
exist many other possible constructions involving SystemC threads, clocked
threads, etc. 2

3 AsmL Fixpoint Semantics

AsmL [8] is one of the very latest languages developed for ASM [3]. It supports
object-oriented modeling at higher level of abstraction in comparison to C++
or Java. We are going to restrict the AsmL semantics presented in this paper
to the subset used in the program transformation.

3.1 Syntactical Domains

Definition 3.1 (AsmL Class: AS C)
An AsmL class is a set 〈AS DMem, AS Mth, AS Ctr〉, where AS DMem is a set of
the module data members, AS Mth a set of methods (functions) definition and
AS Ctr is the module constructor.

One of the important features that we are going to use in AsmL corre-
sponds to the methods pre-conditions (Boolean proposition verified before the
execution of the method).

Definition 3.2 (AsmL Method: AS Mth)
An AsmL method is a set 〈AS M, AS Pre, AS Pos, AS Cst〉, where AS M is a the
core of the method, AS Pre is a set of pre-conditions, AS Pos is a set of post-
conditions and AS Cst is a set of constraints.

Note that AS Pre, AS Pos and AS Cst share the same structure. They are
differentiated in the methods by using a specific keyword for each of them
(e.g., require for pre-conditions).

Definition 3.3 (AsmL Program: AS Pg)
An AsmL Program is a set 〈LAS C, INIT〉, where LAS C is a set of AsmL classes
and INIT is the main function in the program.

3.2 Fixpoint Semantics

Similar to the notion of delta delay (δd) of SystemC, AsmL considers two
phases: evaluate and update. The program will be always running in the eval-
uate mode except if an update is requested. There are two types of updates,
total and partial (usually performed using the Step instruction).

Definition 3.4 (AsmL Environment: AS Env)
The AsmL Environment is a modified OO environment AS Env = [Var →

6

Habibi

Addr,Addr], where Var is a set of variables and Addr ⊆ N is as set of addresses
(two addresses store the current and new values of v ∈ Var).

Definition 3.5 (AsmL Store: AS Store)
The AsmL store is AS Store = [(Addr, Addr) → (Val,Val)], where Val is a
set of values such that AS Env ⊆ Val.

The whole AsmL program semantics (WAS 〚AS Pg〛), method semantics
(MAS 〚. 〛) and object semantics (OAS〚o AS〛) through the definition of a
transition function nextas(σ) can be found in [5]. The AsmL class constructor
is a can be defined according to the Definition 3.8 in [7].

Definition 3.6 (AsmL Class Semantics: CAS〚c as〛)
Let c as = 〈as dmem, as mth, as ctr〉 be an AsmL class, then its semantics
CAS〚c as〛) ∈ P(T (Σ)) is:

Cas〚c as〛= {OAS〚o as〛(vas, sas) | o as is an instance of c as, v as ∈ D in,

s as ∈ SC Store}

Theorem 3.7 (AsmL Class semantics in fixpoint) Let

Has〈S〉= λT . {S0〈v, s〉 | 〈v, s〉 ∈ S } ∪ {σ0

l0→ . . .
ln−1

→ σn

l′

→ σ′|

{σ0

l0→ . . .
ln−1

→ σn ∈ T , nextas(σn) ∋ 〈σ′, l′〉}

Then CAS〚c as〛(vas, sas) = lfp ⊆
∅

Has〈 Din×Store〉

Proof. Similar to the proof of Theorem 2.12 2

The function α AS◦ is an updated version of the function abstract (α◦)
defined in [7]. The complete definition of α AS◦ is given in [5].

Theorem 3.8 (Soundness of CAS〚c as〛) Let PAS be a whole SystemC pro-
gram and let cSC ∈ CSC. Then
∀ R0 ∈ AS Env× AS Store. ∀ τ ∈ T (AS Env× AS Store).

τ ∈ W〚AS Pg〛(R0) : ∃τ ′ ∈ CAS〚cAS 〛. α AS◦({τ}) = {τ ′}

Proof. Similar to Theorem 2.13. 2

Theorem 3.9 (Completeness of CAS〚〛) Let cAS be a SystemC module. Then

∀τ ∈ T (Σ). τ ∈ CSC〚cSC 〛: ∃ AS P ∈ 〈LAS Pg〉. ∃ρ0 ∈ AS Env×

AS Store. ∃ oAS instance of cAS. exists τ ′ ∈ T (AS Env×

AS Store). τ ′ ∈ W〚ρ0〛∧ α AS◦({τ ′}) = {τ}

Proof. Similar construction approach to what we proposed in Theorem 2.14
except that instead of considering the SystemC method thread and sensitivity
list, we consider here AsmL methods and their pre-conditions. Here also,
there exist many possible constructions involving AsmL post-conditions, for
example. 2

7

Habibi

4 Program Transformation

The equivalence in behavior, with respect to the observation αo, between the
source SystemC program and the target AsmL program is required to ensure
the soundness of any verification result at the AsmL level. Our objective is to
define a relation between the SystemC processes active for certain delta cycle
and the set of methods allowed to be executed in the AsmL model. Hence, we
will map every thread (method, sensitivity list) in the SystemC program by a
method (method core, pre-condition) in the AsmL program to ensure having
set of variables in both programs updated in the same time with the same
values.

The SystemC observation function needs to see all the active processes at
the beginning of a delta-cycle by checking for the end of the update phase.

Definition 4.1 (SystemC observation function: αSC
o

)
Let SC Pg= 〈LSC Mod, SC main〉 be a SystemC program, the observation func-
tion αSC

o
∈ P(SC Env×SC Store) → P(T (SC Env× SC Store)) is

αSC
o

〚SC Pg〛(R0) =

lfp ⊆
∅
λX.(R0) ∪ {ρ̃0 → . . . ρ̃n| ∀ρ̃i ∈ (SC Env× SC Store) ∃ {ρi

0 → . . . ρi
m
}

∈ X ∧ ρi
m
→ ρ̃i ∧ { m sc in MSC | ∃o sc ∈ MSC . o sc(ρi

m
()) 6= {ǫ} } = ∅}

In the previous definition, αSC
o

is only tracing the initial states of a simu-
lation cycle. For instance, the third condition confirms that in the last simu-
lation cycle there was no single process ready to run. Similarly, we define an
observation function αAS

o
for an AsmL program.

Definition 4.2 (AsmL observation function: αAS
o

)
Let AS Pg= 〈LAS C, INIT〉 be an AsmL program, the observation function αAS

o

∈ P(AS Env×AS Store) → P(T (AS Env× AS Store)) is

αAS
o

〚AS Pg〛(R0) =

lfp ⊆
∅
λX.(R0) ∪ {ρ̃0 → . . . ρ̃n| ∀ρ̃i ∈ (SC Env×AS Store) ∃ {ρi

0 → . . . ρi
m
}

∈ X ∧ ρi
m
→ ρ̃i ∧ { m as in CAS | ∃o as ∈ CAS. o as(ρi

m
()) 6= {ǫ} } = ∅ }

Next, we define the notion of equivalence between the two observations.
Although, SystemC and AsmL have different environment and store struc-
tures, it is possible to ensure that they contain the same information.

Definition 4.3 (Equivalence w.r.t. αo: ≡αo
)

Let SC Pg be a SystemC program, V sc a set of its variables, AS Pg be an
AsmL program and Dout as a set of its output variables.

prog sc ≡αo
prog as if

∀RSC
0 set of initial states of SC Pg. ∀RAS

0 set of initial states of AS Pg.

∀ρ̃ ∈ {ρ̃0 → . . . → ρ̃n} ∈ αSC
o

〚SC Pg〛(RSC
0).

8

Habibi

∃ρ̂ ∈ {ρ̂0 → . . . → ρ̂n} ∈ αAS
o

〚AS Pg〛(RAS
0) |

∀ vsc ∈ V sc. ∃ vas ∈ V as such that

if vsc ∈ SC Sig then (ρ̃(vsc) = (vl1,vl2)) ∧ (ρ̂(vas) = (vl1,vl2))

if vsc ∈ AS DMem then (ρ̃(vsc) = vl1) ∧ (ρ̂(vas) =(vl1,vl1))

The observation function ensures that the AsmL program is mimicking the
evaluate and update phases (same length n of the ρ sets). The first if condition
takes care of the SystemC signals while the second one concerns basic C++
variables.

Theorem 4.4 (Existence of transformed AsmL program w.r.t. αSC
o

) Let SC Pg

be a whole SystemC program, SC Din a set of inputs and SC Dout a set of out-
puts. Then

∃ AS Pg, an AsmL program, such that SC Pg ≡αo
AS Pg

Proof. (Sketch) The proof is done by constructing the AsmL program. For
instance, for every SystemC module we affect an AsmL class having the same
data members and methods. We set the pre-conditions, AS Ctr, for the AsmL
methods as a conjunction of the state of the events present in the sensitivity
list, SC SL, of the SystemC program processes. The tricky point in the con-
struction is when to make the updates in the AsmL program. We have two
possibilities: (1) C++ variables update: whenever a C++ variable is involved
in an instruction, a partial update can be applied using the notion of binders
in AsmL; and (2) SystemC signals: all signals are updated when all methods
pre-conditions are false. Once the set of AsmL classes defined, Theorem 3.9
ensures the existent of the AsmL program. 2

Theorem 4.5 (Soundness of the transformation) Let SC Pg be a whole Sys-
temC program and let AS Pg be a whole AsmL program. Then

SC Pg ≡αo
AS Pg : ∀ Prop(V sc,ρ̃) | ρ̃ ∈ αSC

o
〚SC Pg〛.

SC Pg ⊢ Prop(V sc,ρ̃) : AS Pg ⊢ Prop(V as,ρ̂) | ρ̂ ∈ αAS
o

〚AS Pg〛.

where Prop is a program’s property, V sc is a set of variables of the SystemC
program, V as are their corresponding variables in the AsmL program.

Proof. The proof is straightforward from the construction of equivalence re-
lation ≡αo

in Definition 4.3. 2

5 Conclusion

In this paper, we presented the fixpoint semantics of the SystemC library
including, in particular, the semantics of a SystemC Module that we proved
to be soundn and complete w.r.t. a trace semantics of a SystemC program. We
provided also the semantics of a subset of AsmL and we proved the soundness
and completeness of an AsmL class w.r.t. to a trace semantics of the AsmL

9

Habibi

program. Then, we proved the existence, for every SystemC program, of an
AsmL program having similar behavior w.r.t. an observation function that
we set to consider the traces of the system just after the update phase of the
SystemC simulator. We have used this SystemC to AsmL transformation to
reduce the complexity of SystemC models and enabled their formal verification
[4] using model checking and theorem proving approaches used with AsmL and
ASM languages in general.

References

[1] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
In Symposium on Principles of Programming Languages, pages 269–282, San
Antonio, TX, USA, 1979.

[2] P. Cousot and R. Cousot. Systematic design of program transformation
frameworks by abstract interpretation. In Symposium on Principles of

Programming Languages, pages 178–190, Portland, Oregon, January 2002.

[3] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In Specification and

Validation Methods, pages 9–36. Oxford University Press, 1995.

[4] A. Habibi and S. Tahar. Design for verification of SystemC transaction level
models. In Design Automation and Test in Europe, Munich, Germany.

[5] A. Habibi and S. Tahar. AsmL fixpoint semantics. Technical report,
Department of ECE, Concordia University, December 2004.

[6] A. Habibi and S. Tahar. SystemC fixpoint semantics. Technical report,
Department of ECE, Concordia University, December 2004.

[7] F. Logozzo. Anhalyse Statique Modulaire de Langages a Objets. PhD thesis,
Ecole Polytechnique, Paris, France, June 2004.

[8] Microsoft Corp. AsmL for Microsoft .NET framework, 2004.

[9] W. Müller, J. Ruf, and W. Rosenstiel. SystemC Methodologies and Applications.
Kluwer Academic Pub., 2003.

[10] P. D. Mosses. Denotational semantics, volume B of Handbook of Theoretical

Computer Science, chapter 11, pages 575–631. Elsevier Science B.V., 1990.

[11] Open SystemC Initiative. Website: http://www.systemc.org, 2004.

[12] K. Oumalou, A. Habibi, and S. Tahar. Design for verification of a PCI bus in
SystemC. In Symposium on System-on-Chip, Finland, November 2004.

[13] A. Salem. Formal semantics of synchronous SystemC. In Design, Automation

and Test in Europe Conference, pages 376–381, Munich, Germany, 2003.

10

	Introduction
	SystemC Fixpoint Semantics
	Syntactical Domains
	Fixpoint Semantics

	AsmL Fixpoint Semantics
	Syntactical Domains
	Fixpoint Semantics

	Program Transformation
	Conclusion
	References

