
January 5, 2008 16:59 WSPC/INSTRUCTION FILE jcsc

Journal of Circuits, Systems, and Computers
c© World Scientific Publishing Company

A Design for Verification Approach using an Embedding of PSL in
AsmL

Amjad Gawanmeh and Sofiène Tahar

Concordia University,
Montreal, Quebec, H3G 1M8 Canada
{amjad,tahar}@ece.concordia.ca

Haja Moinudeen ∗

Poseidon Design Systems,
Bangalore, India

haja@poseidon-systems.com

Ali Habibi ∗

MIPS Technologies, Inc.
Mountain View, California, 94043 USA

habibi@mips.com

Received ()
Revised ()
Accepted ()

In this paper, we propose to integrate an embedding of Property Specification Lan-
guage (PSL) in Abstract State Machines Language (AsmL) with a top-down design for
verification approach in order to enable the model checking of large systems at early
stages of the design process. We provide a complete embedding of PSL in the ASM
language AsmL, which allows us to integrate PSL properties as part of the design. For
the verification, we propose a technique based on the AsmL tool that translates the
code containing both the design and the properties into a finite state machine (FSM)
representation. We use the generated FSM to run model checking on an external tool,
here SMV. Our approach takes advantage of the AsmL language capabilities to model
designs at the system level as well as from the power of the AsmL tool in generating
both C# code and FSMs from AsmL models. We applied our approach on the PCI-X
bus standard, which AsmL model was constructed from the informal standard specifica-
tions and a subsequent UML model. Experimental results on the PCI-X bus case study
showed a superiority of our approach to conventional verification.

Keywords: PSL; Abstract State Machines; AsmL; Model Checking; PCI-X Bus.

∗This work was done while this author was working at Concordia University.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/211516628?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

January 5, 2008 16:59 WSPC/INSTRUCTION FILE jcsc

2 Authors’ Names

1. Introduction and Motivation

With the advent of high technology applications, an increasingly evident need has
been that of incorporating the traditional microprocessor, memories and peripher-
als on a single silicon. System level modeling is used to overcome the problem of the
growth in complexity and size of systems combining different types of components,
including microprocessors, DSPs, memories, embedded software, etc. System level
languages can fill the gap between hardware description languages (HDLs) and
traditional software programming languages. Therefore, the modeling and verifica-
tion process of systems level designs, at early stage of the design process, is very
challenging.

The verification of systems at early stages of the design process is a serious
bottleneck in the system design flow. While simulation is the most widely used
verification technique, it is unable to guarantee the correctness of the design with
respect to its specification. On the other hand, model checking is considered as a
relevant technique to cover for simulation insufficiencies. Nevertheless, direct model
checking may not be feasible due to the complexity of the designs. Besides, the state
explosion problem led, for complex systems, to the use of assertion based verification
(ABV) where the property under verification is turned into a monitor, checked by
simulation and evaluated using coverage metrics. Therefore, there is a need for
verification solutions for industrial size designs at the system level.

Abstract State Machines (ASM) 1,14 is a formal specification method for soft-
ware and hardware systems that has become successful for specifying and verifying
complex systems. The ASM formalism is used as a modeling language in a variety
of domains both in academic and industry contexts 18. The ASM methodology is
mathematically precise, yet general enough to be applicable to a wide variety of
problem areas. The ASM thesis asserts that any computing system can be described
at its natural level of abstraction by an appropriate ASM. ASMs provide features
to capture the behavioral semantics of programming and modeling languages, as
a wide range of these languages were defined with this notion 18. There are many
languages that have been developed for ASMs, the recent one is AsmL 15, which
was developed at Microsoft Research. We chose this language, as a common level of
abstraction, to define an abstract simulator, and then model designs and properties.
AsmL is integrated with Microsoft’s software development environment including
Visual Studio, MS Word, and Component Object Model (COM), where it can be
compiled and connected to the .NET framework. AsmL effectively supports specifi-
cation and rapid prototyping of different kinds of models. The AsmL tester (Asmlt)
can also be used to generate finite state machines (FSM) or test cases 9.

The Accellera Property Specification Language (PSL) 23 was developed to ad-
dress the lack of information about properties and design characteristics of register
transfer level (RTL) models. It provides means of specifying design properties using
a concise syntax with clearly defined formal semantics. PSL permits the specifica-
tion of a large class of design properties at four layers: Boolean, temporal, verifica-

January 5, 2008 16:59 WSPC/INSTRUCTION FILE jcsc

Instructions for Typesetting Manuscripts (Condensed Title for the Paper) 3

tion and modeling layers. PSL is intended to be used for functional specification to
capture requirements regarding the overall behavior of a design in one hand, and
as an input to verification tools using simulation or formal verification on the other
hand.

In the work proposed in 7 we used a bottom-up approach in order to accomplish
verification for SystemC designs based on embedding PSL in AsmL, and using our
ASM semantics for SystemC 6,17. We embedded PSL properties in AsmL, to be
able to reason about the behavior of the design, and its correctness against its
specification. Then, we used the AsmL tool in order to generate an FSM of the
design model (including the properties). This approach enabled the verification of
PSL properties on designs using classical model checking tools, for instance SMV
19. For this, we translate the generated FSM into the input language of the SMV
tool.

In this paper, however, we use a top-down approach for verification of systems
at first stages of the design process based on the design for verification approach
proposed in 16 and 20. Here we start with an informal specification of system and
model it with the Unified Modeling Language (UML) in order to have a clear view of
the design modules and their interactions. Then, we construct an Abstract Machine
Language (AsmL) model from the UML representation. This paper integrates this
design for verification approach into the verification methodology presented in 7

and applies the methodology on an industrial size case study of the PCI-X bus
standard 22. We used the PCI-X bus to show the feasibility and performance of our
approach. The experimental results proved the practicality of our methodology as
a solution to the verification problem of system level designs.

The rest of the paper is organized as follows: Section 2 presents related work to
ours. In Section 3 we provide the integration of the design for verification approach
into the PSL-AsmL verification methodology. Section 4 describes our embedding
for PSL in AsmL. Section 5 illustrated our approach on the case study of the PCI-
X bus. Finally, Section 6 concludes the paper and points to a few future work
directions.

2. Related Work

In 13, Gordon used the semi–formal semantics in the PSL/Sugar documentation 23

to create a deep embedding of the whole language in the HOL theorem prover 12.
The author developed the formal definition of the full PSL language in HOL. The
combination of PSL/Sugar and higher–order logic is quite expressive and provides
temporal logic constructs as higher level syntactic sugar for higher order–logic,
thereby enabling properties to be formulated elegantly. Gordon et al. 11 described
how to ‘execute’ the formal semantics of PSL using HOL and investigated the fea-
sibility of implementing useful tools to conduct automatic verification of PSL from
the formal semantics. They implemented two experimental tools: an interpreter
that evaluates whether a finite trace, satisfies a PSL formula, and a compiler that

January 5, 2008 16:59 WSPC/INSTRUCTION FILE jcsc

4 Authors’ Names

converts PSL formulas to checkers in an intermediate format suitable for translation
to HDL to be included in simulation test-benches. However, they did not provide
any framework for the verification of PSL for any implementation language.

In a similar work, Claessen and Martensson 2 defined an operational semantics
for a weak fragment of PSL, mainly the safety property subset of PSL, and then
proved the correctness of these semantics with respect to a denotational semantics.
They do not provide definitions for all PSL operators like clock operators and
sequential composition, and yet, there is no execution for these semantics that
provides verification solution.

There has been a potential work on ASM verification as discussed by Börger and
Stärk 1. Applying model checking algorithms on ASM was introduced in 28, where
transformation algorithms are provided to transform ASM models into different
verification tools. Two approaches were adopted: the first provides a transformation
to the language of a symbolic model checker, SMV 28, and the second to the MDG
verification tool 8. The work we present here, is different since it provides a solution
for the verification problem of system level design languages based on semantics
definitions and executions of PSL in AsmL.

Wallace 26 used the ASM notation to define operational semantics of C++ pro-
gramming language focusing on its object oriented and other advanced features like
classes, inheritance, operator overloading, virtual functions, templates, and excep-
tion handling. Definitions for other languages semantics such as Prolog, SDL, and
Standard ML using ASM can be found in 18. These semantics definitions provide
no execution of the language semantics itself in order to give a solution to design
problems like verification.

ASM has been used widely to define the operational semantics of programming
languages like C++, Prolog, SDL, and Standard ML 18. However, these semantics
definitions provide no execution of the language semantics itself in order to give a
solution to design problems like verification.

Other related work to ours concerns finite-state verification includes the work
on Bandera project 5 interfacing Java code to model checking tools like SMV and
SPIN by applying program analysis, abstraction, and transformation techniques. In
its actual status, Bandera cannot handle SystemC designs because any analysis of
a SystemC code must go through the whole simulation environment as well as Sys-
temC defined data-types and classes. In 10 an approach is presented to add assertion
checkers to SystemC. This previous work is different from our methodology since
the properties in 10 are restricted to the notation of property checker from Infineon
Technologies AG then translated to synthesizable SystemC instructions while we
consider any PSL property. In his PhD thesis, Habibi 16 proposed a combination
of various techniques to verify system level languages, in particular SystemC. His
approach combined static code analysis, model checking and assertion based veri-
fication for system level designs. Habibi focused on the verification problem of the
SystemC case, while this work extends his approach to provide a top-down design
for verification approach.

January 5, 2008 16:59 WSPC/INSTRUCTION FILE jcsc

Instructions for Typesetting Manuscripts (Condensed Title for the Paper) 5

There exists some other related works to ours in the context of PCI technologies
design and verification environment. Shimizu et al. 24 presented a specification of
the PCI bus as a Verilog monitor. Oumalou et al. 21 implemented the PCI bus
in SystemC. In 4, a bridge for PCI Express and PCI-X was designed in Verilog
at RTL and also verified and synthesized. Chang et al 3 proposed a simulation
based PCI-X verification environment using C and Verilog. Wang et al. 27 proposed
a similar verification environment as in 3 for PCI-X bus functional models using
VERA. Yu et al. 29 extended verification environment in 3 to support PCI, PCI- X
and PCI-Express in a single platform.

3. Verification Methodology

Our methodology is a top-down approach for verification of systems at first stages
of the design process based on the design for verification approach proposed in
16 and 20. Here we start with an informal specification of system and model it
with the Unified Modeling Language (UML) in order to have a clear view of the
design modules and their interactions, we use UML class and sequence diagrams in
order to capture all the design requirements efficiently. Class diagrams are used to
represent all the core components of the design and the sequence diagrams are used
to model all the sequences of various transactions. The reason of this UML modeling
is to represent the system graphically and the ability to represent the notion of
sequences of the bus transaction using sequence diagrams. Besides, using our UML
representation, designers can model the bus in any Object Oriented languages.

The next step, is to construct an Abstract Machine Language (AsmL) model
from the UML representation. The translation from UML representation to AsmL
is manual but straightforward. We map the UML classes into AsmL classes and
the sequence diagrams are used to represent the order of method executions in
AsmL. Unlike the UML model, the AsmL model can be executed and validated.
The properties of the bus design are specified in PSL and embedded with the AsmL
model. They are basically extracted from the sequence diagrams and encoded in the
PSL syntax. Next, model checking is performed on the AsmL model using AsmL
tester (Asmlt). The model checking process ends to: (1) a completion either with
success or failure of the property; or (2) a state explosion. In case of failure, we
correct the UML representation and redo the AsmL translation. This procedure is
repeated until all the properties pass with success or do not complete.

Figure 1 shows a sketch of our methodology for the embedding and verification
of PSL in AsmL. Properties are embedded in every state in the FSM generated by
the Asmlt and is represented by two Boolean state variables. The first represents
whether a property can be evaluated or not and the second denotes the state of
the property in the current state. A correct verification process results in the gen-
eration of the system’s FSM. If the property is not verified, then an error trace
would be generated. In the case of state explosion, the FSM generation will become
unsuccessful.

January 5, 2008 16:59 WSPC/INSTRUCTION FILE jcsc

6 Authors’ Names

PSL Property

ASM/PSL Property
Generator

Informal Design
Specifications

Embedded PSL
Semantics

(AsmL)

AsmL Tool
(AsmL Compiler)

Design Modeled
in AsmL

PSL Property
Modeled in AsmL

Test ScenariosModel and PSL
Property in C# FSM with PSL-AsmL

Property Evaluation

Assertion Parser

UML Design

Fig. 1. Design for Verification Methodology based on Embedding PSL in AsmL.

This methodology is different from our previous work in 7 in two major di-
rections: the considered model under verification, and the way we perform model
checking. The work in 7, which is highlighted in the dashed box in Figure 1, targets
low level designs in SystemC, while this work is a design for verification approach
starting from informal specifications. On the other hand, the way we perform model
checking here is different than the classical approach used in 7, where an external
tool is used to perform model checking. In this approach, however, once the mod-
eling in AsmL is done, we include the defined PSL properties in the AsmL design.
Then, the AsmL design with the properties is fed to the Asmlt tester that gener-
ates an FSM of the model. Using Asmlt, we perform state exploration which gives
the notion of model checking. We encode the properties evaluation in every state,
which enables checking its correctness on-the-fly while executing the FSM gener-
ation algorithm 9 (part of the Asmlt). Any incorrect property detection halts the
reachability algorithms and outputs a sub-portion from the complete FSM, which
can be used to identify counter-examples.

In the next section, we show the details of embedding the layers of PSL in AsmL,
then, we apply our methodology on an industrial size case study of the PCI-X bus,

January 5, 2008 16:59 WSPC/INSTRUCTION FILE jcsc

Instructions for Typesetting Manuscripts (Condensed Title for the Paper) 7

where we show the efficiency of the top-down design for verification approach, and
we verify several properties on the bus.

4. Embedding PSL in AsmL

PSL is an implementation independent language to define properties (also called
assertions). It does not replace, but complements existing verification methodologies
like VHDL and Verilog test benches. PSL presents a different view of the design and
may imply FSMs in the implementation. The syntax of PSL is very declarative and
structural which leads to sustainable verification environments. Both VHDL and
Verilog flavors are provided. PSL consists of four layers based on the functionality:
The Boolean layer to build expressions which are used in other layers, specifically
the temporal layer. Boolean expressions are evaluated in a single evaluation cycle.
The temporal layer is used to describe properties of the design, in addition to
simple properties, this layer can describe properties that involve complex temporal
relations. Temporal expressions are evaluated over a series of evaluation cycles.
The verification layer is used to tell the verification tool what to do with the
properties described by the temporal layer.
The modeling layer is used to model behavior of design inputs for formal verifica-
tion tools, and to model auxiliary parts of the design that are needed for verification.

This layered approach allows the expressing of complex properties from simple
primitives. A property is built from three types of building blocks: Boolean expres-
sions, sequences, which are themselves built from Boolean expressions, and finally
subordinate properties. Sequences, referred to as SEREs (Sequential Extended Reg-
ular Expressions), are used to describe a single– or multi–cycle behavior built from
Boolean expressions.

There are two ways to embed PSL properties into the design, either into the
design code itself or by adding them as external monitors. We adopted the first
approach, where all parameters of PSL properties are defined as objects. The ob-
jective of the embedding is to reuse PSL properties, as embedded in AsmL, at lower
design levels since the AsmL tool can automatically compile them into C# or .NET
code.

PSL properties are defined in a hierarchical way inspired from the hardware
design modular concept. For this reason we defined the embedding in a similar
structure, where all the components are defined as objects and every PSL layer
extends its lower layer using the inheritance feature of AsmL as described.

4.1. Boolean Layer

This layer is the basic layer of PSL. Even though it is called Boolean layer, it
includes types other than Boolean such as integers and bit vectors. We embedded
this layer in AsmL by defining classes for all types and expressions including their
methods. Our embedding is based on the semi–formal semantics presented in the
reference manual 23, and the formal semantics definition in HOL 13.

January 5, 2008 16:59 WSPC/INSTRUCTION FILE jcsc

8 Authors’ Names

The embedding of the PSL Boolean layer mainly includes:

(1) Expression type class includes the basic 5 types: Boolean, PSLBit, PSLBitVec-
tor, Numeric and String. Both Boolean and String types are directly inherited
from the AsmL’s AsmL.Boolean and AsmL.String, respectively. The PSLBit
type is constructed using the enumerated structure One, Zero, X, and Z. The
PSLBitVect type extends the PSLBit type and offers additional operations such
as access to the bit vector contents. Finally, the PSLNumeric type extends the
AsmL Integer type (AsmL.Integer) by adding some conversion methods from
PSLBitVector to integers and vice–versa.

(2) PSL Expressions construct properties using the implication and equivalence
operators. Both operators are built using AsmL’s implies operator.

(3) PSL Built Functions include all the functions defined by PSL to operate at
the Boolean layer. We distinguish here two methods: a method that provides
the previous values of a variable (e.g., prev()) and a method that provides the
future values of a variable (e.g., next()). For both methods, we define a queue
structure that extends the PrimitiveArray class of AsmL, to store the values of
the signals (PSL Bit Vector Queue for the PSLBitVector type). We note that
all the methods over the Boolean layer are overridable according to the type of
the input. This approach simplifies writing the properties in AsmL syntax as
they will look very close to the PSL structure.

Figure 2 shows the AsmL code for PSL Bit V ector class with the method
IsInitialized() that checks if a BitVector is initialized.

class PSL_BitVector

var m_size as Integer = 1

var m_sum as Integer = 0

var m_array as PrimitiveArray of PSL_Bit = null

public IsInitialized() as Boolean

non_initailized = (exists x in {1..m_size} where

(m_array(x).m_value = X or m_array(x).m_value = Z))

return not non_initailized

Fig. 2. AsmL Embedding of PSL BitVector.

4.2. Temporal Layer

The most important part of this layer is the Sequential Extended Regular Expres-
sions (SERE) feature, which embedding mainly includes:

(1) Sequential Expressions, where a SERE is defined as an AsmL sequence of
Boolean. It offers several operations to construct, manipulate and evaluate the

January 5, 2008 16:59 WSPC/INSTRUCTION FILE jcsc

Instructions for Typesetting Manuscripts (Condensed Title for the Paper) 9

SERE expression. PSL Sequence extends the PSL SERE class. It adds opera-
tions needed to create and update the SERE.

(2) Properties in the form of operations necessary to create properties from sequen-
tial expressions. It also controls when and how the sequence is to be verified
(i.e., the property “verify the sequence is true after n states” is defined as
PSL Property.EvaluateNext(n)).

Figure 3 shows the example of the PSL SERE.Evaluate(), which checks if a
sequence is true in a certain path. This method is activated according to an INIT
signal that must be set by the property.

class PSL_SERE

var m_size as Integer = 0

var m_seq as Seq of Boolean

var m_actualState as Integer = 0

var m_evaluation as SERE_Evaluation = NOT_STARTED

var m_evaluationState as SERE_Evaluation = NOT_STARTED

public Evaluate() as SERE_Evaluation

require m_evaluationState = INIT

if(me.m_seq(m_actualState) = false)

m_evaluation := FAILED

return FAILED

else

if m_actualState = m_size

m_actualState := m_actualState + 1

return IN_PROGRESS

else

m_actualState := 0

return SUCCEEDED

Fig. 3. AsmL Embedding of PSL SERE.

4.3. Verification Layer

This layer is intended to tell the verification tool how to perform the verification
process. It allows the construction of assertions from properties and to specify
relations between them. The embedding mainly includes:

(1) Verification Directives to specify how the property will be interpreted (asser-
tion, requirement, restriction or assumption). This class extends the temporal
layer class PSL Property defined above.

(2) Verification Unit is a compact way to include several properties together. The
embedded class includes several operations to add/remove and update the unit’s
list of properties.

January 5, 2008 16:59 WSPC/INSTRUCTION FILE jcsc

10 Authors’ Names

Figure 4 shows the example of the PSL VerificationLayerUnit.CopyFrom() and
PSL VerificationLayerUnit.CopyTo() methods. These latter are usually used to
construct the unit by copying properties from or into other existent units, respec-
tively.

class PSL_VerificationLayerUnit

var m_name as String = ""

var m_size as Integer = 0

var S as Seq of PSL_FL_Property = null

CopyFrom(vunit as PSL_VerificationLayerUnit)

forall i in {1..m_size}

me.AddProperty(vunit.S(i))

CopyTo(vunit as PSL_VerificationLayerUnit)

forall i in {1..m_size}

vunit.AddProperty(me.S(i))

Fig. 4. Embedding PSL Verification layer in AsmL.

4.4. Modeling layer

This layer is not used in our verification approach since it is intended for VHDL
and Verilog flavors of PSL. So we did not consider it in our current embedding.

4.5. Verifying PSL Properties

PSL properties are embedded in AsmL as assertions, the assertion here means the
validity of the property and provides a unique view of the property in every system’s
state. It also simulates the design with the property as a monitor. We build the
assertion starting from basic Boolean components, sequences, and then verification
units. We encapsulate sequences in the verification unit as an assertion that is em-
bedded in the design. Given a set of Boolean items x1, x2, . . . , xn, and y1, y2, . . . , ym

belonging to the Boolean layer, and the sequences, S1 and S2 belonging to the tem-
poral layer, we can define: S1 = {x1, x2, . . . , xn}, and S2 = {y1, y2, . . . , ym}
and then use assertions to check any PSL operation between S1 and S2 such as
S1 OP S2, where OP is a PSL operator (e.g., implication (⇒), or equivalence
(⇔)). The assertion is built as follows:

1. Add all Boolean items to the sequences:
∀ i in 1 to n : S1.AddElement(xi)
∀ j in 1 to m : S2.AddElement(yi)

2. Create the property: P := S1 OP S2

3. Define the verification unit as an assertion, say A, that includes the above
property: A.Add(P)

January 5, 2008 16:59 WSPC/INSTRUCTION FILE jcsc

Instructions for Typesetting Manuscripts (Condensed Title for the Paper) 11

This assertion will be embedded in every state in the FSM generated by the AsmL
tool as a Boolean states variable, and therefore the FSM will include, by construc-
tion, a Boolean state variable giving the state of the property. Model checking tools,
like SMV, can be used to check the correctness of the property on the generated
FSM. The fact that we embed the property in the generated FSM provides a clear
definition of the property, since its state variables are evaluated in every state by
the AsmL tool, and the model checker just needs to perform reachability analysis on
the model without the need to calculate the valuation of the property in every state.
The final generated FSM is concrete and includes only Boolean variables to repre-
sent the state of the PSL properties. This will significantly reduce the verification
time as will be illustrated in the case study in the next Section.

5. Case Study: Modeling and Verification of the PCI-X Bus

5.1. PCI-X Bus Description

Improvements in processors and peripheral devices have caused conventional PCI
technology to become a bottleneck to performance scalability. The introduction of
the PCI-X technology 22 has provided the necessary bandwidth and bus perfor-
mance needed to avoid the I/O bottleneck, thus achieving optimal system perfor-
mance. For instance, version 2.0 of PCI-X specifies a 64-bit connection running at
speeds of 66, 133, 266, or 533 MHz, resulting in a peak bandwidth of 533, 1066,
2133 or 4266 MB/s, respectively.

PCI-X provides backward compatibility by allowing devices to operate at con-
ventional PCI frequencies and modes. Moreover, PCI-X peripheral cards can oper-
ate in a conventional PCI slot, although only at PCI rates and may require a 3.3
V conventional PCI slot. Similarly, a PCI peripheral card with a 3.3 V or universal
card edge connector can operate in a PCI-X slot, however the bus clock will remain
at a frequency acceptable to the PCI card. Figure 5 shows the general architecture
of PCI-X with one initiator (master) and target (slave). There is an arbiter that
performs the bus arbitration among multiple initiators and targets. Unlike in con-
ventional PCI bus, the arbiter in PCI-X monitors the bus in order to ensure good
functioning of the bus.

Both PCI-X initiator and target have a pair of arbitration lines that are con-
nected to the arbiter. When an initiator requires the bus, it asserts REQ#. If the
arbiter decides to grant the bus to that initiator, it asserts GNT#. FRAME# and
IRDY# are used by the arbiter to decide the granting of an initiator request for the
bus. Unlike PCI, the targets can only insert wait states by delaying the assertion
of TRDY#. TRDY# and IRDY# have to be asserted for a valid data transfer.
An initiator can abort the transaction either before or after the completion of the
data transfer by de-asserting the FRAME# signal. In contrast, a target can ter-
minate a bus transaction by asserting STOP#. If STOP# is asserted without any
data transfer, the target has issued a retry and if STOP# is asserted after one or
more data phases, the target has issued a disconnect. Unlike PCI, the target has

January 5, 2008 16:59 WSPC/INSTRUCTION FILE jcsc

12 Authors’ Names

CLOCK

AD[31:0] / AD[63:0]

C/BE[3:0] / C/BE[7:0]

FRAME#

IRDY#

TRDY#

DEVSEL#

STOP#

IDSEL#

PCI-X Bus

I
N

I

T
I

T

O
R

T

A
R

G

E
T

ARBITER

GNT# REQ# GNT#REQ#

Fig. 5. General Architecture of PCI-X.

also REQ# and GNT# that are connected to the arbiter. This facilitates the split
transaction of PCI-X which does not exist in conventional PCI. In split transaction,
the initiators and targets switch their roles. Split transaction is very useful if a tar-
get cannot continue the current transaction. In this case, the target will memorize
the transaction and signal a split telling the initiator not to retry IO read. When
the data is ready, the target will send the initiator a Split Completion containing
the data. The addition of PCI-X Split Completion frees up the bus for other trans-
actions, making PCI-X more efficient than PCI. This notion of split transaction of
PCI-X and its high bandwidth capacity makes the PCI-X bus pretty complex.

5.2. UML Modeling of PCI-X Bus

From the specification of PCI-X, we identify the core components, i.e., initiators,
targets, and arbiters, which will be represented as classes, where specific instances of
the components are called as objects. In addition to these four components, we also
added another component, the Simulation Manager (SimManager), in order to have
a notion of updates. Figure 6 shows these five classes, where each has its own data
members and methods with their access types. It also shows the relationship among
each classes. For instance, the relationship between the arbiter and the initiators

January 5, 2008 16:59 WSPC/INSTRUCTION FILE jcsc

Instructions for Typesetting Manuscripts (Condensed Title for the Paper) 13

+Arbiter()
+Arbiter_GNT_UPD()
+Arbiter_Release()
+Arbiter_Park_Initiator()

PCIX_Arbiter

+Active_Initiator : int
+REQ : bool
+GNT : bool
+CBE : int
+FRAME : bool
+IRDY : bool

+PCIX_Bus()
+PCIX_Bus_DataPhase()

PCIX_Bus

+CLK : bool
+FRAME : bool
+IRDY : bool
+TRDY : bool
+DEVSEL : bool
+STOP : bool
+AD : int
+CBE : int

+Initiator_Req()
+Initiator_FRAME_Assert()
+Attribute_Phase()
+Initiator_IRDY_Assert()
+Initiator_Termination()
+Initiator_LastPhase()
+Initiator_Release()
+Initiator_Disconnect()
+Initiator_Abort()

PCIX_Initiator

+REQ : bool
+GNT : bool
+FRAME : bool
+IRDY : bool
+IDSEL : bool
+AD : int
+CBE : int
+DEST : int
+STOP : bool

+Target()
+Target_DEVSEL_Assert()
+Target_TRDY_Assert()
+Target_Abort()
+Target_Termination()
+Target_Response()

PCIX_Target

+REQ : bool
+GNT : bool
+TRDY : bool
+DEVSEL : bool
+STOP : bool
+AD : int
+CBE : int
+ID : int
+TARGET_STOP : bool

+SimManager()
+SimManager_Init()
+SimManager_CLK_Update()

SimManager

+CLK : bool

*

1

1

*

*

1

*

1

1
1

1

1

*

1

*

1

1

1

Fig. 6. Class Diagram of PCI-X.

is one-to-many (1 - *) because there is only one arbiter which is connected to
many initiators. However, the relationship between the SimManager and arbiter is
one-to-one (1 - 1) as there is only one SimManager and one arbiter in the system.

We modeled different modes and types of operations of PCI-X using sequence
diagrams. Sequence diagrams enable us to model the bus in AsmL easily and effi-
ciently. Also, they help to extract the properties of the system being modeled, which
can be used to verify using model checking. In addition, UML modeling helps to
close the gap between informal specification and formal models in AsmL.

In Figure 7, we show the protocol sequence of a typical Mode 1 transaction
of the PCI-X using a sequence diagram. Figure 7 is a best case scenario of Mode
1 transactions, with one initiator and one target and without any wait states. In
the first clock cycle, the initiator asserts the REQ# signal to get the control of
the bus by executing the methods Initiator Req(). The arbiter asserts the GNT#
signal to that initiator through Arbiter GNT UPD(). In the third clock cycle, the
address phase takes place and also the FRAME# signal is asserted by the initiator
to signal the start of the transaction using the method Initiator FRAME Assert().
In the next clock cycle, the attribute phase takes place, where additional informa-
tion included with each transaction is added. In clock cycle N+4, the DEVSEL#
signal is asserted by the target using Target DEVSEL Assert() and in the next
clock cycle, the data phase is started with the assertion of the IRDY# (Initia-
tor IRDY Assert()) and TRDY# (Target TRDY Assert()) signals by the initiator
and the target, respectively. Before the last data phase, the FRAME# signal is de-
asserted using Initiator Termination() to signal the completion of the data transfer

January 5, 2008 16:59 WSPC/INSTRUCTION FILE jcsc

14 Authors’ Names

Initiator TargetArbiterPCI-X-Bus

Initiator_Req()
@ClkN

Arbiter_GNT_UPD()
@clkN+1

AttributePhase()
@clkN+3

Target_DEVSEL_Assert()
@clkN+4

Initiator_IRDY_Assert()
@clkN+5

Initiator_FRAME_Assert()
@clkN+2

Target_TRDY_Assert()
@clkN+5

PCIX_Bus_Data_Phase()
Initiator_Termination()

@clkN+7
(Initiator Termination)

Initator_Disconnect()
Initiator_LastPhase()

@clkN+9 Target_Termination()
@clkN+9

PCIX_Bus_Data_Phase()

PCIX_Bus_Data_Phase()

PCIX_Bus_Data_Phase()

Fig. 7. Sequence Diagram of Mode 1 Transaction.

and in the termination phase all the other signals are de-asserted. In order to
represent the clock constraints of the PCI-X transaction, we added an additional
operator, ”@”, to specify at which clock cycle a particular action should occur.

Figure 8 shows the protocol sequence of a typical Mode 2 transaction of PCI-X
using a sequence diagram. Mode 2 transaction is pretty similar to Figure 7, except
that there is an additional delay of one clock cycle (Target Response Phase) and
one additional idle clock between any two transactions.

In Figure 9, we show the transaction sequences of a 16 bit interface of Mode
2 transaction. In this transaction, the attribute phase takes two cycles unlike the
transaction types. Other signal activities of this transaction are the same as the
generic Mode 2 transaction. In the coming section, we present the AsmL modeling
of PCI-X from UML.

5.3. AsmL Modeling of PCI-X Bus

We use AsmL’s class features to model all the core components of PCI-X. Each of
these has its own data members (signals) and methods (behavior) in addition to the
constructors. We also use enumeration features (enum) of AsmL to model different
modes of PCI-X, different types of transaction phases, the state of the system and
the clock.

In addition, we exhaustively use the require and ”:=” statements of AsmL in
our design approach. require is the pre-condition statement in AsmL used to check
if a certain condition is satisfied in order to enable a method, and the operator ”:=”
represents an update statement used to change the system state. Figure 10 shows

January 5, 2008 16:59 WSPC/INSTRUCTION FILE jcsc

Instructions for Typesetting Manuscripts (Condensed Title for the Paper) 15

Initiator TargetArbiterPCI-X-Bus

Initiator_Req() @clkN

Arbiter_GNT_UPD()
@clkN+1

Attribute_Phase()
@clkN+3

Target_DEVSEL_Assert()
@clkN+5

Initiator_IRDY_Assert()
@clkN+5

PCIX_Bus_DataPhase()

Initiator_FRAME_Assert()
@clkN+2

(Address Phase)

Target_TRDY_Assert()
@clkN+6

Initiator_Termination()
@clkN+8

Termination Phase
Initiator_Disconnect()

@clkN+10
Target_Termination()

@clkN+10

One Idle Clock
To Begin Next
Transaction

Target_Response()
@clkN+4

PCIX_Bus_DataPhase()

PCIX_Bus_DataPhase()

PCIX_Bus_DataPhase()

Fig. 8. Sequence Diagram of Mode 2 Transaction.

Initiator TargetArbiterPCI-X-Bus

Initiator_Req() @clkN

Arbiter_GNT_UPD()
@clkN+1

Attribute_Phase()
@clkN+3

Target_DEVSEL_Assert()
@clkN+6

Initiator_IRDY_Assert()
@clkN+6

PCIX_Bus_DataPhase()

Initiator_FRAME_Assert()
@clkN+2

(Address Phase)

Target_TRDY_Assert()
@clkN+8

Initiator_Termination()
@clkN+9

Termination Phase
Initiator_Disconnect()

@clkN+11
Target_Termination()

@clkN+11

One Idle Clock
To Begin Next
Transaction

Target_Response()
@clkN+5

PCIX_Bus_DataPhase()

PCIX_Bus_DataPhase()

PCIX_Bus_DataPhase()

AttributePhase()
@clkN+4

Fig. 9. Sequence Diagram of Mode 2 Transaction (16 bit).

the AsmL model of the arbiter grant method (Arbiter GNT()). As the name of the
method says it acts as an arbiter for granting the bus to the requesting initiator. In

January 5, 2008 16:59 WSPC/INSTRUCTION FILE jcsc

16 Authors’ Names

order to grant the bus to the requested initiator, this method has the following pre-
conditions (require) to be met: (1) there must be at least one initiator requesting
the bus and that initiator has not been granted the bus at the time of the request;
(2) the clock is on the rising edge; and (3) the mode can be either Mode 1 or Mode
2. If these pre-conditions are met, the arbiter updates the GNT# signal.

public Arbiter_GNT()

require (exists x in Initiators where x.REQ = true and

x.GNT = false) and me.GNT = false and Smanager.CLK = CLK_UP

and (Mode = MODE_1 or Mode = MODE_2)

me.Active_Initiator := min y | y in Initiators_Range where

(Initiators(y).REQ = true)

me.GNT := true

Initiators(Active_Initiator).GNT := true

Fig. 10. Arbiter Grant AsmL Method.

In Figure 11, we show how a target can signal its readiness using TRDY#
signal. We call this method as Target TRDY Assert(). The pre-conditions are the
following: TRDY# is false, FRAME# and DEVSEL# are true, CLK is CLK UP,
Phase is DATA PHASE FIRST and the AD of the Bus should be the ID of the
target. If the pre-conditions are true, then TRDY# will be asserted.

public Target_TRDY_Assert()

require me.TRDY = false and Bus.FRAME = true and

Bus.AD = me.ID and Bus.DEVSEL = true and

Smanager.CLK = CLK_UP and Phase = DATA_PHASE_FIRST

me.TRDY := true

me.AD := Bus.AD

Bus.TRDY := true

Phase := DATA_PHASE

Fig. 11. Target Assert AsmL Method.

Figure 12 shows the initiator termination method (Initiator Termination). This
method basically signals the end of a transaction if BYTECOUNT is less than
2. BYTECOUNT indicates the number of bytes of data transfer in a transaction.
This signaling is done by de-asserting the FRAME# signal and updating the trans-
action phase to the initiator termination phase (INI TER PHASE). This method
has specific pre-conditions that need to be true so that it can terminate the trans-
actions. The pre-conditions (require) are the following: initiator’s REQ#, GNT#,

January 5, 2008 16:59 WSPC/INSTRUCTION FILE jcsc

Instructions for Typesetting Manuscripts (Condensed Title for the Paper) 17

FRAME#, IRDY#, DEVSEL#, TRDY# are asserted, BYTECOUNT is less than
2, and the clock is on the rising edge. If all above pre-conditions are true, this
method updates the FRAME# signal to false and the phase to INI TER PHASE.
After this FRAME# signal de-assertion, the initiator’s last phase method (Initia-
tor LastPhase()) is invoked.

public Initiator_Termination()

require me.GNT = true and me.REQ = true and me.FRAME = true and

me.IRDY = true and Bus.TRDY = true and Bus.DEVSEL = true

and BYTECOUNT < 2 and me.STOP = false and

Smanager.CLK = CLK_UP

me.FRAME := false

Bus.FRAME := false

Phase := INR_TER_PHASE

Fig. 12. Initiator Termination AsmL Method.

5.4. PCI-X Bus PSL Properties

Properties are embedded in every state in the FSM generated by the Asmlt and is
represented by two Boolean state variables Peval and Pval. Peval represents whether
a property can be evaluated or not and Pval denotes the state of the property in
the current state. A violated property is detected Pval = false.

We define various properties of the PCI-X bus in PSL. The properties are ob-
tained from the sequence diagrams and the informal specification. Some of the
properties that we show are generic to any bus protocols and others are specific
to PCI-X. The properties range between common behaviors for any bus standard
to specific properties for the PCI-X high speed bus standard. We defined 10 PSL
properties and then modeled them in AsmL. The description and AsmL code for
these properties is shown in Appendix A.

5.5. Experimental Results

Table 2 details the results of model checking the aforementioned 10 properties (see
Appendix A) on a PCI-X model with 5 initiators and 5 targets. The informal
descriptions and formal definition of these properties in AsmL is given in Appendix
A. In the table, we show the CPU time, number of states and transitions for the
PCI-X model with the various properties defined. The experiments were performed
on a Pentium IV processor (2.4 GHz) with 768 MB of memory. Even though, the
CPU time to verify the properties is relatively short, we also have to consider
the time spent to write the properties and to learn the tool. Using the approach
proposed in 7, it is also possible to model check a SystemC design of the PCI-X, but

January 5, 2008 16:59 WSPC/INSTRUCTION FILE jcsc

18 Authors’ Names

Table 1. Model Checking Results

Property CPU Time (s) States Transitions

P1 385.24 2169 3250

P2 194.23 1800 2563

P3 150.52 1578 2156

P4 130.45 1489 2096

P5 156.35 1478 2265

P6 173.50 1925 2439

P7 174.47 2013 2698

P8 178.42 1873 2359

P9 256.63 2192 2980

P10 143.52 1356 1923

the state space explosion will be worse considering the complexity of the SystemC
simulation semantics and the OO nature of the language. The results achieved
here are superior to the results obtained in 7 in terms of machine execution time,
and taking in consideration that the time here represents both the generation of
the FSM and the evaluation of the property, which combines the time for the two
separated steps in the other approach: generating the FSM and model checking
using an external model checker. We also presented a high level model for the PCI-
X bus and verified several nontrivial properties illustrating the efficiency of our
approach.

Comparing the results we obtain in our approach to previous works in
3,21,24,27,29, this work considers designing and verifying the latest high-speed bus
standard (PCI-X) including its very complex transaction rules. In addition, the
modeling of the PCI-X at the transaction level and verifying various properties
using model checking approach is made feasible using our methodology.

6. Conclusion

The verification of systems is the bottleneck in the design cycle because systems
combine various hybrid components and behaviors. Classical functional verification
is consuming an inordinate amount of the design cycle time. This paper presents an
integration of a design for verification approach into the high level design process
and enables model checking for large systems based on embedding of PSL in AsmL.
Starting from an informal specification of the system, we derive first an UML de-
scription in terms of class and sequence diagrams to validate high level behavior.
From the UML design, we derive an AsmL model of the system refining more details

January 5, 2008 16:59 WSPC/INSTRUCTION FILE jcsc

Instructions for Typesetting Manuscripts (Condensed Title for the Paper) 19

of its implementation, and which we formally verify against a set of PSL properties.
The verification of PSL properties is performed by including the PSL properties in
the AsmL design and generating an FSM of the model that contains the embedded
PSL properties. Using Asmlt, we perform state exploration which gives the notion
of model checking. For embedding of the Property Specification Language (PSL) in
Abstract State Machines Language (AsmL), we adopted deep embedding in AsmL
of the three hierarchical layers: Boolean, temporal, and verification of PSL. An
AsmL model combining both the reduced design and the PSL property is input to
the AsmL tool, which compiles it into C#, and generates its FSM.

We illustrated this approach through a case study of the PCI-X bus, on which
we verified several PSL sample properties. The PCI-X bus is an industrial size de-
sign. The UML representation of PCI-X was developed in terms of class diagrams
and sequence diagrams. Then, an AsmL model was designed from the UML rep-
resentation. We then integrated various PSL properties into the AsmL model and
applied model checking for the system. We achieved promising results by verifying
several properties on the bus model. As future work, we intend to provide a mecha-
nized refinement approach by generating SystemC model from the AsmL model. It
is also possible to formalize PSL into ASM (not AsmL) in order to provide rigorous
definitions for PSL semantics. We also propose to explore the possibility of applying
this approach on other system modeling languages like SystemVerilog 25.

References

1. E. Börger and R. Stärk. Abstract State Machines. A Method for High-Level System
Design and Analysis. Springer–Verlag, 2003.

2. K. Claessen and J. Martensson. An Operational Semantics for Weak PSL. In For-
mal Methods in Computer-Aided Design, LNCS 3312, Springer–Verlag, pp. 337–351.
November 2004.

3. K. H. Chang, Y. C. Su, W. T. Tu, Y. J. Yeh, and S. Y. Kuo. A PCI-X Verification
Environment Using C and Verilog. In VLSI Design/CAD Symposium, Taiwan, 2003.

4. M. Chong. A PCI Express to PCI-X Bridge Optimized for Perfromance and Area.
Master’s thesis, Department of Electicial Engineering and Computer Science, Massa-
chussets Institute of Technology, March 2004.

5. M. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. Pasareanu, and R. W. Visser amd
H. Zheng. Tool-supported Program Abstraction for Finite-state Verification. In Inter-
national Conference on Software Engineering, pp. 177-187, Toronto, Canada, 2001.

6. A. Gawanmeh, A. Habibi and S. Tahar. Enabling SystemC Verification using Abstract
State Machines. In Languages for Formal Specification and Verification, Forum on
Specification & Design Languages, September 2004.

7. A. Gawanmeh, A. Habibi, and S. Tahar. Embedding and Verification of PSL using
ASM. In IEEE International Workshop on System-on-Chip, pp. 125–130, December
2006.

8. A. Gawanmeh, S. Tahar and K. Winter. Formal verification of ASMs using MDGs. To
appear in Journal of Systems Architecture, Elsevier Science Publishers, 2008.

9. W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes. Generating Finite State
Machines from Abstract State Machines. Software Engineering Notes, 27(4):112–122,
2002.

January 5, 2008 16:59 WSPC/INSTRUCTION FILE jcsc

20 Authors’ Names

10. D. Grobe and R. Drechsler. Checkers for SystemC Designs. In Second ACM & IEEE
International Conference on Formal Methods and Models for Codesign, pages 171178,
San Diego, USA, 2004.

11. M. Gordon, J. Hurd and K. Slind. Executing the Formal Semantics of the Accellera
Property Specification Language by Mechanised Theorem Proving. In Correct Hard-
ware Design and Verification Methods, LNCS 2860, Springer–Verlag, pp. 200–215, Oc-
tober 2003.

12. M. Gordon and T. Melham. Introduction to HOL: A Theorem Proving Environment
for Higher-Order Logic. Cambridge, U.K., Cambridge Univ. Press, 1993.

13. M. Gordon. Validating the PSL/Sugar Semantics Using Automated Reasoning. For-
mal Aspects of Computing, 15(4): 406–421, 2003.

14. Y. Gurevich. Evolving Algebras 1995: Lipari Guide. In Specification and Validation
Methods, Oxford University Press, 1995.

15. Y. Gurevich, B. Rossman, and W. Schulte. Semantic Essence of AsmL. Technical
report, Microsoft Research, MSR-TR-2004-27, March 2004.

16. Ali Habibi. A Framework for System Level Verification: The SystemC Case. Ph.D.
Thesis. Concordia University, Montreal, Canada, November 2005.

17. A. Habibi and S. Tahar. On the Transformation of SystemC to AsmL using Abstract
Interpretation. In Electronic Notes in Theoretical Computer Science, Volume 131: 39–
49, 2005.

18. J. Huggins. Abstract State Machines website. http://www.eecs.umich.edu/gasm,
2003.

19. M.L. McMillan. Symbolic Model Checking, Kluwer Academic Pub., 1993.
20. H. Moinudeen, A. Habibi, and S. Tahar. Design for Verification of the PCI-X Bus. In

IEEE International Conference on Formal Methods in Computer-Aided Design, IEEE
Computer Society Press, pp. 187-188, November 2006.

21. K. Oumalou, A. Habibi, and S. Tahar. Design for Verification of a PCI Bus in Sys-
temC. In Symposium on System-on-Chip, IEEE Computer Society Press, pp. 201–204,
Tampere, Finland, November 2004.

22. PCI Special Interest Group. www.pcisig.com, 2005.
23. Accellera Property Specification Language Reference Manual, Version 1.01.

http://www.accellera.org, 2004.
24. K. Shimizu, D. Dill, and A. Hu. Monitor-based formal specification of PCI. In Formal

Methods in Computer-Aided Design, LNCS 1954, Springer-Verlag, pp. 335–353, 2000.
25. SystemVerilog. http://www.systemverilog.org, 2004.
26. C. Wallace. The Semantics of the C++ Programming Language. In Specification and

Validation Methods, Oxford University Press, 1995, pages: 131–164.
27. R. Wang and Z. Wen. A Verification Environment for PCI-X BFMs in VERA. Tech-

nical report, Synopsys Inc., 2002.
28. K. Winter. Model Checking Abstract State Machines, Ph.D. thesis, Technical Univer-

sity of Berlin, Germany, 2001.
29. C. C. Yu, K. Chang, Y. Yeh, and S. Kuo. System Level Assertion-Based Verification

Environment for PCI/PCI-X and PCI-express. In VLSI Design/CAD Symposium, Tai-
wan, 2004.

January 5, 2008 16:59 WSPC/INSTRUCTION FILE jcsc

Instructions for Typesetting Manuscripts (Condensed Title for the Paper) 21

Appendix A. PSL Properties for PCI-X Bus in AsmL

The first property P1, is a common behavior for any bus standard. It states that
if an initiator is requesting the bus (!Initiator.REQ == true), it will eventually be
granted (!Initiator.GNT == true). This also makes sure the fact that no initiator
will be using the bus indefinitely. It is to be noted that all signals of PCI-X are
active-low.

Property P1:

forall Initiator in {Initiator0, ..., Initiator4}

if(!Initiator.REQ == true) then

eventually (!Initiator.GNT == true)

Property P2 is about the termination of a PCI-X transaction be it Mode 1 or
Mode 2. It means that if an initiator is terminating the bus by asserting the STOP
signal, then eventually the bus will be released by de-asserting the FRAME signal
and targets will be released by de-asserting TRDY and DEVSEL.

Property P2:

forall Initiator in {Initiator0, ..., Initiator4}

if((!Initiator.STOP == true) and

(!Initiator.GNT == true)) then

eventually {(!Bus.FRAME == false) and

forall Target in {Target0, ..., Target4}

(!Target.TRDY == false) and

(!Target.DEVSEL == false)}

Property P3 is for the assertion of FRAME signals. This property is important
for the start of the transaction. If an initiator is granted to the bus, then in the
next clock cycle the FRAME signal has to be asserted.

Property P3:

forall Initiator in {Initiator0, ..., Initiator4}

if(!Initiator.GNT == true) then

next[0] (!Initiator.FRAME == true)

January 5, 2008 16:59 WSPC/INSTRUCTION FILE jcsc

22 Authors’ Names

Property P4 is to check the phase (ADDR PHASE, ATTR PHASE,
IDLE PHASE) of the transaction. If the initiator FRAME signal is asserted, then
in the next clock cycle, the phase of the transaction will be the attribute phase
(ATTR PHASE).

Property P4:

forall Initiator in {Initiator0, ..., Initiator4}

if(!Initiator.FRAME == true) then

next[0] (Transaction_Phase == ATTR_PHASE)

Property P5 is regarding the arbitration of the bus. If an initiator is selected by
the arbiter, then it will be able to get access to the bus by setting !Bus.FRAME.
Then, its destination target will be activated by setting its !Target.TRDY and the
initiator will release the bus once !Initiator.GNT is set to false.

Property P5:

forall Initiator in {Initiator0, ..., Initiator4}

forall Target in {Target0, ..., Target4}

if((!Target.GNT == true) and

(!Initiator.DEST == Target.ID)) then

eventually {(!Bus.FRAME == true) and

(!Initiator.TRDY == true) and

(!Target[ID].TRDY == true) and

(!Target.GNT == false)}

Property P6 is to check the response of a target when it has been selected as
destination. This property is specific for Mode 1 transaction. The property says
that if the transaction mode is MODE 1 and the initiator’s FRAME is asserted,
then eventually the IRDY and TRDY of the initiator and target respectively, will
be asserted.

Property P6:

forall Initiator in {Initiator0, ..., Initiator4}

forall Target in {Target0, ..., Target4}

if((!Initiator.FRAME == true) and

(Transaction_Mode == MODE_1)) then

eventually {(!Initiator.IRDY == true) and

(!Target.TRDY == true)}

January 5, 2008 16:59 WSPC/INSTRUCTION FILE jcsc

Instructions for Typesetting Manuscripts (Condensed Title for the Paper) 23

Property P7 is related to the Mode 2 transaction. If FRAME is asserted and
transaction is Mode 2 then eventually IRDY and DEVSEL will be asserted together.

Property P7:

forall Initiator in {Initiator0, ..., Initiator4}

forall Target in {Target0, ..., Target4}

if(!Initiator.FRAME == true) and

(Transaction_Mode == MODE_2) then

eventually {(!Initiator.IRDY == true) and

(!Target.TRDY == true)}

Property P8 is about the target response property of Mode 2 transaction. If
FRAME, IRDY, DEVSEL are asserted and transaction is Mode 2, then in the next
clock cycle, TRDY will be asserted.

Property P8:

forall Initiator in {Initiator0, ..., Initiator4}

forall Target in {Target0, ..., Target4}

if(!Initiator.FRAME == true) and

(!Initiator.IRDY == true) and

(!Target.DEVSEL == true) and

(Transaction_Mode == MODE_2) then

next (!Target.TRDY == true)

Property P9 checks the idle phase of Mode 2 transaction after a transaction has
completed. It says that if IRDY, STOP, DEVSEL, TRDY are de-asserted then in
the next clock cycle, the phase of the transaction will be idle. In other words, the
bus will be idle.

Property P9:

forall Initiator in {Initiator0, ..., Initiator4}

forall Target in {Target0, ..., Target4}

if((!Initiator.IRDY == false) and

(!Initiator.STOP == false) and

(!Target.DEVSEL == false) and

(!Target.TRDY == false) and

(Transaction_Mode == MODE_2)) then

next (Transaction_Phase == IDLE_PHASE)

January 5, 2008 16:59 WSPC/INSTRUCTION FILE jcsc

24 Authors’ Names

Property P10 is about the initiation of Split transaction. In split transaction,
the target can request for the bus (!Target.REQ == true) and it can be eventually
granted (!Target.GNT == true).

Property P10:

forall Target in {Target0, ..., Target4}

if(!Target.REQ == true) and

(Transaction_Mode == SPLIT) then

eventually (!Target.GNT == true)

