
DOMAIN RESTRICTION BASED FORMAL MODEL FOR FIREWALL
CONFIGURATIONS

Amjad Gawanmeh Sofiène Tahar

Khalifa University Concordia University
Sharjah Campus, PO.Box 573 Sharjah, UAE Montreal, Quebec, H3G 1M8 Canada

amjad.gawanmeh@kustar.ac.ae tahar@ece.concordia.ca

ABSTRACT

Firewalls are widely adopted for protecting private
networks by filtering out undesired network traffic in and
out of secured networks. Therefore, they play an impor-
tant role in the security of communication systems. The
verification of firewalls is a great challenge because of
the dynamic characteristics of their operation, their con-
figuration is highly error prone, and finally, they are con-
sidered the first defense to secure networks against at-
tacks and unauthorized access. In this paper, we present
a formal model for firewalls rulebase using domain re-
striction method, and based on this model, a novel algo-
rithm for detecting and identifying conflicts in firewalls
rulebase. The algorithm is based on calculating the con-
flict set of firewall configurations using the domain re-
striction. The domain restriction method is implemented
using Event-B formal techniques, where we model fire-
wall configuration rules, and then use invariant checking
to verify the consistency of firewall configurations.

1. INTRODUCTION

Firewalls [1] are part of network security that were de-
signed to enable secure connections between private and
outside networks. With the growing complexity of com-
puter networks, security has become a crucial issue. Fire-
walls are part of network security that were designed
to enable secure connections between private networks
and outside networks, the growing complexity of net-
works made them indispensable to control information
flow within a network. Therefore, they are widely adopted
for protecting private networks by filtering out undesired
network traffic in and out of the secured network. There-
fore, firewalls are the front defense for secure networks
against attacks.

Protection provided by a firewall directly depends on
the quality of its configuration and the consistency of
its rulebase. Firewall configurations and maintenance of

their rulebase is highly error prone, therefore solutions
are needed in order to verify their correctness. A firewall
policy error either creates security holes that will allow
malicious traffic to sneak into a private network or block
legitimate traffic and disrupt normal operation, which in
turn could lead to undesired consequences. Therefore the
central role of firewalls in the security of networks make
their verification a critical task.

Testing and verification of firewalls is a great chal-
lenge because of the dynamic characteristics of their op-
eration, their configuration is highly error prone, and fi-
nally, they are considered the first defense to secure net-
works against attacks and unauthorized access. In addi-
tion, firewalls can be used extensively before it turns out
that they are vulnerable to attacks, even though they re-
ceive intensive analysis, and are thought to be correct.
Most firewall operations depend on an existing sequence
of rules, which is intentionally made dynamic in order to
eliminate certain denial of service (DoS) attacks. There-
fore, it is essential to detect conflicting rules in firewalls
configurations, and at the same time be able to decide if
they conform to the security requirement of the firewall.

Formal methods [2] are based on using mathemati-
cal reasoning to verify that design specifications compre-
hend certain design requirements. Formal methods have
been successfully used for the precise analysis of a vari-
ety of hardware and software systems [3]. In this paper
we present a formal model for analyzing firewall con-
figurations in order to show that they are correctly im-
plemented. Our method for verification of firewall con-
figuration rules is based on domain restriction method.
First, a formal model for firewall configuration rules is
defined, then, domain restriction operations are defined
on this model. Finally, an algorithm is established us-
ing these operations to formally verify the consistency of
the configuration rules. For illustration purposes, we use
the Event-B [4] formal method in order to apply our ap-
proach on a firewall example, where we model firewall

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/211516615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


rules in Event-B, then define an appropriate invariant to
check consistency in firewall rules.

This paper extends the previous work in [5] by propos-
ing a formal model for firewalls rulebase and an algo-
rithm for the verification of firewalls rulebase that can
efficiently detect conflicts in firewall rules. In [5], we
presented the domain restriction method implemented in
Event-B [4], while in this work, the algorithm is based on
formally calculating the conflict set for a given firewall
rulebase. In addition, the algorithm can verify rulebase
consistency, and identify conflicting rules, if they exist.

The rest of the paper is organized as follows. Section
2 discusses related work. In Section 3, we present a for-
mal model for firewall configurations and rules. Section
4 presents the domain restriction method and an algo-
rithm for the verification of firewall configurations. In
Section 5, we present an implementation of the domain
restriction method in Event-B, and illustrate it on a fire-
wall example. Finally, Section 6 concludes the paper
with open issues and future work directions.

2. RELATED WORK

In this section we discuss related work on using formal
methods for the verification of firewalls and their config-
urations. Abbes et al. [6] proposed a method to detect
overlaps between packet filters within one firewall, they
classify rules based on the conditions of each filtering
rule to separate non-overlapping rules. Ben Youssef et
al. [7] proposed a method for checking whether a firewall
reacts correctly with respect to a security policy given in
an high level declarative language. The method is imple-
mented in satisfiability solver modulo theories (SMT).
These works are limited to the problem of conflict avoid-
ance, and do not consider verifying whether a firewall
reacts correctly with respect to a given security policy.

In another approach, Brucker et al. [8] presented a
case study to model firewalls and their policies in higher-
order logic (HOL) throughout a set of derived theories
for simplifying policies. Matoušek et al. [9] introduced
a formal method approach for the verification of secu-
rity constraints on networks with dynamic routing proto-
cols in use. Cuppens et al. [10] proposed an automatic
process generating firewall rules from an abstract speci-
fication of a security policy. However, the validity of the
translations was not proved and the obtained results are
not proved to be conflict free.

Yuan et al. [11] introduced FIREMAN, a static anal-
ysis toolkit for firewall modeling and analysis that treats
firewall configurations as specialized programs and ap-
plies static analysis techniques to check problems of con-
figurations, such as policy violations, inconsistencies, and

inefficiencies in firewalls. The tool performs symbolic
model checking of the firewall configurations and is im-
plemented using binary decision diagrams (BDDs), this
approach is based on propositional logic, which has lim-
itations in terms of langauge expressiveness and model
size. In another work, Matoušek et al. [9] introduced a
formal method approach for the verification of security
constraints on networks with dynamic routing protocols
in use. We believe a formal model that captures the de-
tails of firewall rulebases is necessary prior to the defini-
tion of an effecting algorithm in this particular case.

Acharya and Gouda [12] proposed a verification al-
gorithm that takes a firewall F and a property R, and de-
termines whether or not F satisfies R. Kotenko and Pol-
ubelova [13] used Promela for detecting anomalies in the
specification of a security policy of computer networks
with model checking. The method is implemented in
the SPIN model checker. Liu [14] verifies in his work
whether a firewall policy satisfies a given property. The
method is based on showing that a property about rules
does not conflict with any rule defined by a decision path
of the firewall decision diagram. Jeffery and Samak [15]
used SAT (Satisfiability) solvers for the model analysis of
reachability and cyclicity properties of interest in firewall
policies. The model for network configurations is based
on a single firewall model and is shown to be efficient
compared to BDD based approaches. The use of model
checking has the problem of state space explosion, spe-
cially for a large number of firewall rules. These meth-
ods require a high level of abstraction in order to avoid
the state space explosion problem, in addition, manual
encoding of firewall policy rules in languages such as
Promela is tedious and time consuming.

Most of above approaches only check for conflicts
between rules which is obtained by inspecting certain
fields in the policy, rather than checking them in the rule-
base, in addition, they consider only firewall policies at a
high level of abstraction. They also ignore the dynamic
update of these rules, and do not consider the sequence at
which these rules are inspected. Therefore the verifica-
tion of firewalls rulebase, considering their dynamic se-
quence, is essential and have not been yet explored thor-
oughly. This paper will address this issue by presenting a
precise formal model and an algorithm that can automati-
cally detect conflicts in firewalls rulebase. The algorithm
is based on the simplicity of calculating the conflict set,
and therefore, will be efficient once implemented. In ad-
dition, most formally related work verifies firewall rule-
base with regard to the security policy, while in this work,
we are concerned about the consistency of the rulebase.
We believe first-order theorem proving will be more effi-
cient in this particular case.



3. A FORMAL MODEL FOR FIREWALLS
RULEBASE

In this section we present our formal model for firewall
configurations, where we formally define components and
relations in firewalls, then our verification methods based
on this model. Firewalls [1] are network elements that
control packets in a secured network based on a set of
rules. These rules define the actions performed by the
firewall based on certain configured filtering conditions.
Firewall rules filter traffic based on protocol type, port
used, or source and destination IP addresses. Firewall ac-
tions are either to accept, or deny. The first allows pack-
ets to pass through, while the second blocks them. Rules
are examined in sequence, the packet is accepted or de-
nied by a specific rule if it matches the required network
addressing fields of this rule. Otherwise, the following
rule is examined until a matching rules is found. In case
no rule is found, a default policy action can be performed.

In order to provide a formal and precise model for the
above description, we will use first-order logic that al-
lows reasoning about firewall operations and primitives,
while at the same time, they can be implemented directly
in supporting verification methods such as Event-B.

We assume a finite domain containing the possible
network addresses pairs in a firewall rulebase ⟨s, d⟩, i.e.,
source and destination, where either s or d can be empty.
Let N be the set of possible network address pairs for
packets incoming to and outgoing from a network such
that ⟨s, d⟩ ∈ N . We define two sets based on N , the
first, Ns, is for source addresses, and the second, Nd, is
for destination addresses. N is an abstract set that will
be refined in order to represent actual network addresses,
it can be refined further to represent protocol type or port
numbers in IP network addressing. Let A be the abstract
set of all possible actions that a firewall can perform, this
set can be defined as follows: A = {accept, deny}.
We define every firewall rule to be a mapping relation
from an address pair in N into an action in A, formally,
r = n 7→ a, where n ∈ N , a ∈ A and 7→ is a mapping
relation from addresses to actions that maps one element
in N to an element in A. n may contain either source
or destination or both. We use source(r) and dest(r) to
denote the address that appears in rule r. We define R to
be the set firewall rules such that R = N ×A, therefore,
r ∈ R. We use source(r) and dest(r) to denote the
address that appears in rule r.

A firewall rulebase, denoted as R is a finite set of
rules: {r1, r2, . . . rn} that are inspected in a specific or-
der by the firewall, such that R ⊂ R. A firewall is con-
figured so that R is inspected in an arbitrary order. A
firewall configuration, F , is an ordered sequence of rules

in the form: F = r1, r2, . . . , rn such that r1 ∈ R ∧ r2 ∈
R ∧ . . . rn ∈ R. We use R(F) to denote R for a given
firewall configuration F .

For a given firewall rulebase with a set of rules, a
packet with a source address, a destination address, or
both, is checked by inspecting the rules in sequence. The
basic principle of firewalls operation states that the order
in which rules are inspected should not affect the result.
F ′ is an arbitrary firewall configuration for F if the fol-
lowing conditions are satisfied:

• Every rule in F is also in F ′ and every rule in F ′

is also in F : ∀ri ·ri ∈ R(F) ⇒ ri ∈ R(F ′)∧ri ∈
R(F ′) ⇒ ri ∈ R(F),

• There are at least two rules that are inspected in
different order: F ̸= F ′

∃i, j · ri ∈ F ∧ rj ∈ F ′ ∧ i ̸= j ∧ (ri = rj)

A conflict set, CS , is a set of all rules that satisfy the
following conditions:

• ∀r · r ∈ CS ⇒ r ∈ R(F), and consequently r ∈
R(F ′),

• ∃n · n ∈ N ∧ n =< source(r), dest(r) >,

• ∃r′ · r′ ∈ R(F) ∧ r′ ̸= r ∧ n =

< source(r′), dest(r′) >

A given firewall configuration is considered consis-
tent if there are no conflicts in its rules. The inconsistency
occurs when two different rules match the packet being
inspected, and each rule gives a different action. The
consistency property is denoted as ϕ. If a given firewall
configuration is consistent then we can write: ϕ |= F .

The domain of firewall configuration rules, D, is de-
fined as:
D(F) = {n|n ∈ N ∧ ∃a, r · (a ∈ A ∧ r ∈ R(F) ∧ r =
n 7→ a)}

Furthermore, two domains can be defined for source
and destination addresses, Ns and Nd, respectively, as:
Ds(F) =
{s|n = ⟨s, d⟩ ∧n ∈ N ∧ s ∈ Ns ∧ d ∈ Nd ∧∃a, r · (a ∈
A ∧ r ∈ R(F) ∧ r = n 7→ a)}
Dd(F) =
{d|n = ⟨s, d⟩ ∧n ∈ N ∧ s ∈ Ns ∧ d ∈ Nd ∧∃a, r · (a ∈
A ∧ r ∈ R(F) ∧ r = n 7→ a)}

Similarly, the configuration co-domain, C, can be de-
fined as:
C(F) = {a|a ∈ A ∧ ∃n, r · (n ∈ N ∧ r ∈ R(F) ∧ r =
n 7→ a)}



4. VERIFICATION OF FIREWALL RULES
USING DOMAIN RESTRICTION

In this section we define the domain restriction method
based on the above firewall rules mode. We first define
domain restriction, then introduce an algorithm to detect
conflicts in fierwall rules, and finally, we illustrate the
algorithm on a firewall rulebase example.

4.1. Domain Restriction Method

Domain restriction is applied on firewall rulebase in or-
der to obtain a subset of R(F). The operators � and �

are used to represent domain restriction and co-domain
restriction over a set of firewall rules, respectively. First,
we formally define domain restriction based on a set of
network address pairs, then we refine this definition fur-
ther for source and destination addresses.

Domain restriction is defined using the operator �

over a set of network addresses, N , where N ∈ P(D(F)),
and a set of firewall rules R(F) as follows:

N �R(F) =
{n 7→ a|n ∈ N ∧ a ∈ A ∧ ∃r · (r ∈ R(F) ∧ r =

n 7→ a)}
Domain restriction of firewall configurations network

source and destination addresses, Ns and Nd, where Ns ∈
P(Ds(C)) and Nd ∈ P(Dd(C)), is defined respectively
as:

Ns � R(F) = {n 7→ a|n ∈ N ∧ a ∈ A ∧ ∃r · (r ∈
R(F) ∧ ∃d · (d ∈ Dd ∧ n = ⟨s, d⟩ ∧ r = n 7→ a))}
Nd � R(F) = {n 7→ a|n ∈ N ∧ a ∈ A ∧ ∃r · (r ∈
R(F) ∧ ∃s · (s ∈ Ds ∧ n = ⟨s, d⟩ ∧ r = n 7→ a))}

Co-domain restriction is defined for a chosen set of
actions A ∈ P(A), the operator ◃ is used to represent
this operation, which is formally defined as follows:

A ◃ R(F) = {n 7→ a|n ∈ N ∧ a ∈ A ∧ ∃r · (r ∈
R(F) ∧ r = n 7→ a))}

4.2. Detecting Conflicts in Firewall Rules

In order to efficiently use domain restriction operations,
we introduce an algorithm that generates a conflict set
for a given firewall configuration F , then based on this
conflict set, this configuration can be verified to be con-
sistent. Since a domain restriction operation is closed
under N , Ns and Nd, the consistency of F can be de-
fined based on the conflict set that is obtained using these
operators. In addition N � R(F), Ns � R(F), and
Nd � R(F) obtain the same set, namely, R(F). Simi-
larly, co-domain restriction is closed under A. This prop-

erty helps in the definition of the properties of the algo-
rithm we propose here.

We divide our algorithm into two steps, the first is
used to model consistency of firewall configurations based
on the concept of conflict set and is shown below in Al-
gorithm 1.

Algorithm 1 Detecting Conflicts in Firewall Configura-
tions

Input: Firewall Configuration F
Output: Consistency of F : ϕ |= F
Calculate Conflict Set for F : CS using Algorithm 2
if CS = ∅ then

ϕ ⊢ F
else

ϕ 0 F
end if

Algorithm 2 Calculating Conflict Set
Input: Firewall Configuration F
Output: Conflict Set: CS
Initialize:

CS = ∅
Aa = {accept}
Ad = {deny}

REPEAT
• Chose rule ri ∈ R(F) and obtain network addresses for ri

ns = source(ri)
nd = dest(ri)

• Apply domain restriction:
Rs = ns �R(F) ; Source address
Rd = nd �R(F) ; Destination address

• Apply co-domain restriction:
Rsa = Aa �Rs ; Accept action
Rda = Aa �Rd

Rsd = Ad �Rs ; Deny action
Rdd = Ad �Rd

• Check for conflicts for ri :
if Rsa ̸= ∅ ∧Rsd ̸= ∅ then

CS = CS
∪
{ri}

else
No conflict for source address

end if
if Rda ̸= ∅ ∧Rdd ̸= ∅ then

CS = CS
∪
{ri}

else
No conflict for destination address

end if
R(F) = R(F)− {ri}

UNTIL R(F) = ∅
END

The second step is used to calculate the conflict set,
CS , of a given firewall configuration F , or alternatively,
a firewall rulebase R(F). The algorithm works by in-
specting all rules in R(F) and obtaining source and des-
tination addresses for every rule, then two simple sets of
actions Aa = {accept} and Ad = {deny} are defined.
Then we calculate the set of rules that occur in the do-



main of this network address for the source, Rs, and an-
other for the destination, Rd, by applying the domain re-
striction method: Rs = Ns�R and Rd = Nd�R. Next,
we calculate two sets of rules using co-domain restriction
for Aa and Ad by applying co-domain restriction opera-
tors on the calculated sets Rs and Rd as follows:

Rsa = Aa �Rs

Rsd = Ad �Rs

Rda = Aa �Rd

Rdd = Ad �Rd

In the last step, we check for existing conflicts for
source and destination and update the conflict set. This
operation is repeated for all rules. The details of the al-
gorithm is given below in Algorithm 2.

The algorithm has n2 complexity, since domain re-
striction operators have a complexity of n, where n rep-
resents the number of rules. It is essential to show that the
algorithm, once applied on a finite number of rules will
terminate. Termination is constructed by observing the
behavior of each step in the algorithm, and showing that
one dependence is solved in every iteration, the space is
finite, and it is decreasing in every iteration, starting with
a set of rules, in every iteration of the algorithm this set
will be reduced to R(F) = R(F) − {ri}, and even-
tually, R′(F) becomes ∅, which is the precondition for
algorithm termination.

4.3. Firewall Rulebase Example

An example of a firewall rulebase is given below. The
firewall checks its rules when a packet arrives to its en-
try, the corresponding chain of rules decides if the packet
must be dropped or allowed to pass.

r1 = If source IP address = 10.*.*.*, DENY

r2 = If source IP address = 192.168.*.*,ACCEPT

r3 = If source IP address = 0.0.0.0, DENY

r4 = If source IP address = 10.1.*.* to
10.3.*.*, DENY

r5 = If source IP address = 60.40.*.*, ACCEPT

r6 = If source IP address = 1.2.3.4, DENY

r7 = If destination IP address = 60.47.3.9 AND
destination port=80 OR 443, ACCEPT

r8 = If destination IP address = 60.47.3.* AND
destination port= 21, ACCEPT

DENY ALL default rule

First we obtain F = r1, r2, . . . , r8, we first identify
the set of rules to be R(F) = {r1, r2, . . . , r8}. Apply-
ing the algorithm for the first iteration, ri = r1 means
that ns = 10. ∗ . ∗ .∗, and nd = null, applying do-
main restriction, Rs = {r1, r4}, Rd = ∅, then, apply-
ing co-domain restriction, Rsa = ∅, Rsd = {r1, r4},
Rda = ∅, and Rdd = ∅, and therefore CS = ∅, then
R(F) = {r2, . . . , r8}. We repeat the same procedure
for all rules, and CS will remain empty, which indicates
that there is no conflict in the above rulebase. Now we
consider that an additional rule r9 is added:

r9 = If source IP address = 10.40.*.*, ACCEPT

For the new rulebase, R(F) = {r1, r2, . . . , r9}. Ap-
plying Algorithm 2 and starting with ri = r1, we obtain
ns = 10. ∗ . ∗ .∗ and nd = null, then Rs = {r1, r4, r9},
Rd = ∅, next step, Rsa = {r9}, Rsd = {r1, r4}, Rda =
∅, and Rdd = ∅. Since Rsa ̸= ∅ ∧ Rsd ̸= ∅ then,
CS = {r1}, which indicates that this rule has conflict
with another one in the rulebase.

The above algorithm can be applied dynamically while
updating the rulebase. In this case the complexity of the
algorithm is reduced to linear for a newly added rule. The
algorithm can verify consistency of firewall rulebase, and
in addition, identify all the rules with conflicts if they oc-
cur.

5. CASE STUDY

In this section we present an implementation of the do-
main restriction method in Event-B, and illustrate it on a
firewall example. Many of the algorithm steps are inter-
nally executed by Event-B operators.

5.1. Event-B

Event-B [4] is a formal method for modeling guarded op-
erations. The Event-B method provides invariants proofs
for state- based systems that are updated by guarded events.
Event-B has been shown suitable to perform verification
of wide range of systems, but have not been explored for
checking properties over firewall configurations. Since
Event-B provides a library of operators for set theory op-
erations in first-order logic, we can use it efficiently for
the implementation of our method. On the other hand,
the Event-B language [16] allows modeling firewall spec-
ifications at different levels of abstraction.

In Event-B [4], the guard is a predicate built on state
variables while an action is a generalized substitution
that defines a state transition. A guard activates an event
when it evaluates to true. A descriptive specification de-
scribes what the system does by using a set of variables,



constants, properties over constants and invariants which
specify properties that the machines state verify.

The correctness of an event-B model is established
by proof obligations for the invariants, where each event,
including the initialization event, should preserve these
invariants. Event-B guards are used to define precondi-
tions that should hold before the event can be executed.
The guard and the action of an event defines a relation
between variables before the event holds and after. Proof
obligations are produced from events in order to state that
the invariant condition is preserved. These proof obliga-
tions need to be verified in order to proof the correctness
of the invariants.

The Rodin tool [17] is a theorem prover that is de-
signed to run automatically and use a large library of
mathematical rules, provided with the system, however,
interactive guidance from the user is required for certain
proof obligations. We use the Rodin platform in order
to define and implement two models for the firewall: an
abstract model at the network address level and a refined
model at the IP address level. In addition, the consistency
of firewalls configurations are defined as Event-B invari-
ants, and then are verified for the refined model by dis-
charging all the proof obligations generated by the tool.

5.2. Verification of Firewall Configurations

An example of a firewall is given in Figure 1, where
net a, net b, net c, and net d, along with their architec-
ture, in addition to the IP addresses are only illustrative.
The firewall contains filter rules. When a packet arrives
to its entry, the corresponding chain of rules decides if
the packet must be dropped or must continue its traver-
sal of the rules. The chain is made up of a list of rules.
When inspecting packets, chains use the following: the
source and destination network, the IP source address,
the IP destination address, the protocol, the source port
and the destination port.

net_c
net_d

net_b
net_a

 !"#$%&&

1.1.1.0 2.1.1.0

2.2.1.03.2.1.0

Host 

2.1.1.1

DNS

3.2.1.2

FTP

2.2.1.5

Fig. 1. A Firewall Controlling Traffic in a Network

We consider representing the network at different lev-
els of abstraction. With each refinement of the network,
we add more details about the address, and hence, we
obtain more concrete firewall rules. In order to illustrate
our verification method, we chose a network represented
by three zones controlled by a firewall whose initial con-
figuration corresponds to a given set of rules. For the
firewall controlled network given in Figure 1, will con-
sider the a security policy, which can be implemented in
a firewall configuration that is composed of a set of rules,
for instance, consider the following set of rules:

R1 : net a has the right to access net b.
R2 : net b has the right to access net c.
R3 : net c has no right to access net a.
R4 : host in net b has the right to access DNS and

FTP servers.
R5 : net c has no right to access an FTP server in

net d.

The above firewall rules can contain any of the fol-
lowing parameters: network, IP address, protocol or and
port. At the first level of abstraction, we consider net-
work parameters, where we abstract rules to be at the
network level. The abstract rules are contained in the
concrete ones. An Event-B model is defined for this level
of abstraction along with certain invariants to check the
consistency of the firewall configuration.

Abstraction of the above set of rules results in an ab-
stract configuration at the network level. Note that this
abstraction may result in contradiction in case certain
part of one network is granted access to an outer network,
and another part of the same network is denied access to
that outer network. Abstraction here will definitely result
in contradiction between the abstract rule and one of the
concrete rules. To overcome this, we consider both rules
result in an undefined action. This issue, however, will be
resolved at the refined level when we consider the model
at the IP address level where both cases can be defined
with the appropriate action.

In the first step we will present an abstract model of
the above policy at the network level. We define two
types ACTION and NET, the first type defines behavior
of the firewall on filtered packets: ACCEPT or DENY.
In order to have a complete specification, which is nec-
essary for proof obligations discharge, we assume that
there is always a default last rule that is either ACCEPT
or DENY.

CONTEXT X0
SETS

ACTION NET

CONSTANTS



ACCEPT DENY

net a net b net c net d

AXIOMS
axm1 : partition(ACTION , {ACCEPT}, {DENY }, )
axm2 : partition(NET , {net a}, {net b}, {net c},

{net d})
axm3 : DENY ̸= ACCEPT

usu
END

MACHINE F0
SEES X0
VARIABLES

RULE

INVARIANTS
inv7 : RULE ∈ NET ×NET � ACTION

EVENTS
Initialisation

begin
act2 : RULE :=

{(net a 7→ net b) 7→ ACCEPT ,
(net b 7→ net c) 7→ ACCEPT ,
(net c 7→ net a) 7→ DENY ,
(net b 7→ net d) 7→ ACCEPT ,
(net c 7→ net d) 7→ DENY }

end

END

In the above Event-B model, the set RULE is defined
as a total injection function from the set of NET×NET
into the set ACTION. The actual rules of the firewall con-
figurations are defined in the initialization event, where
the address of every rules is abstracted into the network
address. This may result in merging two or more rules
into one single rule.

This model is refined by defining the network address
NET over the range of possible IP addresses in the ax-
ioms below. In order to make the variants below readable
and simple, we assume IP addresses are of class A only,
however, the invariants can simply be extended to include
other classes by adding the constraints below.

The firewall configuration is defined at this level by
mapping every pair of addresses (source and destination)
into its possible action throughout the term RULE be-
low. Rules are checked for consistency in Rodin by eval-
uating the invariant RuleCheck below for the rules map
that defines the firewall configurations. This invariant
generates a number of proof obligations that were dis-
charged using the Rodin proof control.

CONTEXT X1
CONSTANTS

RN NET

AXIOMS
axm1 : RN ∈ 0 ..255

axm2 : NET ∈ RN × RN × RN × RN

END

MACHINE F1
SEES X1
VARIABLES

RULE

INVARIANTS
inv1 : RULE ∈ NET ×NET � ACTION

RuleCheck : ∀src1 , src2 , dst1 , dst2 · src1 ∈ NET ∧
src2 ∈ NET ∧ dst1 ∈ NET ∧ dst2 ∈ NET ∧
(RULE(src1 7→ dst1 ) = ACCEPT ∧
RULE(src2 7→ dst2 ) = DENY ) =⇒
¬(src1 = src2 ∧ dst1 = dst2 ) ∧
((NetAdd(src1 ) = ⊤) ∨ (NetAdd(src1 ) = ⊤ ∧
SUBNET (src1 ) ̸= SUBNET (src2 ))) ∧
((NetAdd(src2 ) = F ) ∨ (NetAdd(src2 ) = ⊤ ∧
SUBNET (src1 ) ̸= SUBNET (src2 ))) ∧
(NetAdd(dst1 ) = ⊤) ∨ (NetAdd(dst1 ) = ⊤ ∧
SUBNET (dst1 ) ̸= SUBNET (dst2 ))) ∧
((NetAdd(dst2 ) = F ) ∨ (NetAdd(dst2 ) = ⊤ ∧
SUBNET (dst1 ) ̸= SUBNET (dst2 )))

EVENTS
Initialisation

begin
act1 : RULE := {

(1 7→ 1 7→ 1 7→ 0 7→ 2 7→ 1 7→ 1 7→ 0 ) 7→
ACCEPT ,

(2 7→ 1 7→ 1 7→ 0 7→ 3 7→ 2 7→ 1 7→ 0 ) 7→
ACCEPT ,

(2 7→ 2 7→ 1 7→ 0 7→ 1 7→ 1 7→ 0 7→ 0 ) 7→ DENY ,
(2 7→ 1 7→ 1 7→ 1 7→ 3 7→ 2 7→ 1 7→ 2 ) 7→

ACCEPT ,
(2 7→ 1 7→ 1 7→ 1 7→ 2 7→ 2 7→ 1 7→ 5 ) 7→

ACCEPT ,
(3 7→ 2 7→ 1 7→ 0 7→ 2 7→ 2 7→ 1 7→ 5 ) 7→ DENY }

end
Event evt1

any
w4 w3 w2 w1

where
grd1 : w1 = 0 ∧ w4 ∈ 0 ..255 ∧ w3 ∈ 0 ..255 ∧

w2 ∈ 0 ..255
then

act1 : NetAdd(w4 7→ w3 7→ w2 7→ w1 ) :=
TRUE

end
Event evt2

any
w4 w3 w2 w1

where
grd1 : w1 = 0 ..255∧w4 ∈ 0 ..255∧w3 ∈ 0 ..255

∧ w2 ∈ 0 ..255
then

act1 : SUBNET (w4 7→ w3 7→ w2 7→ w1 ) :=
w4 7→ w3 7→ w2

end

END

The next step is to implement the set theory primi-
tives and their domain restriction operators in Event-B.
These operators are embedded in the platform, therefore,



we directly use them to implement our model. The con-
sistency of the firewall configurations is defined using the
invariant, inv3, within the Rodin platform, as shown be-
low. The tool generates proof obligations that were suc-
cessfully discharged using Event-B proof control.

MACHINE F2

SEES X2

VARIABLES
n Rs Rd Aa Ad Rsa Rsd Rda Rdd

INVARIANTS
inv1 : Rs ∈ RULE ∧ Rd ∈ RULE ∧ Rsa ∈ RULE ∧

Rsd ∈ RULE ∧ Rda ∈ RULE ∧ Rdd ∈ RULE

inv2 : Aa ∈ ACTION ∧Ad ∈ ACTION

inv3 : Rsa ∩ Rsd = ∅ ∧ Rda ∩ Rdd = ∅
EVENTS
Initialisation

begin
act1 : Aa := {ACCEPT}
act2 : Ad := {DENY }

end
Event evt1

any
n

where
grd1 : n ∈ NET

then
act1 : Rs := n � RULE
act2 : Rd := n � RULE
act3 : Rsa := Aa � Rs
act4 : Rsd := Ad � Rs
act5 : Rda := Aa � Rd
act6 : Rdd := Ad � Rd

end

END

The above example shows that the method allows
modeling the firewall configurations at different levels
of abstraction. We presented a high level model at an
abstract network address level. This model is further re-
fined in order to include more details about the addresses
in firewall rules, while preserving the correctness of the
invariants. The verification of a more refined model will
be straightforward, and will require a refinement of this
model based on addresses by including protocol types or
port numbers. This is going to be covered in a future
work. In order to make this method more appealing and
applicable on industrial size firewalls, an interface is re-
quired in order to map firewall rules into Event-B data
structure models. The semantics of this translation can
be deduced using our model, and the interface can pro-
vide an automatic translation from firewall configuration
rules into Event-B syntax. This issue will be addressed
in the future work.

6. CONCLUSION

Firewall configurations and the maintenance of their rule-
base is highly error prone, therefore, the verification of
their correctness is essential. In this paper we present
a formal model for firewall configuration rules based on
domain restriction. This model is used to define an al-
gorithm to formally verify the consistency of the config-
uration rules in firewalls. The algorithm is based on a
formal model that utilizes the domain restriction method
we presented in our previous work [5]. Compared to [5],
where the verification method was based on Event-B the-
orem proving, in this work we present an implementation
independent algorithm based on a formal model for fire-
walls rulebase.

We illustrate our method on a case study by mod-
eling firewall configurations at the network level of ab-
straction, then, we refine this model by considering the
network at the IP address level. Firewall configuration
rules are embedded in Event-B, where the consistency of
firewall configurations is defined as Event-B invariants,
then the Rodin firstorder theorem prover is used to prove
the consistency of this configuration by proving each of
the proof obligations automatically.

The advantage of our method is the ability to model
firewall configurations at different levels of abstraction.
A high level model representing firewall rules at an ab-
stract network address level is used first. This model
is further refined by using IP network addresses in fire-
wall rules, while preserving the correctness of the in-
variants, and hence the consistency of firewall configu-
rations. This method can model firewall configuration
rules at the network address level of abstraction, which
we believe is the major domain, where most conflicts
happen to be in firewalls rulebase. However, the method
still can be modified to support the detection of conflicts
in rules at the protocol and port level of abstraction. This
issue will be considered for future work. The algorithm
is implementation independent, another method to im-
plement it would be using an existing SAT solver. Al-
ternatively, it can be integrated into an existing theorem
prover that supports first-order set theory operations such
as the Event-B or HOL theorem prover [18].

As further future work, we will provide a formal proof
of the correctness of the method by showing the com-
pleteness and soundness of the presented model. In addi-
tion we intend to use the same method to prove firewall
consistency at more refined levels by allowing rules at
the protocol and port number levels.



7. REFERENCES

[1] D. Chapman and E. Zwicky, Building Internet Fire-
walls, Orielly & Associates Inc., 2000.

[2] J.R. Abrial, “Faultless Systems: Yes We Can!,”
IEEE Computer Journal, vol. 42, no. 9, pp. 30–36,
2009.

[3] P. Boca and J.P. Bowen J. Siddiqi, Formal Meth-
ods: State of the Art and New Directions, Springer-
Verlag London Limited, 2010.

[4] J.R. Abrial, Modelling in Event-B: System and Soft-
ware Engineering, Cambbridge University Press,
2009.

[5] A. Gawanmeh and S. Tahar, “Modeling and Ver-
ification of Firewall Configurations Using Domain
Restriction Method,” in IEEE International Confer-
ence on Internet Technology and Secured Transac-
tions. pp. 642–647, IEEE Computer Society Press,
2011.

[6] T. Abbes, A. Bouhoula, and M. Rusinowitch, “An
Inference System for Detecting Firewall Filtering
Rules Aanomalies,” in ACM Symposium on Applied
computing. pp. 2122–2128, ACM press, 2008.

[7] N. Ben Youssef, A. Bouhoula, and F. Jacquemard,
“Automatic Verification of Conformance of Fire-
wall Configurations to Security Policies,” in IEEE
Symposium on Computers and Communications.
pp. 526–531, IEEE Computer Society Press, 2009.

[8] A. Brucker, L. Brügger, and B. Wolff, “Model-
Based Firewall Conformance Testing,” in Testing of
Software and Communicating Systems. vol. 5047 of
Lecture Notes in Computer Science, pp. 103–118,
Springer-Verlag, 2008.

[9] P. Matoušek, J. Ráb, O. Ryšavý, and M. Švéda, “A
Formal Model for Network-Wide Security Analy-
sis,” in IEEE International Conference on Engi-
neering of Computer Based Systems. pp. 171–181,
IEEE Computer Society Press, 2008.

[10] F. Cuppens, N. Cuppens-Boulahia, T. Sans, and
A. Miège, “A Formal Approach to Specify and De-
ploy a Network Security Policy,” in Formal Aspects
in Security and Trust. vol. 173 of Lecture Notes in
Computer Science, pp. 203–218, Springer-Verlag,
2004.

[11] L. Yuan, H. Chen, J. Mai, C. Chuah, Z. Su, and
P. Mohapatra, “FIREMAN: a Toolkit for Firewall
Modeling and Analysis,” in IEEE Symposium on
Security and Privacy. pp. 199–213, IEEE Computer
Society Press, 2006.

[12] H. Acharya and M. Gouda, “Projection and Di-
vision: Linear-Space Verification of Firewalls,”
in IEEE International Conference on Distributed
Computing Systems. pp. 736–743, IEEE Computer
Society Press, 2010.

[13] I. Kotenko and O. Polubelova, “Verification of
Security Policy Filtering Rules by Model Check-
ing,” in IEEE International Conference on In-
telligent Data Acquisition and Advanced Comput-
ing Systems. pp. 706–710, IEEE Computer Society
Press, 2011.

[14] A.X. Liu, “Formal Verification of Firewall Poli-
cies,” in IEEE International Conference on Com-
munications. pp. 1494–1498, IEEE Computer So-
ciety Press, 2008.

[15] A. Jeffrey and T. Samak, “Model Checking Fire-
wall Policy Configurations,” in IEEE Symposium
on Policies for Distributed Systems and Networks.
pp. 60–67, IEEE Computer Society Press, 2009.

[16] C. Metayer, J. Abrial, and L. Voisin, “RODIN
Deliverable 3.2: Event-B Language,” Tech. Rep.
Project IST-511599, School of Computing Science,
University of Newcastle, UK, 2005.

[17] Rodin Platform, “http://www.event-b.org, 2010,” .

[18] HOL Sourceforge Project. The HOL System Refer-
ence, “http://hol.sourceforge.net, 2011,” .


