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Abstract

When a digital filter is realized with floating-point or fixed-point arithmetics, errors
and constraints due to finite word length are unavoidable. In this paper, we show how
these errors can be mechanically analysed using the HOL theorem prover. We first
model the ideal real filter specification and the corresponding floating-point and fixed-
point implementations as predicates in higher-order logic. We use valuation functions
to find the real values of the floating-point and fixed-point filter outputs and define
the error as the difference between these values and the corresponding output of the
ideal real specification. Fundamental analysis lemmas have been established to derive
expressions for the accumulation of roundoff error in parametric Lth-order digital fil-
ters, for each of the three canonical forms of realization: direct, parallel, and cascade.
The HOL formalization and proofs are found to be in a good agreement with existing
theoretical paper-and-pencil counterparts.
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1 Introduction

Signal processing through digital techniques has become increasingly attractive with the
rapid technological advancement in digital integrated circuits, devices, and systems. The
availability of large scale general purpose computers and special purpose hardware has made
real time digital filtering both practical and economical. Digital filters are a particularly
important class of DSP (Digital Signal Processing) systems. A digital filter is a discrete
time system that transforms a sequence of input numbers into another sequence of output,
by means of a computational algorithm [14]. Digital filters are used in a wide variety of signal
processing applications, such as spectrum analysis, digital image and speech processing, and
pattern recognition. Due to their well-known advantages, digital filters are often replacing
classical analog filters. The three distinct and most outstanding advantages of the digital
filters are their flexibility, reliability, and modularity. Excellent methods have been developed
to design these filters with desired characteristics. The design of a filter is the process of
determination of a transfer function from a set of specifications given either in the frequency
domain, or in the time domain, or for some applications, in both. The design of a digital
filter starts from an ideal real specification. In a theoretical analysis of the digital filters, we
generally assume that signal values and system coefficients are represented in the real number
system and are expressed to an infinite precision. When implemented as a special-purpose
digital hardware or as a computer algorithm, we must represent the signals and coefficients in
some digital number system that must always be of a finite precision. Therefore, arithmetic
operations must be carried out with an accuracy limited by this finite word length. There
is a variety of types of arithmetic used in the implementation of digital systems. Among
the most common are the floating-point and fixed-point. Here, all operands are represented
by a special format or assigned a fixed word length and a fixed exponent, while the control
structure and the operations of the ideal program remain unchanged. The transformation
from the real to the floating-point and fixed-point forms is quite tedious and error-prone. On
the implementation side, the fixed-point model of the algorithm has to be transformed into
the best suited target description, either using a hardware description or a programming
language. This design process can be aided by a number of specialized CAD tools such
as SPW (Cadence) [4], CoCentric (Synopsys) [21], Matlab-Simulink (Mathworks) [17], and
FRIDGE (Aachen UT) [23].
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Figure 1: Error Analysis Approach

In this paper, we propose a methodology for the error analysis of digital filters using the
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HOL theorem proving environment [6] based on the commutating diagram shown in Figure
1. Thereafter, we first model the ideal real filter specification and the corresponding floating-
point and fixed-point implementations as predicates in higher-order logic. For this, we make
use of existing theories in HOL on the construction of real numbers [8], the formalization of
IEEE-754 standard based floating-point arithmetic [9, 10], and the formalization of fixed-
point arithmetic [3]. We use valuation functions to find the real values of the floating-point
and fixed-point filter outputs and define the errors as the differences between these values
and the corresponding output of the ideal real specification. Then we establish fundamental
lemmas on the error analysis of the floating-point and fixed-point roundings and arithmetic
operations against their abstract mathematical counterparts. Finally, we use these lemmas
as a model to derive expressions for the accumulation of the roundoff error in parametric
Lth-order digital filters, for each of the three canonical forms of realization: direct, parallel,
and cascade [19]. Using these forms, our verification methodology can be scaled up to any
larger-order filter, either directly or by decomposing the design into a combination of internal
sub-blocks. While the theoretical work on computing the errors due to finite precision effects
has been extensively studied since the late sixties [16], it is for the first time in this paper,
that a formalization and proof of this analysis for digital filters is done using a mechanical
theorem prover, here the HOL. Our results are found to be in a good agreement with the
theoretical ones.

The rest of this paper is organized as follows: Section 2 gives a review of the related
work. Section 3 introduces the fundamental lemmas in HOL for the error analysis of the
floating-point and fixed-point rounding and arithmetic operations. Section 4 describes the
details of the error analysis in HOL of the class of linear difference equation digital filters
implemented in the three canonical forms of realization. Finally, Section 5 concludes the
paper.

2 Related Work

Work on the analysis of the errors due to the finite precision effects in the realization of
the digital filters has always existed since their early days, however, using theoretical paper-
and-pencil proofs and simulation techniques. For digital filters realized with the fixed-point
arithmetic, error problems have been studied extensively. For instance, Knowles and Ed-
wards [15] proposed a method for analysis of the finite word length effects in fixed-point
digital filters. Gold and Radar [7] carried out a detailed analysis of the roundoff error for
the first-order and second-order fixed-point filters. Jackson [13] analyzed the roundoff noise
for the cascade and parallel realizations of the fixed-point digital filters. While the roundoff
noise for the fixed-point arithmetic enters into the system additively, it is a multiplicative
component in the case of the floating-point arithmetic. This problem is analyzed first by
Sandberg [20], who discussed the roundoff error accumulation and input quantization effects
in the direct realization of the filter excited by a deterministic input. He also derived a bound
on the time average of the squared error at the output. Liu and Kaneko [16] presented a
general approach to the error analysis problem of digital filters using the floating-point arith-
metic and calculated the error at the output due to the roundoff accumulation and input
quantization. Expressions are derived for the mean square error for each of the three canon-
ical forms of realization: direct, cascade, and parallel. Upper bounds that are useful for a
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special class of the filters are given. Oppenheim and Weinstein [18] discussed in some details
the effects of the finite register length on implementations of the linear recursive difference
equation digital filters, and the fast Fourier transform (FFT) algorithm. Comparisons of the
roundoff noise in the digital filters using the different types of arithmetics have also been
reported in [22].

In order to validate the error analysis, most of the above work compare the theoretical
results with corresponding experimental simulations. In this paper, we show how the above
error analysis can be mechanically performed using the HOL theorem prover, providing a
superior approach to validation by simulation. Our focus will be on the process of translating
the hand proofs into equivalent proofs in HOL. The analysis we propose is mostly inspired by
the work done by Liu and Kaneko [16], who defined a general approach to the error analysis
problem of digital filters using the floating-point arithmetic. Following a similar approach,
we have extended this theoretical analysis for fixed-point digital filters. In both cases, a
good agreement between the HOL formalized and the theoretical results are obtained.

Through our work, we confirmed and strengthened the main results of the previously
published theoretical error analysis, though we uncovered some minor errors in the hand
proofs and located a few subtle corners that were overlooked informally. For example, in the
theoretical fixed-point error analysis it is always assumed that the fixed-point addition causes
no error and only the roundoff error in the fixed-point multiplication is analyzed [18]. This
is under the assumption that there is no overflow in the result and also the input operands
have the same attributes as the output. Using a mechanical theorem prover, we provide a
more general error analysis in which we cover the roundoff errors in both the fixed-point
addition and multiplication operations. On top of that, for the floating-point error analysis,
we have used the formalization in HOL of the IEEE-754 [9], a standard which has not yet
been established at the time of the above mentioned theoretical error analysis. This enabled
us to cover a more complete set of rounding and overflow modes and degenerate cases which
are not discussed in earlier theoretical work.

Previous work on the error analysis in formal verification was done by Harrison [10] who
verified the floating-point algorithms such as the exponential function against their abstract
mathematical counterparts using the HOL Light theorem prover. As the main theorem, he
proved that the floating-point exponential function has a correct overflow behavior, and in the
absence of overflow the error in the result is bounded to a certain amount. He also reported
on an error in the hand proof mostly related to forgetting some special cases in the analysis.
This error analysis is very similar to the type of analysis performed for DSP algorithms. The
major difference, however, is the use of statistical methods and mean square error analysis
for DSP algorithms which is not covered in the error analysis of the mathematical functions
used by Harrison. In this method, the error quantities are treated as independent random
variables uniformly distributed over a specific interval depending on the type of arithmetic
and the rounding mode. Then the error analysis is performed to derive expressions for the
variance and mean square error. To perform such an analysis in HOL, we need to develop a
mechanized theory on the properties of random variables and random processes. This type of
analysis is not addressed in this paper and is a part of our work in progress. Huhn et al. [12]
proposed a hybrid formal verification method combining different state-of-the-art techniques
to guide the complete design flow of imprecisely working arithmetic circuits starting at the
algorithmic down to the register transfer level. The usefulness of the method is illustrated
with the example of the discrete cosine transform algorithms. In particular, the authors have
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shown the use of computer algebra systems like Mathematica or Maple at the algorithmic
level to reason about real numbers and to determine certain error bounds for the results
of numerical operations. In contrast to [12], we propose an error analysis for digital filters
using the HOL theorem prover. Although the computer algebraic systems such as Maple
or Mathematica are much more popular and have many powerful decision procedures and
heuristics, theorem provers are more expressive, more precise, and more reliable [11]. One
option is to combine the rigour of the theorem provers with the power of computer algebraic
systems as proposed in [11].

3 Error Analysis Models

In this section we introduce the fundamental error analysis theorems [5, 24], and the corre-
sponding lemmas in HOL for the floating-point [9, 10] and fixed-point [3] arithmetics. These
theorems are then used in the next sections as a model for the analysis of the roundoff error
in digital filters.

3.1 Floating-Point Error Model

In analyzing the effects of floating-point roundoff, the effects of rounding will be repre-
sented multiplicatively. The following theorem is the most fundamental in the floating-point
rounding-error theory [5, 24].

Theorem 1: If the real number x located within the floating-point range, is rounded to the
closest floating-point number xR, then

xR = x(1 + δ), where |δ| ≤ 2−p (1)

and p is the precision of the floating-point format.
In HOL, we established this theorem according to the available formalization of IEEE

754 floating-point standard [9, 10], as follows:

` (normalizes x) ⇒
∃e.
(abs e ≤ inv (2 pow ((fracwidth X) + 1))) ∧
(Val (float (round X mode x)) = x * (1 + e))

where the function normalizes defines the criteria for an arbitrary real number to be in the
normalized range of floating-point numbers, fracwidth extracts the fraction width param-
eter from the floating-point format X, Val is the floating-point valuation function, float is
the bijection function that converts a triplet of natural numbers into the floating-point type,
round is the floating-point rounding function, and mode is the corresponding rounding mode.

To prove this theorem [5], we first proved the following lemma which locates a real number
in a binade (the floating-point numbers between two adjacent powers of 2):

` (normalizes x) ⇒
∃j.
(j ≤ ((emax X) − 2)) ∧
((2 pow (j + 1) / 2 pow (bias X)) ≤ abs x) ∧
(abs x < (2 pow (j + 2) / 2 pow (bias X)))
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where the function emax defines the maximum exponent in a given floating-point format,
and bias defines the exponent bias in the floating-point format which is a constant used
to make the exponent’s range nonnegative. Using this lemma we can rewrite the general
floating-point absolute error bound theorem (ERROR BOUND NORM STRONG) developed in [10]
as follows:

` (normalizes x) ⇒
∃j.
(abs (error x) ≤ (2 pow j / 2 pow (bias X + fracwidth X)))

which states that if the absolute value of a real number is in the representable range of the
normalized floating-point numbers, then the absolute value of the error is less than or equal
to 2j/2(bias X + fracwidth X). The function error, defines the error resulting from rounding a
real number to a floating-point value which is defined as follows [10]:

`def error x = (Val (float (round X mode x)) − x)

Since (2(j+1) / 2(bias X)) ≤ |x| for the real numbers in the normalized region as proved in
Lemma 2, we have (|error x| / |x|) ≤ (2j / 2(bias X + fracwidth X)) /(2(j+1) / 2(bias X)) or
(|error x| / |x|) ≤ (1 / 2((fracwidth X) + 1)). Finally, defining e = (error x / x) will complete
the proof of the floating-point relative error bound theorem as described in Lemma 1.

Next, we apply the floating-point relative rounding error analysis theorem (Theorem 1)
to the verification of the arithmetic operations. The goal is to prove the following theorem
in which floating-point arithmetic operations such as addition, subtraction, multiplication,
and division are related to their abstract mathematical counterparts according to the corre-
sponding errors.

Theorem 2: Let ∗ denote any of the floating-point operations +, -, × , /. Then

fl (x ∗ y) = (x ∗ y)(1 + δ), where |δ| ≤ 2−p (2)

and p is the precision of the floating-point format. The notation fl (.) is used to denote that
the operation is performed using the floating-point arithmetic.

To prove this theorem in HOL, we start from the already proved lemmas on absolute anal-
ysis of rounding error in floating-point arithmetic operations (FLOAT ADD,FLOAT SUB,FLOAT

MUL,FLOAT DIV) developed in [10]. We have converted these lemmas to the following rela-
tive error analysis version, using the relative error bound analysis of floating-point rounding
(Theorem 1):
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` [(Finite a) ∧ (Finite b) ∧ (normalizes (Val a + Val b))] ⇒
(Finite (a + b)) ∧
∃e.
abs e ≤ inv (2 pow ((fracwidth X) + 1)) ∧
(Val (a + b) = (Val a + Val b) * (1 + e))

` [(Finite a) ∧ (Finite b) ∧ (normalizes (Val a − Val b))] ⇒
(Finite (a − b)) ∧
∃e.
abs e ≤ inv (2 pow ((fracwidth X) + 1)) ∧
(Val (a − b) = (Val a − Val b) * (1 + e))

` [(Finite a) ∧ (Finite b) ∧ (normalizes (Val a * Val b))] ⇒
(Finite (a * b)) ∧
∃e.
abs e ≤ inv (2 pow ((fracwidth X) + 1)) ∧
(Val (a * b) = (Val a * Val b) * (1 + e))

` [(Finite a) ∧ (Finite b) ∧ (¬Iszero b) ∧ (normalizes (Val a / Val b))] ⇒
(Finite (a / b)) ∧
∃e.
abs e ≤ inv (2 pow ((fracwidth X) + 1)) ∧
(Val (a / b) = (Val a / Val b) * (1 + e))

where the function Finite defines the finiteness criteria for the floating-point numbers, and
the function Iszero checks if a given floating-point number is equal to zero. Note that we
use the conventional symbols for arithmetic operations on floating-point numbers using the
operator overloading feature of HOL. The lemmas are composed of two parts. The first part
is about the finiteness of the floating-point operation output. It states that for each pair of
finite floating-point numbers, if the real result is in the representable range of normalized
floating-point numbers, then the output result is also finite. For floating-point division, the
second operand should be nonzero to avoid the division by zero. The second part of the
lemmas states that the result of a floating-point operation is the exact result, perturbed
by a relative error of bounded magnitude. It is of great importance to note that in these
theorems the format parameter X is hidden inside the floating-point arithmetic operations
(a + b, etc.) using the HOL operator overloading feature.

3.2 Fixed-Point Error Model

While the rounding error for the floating-point arithmetic enters into the system multiplica-
tively, it is an additive component for the fixed-point arithmetic. In this case the fundamental
error analysis theorem can be stated as follows [24].

Theorem 3: If the real number x located in the range of the fixed-point numbers with
format X’, is rounded to the closest fixed-point number x′R, then

x′R = x + ε, where |ε| ≤ 2−fracbits (X′) (3)

and fracbits is a function that extracts the number of bits that are to the right of the binary
point in the given fixed-point format.

This theorem is proved in HOL as follows [3]:
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` [(validAttr X′) ∧ (representable X′ x)] ⇒
∃e.
abs e ≤ inv (2 pow fracbits X′) ∧
(value (Fxp_round X′ x) = x + e)

where the function validAttr defines the validity of the fixed-point format X’, representable
defines the criteria for a real number to be in the representable range of the fixed-point for-
mat, and Fxp round is the fixed-point rounding function.

The verification of the fixed-point arithmetic operations using the absolute error analysis
of the fixed-point rounding (Theorem 3) can be stated as in the following theorem in which
the fixed-point arithmetic operations are related to their abstract mathematical counterparts
according to the corresponding errors.

Theorem 4: Let ∗ denote any of the fixed-point operations +, -, × , /, with a given format
X’. Then

fxp (x ∗ y) = (x ∗ y) + ε, where |ε| ≤ 2−fracbits (X′) (4)

and the notation fxp (.) is used to denote that the operation is performed using the fixed-
point arithmetic. This theorem is proved in HOL using the following lemmas [3]:

` [(Isvalid a) ∧ (Isvalid b) ∧ validAttr (X′) ∧
(representable X′ (value a + value b))] ⇒
[(Isvalid (FxpAdd X′ a b)) ∧
∃e.
abs e ≤ inv (2 pow (fracbits X′)) ∧
value (FxpAdd X′ a b) = (value a + value b) + e]

` [(Isvalid a) ∧ (Isvalid b) ∧ validAttr (X′) ∧
(representable X′ (value a − value b))] ⇒
[(Isvalid (FxpSub X′ a b)) ∧
∃e.
abs e ≤ inv (2 pow (fracbits X′)) ∧
value (FxpSub X′ a b) = (value a − value b) + e]

` [(Isvalid a) ∧ (Isvalid b) ∧ validAttr (X′) ∧
(representable X′ (value a * value b))] ⇒
[(Isvalid (FxpMul X′ a b)) ∧
∃e.
abs e ≤ inv (2 pow (fracbits X′)) ∧
value (FxpMul X′ a b) = (value a * value b) + e]

` [(Isvalid a) ∧ (Isvalid b) ∧ ¬ (value b = 0) ∧ validAttr (X′) ∧
(representable X′ (value a / value b))] ⇒
[(Isvalid (FxpDiv X′ a b)) ∧
∃e.
abs e ≤ inv (2 pow (fracbits X′)) ∧
value (FxpDiv X′ a b) = (value a / value b) + e]

where the function Isvalid defines the validity of a fixed-point number, value is the fixed-
point valuation function, and FxpAdd, FxpSub, FxpMul, and FxpDiv are the corresponding
functions for fixed-point addition, subtraction, multiplication, and division operations, re-
spectively. According to these lemmas, if the input fixed-point numbers and the output
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attributes are valid, then the result of fixed-point operations is valid. For fixed-point di-
vision, the second operand should be nonzero to avoid the division by zero. The result of
the fixed-point operations is the exact result, perturbed by an absolute error of bounded
magnitude.

As explained before, in the theoretical fixed-point error analysis of digital filters, it is
always assumed that the fixed-point addition causes no error and only the roundoff error
in the fixed-point multiplication is analyzed. This is under the assumption that there is no
overflow in the result and also the input operands have the same attributes as the output.
However, as explained in details in [3], each fixed-point number is defined as a pair consist-
ing of a binary string and a set of attributes, (Binary String, Attributes). The attributes
specify how the binary string is interpreted. Therefore, each fixed-point number has it’s
own attributes based on which the corresponding real value can be computed. On the other
hand, each fixed-point arithmetic operation such as addition, takes two fixed-point input
operands and stores the result into a third. The attributes of the inputs and output need
not match one another. The result is formatted into the output as specified by the output
attributes and by the overflow and quantization mode parameters. Therefore, when we write
FxpAdd X’ a b, X’ is the fixed-point addition operation output attributes which can be dif-
ferent from the attributes of a and b. In fact, the attributes of a and b are hidden in their
fixed-point data type representations. For example, if a = (111101,(6,3,u)) = 111.101

= + 7.625 and b = (110010,(5,3,u)) = 110.01 = + 6.250 and X1 = (7,4,u) then the
result will be (1101111,(7,4,u)) = 1101.111 = + 13.875 and there is no roundoff error
in the result. But if we select X2 = (6,4,u) then the result will be (1101111,(6,4,u))

= 1101.11 = + 13.75 and the corresponding error is error = 0.125. Note that in this
example both inputs together with the output are unsigned. The situation could be even
worse if we choose different sign formats for them. In general, if the number of fractional
bits in the output attributes is less than the one of inputs then we should expect error in the
fixed-point addition result. Using a mechanical theorem prover, we provide a more general
error analysis in which we cover the roundoff error in both the fixed-point addition and
multiplication operations.

4 Error Analysis of Digital Filters using HOL

In this section, the principal results for roundoff accumulation in digital filters using theorem
proving are derived and summarized. We shall employ the models for floating- and fixed-
point roundoff errors in HOL presented in the previous section. To illustrate our approach,
we first considered the case of first- and second-order digital filters. Then, we extended this
analysis to the general case of the direct form realization of a parametric Lth-order filter of
which the first- and second-order filters are special cases. Finally, we applied our approach
to the parallel and cascade forms. Using these forms, larger-order filters can be treated
as a combination of first- and second-order filters. Then, the total error is computed by
accumulating the error in all internal sub-filters. In the following, we will first describe in
details the theory behind the analysis and then explain how each step of this analysis is
performed in HOL. For the sake of space, in this paper we do not show all the details. A
complete analysis can be found in [1].

The class of digital filters considered in this paper is that of linear constant coefficient
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filters specified by the difference equation:

wn =
M∑
i=0

bi xn−i −
L∑

i=1

ai wn−i (5)

where {xn} is the input sequence and {wn} is the output sequence. L is the order of the
filter, and M can be any positive number less than L. There are three canonical forms of
realizing a digital filter, namely the direct, parallel, and cascade forms (Figure 2) [19].
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Figure 2: Canonical forms of digital filter realizations

If the output sequence is calculated by using the equation (5), the digital filter is said to
be realized in the direct form. Figure 2 (a) illustrates the direct form realization of the filter
using the corresponding blocks for the addition, multiplication by a constant operations, and
the delay element.

The implementation of a digital filter in the parallel form is shown in Figure 2 (b) in
which the entire filter is visualized as the parallel connection of the simpler filters Hi of a
lower order. In this case, K intermediate outputs {wi

n}, i = 1,2,. . . ,K are first calculated
and then summed to form the total output {wn}. Therefore, for the input sequence {xn} we
have:
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wi
n = fixn + gixn−1 − ciw

i
n−1 − diw

i
n−2 (6)

where the parameters fi, gi, ci, and di are obtained from the parameters ai and bi in equation
(5) using the parallel expansion. The output of the entire filter wn, is then related to wi

n by:

wn = w1
n + w2

n + · · ·+ wK
n (7)

The implementation of a digital filter in the cascade form is shown in Figure 2 (c) in which
the filter is visualized as a cascade of lower filters. From the input {xn}, the intermediate
output {w1

n} is first calculated, and then this is the input to the second filter. Continuing
in this manner, the final output wK

n = wn is calculated. Since the output of the ith section
(wi

n) is the input of the (i+1)th section, the following equation holds:

wi+1
n = wi

n + kiw
i
n−1 + liw

i
n−2 − ciw

i+1
n−1 − diw

i+1
n−2 (8)

where the parameters ki, li, ci, and di are obtained from the parameters ai and bi in equation
(5) using the serial expansion.

There are three common sources of errors associated with the filter of the equation (5),
namely [16]:

1. Input quantization: caused by the quantization of the input signal {xn} into a set
of discrete levels.

2. Coefficient inaccuracy: caused by the representation of the filter coefficients {ak}
and {bk} by a finite word length.

3. Roundoff accumulation: caused by the accumulation of roundoff errors at arithmetic
operations.

In the following analysis, we will first focus on the roundoff accumulation error, and
then describe how the results can be modified by considering the effects of the other two
above mentioned error sources. Therefore, for the digital filter of the equation (5) the
actual computed output reference is in general different from {wn}. We denote the actual
floating-point and fixed-point outputs by {yn} and {vn}, respectively. Then, we define the
corresponding errors at the nth output sample as:

en = yn − wn (9)

e′n = vn − wn (10)

e′′n = vn − yn (11)

where en and e′n are defined as the errors between the actual floating-point and fixed-point
implementations and the ideal real specification, respectively. e′′n is the error in the transition
from the floating-point to fixed-point levels.

It is clear from the above discussion that for the digital filter of Equation (5) realized in
the direct form, we have:

yn = fl (
M∑

k=0

bk xn−k −
L∑

k=1

ak yn−k) (12)
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and

vn = fxp (
M∑

k=0

bk xn−k −
L∑

k=1

ak vn−k) (13)

The calculation of Equation (12) is to be performed in the following manner. First,
the output products ak yn−k, k = 1, 2, ..., L are calculated separately and then summed.
Next, the same is done for the input products bk xn−k, k = 0, 1, ...,M . Finally, the output
summation is subtracted from the input one to obtain the main floating-point output yn.
Similar discussion can be applied for the calculation of the fixed-point output vn according
to the Equation (13). The corresponding flowgraph showing the effect of roundoff error using
the fundamental error analysis theorems (Theorems 2 and 4) according to the Equations (2)
and (4), is given by Figure 3 which also indicates the order of the calculation.

Formally, a flowgraph is a network of directed branches that connect at nodes. Associated
with each node is a variable or node value. Each branch has an input signal and an output
signal with a direction indicated by an arrowhead on it. In a linear flowgraph, the output of
a branch is a linear transformation of the input to the branch. The simplest examples are
constant multipliers and adders, i.e., when the output of the branch is simply a multiplication
or an addition of the input to the branch with a constant value, which are the only classes we
consider in this paper. The linear operation represented by the branch is typically indicated
next to the arrowhead showing the direction of the branch. For the case of a constant
multiplier and adder, the constant is simply shown next to the arrowhead. When an explicit
indication of the branch operation is omitted, this indicates a branch transmittance of unity,
or identity transformation. By definition, the value at each node in a flowgraph is the sum
of the outputs of all the branches entering the node. To complete the definition of the
flowgraph notation, we define two special types of nodes. (1) Source nodes that have no
entering branches. They are used to represent the injection of the external inputs or signal
sources into a flowgraph. (2) Sink nodes that have only entering branches. They are used
to extract the outputs from a flowgraph [19].

The quantities δn,k, k = 0, 1, ..., M , εn,k, k = 1, 2, ..., L, ζn,k, k = 1, 2, ..., M , ηn,k, k =
2, 3, ..., L, and ξn are errors caused by floating-point roundoff at each arithmetic step. The
corresponding error quantities for fixed-point roundoff are δ′n,k, k = 0, 1, ..., M , ε′n,k, k =
1, 2, ..., L, ζ ′n,k, k = 1, 2, ..., M , η′n,k, k = 2, 3, ..., L, and ξ′n.

Note that we have used one flowgraph to represent both the floating-point and fixed-point
cases, simultaneously. For floating-point errors, the branch operations are interpreted as
constant multiplications, while for fixed-point errors the branch operations are interpreted
as constant additions. We have surrounded the fixed-point error quantities and output
samples by parentheses to distinguish them from their floating-point counterparts.

Therefore, the actual outputs yn and vn are seen to be given explicitly by:

yn =
M∑

k=0

bk θn,k xn−k −
L∑

k=1

ak φn,k yn−k (14)

where

θn,0 = (1 + ξn)(1 + δn,0)
M∏
i=1

(1 + ζn,i)
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Figure 3: Error flowgraph for Lth-order filter (Direct form)

θn,j = (1 + ξn)(1 + δn,j)
M∏
i=j

(1 + ζn,i) j = 1, 2, ..., M

φn,1 = (1 + ξn)(1 + εn,1)
L∏

i=2

(1 + ηn,i)

φn,j = (1 + ξn)(1 + εn,j)
L∏

i=j

(1 + ηn,i) j = 2, 3, ..., L

and

vn =
M∑

k=0

bk xn−k −
L∑

k=1

ak vn−k +
M∑

k=0

δ′n,k +
M∑

k=1

ζ ′n,k +
L∑

k=1

ε′n,k +
L∑

k=2

η′n,k + ξ′n (15)

For the error analysis, we need to calculate the yn and vn sequences from the equations
(14) and (15), and compare them with the ideal output sequence wn specified by the equation
(5) to obtain the corresponding errors en, e′n, and e′′n, according to the equations (9), (10), and
(11), respectively. Therefore, the difference equations for the errors between the different
levels showing the accumulation of the roundoff error are derived as the following error
analysis cases:

1. Real to Floating-Point Error Analysis:

en +
L∑

k=1

ak en−k =
M∑

k=0

bk (θn,k − 1) xn−k −
L∑

k=1

ak (φn,k − 1) yn−k (16)
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2. Real to Fixed-Point Error Analysis:

e′n +
L∑

k=1

ak e′n−k =
M∑

k=0

δ′n,k +
M∑

k=1

ζ ′n,k +
L∑

k=1

ε′n,k +
L∑

k=2

η′n,k + ξ′n (17)

3. Floating-Point to Fixed-Point Error Analysis:

e′′n +
L∑

k=1

ak e′′n−k =
M∑

k=0

δ′n,k +
M∑

k=1

ζ ′n,k +
L∑

k=1

ε′n,k +
L∑

k=2

η′n,k + ξ′n− (18)

M∑

k=0

bk (θn,k − 1) xn−k +
L∑

k=1

ak (φn,k − 1) yn−k

Similar analysis is performed for the parallel and cascade realization forms based on the
error flowgraphs as shown in Figures 4 and 5, respectively [1].
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Figure 4: Error flowgraph for Lth-order filter (Parallel form)

4.1 Effects of Input Quantization and Coefficient Inaccuracy

The discussion presented in previous section concerns only the roundoff accumulation effect.
As mentioned before, there are two other common causes of error due to the finite word
length in implementation of digital filters. They are the quantization of the input data
{x(n)} and the inaccuracy of the coefficients {ak} and {bk}.

Let x′(n) and x′′(n) be the floating- and fixed-point quantized versions of x(n), respec-
tively. Then from the discussion in Section 3 we can write
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Figure 5: Error flowgraph for Lth-order filter (Cascade form)

x′(n) = x(n) (1 + θn), (19)

x′′(n) = x(n) + θ′n (20)

where θn is the error caused by floating-point quantization, and θ′n is the error caused by
fixed-point quantization in the input signal.

Also, let {a′k}, {a′′k} and {b′k}, {b′′k} be the floating-point and fixed-point quantized ver-
sions of {ak} and {bk}, respectively. Then from the discussion in Section 3 we can write

a′k = ak (1 + ϕk), a′′k = ak + ϕ′k, (21)

b′k = bk (1 + ψk), b′′k = bk(p) + ψ′k (22)

where ϕk and ψk are the errors caused by floating-point quantizations, and ϕ′k and ψ′k are
the errors caused by fixed-point quantizations in the coefficients. One may now proceed with
the analysis of Section 4 by adding the factors (1 + θn), (1 + ϕk), (1 + ψk), θ′n, ϕ′k, and ψ′k
in appropriate places in the error accumulation equations.

4.2 Error Analysis in HOL

In HOL, we first specified a parametric Lth-order digital filters at the real, floating-point,
and fixed-point abstraction levels, as predicates in higher-order logic. The direct form is
defined in HOL using the equation (5). For the real specification, we used the expression
sum (m,n) f denoting

∑m+n−1
i = m f(i), which is a function available in the HOL real library [8]

and defines the finite summation on the real numbers. For the floating-point and fixed-point
specifications, we defined similar functions for the finite summations on the floating-point
(float sum) and fixed-point (fxp sum) numbers, using the recursive definition in HOL. The
corresponding codes in HOL are as follows.
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`def L_Order_Filter_Direct_Form_Ideal_Spec a b x w M L =
∀n.

w n =
sum (0,SUC M) (ı. b i * x (n − i)) −
sum (1,L) (ı. a i * w (n − i))

`def L_Order_Filter_Direct_Form_Float_Imp a′ b′ x′ y M L =
∀n.

y n =
float_sum (0,SUC M) (λ i. b′ i * x′ (n − i)) −
float_sum (1,L) (λ i. a′ i * y (n − i))

`def L_Order_Filter_Direct_Form_Fxp_Imp X a′′ b′′ v M L =
∀n.

v n =
FxpSub X
(fxp_sum (0,SUC M) X (λ i. FxpMul X b′′ i x′′ (n − i)))
(fxp_sum (1,L) X (λ i. FxpMul X a i y (n − i)))

For the error analysis of the digital filters in HOL, we first defined the finite product
on the real numbers recursively as the expression mul (m,n) f denoting

∏m+n−1
i = m f(i) as

follows:

`def ∀f n m. (mul (n,0) f = 1) ∧
(mul (n,SUC m) f = mul (n,m) f * f (n + m))

Then we established the following lemmas to compute the output real values of the
floating-point and fixed-point filters according to the equations (14) and (15) for the direct
form of realization.

` L_Order_Filter_Direct_Form_Float_Imp X a′ b′ x′ y M L ⇒
∃t f.

(Val (y n) =
(if L = 0 then

sum (0,SUC M) (λ i. Val (b′ i) * t i * Val (x′ (n − i)))
else

sum (0,SUC M) (λ i. Val (b′ i) * t i * Val (x′ (n − i))) −
sum (1,L) (λ i. Val (a′ i) * f i * Val (y (n − i))))) ∧

∃k d p e z.
abs k ≤ inv (2 pow ((fracwidth X) + 1)) ∧
(∀i. i ≤ M ⇒ abs (d i) ≤ inv (2 pow ((fracwidth X) + 1))) ∧
(∀i. i ≤ M ⇒ abs (p i) ≤ inv (2 pow ((fracwidth X) + 1))) ∧
(∀i. i ≤ L ⇒ abs (e i) ≤ inv (2 pow ((fracwidth X) + 1))) ∧
(∀i. i ≤ L ⇒ abs (z i) ≤ inv (2 pow ((fracwidth X) + 1))) ∧
(t 0 = (1 + k) * (1 + d 0) * mul (1,M) (ı. 1 + p i)) ∧
(∀j.

1 ≤ j ∧ j ≤ M ⇒
(t j = (1 + k) * (1 + d j) * mul (j,M − (j − 1)) (λ j. 1 + p j))) ∧

(f 1 = (1 + k) * (1 + e 1) * mul (2,L − 1) (λ i. 1 + z i)) ∧
∀j.

2 ≤ j ∧ j ≤ L ⇒
(f j = (1 + k) * (1 + e j) * mul (j,L − j + 1) (λ j. 1 + z j))
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` L_Order_Filter_Direct_Form_Fxp_Imp X′ a′′ b′′ x′′ v M L ⇒
∃k d p e z.

abs k ≤ inv (2 pow fracbits X′) ∧
(∀i. i ≤ M ⇒ abs (d i) ≤ inv (2 pow fracbits X′)) ∧
(∀i. i ≤ M ⇒ abs (p i) ≤ inv (2 pow fracbits X′)) ∧
(∀i. i ≤ L ⇒ abs (e i) ≤ inv (2 pow fracbits X′)) ∧
(∀i. i ≤ L ⇒ abs (z i) ≤ inv (2 pow fracbits X′)) ∧
(value (v n) =
(if L = 0 then

sum (0,SUC M) (λ i. value (b′′ i) * value (x′′ (n − i))) +
sum (0,SUC M) (λ i. d i) + sum (1,M) (λ j. p j) + k

else
sum (0,SUC M) (λ i. value (b′′ i) * value (x′′ (n − i))) +
sum (0,SUC M) (λ i. d i) + sum (1,M) (λ j. p j) −
(sum (1,L) (λ i. value (a′′ i) * value (v (n − i))) +
sum (1,L) (λ i. e i) + sum (2,L − 1) (λ j. z j)) + k))

Finally, we defined the errors as the differences between the output of the real filter
specification and the corresponding real values of the floating-point and fixed-point filter im-
plementations (Float Error,Fxp Error), as well as the error in transition from the floating-
point to fixed-point levels (Float Fxp Error), according to the equations (9), (10), and (11),
respectively. Then, we established lemmas for the accumulation of the roundoff error between
the different levels, according to the equations (16), (17), and (18).

` [L_Order_Filter_Direct_Form_Ideal_Spec a b x w M L ∧
L_Order_Filter_Direct_Form_Float_Imp X a′ b′ x′ y M L] ⇒
∃t f.

(if L = 0 then
Float_Error n =
sum (0,SUC M) (λ i. Val (b′ i) * (t i − 1) * Val (x′ (n − i)))

else
Float_Error n + sum (1,L) (λ i. a i * Float_Error (n − i)) =
sum (0,SUC M) (λ i. Val (b′ i) * (t i − 1) * Val (x′ (n − i))) −
sum (1,L) (λ i. Val (a′ i) * (f i − 1) * Val (y (n − i)))) ∧

∃k d p e z.
abs k ≤ inv (2 pow ((fracwidth X) + 1)) ∧
(∀i. i ≤ M ⇒ abs (d i) ≤ inv (2 pow ((fracwidth X) + 1))) ∧
(∀i. i ≤ M ⇒ abs (p i) ≤ inv (2 pow ((fracwidth X) + 1))) ∧
(∀i. i ≤ L ⇒ abs (e i) ≤ inv (2 pow ((fracwidth X) + 1))) ∧
(∀i. i ≤ L ⇒ abs (z i) ≤ inv (2 pow ((fracwidth X) + 1))) ∧
(t 0 = (1 + k) * (1 + d 0) * mul (1,M) (λ i. 1 + p i)) ∧
(∀j.

1 ≤ j ∧ j ≤ M ⇒
(t j = (1 + k) * (1 + d j) * mul (j,M − (j − 1)) (λ j. 1 + p j))) ∧

(f 1 = (1 + k) * (1 + e 1) * mul (2,L − 1) (λ i. 1 + z i)) ∧
∀j.

2 ≤ j ∧ j ≤ L ⇒
(f j = (1 + k) * (1 + e j) * mul (j,L − j + 1) (λ j. 1 + z j))
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` [L_Order_Filter_Direct_Form_Ideal_Spec a b x w M L ∧
L_Order_Filter_Direct_Form_Fxp_Imp X′ a′′ b′′ x′′ v M L] ⇒
∃k d p e z.

abs k ≤ inv (2 pow fracbits X′) ∧
(∀i. i ≤ M ⇒ abs (d i) ≤ inv (2 pow fracbits X′)) ∧
(∀i. i ≤ M ⇒ abs (p i) ≤ inv (2 pow fracbits X′)) ∧
(∀i. i ≤ L ⇒ abs (e i) ≤ inv (2 pow fracbits X′)) ∧
(∀i. i ≤ L ⇒ abs (z i) ≤ inv (2 pow fracbits X′)) ∧
(if L = 0 then

Fxp_Error n =
sum (0,SUC M) (λ i. d i) + sum (1,M) (λ j. p j) + k

else
Fxp_Error n + sum (1,L) (λ i. a i * Fxp_Error (n − i)) =
sum (0,SUC M) (λ i. d i) + sum (1,M) (λ j. p j) −
(sum (1,L) (λ i. e i) + sum (2,L − 1) (λ j. z j)) + k)

` [L_Order_Filter_Direct_Form_Ideal_Spec a b x w M L ∧
L_Order_Filter_Direct_Form_Float_Imp X a′ b′ x′ y M L ∧
L_Order_Filter_Direct_Form_Fxp_Imp X′ a′′ b′′ x′′ v M L] ⇒
∃t f k′ d′ p′ e′ z′.
(if L = 0 then

Float_Fxp_Error n =
sum (0,SUC M) (λ i. d′ i) + sum (1,M) (λ j. p′ j) + k′ −
sum (0,SUC M) (λ i. Val (b′ i) * (t i − 1) * Val (x′ (n − i)))

else
Float_Fxp_Error n +
sum (1,L) (λ i. a i * Float_Fxp_Error (n − i)) =
sum (0,SUC M) (λ i. d′ i) + sum (1,M) (λ j. p′ j) −
(sum (1,L) (λ i. e′ i) + sum (2,L − 1) (λ j. z′ j)) + k′ −
(sum (0,SUC M) (λ i. Val (b′ i) * (t i − 1) * Val (x′ (n − i))) −
sum (1,L) (λ i. Val (a′ i) * (f i − 1) * Val (y (n − i)))))

Finally, we proved these lemmas using the fundamental floating-point and fixed-point
error analysis lemmas, based on the error models presented in Section 3. The lemmas are
proved by induction on the parameters L and M for the direct form of realization. Similar
analysis is performed in HOL for the parallel and cascade realization forms. For these cases,
we proved the corresponding lemmas by induction on the parameter K which is defined as
the number of the internal sub-filters connected in parallel or cascade forms to generate the
final output. A complete list of the derived HOL definitions and theorems can be found in
[1].

The HOL formalization and proofs are found to be in a good agreement with existing
theoretical paper-and-pencil counterparts [16]. However, we uncovered some minor errors
in the hand proofs and located a few subtle corner cases that were overlooked informally.
Namely, in contrast to the related work, which neglects the roundoff error in fixed-point
addition, we have considered (as depicted in Figure 3 and derived in the corresponding
formulas) the roundoff error in both fixed-point addition and multiplication. Therefore, we
have confirmed and strengthened the related work. On top of that, for the floating-point
error analysis, we have used the formalization in HOL of the IEEE-754 [9], a standard which
has not yet been established at the time of the above mentioned theoretical error analysis.
This enabled us to cover a more complete set of rounding and overflow modes and degenerate
cases which are not discussed in earlier theoretical work.
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As explained in Section 1 and illustrated in Figure 1, our goal in this paper is to propose
a complete framework for error analysis of digital filters in transition from the ideal real
specification down to the floating-point and fixed-point algorithmic level implementations.
We consider the real domain as the golden reference and compare it with the real values of
the floating-point and fixed-point domains, and define three different errors. To make this
analysis feasible, we have applied the general floating-point error analysis method proposed
in [16] to both floating-point and fixed-point error analysis. Therefore, all derivations in this
paper on the error analysis of real to fixed-point, and floating-point to fixed-point transitions
are new and done for the first time. The definitions in Equations (10), (11), (13), (15),
(17), and (18) are new. The key error flowgraphs in Figures 3, 4, and 5, are the extended
versions of the corresponding flowgraphs in reference [16], to cover both floating-point and
fixed-point analyses, simultaneously. We have extended the definition of error flowgraphs to
cover both multiplicative and additive behaviours for floating-point and fixed-point roundoff
errors, respectively. Also, the discussion on Section 4.1 are adopted to cover the fixed-point
error analysis. Almost all the related work on error analysis of fixed-point digital filters are
oriented towards statistical analysis and none of them has performed an analysis based on
the accumulation of error as developed here. This enables us to establish a framework for
comparison between different domains.

5 Conclusions

In this paper, we describe a comprehensive methodology for the error analysis of generic dig-
ital filters using the HOL theorem prover. The proposed approach covers the three canonical
forms (direct, parallel and cascade) of realization entirely specified in HOL. We make use
of existing theories in HOL on real, IEEE standard based floating-point, and fixed-point
arithmetic to model the ideal filter specification and the corresponding implementations in
higher-order logic. We used valuation functions to define the errors as the differences be-
tween the real values of the floating-point and fixed-point filter implementation outputs and
the corresponding output of the ideal real filter specification. Finally, we established fun-
damental analysis lemmas as our model to derive expressions for the accumulation of the
roundoff error in digital filters. Related work did exist since the late sixties using theoretical
paper-and-pencil proofs and simulation techniques. We believe this is the first time a com-
plete formal framework is considered using mechanical proofs in HOL for the error analysis
of digital filters. As a future work, we plan to extend these lemmas to analyse the worst-case,
average, and variance errors. We also plan to extend the verification to the lower levels of
abstraction, and prove that the implementation of a digital filter at the register transfer and
netlist gate levels implies the corresponding fixed-point specification using classical hierarchi-
cal verification in HOL, hence bridging the gap between the hardware implementation and
high levels of the mathematical specification. Finally, we plan to link HOL with computer
algebra systems to create a sound, reliable, and powerful system for the verification of DSP
systems. This opens new avenues in using formal methods for the verification of DSP systems
as a complement to the traditional theoretical (analytical) and simulation techniques.
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