International Journal of Network Security, Vol. , INO.

PP,

. 20U 121

Rank Functions based Inference System for
Group Key Management Protocols Verification

Amjad Gawanmeh*, Adel Bouhoula*, and Sofiene Tahar*

(Corresponding author: Amjad Gawanmeh,)

* Department of Electrical and Computer Engineering, Concordia University,
Montreal, Quebec, H3G 1MS8, Canada
Email: {amjad, tahar}@ece.concordia.ca

 Higher School of Communications of Tunis (Sup’Com), City of Communication Technologies,
El Ghazalah, 2083 Ariana, Tunisia
Email: adel.bouhoula@supcom.rnu.tn
(Received Oct. 16, 2007; revised and accepted Apr. 23, 2008)

Abstract

Design and verification of cryptographic protocols has
been under investigation for quite sometime. However,
most of the attention has been paid for two parties pro-
tocols. In group key management and distribution proto-
cols, keys are computed dynamically through cooperation
of all protocol participants. Therefore regular approaches
for two parties protocols verification cannot be applied on
group key protocols. In this paper, we present a frame-
work for formally verifying of group key management and
distribution protocols based on the concept of rank func-
tions. We define a class of rank functions that satisfy spe-
cific requirements and prove the soundness of these rank
functions. Based on the set of sound rank functions, we
provide a sound and complete inference system to detect
attacks in group key management protocols. The infer-
ence system provides an elegant and natural proof strat-
egy for such protocols compared to existing approaches.
The above formalizations and rank theorems were imple-
mented using the PVS theorem prover. We illustrate our
approach by applying the inference system on a generic
Diffie-Hellman group protocol and prove it in PVS.

Keywords: Security Protocols Verification, Inference Sys-
tem, Theorem Proving

1 Introduction

Cryptographic protocols provide security services for
communicating entities. They involve precise interactions
in order to achieve the required security services, there-
fore, it is very important to verify that the protocol op-
erations are not vulnerable to attacks. There are differ-
ent kinds of environments that protocols must interoper-

ate with. Besides, networks handle more and more tasks
in a potentially hostile environment. Therefore, crypto-
graphic protocols should take more responsibilities in or-
der to capture these new requirements. Some security
properties like availability and fairness take more impor-
tant roles in some protocols like in commercial systems.
This requires that the complexity of the cryptographic
protocol should be increased. There are different kinds
of environments that protocols must interoperate with,
besides, networks handle more and more tasks in a po-
tentially hostile environment. Therefore, cryptographic
protocols should take more responsibilities in order to
capture these new requirements. This of course, makes
both modeling and verification more difficult. It also re-
quires the search for new modeling and verification ap-
proaches for cryptographic protocols. In fact, group key
management protocols need security retention in the case
of dynamic member actions, such as leaving the group
for an existing member, or joining the group for a new
member. We should also guarantee that all authorized
members are able to access the group, at the same time
unauthorized ones are unable to have this access.

Security properties that are well defined in normal two-
party protocols have different meanings and different in-
terpretations in group key distribution protocols, and so
they require a more precise definition before we look at
how to verify them. An example of such properties is se-
crecy, which deals with the fact that secret data should
remain secret and not compromised. However, for group
key distribution protocols, this property has a further di-
mension since there are long-term secret keys, short-term
secret keys, in addition to present, future, and past keys;
where a principal who just joined the group and learned
the present key should not be able to have enough in-
formation to deduce any previous keys, or similarly a
principal who just left the group should not have enough

https://core.ac.uk/display/211516622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

International Journal of Network Security, Vol. , No.

information to deduct any future keys. Therefore, sys-
tems designed for two-party protocols may not be able to
model a group protocol, or its intended security proper-
ties because such tools require an abstraction to a group
of fixed size to be made before the automated analysis
takes place. This can eliminate chances of finding at-
tacks on these protocol. Also in group key protocols, the
key should be computed through cooperation of all pro-
tocol participants. This makes the verification problem
for group key distribution protocols more challenging. In
addition, some protocol may contain unbounded number
of data fields or unbounded number of sessions [14].

There are some trials to address modeling and verifi-
cation of protocols that involve more than two parties,
these are discussed in the next section. In this paper, we
suggest an approach for the verification of group key man-
agement protocols. We define an inference system based
on the idea of rank functions, which was used by Schnei-
der et al. 7,11, 23, 22]. We first define a set of sound rank
functions that satisfy specific requirements, and prove the
correctness of every rank function with these requirement.
Then, we define an inference system that is composed of
a set of inference rules over rank functions, where, every
rule can be applied in order to generate new knowledge
and assign new ranks to these generated messages. We
also define a special rule called Attack that represents the
bottom of the system, and, when executed, illustrates an
attack in the protocol. We formally prove the soundness
and the completeness of the inference system for a sound
rank function. We implement the verification of a generic
Diffie-Hellman group protocol [25, 9] in the PVS theorem
prover [19] based on the inference system approach. Al-
though there is a considerable amount of work on GDH
protocol verification, little effort has been put on machine
assisted verification, specifically on theorem proving. The
advantages of our framework are mainly its applicability
for a class of protocols that is difficult to tackle. In addi-
tion, the inference system provides a natural and elegant
proof strategy compared to existing approaches in the lit-
erature. The results we achieved are promising and can
be applied on similar protocols.

We applied our approach on the example protocol in
the existence of an active adversary. The case of a passive
adversary is more restricted than an active one. In addi-
tion, it has been shown that a protocol that is secure in
the passive setting can be considered secure in the active
case [13]. Therefore, we believe it is adequate to handle
the active adversary case for the case study, and consider
the passive adversary case as restricted special case which
may be considered for further investigations.

We believe the contributions of this paper are: (1) The
definition of a set of sound rank functions and proof of
their soundness; (2) The combination of rank functions
with basic cryptographic protocols operation to define
primitive rules. These rules are combined together to ob-
tain an inference system. The primitive rules are enough
to model regular protocol operations; and (3) The system
can be extended to support special and more complex

,PP.

. 2008 122

operations that may exist in some protocols.

The rest of the paper is organized as follows. Section 2
discusses related work to ours. In Section 3, we overview
preliminary definitions and notations we use. In Section
4, we define and prove a consistent set of rank functions
that satisfy specific requirements for group key protocols.
In Section 5, we describe the details of our rank functions
based inference system, and prove the soundness and com-
pleteness of the system. Section 6 illustrates our approach
by applying the inference system on the case study of the
Group Diffie-Hellman protocol and provide an implemen-
tation in PVS for the verification of the protocol. Finally,
Section 7 concludes the paper with future work hints.

2 Related Work

In this section we discuss work related to ours in the liter-
ature to the best of our knowledge. We discuss two main
directions: (1) Group key protocols verification; and (2)
Rank functions and theorem proving

Group Key Protocols Verification. Meadows et al.
[17] provided a detailed specification of the requirements
for Group Domain Of Interpretation and then formally
analyzed the protocol with respect to these requirements
using the NRL Protocol Analyzer. However, the problem
with this approach is that no general set of requirements
for protocols requirements can be applied on a specific
protocol, or can be used for the refinement of protocol
specifications during the design process is provided.

Pereira and Quisquater [20] proposed a systematic ap-
proach to analyze protocol suites extending the Diffie-
Hellman key-exchange scheme to a group setting. He
pointed out several unpublished attacks against the main
security properties claimed in the definition of these pro-
tocols. The method provided is essentially manual and
applicable only on Group Diffie-Hellman (GDH) proto-
cols. In a recent work Pereira and Quisquater [21] pro-
vided a systematic way to derive an attack against any
A-GDH-type protocol with at least four participants and
exhibit protocols with two and three participants. They
provided a generic insecurity results concerning authenti-
cation protocols. In their work, the authors did not at-
tempt to address the general problem of deciding whether
a term is derivable in an attacker algebra with the equa-
tional theory of multiplication, or whether a particular
symbolic attack trace has a feasible instantiation [18].

In a similar work, Sun and Lin [26] extended the strand
space theory to analyze the dynamic security of Group
Key Agreement Protocols (GKAP) and discussed the con-
ditions of the security retention in the dynamic cases of
the protocol. This work treats the analysis dynamic as-
pects of the protocol with no reasoning about the correct-
ness of the protocol under these dynamic events. This
work provides a method to verify complex group proto-
cols. However, the solutions provided in all cases focus
only on specific aspects of one protocol rather than focus-
ing on general requirements.

International Journal of Network Security, Vol. , No.

In another related work, Steel et al. [24] modeled a
group key protocol by posing inductive conjectures about
the trace of messages exchanged in order to investigate
novel properties of the protocol, such as tolerance to dis-
ruption, and whether it results in an agreement on a single
key. The method, however, is applicable on limited groups
of two or three members only. More recently, Truderung
[27] presented a formalism, called selecting theories, which
extends the standard non-recursive term rewriting model
and allows participants to compare and store arbitrary
messages. This formalism can model recursive protocols,
where participants, in each protocol step, are able to send
a number of messages unbounded w.r.t. the size of the
protocol. This modeling, however, cannot be applied on
non-recursive protocols such as GDH or the Enclaves.
In addition the model provided is not readable and very
complex to construct.

There are many other efforts in the literature that
deal with formal analysis for GDH style protocols. Some
used symbolic approaches such as the work of Mazaré [16]
who proposed a symbolic model to analyze cryptographic
protocols using bilinear pairing. Boreale and Buscemi
[3] used another symbolic approach to verify protocols
checking consistency of symbolic traces, however they re-
quire an a-priori upper bound on the number of partici-
pants. Millen and Shmatikov [18] considered a symbolic
approach to reason about GDH protocol style operators,
such as exponentiation, with a bounded number of role in-
stances. In another effort, Bresson et al. [4, 5, 6] discussed
the GDH problem thoroughly and suggested a model for
this class of protocols in the presence of malicious partic-
ipants. Kats et al. [13, 12] addressed the case of attacks
by malicious insiders for authenticated key exchange pro-
tocols. Finally, Abadi [1] discussed decidability issues for
knowledge formalizations of both participants and attack-
ers. These recent amount of work provide mathematical
models for GDH like protocols, in addition, they focus on
rigorous analysis of security of these protocols, however,
these approaches lack the ability to mechanize the proof,
in particular with theorem proving techniques.

Rank Functions and Theorem Proving. Dutertre
and Schneider [11] used an embedding of CSP in PVS
in order to verify the authentication property of Need-
ham Shroeder public key protocol. They proposed the
idea of rank functions in order enable CSP verification
of Needham Shroeder protocol. Later, Schneider [23, 22]
used the idea of rank functions for the verification of CSP
(Communication Sequential Process). The work did not
present a method that can be applied on security prop-
erties in other classes of protocols, specifically, group key
protocols. In fact, the method, as is, may not be applied
on secrecy property for group key management protocols.
Delicata and Schneider [8] present an algebraic approach
for reasoning about secrecy in a class of Diffie-Hellman
protocols. The technique uses the notion of a message
template to determine whether a given value can be gen-
erated by an intruder in a protocol model. The work is

,PP.

. 2008 123

restricted to certain alegebraic form of messages that are
expressible as g raised to the power of a sum of prod-
ucts of integers, and therefore requires further extension
to handle messages with different algebraic structures.

Even though rank functions were introduced and used
by Schneider et al. [11, 23, 22, 7] in different directions,
in this paper, we use their definition in order to precisely
define a set of sound rank functions and prove their cor-
rectness. We then propose a rank functions based infer-
ence system for the verification of group key distribution
protocols and prove the soundness and completeness of
the system using the defined set of rank functions.

In a more recent work, Layouni et al. [15] used a
combination of model checking, theorem proving, and a
Random Oracle Model to verify authentication property,
safety and liveness properties such as proper agreement,
and robustness and unpredictability properties, respec-
tively. The verified protocol is a complex protocol de-
veloped for group key agreement under multiple leaders
scheme, and is called the Enclaves protocol [10]. This ex-
ample shows how difficult it is to verify and analyze this
class of protocols. While the authors achieved a promising
success in verifying a complex protocol such as Enclaves,
they failed to accomplish the formal proof of the three
components in a single formalism.

Archer [2] provided a mechanized correctness proof of
the basic TESLA protocol based on establishing a se-
quence of invariants for the protocol using the tool TAME.
The model of the protocol is rather simple, and the proof
was made under a strong assumption stating that the ad-
versary has no initial knowledge, and can only use facts
revealed by users.

In all the above efforts in this area, we noticed that
there is a need for a mechanized approach, since most of
the approaches in the literature focused on mathemati-
cal proofs, neglecting machine assisted verification tech-
niques, such as theorem proving. We try to fill this gap
in the work we introduce here.

3 Preliminaries

In this section we present our formal model and the no-
tations we will use throughout this paper.

M: set of all possible messages (messages space).

P: a honest principal who is willing to communicate.

P: set of knowledge of member P, P C M.

S: secret messages space, the set of all secret messages,
S € M. These are the messages we want to keep hidden
from the intruder. They are defined by the protocol.

I: a dishonest member. We assume that the intruder is
a dishonest member who is trying to find an attack in
the protocol by using his unlimited resources and com-
putational power. However, we state normal assumptions
about the intruder such as being able to encrypt or de-
crypt a message only if he knows the appropriate key, or
the ability to block or read any message in the system.
E: set of all events, or dynamic operations, i.e., join, leave,

International Journal of Network Security, Vol. , No.

merge, and split. An event is a term from the message
space to the message space, E : M — M. It represents
an action the user can perform in order to obtain extra
information and update his own set of knowledge.

T: set of all possible traces, where a trace of events is
the execution of the sequence of these events. We use
7 € T, such that 7 : E x Ml — M, m € M, then we write
m = 7(E,M) to say that a message m is generated by
the trace 7 by executing the vector of events E on the set
of messages M, we also write 7(E, M) ~» m to represent
a predict formula that evaluates to true if and only if
m = 7(E, M).

Kg: set of initial knowledge of the intruder, where Kq C
M. The initial knowledge of the intruder is basically
the information he/she can collect before executing the
protocol events. This information is usually public and
known, so there are no secret information that is in
the intruders initial set of knowledge. In other words
VmeM:meS=m¢Ky

K: set of knowledge of the intruder. The intruder updates
this knowledge by executing events. The intruder starts
with the initial set of knowledge and the set of events,
then, by executing a sequence of events, he/she updates
this set. Ky C K and K C M.

attack: we define attack w.r.t. confidentiality as the abil-
ity of the intruder to have a message in the set of secret
messages in his own set of knowledge, attack = m € K
and m € S. The notion of attack can be seen differently
depending on the nature of the security property under
investigation.

We define traces since it will be used to prove the
soundness of the inference system. We use t to repre-
sent a single execution of one event or inference rule that
updates the intruder set of knowledge. For a given events
€1,€2,....e, € E, we use M to represent the messages
generated by executing each event: m; = e;(Mp), mg =
ea(M), ...,my, = e, (M), where My € Kq is a set of mes-
sages in the initial set of knowledge of the intruder, and
MP € Ky is a vector of p messages in the updated set of
knowledge of the intruder. Now we can define t1, to, ..., t,
as follows :

tl myp = 61(K0), p(ml) = (1, Kl = Ko @] {ml}

to i o = 62(K1), p(m) =cy, Ko =K; U {mg}

ti Lmy; = ei(Ki), p(ml) = (4, Kz == Ki—l U {mz}

tn i my = e, (Ky), p(my) =cn, K=KU{m,}

We define a trace T,, € T as the sequence of executing
ti,ts, ..., t, in order.

Ty i ty,te, ..ty K =Ko U{mi,ma,...mu}; p(my) =
¢n. We say that m,, = T,(E,M) which means that the
trace T,, generates the message m,, of rank c,.

A rank function is a map between the set of facts about
the protocol and the set of natural integers. The set of
facts include protocol events, protocol execution traces,
keys, and messages. This map assigns a value or rank to
each fact, such that facts that can be generated by the
protocol have positive rank, and facts that cannot be ob-

,PP.

. 2008 124

tained by the intruder cannot have positive rank. The
ranks that are assigned will depend on the protocol itself,
the initial knowledge and capabilities of the intruder, and
the property we want to prove. This map function will
be useful in partitioning the message space and enabling
mechanized proof of security protocols properties. The
set of events and traces are concretely defined by the pro-
tocol, which allows defining them at different levels of
abstraction in the final step of our approach.

The definition of the rank function is formally given as
follows:

Definition 1. Rank Functions [22]. A rank function p is
a map function p : M — 7Z which maps the set of all
messages into integers.

4 Rank Functions based Inference
System

4.1 Rank Functions Soundness

It is necessary to verify that protocol participants cannot
generate non-positive ranks. The appropriate rank func-
tion we choose to apply on the protocol should be sound.
We define a set of rank functions with a number of re-
quirements, which will be used to prove the correctness
of the rank function.

Definition 2. a rank function is initially sound if it
satisfies these three requirements:

1) Vm € M, p(m) >= 0, there are no negative ranks
generated by the system.

2) ¥m € Ko, p(m) > 0, intruder initial knowledge must
be of positive rank.

3) Vm €S, p(m) = 0, all secret messages must have a
zero rank.

Definition 3. Two events are invertible if each one is
the inverse of the other.
ea(e1(my)) = my, where e1,eq € E, and my, mg € M.

Definition 4. a rank function is invertible for all in-
vertible events of inference rules. ex(ei(my)) = my =
plea(er(my))) = p(my), where e1,ea € E, and my,mq €
M, and any user of the system cannot apply an invertible
event unless he is able to apply the inverse.

Definition 5. a rank function is bounded if p(m) —1 <
ple(m)) < p(m) + 1, where e € E, and m € M.

Theorem 1. Rank Function Soundness
A rank function is sound, if it is initially sound, in-
vertible and bounded.

The theorem states that a rank function with the above
specifications is consistent. It ensures that the zero rank
cannot be generated by the initial knowledge of the in-
truder, or by the definition of the rank function for the

International Journal of Network Security, Vol. , No.

events. In other words, applying each single event sep-
arately on the set of intruders initial knowledge will not
generate a zero rank, simply because a secret is not re-
vealed to the intruder. Formally, Vm € Ko, p(m) > 0 and
Ym € Kop,e € E, p(e(m)) > 0. We use R to represent the
set of all sound rank functions.

Proof. We prove this theorem using absurdum, by assum-
ing that the rank function evaluates to zero then we show
that for all possible execution events, there exists no mes-
sage in the intruder’s initial set of knowledge that can
generate this zero rank.

Assume there exists m € M such that p(m) = 0, the
message m is either in the intruders initial set of knowl-
edge (case (a) below) or generated after applying on single
event on a message in the intruder’s initial set of knowl-
edge (case (b) below), therefore, we can write:

p(m) =0 = I m’ € Kq such that:

sk

m = e(m’)

Now we consider both cases and show the contradiction
of the assumption:

For case (a): m = m’ , since the rank function p is
initially sound by definition, then there is a clear contra-
diction which can be stated as follows:

Only messages in S have the rank zero: p(m') =0 =
m' € S. However, messages in S are not in Ko: m’ €
S = m’ ¢ Ky. Which contradicts the assumption stated
above: m' € Kg. Therefore p(m') > 0 is valid.

For case (b): m = e(m'), and p(m) = 0: the message
m is generated after the application of one single event e
on a message m’ from K.

Since p is bounded, then we can say that the rank of
the message m is bounded by the rank of the message m/’,
we can write this as follows:

m = e(m’) = p(m') — 1 < p(m) < p(m’) + 1

By assumption, we have p(m) = 0. This means that
either p(m') = 0 or p(m') = 1 (from above inequality).
Now we consider both cases: The case where p(m') = 0
and p(m’) = 1.

The first case is similar to case (a) above, and will lead
to the same contradiction.

We consider the second possibility: p(m') = 1, m =
e(m’) and p(m') = p(m) + 1.

p is invertible, therefore, there is an event ¢’ that we
can apply on the message m to generate the message m’,
we can write:

m = e(m’), m" = ¢’(m) and therefore m’ = ¢’(e(m’))
(which is a typical invertible relation in encryption).

We have p(m’) = 1 and m’ = €’(m) therefore p(m) =
p(m’) =1
which means that the message m’ is generated after one
single application of an event €’ in the set of events on the
message m: m' = e’'(m).

If the intruder can apply one single invertible event,
then he/she can apply the other one. Since the events e
and €’ are invertible, and the intruder can apply e on m/

,PP.

. 2008

to generate m, therefore he/she can also apply the event
e’ on m to generate m/’.

This means that e,e’ € E, m’ € Ky, and m € S, so
p(m) =0 = m ¢ Ko or e ¢ E which contradicts the
assumption stated above.

The fact that the intruder cannot generate secret
knowledge from its initial knowledge (without executing
the protocol), i.e., the intruder cannot decrypt a message
encrypted with a secret key. O

4.2 Inference System

Our inference system consists of a set of inference rules.
Every rule represents an event in the protocol. Rules have
a precondition that has to be satisfied before they are ap-
plied. We define the pair (m, ¢) to represent a message m
and its rank c¢. A special rule, Attack, is defined with a
precondition, such that, when executed by the intruder,
it indicates the occurrence of an attack by reaching the
bottom of the system L. Figure 1 shows the set of rules
in the inference system. The intruder, by executing these
rules on the set of knowledge K, generates new knowledge
with new ranks and updates his/her set. For this system
to work, we assume the fairness of executing these rules,
i.e., the intruder will not keep using the rule compose for-
ever, but other rules will have their chance to be executed,
specially the rule Attack.

KU{(m,p1),(k,p2)}

Rulel:) (ke JOL{{m) popn 710

Encryption: ROT

where {m}, = Encr(m,k)

KU{(Encr(m,k),p1),(k,p2)}

Rule2: Decryption: goitmy, pu. ko) JOL o117

where m = Decr({m},, k)

Rule3: Compose:
KU{(m1,p1),(ma,p2)}
KU{(m1,p1),(mz,p2) JU{(Comp(m1,mz),min(p1,p2))}

Rule4: Decompose:
KUu{(Comp(mi,mz2),p1)}
KU{(Comp(m1,mz2),p1)}U{{m1,p1),(m2,p1)}

KU{(expo(mi,m2),p1)}
Comp(mi,mz),p1) }U{(m1™2,p1—1)}

Rule5: Expo: ROT

Rule6: Attack: w

Figure 1: Inference System

For this inference system, we use the event Enc(m, k)
to represent a message m that is encrypted w.r.t. a sym-
metric encryption algorithm with the key k. The event
Dec(Enc(m, k), k) represents decrypting a message that
is already encrypted, where the same key used for the en-
cryption is to be used for the decryption event. These two
events are invertible, therefore m = Dec(Enc(m, k), k).

International Journal of Network Security, Vol. , No.

The event Comp(m1, m2) represents two composed mes-
sages by concatenation. The function min gives the min-
imum rank from two given ranks.

4.3 Soundness and Completeness

In this subsection we define theorems for the soundness
and completeness of the approach. The first theorem
states that if we can find a message in the set of knowledge
of the intruder that has the rank zero, or equivalently, if
the rule attack of the inference system is applied, then
there is an attack in the system. We assume fairness in
applying the inference rules.

Theorem 2. Soundness
Let P be a security protocol, let p be a sound rank func-
tion, and let Ky be the set of the initial knowledge of the
intruder. Then, the protocol P has an attack if the infer-
ence rule attack can be applied in a fair inference system.
dm e K: p(m) =0 and p € R = Fattack in P.

Proof. We prove this theorem by deduction, where we
assume the left hand side and deduce the right hand side
of the theorem.

Assume there exists m € K such that p(m) =0

Given that m € K, then we have m = mg € Ko, m =
e(mg), or m = T,,(E,M). However, p(m) =0 = m ¢ K,
the rank function is sound since p € R.

p(m) =0= 3 (e € E, my € Ko) : m = e(myg), since
the rank function is sound.

It is clear now that there exists m € K such that
p(m) = 0 = 3T, € T such that m = T, (E,M), which
means that there exists a trace the intruder can execute
to compute m.

Also p(m) =0 = m € S, since only messages in S have
the rank zero. Hence, we find that m € S and m € K.
Therefore, the rule attack can be applied. Then, we can
write:

attack = m € S and m € K. This means that there
exists an attack in the system.

O

The following corollary is deduced from the above the-
orem and states that if there is no attack in the system,
then a sound rank function will be greater than zero. We
can view it as the complimentary case of the above theo-
rem.

Corollary 1. Absence of Attack

Assuming the same conditions as Theorem 2, if the
protocol P has no attack, then the rule attack will never
be applied in a fair inference system.

Battack in P = Vm € K : p(m) > 0.

The second theorem states that if there is no message
in the set of knowledge of the intruder that has the rank
zero, or equivalently, if the rule attack of the inference
system can never be applied, assuming fairness of the
strategy application of inference rules, then there is no
attack in the system.

,PP.

. 2008 126

Theorem 3. Completeness

Assuming the same conditions as Theorem 2, if the rule
attack cannot be applied in a fair inference system, then
the protocol P has no attack.

Vm € K: p(m) >0, p € R = fattack in P.

Proof. We prove this theorem by absurdum. We assume
the right hand side is false and deduce a contradiction to
the left hand side of the theorem.

Assume there exists an attack in the system, then we
can write:

Jdattack = Im such that m € K and m € S.

A message m in the intruder’s set of knowledge K
means that either the message is in his initial set of knowl-
edge Ky, is generated by applying one single event in E,
or is generated after applying a trace in T.

m € K= m=mg € Ky, m € Ky = E(Kyp), or m =
T, (E,M).

However, since p € R is sound and m € S then m ¢ K,
and m ¢ K;.

Therefore, m = T,,(E, M)

Since m € S, then the rank of this message p(m) = 0.

So Jattack = p(m) = 0.

Therefore, we conclude that p(m) > 0 = fattack

O

Corollary 2. Detecting Attacks

Assuming the same conditions as Theorem 2, if the rule
attack can be applied in a fair inference system, then the
protocol P has an attack.

Im e K: p(m) =0 and p € R = Fattack in P.

This corollary states that when the rank function eval-
uates to zero, then there exists an attack in the protocol.
Theorems 2 and 3 and Corollaries 1 and 2 provide the
formal link between the protocol model and the imple-
mentation model in PVS. Therefore, the soundness of the
above theorems and corollaries represents the sounds of
the verification technique.

In summary, the inference system we defined can prove
that an attack exists in the protocol using Soundness The-
orem 2. However, the limitation of the Soundness The-
orem comes in the type of implementation that will be
used. In case of theorem proving, there is no guarantee
that the attack can be generated. This is a general prob-
lem and is applicable on any approach for tool supported
verification this type of protocols.

In case we want to prove that there is no attack in the
protocol, the inference system can diverge in case we ap-
ply the Completeness Theorem 3. The inference system
may terminate with a result, depending on the nature of
the protocol and the strategies used while conducting the-
orem proving. However, there is no guarantee for termi-
nation because of two reasons: first, the type of problem
we are trying to solve has unbounded number of partici-
pants, and unbounded message space. Second, the lower
level implementation method, theorem proving, does not
guarantee termination, which means the inference system
may run infinitely without reaching a result.

International Journal of Network Security, Vol. , No.

However, we still can reason about absence of attacks
in protocols using Completeness Theorem 3. An indirect
proof can be generated using the completeness theorem
by proving that the strategy is fair and the application
of our inference system diverges. This indirect proof can
be achieved by generating partial proofs that affirm that
the inference system will diverge when the applied strat-
egy is fair. We believe that in order to be apply this
approach, we have to provide an implementation for the
inference system that allows partial proofs based on di-
vergence. This later issue will be considered for further
study.

4.4 PVS Embedding of the Inference Sys-
tem

The most important and challenging part is how to de-
fine the inference system, and how to instantiate it by the
dishonest user. For this purpose, we represent each infer-
ence rule as a PVS deduction statement which allows the
user who is executing these rules to compute new mes-
sages and add it to his/her own set of knowledge. In our
case, the intruder is such user. These rules are defined
based on the events of the GDH protocol. We abstract
the mathematical power operation used in the protocol,
since power operator is not supported in PVS. Therefore
a® is represented in PVS by the alphaN, where N rep-
resents the power of alpha, so when applying a rule that
generates oV1V?2 from ™! and N2 we just multiply the
nounce in alpha by N2, and the rank function is defined
of a type that maps M ESSAGE to int.

MESSAGE : TYPE ALPHA: TYPE FROM MESSAGE nounc: int alpha: int

alphaN : ALPHA m: MESSAGE rankf: [MESSAGE -> int]

Next we define the appropriate inference rules for this
protocol. These rules are used by the intruder in order
to build his/her set of knowledge starting from his initial
knowledge and applying one rule at a time. The first
rule is compose, where two message records are used to
generate one new message with one rank. The second
one we show here is the decompose message, which is
used to separate an already composed message. Similarly,
we define encrypt and decrypt rules, where the rank is
updated then the rules are applied. We also show the rule
expo which is used to generate the o’V messages. Finally
we show the rule attack which is executed when there is
a message of rank zero in the intruders set of knowledge.

5 Application: GDH Protocol

In order to illustrate the proposed verification methodol-
ogy, we consider the Group Diffie-Hellman (GDH) proto-
col [25, 9], which is a basic group key management pro-
tocol widely studied in the literature. In the first part,
we show how to manually detect the attack in a step by

,PP.

. 2008 127

rule_compose(msgl: MESSAGE, msg2 : MESSAGE) : MESSAGE
= (comp(msgl,msg2), min(rankf(msgl), rankf(msg2)))

rule_decomp(msgl: MESSAGE) : [MESSAGE, int, MESSAGE, int]
= (left(msgl),rankf (msgl), (right(msgl), rankf(msgl))

rule_encr(msgl: MESSAGE, key: MESSAGE) :
= (append(msgl,key), rankf (msgl)-1)

[MESSAGE, int]

rule_decr(msgl: MESSAGE, key: MESSAGE) :
= (extract(msgl,key), rankf(msgl)+1)

[MESSAGE, int]

rule_expo(a:ALPHA,N:int) :
= (alphal, rankf(a)-1)

[ALPHA, int]

rule_attack(msg: MESSAGE): bool =
rankf (msg) = 0

step application of the inference system. Then we use the
PVS theorem prover in order to implement the inference
system and apply it on the protocol for two, three, and
n-users case. Throughout this work, we assume perfect
cryptographic conditions, we analyze the key agreement
nature of the protocol, and we abstract the algebraic ex-
ponentiation property of the protocol.

Although the protocol is not a challenging case study,
since it has been studied quite enough in the literature,
we use it as illustrative case to show the feasibility of our
approach, not to prove something that has been already
proved before. In addition, we provide, to the best of our
knowledge, a new attempt to use theorem proving in the
context of group key protocols verification. In the first
part of this section we show how the inference system can
be applied directly on the GDH protocol of 4 participants.
We demonstrate how the attack is generated in the step
by step application of the inference system. In the second
part, we discuss the embedding and verification of the
protocol using theorem proving in PVS.

The protocol is used to generate and distribute a safe
key between a group of members over a non-secure net-
work. It consists of two stages: upflow and downflow. The
first stage is used to collect contributions from all group
members that will be used in calculating the group key.
Given n members in the group: Py, Ps, ..., P,, who are
willing to generate a secret key that will be used among
them, the protocol works as follows: in the upflow stage,
every intermediate member P; receives a collection of in-
termediate values from member P;_ 1, computes another
value, by adding his/her own share of the key, appends
it to the values he/she received, and forwards this infor-
mation to the next group member P; ;. In the downflow
stage, the last member appends his own share of the key
to every value he received and sends them back to pre-
vious members. This way, every member receives partial
information to compute the key.

For example, in a group of 4 members, the first mem-
ber uses a generator o and a random number Np, com-
putes {a™} and forwards it to member P,. P, chooses a
random number N, and computes a’V1™V2, then forwards
{aMN1 o™MN2} to Py, Py computes o™ V2N and forwards
{aN1Ns oNiN2 qNiN2Nsl 6 Py Now P, uses the last

International Journal of Network Security, Vol. , No.

value and a random number he/she generates, Ny, to
compute the group key oN1N2NsN1 For the downflow
stage, the member raises all other values to N, and sends
back to Py {a™N1,aN1NaNa oNiNsNay = Pyoyses the latest
value a™1V2N+ and his/her own random number N3 to
compute the key, raises the first value to N3 and sends
{aNsNa oNiNsNa} hack to Py, who uses the last one to
compute the key, then computes and sends {aV2V3N4 to
P;, who can compute the same key.

We choose a group of three members, P, P>, and P,
and apply our verification approach on the protocol, by
defining the intruder I, and executing the inference sys-
tem by this intruder. The first step is to define the rank
function p for the set of messages in the message space M
as follows:

: N1 NoN. N; N2 N.
07 mee{Nl7N2aN3ya 1 3,Oé e 37
aNlNiNg,aNlNzNi’ aNlNZNSNi}

. N- N:
1, if me {N;,a,a™, a2,
aN37aN1N27aN1N3’aN2N3}

Here, a™¥+V2Ns represents the group key members in-
tend to generate, and NN; represent the intruders nounce.
For the protocol to be correct, there should not be a
way for an intruder to share a key with the rest of the
members that can be considered as the group key, even
if its different from the group key the members intend
to generate, simply because the members have no clue
about the final key, until each has enough shares from
other members to compute it. Therefore, we consider
ozN*N2N3,aN1N7"N3, aNlN?Ni, aN1N2NsNi a9 assumed group
keys that the intruder should not be able to share with
the members making them believe it is the group key they
intended to share when they started the protocol.

Then, we define the events that can be executes by
members. This includes send(m), recv(m), expo(m,n),
comp(my, ma), decomp(my,mz), and block(m). The lat-
est is an event that can be executed only by the intruder.
The rank function p can be defined for these events as
follows:

p(mi) = p(mimsz), p(mz) = p(mi.mz) for
decomp(my.ms) event.

The inference system is composed of an inference rule
for each of these events in addition to the inference rule
Attack defined above. The event expo(m,n) models the
exponent function used in the protocol. The intruder
starts with an initial set of knowledge Ko = {NV;, o}, and
we assume he has the ability to fully monitor the network,
send, receive, or block messages on his/her will. We also
assume that signing messages is not used between mem-
bers.

,PP.

. 2008 128

The upflow stage of the protocol is started by mem-
ber P;, who uses «, Ni, and expo(a, N1) to compute
a™ | where p(a™) = p(N7) +1 = 1. P; sends this mes-
sage to next user in the group, P». The intruder, apply
the inference rules corresponding to the event recv(a™),
therefore, K = K’ U {a™}. We use K’ to represent the
intruder’s set of knowledge before he executes the infer-
ence rule. The intruder similarly applies the inference
rule block(a™), then, computes a¥i and sends it to the
member Py, who computes o™V, uses the compose rule
to generate a™Ni.aNi™V2 and forwards it to the last member
P5;. The intruder can receive this message and block it,
then, composes and sends to P; the message a™¥t.aNiNz,
P; receives it, decomposes it and uses the last term aVi?V2
to compute the key a™N¢V2Vs believing it is the intended
group key. At this point the intruder’s set of knowledge
is updated to the following:

K= {N;, a, a1, oM1Ni oNiN2}

Member P; then starts the downflow stage, and com-
putes, composes and sends a’¥3.a™1Ns back to user P.
The intruder will receive and block this message, and
therefore, updates his knowledge such that K = K’ U
{aNs, oN1Ns} The intruder composes and sends to P,
the message a™3.a™:N3. P, receives the message and
he/she uses the last term ViV to compute his/her key
aNeN2Ns Then he sends back to user P; the message
a™2Ns - The intruder receives this message, updates his
set of knowledge, blocks the message, and instead, he
sends o™i™s to P; who, in turn will use it to compute
his key o™ ¥sNi The intruder updates his/her set of
knowledge at this point, and it will be K = {N;, a, o™,
aMiNi | oNiNa - oNiNs o NiNa:Ns o NiNiNs} Figure 2
shows a step by step execution of the inference system
by the intruder.

Now, given a fair system, the intruder can apply the
inference rule Attack, since there is a message in his/her
set of knowledge that has the rank zero.

PVS Implenetation. This manual step by step appli-
cation of the inference system can be mechanized using
available tools. In our case, we used the PVS theorem
prover in order to show that the inference system will
lead to the same attack. In our PVS model, we first de-
fine the sets of messages we used, including the set of all
messages, secret messages, events, traces, intruders initial
knowledge, intruders updated knowledge. We also define
the dischonest user I and a set of n users who all to-
gether will participate in the protocol. We also define the
intruder’s initial set of knowledge to be «, N; as stated
above.

In order to conduct the verification for the secrecy
property in PVS, we first considered the simple case of
GDH protocol where two users are establishing the se-
cret key. For this purpose, we define two users and a
dishonest user and the set of messages used in the pro-
tocol. In addition, we show how the intruder updates
his set of knowledge when a message is sent between two

International Journal of Network Security, Vol. |, No. , PP. - | . 2008

129

: recv
: expo(a
s expo(alNiNs N;) s oNiNiN3 K = K/ U {oNiN1 N3}
s Attack({a™iNiNs 0)) s L

Ego = {]V%,(I}

s expo(a, N;) — aVi; K = {N;, o, Vi)

: expo(a,Nl) — a1 p(aM1) = p(Ny)+1=1
: send(a™N1); Py — Pg

: recv(aN1), block(a™); K = {N;, a, a1}

: send(aNi); I — Py

s recv(a
. expo(alNi, Ny) s aNilV2
: compose(a
. send(aNi.alVi N"‘) P, — Ps

s recv(aNi.aiN2) block(...); K = {N;, o, @™, aNi.aVilNz2}
. decompose(aNi.aVNiNz) s oNi oqNilN2 K = K/ U {aNiV2}
: compose
: send(a™Nt.aNilN2), [— Py
: recv(a
: decompose(a
. expo(aNiN2 N3) i oNiNV2N3, Py generates a bad group key o
. expo(alNt, N3) — oM N3,

: expo(a, N3) — «
: compose(«a
: send(aN2.aN1Ns): Py — Py

s recv(aNe.a™Ns) block(...); K = K/ U {a3.aN1 Vs

. decompose(aNs.aN1Ns) s Vs oMiNs K = K/ U {aV3, oM N5}
: expo(a™s, N;) — «a

]Vi).

)

N

i aN'NQ) Nx.aNiNQ

— oVt .aNilV2

(2™, o)
Ny .O[NiNz)

Nl_aNiNz) a1, o NiN>

N;N,N3

DJS

fV37 CYJVIJVS) — oV N1 Ns

N;Ns.
i
N,

: compose(aNi, aNilVs) s oNi o NilVs

: send(aNi.aNiNs) [— P,

s recv(aNi.aNilVs)

. decompose(aNi.aNilV3) i N oVilVs

s expo(aNilNs Ny) s oNiN2N3, P, generates a bad group key aNiN2V3
. expo(alNi Ng) s aNilN2

(a
: send(aNiN2); Py — Py
: recv(aNiN2), block(...)

2

p(ad N;) — aNil3;
end(aNilV3); [— Py
(aNilNs)

N;N3 N;N1N3

,Np) = oNiNiN3. Py generates a bad group key o

Figure 2: Applying the Inference System on GDH Protocol

M: VAR set [MESSAGE]
Key: VAR set[KEY]

VAR set [MESSAGE]
: VAR USER
: VAR USER
: VAR set [MESSAGE]

K:

wn H >

rule_initial(alpha: ALPHA) = K_O := [alpha,Ni]

the destination user, the intruder add the message to his
set of knowledge, and finally he/she updates this set by
executing the function update.

GDHP_update? (K, I): bool =

users and blocked by the intruder. For illustration pur-
poses, we show parts of the protocol implementation in-
cluding send and receive operations that take place be-
tween users. The GDHP_update function applies the in-

addMsg (K,m)
GDH_update (K,I)

(FORALL m: K do K := union(K,

GDHP_send? (UserA, UserB, m) =
if ('block(UserA,UserB,m) then GDHP_recv(UserA,UserB,m)

GDHP_recv?(UserA, UserB, m) =
addMsg (UserB.knldgSet ,m)

inf_rule(I,m)))

ference rules on the set of messages and then updates the

intruders set of knowledge. The functions send and re-
cetve, if the message is not blocked, then it is received at

The secrecy property we verify for this protocol is de-
fined as a lemma stating that the protocol satisfies this

International Journal of Network Security, Vol. , No.

secrecy property if it does not execute the inference rule
attack. The property shows that when the protocol is
initiated by a user and the intruder can execute the the
events of the protocol (rules in the inference system), then
the intruder will be able to share a secret key between
him/her and the user in the group. The property is de-
fined as follows:

secrecy_prop_x : THEORY
BEGIN
secrecy_attack: LEMMA
Reachable(rule_inital)AND knows(I,K_0)
IMPLIES Reachable(rule_attack)

END forward_secrecy

In the next step we did the verification for the same
property by executing the inference system on a protocol
between three users instead of two. The verification com-
plexity and effort were more in this case, however there
was no technical changes in the verification techniques
and strategies used. In following we show how the prop-
erty definition for the GDH protocol with three users in
PVS:

secrecy_prop_3 : THEORY
BEGIN
A, B, C: VAR USER
secrecy_attack: LEMMA
Reachable(rule_inital)AND knows(I,K_0) AND GDHP(A,B,C)
IMPLIES Reachable(rule_attack)
END secrecy_prop_3

The challenging part was to verify the N users case of
GDH protocol. This was achieved by applying the same
proof strategies used for the 3 users case for an array of
n-users in order to show that the same attack can be gen-
erated in this case. In the following, we show the secrecy
property definition for the GDH protocol for an array for
n users:

secrecy_prop_n : THEORY
BEGIN

n: VAR int

users: array[n] of USER

secrecy_attack: LEMMA

Reachable(rule_inital)AND knows(I,K_0) AND GDHP (users)
IMPLIES Reachable(rule_attack)

END secrecy_prop_n

Implementing and verifying this part in PVS required
hundreds lines of code, including several proof strategies.
We believe using the framework to verify similar proto-
cols can be achieved in shorter time given the provided
implementation of the inference system and the experi-
ence gained. As opposed to previous works, our approach
give a simple, natural and elegant proof strategy. The
computer experiment shows that our technique is very
promising.

It is true that Diffie-Hellman based protocols are con-
sidered as an algebraic protocols. Therefore, it could be
argued that our approach is more appropriate for non-
algebraic protocol, however, the non-algebraic framework

,PP.

. 2008 130

described here is appropriate to model the distributive
features of such protocols, while most other works ana-
lyze this class of protocols algebraically. We intended, in
this paper, to keep our focus entirely within these non-
algebraic features which has prompted us to make some
necessary assumptions to be able to model and verify the
protocol.

6 Conclusion

The correctness of group key protocols in communication
systems remains a great challenge because of the sensitiv-
ity of the services provided. In this paper, we illustrated
the need for a verification methodology for a class of pro-
tocols that deal with group key distribution. While most
approaches in the literature target cryptographic prop-
erties for two parties protocols, the verification problem
for group key distribution protocols is more challenging
because properties for these protocols are not trivial ex-
tensions of the two-parties models. For example, the fact
that a group member computes a bad key can remain
undiscovered by the group, specially for a large group.

We provided a new approach for the verification of
group key management protocols by using an inference
system defined over rank functions. The approach is
based on an elegant and natural proof strategy for the
verification of group key protocols. We believe to have
contributed in defining a set of rank function and pro-
viding the proof of soundness of these functions, and a
complete and sound inference system for verification of
group protocols. Discovering if the protocol is vulnera-
ble for attacks from an intruder is done by executing the
inference system by a model of the intruder with specific
assumptions about the protocol and the intruder. We
applied this system on a group key protocol, the Group
Diffie-Hellman protocol. Although the protocol is not a
challenging case study, since it has been studied quite
enough in the literature, we use it as illustrative case to
show the feasibility of the proposed approach. Therefore
we provide a mechanized approach using theorem prov-
ing in the context of group key protocols verification. We
found that, under certain assumptions, the intruder can
force members using the protocol to generate bad keys,
which is a well known weakness point in the protocol. The
results we achieved are very promising and we believe that
our framework can be applied efficiently on protocols of
similar complexity level.

As future work, an open issue is applying abstraction
techniques on the rank function to be able to model them
in first-order logic, and therefore, make model checking
feasible using supporting tools. This will reduce the com-
plexity of the verification process and make it more au-
tomatic, but it will limit the applicability of the method
on large scale and complex protocols. In addition, the
application of the inference system on similar protocols
in the existence of a passive adversary should be inves-
tigated further. Another direction is to provide an im-

International Journal of Network Security, Vol.

, No.

plementation of the inference system itself, rather than
defining it in a theorem prover. This will provide more
flexibility for modeling different protocols, however, If we
implement our inference system, then we need to imple-
ment some strategies in order to guarantee the success of
the verification process. If necessary the user can help the
system in order to find an attack. Another open issue is to
provide an implementation for the inference system that
allows partial proofs based on divergence. Other group
protocols [?] will be considered for future study under
this approach.

References

[1]

2]

M. Abadi and V. Cortier. Deciding Knowledge in
Security Protocols under Equational Theories. The-
oretical Computer Science, 367(1):2-32, 2006.

M. Archer. Proving Correctness of the Basic
TESLA Multicast Stream Authentication Protocol
with TAME. In Workshop on Issues in the Theory
of Security, Portland, OR, USA, January 2002.

M. Boreale and M. Buscemi. Symbolic Analysis of
Crypto-Protocols Based on Modular Exponentiation.
In Mathematical Foundations of Computer Science,
volume 2747 of Lecture Notes in Computer Science,
pages 269-278. Springer-Verlag, 2003.

E. Bresson, O. Chevassut, and D. Pointcheval.
Provably-Secure ~ Authenticated Group Diffie-
Hellman Key Exchange. ACM Trans. on Information
and System Security, 10(3), August 2007.

E. Bresson and M. Manulis. Malicious Participants
in Group Key Exchange: Key Control and Contribu-
tiveness in the Shadow of Trust. In Proceedings of the
4th Autonomic and Trusted Computing Conference,
volume 4610 of Lecture Notes in Computer Science,
pages 395-409. Springer-Verlag, July 2007.

E. Bresson, M. Manulis, and J. Schwenk. On Se-
curity Models and Compilers for Group Key Ex-
change Protocols. In the second International Work-
shop on Security, volume 4752 of Lecture Notes in
Computer Science, pages 292-307. Springer-Verlag,
October 2007.

R. Delicata and S. Schneider. A Formal Model of
Diffie-Hellman using CSP and Rank Functions. Tech-
nical Report CSD-TR-03-05, Department of Com-
puter Science, Royal Holloway, University of London,
2003.

R. Delicata and S. Schneider. An algebraic approach
to the verification of a class of diffie-hellman proto-
cols. International Journal of Information Security,
6(2):183-196, 2007.

W. Diffie and M. Hellman. New Directions in Cryp-
tography. IEEE Transactions on Information The-
ory, IT-22(6):644-654, 1976.

B. Dutertre, V. Crettaz, and V. Stavridou. Intrusion-
Tolerant Enclaves. In Proc. IEEE International
Symposium on Security and Privacy, pages 216-224,
May 2002.

, PP.

[11]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

~ . . 2008 131

B. Dutertre and S. Schneider. Using a PVS Em-
bedding of CSP to Verify Authentication Protocols.
In Theorem Proving in Higher Order Logics, volume
1275 of Lecture Notes in Computer Science, pages
121-136. Springer-Verlag, 1997.

J. Katz and J. Shin. Modeling Insider Attacks on
Group Key-Exchange Protocols. In the 12th ACM
Conference on Computer and Communications Se-
curity, pages 180-189. ACM Press, 2005.

J. Katz and M. Yung. Scalable Protocols for Au-
thenticated Group Key Exchange. In Advances in
Cryptology, volume 2729 of Lecture Notes in Com-
puter Science, pages 110-125. Springer-Verlag, 2003.
R. Kiisters. On the Decidability of Cryptographic
Protocols with Open-ended Data Structures. Inter-
national Journal of Information Security, 4(1-2):49—
70, 2005.

M. Layouni, J. Hooman, and S. Tahar. Formal Spec-
ification and Verification of the Intrusion-Tolerant
Enclaves Protocol. International Journal of Network
Security, 5(3):288-298, 2007.

L. Mazaré. Computationally Sound Analysis of Pro-
tocols using Bilinear Pairings. In Preliminary Pro-
ceedings of International Workshop on Issues in the
Theory of Security, pages 6-21, Braga, Portugal,
March 2007.

C. Meadows, P. Syverson, and I. Cervesato. Formal
Specification and Analysis of the Group Domain of
Interpretation Protocol using NPATRL and the NRL
Protocol Analyzer. Journal of Computer Security,
12(6):893-932, 2004.

J. Millen and V. Shmatikov. Symbolic Proto-
col Analysis with an Abelian Group Operator or
Diffie-Hellman Exponentiation. J. Comput. Secur.,
13(3):515-564, 2005.

S. Owre, J.M. Rushby, and N. Shankar. PVS: A Pro-
totype Verification System. In Automated Deduction,
volume 607 of Lecture Notes in Computer Science,
pages 748-752. Springer Verlag, 1992.

O. Pereira and J. Quisquater. Some Attacks upon
Authenticated Group Key Agreement Protocols.
Journal of Computer Security, 11(4):555-580, 2004.
O. Pereira and J. Quisquater. On the Impossibility of
Building Secure Cliques-Type Authenticated Group
Key Agreement Protocols. Journal of Computer Se-
curity, 14(2):197-246, 2006.

P. Ryan and S. Schneider. The Modelling and
Analysis of Security Protocols: The CSP Approach.
Addison-Wesley, 2001.

S. Schneider. Verifying Authentication Protocols in
CSP. IEEE Transactions on Software Engineering,
24(9):741-758, September 1998.

G. Steel, A. Bundy, and M. Maidl. Attacking a Pro-
tocol for Group Key Agreement by Refuting Incor-
rect Inductive Conjectures. In Automated Reasoning,
volume 3097 of Lecture Notes in Computer Science,
pages 137-151. Springer-Verlag, 2004.

International Journal of Network Security, Vol. , No.

[25]

M. Steiner, G. Tsudik, and M. Waidner. Diffie-
Hellman Key Distribution Extended to Group Com-
munication. In Proc. of the 3rd ACM Conference on
Computer and Communications Security, pages 31—
37. ACM Press, 1996.

H. Sun and D. Lin. Dynamic Security Analysis of
Group Key Agreement Protocol. IEEE Transactions
on Communication, 152(2):134 — 137, April 2005.

T. Truderung. Selecting Theories and Recursive
Protocols. In Concurrency Theory, volume 3653 of
Lecture Notes in Computer Science, pages 217-232.
Springer-Verlag, 2005.

, PP.

)

. 2008

132

