
1

Abstract—Finite state machines (FSMs) are the backbone of
sequential circuit design. In this paper, a new FSM watermarking
scheme is proposed by making the authorship information a
non-redundant property of the FSM. To overcome the
vulnerability to state removal attack and minimize the design
overhead, the watermark bits are seamlessly interwoven into the
outputs of the existing and free transitions of state transition graph
(STG). Unlike other transition-based STG watermarking, pseudo
input variables have been reduced and made functionally
indiscernible by the notion of reserved free literal. The assignment
of reserved literals is exploited to minimize the overhead of
watermarking and make the watermarked FSM fallible upon
removal of any pseudo input variable. A direct and convenient
detection scheme is also proposed to allow the watermark on the
FSM to be publicly detectable. Experimental results on the
watermarked circuits from the ISCAS’89 and IWLS’93
benchmark sets show lower or acceptably low overheads with
higher tamper resilience and stronger authorship proof in
comparison with related watermarking schemes for sequential
functions.

Index Terms— IP Protection, IP Watermarking, Sequential
Design, Finite State Machine, State Transition Graph.

I. INTRODUCTION

As reuse-based design methodology has taken hold, the

VLSI design industry is confronted with the increasing threat of
intellectual property (IP) infringement. IP providers are in
pressing need of a convenient means to track the illegal
redistribution of the sold IPs. An active approach to protect a
VLSI design against IP infringement is by embedding a
signature that can only be uniquely generated by the IP author
into the design during the process of its creation. When a forgery
is suspected, the signature can be recovered from the

Copyright (c) 2010 IEEE. Personal use of this material is permitted. However,

permission to use this material for any other purposes must be obtained from the
IEEE by sending an email to pubs-permissions@ieee.org.

Manuscript received Dec. 28, 2009; Revised July 12, 2010; Accepted Nov. 11,
2010.

A. Cui is with the Department of Electronic and Information Engineering,
Harbin Institute of Technology Shenzhen Graduate School, GuangDong
Province, P. R. China 518055 (e-mail: cuiaj@hitsz.edu.cn).

C. H. Chang is with the School of Electrical and Electronic Engineering,
Nanyang Technological University, Singapore 639798 (e-mail:
echchang@ntu.edu.sg).

Sofiène Tahar is with the Department of Electrical and Computer Engineering,
Concordia University, Montreal, Quebec, Canada (e-mail:
tahar@encs.concordia.ca).

A. T. Abdel-Hamid is with the German University in Cairo, Egypt (e-mail:
amtalaat@gmail.com).

misappropriated IP to serve as undeniable authorship proof in
front of a court. Such a copyright protection method is widely
known as watermarking. It is cheaper and more effective than
patenting or copyrighting by law to deter IP piracy [1].

Unlike the digital content in the media industry, a VLSI IP is
developed in several levels of design abstraction with the help of
many sophisticated electronic design automation tools. Each
level of design abstraction involves solving some NP-complete
optimization problems to satisfy a set of design constraints. In
the regime of constraint-based watermarking, the signature to be
imprinted is converted into a set of extra constraints to be
extraneously satisfied by the watermarked design [2]. The
watermark embedded at a higher level of design abstraction must
survive the posterior optimizations so that the same IP
distributed at all lower abstraction levels are protected. From the
authorship verification perspective, IP watermarking can be
classified into static watermarking and dynamic watermarking
[3]. In the watermark detection phase, static watermarking [4]-[8]
requires the downstream design to be reverse engineered to the
level where the watermark is embedded to show the additional
constraints generated by the author’s signature are satisfied.
Reverse engineering is expensive and intrusive as some critical
design data used to produce the watermarked IP may be exposed
in this process. On the other hand, dynamic watermarking
[9]-[17] enables the embedded information to be detected from
the output without reverse engineering by running the protected
design with a specific code sequence. Dynamic watermarking is
typically performed in the state transition graph (STG) of finite
state machine (FSM) [11]-[14], in the architectural level of
digital signal processors (DSP) [9], [10] or at the
design-for-testability (DfT) stage [15]-[17]. FSM watermarking
embeds the signature at a higher (behavioral/RT) level of design
abstraction whereas the latter normally embeds the signature
after logic synthesis. Embedding the watermark at the behavioral
level has the advantage that it is harder for the attacker to erase
the watermark in the downstream design by simple redundancy
removal or logic manipulation, but it is also challenging to keep
the overhead of watermarked design low.

In this paper, a new dynamic watermarking scheme is
proposed. The watermark is embedded in the state transitions of
FSM at the behavioral level. As an FSM design is usually
specified by an STG or other behavioral descriptions that can be
easily translated into STG, the watermark is embedded into the
STG of any size and remains a property of FSM after the
watermarked design is synthesized and optimized into circuit
netlist. The authorship can be directly verified even after the
downstream integrated circuit design processes by running the
watermarked FSM with a specific code sequence. Unlike [12],
our watermark verification is simple and efficient even for large

 A Robust FSM Watermarking Scheme for IP
Protection of Sequential Circuit Design

Aijiao Cui, Member, IEEE, Chip-Hong Chang, Senior Member, IEEE, Sofiène Tahar, Senior Member, IEEE, and
Amr T. Abdel-Hamid, Member, IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/211516618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

designs. On the other hand, as extracting the STG from a gate
level netlist is computationally impractical for large circuits [11],
there are limited options for an attacker to remove or hide the
watermark from the watermarked design netlist or netlist
obtained by reverse engineering its downstream design [13]. The
proposed watermarking scheme is robust against state reduction
attacks. It is different from other transition-based embedding
methods [13], [14] in that it has lower embedding overhead and
has overcome the vulnerability of auxiliary inputs which are
inevitably introduced if the embedding capacity is limited,
especially for completely specified FSM. The weaknesses of
existing FSM watermarking scheme to be overcome in this paper
are discussed in the next section. Currently there is no easy way
to publicly detect the existence of watermark, once the FSM is
integrated into a chip and packaged [11]-[14]. Since the test
signals can be traced after the chip is packaged and the scan path
provides controlled accesses to all internal states and
combinational circuits of the watermarked IP, this paper also
proposes an alternative approach to allow the authorship proof of
watermarked FSM to be verified off chip by making it a part of
the test kernel. The proposed watermarking scheme thus makes
the authorship proof harder to erase and the IP authorship easier
to verify.

The rest of the paper is organized as follows. In Section II,
we discuss related works. Our new FSM watermarking scheme
is presented in Section III. In Section IV, we analyze the
resilience of the proposed watermarking method. Section V
presents experimental results on benchmark designs. Finally,
Section VI concludes the paper.

II. RELATED WORKS

The notion of constraint-based watermarking, first proposed
by Hong and Potkonjak, [2] has now been widely applied to
embed authorship signature into VLSI designs developed at
different design abstraction levels, such as architectural level [9],
[10], combinational logic synthesis level [4]-[7] and physical
placement and routing [8]. At behavior level, STG
representation makes watermarking FSMs in industrial designs
promising as efficient sequential logic synthesis tools and
optimization methods are available to lower the cost of
embedding and detection of watermark. FSM watermarking has
the advantage that the IP author signature can be lucidly
recovered by applying a verification code sequence. As the STG
is in general exponentially larger than the circuit description
itself [12], it is computationally impractical to analyze the circuit
to extract the STG. Such scheme therefore has high resilience
against tampering at lower abstraction levels.

An FSM is characterized by a set of internal states and
transitions between them. Approaches to FSM watermarking
can be classified based on whether the authorship information is
embedded in the states [11], [12] or on the transitions [13], [14].
In [12], the FSM is watermarked by introducing redundancy in
the STG so that some exclusively generated circuit properties are
exhibited to uniquely identify the IP author. According to the
watermark, a specific sequence of states is generated and will
only be traversed with the excitation of a specific sequence of
inputs. The watermark verification relies on the presence of such
extraneous states in the STG. However, the watermark will not
survive upon removal of all redundant states by the application

of a state minimization program [18]-[20]. Watermarking on the
states of FSM is thus vulnerable to state optimization attacks.
Two possible ways to verify the presence of a watermark are
provided in [12]. The implicit BDD-based enumeration method
is too slow for large circuits. The ATPG-based method requires
the solution of an NP-complete problem and is not evident that
the verification can be carried out efficiently on large circuits.

The properties of the transitions in FSM can also be explored
for watermark embedding. An FSM watermarking scheme was
proposed in [13] by inserting redundant transitions into the
original STG after the unspecified transitions in the STG are
searched and associated with the user-defined input/output
sequence. The weakness of this scheme is the monotonous use of
only the unspecified transitions with the specified outputs of
STG for watermark insertion. The embedding capacity is limited
by the number of free input combinations. For FSMs with
limited unspecified transitions, the probability of coincidence is
high. If the watermark length is increased beyond the available
number of unspecified transitions to boost the authorship proof,
the overhead aggravates rapidly.

To increase the robustness of FSM watermarking, besides
the unspecified transitions, existing transitions are also utilized
in an output mapping algorithm to watermark the FSM [14]. This
method takes advantage of the original transitions in the STG to
lower the overhead of watermarking. The embedding process is
fast as no special effort is made to search the states of STG. The
watermark bits are embedded at large by a random walk of the
STG. When all output bits of an existing transition of a visited
node coincide with a substring of the watermark, that transition
is automatically watermarked. Otherwise, extra watermarked
transition will be added to the STG. When the number of outputs
of FSM increases or when the FSM is completely specified,
output coincidence of existing transition with the watermark bits
becomes rare. The watermarked FSM is susceptible to removal
attack if the ratio of augmented transitions to coinciding
transitions is high. When only unspecified transitions are
watermarked, the scheme becomes as vulnerable as [13]. If no
unspecified transitions are available for watermarking, a pseudo
input variable is added. This input variable is assigned a fixed
logic value of “0” for all existing transitions, and a fixed “1” for
the added transitions. This discrimination between the existing
transitions and added transitions is conspicuous. Moreover, the
addition of new input variables with fixed assignments on all
transitions increases the decoder logics and hence the overhead
of watermarked FSM significantly. Removal of the pseudo
inputs can easily eliminate or corrupt the watermark without
affecting the FSM functionality.

In what follow, a more robust technique of transition-based
FSM watermarking is proposed to overcome the shortcomings
of the above methods. Provision is also made to facilitate the
FSM watermark to be readily verified off-chip through the scan
chain.

III. FINITE STATE MACHINE WATERMARKING

A. Preliminaries

A formal definition of an FSM is given in [19] as follows:
Definition 1: An FSM is a tuple M = (Σ, Δ, Q, s0, δ, λ), where

Σ and Δ are finite, non-empty sets of the input and output

3

alphabets, respectively. Q is a finite, non-empty set of states and
s0 ∈ Q represents a unique reset state. δ(s, X): Q × Σ → Q ∪{∅}
is the state transition function and λ(s, X): Q × Σ = Δ ∪{τ} is the
output function, where ∅ denotes an unspecified state and τ
denotes an unspecified output.

For si, sj ∈ Q, sj is said to be the next state of si if ∃X ∈ Σ s.t.
sj = δ(si, X). The application of X on si also produces an output, Y
= λ(si, X) ∈ Δ. For an FSM with n input and k output variables,
each input alphabet, X = x1 x2 … xn, is a string of n bits and each
output alphabet, Y = y1 y2 … yk, is a string of k bits. Each bit of X
and Y, xi, yi ∈ {0, 1, −}, where “0” and “1” are the binary
constants, and “−” denotes a “don’t care” value. To avoid
unnecessary notational complexity, we use an upper case letter
to denote an input or output alphabet in Σ and Δ, a lower case
letter to denote an input or output variable in {0, 1, −}, and yi,j to
address the j-th bit of the i-th alphabet, Yi.

FSMs are usually designed with their state transition graph
(STG). An STG, STG(M) = G(V, E), is a labeled directed graph
of a machine M of V nodes and E edges. Each symbolic state, s ∈
Q, is represented by a node in V. A state transition t from a
source node S(t) to a destination node D(t) is represented by a
directed edge, eij ∈ E, connecting S(t) to D(t). Each edge is
tagged with an input/output label, I(t)/O(t), to encapsulate the
relations, D(t) = δ(S(t), I(t)) and O(t) = λ(S(t), I(t)). Thus, a state
transition t can be represented by a quadruple (S(t), D(t), I(t),
O(t)). The input combinations that are absent from all transitions
of a source state in an STG are called the free (or unspecified)
input combinations of that state, and a transition that can be
created from the free input combinations is called an unspecified
transition. Unlike [12], as the number of states in an FSM is a
dominant factor of the implementation complexity, we modify
only the properties of the edge set to synthesize the watermarked
design in order to preserve the nodes in STG(M).

In light of dynamic watermarking, the watermark detection

process involves the abstraction of an output sequence, Ŷ =

1 2
ˆ ˆ ˆ{ , , , }NY Y Y� , îY ∈Δ , from the watermarked design M̂ by

applying a specific input sequence, X̂ = 1 2
ˆ ˆ ˆ{ , , , }NX X X� ,

ˆ
iX ∈ Σ, on a state, ŝ ∈ Q, such that ()ˆ ˆˆ,sλ=Y X =

()()()()1 1
ˆ ˆ ˆˆ, , ,N Ns X X Xλ δ δ δ −� � . The watermark synthesis

process requires that the outputs of M̂ be compatible with the
outputs of M for every input symbol, X ∈ Σ, and output

mappings of M̂ for every input symbol, ˆ
iX ∈ Σ ∀i = [1, N], be

dictated by a signature that identifies the ownership of a design.
The signature is cryptographically generated with a secret key so

that ()ˆ ˆˆ,sλ=Y X becomes a unique property of M̂ .

 In [13], [14], the length N of X̂ and Ŷ is equal to m/k,
where m is the watermark length and k is the number of output
variables of an FSM. Fig. 1(a) shows an example of a STG with
three states, S1, S2 and S3. The state transitions are determined by
a 1-bit input variable and a 3-bit output variable, i.e., n = 1 and k
= 3. When the scheme in [14] is applied to embed an 8-bit
watermark sequence “10101000”, three (m/k = 3) consecutive
transitions will be searched to match the watermark bits with the
output bits. If the search starts from S1, as all transitions from S1

have no output coinciding with the first three watermark bits of
“101”, a new transition will be inserted. Since S1 has no free
input combination, a new input variable is introduced. This input
variable is assigned to “0” for all existing transitions and “1” for
all added transitions, and the bits are underlined in Fig. 1(b). A
new transition (S1, S2, 11, 101) from S1 is added with an
arbitrarily chosen next state S2 as indicated by the bold dashed
arc in Fig. 1(b). As S2 has no edge with output bits coinciding
with “010”, another new transition (S2, S3, 01, 010) is added with
the randomly selected next state S3. The existing transition (S3,
S1, 10, 001), printed bold in Fig. 1(b), has an output matching
with the watermark bits “00”. So it is reused for watermarking.
The watermarked design synthesized by SIS [23] has 640 units
of area, 7.2 units of delay and 201.8 units of power. Comparing
with the original design with 448, 6 and 178 units of area, delay
and power, respectively, the FSM watermarked by [14] incurs
42.9%, 20% and 13.4% overheads in area, delay and power,
respectively.

In this example, the output is a 3-bit (k = 3) alphabet. The
probability of the output of a transition coinciding with the
watermark bits is as low as 1/8, which results in only one out of
three existing transitions being used for watermarking. When k
is larger, it becomes more difficult to make use of existing
transitions to reduce the overhead of watermarking due to the
low probability of output coincidence. The fixed assignment of
the added input variable also increases the design complexity.
Moreover, as all output bits are watermarked in consecutive

transitions after the starting state on which X̂ is applied, as
shown in Fig. 1(c), the watermarked transitions are not well
obfuscated, causing the watermarked FSM to be vulnerable.

To overcome these problems, we make N > m/k so that not all

bits in Ŷ are watermarked. The locality of the watermark is
randomized by a cryptographic one-way function such that any
number (from 1 to k) of bits at any output bit from any transition
of STG is probable to be watermarked. The general idea can be
illustrated using the same STG example in Fig. 1(a). Since N >
8/3, it is set to 8. The localities of these 8 watermark bits are
randomly generated between [1, k×N = 24] without replication.
Suppose these numbers are {9, 13, 2, 10, 20, 23, 17, 4}. So, eight
transitions will be sought to produce an output sequence that
contains the watermark sequence “10101000” at these bit
positions in the output. As the 8 watermark bits are dispersed
into 8 transitions, the probability of the output of an existing
transition coinciding with the watermark bit is as high as 1/2,
which results in five existing transitions being reused for
watermarking and only one new transition is added, as shown in
Fig. 1(d). As the newly added transition is well blent with the

existing transitions, when X̂ is applied on the FSM to detect the
watermark, it is hard for an attacker to differentiate it from others,
as indicated by the bold arrow in Fig. 1(e). To increase the
watermark strength and minimize the next state decoder logic of
watermarked design, we also capitalize on the extra headroom
created by the pseudo input variables and free input
combinations of the FSM. In Fig. 1(d), when a new input
variable is introduced, it does not need to be fixed and it can
remain as don’t care in the final watermarked design if it is not
used for the generation of any new transitions. The synthesized
design from Fig. 1(d) has 520, 6.4 and 190.2 units of area, delay
and power, respectively. The overheads due to watermarking are

4

only 16.1% on area, 6.7% on timing and 6.9% on power. The
advantage over [14] is discernible.

With these preliminaries, our proposed FSM watermarking
algorithm will be elaborated next.

B. Generation of Watermark and Random Sequence.

A meaningful text string, MSG is first encoded into a binary
string and then encrypted by a provable cryptographic algorithm
with the secret key Ke of the IP owner. If the length of the
encrypted message is too long, a message digest (MD) algorithm
can be used to reduce its length. The resultant binary bit vector

of length m is the watermark, { }
1

m

i i
W w

=
= and wi ∈ {0,1}.

 (a) (b)

 (c) (d)

 (e)

Fig. 1. Watermark embedding on transitions of STG: (a) original STG, (b)
watermarked STG by the scheme in [14], (c) excitation of watermarked
transitions of STG in (b), (d) watermarked STG by proposed scheme, (e)
excitation of watermarked transitions of STG in (d).

A keyed one-way pseudorandom number generator (PNG) is

used to generate a sequence, { }
1

m

i i
B b

=
= , of m unique integers

between 1 and Ν ×k, i.e., bi ∈[1, Ν ×k] ∀i = 1, 2, … , m and bi ≠

bj ∀i≠ j. The length N of sequence X̂ is determined empirically.
The purpose of B is to randomly disperse the m watermark bits

into Ŷ . If ∃(i, j) ∀i ∈ [1, N] and j ∈ [1, k] such that (i−1)k + j =

bl , then ,ˆi j ly w= , where ,ˆi jy

is the j-th bit of ˆ ˆ

iY ∈ Y . The

secure hash algorithm SHA-1 [21] can be used as an MD as well
as in a keyed one-way PNG for the generation of these two
random sequences, W and B. As it is computationally infeasible
to find a collision of this hash function, the possibility that the
same group of numbers is generated by coincidence is extremely
low without the knowledge of the secret key.

C. Watermarking Insertion

The watermark W is inserted into STG(M) by modifying
some of its edges without changing the operational behavior of

M to find a sequence of N consecutive transitions,

()1
ˆ ˆˆ ˆ ˆ, , ,i i i i it s s X Y+= , i = 1, 2, … , N, such that each watermark bit, wl

∈ W, l ∈ [1, m], will be randomly mapped to one bit in the

sequence, Ŷ = 1 2
ˆ ˆ

N̂YY Y� = 1,1 1, 2,1 2, ,1 ,ˆ ˆ ˆ ˆ ˆ ˆk k N N ky y y y y y� � � � .

The mapping from W to Ŷ is injective but not surjective. The

value of each bit ,ˆi jy in Ŷ can be determined as follows: if

(i–1)k + j = bl , then ,ˆi j ly w= , else ,ˆi jy = “−” , as shown in Fig. 2.

Given an output îY and a source state îs , the destination

state 1îs + of watermarked transition ît will be determined by an

output compatibility check. Two bits, x, y ∈{0, 1, −}, are
compatible if they are of equal value or one of them has a don’t
care value, i.e., x ∩ y ≠ ∅. This intersection of two ternary
variables is defined in Table I. Likewise, two alphabets, X and Y
are compatible, denoted by X ≡ Y, if none of the elements in X ∩
Y = {xi ∩ yi} has a null value.

Generate Ŷ (W, B) {

{ },
ˆ ˆi jy=Y ,

 i∈[1, N], j∈[1, k];

for (i = 1 to N) {
 for (j = 1 to k) {
 ,ˆi jy = −;

 for (l = 1 to m) {
 if ((i–1)k + j = bl) {
 ,ˆi j ly w= ;

 break; }
 } } }
return Ŷ ;

}
Fig. 2. Generation of watermarked output sequence.

TABLE I Intersection of two ternary variables

∩ 0 1 −
0 0 ∅ 0
1 ∅ 1 1
− 0 1 −

Starting with i = 1, an arbitrary state, 1̂s ∈ Q, is selected. Let

T(îs) be the set of transitions emanating from a state, îs . A set

of transitions C(îs) that is output compatible with îY is sought,

i.e., C(îs) = {ti ∈ T(îs)| O(ti) ≡ 1̂Y }. To avoid entering into a
deadlock, transitions terminated at a deadlock state (i.e., state
with no fanout) are excluded from C(îs). Four distinct scenarios

are considered for the determination of ît .
Cases 1: There is only one output compatible transition,

|C(îs)| = 1, then ît = C(îs) and 1îs + = D(ît).
Case 2: If more than one output compatible transition are

found, i.e., |C(îs)| > 1, then a transition from C(îs), with the

next state having the highest number of free input combinations,
will be selected as ît . Its output will be modified to O(ît) = O(ît)

∩ îY and 1îs + = D(ît).

Case 3: If |C(îs)| = 0, then the free input combinations of

îs will be considered. Let F(îs) = {X ∈ Σ | δ(îs , X) = ∅} be the

5

set of free input combinations of îs . For ˆ()iF s ≠ ∅ , let D(îs) =

{ ˆ js ∈ Q | ˆ js = D(ît) ∀ ît ∈ T(îs)} be the set of all destination

states of îs . 1îs + is set to the state with the highest number of

free input combinations in D(îs) (excluding the deadlock states)

unless D(îs) = ∅. When D(îs) = ∅, 1îs + is set to the state with
the highest number of free input combinations in STG(M). If
there exists an edge connecting îs to 1îs + in STG(M), a new

input/output pair, I(ît)/O(ît), is added for the transition ît .

Otherwise, a new edge directed from îs to 1îs + labeled with

I(ît)/O(ît) will be created in STG(M) for ît , and O(ît) = îY . The

determination of I(ît) will be explained later.

Case 4: If |C(îs)| = 0 and F(îs) = ∅, then a pseudo input
variable xn+1 needs to be introduced in M and the number of
input variables n is incremented by 1. xn+1 is set to an unspecified
logic value “∗” for all existing transitions. A new edge directed
from îs to 1îs + labeled with I(ît)/O(ît) will be created for ît .

1îs + is set to the state with the highest number of free inputs in

D(îs) or in STG(M) if D(îs) = ∅, and O(ît) = îY . Both symbols

“*” and “−” can assume either a logic “0” or a logic “1” value but
there is a subtle difference. “−” is meant for the currently used
input combinations whereas “*” can be associated with either the
used or free input combinations. A “*” can be construed as a
reserved free input literal as its logic state (“0” or “1”) will only
be defined at the time when some input combinations subsumed
by it are freed to become I(ît).

Find ît (Q, i, M̂ , Ŷ , îs) {

 if (|C(îs)| = 1) { // case 1

ît = C(îs); 1îs + = D(ît);

 } else if |C(îs)|>1 { // case 2

 ît = T(arg{max(F(sj))}) ∀ sj
∈D(îs) and T(sj) ∈ C(îs);

O(ît) = O(ît) ∩ îY ; 1îs + = D(ît);
} else {

if (ˆ()iF s ≠ ∅) { // case 3

 if (D(îs) ≠ ∅) 1îs + = arg{max(F(sj))} ∀ sj ∈D(îs);

 else 1îs + = arg{max(F(sj))} ∀ sj ∈ Q;

 } else { // case 4
 Add a pseudo input variable, xn+1;

 for (each t̂ ∈ M̂) I (t̂)n+1 = *; // set xn+1 to *
 n = n +1;

 if (D(îs) ≠ ∅) 1îs + = arg{max(F(sj))} ∀ sj ∈D(îs);

 else 1îs + = arg{max(F(sj))} ∀ sj ∈ Q;
}

O(ît) = îY ;

 I(ît) = Find ˆ()iI t (n, M̂ , îs);
}

return ît ;
}

Fig. 3. Determination of watermarked transition.

The pseudo codes for the determination of watermarked
transitions are shown in Fig. 3. The input alphabets for the
watermarked transitions found in Cases 3 and 4 are determined
by the subroutine Find shown in Fig. 4.

When there is no existing transition with compatible output,
as in Cases 3 and 4, the input alphabet I(ît) for O(ît) = λ(îs ,

I(ît)) = îY needs to be determined. I(ît) is set to one of the free

input combinations of îs if no “*” appears in all the used input

combinations of îs . Otherwise, an alphabet, X ∈ I(tu), tu ∈ T(îs),
that contains at least one “*” from the set of used input
combinations of îs will be split into two. Initially, I(ît) = X. A
“*” bit in X is selected and assigned a fixed but randomly
generated binary constant, a ∈ {0, 1}, while the corresponding
“*” bit in I(ît) is assigned its complement a . Meantime, all the

“−” bits in I(ît) are replaced by the “*” bits. For example, if X =

“1−*” and a = 0, then it will be split into X = “1−0” and I(ît) =
“1*1”. As the number of transitions with “*” bits in the pseudo
input variable space enormously outnumbers those in the
original input variable space, to simplify the next state and
output decoder design, it is lucrative to preserve “*” in the
pseudo input variable space whenever free input combinations
from the original variable space can be used to produce I(ît). In

the search for the next state 1îs + an input alphabet with j
exclusive “*” bits is considered as a cover of 2j−1 free input
combinations. When two states possess the same highest number
of free input combinations, preference will be given to the state
that covers the highest number of output combinations in its fan
out transitions.

Find ˆ()iI t (n, M̂ , îs) {

 if (* is absent in all X ∈ F(îs)) ˆ()iI t = any X ∈ F(îs);
else {

 Select X ∈ I(tu) with tu ∈ T(îs) and ∃Xk = * for 1 ≤ k ≤ n;

 Set ˆ()iI t = X;
a = random(0,1);
Xk = a; ˆ()i kI t = a ;
for (j = 1 to n)

if (ˆ()i jI t = −) ˆ()i jI t = *; }

 return ˆ()iI t ;
}

Fig. 4. Finding input alphabet for the watermarked transition.

The above watermarking process is repeated for i = 2 to N

until N̂t is determined. The residual “*” in the input alphabets of
all edges will be replaced with “−” and the resultant STG(M) is
the watermarked STG(M̂) and () () ()1 2

ˆ ˆ ˆ
N̂I t I t I t=X � . If the

overhead of watermarked design is not satisfactory, the entire
process can be repeated with an adjusted value of N. The overall
watermark insertion process is shown in Fig. 5.

For each pseudo input variable added, at least 2n−1 potential
free input combinations are created in every state transition,
where n here refers to the total number of input variables
including the pseudo variables. These free input combinations
have been consumed in [14] by fixing the value of each pseudo
input variable to be “0” consistently for all existing transitions
and “1” consistently for the watermarked transition immediately
upon its creation. This has not only increased the complexity of

6

the decoders, but also made the watermarked transition
discernible from the pseudo inputs. The introduction of reserved
free literal allows the assignments of “*” in the input alphabets
of all transitions to be deferred until some input combinations
subsumed by it are needed to watermark a transition. The
transformation of “−” to “*” in I(ît) when a random assignment
is made on “*” serves two important purposes. First, it
judiciously preserves the don’t care inputs in the transitions to
optimize the design of next state and output decoders. Second, it
allows the same edge to be revisited for watermarking to
maximally exploit the free input combinations. This will
minimize the required number of pseudo input variables,
especially when a long watermark is to be embedded for a strong
authorship proof.

FSM_watermarking (M, MSG, m, k, N, Q, Ke) {

W = { }
1

m

i i
w

=
= MD(encrypt(MSG, Ke));

B= { }
1

m

i i
b

=
= PNG(Ke, N × k) , bi ∈ [1, N × k] ;

 Ŷ

= Generate Ŷ (W, B);

1̂s ∈ Q; M̂ =M;
 for (i = 1 to N) {

 Find ît (Q, i, M̂ , Ŷ , îs);

 îs = D(ît); }

 for (each transition t̂ ∈ M̂) {

 replace * in I(t̂) by −; }

 return M̂ ;
 }

Fig. 5. Algorithm for FSM watermarking.

 The number of transitions N has no bearing on the

probability of coincidence but it has impact on the cost of
watermarking. If N is small, the probability of finding
compatible outputs from existing transitions is low and more
design overhead will be incurred. On the other hand, if N is large,
fewer new transitions and pseudo inputs need to be added which
will lower the cost of watermarking, but the code sequences
required to detect the watermark is long. To avoid introducing an
excessive number of unspecified transitions due to the addition
of pseudo input variables, N needs to be sufficiently larger than

m/k. When N ≈ m, each output alphabet in Ŷ contains one
watermark bit on average and the resultant watermarked design
generally possesses acceptably low overhead. As our embedding
algorithm can run very quickly even for large FSM, the
watermarking process can be repeated for different N to select
the least overhead watermarked design with reasonable
verification code length. The procedure shown in Fig. 6, is
suggested to legitimately limit the number of trials. Let

iwmA

denote the area of watermarked FSM with N = Ni at the i-th trial.
Ni = Ni−1 ± δi and N1 ≈ m. Ni that is incremented (or decremented)
by δi depends on the extent to which

1iwmA
−

 is increased (or

reduced) over the previous trial. The standard deviation, σi, of
Awm is defined as:

2

1

1
()

j

i

i wm wm
j

A A
i

σ
=

= −∑ (1)

where
1

1
j

i

wm wm
j

A A
i =

= ∑ is the mean area of trial watermarked

FSMs. The trial terminates when σi /Α ≤ ε or when N ≥ Nmax,
where ε is a small preset value, A is the area of FSM before
watermarking and Nmax is some preset limit on the verification
code length. The least overhead watermarked design from
among the trials is selected.

 N_adaptation (A, ε, Nmax, m) {

 i = 1; Ni ≈ m;
0wmA = A; N = Ni;

repeat {

 M̂ = FSM_watermarking (M, MSG, m, k, Ni, Q, Ke);

 Synthesize M̂ and obtain
iwmA ;

 if (
iwmA >

1iwmA
−

)

 Ni+1 = Ni + δi;
 else
 Ni+1 = Ni − δi;

 Compute wmA and iσ ;

 N = Ni ; i = i +1;
} until σi /Α ≤ ε or N ≥ Nmax;

return M̂ with minimum area;
}

Fig. 6. Minimization of FSM watermarking overhead by adaptation of N.

D. Watermark Detection

To verify the authorship, one needs to run the watermarked

FSM with the input sequence, X̂ = 1 2
ˆ ˆ ˆ{ , , , }NX X X� , applied

on state 1̂s . If the operation halts before N transitions, the
watermark cannot be detected. Otherwise, an output sequence
Y� of N×k bits is obtained. The bits indexed by the set B of m

random numbers are selected from Y� to form an ordered

sequence W� . The authorship is proved if W� perfectly matches
or is highly correlated with the watermark W of the IP owner.

Although the ownership can be authenticated directly by
running the watermarked FSM with X̂ , it does not permit the IP
authorship to be field authenticated by the IP buyers after the
watermarked FSM has been implemented into an integrated
circuit and packaged. Since only the test signals can be traced
after the chip is packaged, the authorship of the watermarked
FSM can be verified off chip by making it a part of the test kernel.
A sequence of test vectors can be applied serially through the

scan-in, Sin pin to bring M̂ to the designated state 1̂s in the test

mode, followed by N designated test vectors that incorporate X̂ .
The output responses Y� can then be collected serially from a

scan-out Sout pin externally to verify the authenticity of M̂ .
This convenient way of watermark verification can be
performed by the end users provided that scan design is also
incorporated in the watermarked IP chip.

Since the scan chain is used as a medium to aid authorship
verification of the IP encapsulated in the test kernel, it can also
be independently protected by [16], [17] to boost the confidence
in positive watermark identification. By watermarking the scan
chain of watermarked FSM using the techniques proposed in
[16], [17], the aggressor needs additional effort to also

7

successfully tamper or redesign the test structure to provide the
fault coverage of the pirated IP. Failure to detect the scan chain
signature alerts malicious tampering or removal of the test
structure in attempt to misappropriate the protected IP.

E. An Illustrative Example

The STG of a simple FSM to be watermarked is shown in Fig.
7(a). It has five states, represented mnemonically as Q = {s1, s2,
s3, s4, s5}. Assume that the encrypted watermark W = “110110”.
The number of output labels to be mapped, N should be greater
than 6/2 = 3 as m = 6 and k = 2. Let N = 7. Suppose the set of six
random numbers between 1 and 14 (k×N) generated by the PNG
with the IP owner’s secret key is B = {9, 4, 2, 7, 12, 3}.

(a) (b)

 (c) (d)

 (e)

Fig. 7. Example of watermarking on FSM: (a) original FSM, (b) use of existing
transition, (c) introduction of pseudo input variable and new transition, (d) the
watermarked FSM, (e) excitation of watermarked transitions.

Following the algorithm in Fig. 2, since 2(1 – 1) + 1 = 1 ∉ B,

1,1ŷ = “−”; since 2(1 – 1) + 2 = 2 = b3, 1,2ŷ = w3 = “0”; 3 = b6

⇒ 2,1ŷ = w6 = “0”; 4 = b2 ⇒ 2,2ŷ = w2 = “1”; 5 ∉ B ⇒ 3,1ŷ = “−”; 6
∉ B ⇒ 3,2ŷ = “−”; 7 = b4 ⇒ 4,1ŷ = w4 = “1”; 8 ∉ B ⇒ 4,2ŷ = “−”; 9
= b1 ⇒ 5,1ŷ = w1 = “1”; 10 ∉ B ⇒ 5,2ŷ = “−”; 11 ∉ B ⇒ 6,1ŷ = “−”;
12 = b5 ⇒ 6,2ŷ = w5 = “1”; 13 ∉ B ⇒ 7,1ŷ = “−” and 14 ∉ B
⇒ 7 ,2ŷ = “−”. Hence, Ŷ = “−0 01 −− 1− 1− −1 −−”.

An arbitrary starting state, 1̂s = s1, is selected to commence
the watermarking process. For 1̂Y = “−0”, C(1̂s) = {s1, s2, s4} and
none of them has any free input combination. 2ŝ can be set to
any state of C(1̂s), says s1, and 1̂Y = “00”. 1̂t is marked by a
heavy edge in Fig. 7(b). For 2̂Y = “01”, there is no compatible
output from T(îs) and C(1̂s) = ∅. Since s3 has the most free
input combinations among D(2ŝ), a new transition from s1 to s3
is added. As F(2̂s) = ∅, a pseudo input variable, x3, is introduced.

It assumes a value of “∗” on the inputs of all existing transitions.
Suppose the input of transition, t = (s1, s3, “10*”, “11”), is split
into I(t) = “101” and I(2̂t) = “100”. The new transition, 2̂t = (s1,
s3, 100, 01), is added into the STG(M) as indicated by a dotted
edge in Fig. 7(c). For 3̂Y = “−−”, C(3̂s) = {s2, s4}. Both states
have equal number of free input combinations but s4 is preferred
over s2 as s4 covers more output combinations (“01” and “11”) in
its fanout transitions than that (“01”) of s2. Therefore, 3̂t = (s3, s4,
“11*”, “10”). The process continues until all seven transitions
are identified. Then all residual “*” in the final STG are changed
to “−”. The watermarked STG is shown in Fig. 7(d), where the
transitions of Cases 1 and 2 are marked by heavy edges and the
added transitions of Cases 3 and 4 are marked by dotted edges.
Fig. 7(e) shows the complete watermarked sequence of inputs
and outputs and the transitional states. The overhead of the
synthesized watermarked FSM can be checked at this point. N is
modified and the watermarking process is repeated according to
Fig. 6 until the terminal criterion is met.

To verify the existence of watermark W, an input sequence,

X̂ = (“01−”, “100”, “11−”, “0−0”, “1−−”, “00−”, “00−”), “−”

∈{0,1}, is applied on the state s1. A binary stream W� is
retrieved from the bit positions, 9, 4, 2, 7, 12, 3 of the output

sequence Ŷ . If W� = W = “110110”, the authorship is proved.

IV. WATERMARK RESILIENCE ANALYSIS

A. Authorship Credibility

The credibility of the authorship proof can be evaluated by
the probability that an unintended watermark is detected in a
design [13]. Suppose that an arbitrary input sequence exits to
excite N’ (N’ ≥ N) consecutive transitions through the reachable
states of an FSM with k output variables. The output sequence of
length N’ (each output alphabet has k binary bits) will be one of
2k×N’ possible solutions. The odds that the output sequence
contains the identical watermark bits at the positions specified
by the author’s signature are:

'

'

2 1

2 2

k N m

c k N m
P

× −

×= = (2)

A longer watermark has a lower probability of coincidence.
As m increases, more new transitions may have to be added. The
beauty of our method is the input sequence length, N can
increase to mitigate the overhead increment without
compromising the authorship credibility.

The false positive rate, which is the probability that the
watermark is detected in the output sequence under a different
random input sequence, can be estimated statistically. If there
are NC(τ) output sequences detected with at least τ fraction of
matched watermark bits when NT random input sequences are
applied, then the false positive rate is determined as:

 () ()C

T

N
P

Nλ
τ

τ = (3)

where 0 ≤ τ ≤ 1. To constitute a false positive, τ = 1 since all bits
extracted from the specific positions by the detector need to be
matched exactly with the watermark bits. As τ reduces, Pλ
increases and a threshold of discrimination can be determined

8

empirically that with certain degree of confidence, the
authenticity of the design can be assured by detecting only a
fraction of the watermark bits. A suitable error correction
scheme can also be considered based on Pλ to correct the
partially corrupted output subsequence due to tampering.
 Pc and Pλ are important to repudiate the denial of authorship.
To show that the output sequences excited by the verification
input cannot be obtained by trial-and-error to match the
watermark, the claimant needs only to demonstrate that the
watermark and the watermarked positions in the output sequence
are uniquely generated with a cryptographic one-way function
using a secret key in his/her possession, provided that Pc is very
low and Pλ is low enough for a sufficiently large number of
random tests.

B. Resilience Analysis

 The following conceivable attacks on watermarking of
sequential circuit designs are analyzed with Alice as the IP
owner and Bob as the attacker, who attempts to tamper an
illegally acquired copy of Alice’s watermarked IP.

B.1 Combinational Logic Re-synthesis

Bob may use various logic optimization tools [22], [23] to
re-synthesize the combinational logic of watermarked FSM.
Such combinational logic re-synthesis operation maintains the
inputs/outputs behaviors of flip-flops in the design and has no
effect on the STG structure. Therefore, the watermark embedded
on the STG is robust against attack by combinational logic
re-synthesis.

B.2 Circuit Retiming

 Bob may apply retiming transformation [22], [24] to move
the latches across the combinational logic blocks of Alice’s
watermarked FSM without changing the design functionality.
Retiming can change the STG structure. Such transformation
can be divided into three cases for analysis. (1) Splitting one
state into two one-step equivalent states. (2) Merging two
one-step equivalent states into one state. (3) Switching between
two states that are one-step equivalent. Two states si and sj are
said to be one-step equivalent if and only if the two states have
the same outputs and the same next state under the same input
excitation.

S1

S2

S3

S4

S5

S1

S2

S31

S32

S4

S5

xt / yt

xt+1 / yt+1

split

merge

xt / yt

xt+1 / yt+1

xt+1 / yt+1

Fig. 8. FSM Retiming.

 The consequence of splitting, merging or switching
transformation on the outputs retrieved in the watermark
detection process can be analyzed by the STG before and after
retiming. As an example, let states s31 and s32 be two generic
one-step equivalent states and the transitions (s1, s31, xt, yt) and
(s31, s5, xt+1, yt+1) are traversed in the watermarking process as
shown in Fig. 8. Upon retiming, states s31 and s32 are merged into

state s3. When the sequence X̂ is applied onto the retimed FSM,

transitions (s1, s3, xt, yt) and (s3, s5, xt+1, yt+1) are traversed, the
same outputs as Alice’s watermarked FSM are generated from
these two steps. Similarly, splitting or switching operations on
the watermarked FSM will not prevent the detection of Alice’s
watermark. Alice’s watermark will not be removed as a state can
only be substituted by the state with the same behaviors in
retiming transformation.

B.3 State Recoding (or Assignment)
 Bob may recode the states of Alice’s watermarked FSM to
remove her watermark. State assignment changes the mnemonic
representations of states in Q. It has no effect on the functional
specification of FSM [25]. As the watermark is embedded in the
state transitions rather than the states, Alice’s watermark will
survive the state recoding attack.

B.4 Combinational and Sequential Redundancy Removal

When a redundant fault is identified in a sequential circuit,
the part of logic can be deleted to simulate the effect of fault.
Bob can remove the combinational logic that is not necessary for
the correct circuit behavior. This attack has similar effect as the
combinational resynthesis attack as far as the sequential
behavior is concerned. So it will not affect the embedded
watermark.

Elimination of sequential redundancy may change δ and λ
while maintaining the I/O behaviors. The sequential
redundancies can be categorized into sequentially non-excitable
(SNE) and non-distinguishable (ND) faults [26]. An SNE fault is
a fault that cannot be excited from any reachable state [26]. As
an SNE fault does not affect the reachable part of STG, removal
of SNE faults maintains the integrity of reachability information.

In our watermarking scheme, all states traversed by X̂ are
reachable as long as the starting state, 1̂s is selected as a
reachable state after the reset state, s0. This can be easily
guaranteed. As all IOs on the edges of these reachable states are
not changed, Alice’s watermark can still be detected upon the
removal of SNE faults.

Although an ND fault does not affect the I/O behavior, it may
change the reachable part of STG. An ND fault can be identified
by verifying the equivalence between the watermarked circuit
and the circuit obtained by forcing one node in the circuit to a
constant value [26]. If they are equivalent, then a stuck-at fault at
that node is non-detectable and some redundancy can be
removed. The FSM watermark may be partially erased if the ND
faults are detected around the circuit corresponding to the added
transitions in the watermarking process. However, this attack is
expensive since it requires for each node a computation of
equivalence between two possibly large sequential circuits. This
equivalence is obtained by computing the product machine and
its set of reachable states. Even with the use of implicit STG
traversal techniques, the applicability of this type of sequential
redundancy removal is restricted to small circuits. An ND fault
can be excited, but none of the excitation vectors can be
extended to a test as its effect can never be observed from any
primary output.

B.5 State Reduction

Bob may perform a state reduction on Alice’s watermarked
FSM based on the identification of sets of compatible states

9

(compatibles) [26], [27]. A set of states is a compatible if and
only if for each input sequence, there is a corresponding output
sequence which can be produced by each state in the compatible.
All outputs in the transitions are preserved in the reduced FSM
even if the states have been substituted by their compatibles. As
the watermark is embedded in the transitions instead of the states,
our FSM watermarking will survive the state reduction operation.
However, a watermark embedded on the states of STG, as in the
scheme of [12], is vulnerable to the state reduction operation.

B.6 Transition Elimination

Bob may try to eliminate some transitions in t̂ . In our
watermarking scheme, the existing transitions and the added
transitions are indistinguishably utilized for watermarking.
There are few added transitions and they are randomly
interleaved in the watermarked transition sequence, t̂ . There is
no easy means to eliminate these transitions from the circuit
netlist without modifying the correct behaviors of FSM. The
time and effort required for a successful attack is almost as good
as redesigning the IP function from scratch.

B.7 Removal of Circuitries with Pseudo Inputs

The pseudo inputs, if any, are documented as part of the test
or primary inputs in the distributed watermarked IP. Due to their
random logic assignments, and the high number of don’t cares
they introduced, they are well camouflaged after the logic
optimization process. Even if Bob knows about the addition of
some pseudo inputs, removal of the circuitries connected to
these pseudo inputs will cause malfunction to the watermarked
FSM. The conflicts arise because the unspecified transitions
created by the pseudo inputs can have different outputs or
destination states under the same input combinations as the
existing transitions upon the removal of the pseudo inputs. For
example, in Fig. 7(c), when the pseudo input variable is
eliminated by the removal of some subcircuits, there will be two
transitions from state s1 with I/O = 10/11 and 10/01, respectively
to state s3. This is obviously an output conflict, hence such attack
is not sustainable.

B.8 Ghost Search

Without tampering Alice’s design, Bob may claim his
ownership of Alice’s FSM by specifying some bits in the output
sequence generated by his own selected input sequence to make
up his watermark. However, it is computationally infeasible for
Bob to reverse the PNG to prove that the positions of these
extracted bits are cryptographically related to his signature.
Alternatively, he can generate a group of integers with his key
using a one-way function and then select the bits from these
positions to extract his watermark. Again, it will be
computationally infeasible for him to show that the watermark is
cryptographically associated with a meaningful ownership
message. It is also computationally impractical for Bob to
enumerate different sequences of input combinations to match
his own watermark to the extracted output sequence of Alice’s
FSM in his chosen bit positions. The number of trials grows
exponentially with the size of FSM. Depending on Bob’s
selected bit positions, there is no guarantee that such an input
sequence can be found even after trying all possible input
sequences.

B.9 Addition of Watermark

Bob may embed his own watermark into Alice’s
watermarked design to claim his ownership, if he has the
necessary tools and knowledge of the watermarking process.
Owing to the resilience of the proposed watermarking scheme
against watermark erasure without changing the properties of
FSM, even if Bob can succeed in adding his own watermark into
Alice’s watermarked FSM, Bob’s watermarked design will
contain Alice’s watermark. Therefore, Alice can still correctly
retrieve her watermark bits from Bob’s watermarked design but
the reverse is not possible for Bob.

If the protected IP is distributed at the gate-level, Bob would
have to first recover the STG from the netlist, which is
computationally impractical for large designs [11]. Additionally,
Bob needs to repeat the entire watermarking and optimization
process to ensure that the overhead is acceptable. Yet, this
problem can be solved by using a secure third party (entity), e.g.,
a legal firm or a watermarking governing body. In this case,
Alice will generate a time-stamped authenticated signature, and
keep it at an authorized legal firm. This firm will keep a record of
such signatures and the date it was generated, which can be used
in front of a court to show the exact time the watermark was
generated and embedded in any future dispute. The overall IP
watermarking framework is depicted in Fig. 9.

Fig. 9. Watermarking with third party keeping a time-stamped signature.

V. EXPERIMENTAL RESULTS

The experimentation is performed on the circuits, which are
described in KISS2 format [23], from the IWLS’93 benchmark
set and some FSM designs from the ISCAS’89 benchmark set.
The FSM watermarking scheme is implemented using the C++
language. 64-bit and 128-bit watermarks were embedded into
each FSM design. Using the SIS [23] tool, state minimization
and state assignment are carried out on the original and
watermarked designs. The optimized FSM designs are
synthesized using the algebraic script from SIS and technology
mapped to the Mississippi State University standard cell library.
All experiments were run on a 750MHz Sun UltraSPARC-III
with Solaris operating system and 2 GB of memory.

Table II summarizes experimental results conducted on
ISCAS’89 and IWLS’93 benchmark designs. The columns “|Q|”,
“n” and “k” are the numbers of states, input variables and output
variables of each FSM design, respectively. “A” and “D” are the
area and delay, respectively,of the optimized design as reported
by SIS [23] before watermarking. “P” is the estimated power in
μW obtained by using GENERAL delay model [23] with
20MHz clock and 5V supply. Each design is watermarked with
the first 64 and 128 bits of SHA-1 hash values of the ownership
information. Different lengths of verification code sequence, N

10

have been experimented with N1 = 80 and Nmax = 600. δi = 20
when Ni < 100 and δi = 100 when Ni ≥ 100. Typically, σi/A
converges to ε = 0.05 in less than five trials. The value of “N”
indicated is the one that produces the least area overhead
watermarked FSM design. For most designs tested, only one
pseudo input variable is introduced in the watermarking process
while no pseudo input variable is needed for the designs, “ex4”,
“ex1” and “sand”. “na” denotes the number of new transitions
added onto the watermarked STG. ∆A, ∆D and ∆P are the
percentage area, delay and power overheads, respectively. A
negative percentage implies that watermarking has actually
improved the performance. In general, more new transitions
have been added onto the designs with 128-bit watermark than
with 64-bit watermark. The performance overheads decrease as
the size of FSM increases. For the six larger designs (twelve
watermarked designs), the average area has increased by 4.23%
but the average timing and power have actually improved by
0.52% and 0.33%, respectively. It is conjecture that the
watermarking overheads will become negligible for FSMs with
many more states and input and output variables than those
simulated.

TABLE II STATISTICS FOR ISCAS’89 AND IWLS’93 BENCHMARKS

circuit |Q| n k A D P m N na ∆A ∆D ∆P
64 600 2 3.9 5.7 -6.2

s27 6 4 1 824 7 307
128 300 2 3.9 5.7 -6.2
64 100 4 3.8 -9.2 6.0

s208 18 11 2 1912 13 672
128 100 4 4.2 -9.2 10.3
64 100 5 20.7 7.7 9.7

s386 13 7 7 2512 13 842
128 600 5 22.6 10.8 15.2
64 40 4 10.0 2.0 6.5

s832 25 18 19 5144 19.8 1714
128 200 6 18.2 -4.0 16.2
64 100 4 6.5 -3.3 2.8

s510 47 19 7 5528 18.4 2021
128 200 7 13.5 -3.3 10.1
64 200 3 -10.0 -4.9 -17.3

s820 25 18 19 6112 20.6 2089
128 300 4 3.8 -2.9 -3.0
64 200 2 3.0 5.2 10.8

s1488 48 8 19 105 23 3391
128 300 4 5.9 1.7 12.8
64 300 4 -0.4 -2.4 -6.5

s1494 48 8 19 109 24.8 3746
128 300 5 8.3 -1.6 4.4
64 600 3 8.6 -11.5 -4.7

bbara 10 4 2 1112 10.4 433
128 600 5 17.3 -1.9 1.4
64 500 1 0.6 4.0 4.3

dk15 8 3 5 1440 10 556
128 500 1 8.9 12.0 2.7
64 300 11 30.8 3.7 36.7

ex4 14 6 9 1584 10.8 553
128 600 9 22.7 1.9 26.9
64 400 4 10.0 11.0 4.9

opus 10 5 6 1768 10.8 612
128 400 9 21.7 18.5 16.5
64 400 3 16.3 11.5 15.1

sse 16 7 7 2560 12.2 905
128 500 6 13.1 16.4 -2.5
64 300 5 18.7 16.3 15.0

ex1 20 9 19 4360 16 1439
128 200 10 32.5 20.0 22.2
64 200 4 -7.5 1.2 -8.0

s1 20 8 6 5112 16.6 1844
128 500 7 9.4 21.7 4.7
64 400 2 -2.4 3.1 -13.9

tbk 32 6 3 5352 19.6 1870
128 200 6 0.0 -0.01 -14.7
64 60 5 7.4 0.0 -4.2

styr 30 9 10 8408 22.2 3028
128 200 5 3.0 -11.7 -1.2
64 400 4 1.0 -13.7 -1.4

sand 32 11 9 9096 24.8 3128
128 400 5 3.3 0.0 -6.5
64 100 5 1.4 0.95 -3.5

planet 48 7 19 9784 21 3454
128 100 6 12.1 -2.9 7.9
64 600 3 -7.0 -16.7 -16.0

ram_test 72 16 24 9840 23.8 3563
128 600 4 -7.0 -10.1 -13.2
64 400 13 11.8 9.2 0.8

scf 121 27 56 12640 23.8 3705
128 400 15 17.3 10.1 6.5

According to (2), the probabilities of coincidence, Pc = 5.42
×10−20 and 2.49×10−39 for m = 64 and 128, respectively. The
false positive rate Pλ is determined empirically by applying 1000
randomly generated input code sequences of length N onto each
watermarked FSM at the watermarked starting state. None of the
output sequence was detected with a perfectly matched
watermark for each watermarked FSM, i.e., Pλ(τ = 1) = 0 for all
watermarked designs. It is thought to be reasonable that a
sufficiently low probability is adequate to prove the authorship
and make the denial attacks unsustainable. Hence, we reduce the
watermark correlation from 100% to 75% match. It was found
that for τ = 0.75, Pλ = 0 for all the watermarked designs. When τ
is reduced to 0.7, only a small number of watermarked designs
has Pλ > 0. Based on these results, it is reasonable to assume that
when more than three quarters of watermark bits are matched,
the authorship proof is still veracious.

We used the SIS tool and the same technology library to
synthesize the designs watermarked by the method in [14] and
compared their areas and delays with those of our proposed
(abbreviated as Prop.) FSM watermarking method in Table III.
∆A, ∆D and ∆P are the percentage reductions of area, delay and
power, respectively, of our proposed scheme over those of [14].
It is evident that most designs watermarked by our method have
lower area, timing and power overheads.

TABLE III COMPARISON WITH FSM WATERMARKING METHOD IN [14]

Area Delay Power
circuit m

[14] Prop. ∆A [14] Prop. ∆D [14] Prop. ∆P
64 1064 856 19.6 7.8 7.4 5.1 411 288 30

s27
128 1064 856 19.6 7.8 7.4 5.1 411 288 30
64 3680 1984 46.1 15.8 11.8 25.3 1314 712 45.8

s208
128 5248 1992 62.0 19.8 11.8 40.4 1968 741 62.3
64 3976 3032 23.7 17.8 14.0 12.5 1257 923. 26.6

s386
128 4592 3080 32.9 16.2 14.4 11.1 1479 970 34.4
64 6256 5656 9.6 21.0 20.2 3.8 1939 1826 5.83

s832
128 6904 6080 11.9 21.6 19.0 12.0 2026 1991 1.73
64 7272 5888 19.0 21.2 17.8 16.0 2641 2077 21.4

s510
128 7816 6272 19.8 19.4 17.8 8.2 2805 2226 20.6
64 6208 5504 11.3 20.6 19.6 4.9 1944 1727 11.2

s820
128 7352 6344 47.0 21.4 20.0 6.5 2183 2025 7.24
64 12032 10864 9.7 23.2 24.2 -4.3 3877 3758 3.07

s1488
128 14120 11168 20.9 25.6 23.4 8.6 4399 3825 13.0
64 12488 10856 13.1 29.0 24.2 16.6 4166 3503 15.9

s1494
128 12816 11808 7.9 25.2 24.4 3.2 4143 3912 5.58
64 2512 1208 51.9 13.2 9.2 30.3 888 412 53.6

bbara
128 2512 1304 48.1 13.2 10.2 22.7 888 439 50.6
64 2104 1448 31.2 11.6 10.4 10.3 738 581 21.3

dk15
128 2504 1568 37.4 13.6 11.2 17.6 946 571 39.6
64 2104 2072 1.5 11.4 11.2 1.8 756 756 0.0

ex4
128 3008 1944 35.4 13.0 11.0 15.4 1077 702 34.8
64 4216 2976 29.4 15.4 13.6 11.7 1474 1041 29.4

sse
128 4496 2896 35.6 15.2 14.2 6.6 1460 882 39.6
64 5632 5176 8.1 16.0 18.6 -16.3 1764 1654 6.24

ex1
128 6056 5776 4.6 18.4 19.2 -4.3 1880 1758 6.49
64 5760 4728 17.9 16.8 16.8 0.0 2109 1695 19.6

s1
128 7376 5592 24.2 19.6 20.2 -3.1 2675 1935 27.7
64 8944 9184 -2.68 20.4 21.4 4.9 3013 3086 2.37

sand
128 10952 9392 14.2 21.6 24.8 -14.8 3674 2925 20.4
64 11552 9920 16.5 22.6 21.2 6.2 3787 3332 12.0

planet
128 11712 10968 6.35 25.2 20.4 19.0 4064 3725 8.34
64 9240 9032 2.25 25.0 22.2 11.2 3014 2900 3.78

styr
128 10216 8656 15.3 24.2 19.6 19.0 3407 2992 12.2
64 13568 14128 -4.1 24.4 26 -6.6 3679 3733 -1.5

scf
128 13880 14824 -6.8 22.8 26.2 -14.9 3625 3945 -8.8

11

We also compared our watermarking method with Oliveira’s
[12] FSM watermarking scheme in Table IV. As the same
synthesis tool and technology library were used, the area and
delay results are excerpted from [12] for those circuits provided
with both BLIF and KISS2 formats in the benchmark suite and
have comparable literal counts in their original designs before
watermarking. In Table IV, the area is measured in terms of the
number of literals to be consistent with [12]. All designs
watermarked by our method have consistently lower area and
timing overheads than [12]. It should also be noted that the
watermarking method of [12] does not survive the state
reduction operation (cf. III.B.3).

 TABLE IV COMPARISON WITH FSM WATERMARKING METHOD IN [12]

Area Delay
Circuit M

[12] proposed ∆A (%) [12] proposed ∆D (%)
64 297 51 82.8 21.8 7.4 66.1

s27
128 541 51 90.6 25.4 7.4 70.9
64 308 164 46.8 15.6 11.8 24.4

s208
128 441 170 61.5 19.8 11.8 40.4
64 444 248 44.1 17.8 14.0 21.3

s386
128 644 258 59.9 23.0 14.4 37.4
64 879 247 71.9 34.6 13.4 61.3

s499
128 1230 308 75.0 39.6 16.4 58.6
64 680 486 28.5 22.2 20.2 9.0

s832
128 804 518 35.6 24.4 19.0 22.1
64 581 512 11.9 20.6 17.8 13.6

s510
128 688 545 20.8 21.0 17.8 15.2
64 669 463 30.8 26.4 19.6 25.8

s820
128 814 539 33.8 24.0 20.0 16.7
64 1318 968 26.6 33.4 24.2 27.5

s1488
128 1495 981 34.4 31.0 23.4 24.5
64 1329 945 28.9 32.8 24.2 26.2

s1494
128 1547 1050 32.1 31.4 24.4 22.3

In Table V, we also compare our FSM watermarking method

with the FSM watermarking method [13]. For consistency, the
designs are watermarked with the same length of watermark as
[13] and synthesized using the same MSU script [23] from SIS.
The watermark length “m” used by [13] is design dependent and
can be determined by the product of the number of output
variables |∆| of the watermarked design and the minimum
number of watermarked transitions nmin needed to satisfy the
required probability of coincidence (Pu in [13]). It is evident that
our method incurs lower area overhead than [13] for the same
constraint on the watermark robustness. Note here that no delay
statistics are provided in [13] to compare with.

TABLE V COMPARISON WITH FSM WATERMARKING METHOD IN [13]

Area
Circuit m

[13] proposed ∆A (%)
s27 36 1.53k 0.62k 59.5

bbara 30 2.01k 1.05k 47.8
dk14 35 1.84k 1.74k 5.4
styr 40 10.69k 7.54k 29.5

bbsse 70 2.62k 2.46k 6.1
cse 35 4.08k 3.62k 11.3
sse 21 2.43k 2.34k 3.7
ex1 76 5.55k 4.38k 21.1
ex1 38 5.40k 4.06k 24.8
scf 112 21.02k 14.4k 31.5

As SIS tool can only read STG in KISS2 format, to show the
applicability of our method on large designs, we use GenFSM
[28] to generate ten arbitrary STGs of hundreds to thousands of
transitions for experimentation by specifying the number of
inputs/outputs and states. These FSMs can all be watermarked
by the proposed method within one second. The synthesis results
are shown in Table VI, where the column “T” is the number of
transitions of the generated FSM. The largest design has an area
of 47721 literals which is much larger than the largest design in
[12], which has only 19258 literals. On average, for the128-bit
watermark, the area increases by 0.16%, and the delay and
power decreases by 2.1% and 0.4%, respectively.

TABLE VI STATISTICS OF WATERMARKING ON FSMS GENERATED BY

GENFSM

FSM n k |Q| T A D P m ∆A ∆D ∆P
64 -0.0 17.0 -3.8

F1 5 10 10 320 2415 35.2 4456
128 -0.6 5.1 -5.6
64 2.3 3.2 0.18

F2 5 10 14 448 3063 37 6022
128 0.8 2.16 -0.25
64 1.25 -5.57 -1.30

F3 3 8 80 640 3990 68.2 5217
128 0.10 -17.6 -3.05
64 -0.62 -8.05 8.14

F4 3 7 100 800 4552 69.6 5983
128 1.10 -8.3 7.24
64 -1.18 -2.79 -1.38

F5 3 7 200 1600 8875 43 11054
128 0.7 -5.12 -0.62
64 0.03 -0.5 -2.05

F6 3 6 300 2400 11625 40.2 13826
128 -0.66 0.5 -1.5
64 0.79 -0.44 -1.51

F7 3 6 350 2800 13249 45.4 15516
128 0.34 1.32 -1.64
64 -0.32 -2.3 0.14

F8 3 5 400 3200 14275 44 16290
128 -0.29 -2.3 0.84
64 0.12 1.98 -0.31

F9 4 5 500 8000 38388 100.8 39845
128 -0.02 2.18 0.11
64 0.31 -4.31 1.07

F10 4 5 600 9600 47721 102 46751
128 0.24 1.18 0.11

VI. CONCLUSIONS

This paper presents a new robust dynamic watermarking
scheme by embedding the authorship information on the
transitions of STG at the behavioral synthesis level. The
proposed method offers a high degree of tamper resistance and
provides an easy and noninvasive copy detection. The FSM
watermark is highly resilient to all conceivable watermark
removal attacks. The redundancy in the FSM has been
effectively utilized to minimize the embedding overhead. By
increasing the length of input code sequence for watermark
retrieval and allowing the output compatible transitions to be
revisited to embed different watermark bits, the watermarks are
more randomly dispersed and better concealed in the existing
transitions of FSM. The new approach to the logic state
assignments of pseudo input variables also makes it infeasible to
attack the watermarked FSM by removing the pseudo inputs.
Without compromising the watermark strength, the length of
verification code sequence can be adapted to reduce the area
overhead of watermarked design to a reasonable bound within a
preset number of iterations. Our experimental results show that
the watermarking incurs acceptably low performance overheads
and possesses very low possibility of coincidence and false
positive rate.

Similar to other FSM watermarking schemes [12]-[14], this
method is not applicable to some ultra high speed designs that do

12

not have an FSM. Fortunately, regular sequential functions are
omnipresent in industrial designs [13], making FSM
watermarking a key research focus for dynamic
watermarking. One recommendation to overcome such
limitation is to augment it with combinational watermarking
scheme [5] applied simultaneously or on different levels of
design abstraction to realize hierarchical watermarking [9], [10].
The watermarked FSM can be fortified by a scan chain
watermarking [16], [17] to enable the authorship to be easily
verified even after the protected IP has been packaged. While the
robustness of the authorship proof lies mainly on the
watermarked FSM, the auxiliary post-synthesis scan-chain
reordering serves as an intruder-alert for the misappropriation of
sequential design under test and increases the effort level
required to successfully forge a testable IP without being
detected. Even if the scan chain is removed or deranged by the
aggressor, the more robust FSM watermark remains intact and
detectable on chip.

REFERENCES
[1] Intellectual Property Protection Development Working Group, Intellectual
Property Protection: Schemes, Alternatives and Discussion. VSI Alliance, White
Paper, Version 1.1, August 2001.

[2] I. Hong and M. Potkonjak, “Techniques for intellectual property protection
of DSP designs,” Proc. IEEE Int. Conf. Acoustics, Speech, and Signal
Processing, Seattle, Washington, USA, vol.5, May 1998, pp. 3133-3136.

[3] A. T. Abdel-Hamid, S. Tahar, and E. M. Aboulhamid, “A survey on IP
watermarking techniques,” Design Automation for Embedded Systems, vol. 10,
Springer Verlag, July 2005, pp. 1-17.

[4] D. Kirovski, Y. Y. Hwang, M. Potkonjak and J. Cong, “Protecting
combinational logic synthesis solutions,” IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Syst., vol. 25, no. 12, Dec. 2006, pp.
2687-2696.

[5] A. Cui, C. H. Chang and S. Tahar, “IP watermarking using incremental
technology mapping at logic synthesis level,” IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Syst., vol. 27, no. 9, Sept. 2008, pp.
1565-1570.

[6] A. Cui and C. H. Chang, “Stego-signature at logic synthesis level for digital
design IP protection,” Proc. IEEE Int. Symp. on Circuits and Syst., Kos, Greece,
May 2006, pp. 4611-4614.

[7] A. Cui, C. H. Chang, “Watermarking for IP Protection through Template
Substitution at Logic Synthesis Level,” Proc. IEEE Int. Symp. on Circuits and
Syst., New Orleans, USA, May 2007, pp. 3687-3690.

[8] A. B. Kahng, J. Lach, W. H. Mangione-Smith, S. Mantik, I. L. Markov, M.
Potkonjak, P. Tucker, H. Wang and G. Wolfe, “Constraint-based watermarking
techniques for design IP protection,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Syst., vol. 20, no. 10, Oct. 2001, pp. 1236-1252.

[9] H. J. Kim, W. H. Mangione-Smith, and M. Potkonjak,“Protecting
ownership rights of a lossless image coder through hierarchical watermarking,”
Workshop on Signal Processing Systems, Cambridge, Massachusetts, USA, Oct.
1998, pp. 73-82.

[10] A. Rashid, J. Asher, W. H. Mangione-Smith, and M. Potkonjak,
“Hierarchical watermarking for protection of DSP filter cores,” in Proceedings
IEEE Custom Integrated Circuits Conference, New York, USA, May 1999, pp.
39-42.

[11] A. L. Oliveira, “Robust techniques for watermarking sequential circuit
designs,” Proc. IEEE/ACM Design Automation Conf., New Orleans, Louisiana,
USA, June 1999, pp. 837-842.

[12] A. L. Oliveira, “Techniques for the creation of digital watermarks in
sequential circuit designs,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Syst., vol. 20, no. 9, Sept. 2001, pp. 1101-1117.

[13] I. Torunoglu and E. Charbon, “Watermarking-based copyright protection
of sequential functions,” IEEE Journal of Solid-State Circuits, vol. 35, no. 3, Feb.
2000, pp. 434-440.

[14] A. T. Abdel-Hamid, S. Tahar and E. M. Aboulhamid, “A public-key
watermarking technique for IP designs,” Proc. Design, Automation and Test in
Europe, vol. 1, Munich, Germany, Mar. 2005, pp. 330-335.

[15] A. Cui and C. H. Chang, “Intellectual property authentication by
watermarking scan chain in design-for-testability flow,” in Proc. IEEE Int.
Symp. on Circuits and Syst., Seattle, USA, May 2008, pp. 2645-2648.

[16] A. Cui and C. H. Chang, “An improved publicly detectable watermarking
scheme based on scan chain ordering,” in Proc. IEEE Int. Symp. on Circuits and
Syst., Taipei, Taiwan, May 2009, pp. 29-32.

[17] C. H. Chang and A. Cui, “Synthesis-for-Testability Watermarking for
Field Authentication of VLSI Intellectual Property,” IEEE Trans. on Circuits
and Systems-I, vol. 57, no. 7, July 2010, pp. 1618-1630.

[18] J.-K. Rho, G. D. Hachtel, F. Somenzi and R. M. Jacoby, “Exact and
heuristic algorithms for the minimization of incompletely specified state
machines,” IEEE Trans.on Computer-Aided Design of Integrated Circuits and
Syst., vol. 13, no. 2, Feb. 1994, pp. 167–177.

[19] J. M. Pena and A. L. Oliveira, “A new algorithm for exact reduction of
incompletely specified finite state machines,” IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Syst., vol. 18, no. 11, Nov. 1999, pp. 1619 –
1632.

[20] T. Kam, T. Villa, R. Brayton and A. Sangiovanni-Vincentelli, “A fully
implicit algorithm for exact state minimization,” Proc. ACM/IEEE Design
Automation Conference, Piscataway, New Jersey, USA, June, 1994, pp.
684–690.

[21] A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied
Cryptography. CRC Press, 1996.

[22] G. De Micheli, Synthesis and Optimization of Digital Circuits. McGraw-
Hill, 1994.

[23] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton and A,
Sangiovanni-Vincentelli, “Sequential circuit design using synthesis and
optimization,” Proc. IEEE International Conference on Computer Design: VLSI
in Computers and Processors, Cambridge, MA, USA, Oct. 1992, pp. 328 – 333.

[24] R. K. Ranjan, V. Singhal, F. Somenzi and R. K. Brayton, “On the
optimization power of retiming and resynthesis transformations,” Proc.
IEEE/ACM International Conference on Computer-Aided Design, Nov 1998,
San Jose, California, USA, pp. 402 – 407.

[25] D. Chen, M. Sarrafzadeh and G. K. H. Yeap, “State encoding of finite state
machines for low power design,” Proc. IEEE Int. Symp. on Circuits and Syst.,
Seattle, Washington, USA, April 1995, pp. 2309 - 2312.

[26] T. Kam, T. Villa, R. Brayton and A. Sangiovanni-Vincentelli, Synthesis of
FSMs: Functional Optimization. Kluwer Academic Publishers, The Netherlands,
1997.

[27] R. J. Kyung, G. D. Hachtel, F. Somenzi and R. M. Jacoby, “Exact and
heuristic algorithms for the minimization of incompletely specified state
machines,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Syst., vol. 13, no. 2, Feb. 1994, pp. 167 – 177.

[28] C. Pruteanu, C. Haba, “GenFSM, a Finite State Machine Generation Tool”,
in Proc. 9th International Conference on Development and Application Systems,
Suceava, Romania, May 22-24, 2008, pp. 165-168.

 Aijiao Cui (S’06-M’10) received her B.Eng.
degree and M.Eng. degree in Electronics from
Beijing Normal University, Beijing, China, in
2000 and 2003, respectively, and her PhD degree
in Electrical and Electronic Engineering from
Nanyang Technological University, Singapore in
2009. From July 2003 to December 2004, she
was a lecturer in Beijing Jiaotong University. She
worked as a Research Fellow in Peking
University ShenZhen SOC Lab, China from 2009
to 2010 before her current appointment as
Assistant Professor in Harbin Institute of

Technology Shenzhen Graduate School since August 2010. Her current research
interests include digital watermarking techniques for IP protection and
Design-for-Testability techniques.

13

 Chip-Hong Chang (S’92–M’98–SM’03)
received his B.Eng. (Hons) from National
University of Singapore in 1989, and his M.Eng.
and Ph.D. from Nanyang Technological
University (NTU), Singapore in 1993 and 1998,
respectively. He served as Technical Consultant
in industry prior to joining the School of
Electrical and Electronic Engineering, NTU in
1999, where he is now an Associate Professor.
He holds joint appointments at the university as
Assistant Chair of Alumni, School of EEE since
June 2008, Deputy Director of the Centre for

High Performance Embedded Systems (CHiPES) since 2000 and Program
Director of the Centre for Integrated Circuits and Systems (CICS) from
2003-2009. His current research interests include low power arithmetic circuits,
digital filter design, application specific digital signal processing, and digital
watermarking for IP protection. He has published three book chapters and more
than 150 research papers in refereed international journals and conferences. Dr.
Chang serves as the the Associate Editor of the IEEE Transactions on Circuits
and Systems-I since 2010, Editorial Advisory Board Member of the Open
Electrical and Electronic Engineering Journal since 2007, the Editorial Board
Member of Journal of Electrical and Computer Engineering since 2008, and the
Guest Editor for the special issue of the Journal of Circuits, Systems and
Computers in 2010. He also served in several international conference advisory
and technical program committee. His name has been listed in several
international biographical records, including the Marquis Who is Who in the
World, Who’s who in Science and Engineering, Dictionary of

International Biography, and the Charter Fellow of Advisory Directorate
International of the American Biographical Institute, Inc. He is a Fellow of the
IET.

Sofiène Tahar (M’96-SM’07) received the
Diploma degree in computer engineering from
the University of Darmstadt, Germany, in 1990,
and the Ph.D. degree with distinction in computer
science from the University of Karlsruhe,
Germany, in 1994. Currently, he is a Professor
and Research Chair in Formal Verification of
System-on-Chip at the Department of Electrical
and Computer Engineering, Concordia
University, Montreal, QC, Canada. He has made
contributions and published papers in the areas of
formal hardware verification, system-on-chip

verification, analog and mixed signal circuits verification, and probabilistic,
statistical and reliability analysis of systems. Dr. Tahar is the founder and
director of the Hardware Verification Group at Concordia University. In 2007,
he was named University Research Fellow upon receiving Concordia
University’s Senior Research Award. Dr. Tahar is a Professional Engineer in the
Province of Quebec. He has been organizing and involved in program
committees of various international conferences in the areas of formal methods
and design automation.

Amr T. Abdel-Hamid (S’95-M’05) received his
bachelor of Communications and Electronics
Engineering from the Faculty of Engineering,
Cairo University, Egypt, in 1997, his MaSc. and
Ph.D. degrees from Faculty of Electrical and
Computer Engineering, Concordia University,
Montreal, Canada in 2001, and 2006 respectively.
Currently, he is an Assistant Professor at the
German University in Cairo, Egypt, since
2006. He has made contributions and published
papers in the areas of formal hardware
verification, system-on-chip verification, IP

watermarking, Protocol Verification, Mobile and Social Network Applications.

