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Abstract. Analog circuits are an increasingly critical component in embedded

system designs. Traditionally, simulation is used for verification, but due to the

infinite state space of analog components, the 100% correctness of a design can-

not be guaranteed. Formal methods, based around applying mathematical expres-

sions and reasoning to prove correctness, have been developed to increase the

verification confidence level. This paper introduces and demonstrates a method-

ology for formally verifying safety properties of analog circuits. In the proposed

approach, system equations are automatically extracted from a SPICE netlist by

means of energy conservative bond graph models. Verification based on abstract

model checking and constraint solving is then applied on theextracted equation

models. Our methodology avoids an exhaustive and time demanding simulation

that is normally encountered during analog circuit verification. To this end, we

have used a set of tools to implement the proposed verification flow and applied

it on tunnel diode, Chua and Colpitts oscillators as case studies.

1 Introduction

Analog circuits are an increasingly critical component in the verification flow of em-

bedded system designs. Embedded devices are difficult to design and verify because of

the interface between the digital (discrete) and analog (continuous) domains. Because
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of the unpredictable nature of the real world input, the devices are required to operate

over a large number of different modes that can be particularly difficult to determine,

isolate and verify. For safety critical systems, where complete verification is required to

ensure that an accident will not occur, this situation is particularly problematic.

The standard method to verify analog designs is simulation.With the increasing

complexity, simulations can take days or even weeks to terminate [1]. Unfortunately,

the results obtained via lengthy simulations can still remain incomplete. This is because

it is impossible to test the entire set of inputs and expectedoutputs due to the continuous

nature of the external signals. Only a finite number of cases can be checked. Therefore

simulation methods lack the rigor to ensure the complete correctness of a design.

To address the incomplete verification of designs via simulation, formal methods

have been developed to increase the verification confidence level. Formal methods [2]

are based around applying mathematical expressions and reasoning to prove the correct-

ness of a design. A formal specification is constructed to verify a model using mathe-

matical logic and formal reasoning.

There have been several industry level applications developed for the formal verifi-

cation of digital circuits [3]. However, there has not been the same amount of progress

for analog circuits. This has severely limited the application of formal methods to em-

bedded systems and other mixed signal devices. The current modelling methodologies

used are not well suited for verifying several domains together. This requires that the

verification of each part of a mixed signal design to be performed separately. It will

be necessary to solve this problem before any significant progress will be made in the

formal verification of embedded systems.

One way to model the complex behaviour of the analog part of anembedded system

is by using a system of differential equations. One challenge in the verification process

is to have an adequate model that accurately represents the behaviour of the design.
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Unfortunately, generating equations that accurately represent this dynamic behaviour

but are also simple enough to verify automatically remains anon-trivial process.

A critical problem facing analog designs are the effects arising from the reduction

in fabrication size. These effects include parasitics, current leakages and component

variations that can drastically change the expected behaviour of a design. This can cause

major problems for the verification engineer because it is time consuming to build an

appropriate model that accounts for this additional behaviour. Additionally, a great deal

of expertise is required by the designer to extract and verify the properties of interest

from the newly defined models. It is therefore of great utility to both the designer and

the verifier to have models at their disposal that preserve the required behaviour of a

device, yet remain simple enough to be verified using tools that are available.

This paper demonstrates a flow to verify functional properties of analog circuits.

The different steps of the proposed methodology are shown inFigure 1. The methodol-

ogy consists of two parts; namely modelling and verification. In the modelling phase,

the circuit schematic is analyzed to obtain the system of ordinary differential equa-

tions (ODEs) necessary for the verification. The idea is to extract the circuit ODEs

automatically from the corresponding analog circuit diagram, by means of bond graph

transformations [4]. Two complementary approaches based on combiningpredicate ab-

stractionandconstraint solvingare then applied to validate properties of interest during

the verification phase. In particular, when the constraint solving based verification fails

to return a result due to the complexity of the obtained ODE model, we can apply the

predicate abstraction based method to obtain a result.

Bond graphs are a domain independent modelling formalism for physical systems

based on the flow of energy between abstract objects. The benefit of using bond graphs

for modelling is the ability to represents circuits using flow, effort and energy conser-

vation. There are also switched bonds that can be used to represent discrete changes

in behaviour. These properties allow for the universal treatment of different physical
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domains. This is particularly useful for representing the behaviour of mixed signal sys-

tems.

Predicate abstraction [5] is one of the most successful abstraction approaches for

the verification of systems with an infinite state space. In this approach, the state space

is divided into a finite set of regions and a set of rules is usedto define the transition

between these regions in a way that the generated state transition system can be verified

using model checking. Model checking is defined as: given a finite state model and a

property, determine automatically whether the model satisfies the property [2].

Constraint solving [6] is concerned with verifying properties based on relations be-

tween the variables of a system. Problems are solved by forming constraints around a

problem definition and by consequently finding solutions satisfying them all. For the

constraint solving method, we use predicates to enhance theprecision and computa-

tional cost of the state space exploration. However, in casethat this method fails to

provide an answer due to a state space explosion, an abstraction based verification is

used. In this second approach, predicate abstraction is applied to generate an abstract

state space that can be subsequently verified using model checking. In our approach, we

validate the counterexample by again using constraint solving. In the case of a spurious

counterexample, the abstract model can be refined [7].

The proposed methodology has the advantage of avoiding exhaustive simulation

usually encountered during verification. To this end, we have used a set of tools to im-

plement the verification flow. The design equations necessary for the verification are

extracted from SPICE models using Dymola [8]. These equations are further simplified

using Mathematica [9] simplification rules. HybridSal [10]is then used to obtain an

abstract model which is verified using the SAL symbolic modelchecker (SAL-SMC)

[11]. The HSolver [12] constraint solver is used alternatively for property verification

and as a refinement procedure for counterexamples generatedby SAL-SMC. We illus-
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trate the methodology on several analog examples includingColpitts and tunnel diode

oscillator circuits.

The rest of the paper is organized as follows: We start with anoverview of the

relevant work in Section 2. After that, we describe the different phases of the equa-

tion extraction process along with the theory behind bond graphs in Section 3. This

is followed by an explanation of the proposed verification methodology in Section 4.

The experimental results are presented in Section 5, beforeconcluding the paper with

Section 6.

2 Related Work

The presented verification methodology spans many different research domains. There-

fore we will only highlight the most important information including the work on bond

graphs for the analysis of analog designs.

Modelling analog circuits for formal verification. One of the main challenges of the

formal verification of analog designs, is the development ofmodels that preserve the re-

quired behaviour. Extracting the system equations to be used in behavioural modelling

is a challenging task in the analog design process. Nodal analysis techniques have been

developed to this aim by extracting equations from the circuit netlist. However, the

resulting equations are in general, very large and too complicated to be used for a be-

havioural analysis. For example, in the context of formal verification, the authors of [13]

relied on the symbolic analysis toolbox AnalogInsydes to obtain the system equations

necessary for the verification.

In comparison with conventional symbolic extraction methods [14] and the tech-

niques mentioned above, bond graph based modelling allows for a symbolic extraction

of the system equations. This is possible because of methodsto automatically assign

an input-output relation (causality) to each component, generating a compact computa-
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tional structure [15], that can be used to obtain differential equations.

Analog design verification.A common trend in analog verification is to use on-the-fly

state space exploration techniques, where the set of reachable states correspond to an

overapproximate solution of the system equations, over a bounded period of time. In an

alternative approach, the entire state space is subdividedinto regions where computa-

tional rules define the transitions between states. This model is generally described as a

finite state automaton, verifiable using model checking techniques.

For instance, in the early work in [16], the authors constructed a finite-state discrete

abstraction of electronic circuits by partitioning the continuous state space into fixed

size hypercubes and then computing the reachability relations between these cubes us-

ing numerical techniques. In [17], the authors tried to overcome the expensive com-

putational method in [16], by combining discretization andprojection techniques of

the state space to reduce its dimension. Similarly, the model checking toolsd/dt [18],

Checkmate [19] and PHaver [20] were adapted and used in the verification of a biquad

low-pass filter [18], a tunnel diode oscillator and a∆Σ modulator [19], and voltage con-

trolled oscillators [20]. In [13], the authors used intervals to construct the abstract state

space, while using heuristics to identify possible transitions between adjacent regions.

The main difference with [16], is that they allow variable sized regions. An exhaustive

state of the art review of the formal verification of analog designs can be found in [21].

Additionally, there exists work that is concerned with transforming the analog veri-

fication problem to one that can be solved with Boolean satisfiability (SAT) techniques.

In [22], the authors have developed a methodology for formulating a SPICE style simu-

lation into a format that can then be passed to a SAT solver. Inparticular, this technique

can capture, at the transistor level, the non-linear behavior of the design under test.

Many of the surveyed formal methods limit the verification ofthe circuit to a pre-

defined time bound because they depend on explicit state exploration. In contrast, we
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propose in this paper to use qualitative based methods for the construction and verifica-

tion of abstract models, which overcomes the time bound requirement. In addition we

extend the verification with a counterexample guided refinement procedure.

For a more in-depth review of related work and other viable methods for the mod-

elling and formal verification of analog circuits see [23].

3 Bond Graphs as a Model for Analog Circuits

Bond graphs were introduced by Paynter [24] who hypothesized that all physical sys-

tems and the interactions between them could be modeled using energy and power

alone. His work was extended later on by Karnopp and Rosenberg [25] to enable the

bond graph theory to be used in practice. They developed multi-port objects that could

be used with power bonds to model the flow of energy and information [26]. The ben-

efit of a modelling framework based on energy flow is that different domains can be

analyzed using the same methodology. The necessary and sufficient set of bond graph

primitives consist of five elements, but normally a more practical set of nine elements

is used as shown in Table 1.

Table 1.Basic Objects of Bond Graphs

Group Components Electrical Domain Example

Storage Capacitive/Inertial Capacitance/Inductance
Supply Source of effort/Source of flowVoltage source/Current source

Reversible transformation Transducer/Gyrator Transformer
Irreversible transformation Entropy producing process Thermal Resistance

Distribution 0 and 1 junctions KVL, KCL

Example. The tunnel diode oscillator circuit in Figure 2(a), which has been used by

many researchers (e.g.,[19,13]) as a benchmark in formal verification research, will be

used as an example throughout the paper to demonstrate each step of our methodology.
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The tunnel diode exploits a phenomenon called resonant tunneling due to its negative

resistance characteristic at very low forward bias voltages. For certain ranges of volt-

ages, the current decreases with increasing voltage. This characteristic makes the tunnel

diode useful as an oscillator.

Connections.Bond graphs are based on the first principle of energy conservation. The

most basic element of a bond graph is the power bond. It is the energy link between two

components. It is represented graphically by a harpoon (half arrow), which points in the

direction of positive energy flow (see Figure 2(c)). The bondrepresents two variables,

effort and flow. In the electrical domain, the effort variable is represented by voltage and

the flow by current. It follows that the product of the effort and flow variables represents

the power flowing through the bond. Additional variables canalso be derived from the

bonds.

The next basic component is the junction, which represents acircuit node or mesh.

At the 0 or common-effort junction the efforts are equal, which is analogous to a node

in a circuit. At the 1 or common-flow junction, the flows are equal, which is analogous

to a mesh in a circuit.

Components.Using the bonds and junctions, it is possible to connect components to-

gether in a bond graph, as shown in Figure 2(c). Single and multi-port bond graph

elements are used to represent different topologies. The single port components are

described below. The first basic elements are the sources of effort or flow. They are

analogous to voltage and current sources in circuit diagrams. Additional single port

components are used to represent resistors, capacitors andinductors. They are denoted

using the lettersR, L or C. Other components can be defined by an input/output func-

tional relationship. In Figure 2(c) a tunnel diode is represent by the symbolD.

Causality. Causality is the determination and representation of the directional relation-

ship between an input and an output [25] preserving the computational structure of the

design. The causal stroke is attached to the side of the bond that computes the flow vari-
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able [27] (Figure 2(d)). In general, causality is applied automatically using a technique

such as the sequential causality assignment procedures (SCAP) to produce a causal

bond graph [15]. By assigning causality, computational information of the system is

available so that the system equations can be automaticallyextracted.

The fact that causality (algebraic dependency) is defined explicitly before any equa-

tions are setup remains a great advantage over other multi-domain modelling methods.

Many practical analog circuits have a mathematical model that takes the form of a sys-

tem of differential algebraic equations (DAE) with an indexof one. It is well known

that these models can be solved numerically for simulation purposes. For formal veri-

fication we require an analytical model and not a numerical approximation. Therefore

it is generally necessary to use models that are available instate space form. Borutzky

[28] has developed methods that use the causality information provided by bond graphs

to identify tearing variables and equations to automatically reduce the DAE system into

a state space model.

3.1 Analog Modelling Methodology

In the following, we present the methodology for automatically extracting the system of

ODEs from an analog circuit. By using bond graphs we are able to conveniently model

the topology of an analog circuit, which can aid at both the design and verification

stages. The methodology is depicted in Figure 3.

Based on what behaviour or functionality is required in the design, the analog cir-

cuit is first constructed by hand with a schematic capture program that uses common

symbols to represent the necessary components. This high level abstraction is then au-

tomatically transformed into a SPICE circuit model by macros contained within the

schematic capture program. Using the Dymola Modelling Laboratory [8] in conjunc-

tion with the BondLib library [4], a bond graph is created directly from the SPICE

model.
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At this point, the bond graph is not in its simplified form. Using the simplification

rules (see below), the bond graph is reduced. With the bond graph in its reduced form

we are assured that the computational complexity is at a minimum. Next, the causality

is automatically assigned by Dymola. Each bond graph component can have either a

fixed, preferred or free causality assignment, determined by where the flow variable

is calculated. For our verification task we want differential equations to be produced

instead of integrals. This might take several iterations tocomplete since the overall

causality assignment is constrained by the stating point ofthe SCAP algroithm and the

resulting propagation of the choice through the bong graph.

Once the simplified and causal bond graph is formed, then Dymola is used again to

automatically generate the Modelica description that contains the differential equations.

For smaller designs the equations can be easily read directly from it. In other cases,

when the design is more complex, the Modelica description may contain redundant

equations due to the conversion process from DAEs to ODEs.

Generally, the equations representing the circuits are differential algebraic equa-

tions. Here, Dymola applies symbolic manipulation techniques in order to generate au-

tomatically the corresponding ODEs from the DAEs as described in [29, 28]. However,

this comes at the cost of introducing dummy algebraic equations that can be simplified

or eliminated using simplification rules within Mathematica. In this case, the simplifi-

cation rules in the algebraic system Mathematica are employed to automate the ODE

extraction. This process is further aided by using MathModelica [30], a Mathematica

interface to the Modelica library.

The advantage of using BondLib is due to the symbolic nature of bond graphs.

The behaviour of the corresponding SPICE models of the electrical components is pre-

served using a black box abstraction. For instance, the current through a transistor can

be represented by a function, e.g.,Ids = f (l ,w,Vgs, ...). The internal details are chosen
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independently of the verification method. In general, the verification might begin with

a simple model and then more complex models can be substituted when needed.

3.2 Construction of the Bond Graph

Example. The transformation from a circuit diagram to bond graph is comparable to

the SPICE model given in Figure 2(b). Each circuit diagram component is transformed

into its bond graph counterpart. They are then interconnected by transforming nodes

into 0 junctions and meshes into 1 junctions as shown in Figure 2(c). This is performed

according to the bond graphs rules described earlier.

Simplification. There exists two levels of simplification that can be performed auto-

matically on bond graphs. First, there are equivalence rules for the junction object [26].

These rules are used to reduce the number of bonds in a circuitand are based on the sim-

plification of the underlying power equations. The equivalence rules can be performed

automatically to a bond graph.

The second level of simplification is analogous to the concept of combining many

parallel capacitances into one equivalent capacitor, which reduces the state space de-

scription. By choosing to combine certain bond graph elements, it is possible to reduce

the complexity of the system without affecting the overall function. This can result in

simpler ODEs that are extracted from the reduced bond graph model.

Example. There are several simplifications that can be made to the bondgraph in Fig-

ure 2(c). First, the bonds that are connected to ground can bedeleted since the voltage

at those nodes is zero, indicating that the power flow is zero.Then, since the flows at

1 junctions are equal, 1 junctions in series can be merged together. As a final step to

the simplification process, any junction that has only two bonds connected is removed

since no power that flows through a two port junction can divert to another component.
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The next step in the conversion process is to add a causality stroke to each bond

(a straight line added to one end of a bond). Since there are two variables associated

with each bond, the stroke indicates at which end the flow (current in the analog circuit

sense) variable is calculated. To allow for an automated extraction of system equa-

tions, causality is assigned so that differential equations are obtained. For capacitors,

the causal stroke is drawn at the opposite end of the bond awayfrom the capacitor. For

inductors, the causal stroke is drawn at the inductor end of the bond. The final bond

graph is defined as shown in Figure 2(d).

3.3 Obtaining the System of Equations

Once the bond graph is built, the set of system equations can be extracted and simplified.

In the current project, we use rewriting techniques provided in Mathematica to remove

redundant equations. This is a mostly manual process. The final system of equations

are the computational model on which we apply the verification. In general, the analog

design computational model is described as below:

Definition 1. Analog Design Model.

An Analog Design Model is a tupleA = (X ,X0,U ,F ), with X =Vc1 ×Vcn × . . .× Ilm ⊆

R
d as the continuous state space with d-dimensions, where Vci and Il j are the voltage

across the capacitance Ci and the current through the inductance lj , respectively. The

resistances in this case are memoryless (non-storage) elements.X0 ⊆ X is the set of

initial states (initial voltages on the capacitances and currents through the inductance).

U ∈ R
k is the set of possible input signals to the design andF : X ×U → R

d is the

continuous vector field.

The analog design can then be described by the system of ODEs as follows:

Definition 2. System of ODEs

Consider a set of variables xk(t) ∈ R, i ∈ {1, . . . ,d}, t ∈ R, an ODE is a system consist-
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ing of a set of equations of the form:

ẋk =
dxk

dt
= ẋ = Fk(x(t),u(t),t)

wherex(t) are variables defining the voltage across the capacitance and the current

through the inductance.u(t) ∈ R
m are variables defining the input signals, with the

vector fieldsFk.

The semantics of the analog modelA = (X ,X0,F ) over a continuous time period

Tc = [τ0,τ1] ⊆ R
+ (t1 = ∞ in case of complete behaviour) can be described as a trajec-

tory Φx : Tc → X for x∈ X0 such thatΦx(t) is the solution of ˙xk = Fk(x1, . . . ,xd), with

initial conditionΦx(0) = x andt ∈ Tc, is a time point.

Example. With the simplified equations, we can now focus on the currentIL and the

voltageVC across the tunnel diode in parallel with the capacitor of theserial RLC circuit

(Figure 2). The extracted simplified ODEs are given asV̇C = 1
C(−Id(VC)+ IL) andİL =

1
L (−VC−

1
GIL +Vin), whereId(VC) =VC

3−1.5VC
2+0.6VC that describes the non-linear

tunnel diode behaviour.

4 Analog Design Verification

This section will describe the methodology for verifying properties of analog designs

using ODEs extracted from bond graphs. There are two issues that must be addressed.

First, we must determine what type of properties to verify. We have chosen to focus

on verifying safety properties which indicate that some badbehaviour will never occur.

The second task is to determine how to verify the properties over a continuous-time

ODE model. A direct analysis over the continuous domain is too computationally ex-

pensive for the available verification technologies. We have therefore chosen to use an

abstraction based technique. The goal is to reduce the required computational effort

while preserving critical model behaviours thus ensuring valid verification results.
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4.1 Preliminaries

Examples of questions that often come up during analog verification include: “will the

system’s behaviour follow the design specification for the entire range of initial operat-

ing conditions?” and “considering component variations for a specific design technol-

ogy will the transistors remain in the correct operating regions?”. Such questions can

be easily redefined as safety properties in a temporal logic.

LTL (Linear Temporal Logic) is a logic language that defines properties by quali-

tatively describing their truth over time. There are four basic temporal operators : Fp

meaning “eventually p”, Gp meaning “always p”, Xp “next timep” and pUq meaning

“p until q”

Example. Consider the tunnel diode circuit with the set of parameters{C = 1000e−12

F, L = 1e−6 H, R = 2 Ω, Vin = 0.3 V and the initial values{VC = 0.131V, IL =

0.055A}. Additionally, consider that due to inconsistencies in thefabrication process,

the resistance will vary 10% from its nominal value. We verify that the preceding com-

bination of parameters, initial conditions and parameter variations do not produce os-

cillatory behaviour. If the circuit does not oscillate, then the voltage will never pass

the upper bound of 0.6 volts. The behaviour in question is stated as the safety property

G(VC ≤ 0.6). The validation of the property verifies the non-existence of oscillation.

We cannot verify safety properties directly on the continuous time ODE model, due

to its continuous nature. Therefore we must use an abstracted model.

4.2 Abstracting a Model

Definition 3. Transition System. A transition system [31] is a 3-tuple TS= (S,S0,T)

with a set of possible states S, a set of initial states S0 and a set of transitions T.

Definition 4. Abstraction. A transition system A= (Ŝ, Ŝ0, Ê) with a finite set of stateŝS

is an abstraction [31] of a transition system C= (S,S0,T) if there exists an abstraction
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functionγ : S→ Ŝ such that each initial state in the abstracted transition system (̂s0) can

be related to the original transition system initial states(s0) by ŝ0 = γ(s0). Additionally,

each abstract transition must correspond to an original transition between concrete

states.

One viable abstraction technique is predicate abstraction, where the set of abstract

states is encoded by a set of Boolean variables representingeach a concrete predicate.

Based on [32], we define a discrete abstraction of the analog modelA with respect to

a given n-dimensional vector of predicates over reals whereeach predicate is of the

form ψ : R
d → B, with B = {0,1} andd is the state variables numbers withψ(x) :=

P (x1, . . . ,xd) ∼ 0, where∼∈ {<,≥}. Hence, the infinite state spaceX of the system

is reduced to 2n states in the abstract system, corresponding to the 2n possible Boolean

truth evaluates of the set of predicates. We define the abstract behaviour of the analog

circuit as a transition system that overapproximates that behaviour, which is guaranteed

to contain real behaviour of the concrete circuit:

Definition 5. Abstract Transition System. An abstract transition systemis a tuple

TΨ = (QΨ, ,QΨ,0), where:

– QΨ ⊂ L×B
n is the abstract state space for a n-dimensional vector predicate, where

an abstract state is defined as a tuple(l ,b), with l ∈ L is a label and b∈ B
n.

–  ⊆ QΨ ×QΨ is a relation capturing abstract transition such that{b b′|∃x ∈

ϒΨ(b),t ∈ R
+ : x′ = Φx(t) ∈ ϒΨ(b′)∧x → x′}, where the concretization function:ϒΨ :

B
n → 2R

d
is defined asϒΨ(b) := {x∈ R

d|∀ j ∈ {1, . . . ,n} : ψ j(x) = b j}

– QΨ,0 := {(l ,b) ∈ QΨ|∃x∈ ϒΨ(b),x∈ X0} is the set of abstract initial states.

In general, the effectiveness of the predicate abstractionmethod depends on the

choice of predicates and the precision of the transition relation between abstract states.

Several criteria are raised for the choice of appropriate predicates. For instance, ba-

sic ideas from the qualitative theory of continuous systemscan be adapted within the

predicate abstraction framework as proposed in [10, 33].
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Predicates related to the basic functionality of the designof interest can also be

provided in a manual fashion. The conventional analysis of circuits can be an inter-

esting direction for obtaining useful predicates. It is worth noting that the termination

of the predicate generation phase is not necessary for creating an abstraction. We can

stop at any point and construct the abstract model. A larger predicate set yields a finer

abstraction as it results in a larger state space in the abstract model.

Given the analog model transition systemTA representing the analog behaviour and

a propertyϕ expressed using LTL. The problem of checking that the property holds in

this model written asTA |= ϕ can be simplified to the problem of checking that a related

property holds on an approximation of the modelTΨ, i.e.,TΨ |= ϕ. More formally, the

main preservation theorem is stated as follows [31]:

Theorem 1. SupposeTΨ is an abstract model ofTA , then for all LTL state formulas

describingTΨ and every state ofTA , we havẽs|= ϕ ⇒ s|= ϕ, where s∈ γ(s̃). Moreover,

TΨ |= ϕ ⇒ TA |= ϕ.

If a property is proved on an abstract modelTΨ, then we are done. If the verifica-

tion of TΨ revealsTΨ 2 ϕ̃, then we cannot conclude thatTA is not safe with respect

to ϕ̃, since the counterexample forTΨ may be spurious. In order to remove spurious

counterexamples, refinement methods on the abstract model are applied [31].

4.3 Verification Methodology

We have developed a verification methodology combining predicate abstraction and

constraint solving to take advantage of the best parts of both techniques. Depending on

the type of property, there are two complementary verification options to choose from.

Enhancing Constraints based Verification using Predicates. If the property we want

to verify can be described as some upper limit on a variable, then the best option is to

use a constraint solver due to its precision in representinga variable’s trajectory. On
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the left branch of Figure 4, we strengthen constraint solving based verification with

predicates that act as constraints on the state space. This is practical as the addition of

useful constraints can limit the state space exploration byproviding a means for pruning

unreachable states.

In this approach, we apply HybridSal on the system equationsto obtain an abstract

state graph of the circuit behaviour. The satisfaction of properties is verified on these re-

gions using constraint based methods. The abstract graph, along with the system equa-

tions and the property of interest are then used as an input toHSolver. The property

verification provides the advantage of avoiding explicit computation of reachable sets.

If the property cannot be verified at this stage, refinement isneeded only for the non-

verified regions by adding more predicates using HybridSal.Verification is then applied

on the newly generated abstract model.

HSolver has an internal abstraction refinement procedure. However, due to over-

approximation, the refinement does not terminate unless there is a bound on it. When

the bound is reached but verification does not terminate, a non conclusive answer is

returned over an interval that violates the property. Refinement can be achieved by in-

creasing the bound or choosing tighter constraints for the abstract states. In the case that

the verification still fails even with refinement, the complementary approach that uses

predicate abstraction can be used.

Predicate Abstraction based Verification. If the property under consideration is de-

scribed using a temporal logic such a LTL, then the best option is the approach using

abstract model checking. This is to take advantage of the significant number of ad-

vanced tools that can already prove properties on LTL formulas. On the right branch

of Figure 4, symbolic model checking using SAL-SMC is applied on the abstract state

space generated from HybridSal. The constraint based solver HSolver is used as a coun-

terexample validation procedure for the abstract model checking SAL-SMC. At first,

the abstract model is built automatically using the predicate abstraction tool HybridSal.
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If the property verification succeeds, the approach terminates, otherwise an abstract

counterexample is generated.

In abstract model checking, when a property cannot be verified, a counterexample is

generated identifying the reasons for the possible property violation. As the generated

counterexample is an abstract one, due to the overapproximation, it is essential to val-

idate the counterexample. In case it is spurious, the information from it can be used in

order to refine the abstract reachable states. The predicates specifying the counterexam-

ple are turned into constraints that are provided to HSolver, along the property and the

system of ODEs. HSolver tries to validate the property only in the regions described by

the provided constraints. If the property is verified, then we deduce that the counterex-

ample is spurious and a refinement procedure based on removing spurious transitions is

applied on the abstract model and symbolic model checking isre-applied on the refined

model. On the other hand, if HSolver fails to provide a decisive answer about the prop-

erty validation, the abstract model is refined by abstract states splitting which results by

adding more predicates.

Note. There is no guarantee that a spurious counterexample can be refuted and the

procedure might therefore not terminate again. Technically, this happens if the approx-

imation is too loose and not precise enough, resulting in impossible behaviour. To our

knowledge no efficient solution exists for such problems forhybrid systems. However,

other practical counterexample validation have been proposed in [31].

4.4 Verification of a Tunnel Diode Oscillator

We use the predicate abstraction option (right branch of Figure 4) for the verification of

the tunnel diode oscillator. Once the simplified system of ODEs has been extracted, they

can be used to form a hybrid system definition in the HybridSalmodelling language.

The variables of an analog circuit lie within a continuous state space and thus pose

a problem for the formal verification tools that prove properties over a finite state space.

To decrease the computational complexity of the verification problem, HybridSal uses
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internal abstraction methods to encode the continuous state space into a discrete one

defined by a set of predicates that are either greater than, less than or equal to zero. Ide-

ally, the abstract model that is created should preserve enough of the critical behaviour

of the design to verify the safety property under question [10].

The tunnel diode circuit is first manually transformed into aHybridSal description

(see Listing 1). The HybridSal tool automatically generates the discrete abstract model

(see Listing 2).

TunnelDiode :CONTEXT =
BEGIN
c o n t r o l : MODULE =
BEGIN
LOCAL v : REAL
LOCAL vdot : REAL
LOCAL i : REAL
LOCAL i d o t : REAL
LOCAL r : REAL

INVARIANT
TRUE

INITFORMULA
v = 131/1000 AND i = 55/1000 / / I n i t i a l Values
r > 45 AND r < 55 / / Va r i a t i on on r

TRANSITION / / Behaviour o f system d esc r i b ed us ing ODEs
[

v > 0 −−>

vdot ’ = 1000∗(−1∗(v∗v∗v−15/10∗v∗v +6/10∗ v ) + i ) ;
i d o t ’ = (−v − r ∗ i + 3 / 1 0 )

]
END;
G( s s : [ c o n t r o l . STATE−> BOOLEAN] ) : [ c o n t r o l . STATE−> BOOLEAN] ;
c o r r e c t : THEOREM

c o n t r o l |− G( v < 6 / 1 0} ; / / Property to be V e r i f i e d
END

Listing 1. HybridSal Tunnel Diode Description

The continuous variables are indicated by the constantsv andi. Their derivatives are

vdot and idot. They represent the current through the inductor and the voltage across

the capacitor. TheINITFORMULAsection indicates that the initial value ofv is 0.131 V
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and fori is 0.055 A. The constraints on the variance of the parameter Rare also defined

in this section. The formulas in theTRANSITIONsection describe the conditions for

switching between states as well as the differential equations defined over each mode

of operation. In the case of the tunnel diode, there is only one mode of operation. But

for instance, a MOSFET could be defined over three modes of operation (cut-off, triode

and saturation). The second to last line contains the property to be verified, defined

using LTL.

In general, the hybrid system definition has both discrete and continuous sections

that allow the entire behaviour to be modeled. The system of ODEs that were extracted

from the bond graph model can be put directly into the TRANSITION section of the

HybridSal description.

Three polynomial predicates have been used to discretize the state space and are

labeledg0, g1andg2. The ODEs in theTRANSITIONsection have been converted into

abstract functions dependent on these predicates. We have omitted the definitions of the

abstract functionsASSVP, ASSVD123andINV3. The property to be verified itself has

also been converted into an LTL definition using the predicates.

This abstract model is checked using SAL-SMC to verify the non oscillation prop-

erty. In this case, the SAL-SMC tool returns that the property is not proved and gives

a counterexample (see Listing 3). The counterexample showsthe values of the predi-

cates as the model checker steps through each abstract state. The abstract property states

that the predicateg1 must always be negative. However, the generated counterexample

demonstrates a path to where theg1 predicate is zero. At this point, it is necessary to

check whether the counterexample is spurious or not.

The next step in the tunnel diode circuit verification is to validate the counterexam-

ple produced by the SAL-SMC tool. By coding the predicates and transitions specified

in the counterexample into an HSolver description (see Listing 4), we can perform a

more precise examination of the reachable states. If it is determined that the counterex-
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/ / Generated P r e d i c a t e s
g2 −−> v
g1 −−> v − 3 /5
g0 −−> −1∗v ˆ3 + 3/2∗ v ˆ2 − 3/5∗ v + i

/ / Ab s t rac t i on
TunnelDiodeABS : CONTEXT =
BEGIN
SIGN : TYPE = {pos , neg , ze ro} ; / / Q u a l i t a t i v e v a r i a b l e s

c o n t r o l : MODULE = BEGIN
GLOBAL
g0 : SIGN
GLOBAL
g1 : SIGN
GLOBAL
g2 : SIGN
INITIALIZATION
g2 = pos ; g1 = neg ; g0 = neg
TRANSITION / / Abs t rac t t r a n s i t i o n s
[ g2 = pos AND INV3 ( g2 ’ , g1 ’ , g0 ’ )
−−>

g2 ’ IN ASSVP( g2 , g0 ) ; g1 ’ IN ASSVP( g1 , g0 ) ;
g0 ’ IN ASSVD123 ( g0 , FALSE ,

g1= ze ro AND g0=neg OR g0= zero AND g1=zero ,
g1= ze ro AND g0=neg OR g0= zero AND g1= zero ) ]

END;
c o r r e c t : THEOREM c o n t r o l |− G( g1 = neg ) ; / / Abs t rac ted Property

END

Listing 2. SAL Description for the Abstract Model of the Tunnel Diode Circuit

ample is never reached then the spurious transitions can be removed from the abstract

model.

The HSolver description is described as follows. The variables of the system defined

in theVARIABLESsection arev, i andr. The modes of the system are namedm1, m2,

m3andm4 in the MODES section. The tunnel diode model is defined over four modes

of operation in theSATESPACEsection, which represent the 4 steps of the counterex-

ample. The initial values and differential equations defined in theFLOW section are

the same as defined in the HybridSal description. The differential equations are defined

over the discrete modes and they have a“ d” appended to their variable names. The
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INVALID , b u i l d i n g coun te rexamp le . . .

Counterexample :
===========
PATH
===========
Step 0 :
−−− System V a r i a b l e s ( a s s i g n m e n t s )−−−
g0 = neg
g1 = neg
g2 = neg
−−−−−−−−−−−−−−−−−−
Step 1 :
−−− System V a r i a b l e s ( a s s i g n m e n t s )−−−
g0 = zero
g1 = neg
g2 = pos
−−−−−−−−−−−−−−−−−−
Step 2 :
−−− System V a r i a b l e s ( a s s i g n m e n t s )−−−
g0 = pos
g1 = neg
g2 = pos
−−−−−−−−−−−−−−−−−−
Step 3 :
−−− System V a r i a b l e s ( a s s i g n m e n t s )−−−
g0 = pos
g1 = zero / / V i o l a t e s the a b s t r a c t property G( g1=neg )
g2 = pos
−−−−−−−−−−−−−−−−−−

Listing 3. SAL-SMC Generated Counterexample from the SAL Tunnel DiodeDescrip-
tion

jump conditions define when the system switches modes and in this example the con-

ditions are how predicates change value in the SAL-SMC generated counterexample.

The safety constraints of the system are defined in theUNSAFEsection.

HSolver outputs “SYSTEM SAFE” which indicates the path to the abstract state of

the counterexample produced by the SAL-SMC tool is never reached. We can therefore

conclude the counterexample is spurious. Therefore, we manually remove from the SAL

description all transitions from states where predicateg1= negholds to states where

g1= zeroholds. This refinement is valid because by applying the cone of influence [34]
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VARIABLES [ v , i , r ]
MODES [m1 , m2, m3 ,m4]
STATESPACE
m1[ [ −0 . 5 , 1 . 2 ] , [−0 . 5 , 0 . 2 ] , [ 4 0 , 5 0 ] ]
m2 [ [ −0 . 5 , 1 . 2 ] , [−0 . 5 , 0 . 2 ] , [ 4 0 , 5 0 ] ]
m3 [ [ −0 . 5 , 1 . 2 ] , [−0 . 5 , 0 . 2 ] , [ 4 0 , 5 0 ] ]
m4 [ [ −0 . 5 , 1 . 2 ] , [−0 . 5 , 0 . 2 ] , [ 4 0 , 5 0 ] ]
INITIAL

m1{v =0 .131 /\ i =0 .055 /\ r >45/\ r <55} / / Con s t ra i n t s
FLOW
m1{ v d =1000∗(−( v∗v∗v−1.5∗v∗v +0.6∗v ) + i ) }{ i d =(−v − 50∗ i + 0 . 3 )}

{ r d =0}
m2{ v d =1000∗(−( v∗v∗v−1.5∗v∗v +0.6∗v ) + i ) }{ i d =(−v − 50∗ i + 0 . 3 )}

{ r d =0}
m3{ v d =1000∗(−( v∗v∗v−1.5∗v∗v +0.6∗v ) + i ) }{ i d =(−v − 50∗ i + 0 . 3 )}

{ r d =0}
m4{ v d =1000∗(−( v∗v∗v−1.5∗v∗v +0.6∗v ) + i ) }{ i d =(−v − 50∗ i + 0 . 3 )}

{ r d =0}
JUMP
m1−>m2{v∗v∗v +1.5∗v∗v−0.6∗v+ i =0 /\ [ i ’= i / \ v ’= v ] } / / T ran s i t i on
m2−>m3{v∗v∗v +1.5∗v∗v−0.6∗v+ i >0/\ [ i ’= i / \ v ’= v ] } / / r e l a t i o n s
m3−>m4{v −0 .6=0 ] /\ [ i ’= i / \ v ’= v ] }
UNSAFE
m4{v>=0.6} / / P o s s i b l e unsafe s t a t e

Listing 4. HSolver Description for the Counterexample Validation of the Tunnel Diode
Example

on the SAL description, we find thatg1 depends only ong0 and notg2 through the

functionASSVP(g1, g0). This is the reason why the jump conditions implemented in

the HSolver description is based only on theg0 andg1 predicates. The verification on

the refined SAL description using SAL-SMC in that case succeeds, which means that

no oscillation will occur.

5 Experimental Results

In this section we detail our experimental results that serve as extensions to the tun-

nel diode oscillator example that was developed progressively throughout the paper. In

particular we apply the proposed verification methodology on a BJT Colpitts Oscillator

using predicate abstraction and a Chua Circuit using constraint solving.
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5.1 BJT Colpitts Oscillator

The Bipolar Junction Transistor (BJT) Colpitts oscillator(Figure 5) is another example

of an oscillator circuit that has a complex behaviour, whichcan be properly modeled

with a piecewise linear approximation consisting of two modes.

In order to fully understand the behaviour of a circuit, it isimportant to verify its

different modes of operation. In particular, transistors can be biased in different regions

depending on the required application. It is particularly important to know the mode of

operation when connected with other circuit components. This type of circuit analysis

is usually done by hand as simulation data cannot always be used to conclusively de-

termine the mode over all input values. We can apply the verification methodology to

ensure that the transistor will never go into an unsafe mode of operation.

Another difficult issue that arises with verifying semi-conductor devices is the vari-

ation of component values due to fabrication tolerances. Inthe case of a BJT, one pa-

rameter that can change across a piece of silicon is the common-emitter current gainβ.

For modern devices,β can vary between 50 to 1000 [35].

Verifying Oscillation. When oscillating, the BJT of Figure 5 will never go into its

saturation region. In fact, the BJT will either be in the cut-off mode or forward active

modes [36]. The state space is subdivided into four regions according to the BJT modes

of operations (Cut-off, Reverse active, Forward active andSaturation) with threshold

voltageVth = 0.75. For instance, the property that no transition occurs from Forward

active to Saturation, can be validated by proving thatG((VC1 > 0) is True, whereVC1 is

the voltage across the capacitorsC1.
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From [36], the differential equations describing the behaviour of the BJT Colpitts

oscillator are

C1V̇CE = IL − IC

C2V̇BE = −
VEE +VBE

REE
− IL − IB

LİL = VCC−VCE +VBE− ILRL

The BJT can be modeled as a two-segment piecewise-linear voltage-controlled re-

sistor with

IB =











0 if VBE ≤VTH

VBE−VTH
RON

if VBE > VTH

Consider the BJT Colpitts circuit with the following parameters,VCC = 5 V, RL =

35Ω, C1 = C2 = 54 nF,REE = 400Ω , VEE = −5 V, L = 98.5 uH, Is = 1.43×10−14,

RON = 100Ω. Also assuming thatβ varies between 50 and 1000. With the ODEs and

the circuit parameters we can construct the HybridSal modelcontaining the model of

the system (see Listing 5).

The INITFORMULAsection contains constraints on the variables of the systemas

well as constraints on the initial conditions. The parameters of the system are defined

at the beginning of the transition section.

With the system of differential equations described using the HybridSal syntax. We

can run the abstraction algorithm. The generated abstract state description contains the

predicates and abstract transition functions as shown in Listing 6.

Now we take the abstract description and pass it to the SAL-SMC. As expected a

counterexample is generated (see Listing 7). We then convert the predicates as described

in Listing 6 into constraints. As well we express the counterexample path in terms of

transitions in the HSolver format (see Listing 8). By removing those predicates that do
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INITFORMULA
vc1 > 1 AND
vc2 > −Vth AND
Bf > 50 AND Bf < 1000} / / Const ra in t on Beta

TRANSITION
Vth = 7 5 / 1 0 0 ; / / Parameter L i s t
C = 500000000/27 ;
Ron = 100;
Vcc = 5 ;
RL = 35 ;
Vee = −5;
Ree = 400;
L = 49 /500000 ;
[ / / System of ODEs
vc2 >= −Vth −−>

vc1dot ’ = 1 /C∗ iL ;
vc2dot ’ = 1 /C∗ ( ( Vee−vc2 ) / Ree+ iL ) ;
iLdot ’ = 1 /L ∗ ( Vcc−vc1−vc2−iL ∗RL)

[ ]
vc2 < −Vth −−>

vc1dot ’ = 1 /C∗ ( iL−Bf ∗(−vc2−Vth ) / Ron ) ;
vc2dot ’ = 1 /C∗ ( ( Vee−vc2 ) / Ree+ iL+(−vc2−Vth ) / Ron ) ;
iLdot ’ = 1 /L ∗ ( Vcc−vc1−vc2−iL ∗RL)

]
END;

G( s s : [ c o n t r o l . STATE−> BOOLEAN] ) : [ c o n t r o l . STATE−>BOOLEAN] ;
c o r r e c t : THEOREM

c o n t r o l |− G( vc1>3 / 1 0 ) ) ; / / Property o f I n t e r e s t

Listing 5. HybridSal Description of the Colpitts Oscillator

not change value, we can simplify the input into HSolver. HSolver indicates that the

constraints and the property are safe, meaning that the counterexample path is spurious.

The transitions to the counterexample are then removed fromthe abstract model and

then model checking is applied again. With the spurious counterexample removed, the

property is proved by the SAL-SMC.

Verifying Non-Oscillation. Consider the same BJT Colpitts circuit but withREE =

20Ω and the other parameters unchanged. Applying predicate abstraction results in
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%% A b s t r a c t v a r i a b l e t o Polynomia l Mapping :
%% g6 −−> vc1 − 3/10
%% g5 −−> vc1 − 1
%% g4 −−> vc2 + Vth
%% g3 −−> Bf − 50
%% g2 −−> Bf − 1000
%% g1 −−> −1/400∗ vc2 + iL − 1/80
%% g0 −−> iL

c o r r e c t : THEOREM c o n t r o l |− G( g6 = pos ) / / Abs t rac ted Property

Listing 6. Predicate Snapshot from the Abstract Model of the Colpitts Oscillator

true counterexamples that cannot be refuted. We can then attempt our constraint based

approach at verification.

If the circuit is oscillating, we know from previous designsthat the voltage across

C1 will vary between 2 and 6 volts. If the voltage never passesthe upper bound of 2

volts, then we can deduce that the circuit is not oscillating.

Taking as input Listing 9, HSolver responds with “INPUT SAFE”. This indicates

that for the new resistance choice, the voltage across capacitor 1 will never increase be-

yond the bound of 0.5 volts. This proves conclusively that the circuit does not oscillate.

5.2 Chua Circuit Example

We use the constraint based verification verification approach (left branch of Figure 4)

described in Section 4 in order to verify the circuit shown inFigure 6(a). This circuit

was designed and implemented by Chua [37] to demonstrate thebehaviour of chaos.

This is illustrated with simulation as shown in Figure 6(b).The important component

of the circuit is the non-linear resistance that is the source of the chaotic behaviour.

The non-linear resistor has distinct operating modes whichallow the state space to be

divided up to three piecewise linear regions [38]. The capacitors are assumed to have

initial voltage values, explaining the lack of a source in the circuit.
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Equation 1 represents the current-voltage relationship ofthe non-linear resistance,

whereVe is the voltage where the model switches modes.Ga andGb are the slopes of

the curve in each of the corresponding modes.

INR(VC1) =























Gb(VC1 +Ve)−GaVe if VC1 < −Ve

GaVC1 if −Ve < VC1 < Ve

Gb(VC1−Ve)+GaVe if VC1 > Ve.

(1)

We are interested in verifying the property that the chaos ofthe circuit is bounded

for a given set of parameters. This can be specified using the safety propertyG[−6≤

Vc1 ≤ 6] on the voltage across the capacitorC1 shown in Figure 6(a).

In order to apply the proposed verification approach, the circuit diagram in Figure

6(a) is transformed to the corresponding bond graph. Simplification rules are then ap-

plied to obtain a reduced bond graph as shown in Figure 6(c). From the reduced bond

graph, we obtain using the Dymola/Modelica tool a corresponding set of equations that

are further processed by Mathematica in order to obtain the simplified set of equations.

The different abstract regions are formed by the predicatesextracted using HybridSal.

The state space was split into three operating regions to define the different modes of

operation of the non-linear resistor. The system equationsand the safety property are

then combined into the HSolver description (see Listing 10).

As with the Tunnel Diode example, the description contains four important sections.

First theSTATESPACEsection describes the environmental constraints. TheFLOWsec-

tion describes the simplified ODEs that determine the behavior in each mode. The

JUMP section contains the transition rules and theUNSAFEsection defines the con-

straints to check. The results from HSolver indicate that when the proper parameters are

chosen for the components, the voltage across the conductance indeed remains bounded

within −6 and 6 volts.
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6 Conclusion

In this paper, we proposed a novel approach for the formal verification of analog cir-

cuits. The major contributions are the following: We demonstrated how bond graphs

provide an efficient means for modelling analog circuits forformal verification. We

have presented an example of a tunnel diode oscillator that was successfully translated

into a bond graph, and had its ODEs automatically extracted.

For the verification, we combined predicate abstraction andconstraint solving into

one methodology, which does not require an explicit representation of the entire state

space and relies on functions that prove or disapprove circuit properties.

To scale the methodology to larger designs will require further analysis and devel-

opment of the tools that were used. In particular, even thought the Dymola Modelling

Laboratory can compile and generate Modelica code in seconds, a significant amount

of computational effort is needed to extract the ODEs from the Modelica code and to

remove redundant equations. As well HSolver, an experimental tool, is not suitable for

the verification of large examples on its own due to its computationally expensive al-

gorithm. This fact motivated its use primarily for counterexample refutation. There is

ongoing development of efficient methods to address these specific limitations.

Comparing our formal verification methodology to simulation, we see that we can

reduce the required effort while increasing the reliability of the results. In the case of

trying to verify a range of parameters, with simulation it would be necessary to check

several test-cases at the limits of the range and at several randomly chosen points. Even

with positive results, there still remains a chance that an error remains, since each value

has not been checked. With formal verification, we can say conclusively that all values

within the range will result in correct operation of the design. More details about the

analysis and formal verification of analog circuits can be found in [23].

The greatest advantage of our methodology is the lack of the timed bound limita-

tion associated with explicit reachability analysis methods commonly encountered in
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the formal verification of analog designs.

Future Work. Main future directions include the extension of the proposed approach

to analog and mixed signal designs. This is a realistic goal since bond graphs are do-

main independent. A more recent addition to the bond graph methodology, the switched

bond graph, could be used rather than the conventional one presented in this paper. The

switched bonds allow for the modelling of systems where switching occurs such as in

delta-sigma converters.

By moving to the mixed signal domain, it will be necessary to extend the verifi-

cation methodologies to analyze the discrete parts of the state space. There currently

exists a good amount of formal tools that can analyze moderately sized digital designs.

The difficulty will be linking the tools presented in this paper with those that already

exist. This will additionally require an exploration of case studies that are based around

interesting functional properties. This will include the verification of the behaviour of

transistors (verifying the mode of operation) that could befurther extended to more

complex properties such as the gain of filters.
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Counterexample :
========================
Path
========================
Step 0 :
−−− System V a r i a b l e s ( a s s i g n m e n t s )−−−
g0 = neg
g1 = neg
g2 = neg
g3 = pos
g4 = pos
g5 = pos
g6 = pos
−−−−−−−−−−−−−−−−−−−−−−−−
Step 1 :
−−− System V a r i a b l e s ( a s s i g n m e n t s )−−−
g0 = neg
g1 = zero
g2 = neg
g3 = pos
g4 = zero
g5 = zero
g6 = pos
−−−−−−−−−−−−−−−−−−−−−−−−
Step 2 :
−−− System V a r i a b l e s ( a s s i g n m e n t s )−−−
g0 = zero
g1 = zero
g2 = neg
g3 = pos
g4 = zero
g5 = neg
g6 = zero / / V i o l a t e s the property G( g6=pos )
−−−−−−−−−−−−−−−

Listing 7. SAL-SMC Generated Counterexample for the Colpitts Oscillator
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VARIABLES [ vc1 , vc2 , iL ]
MODES [m1 , m2, m3]
STATESPACE
m1[ [ −1 ,6 ] , [ −1 ,2 ] , [ −0 .01 ,0 .05 ] ]
m2[ [ −1 ,6 ] , [ −1 ,2 ] , [ −0 .01 ,0 .05 ] ]
m3[ [ −1 ,6 ] , [ −1 ,2 ] , [ −0 .01 ,0 .05 ] ]
INITIAL

m1{vc2 +0.75>0/\ vc1−1>0} / / P red i ca te i n i t i a l va l u es
FLOW / / System of ODEs
m1{ vc1 d =18518518∗ iL }{ vc2 d =18518518∗(0.0025∗( −5− vc2 )+ iL )}

{ i L d =10204∗(5− vc1−vc2−iL ∗35)}
m2{ vc1 d =18518518∗ iL }{ vc2 d =18518518∗(0.0025∗( −5− vc2 )+ iL )}

{ i L d =10204∗(5− vc1−vc2−iL ∗35)}
m3{ vc1 d =18518518∗ iL }{ vc2 d =18518518∗(0.0025∗( −5− vc2 )+ iL )}

{ i L d =10204∗(5− vc1−vc2−iL ∗35)}
JUMP / / Counterexample path
m1−>m2{ [ −0.0025∗ vc2+iL −0.0125=0] /\ [ vc2 + 0 . 7 5 = 0 ] /\ [ vc1−1=0]/\

[ iL ’= iL / \ vc1 ’= vc1 /\ vc2 ’= vc2 ]}
m2−>m3{ [ iL = 0 ] / \ [ vc2 +0 .75=0 ] /\ vc1−1<0/\vc1−0.3=0/\

[ iL ’= iL / \ vc1 ’= vc1 /\ vc2 ’= vc2 ]}
UNSAFE

m3{vc1<0.3}

Listing 8. HSolver Counterexample Validation of the Colpitts Oscillator
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VARIABLES [ vc1 , vc2 , iL , Bf ]
MODES [m1 ,m2]
STATESPACE
m1[ [ 0 , 6 ] , [ −1 , 3 ] , [ −0 . 0 2 , 0 . 0 8 ] , [ 2 5 , 1 0 2 5 ] ]
m2 [ [ 0 , 6 ] , [ −1 , 3 ] , [ −0 . 0 2 , 0 . 0 8 ] , [ 2 5 , 1 0 2 5 ] ]
INITIAL

m1{vc1 =0/\ vc2 =−1/\Bf >50/\Bf <1000} / / I n i t i a l Cond i t ions
/ / Con s t ra i n t s on Beta

FLOW / / System of ODEs
m1{ vc1 d =18518518∗ iL −200∗0.01∗(−vc2−0.75)}

{ vc2 d =18518518∗(0.05∗( −5− vc2 )+ iL +0.01∗(− vc2−0.75) )}
{ i L d =10204∗(5− vc1−vc2−iL ∗35)}
{Bf d =0}

m2{ vc1 d =18518518∗ iL }
{ vc2 d =18518518∗(0.05∗( −5− vc2 )+ iL )}
{ i L d =10204∗(5− vc1−vc2−iL ∗35)}
{Bf d =0}

JUMP
m1−>m2{ [ vc2 >−0.75] /\ [ iL ’= iL / \ vc1 ’= vc1 /\ vc2 ’= vc2 ]}
m2−>m1{ [ vc2 <=−0.75]/\ [ iL ’= iL / \ vc1 ’= vc1 /\ vc2 ’= vc2 ]}
UNSAFE

m1{vc1>0.5} / / Cond i t ions on vc1
m2{vc1>0.5}

Listing 9. HSolver Description for Proving Non-oscillation of the BJTColpitts Oscil-
lator
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VARIABLES [ c1 , c2 , v i ]
MODES [m1 , m2, m3]
STATESPACE
m1[ [ −7 , −1 ] , [ −0 .5 ,0 .5 ] , [ 0 , 1 ] ]
m2 [ [ −1 , 1 ] , [ −0 . 5 , 0 . 5 ] , [ 0 , 1 ] ]
m3 [ [ 1 , 7 ] , [ − 0 . 5 , 0 . 5 ] , [ 0 , 1 ] ]
INITIAL

m3{c1 =4/\ c2 =0/\ v i =0} / / I n i t i a l Cond i t ions
FLOW

m1{ c1 d = ( 0 . 5 6 5∗ ( c2−c1 )+0.409091∗ c1 − 0 .757576)∗0 .1}
{ c2 d =− (0.565∗ ( c2−c1 ) + v i )∗0 .01}
{ v i d =( c2−12.5∗10ˆ−3∗ v i ) ∗0 .0555}

m2{ c1 d = ( 0 . 5 6 5∗ ( c2−c1 ) + 0.757576∗ c1 )∗0 .11}
{ c2 d = − (0.565∗ ( c2−c1 ) + v i )∗0 .01}
{ v i d =( c2−0.0125∗ v i ) ∗0 .0555}

m3{ c1 d = ( 0 . 5 6 5∗ ( c2−c1 ) − 0 .409091∗ ( c1 − 1) + 0 .757576)∗0 .1}
{ c2 d = − (0.565∗ ( c2−c1 ) + v i )∗0 .01}
{ v i d = ( c2−0.0125∗ v i ) ∗0 .0555}

JUMP
m1−>m2{ [ c1>−1]/\[ c1 ’= c1 /\ c2 ’= c2 /\ vi ’= v i ] } / / T r a n s i t i o n s
m2−>m1{ [ c1<=−1]/\[ c1 ’= c1 /\ c2 ’= c2 /\ vi ’= v i ] } / / between
m2−>m3{ [ c1 >1] /\ [ c1 ’= c1 /\ c2 ’= c2 /\ vi ’= v i ] } / / each
m3−>m2{ [ c1 <=1] /\ [ c1 ’= c1 /\ c2 ’= c2 /\ vi ’= v i ] } / / mode
UNSAFE
m1{c1<−6}
m3{c1>6}

Listing 10. HSolver Description of the Chua Circuit
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