View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Concordia University Research Repository

Formal Verification of Bond Graph Modelled Analog
Circuits

William Denmart, Mohamed H. Zaki and Sofiene Tah4r

1 Dept. of Electrical & Computer Engineering, Concordia Uity
1455 De Maisonneuve Blvd. West, Montreal, Quebec, Canad&, H8
{w.denm t ahar }@ce. concordi a. ca
2 Dept. of Computer Science, University of British Columbia
2329 West Mall, Vancouver, B.C. Canada, V6T 174

nzaki @s. ubc. ca

Abstract. Analog circuits are an increasingly critical component imbedded
system designs. Traditionally, simulation is used forfieation, but due to the
infinite state space of analog components, the 100% cogssnf a design can-
not be guaranteed. Formal methods, based around applyithgmatical expres-
sions and reasoning to prove correctness, have been dedelopncrease the
verification confidence level. This paper introduces andatestrates a method-
ology for formally verifying safety properties of analogaiits. In the proposed
approach, system equations are automatically extracbed & SPICE netlist by
means of energy conservative bond graph models. Verifitddsed on abstract
model checking and constraint solving is then applied orettieacted equation
models. Our methodology avoids an exhaustive and time déimgusimulation
that is normally encountered during analog circuit vertfma To this end, we
have used a set of tools to implement the proposed verifitittar and applied

it on tunnel diode, Chua and Colpitts oscillators as casgiestu

1 Introduction

Analog circuits are an increasingly critical componenthe verification flow of em-
bedded system designs. Embedded devices are difficult igndasd verify because of

the interface between the digital (discrete) and analogtiicoous) domains. Because

https://core.ac.uk/display/211516619?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of the unpredictable nature of the real world input, the deviare required to operate
over a large number of different modes that can be partilyuthificult to determine,
isolate and verify. For safety critical systems, where cletepverification is required to

ensure that an accident will not occur, this situation igipalarly problematic.

The standard method to verify analog designs is simulatigith the increasing
complexity, simulations can take days or even weeks to tetai[1]. Unfortunately,
the results obtained via lengthy simulations can still renvecomplete. This is because
itis impossible to test the entire set of inputs and expeatsputs due to the continuous
nature of the external signals. Only a finite number of casase checked. Therefore

simulation methods lack the rigor to ensure the completeectimess of a design.

To address the incomplete verification of designs via sitraraformal methods
have been developed to increase the verification confideweé Formal methods [2]
are based around applying mathematical expressions asmhieg to prove the correct-
ness of a design. A formal specification is constructed tdywarmodel using mathe-

matical logic and formal reasoning.

There have been several industry level applications dpeeléor the formal verifi-
cation of digital circuits [3]. However, there has not bele@ same amount of progress
for analog circuits. This has severely limited the appl@abf formal methods to em-
bedded systems and other mixed signal devices. The curietelimg methodologies
used are not well suited for verifying several domains thgetThis requires that the
verification of each part of a mixed signal design to be penfmdt separately. It will
be necessary to solve this problem before any significargrpss will be made in the

formal verification of embedded systems.

One way to model the complex behaviour of the analog part ehalbedded system
is by using a system of differential equations. One chakenghe verification process

is to have an adequate model that accurately representsbiaibur of the design.

Unfortunately, generating equations that accuratelyesgmt this dynamic behaviour

but are also simple enough to verify automatically remaineratrivial process.

A critical problem facing analog designs are the effectsiagi from the reduction
in fabrication size. These effects include parasiticsrentrleakages and component
variations that can drastically change the expected bebesf a design. This can cause
major problems for the verification engineer because inetconsuming to build an
appropriate model that accounts for this additional behaviAdditionally, a great deal
of expertise is required by the designer to extract and wéhnié properties of interest
from the newly defined models. It is therefore of great wtild both the designer and
the verifier to have models at their disposal that presergegehuired behaviour of a

device, yet remain simple enough to be verified using toalsdhe available.

This paper demonstrates a flow to verify functional progsrtif analog circuits.
The different steps of the proposed methodology are showigiure 1. The methodol-
ogy consists of two parts; namely modelling and verificatiorthe modelling phase,
the circuit schematic is analyzed to obtain the system oiharg differential equa-
tions (ODESs) necessary for the verification. The idea is tiwaek the circuit ODEs
automatically from the corresponding analog circuit déagy by means of bond graph
transformations [4]. Two complementary approaches basedmbiningpredicate ab-
stractionandconstraint solvingare then applied to validate properties of interest during
the verification phase. In particular, when the constraihtisg based verification fails
to return a result due to the complexity of the obtained ODE@howe can apply the

predicate abstraction based method to obtain a result.

Bond graphs are a domain independent modelling formaligrpligsical systems
based on the flow of energy between abstract objects. Thdibehesing bond graphs
for modelling is the ability to represents circuits usinga@ffort and energy conser-
vation. There are also switched bonds that can be used tesaprdiscrete changes

in behaviour. These properties allow for the universaltimemt of different physical

domains. This is particularly useful for representing tebdviour of mixed signal sys-

tems.

Predicate abstraction [5] is one of the most successfutatigin approaches for
the verification of systems with an infinite state space. imdpproach, the state space
is divided into a finite set of regions and a set of rules is usedefine the transition
between these regions in a way that the generated statéitraisgstem can be verified
using model checking. Model checking is defined as: givenitefgiate model and a

property, determine automatically whether the model Basishe property [2].

Constraint solving [6] is concerned with verifying propestbased on relations be-
tween the variables of a system. Problems are solved by fgreonstraints around a
problem definition and by consequently finding solutionssfahg them all. For the
constraint solving method, we use predicates to enhancpréusion and computa-
tional cost of the state space exploration. However, in thaethis method fails to
provide an answer due to a state space explosion, an abmtraesed verification is
used. In this second approach, predicate abstraction igedp generate an abstract
state space that can be subsequently verified using mod=ioleln our approach, we
validate the counterexample by again using constraintrephin the case of a spurious

counterexample, the abstract model can be refined [7].

The proposed methodology has the advantage of avoidingustitda simulation
usually encountered during verification. To this end, weehased a set of tools to im-
plement the verification flow. The design equations necgdsarthe verification are
extracted from SPICE models using Dymola [8]. These eqnatioe further simplified
using Mathematica [9] simplification rules. HybridSal [1i8]then used to obtain an
abstract model which is verified using the SAL symbolic madedcker (SAL-SMC)
[11]. The HSolver [12] constraint solver is used alterrgiifor property verification

and as a refinement procedure for counterexamples genératll -SMC. We illus-

trate the methodology on several analog examples includoigitts and tunnel diode
oscillator circuits.

The rest of the paper is organized as follows: We start wittoegrview of the
relevant work in Section 2. After that, we describe the défe phases of the equa-
tion extraction process along with the theory behind boraplgs in Section 3. This
is followed by an explanation of the proposed verificatiorthmdology in Section 4.
The experimental results are presented in Section 5, betoreluding the paper with

Section 6.

2 Related Work

The presented verification methodology spans many diffeesearch domains. There-
fore we will only highlight the most important informationdluding the work on bond

graphs for the analysis of analog designs.

Modelling analog circuits for formal verification. One of the main challenges of the
formal verification of analog designs, is the developmemodlels that preserve the re-
quired behaviour. Extracting the system equations to be imskeehavioural modelling
is a challenging task in the analog design process. Nod&isiaéechniques have been
developed to this aim by extracting equations from the dinoatlist. However, the
resulting equations are in general, very large and too cicateld to be used for a be-
havioural analysis. For example, in the context of formaiffigation, the authors of [13]
relied on the symbolic analysis toolbox Analoglnsydes ttaobthe system equations
necessary for the verification.

In comparison with conventional symbolic extraction meth§14] and the tech-
nigues mentioned above, bond graph based modelling allomas$ymbolic extraction
of the system equations. This is possible because of metbaaistomatically assign

an input-output relation (causality) to each componentegating a compact computa-

tional structure [15], that can be used to obtain differdr@guations.

Analog design verification.A common trend in analog verification is to use on-the-fly
state space exploration techniques, where the set of relecsiates correspond to an
overapproximate solution of the system equations, oveuvaded period of time. In an
alternative approach, the entire state space is subdiundedegions where computa-
tional rules define the transitions between states. Thisetisdenerally described as a

finite state automaton, verifiable using model checkingriepies.

For instance, in the early work in [16], the authors cong&rd@ finite-state discrete
abstraction of electronic circuits by partitioning the tinnous state space into fixed
size hypercubes and then computing the reachability oglatbetween these cubes us-
ing numerical techniques. In [17], the authors tried to owere the expensive com-
putational method in [16], by combining discretization gmmjection techniques of
the state space to reduce its dimension. Similarly, the hadteking toolsd/dt [18],
Checkmate [19] and PHaver [20] were adapted and used in tifeeaton of a biquad
low-pass filter [18], a tunnel diode oscillator anda modulator [19], and voltage con-
trolled oscillators [20]. In [13], the authors used intdsv® construct the abstract state
space, while using heuristics to identify possible traosg between adjacent regions.
The main difference with [16], is that they allow variableesi regions. An exhaustive

state of the art review of the formal verification of analogidas can be found in [21].

Additionally, there exists work that is concerned with sBorming the analog veri-
fication problem to one that can be solved with Boolean sakiiy (SAT) techniques.
In [22], the authors have developed a methodology for foatig a SPICE style simu-
lation into a format that can then be passed to a SAT solvgaitticular, this technique

can capture, at the transistor level, the non-linear benafithe design under test.

Many of the surveyed formal methods limit the verificatiortod circuit to a pre-

defined time bound because they depend on explicit statemtjon. In contrast, we

propose in this paper to use qualitative based methodsdardhstruction and verifica-
tion of abstract models, which overcomes the time boundirempent. In addition we
extend the verification with a counterexample guided refertprocedure.

For a more in-depth review of related work and other viabl¢hoes for the mod-

elling and formal verification of analog circuits see [23].

3 Bond Graphs as a Model for Analog Circuits

Bond graphs were introduced by Paynter [24] who hypothdsizat all physical sys-
tems and the interactions between them could be modeled esiargy and power
alone. His work was extended later on by Karnopp and Rosgriéi to enable the
bond graph theory to be used in practice. They developed-puit objects that could
be used with power bonds to model the flow of energy and infGomg26]. The ben-

efit of a modelling framework based on energy flow is that défeé domains can be
analyzed using the same methodology. The necessary andentfet of bond graph
primitives consist of five elements, but normally a more pcat set of nine elements

is used as shown in Table 1.

Table 1.Basic Objects of Bond Graphs

| Group I Components | Electrical Domain Example]
Storage Capacitive/lnertial Capacitance/Inductance
Supply Source of effort/Source of flowoltage source/Current souice
Reversible transformatign Transducer/Gyrator Transformer
Irreversible transformatigh Entropy producing process Thermal Resistance
Distribution 0 and 1 junctions KVL, KCL

Example. The tunnel diode oscillator circuit in Figure 2(a), whichshHzeen used by
many researchers (e.g.,[19, 13]) as a benchmark in fornnidilcadion research, will be

used as an example throughout the paper to demonstratetepadf sur methodology.

The tunnel diode exploits a phenomenon called resonanetingndue to its negative
resistance characteristic at very low forward bias vokag®r certain ranges of volt-
ages, the current decreases with increasing voltage. maigcteristic makes the tunnel

diode useful as an oscillator.

Connections.Bond graphs are based on the first principle of energy coaserv The
most basic element of a bond graph is the power bond. It isrteegg link between two
components. Itis represented graphically by a harpoofighaw), which points in the
direction of positive energy flow (see Figure 2(c)). The bosgkesents two variables,
effort and flow. In the electrical domain, the effort variaid represented by voltage and
the flow by current. It follows that the product of the effoneflow variables represents
the power flowing through the bond. Additional variables a#so be derived from the

bonds.

The next basic component is the junction, which represeaitxait node or mesh.
At the 0 or common-effort junction the efforts are equal, ethis analogous to a node
in a circuit. At the 1 or common-flow junction, the flows are afjuvhich is analogous

to a mesh in a circuit.

Components.Using the bonds and junctions, it is possible to connect aoapts to-
gether in a bond graph, as shown in Figure 2(c). Single andi-pait bond graph
elements are used to represent different topologies. Tigdesport components are
described below. The first basic elements are the sourcefoof er flow. They are
analogous to voltage and current sources in circuit diagrakdditional single port
components are used to represent resistors, capacitonsdaradors. They are denoted
using the letter®, L or C. Other components can be defined by an input/output func-

tional relationship. In Figure 2(c) a tunnel diode is represy the symbaoD.

Causality. Causality is the determination and representation of trextional relation-
ship between an input and an output [25] preserving the ctetipnal structure of the

design. The causal stroke is attached to the side of the handamputes the flow vari-

able [27] (Figure 2(d)). In general, causality is applietbawatically using a technique
such as the sequential causality assignment procedur@sP(SG produce a causal
bond graph [15]. By assigning causality, computationabiinfation of the system is
available so that the system equations can be automatedtgcted.

The fact that causality (algebraic dependency) is definpticitty before any equa-
tions are setup remains a great advantage over other nauntaoh modelling methods.
Many practical analog circuits have a mathematical modslttikes the form of a sys-
tem of differential algebraic equations (DAE) with an ind&xone. It is well known
that these models can be solved numerically for simulatiopgses. For formal veri-
fication we require an analytical model and not a numericpt@amation. Therefore
it is generally necessary to use models that are availaldtate space form. Borutzky
[28] has developed methods that use the causality infoomatiovided by bond graphs
to identify tearing variables and equations to automdticalluce the DAE system into

a state space model.

3.1 Analog Modelling Methodology

In the following, we present the methodology for automalyoaxtracting the system of
ODEs from an analog circuit. By using bond graphs we are abtemnveniently model
the topology of an analog circuit, which can aid at both thsigte and verification
stages. The methodology is depicted in Figure 3.

Based on what behaviour or functionality is required in tkeign, the analog cir-
cuit is first constructed by hand with a schematic capturgam that uses common
symbols to represent the necessary components. This hghalestraction is then au-
tomatically transformed into a SPICE circuit model by maccontained within the
schematic capture program. Using the Dymola Modelling latwoy [8] in conjunc-
tion with the BondLib library [4], a bond graph is createdetitly from the SPICE

model.

At this point, the bond graph is not in its simplified form. bigithe simplification
rules (see below), the bond graph is reduced. With the boaplgin its reduced form
we are assured that the computational complexity is at ammini. Next, the causality
is automatically assigned by Dymola. Each bond graph compiocan have either a
fixed, preferred or free causality assignment, determinedlere the flow variable
is calculated. For our verification task we want differeinéiquations to be produced
instead of integrals. This might take several iterationgdmplete since the overall
causality assignment is constrained by the stating poitit@SCAP algroithm and the

resulting propagation of the choice through the bong graph.

Once the simplified and causal bond graph is formed, then Dyimaised again to
automatically generate the Modelica description thata@iostthe differential equations.
For smaller designs the equations can be easily read direoth it. In other cases,
when the design is more complex, the Modelica descriptiog ntatain redundant

equations due to the conversion process from DAEs to ODEs.

Generally, the equations representing the circuits arferdifitial algebraic equa-
tions. Here, Dymola applies symbolic manipulation techie)in order to generate au-
tomatically the corresponding ODEs from the DAEs as desdrih [29, 28]. However,
this comes at the cost of introducing dummy algebraic equoatihat can be simplified
or eliminated using simplification rules within Mathematidén this case, the simplifi-
cation rules in the algebraic system Mathematica are ereplty automate the ODE
extraction. This process is further aided by using MathMicdd30], a Mathematica

interface to the Modelica library.

The advantage of using BondLib is due to the symbolic natdireood graphs.
The behaviour of the corresponding SPICE models of ther&dattomponents is pre-
served using a black box abstraction. For instance, thecutinrough a transistor can

be represented by a function, elgs= f(l,w,Vgs, ...). The internal details are chosen

10

independently of the verification method. In general, thefieation might begin with

a simple model and then more complex models can be subsdtittiten needed.

3.2 Construction of the Bond Graph

Example. The transformation from a circuit diagram to bond graph is\parable to

the SPICE model given in Figure 2(b). Each circuit diagrammponent is transformed
into its bond graph counterpart. They are then intercomukeby transforming nodes
into O junctions and meshes into 1 junctions as shown in Eig@(e). This is performed

according to the bond graphs rules described earlier.

Simplification. There exists two levels of simplification that can be perfednauto-
matically on bond graphs. First, there are equivalenceffiglethe junction object [26].
These rules are used to reduce the number of bonds in a @raidre based on the sim-
plification of the underlying power equations. The equiaakerules can be performed
automatically to a bond graph.

The second level of simplification is analogous to the conoépombining many
parallel capacitances into one equivalent capacitor, kvhécluces the state space de-
scription. By choosing to combine certain bond graph eleéméiis possible to reduce
the complexity of the system without affecting the overatidtion. This can result in

simpler ODEs that are extracted from the reduced bond grajgien

Example. There are several simplifications that can be made to the tp@ph in Fig-

ure 2(c). First, the bonds that are connected to ground calele¢ed since the voltage
at those nodes is zero, indicating that the power flow is ZEnen, since the flows at
1 junctions are equal, 1 junctions in series can be mergesthieg As a final step to
the simplification process, any junction that has only twadsconnected is removed

since no power that flows through a two port junction can diteeanother component.

11

The next step in the conversion process is to add a causalityesto each bond
(a straight line added to one end of a bond). Since there arevéiniables associated
with each bond, the stroke indicates at which end the flowrécuiiin the analog circuit
sense) variable is calculated. To allow for an automaterhetion of system equa-
tions, causality is assigned so that differential equatiare obtained. For capacitors,
the causal stroke is drawn at the opposite end of the bond frasmmthe capacitor. For
inductors, the causal stroke is drawn at the inductor enthe@bbnd. The final bond

graph is defined as shown in Figure 2(d).

3.3 Obtaining the System of Equations

Once the bond graph is built, the set of system equationseaxrtbacted and simplified.
In the current project, we use rewriting techniques pradideMathematica to remove
redundant equations. This is a mostly manual process. Thedystem of equations
are the computational model on which we apply the verificatio general, the analog

design computational model is described as below:

Definition 1. Analog Design Model

An Analog Design Model is a tupke = (x, xo, ¢, ¥), withx =V, x Vg, % ... x 1, C
RY as the continuous state space with d-dimensions, whernd |; are the voltage
across the capacitancg @nd the current through the inductange tespectively. The
resistances in this case are memoryless (non-storage)eelsm C x is the set of
initial states (initial voltages on the capacitances andrents through the inductance).
u € R¥ is the set of possible input signals to the design andx x u — RY is the

continuous vector field.
The analog design can then be described by the system of Gfalaavs:

Definition 2. System of ODEs

Consider a set of variablegft) € R, i € {1,...,d},t € R, an ODE is a system consist-

12

ing of a set of equations of the form:

. d .
Xy = d—xk = X= F(x(t),u(t),t)

t
wherex(t) are variables defining the voltage across the capacitanaktae current
through the inductancei(t) € R™ are variables defining the input signals, with the

vector fieldsr.

The semantics of the analog modelk= (x, xo, 7) over a continuous time period
Tc = [10,T1) CR™ (t1 = » in case of complete behaviour) can be described as a trajec-
tory @y : Tc — x for x € xg such thaidy(t) is the solution ok = Fi(X1,...,Xd), with

initial condition®y(0) = x andt € T, is a time point.

Example. With the simplified equations, we can now focus on the curkeand the
voltageVc across the tunnel diode in parallel with the capacitor oftréal RLC circuit
(Figure 2). The extracted simplified ODEs are giveVas- & (—1q(Vc) +10) andl, =
L(=Vc — &1L +Vin), wherelg(Vc) = Vc® — 1.5Vc? + 0.6\ that describes the non-linear

tunnel diode behaviour.

4 Analog Design Verification

This section will describe the methodology for verifyingperties of analog designs
using ODEs extracted from bond graphs. There are two isba¢siust be addressed.
First, we must determine what type of properties to verifg Méve chosen to focus
on verifying safety properties which indicate that some baldaviour will never occur.
The second task is to determine how to verify the properties a continuous-time
ODE model. A direct analysis over the continuous domain gsdomputationally ex-
pensive for the available verification technologies. Weehtierefore chosen to use an
abstraction based technique. The goal is to reduce thereeoomputational effort

while preserving critical model behaviours thus ensurialipwerification results.

13

4.1 Preliminaries

Examples of questions that often come up during analog watiifin include: “will the
system’s behaviour follow the design specification for thére range of initial operat-
ing conditions?” and “considering component variationsgspecific design technol-
ogy will the transistors remain in the correct operatingaag?”. Such questions can
be easily redefined as safety properties in a temporal logic.

LTL (Linear Temporal Logic) is a logic language that definesperties by quali-
tatively describing their truth over time. There are fousibaemporal operators : Fp
meaning “eventually p”, Gp meaning “always p”, Xp “next tirpéand pUq meaning

“p until g”

Example. Consider the tunnel diode circuit with the set of paramef€rs- 100012
F,.L = 1e%H,R = 2Q,Vin= 0.3V and the initial value§Vc = 0.131V, I, =
0.055A}. Additionally, consider that due to inconsistencies in filarication process,
the resistance will vary 10% from its nominal value. We vgetifat the preceding com-
bination of parameters, initial conditions and parameégaiations do not produce os-
cillatory behaviour. If the circuit does not oscillate, thiéhe voltage will never pass
the upper bound of 0.6 volts. The behaviour in question igdtas the safety property
G(Vc < 0.6). The validation of the property verifies the non-existenfoesillation.

We cannot verify safety properties directly on the contumitme ODE model, due

to its continuous nature. Therefore we must use an abstraabelel.

4.2 Abstracting a Model

Definition 3. Transition System A transition system [31] is a 3-tuple TS(S,%,T)

with a set of possible states S, a set of initial statear®l a set of transitions T.

Definition 4. Abstraction. A transition system A (S &, E) with a finite set of stateS

is an abstraction [31] of a transition system-€(S, S, T) if there exists an abstraction

14

functiony: S— S such that each initial state in the abstracted transitigstem) can
be related to the original transition system initial states) by % = y(s). Additionally,
each abstract transition must correspond to an originalnsdion between concrete

states.

One viable abstraction technique is predicate abstraatibere the set of abstract
states is encoded by a set of Boolean variables represe@aiga concrete predicate.
Based on [32], we define a discrete abstraction of the anatmdghm with respect to
a given n-dimensional vector of predicates over reals wkadh predicate is of the
form @ : RY — B, with B = {0,1} andd is the state variables numbers wifx) :=
2 (X1,...,%) ~ 0, where~c {<,>}. Hence, the infinite state spageof the system
is reduced to 2states in the abstract system, corresponding to th&sible Boolean
truth evaluates of the set of predicates. We define the ab&tehaviour of the analog
circuit as a transition system that overapproximates teaabiour, which is guaranteed

to contain real behaviour of the concrete circuit:

Definition 5. Abstract Transition System An abstract transition systeis a tuple

Ty = (Qu,~>,Qu), where:

— Qu C L xB"is the abstract state space for a n-dimensional vector pegdi where
an abstract state is defined as a tupleb), with | € L is a label and be B".

— ~~C Qu x Qu is a relation capturing abstract transition such thé ~ b'|3x €
Yu(b),t € RT : X' = dk(t) € Yo (') Ax— X'}, where the concretization functioiy :
B" — 2% is defined adfy (b) := {x € RIVj € {1,....n} : Pj(x) = b;}

— Quo:={(l,b) € Qu|3x € Yu(b),x € xo} is the set of abstract initial states.

In general, the effectiveness of the predicate abstractiethod depends on the
choice of predicates and the precision of the transiticatical between abstract states.
Several criteria are raised for the choice of appropriaéglioates. For instance, ba-
sic ideas from the qualitative theory of continuous systearsbe adapted within the

predicate abstraction framework as proposed in [10, 33].

15

Predicates related to the basic functionality of the desifjimterest can also be
provided in a manual fashion. The conventional analysisirglits can be an inter-
esting direction for obtaining useful predicates. It is thanoting that the termination
of the predicate generation phase is not necessary foiirgesat abstraction. We can
stop at any point and construct the abstract model. A largtipate set yields a finer
abstraction as it results in a larger state space in thezabstrodel.

Given the analog model transition syst@mrepresenting the analog behaviour and
a propertyp expressed using LTL. The problem of checking that the pitggesids in
this model written ag’; = ¢ can be simplified to the problem of checking that a related
property holds on an approximation of the model i.e., 7y = ¢. More formally, the

main preservation theorem is stated as follows [31]:

Theorem 1. Supposery is an abstract model of ;, then for all LTL state formulas

describingZy and every state af,, we havés = ¢ = s|= ¢, where s= y(8). Moreover,

Ty =0 =71 9.

If a property is proved on an abstract model, then we are done. If the verifica-
tion of 7y reveals7y ¥ §, then we cannot conclude that, is not safe with respect
to ¢, since the counterexample fa, may be spurious. In order to remove spurious

counterexamples, refinement methods on the abstract medapplied [31].

4.3 \Verification Methodology

We have developed a verification methodology combining ipege abstraction and
constraint solving to take advantage of the best parts &f teathniques. Depending on

the type of property, there are two complementary verificatiptions to choose from.

Enhancing Constraints based Verification using Predicateslf the property we want
to verify can be described as some upper limit on a variabén the best option is to

use a constraint solver due to its precision in represergtingriable’s trajectory. On

16

the left branch of Figure 4, we strengthen constraint sghbiased verification with

predicates that act as constraints on the state space sTnadtical as the addition of
useful constraints can limit the state space exploratigorbyiding a means for pruning
unreachable states.

In this approach, we apply HybridSal on the system equatmobtain an abstract
state graph of the circuit behaviour. The satisfaction opprties is verified on these re-
gions using constraint based methods. The abstract grigpiy, with the system equa-
tions and the property of interest are then used as an inpdSuver. The property
verification provides the advantage of avoiding explicinputation of reachable sets.
If the property cannot be verified at this stage, refinemene&ded only for the non-
verified regions by adding more predicates using Hybrid&sification is then applied
on the newly generated abstract model.

HSolver has an internal abstraction refinement proceduoeieMer, due to over-
approximation, the refinement does not terminate unlese ke bound on it. When
the bound is reached but verification does not terminate,nacooclusive answer is
returned over an interval that violates the property. Refiget can be achieved by in-
creasing the bound or choosing tighter constraints for tiséract states. In the case that
the verification still fails even with refinement, the compkntary approach that uses

predicate abstraction can be used.

Predicate Abstraction based Verification. If the property under consideration is de-
scribed using a temporal logic such a LTL, then the best npidhe approach using
abstract model checking. This is to take advantage of thafgignt number of ad-
vanced tools that can already prove properties on LTL foaswuOn the right branch
of Figure 4, symbolic model checking using SAL-SMC is applas the abstract state
space generated from HybridSal. The constraint basedrdéB@lver is used as a coun-
terexample validation procedure for the abstract modetkihg SAL-SMC. At first,

the abstract model is built automatically using the pretiedstraction tool HybridSal.

17

If the property verification succeeds, the approach tertafmaotherwise an abstract
counterexample is generated.

In abstract model checking, when a property cannot be vérdieounterexample is
generated identifying the reasons for the possible prgpsotation. As the generated
counterexample is an abstract one, due to the overapprogmi is essential to val-
idate the counterexample. In case it is spurious, the irdétion from it can be used in
order to refine the abstract reachable states. The preslgeeifying the counterexam-
ple are turned into constraints that are provided to HSpbleng the property and the
system of ODEs. HSolver tries to validate the property onlghie regions described by
the provided constraints. If the property is verified, themdeduce that the counterex-
ample is spurious and a refinement procedure based on regrepimious transitions is
applied on the abstract model and symbolic model checkirgrégpplied on the refined
model. On the other hand, if HSolver fails to provide a deeisinswer about the prop-
erty validation, the abstract model is refined by abstratestsplitting which results by
adding more predicates.

Note. There is no guarantee that a spurious counterexample caeflted and the
procedure might therefore not terminate again. Techridhlis happens if the approx-
imation is too loose and not precise enough, resulting irossfble behaviour. To our
knowledge no efficient solution exists for such problemshfgorid systems. However,

other practical counterexample validation have been megam [31].

4.4 \Verification of a Tunnel Diode Oscillator

We use the predicate abstraction option (right branch afreig) for the verification of
the tunnel diode oscillator. Once the simplified system oE3bas been extracted, they
can be used to form a hybrid system definition in the Hybrid&adelling language.
The variables of an analog circuit lie within a continuowestspace and thus pose
a problem for the formal verification tools that prove prdjgsrover a finite state space.

To decrease the computational complexity of the verificaimblem, HybridSal uses

18

internal abstraction methods to encode the continuous sfeice into a discrete one
defined by a set of predicates that are either greater themtHan or equal to zero. Ide-
ally, the abstract model that is created should preservegmof the critical behaviour
of the design to verify the safety property under questidj.[1

The tunnel diode circuit is first manually transformed intdlygbridSal description
(see Listing 1). The HybridSal tool automatically genesdte discrete abstract model

(see Listing 2).

TunnelDiode :CONTEXT =
BEGIN
control : MODULE =
BEGIN
LOCAL v : REAL
LOCAL vdot : REAL
LOCAL i : REAL
LOCAL idot : REAL
LOCAL r : REAL
INVARIANT
TRUE
INITFORMULA
v = 131/1000 AND i = 55/1000//Initial Values
r > 45 AND r < 55 //Variation on r
TRANSITION //Behaviour of system described using ODEs
[
v>0 —>
vdot’ 1000«(—1x(vsvkv—15/10«vxv+6/10«v) + i);
idot’ (=v — rxi + 3/10)

]
END;

G(ss:[control .STATE—> BOOLEAN]):[control.STATE — BOOLEAN];
correct: THEOREM

control |— G(v < 6/10}; //Property to be Verified
END

Listing 1. HybridSal Tunnel Diode Description

The continuous variables are indicated by the consteautsli. Their derivatives are
vdotandidot. They represent the current through the inductor and theagelacross

the capacitor. ThRENITFORMULAsection indicates that the initial valuewis 0.131 V

19

and fori is 0.055 A. The constraints on the variance of the parameteeRlIso defined
in this section. The formulas in thERANSITIONsection describe the conditions for
switching between states as well as the differential eqnatdefined over each mode
of operation. In the case of the tunnel diode, there is onlymode of operation. But
for instance, a MOSFET could be defined over three modes ohtpe (cut-off, triode
and saturation). The second to last line contains the ptpperbe verified, defined

using LTL.

In general, the hybrid system definition has both discreteamtinuous sections
that allow the entire behaviour to be modeled. The systemf ©that were extracted
from the bond graph model can be put directly into the TRANSN section of the

HybridSal description.

Three polynomial predicates have been used to discretestiie space and are
labeledg0, glandg2. The ODEs in th& RANSITIONsection have been converted into
abstract functions dependent on these predicates. We hdttedthe definitions of the
abstract function&ASSVRPASSVD12andINV3. The property to be verified itself has

also been converted into an LTL definition using the preéisat

This abstract model is checked using SAL-SMC to verify tha ascillation prop-
erty. In this case, the SAL-SMC tool returns that the properinot proved and gives
a counterexample (see Listing 3). The counterexample stimsvgalues of the predi-
cates as the model checker steps through each abstracTstagstract property states
that the predicatgl must always be negative. However, the generated couatarde
demonstrates a path to where tifepredicate is zero. At this point, it is necessary to

check whether the counterexample is spurious or not.

The next step in the tunnel diode circuit verification is ttidae the counterexam-
ple produced by the SAL-SMC tool. By coding the predicatebstaansitions specified
in the counterexample into an HSolver description (sedrigs#), we can perform a

more precise examination of the reachable states. If ittesrdened that the counterex-

20

/l Generated Predicates

g2 —> v

gl —> v — 3/5

g0 —> —1xv"3 + 3/2xv"2 — 3/5xv + i

/1 Abstraction
TunnelDiodeABS: CONTEXT =
BEGIN
SIGN: TYPE = {pos, neg, zerg¢; // Qualitative variables
control: MODULE = BEGIN
GLOBAL
g0: SIGN
GLOBAL
gl: SIGN
GLOBAL
g2: SIGN
INITIALIZATION
g2 = pos; gl = neg; g0 = neg
TRANSITION // Abstract transitions
[g2 = pos AND INV3(g2’', gl’, g0’)
—_—>
g2’ IN ASSVP(g2, g0); g1’ IN ASSVP(gl, g0);
g0’ IN ASSVD123(g0, FALSE,
gl=zero AND gO=neg OR gO0=zero AND gl=zero
gl=zero AND gO0O=neg OR gO=zero AND gl=zero

—_—

END;
correct: THEOREM control|— G(gl = neg); // Abstracted Property
END

Listing 2. SAL Description for the Abstract Model of the Tunnel DiodecTiit

ample is never reached then the spurious transitions ca@nbeved from the abstract

model.

The HSolver description is described as follows. The véembf the system defined
in the VARIABLESsection arev, i andr. The modes of the system are nanmet m2,

m3andm4in the MODES section. The tunnel diode model is defined over fieodes

of operation in thesSATESPACEection, which represent the 4 steps of the counterex-

ample. The initial values and differential equations defiirethe FLOW section are
the same as defined in the HybridSal description. The difteakequations are defined

over the discrete modes and they have.d’ appended to their variable names. The

21

INVALID, building counterexample ..
Counterexample:

PATH

Step O:

—— System Variables (assignments)—
g0 = neg

gl = neg

g2 = neg

Step 1:

—— System Variables (assignments)—
g0 = zero

gl = neg

g2 = pos

Step 2:

—— System Variables (assignments)—
g0 = pos

gl = neg

g2 = pos

Step 3:

—— System Variables (assignments)—
g0 = pos

gl = zero // Violates the abstract property G(gl=neg)
g2 = pos

Listing 3. SAL-SMC Generated Counterexample from the SAL Tunnel DiDdscrip-
tion

jump conditions define when the system switches modes ardsiexample the con-
ditions are how predicates change value in the SAL-SMC gaedrcounterexample.
The safety constraints of the system are defined inJiNE AFEsection.

HSolver outputs “SYSTEM SAFE” which indicates the path te #bstract state of
the counterexample produced by the SAL-SMC tool is nevertred. We can therefore
conclude the counterexample is spurious. Therefore, weiaigrremove from the SAL
description all transitions from states where prediggte negholds to states where

gl= zeroholds. This refinement is valid because by applying the coidlaence [34]

22

VARIABLES [v,i,r]

MODES [m1,m2,m3,m4]

STATESPACE

mi[[-0.5,1.2],[-0.5,0.2],[40,50]]

m2[[-0.5,1.2],[-0.5,0.2],[40,50]]

m3[[-0.5,1.2],[-0.5,0.2],[40,50]]

m4[[-0.5,1.2],[-0.5,0.2],[40,50]]

INITIAL
m1{v=0.131Ai=0.055/\r>45/\r<55} //Constraints

FLOW

m1{v_d=1000«(—(v*Vv*Vv—1.5«vxv+0.6xv) + i)}{i_d=(—v — 50«i + 0.3)}
{r_d=0}

m2{v_d=1000«(—(v*Vv*Vv—1.5«vxv+0.6xv) + i)}{i_d=(—v — 50«i + 0.3)}
{r_.d=0}

m3{v_d=1000«(—(vxvxv—1.5xvxv+0.6xv) + i)}{i_d=(—v — 50«i + 0.3)}
{r.d=0}

m4{v_d=1000«(—(v*Vv*Vv—1.5«vxv+0.6xv) + i)}{i_d=(—v — 50«i + 0.3)}
{r_d=0}

JUMP

mlI>m2{vsvxv+1.5xv«v—0.6xv+i=0/\[i'=i/\v'=v]} [/ Transition

m2->m3{vsv«v+1.5xvxv—0.6«v+i >0/\[i'=i/\v'=v]} //relations

m3->m4{v —-0.6=0]\[i’'=i/\v'=v]}

UNSAFE

m4{v>=0.6} //Possible unsafe state

Listing 4. HSolver Description for the Counterexample Validationted Tunnel Diode
Example

on the SAL description, we find thatl depends only om0 and notg2 through the
function ASSVP(g1, gO)This is the reason why the jump conditions implemented in
the HSolver description is based only on tfitandgl predicates. The verification on
the refined SAL description using SAL-SMC in that case sudsgehich means that

no oscillation will occur.

5 Experimental Results

In this section we detail our experimental results that sew extensions to the tun-
nel diode oscillator example that was developed progrefssifiroughout the paper. In
particular we apply the proposed verification methodologp®JT Colpitts Oscillator

using predicate abstraction and a Chua Circuit using cainssolving.

23

5.1 BJT Colpitts Oscillator

The Bipolar Junction Transistor (BJT) Colpitts oscillagBigure 5) is another example
of an oscillator circuit that has a complex behaviour, whielm be properly modeled

with a piecewise linear approximation consisting of two me.d

In order to fully understand the behaviour of a circuit, iingportant to verify its
different modes of operation. In particular, transistas be biased in different regions
depending on the required application. It is particulamyportant to know the mode of
operation when connected with other circuit componentss ffpe of circuit analysis
is usually done by hand as simulation data cannot always & tasconclusively de-
termine the mode over all input values. We can apply the eatibn methodology to

ensure that the transistor will never go into an unsafe médeeration.

Another difficult issue that arises with verifying semi-cluctor devices is the vari-
ation of component values due to fabrication tolerancethércase of a BJT, one pa-
rameter that can change across a piece of silicon is the coramitter current gaif.

For modern deviceg can vary between 50 to 1000 [35].

Verifying Oscillation. When oscillating, the BJT of Figure 5 will never go into its
saturation region. In fact, the BJT will either be in the offtmode or forward active
modes [36]. The state space is subdivided into four regioosrding to the BJT modes
of operations (Cut-off, Reverse active, Forward active 8aturation) with threshold
voltageV;y, = 0.75. For instance, the property that no transition occumnfFmrward
active to Saturation, can be validated by proving Bétv/c, > 0) is True, wheré/c, is

the voltage across the capacit@:s

24

From [36], the differential equations describing the bétawrof the BJT Colpitts

oscillator are

CiVce =1L —Ic

. V Vi
CoVee = —%—h—la

LiL =Vec — Vee + Vee — ILRL

The BJT can be modeled as a two-segment piecewise-line@gestontrolled re-

sistor with

I = 0 if VBe < VrH
YBE I f Vge > Virw
Consider the BJT Colpitts circuit with the following parat®es,Vcc =5V, R. =
35Q,C1 =Cp =54 nF,Reg = 400Q , Veg = —5V, L = 985 uH, Is = 1.43x 10714,
Ron = 100Q. Also assuming thgb varies between 50 and 1000. With the ODEs and
the circuit parameters we can construct the HybridSal modetaining the model of
the system (see Listing 5).
The INITFORMULASsection contains constraints on the variables of the syaem

well as constraints on the initial conditions. The paramseté the system are defined

at the beginning of the transition section.

With the system of differential equations described usirggHlybridSal syntax. We
can run the abstraction algorithm. The generated abstatetdescription contains the
predicates and abstract transition functions as shownsitinlg 6.

Now we take the abstract description and pass it to the SAIGSAs expected a
counterexampleis generated (see Listing 7). We then ctiivespredicates as described
in Listing 6 into constraints. As well we express the coueample path in terms of

transitions in the HSolver format (see Listing 8). By rentaythose predicates that do

25

INITFORMULA

vcl > 1 AND

vc2 > —Vth AND

Bf > 50 AND Bf < 1000} //Constraint on Beta

TRANSITION

Vth = 75/100; // Parameter List
C = 500000000/27

Ron = 100;

Vcec = 5;

RL = 35;

Vee = -5;

Ree = 400;

L = 49/500000;

[//System of ODEs

vc2 >= —Vth —>
vcldot’' = 1/GriL;
vc2dot’' = 1/Cx((Vee-vc2)/Ree+il);
iLdot’ = 1/L«(Vcc—vcl—vc2—iL %RL)

(]

ve2 < —Vth —>
vcldot’ 1/C«(iL —Bf«(—vc2—Vth)/Ron);
vc2dot’ 1/C«((Vee-vc2)/Ree+iL+{vc2—Vth)/Ron);
iLdot’ = 1/Lx(Vcc—vcl—vc2—iL %RL)

]
END;

G(ss:[control .STATE—> BOOLEAN]):[control.STATE>BOOLEAN];
correct: THEOREM
control |- G(vcl>3/10)); //Property of Interest

Listing 5. HybridSal Description of the Colpitts Oscillator

not change value, we can simplify the input into HSolver. M8oindicates that the

constraints and the property are safe, meaning that thee@xample path is spurious.
The transitions to the counterexample are then removed fremabstract model and
then model checking is applied again. With the spurious taremample removed, the

property is proved by the SAL-SMC.

Verifying Non-Oscillation. Consider the same BJT Colpitts circuit but wRgg =

20Q and the other parameters unchanged. Applying predicateaaben results in

26

%% Abstract variable to Polynomial Mapping:
%% g6 —> vcl — 3/10

%% g5 —> vcl — 1

%% g4 —> vc2 + Vth

%% g3 —> Bf — 50

%% g2 —> Bf — 1000

%% g1 —> —1/400«vc2 + iL — 1/80

%% g0 —> iL

correct: THEOREM control|— G(g6 = pos) // Abstracted Property

Listing 6. Predicate Snapshot from the Abstract Model of the Colpitisiltor

true counterexamples that cannot be refuted. We can themgttbur constraint based

approach at verification.

If the circuit is oscillating, we know from previous desigihat the voltage across
C1 will vary between 2 and 6 volts. If the voltage never passesupper bound of 2

volts, then we can deduce that the circuit is not oscillating

Taking as input Listing 9, HSolver responds with “INPUT SAFEhis indicates
that for the new resistance choice, the voltage across itapaavill never increase be-

yond the bound of 0.5 volts. This proves conclusively thatdincuit does not oscillate.

5.2 Chua Circuit Example

We use the constraint based verification verification apgr@keft branch of Figure 4)
described in Section 4 in order to verify the circuit showrkigure 6(a). This circuit
was designed and implemented by Chua [37] to demonstrateeiha@viour of chaos.
This is illustrated with simulation as shown in Figure 6(Be important component
of the circuit is the non-linear resistance that is the sewfthe chaotic behaviour.
The non-linear resistor has distinct operating modes walldhw the state space to be
divided up to three piecewise linear regions [38]. The cédpexare assumed to have

initial voltage values, explaining the lack of a source ia dircuit.

27

Equation 1 represents the current-voltage relationshtp@hon-linear resistance,
whereVs is the voltage where the model switches mod&sandGy, are the slopes of

the curve in each of the corresponding modes.

Gp(Vc1 + Ve) — GaVe if Vo1 < —Ve
INR(Vc1) = § GaVer if —Ve < Ve1 < Ve 1)
Gp (ch_ — Ve) + GaVe if Vo1 > Ve.

We are interested in verifying the property that the chaadefcircuit is bounded
for a given set of parameters. This can be specified usingatietyspropertyG[—6 <

V., < 6] on the voltage across the capaci@arshown in Figure 6(a).

In order to apply the proposed verification approach, theudidiagram in Figure
6(a) is transformed to the corresponding bond graph. Siivgtion rules are then ap-
plied to obtain a reduced bond graph as shown in Figure 6(ojnfhe reduced bond
graph, we obtain using the Dymola/Modelica tool a corresiiomset of equations that
are further processed by Mathematica in order to obtainithplgied set of equations.
The different abstract regions are formed by the predicatesicted using HybridSal.
The state space was split into three operating regions toel#fe different modes of
operation of the non-linear resistor. The system equatimasthe safety property are

then combined into the HSolver description (see Listing 10)

As with the Tunnel Diode example, the description containg fmportant sections.
First theSTATESPACEection describes the environmental constraints FLI@W sec-
tion describes the simplified ODEs that determine the belnami each mode. The
JUMP section contains the transition rules and Bi#SAFEsection defines the con-
straints to check. The results from HSolver indicate thagmtne proper parameters are
chosen for the components, the voltage across the conaedtadeed remains bounded

within —6 and 6 volts.

28

6 Conclusion

In this paper, we proposed a novel approach for the formédfieation of analog cir-
cuits. The major contributions are the following: We dentoated how bond graphs
provide an efficient means for modelling analog circuits flmmal verification. We
have presented an example of a tunnel diode oscillator thatswccessfully translated
into a bond graph, and had its ODEs automatically extracted.

For the verification, we combined predicate abstraction@mtraint solving into
one methodology, which does not require an explicit repriedon of the entire state
space and relies on functions that prove or disapproveitpooperties.

To scale the methodology to larger designs will requiretfairtanalysis and devel-
opment of the tools that were used. In particular, even thotige Dymola Modelling
Laboratory can compile and generate Modelica code in se;@nsignificant amount
of computational effort is needed to extract the ODEs fromMNtodelica code and to
remove redundant equations. As well HSolver, an experiatémbl, is not suitable for
the verification of large examples on its own due to its corapomally expensive al-
gorithm. This fact motivated its use primarily for counteaeple refutation. There is
ongoing development of efficient methods to address thesafaplimitations.

Comparing our formal verification methodology to simulative see that we can
reduce the required effort while increasing the reliapitif the results. In the case of
trying to verify a range of parameters, with simulation itwe be necessary to check
several test-cases at the limits of the range and at se@@@dmly chosen points. Even
with positive results, there still remains a chance thatrear gemains, since each value
has not been checked. With formal verification, we can saglcsively that all values
within the range will result in correct operation of the dgsiMore details about the
analysis and formal verification of analog circuits can hanfdin [23].

The greatest advantage of our methodology is the lack ofitiredt bound limita-

tion associated with explicit reachability analysis meth@ommonly encountered in

29

the formal verification of analog designs.

Future Work. Main future directions include the extension of the propapproach
to analog and mixed signal designs. This is a realistic goaksbond graphs are do-
main independent. A more recent addition to the bond graghadelogy, the switched
bond graph, could be used rather than the conventional @septed in this paper. The
switched bonds allow for the modelling of systems where@viilg occurs such as in
delta-sigma converters.

By moving to the mixed signal domain, it will be necessary xtead the verifi-
cation methodologies to analyze the discrete parts of #ite space. There currently
exists a good amount of formal tools that can analyze moelgrsized digital designs.
The difficulty will be linking the tools presented in this gapwith those that already
exist. This will additionally require an exploration of eestudies that are based around
interesting functional properties. This will include therification of the behaviour of
transistors (verifying the mode of operation) that couldfin¢her extended to more

complex properties such as the gain of filters.

References

1. Chang H, Kundert K. Verification of Complex Analog and RFD@&signs. Pro-
ceedings of the IEEE. 2007;95(3):622—-639.

2. Kropf T. Introduction to Formal Hardware Verification. r8mger; 1999.

3. Abrial JR. Faultless Systems: Yes We Can! Computer. 2@@®®nber;42(9):30—
36.

4. Cellier FE, Clauss C, Urquia A. Electronic Circuit Modiej and Simulation in
Modelica. In: Proc. Eurosim Congress on Modelling and Sikation. vol. 2; 2007.
p. 1-10.

5. Graf S, Saidi H. Construction of Abstract State Graph& WivS. In: Computer
Aided Verification. vol. LNCS 1254. Springer; 1997. p. 72--83

6. Ratschan S. Continuous First-Order Constraint Satisfac In: Artificial In-
telligence, Automated Reasoning and Symbolic Computatioh LNCS 2385.
Springer; 2002. p. 181-195.

7. Clarke E, Grumberg O, Jha S, Lu Y, Veith H. Counterexan@léded Abstraction
Refinement. In: Computer Aided Verification. vol. LNCS 185pringer; 2000. p.
154-169.

8. Dassault Systemes. The Dymola Modelling Laboratory;. ailable from:
http://ww. dynmol a. cont i ndex. ht m

30

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

. Wolfram S. Mathematica: A System for Doing Mathematicentputer Addison

Wesley Longman Publishing; 1991.

Tiwari A. Series of Abstractions for Hybrid Automata. kiybrid Systems: Com-
putation and Control. vol. LNCS 2289. Springer; 2002. p.-468.

de Moura LM, Owre S, RueB H, Rushby JM, Shankar N, Soreat Mdl. SAL 2.
In: Computer Aided Verification. vol. LNCS 3114. Springe@(2. p. 496-500.
Ratschan S, She Z. Safety Verification of Hybrid Systeyn€dnstraint Propaga-
tion based Abstraction Refinement. ACM Transactions in Efdbd Computing
Systems. 2007;6(1):1-23.

Hartong W, Klausen K, Hedrich L. Formal Verification foohinear Analog Sys-
tems: Approaches to Model and Equivalence Checking. InaAded Formal Ver-
ification. Kluwer; 2004. p. 205-245.

Vlach J, Singhal K. Computer Methods for Circuit Anatyand Design. Kluver;
1993.

Maehne T, Vachoux A. Proposal for a Bond Graph Based Mafd€bmputation
in SystemC-AMS. In: Proc. Languages for Formal Specificaind Verification,
Forum on Specification and Design Languages; 2007. p. 25-31.

Kurshan RP, McMillan KL. Analysis of Digital Circuits Tugh Symbolic Re-
duction. IEEE Transactions on Computer-Aided Design. 1P®1.1):1356-1371.
Greenstreet MR, Mitchell I. Reachability Analysis UgiRolygonal Projections.
In: Hybrid System: Computation and Control. vol. LNCS 158@ringer; 1999. p.
103-116.

Dang T, Donze A, Maler O. Verification of Analog and Mix8ifynal Circuits
using Hybrid System Techniques. In: Formal Methods in CopAided Design.
vol. LNCS 3312. Springer; 2004. p. 14-17.

Gupta S, Krogh BH, Rutenbar RA. Towards Formal Verifmatdf Analog De-
signs. In: Proc. IEEE/ACM International Conference on CaiepAided Design;
2004. p. 210-217.

Frehse G, Krogh BH, Rutenbar RA. Verifying Analog Ostidlr Circuits Using
Forward/Backward Abstraction Refinement. In: Proc. IEEEiDe Automation
and Test in Europe; 2006. p. 257-262.

Zaki M, Tahar S, Bois G. Formal Verification of Analog and®t Signal Designs:
A Survey. Microelectronics Journal. 2008;39(12):1-10.

Tiwary SK, Gupta A, Phillips JR, Pinello C, Zlatanovici [irst Steps Towards
SAT-based Formal Analog Verification. In: Proc. IEEE/ACMdmational Confer-
ence on Computer-Aided Design; 2009. p. 1-8.

Denman W. Towards the Automated Modelling and Formaifi¢ation of Ana-
log Designs [Master’s Thesis]. Concordia University. Meai, Quebec, Canada,;
2009.

Fattah YE. Constraint Logic Programming for StructBessed Reasoning About
Dynamic Physical Systems. Artificial Intelligence in Enggming. 1996;1:253—
264.

Broenink F. Introduction to Physical Systems Modellwith Bond Graphs. Uni-
versity of Twente; 1999.

Karnopp D, Rosenberg RC. Analysis and Simulation of Matt Systems: The
Bond Graph Approach to Physical System Dynamics. The MIBr£968.

31

27.

28.

29.

30.

31.

32.

33.
34.
35.
36.
37.

38.

Cellier FE, Nebot A. The Modelica Bond Graph Library. SsviFederal Institute
of Technology; 2007.

Borutzky W. Supporting the Generation of a State Spacgditoy Adding Tearing
Information to the Bond Graph. Simulation Pracite and Tkiet®99;7:419-438.
Mattsson SE, Olsson H, EImqvist H. Dynamic Selectiontaf&s in Dymola. In:
Modelica Workshop; 2000. p. 62—-67.

Jirstrand M, Gunnarsson J, Fritzson P. A New Modeling &mdulation Envi-
ronment for Mathematica. In: Proc. International Mathdéo@aBymposium; 1999.
Available atht t p: // www. nodel i ca. org.

Clarke E, Fehnker A, Han Z, Krogh BH, Stursberg O, Theald&l Verification
of Hybrid Systems based on Counterexample-Guided AbsiraRefinement. In:
Tools and Algorithms for the Construction and Analysis os®yns. vol. LNCS
2619. Springer; 2003. p. 192-207.

Alur R, Dang T, Ivancic F. Reachability Analysis Via Pieate Abstraction. In:
Hybrid Systems: Computation and Control. vol. LNCS 228%irgyer; 2002. p.
35-48.

Zaki M, Tahar S, Bois G. Qualitative Abstraction basedifidgation for Analog
Circuits. Revue des Nouvelles Technologies de I'inforomatP007;4:147-158.
Clarke EM, Grumberg O, Peled DA. Model Checking. MIT Bréd9©99.

Sedra AS, Smith KC. Microelectronic Circuits. Oxfordilarsity Press; 2004.
Kennedy MP. Chaos in the Colpitts Oscillator. IEEE Teanti®ns on Circuits and
Systems. 1994;41(11):771-774.

Chua LO. Chua’s Circuit : An Overview Ten Years Later. rdal of Circuits,
Systems and Computers. 1994;4:117-159.

Kennedy MP. Three Steps to Chaos - Part I: Evolution. IHEd&hsactions on
Circuits and Systemis 1994;41:771-774.

32

Counterexample:

Path

Step O:

—— System Variables (assignments)—
g0 = neg

gl = neg

g2 = neg

g3 = pos

g4 = pos

g5 = pos

g6 = pos

Step 1:

—— System Variables (assignments)—
g0 = neg

gl = zero

g2 = neg

g3 = pos

g4 = zero

g5 = zero

g6 = pos

Step 2:

—— System Variables (assignments)—
g0 = zero

gl = zero

g2 = neg

g3 = pos

g4 = zero

g5 = neg

g6 = zero // Violates the property G(g6=pos)

Listing 7. SAL-SMC Generated Counterexample for the Colpitts Odoitla

33

VARIABLES [vcl,ve2,il]
MODES [m1,m2,m3]
STATESPACE
mi[[-1,6],[-1,2],[-0.01,0.05]]
m2[[-1,6],[—1,2],[-0.01,0.05]]
m3[[-1,6],[—1,2],[-0.01,0.05]]
INITIAL
ml{vc2+0.75>0/\vcl-1>0} //Predicate initial values
FLOW //System of ODEs
mi{vc1.d=18518518iL }{vc2.d=18518518(0.0025¢(—5—vc2)+iL)}
{iL _d=10204(5— vcl—vc2—iL «35)}
m2{vc1.d=18518518iL }{vc2.d=18518518(0.0025<(—5—vc2)+iL)}
{iL_d=10204(5—vcl-vc2—iL *35)}
m3{vc1.d=18518518iL }{vc2.d=18518518(0.0025<(—5—vc2)+iL)}
{iL _d=10204(5— vcl—vc2—iL «35)}
JUMP // Counterexample path
m1—>m2{[—0.0025¢vc2+iL —0.0125=0]A[vc2+0.75=0]A[vcl —1=0]/\
[iL’=iL/ \vcl’'=vcl/\vc2'=vc2]}
m2->m3{[iL=0]/\[vc2+0.75=0]A vc1-1<0/\vcl—0.3=0/
[iL’=iL/ \vcl’'=vcl/\vc2'=vc2]}
UNSAFE
m3{vcl1<0.3}

Listing 8. HSolver Counterexample Validation of the Colpitts Ostdta

34

VARIABLES [vcl,vc2,iL,Bf]
MODES [m1,m2]
STATESPACE
m1[[0,6],[—1,3],[-0.02,0.08],[25,1025]]
m2[[0,6],[—1,3],[-0.02,0.08],[25,1025]]
INITIAL
ml{vcl=0/\vc2=—1/\Bf >50/\Bf <1000} // Initial Conditions
/1 Constraints on Beta
FLOW // System of ODEs
m1l{vc1.d=18518518iL —200«0.01«(—vc2—-0.75)}
{vc2.d=18518518(0.05«(—5—vc2)+iL+0.01x(—vc2—-0.75))}
{iL_d=10204(5—vcl-vc2—iL *35)}
{Bf_d=0}
m2{vc1.d=18518518iL }
{vc2.d=18518518(0.05«(—5—vc2)+iL)}
{iL _d=10204(5— vcl—vc2—iL «35)}
{Bf_d=0}
JUMP
ml->m2{[vc2 > —0.75]/\[iL'=iL/ \vcl’'=vcl/\vc2'=vc2]}
m2->mil{[vc2 <=-0.75]A\[iL'=iL/ \vecl'=vcl/\vc2'=vc2]}
UNSAFE
ml{vcl>0.5} //Conditions on vcl
m2{vcl>0.5}

Listing 9. HSolver Description for Proving Non-oscillation of the BEDblpitts Oscil-
lator

35

VARIABLES [cl,c2,Vi]
MODES [m1,m2,m3]
STATESPACE
mi[[-7,-1],[-0.5,0.5],[0,1]]
m2[[-1,1],[-0.5,0.5],[0,1]]
m3[[1,7],[-0.5,0.5],[0,1]]
INITIAL
m3{cl=4/A\c2=0/\vi=0} // Initial Conditions
FLOW
mi{c1.d=(0.565(c2—c1)+0.40909%cl — 0.757576)0.1}
{c2.d=—(0.565«(c2—cl) + vi)*0.01}
{vi_d=(c2—12.5¢10"—3%vi)*0.0555}
m2{c1.d=(0.565¢(c2—cl) + 0.757576c1)%0.11}
{c2.d = —(0.565«(c2—cl) + vi)*0.01}
{vi_d=(c2-0.0125:vi)*0.0555}
m3{c1.d=(0.565(c2—c1) — 0.40909%(cl — 1) + 0.757576)0.1}
{c2.d = —(0.565«(c2—cl) + vi)*0.01}
{vi_d = (c2-0.0125:vi)*0.0555}
JUMP
ml>m2{[cl>—1]/\[cl’=cl/\c2’'=c2/\vi’'=vi] } // Transitions
m2->mil{[cl<=—-1]/\[cl'=cl/\c2'=c2/\vi'=vi] } // between
m2->m3{[cl>1]/\[cl’=cl/\c2’'=c2/\vi'=vi]} //each
m3->m2{[cl<=1]/\[cl’=cl/\c2’'=c2/\vi’'=vi] } //mode
UNSAFE
ml{cl<—6}
m3{c1>6}

Listing 10. HSolver Description of the Chua Circuit

36

List of Figures

o o~ W N P

Proposed Verification FIow i i 38
Tunnel Diode Oscillator Example i 39
Bond Graph Modelling Methodology, 40
Overview of the Verification Methodologycce. .ot 41
BJT Colpitts OsCillatoro e 42
Chua Circuit Example e 43

37

Modelling

Verification

Analog
Design

Bond Graph

n

Bond
Graphs

Predicate
Abstraction
Based
Verification

Counterexample

Generated

38

Property is
verified

Fig. 1. Proposed Verification Flow

.MODEL TunnelDiode TD

YIN 1 0 DC D.3
1 RL , L1 3 Rl 1 2 50
YW T L1 2 3 1u
VIN — C D1
T TOPT c 03
0 T D1 0 3 TunnelDiode
. END
(a) Circuit Diagram (b) SPICE Code
D1
VIN Rl L1 1—> 0
11 R1 D1
FOe—1—>1—>1-2>0 1 T
L VIN Q{ 1 Q{ 0
T L]
Cc1 L1 C1l
(c) Initial Bond Graph (d) Simplified Bond Graph

Fig. 2. Tunnel Diode Oscillator Example

39

Level of II
Abstraction

Bond Graph
Simplification
Rules

Analog Circuit
Spice/Diagram

Dymola/
BondLib

Dymola/
Modelica

Equation
Simplification

Rules

Extracted
DAEs

Dymola/
Mathematica

ODEs

Fig. 3.Bond Graph Modelling Methodology

40

System of Initial Property
ODEs Constraints
HybridSAL

|

HSolver

Abstract State Space
and Predicates

Property

Refinement/Add Predicates

Verified

SAL-SMC

| Counterexample I

Validating

Counterexample
Using HSolver

3|dwexaisuno) snounds anoway

Fig. 4. Overview of the Verification Methodology

41

Fig.5.BJT Colpitts Oscillator

42

VWA
L ez |
Ro

1

(a) Circuit Diagram

(c) Bond Graph Model

Fig. 6. Chua Circuit Example

43

