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Abstract—Noise and Process variation present a practical limit
on the performance of analog circuits. This paper proposes a
methodology for modeling and verification of analog designs
in the presence of shot noise, thermal noise, and process
variations. The idea is to use stochastic differential equations
(SDE) to model noise in additive and multiplicative form and
then combine process variation due to 0.18µm technology in
a statistical runtime verification environment. The efficiency of
MonteCarlo and Bootstrap statistical techniques are compared
for a Colpitts oscillator and a phase locked loop (PLL) based
frequency synthesizer circuit.

Index Terms—Analog Designs, Noise, Process Variation, Run-
Time Verification, Statistical Techniques, Stochastic Differential
Equations

I. INTRODUCTION

OVer the last decade, high performance System-on-Chip
(SoC) [14] has played a pivotal role in the growth

of consumer electronics, embedded systems, and computing
servers. As the complexity of a SoC continues to escalate,
analog designs have started to exhibit more of their stochastic
behavior, where ensuring the correctness of such designs under
all circumstances usually becomes impractically expensive.
Additional effects due to noise and process variations have
also influenced the quality and yield of those circuits [19].

Computer aided design (CAD) tools for analog circuits have
seen a tremendous growth in recent times, yet it still lags
its digital counterpart in many aspects such as, abstraction,
automation, and IP reusability. The analog design flow has re-
mained essentially the same for the past twenty years with the
schematic capture of the individual blocks, followed by verifi-
cation through multiple simulation in order to estimate various
noise and process variation metrics. Unfortunately, with only
little automation under its belt, analog circuit verification may
lead to weeks/months of labor intensive circuit simulation
to validate the design for optimal performance. Therefore,
given such a widening gap between the complexity of analog
designs and the maturity of CAD tools [16], a combination of
traditional and new modeling/verification strategies is needed
to mitigate several effects such as noise [19] and process
variation [3]. One of the ways to accomplish this is by looking
at modeling techniques at higher level of abstraction using
hardware description languages (HDLs), so that verification

Rajeev Narayanan is with the Department of Electrical and Computer
Engineering, State University of New York, New Paltz, New York, USA.
Email: rajeev@newpaltz.edu

Ibtissem Seghair, Mohamed H. Zaki and Sofiène Tahar are with the
Department of Electrical and Computer Engineering, Concordia University,
Montreal, Quebec, Canada. Email:{saghar, mzaki, tahar}@ece.concordia.ca

for the whole design with noise and process variation can
be automated and performed much faster. This speed-up,
however, does not come without a price. The first cost is the
accuracy of the behavioral model against the actual transistor-
level designs. Secondly, the model has to account for physical
device (threshold voltage, leakage current, etc.), functional
(noise, jitter) and environment (temperature) constraints.

Noise is a random phenomena which origin has been studied
by many researchers for decades. The sources of noise could
be due to unwanted interaction between various design blocks
(e.g., cross-talk) or it could be inherited from the circuit
elements (e.g., thermal, shot and flicker) [9]. Also, noise can
be either in additive or multiplicative form and since, for a
given circuit, it is difficult to predict their exact form, it is
necessary to account for both types of noise during analysis.
“Can we eliminate noise?” is the question that has to be
answered. With proper layout and shielding techniques in a
design, interference noise can be nullified [9]. On the other
hand, the inheritance noise can be reduced and cannot be
eliminated completely. The quantification of such noise relies
on the kind of measurement used between the noisy and the
ideal signal. Important noise metrics is to derive the power
spectral density (PSD) in terms of a measurable quantity such
as the signal-to-noise ratio (SNR) and the noise figure (NF).
SNR is a measure used to determine the quality of a signal
that is corrupted by noise, and NF is a quality measure of
SNR degradation.

From a verification perspective, the qualitative estimation in
terms of SNR, NF has to be complemented with quantitative
analysis by monitoring the circuit current and voltages. Using
quantitative measurement, the circuit is evaluated either for
one simulation trace or multiple simulation traces. To do so,
designers need noise models in time domain to check the
functional behavior (current, voltage) at run-time, and then
compare it to the expected result. As the PSD for a thermal
noise is Gaussian in nature it is necessary to have models in
time domain that have the same distribution. One such time
domain model is the Wiener process [6]. As the PSD of a
shot noise take a Poisson distribution, time domain models
based on Poisson white shot noise (PWSN) [7] allow Poisson
distribution for the random pulses and a Gaussian distribution
for its amplitude.

In conjunction with the effect of noise, designs become
more challenging when the fabrication steps for a circuit
are considered [22]. For process variation, designers use a
combination of Worst-Case, Monte-Carlo or Mismatch [17]
analysis for analog circuits. The worst-case analysis method
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for analog circuits incorporates design models with pessimistic
process corner. This worst-case variation is determined in
the foundry design document, and the values are derived
from certain parameter distribution. For instance, the process
corners are constructed to maximize/minimize one specific
performance of the device (e.g., speed, power, area, etc.)
and can provide faster results [17]. However, the worst-case
analysis may increase the overall design effort and cost.

The MonteCarlo method takes into account a predefined dis-
tribution (usually normal distribution) of the device parameters
due to process variation. Unlike worst-case that targets for sin-
gle device performance, MonteCarlo methods use a repeated
simulation technique for multiple device performance [17]. In
the end, it provides a statistical estimate of the analysis with a
certain confidence level, but at the cost of simulation run-time.

In summary, right from the circuit level through behavioral
level [16], current industrial designs rely heavily on simulation
techniques to verify analog circuits. For noise and process vari-
ation, designers use a combination of statistical modeling and
MonteCarlo simulation in order to achieve a good fit between
the measured and the extracted values. But, such analysis
can be time consuming and can have memory problems [16].
Alternatively, the behavior of the design can be captured as a
purely mathematical model and then device variation could be
integrated during analysis. By doing so, it leads to time domain
statistical monitoring of the behavior rather than qualitative
estimation of the circuit noise metrics. For such a method it is
necessary that models retain both the functional and stochastic
behavior. We therefore, adopt stochastic differential equations
(SDE) [6] as an analog noise model in this paper.

This paper tries to answer some of the shortcoming of the
above approaches by modeling an analog circuit with noise
using SDE in additive and multiplicative form. Then, process
variation due to 0.18µm technology [1] are integrated with the
run-time verification environment for monitoring the statisti-
cal properties of the circuit. Statistical run-time verification
combines hypothesis testing [23] and Monte-Carlo/Bootstrap
simulation for monitoring the statistical behavior in an analog
circuit. The efficiency of MonteCarlo and Bootstrap statistical
techniques are compared for Colpitts oscillator and a phase
locked loop (PLL) based frequency synthesizer circuit.

II. RELATED WORK

Lately, Synopsys has introduced a tool, HSPICE RF [12]
implementing SDE techniques to make a direct prediction on
the statistical behavior of analog circuits. The results include
the usual deterministic transient analysis waveforms, and also
its time-varying root-mean square (RMS) behavior. A similar
commercial tool [4] enables circuit designers to efficiently
perform SPICE-accurate device noise analysis on complex
non-periodic analog blocks. However, noise analysis at circuit
level often rely on manual (visual) inspection of the simulation
results, thereby slowing down the design and verification
process.

In contrast, in [24] the authors have numerically evaluated
an electronic oscillator based on a new physical description
of thermal noise. The method involves combining the non-
equilibrium statistical mechanics with the SDE based Langevin

approach. But, the method fails to neglect non-linearity and
also ignores the process variation. In a similar numerical
approach [21], the authors have used SDEs to model the design
with thermal noise in additive form and then combine device
variation due to the 0.18µm fabrication process in an assertion
based run-time verification environment. Runtime verification
is a technique for monitoring whether an execution of the
design model violates the design specifications (properties).
Unfortunately, such single simulation trace monitoring cannot
provide us the confidence due to stochastic nature of noise
and process variation. A similar work [26], demonstrates a
runtime verification methodology for statistical properties of
AMS designs. The approach combines system of recurrence
(SRE) equations with MonteCarlo simulation and hypothesis
testing to verify statistical property. The above approach fails
to address issues related to noise and process variation, also
SRE models are not accurate.

Other less known methods developed in the context of
formal verification (of AMS designs) apply mathematical
expressions and formal reasoning to prove correctness of a
design [15]. For instance, statistical based model checking [10]
has been successfully used to verify the saturation property in
a simple analog circuit, such as a third-order ∆Σ modulator.
Such model checking techniques are still in their infancy and
can easily run into state-space explosion for complex circuits.
By contrast, theorem proving can deliver the highest level
of assurance for verification. In [20], the authors presented
a closed-form solution based formal verification method for
proving properties in analog circuits with noise and process
variation. Unfortunately, not all analog circuits have closed-
form solutions and hence such approach has limited applica-
tion and is not accurate enough to gain confidence on the
results. Also, due to the complexity of generating formal
models and the computational overhead of the algorithms used,
success has been mainly limited by scalability issues.

III. PRELIMINARIES

A. Stochastic Differential Equation (SDE)

An SDE is an ordinary differential equation (ODE) with
a stochastic process that can model unpredictable real-life
behavior of any continuous system [6]. The random term in
an SDE can be purely additive or it may multiply by some
deterministic term. For example, let us consider a tunnel diode
oscillator circuit shown in Figure 1.
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Fig. 1. Tunnel Diode Oscillator

The current through the resistor and inductor I and the
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voltage across the capacitor VC can be described by

V̇C =
1

C
(−Id(VC) + I)

İ =
1

L
(−VC −

1

G
I + V )

(1)

where Id(VC) describes the non-linear tunnel diode behavior.
If we consider thermal noise in the passive elements (R, L)
and shot noise in the diode D, a reasonable mathematical in-
terpretation of the randomness for Equation 1 can be described
as

V̇C =

A1︷ ︸︸ ︷
1

C
(−Id(VC) + IL)+αξ1(t)

İ =

A2︷ ︸︸ ︷
1

L
(−VC −RI + V )+αξ2(t) + ζ(t)

(2)

where
2∑

k=1

αξk represents the thermal noise model for the

passive elements with certain amplitude α and ζ(t) repre-
sents Poisson white shot noise (PWSN) that has random
pulses, which occurrence is based on Poisson distribution.
The strengths of the pulses take a white noise (Gaussian) dis-
tributed independent values as shown in Figure 2. In general,
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Fig. 2. Poisson White Shot Noise (PWSN)

the probability that a random sequence of k pulses occurs in
the interval (0, t) is given by

Prob{n(t) = k} =
(λt)ke−λt

k!
(3)

In SDE terminology, Equation (2) can take two forms [6]:
Itô or Stratonovich representing differential and integral forms
respectively. Since, the amplitude of shot noise is based on
Gaussian distribution, the ζ(t) and ξt in Equation 2 can be
considered to be the path-wise derivative of Brownian motion
(or Wiener Process). If we set dBt and dBst to represent
such process for thermal and shot noise respectively, then
Equation (2) can be rewritten as

dVC =
1

C
(−Id(VC) + I)dt+ αdW1t

dI =
1

L
(−VC −RI + V )dt+ αdW2t + dWst

(4)

To solve Equation 4 classical calculus cannot handle
stochastic process, and hence we need special mathematical
interpretation in the form of stochastic calculus to solve the
equations involving Brownian motion [6]. Stochastic calculus
uses the concept of expectation and Itô isometry to solve

SDEs. Expectation determines the behavior of any system in
the absence of randomness and hence it is easy to conclude that
the expectation of any random process (Brownian or Wiener)
is zero. As Brownian motion cannot be solved using definite
integral, the goal of Itô isometry is to replace the Brownian
motion dBs by a deterministic term ds for solving SDEs. In
contrast, there is not always a closed form solution for SDEs,
hence researchers have looked for solving them numerically.
The methods based on numerical analysis are reported in [18],
which involve discrete time approximation in a finite time
interval over the sample paths.

Based on the simplest Euler-Maruyama time discretization
approach [18], Equation (4) can be rewritten as

VCn+1 = VCn +
∆n

C
(−Id(VCn) + In) + α∆W1n

In+1 = In +
∆n

L
(−VCn −RIn + V ) + α∆W2n +∆Wsn

(5)
where for time step τ ,

∆n = τn+1 − τn; ∆Wn = ∆Wsn = Wτn+1 −Wτn (6)

for n=0,1,2· · ·N-1; and for maximum N simulation steps.
In general, any SDE that takes a form as in Equation (5), is

suited to represent the additive noise behavior in an analog
circuit. Higher order numerical approximation such as the
Milstein method [18] uses multiple stochastic integrals in
terms of several Wiener processes and can be used to model
the multiplicative noise behavior. To better understand the
Milstein method of noise model, let us consider the tunnel
diode oscillator shown in Figure 1. If we consider noise to
exists in multiplicative form, then, rewriting Equation (2) in
matrix form, we get

dY =

(
dVC

dI

)
=

(
A1

A2

)
dt+

(
I
VC

)
dW 1

t +

(
VC

I

)
dW 2

t

(7)
with

b1 =

(
b(1,1)

b(2,1)

)
=

(
I
VC

)
; b2 =

(
b(1,2)

b(2,2)

)
=

(
VC

I

)
;

A general Milstein approximation for the SDE can be written
as

Y k
n+1 = Y k

n +ak∆n+

M∑
j=1

bj,k∆W j+

M∑
j1,j2=1

Lj1bk,j2I(j1, j2)

(8)
Applying Equation (8) to Equation 7, we get(

VCn+1

In+1

)
=

(
VCn

In

)
+

(
A1

A2

)
∆n +

(
In
VCn

)
∆W 1

n

+

(
VCn

In

)
∆W 2

n +

2∑
j1,j2=1

Lj1bk,j2I(j1, j2)

(9)
where Lj is the partial differential operator as defined by Lj =
N∑

k=1

bk,j
∂

∂xk
and I(j1, j2) is the Ito integral [18]. Expanding
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Lj for j = 1, 2 we get

L1 =

2∑
k=1

bk,1
∂

∂xk
= b1,1

∂

∂x1
+ b2,1

∂

∂x2

L2 =
2∑

k=1

bk,2
∂

∂xk
= b1,2

∂

∂x1
+ b2,2

∂

∂x2

(10)

Hence the final Milstein numerical approximation for Equa-
tion (7) is given by

(
VCn+1

In+1

)
=

(
VCn

In

)
+


1

C
(−Id(VCn) + In)

1

L
(−VCn −

1

G
In + V )

∆n

+

(
In
VCn

)
∆W 1

n +

(
VCn

In

)
∆W 2

n +

(
VCn

In

)
I(1, 1)

+

(
In
VCn

)
I(1, 2) +

(
In
VCn

)
I(2, 1) +

(
VCn

In

)
I(2, 2)

(11)
where the Ito integral I(j1, j2) can be expressed as [18]

I(1, 1) = I(2, 2) =

∫ tn+1

tn

∫ t

tn

dW j1
s dW j2

t =
1

2

(
(∆W j1

n )2 −∆n

)
I(1, 2) = I(2, 1) =

∫ tn+1

tn

∫ t

tn

dW j1
s dW j2

t =
1

2

(
∆W j1

n ∆W j2
n

)

B. Statistical Hypothesis Testing

Hypothesis testing [23] is the use of statistics to make de-
cision about acceptance or rejection of some statements based
on the data from a random sample, meaning, to determine the
probability that a given hypothesis is true. Hypothesis testing
in general, has two parts: Null hypothesis, denoted by H0,
which is what we want to test (e.g., jitterperiod ≤ 3.2 ns)
and Alternative hypothesis, denoted by H1, which is what we
want to test against the null hypothesis (e.g., jitterperiod
> 3.2 ns). If we reject H0, then the decision to accept H1

is made. The conclusion is drawn with certain probability of
error (α and β) along with specific confidence level.

The quantification of error can be made by measuring
the probability of accepting/rejecting H0 when it is actually
true/false, respectively. Usually, α, also called the significance
level, denotes the probability of rejecting H0 when it is
actually true (Type I error) and β denotes the probability of
accepting H0 when it is actually false (Type II error). For
instance, α = 0.05 and α = 0.01 refer to the confidence
levels of 95% and 99%, respectively.

The choice to accept or reject is determined by the direction
with which the null hypothesis is proved to be true or false.
This direction is decided based on a one-tailed test (upper or
lower) or a two-tailed test as shown in Figure 3.

The upper tail represents the rejection region for the case
where a large value of the test statistic provides evidence for
rejecting H0. On the other hand, a lower tail distribution is
used if only a small value of the test statistic shows proof of
H0 rejection [13].

The bounded hypothesis testing [13] also called the two-
tailed test is determined by a bounded region [x1, x2], such
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Fig. 3. Accept/Reject Regions for Hypothesis Testing

that such that H0 satisfies the following:

H0 : P (x1 < X < x2) = P (X < x2)− P (X < x1) = 1− α
(12)

In any of the above hypothesis testing measures, if the
observed sample data Tobs over a given interval is within some
critical region, then we reject the null hypothesis H0, else we
accept H0 as shown by the shaded region in Figure 3.

IV. PROPOSED METHODOLOGY

Figure 4 shows the overall statistical run-time verification
methodology. Thereafter, given an analog design described
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Fig. 4. Statistical Run-Time Verification Methodology

as a system of ODEs, the idea is to generate SDEs that
expresses the noise behavior. For the case of the circuits
that do not have closed form solution, the approach is to
numerically approximate the SDE’s based on Euler-Maruyama
technique as described in Section III. For process variation, the
technology vendors create a library of devices with different
corners [22] that characterize the device in terms of power,
speed, etc. This allows the designers to choose from a range
of devices based on the application and requirements. For a
0.18µm process, different circuit parameters are derived using
Gaussian distribution with a known ±3σ deviation.

For environment constraints, this may include the amplitude
of the noise, initial conditions of the circuit current and
voltages. The SDE model, process variation, and the envi-
ronment constraints are evaluated using MonteCarlo/Bootstrap
statistical technique in a MATLAB simulation environment.
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Statistical run-time verification combines hypothesis testing
and resampling methods for monitoring the statistical behavior
in an analog circuit. The basic idea behind the resampling
methods is to simulate the SDE model and sample them in
order to calculate the desired statistics for a given confidence
level δ.

Figure 5 shows the methodology for the statistical simu-
lation procedure based on hypothesis testing. The statistical
property, is expressed as a null hypothesis H0, while the alter-
native hypothesis H1 becomes the counterexample naturally.
For the given numerical SDE model and the specified tail test,
MonteCarlo or Bootstrap monitoring is carried out based on
the given confidence level δ and the calculated significance
level α. The statistical property is verified if the null hypothesis
H0 is accepted, else, the monitor reports the violation of the
property. In all cases, an error margin ϵ is generated as shown
in Figure 5.

Technology
Library
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SDE ModelNumerical
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Fig. 5. Statistical Hypothesis Testing

A. MonteCarlo Algorithm
The MonteCarlo method [23] refers to a technique of

solving problems using random variables. It is widely used
to investigate statistical problems such as inference statistics
of a given population of interest. The basic idea behind the
MonteCarlo method is to sample the given population model
for M trials and then calculate the desired statistics (such as
mean, median, variance, skewness, etc.). To apply MonteCarlo
based hypothesis testing, it is necessary that the distribution
of the sampling population is known in advance [11].

One of the most important components of MonteCarlo
simulation is the use of deterministic algorithm to generate a
normally distributed unbiased pseudo random number. These
random numbers are then used to sample the true population of
interest, in this case the analog circuit output. In general, there
is no theory that governs the number of trials in MonteCarlo
simulation. However, a trade off exists between those numbers
and the simulation run-times. The higher confidence can be
gained by choosing a larger number of trials, but at the cost
of run-times [23].

The detailed procedure for Monte-Carlo hypothesis testing
for an analog circuit is illustrated in Algorithm 1, where
output vector denotes the observed output of an analog
circuit with noise and process variation. M represents the
number of MonteCarlo trials, α a chosen significant level and
type test represents the type of test to be performed (upper,
lower, or two-tailed).

Algorithm 1 MonteCarlo Based Hypothesis Testing:
Require: output vector, M , α, type test

1: V ← output vector
2: N ← length(V )
3: mu ← mean(V )
4: sig ← standard error(V )
5: for i ← 1 to M do
6: r ← random number generator(N)
7: MCsample ← sig ∗ r +mu
8: Tobs(i) ← mean(MC sample)−mu

sig
9: end for

10: while type test = “upper tail test′′ do
11: critical value = quantile(1− α)
12: if critical value ≥ Tobs then
13: Accept H0

14: else
15: Reject H0

16: end if
17: end while
18: while type test = “lower tail test′′ do
19: critical value = quantile(α)
20: if critical value ≤ Tobs then
21: Accept H0

22: else
23: Reject H0

24: end if
25: end while
26: while type test = “two tail test′′ do
27: critical value low = quantile(α

2
)

28: critical value up = quantile( 1−α
2

)
29: if critical value up ≤ Tobs ∥ critical value low ≥ Tobs

then
30: Reject H0

31: else
32: Accept H0

33: end if
34: end while

The initialization steps (lines 1-4) are followed by the com-
putation of the standard score to determine the observed analog
output Tobs (loop between lines 5 and 9). This calculation is
done with certain standard error margin as defined by

E =

∑n
i=1(xi − x̄)2

N(N − 1)
(13)

where x = (x1, x2, ..., xN ) represents the MonteCarlo
sample, x̄ the pseudo random sample mean, and E defines
the standard error of the population under the hypothesis that
H0 is true. The next step is to compute the critical value in
order to specify the rejection region (alternative hypothesis).
Depending on the type of the test, the quantile procedure [23]
(lines 11,19, 27 and 28) can be used to determine the critical
value. With the estimated critical value, the rejection region
under the assumption of H0 being true can be determined for
each of the tail test as defined in Table I.

TABLE I
REJECTION REGION FOR DIFFERENT TAIL TEST

Tail Test Rejection Region
Upper [(100× (1− α))%,+∞]

Lower [−∞, (100× α)%]

Two-Tailed [−∞, (100×
α

2
)%] ∪ [(100× (1−

α

2
))%,+∞]
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If the observed value Tobs is greater than the critical value,
the null hypothesis H0 is rejected as described in Algorithm 1
(lines 10-32). The MonteCarlo algorithm is efficient only
if the probability distribution of the sample is known in
advance. In most cases, a normal distribution is assumed for
the samples, which may not be true always for analog circuits
influenced by noise and process variation. To overcome the
above drawbacks, Bootstrap algorithm have been developed in
the context of finance to reason about the statistical inference
of the population when the assumption of the underlying
distribution is violated or unknown.

B. Bootstrap Algorithm

The Bootstrap [5] is a general purpose method for esti-
mating a statistical property without making any assumptions
about the underlying distribution of the population [8]. In
this sense, it is considered as a non parametric technique
or distribution free. The basic idea behind the Bootstrap
technique can be described as follows [8]: ”Given a random
sample of N data X = (x1, x2, ..., xN ) from an unspecified
distribution F , the maximum likelihood estimator of F is the
distribution that puts an equal point probability of 1

N to each
data of X”.

The detailed procedure for Bootstrap based hypothesis test-
ing for an analog circuit is illustrated in Algorithm 2, where
output vector denotes the observed output of an analog
circuit with noise and process variation. B represents the
number of Bootstrap samples, α a chosen significant level and
type test represents the type of test to be performed (upper,
lower, or two-tailed).

The first step is to draw randomly B samples with replace-
ment from the simulated circuit output of size N (line 4).
This is followed by test statistic estimation for each bootstrap
replication in order to measure discrepancy between the data
and H0. The results are then in Tboot as a vector (line 5). The
quantile procedure is then used to compute the critical value
by type of test:

• The 1 − α quantiles of the empirical distribution for an
upper tail test as shown in line 9.

• The α quantile of the empirical distribution for a lower
tail test as mentioned in line 17.

• The α
2 and (1− α

2 ) quantile of the empirical distribution
for a two sided test as given in lines 25 and 26, respec-
tively.

Once the critical value is determined, a decision regarding
the violation of a statistical property is done using hypothesis
testing (lines 16-31). For instance, in the case of a lower tail
test (lines 16-23), if the observed value Tboot is lower than
the computed critical value, then we reject H0, meaning the
statistical property has failed.

V. EXPERIMENTAL RESULTS

To illustrate the efficiency of the proposed methodology, the
approach is illustrated on a tunnel diode, Colpitts oscillator
and PLL circuits. The effect of thermal noise on passive com-
ponents and shot noise on the transistors has been analyzed
in additive and multiplicative form. The first step in noise

Algorithm 2 Bootstrap Based Hypothesis Testing:
Require: output vector, B, α, type test

1: V ← output vector
2: N ← length(V )
3: for i ← 1 to B do
4: rep ← Resample Bootstrap(V,N)
5: Tboot(i) ← Compute test statistic(rep)
6: end for
7: Tsorted ← sort ascending order(Tboot)
8: while type test = “upper tail test′′ do
9: critical value = Tsorted(B ∗ (1− α))

10: if critical value ≥ Tobs then
11: Accept H0

12: else
13: Reject H0

14: end if
15: end while
16: while type test = “lower tail test′′ do
17: critical value = Tsorted(B ∗ α)
18: if critical value ≤ Tobs then
19: Accept H0

20: else
21: Reject H0

22: end if
23: end while
24: while type test = “two tail test′′ do
25: critical value low = Tsorted(B ∗ α

2
)

26: critical value up = Tsorted(B ∗ 1−α
2

)
27: if critical value up ≤ Tobs ∥ critical value low ≥ Tobs

then
28: Reject H0

29: else
30: Accept H0

31: end if
32: end while

analysis is to identify and incorporate the sources of noise as
a stochastic process in the form of SDE. Thermal and Shot
noise are defined based on the method described in Section III.
The experiment results are derived separately for additive and
multiplicative noise in a statistical based MATLAB simulation
environment on a Windows Vista OS (AMD Dual-Core, 4GB
RAM) machine.

A. Colpitts Oscillator

The circuit diagram for an MOS transistor based Colpitts
oscillator is shown in Figure 6. For the correct choice of com-
ponent values, the circuit will oscillate due to the bias current
and negative resistance of the passive tank. The frequency of
oscillation is determined by L, C1 and C2.

From the small-signal representation, the simplified system
of equations that describe the behavior of the Colpitts oscilla-
tor can be derived as

V̇C1 =
1.2− (VC1 + VC2)

RC
+

IL
C

− Ids
C

V̇C2 =
1.2− (VC1 + VC2)

RC
+

IL
C

− Iss
C

İL =
1.2− (VC1 + VC2)

L

(14)
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Fig. 6. (a) Colpitts Oscillator (b) Small-Signal Model

where for V = VC1 + VC2,

Ids =



0 if VC2 > 0.3

K
W

L
((0.3− VC2)(VC1)− 0.5(VC1)

2) if V < 0.3

K
W

L
(0.3− VC2)

2 if V ≥ 0.3

If thermal noise is considered for the passive components
and shot noise for the MOS transistor, then Equation 14 can
be extended to SDE form as given below

V̇C1 =
1.2− (VC1 + VC2)

RC
+

IL
C

− Ids
C

+
2∑

k=1

αξk(t)

V̇C2 =
1.2− (VC1 + VC2)

RC
+

IL
C

− Iss
C

+

2∑
k=1

αξk(t)

İL =
1.2− (VC1 + VC2)

L
+ αξ3(t) + ζ(t)

(15)

where
3∑

k=1

αξk represents the thermal noise model for the

passive elements with certain amplitude α, and ζ(t) represents
Poisson white shot noise (PWSN) due to random carrier
motion (current) in the MOS transistor. The above SDE model
is numerically approximated using Euler/Milstein technique
and simulated with process variation in a MATLAB simulation
environment.

The deterministic property that was verified in [21] is
“Whether for the given parameters and initial conditions,
the inductor current is within a certain bound or not for
oscillation?” The analysis was done only for thermal noise
in additive form, and this paper addresses the issue of shot
noise and thermal noise in additive and multiplicative form.

Based on the simulation results, the authors in [21] were
able to verify the bounded property using assertion based
verification. However, this single simulation trace verification
environment does not provide enough insight to gain higher
confidence on the oscillator circuit.

For statistical run-time verification one would be interested
to know “Whether for the given confidence level α, process
variation and MonteCarlo/Bootstrap trials, what is the prob-
ability of acceptance and rejection of oscillation for multiple
trajectories Trac?” For the oscillator, the current through the
inductor IL should be bounded within [−0.004, 0.004]. As a
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Fig. 7. Simulation Result of Colpitts Oscillator

result, the null hypothesis H0 and the alternative hypothesis
H1 of this property can be expressed as

H0 : −0.004 ≤ IL ≤ 0.004;
H1 : IL > 0.004 ∥ IL < −0.004;

(16)

Both the MonteCarlo and Bootstrap experiments were con-
ducted for the confidence level α = 0.05 for different tail
test, with shot/thermal noise in the circuit elements, and with
the circuit parameter generation using a normally distributed
process variation model. The results are summarized in Ta-
ble II. Trac in the table represents the total number of
colpitts oscillator circuit that have been evaluated for various
MonteCarlo/Bootstrap trials (M and B) and with independent
noise and technology constraints.

From Table II, it can be noted that, irrespective of the tail
test, that the MonteCarlo technique exhibits false violation
(shaded column). In the MonteCarlo method, first the mean
of the output is derived, followed by the creation of different
sampling points based on normal distribution with a known
standard deviation. Such a process may sometimes lead to a
value that is out of bound with the observed value thereby,
giving rise to false violation. In the absence of process vari-
ation the number of failures remains reasonably low for both
additive and multiplicative noise (columns 7-10). It can also be
seen that process variation (columns 11-14) in all the passive
components has a greater effect on the acceptance/rejection of
the circuit and with the combined effect of noise and process
variation (columns 15-18) the hypothesis testing exhibited
considerable failure of the statistical property.

The effect of process variation and noise on the statistical
results can be visualized using shmoo plots as shown in
Figure 8. Though the process variation is considered in all
circuit elements, the figure is shown only for the process
variation in capacitor with respect to the resistor. At each
capacitance value, the resistor is swept based on the values
generated using normal distribution and the hypothesis testing
result is analyzed by writing ’1’ for acceptance or ’0’ for
rejection.

In addition, the number of MonteCarlo trials has an adverse
effect on the outcome of the acceptance, but, a large Bootstrap
trial made little impact on the outcome. This is because, the
data generation process for the Bootstrap does not assume
any distribution of the output data. For this experiment, the
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TABLE II
STATISTICAL RUNTIME VERIFICATION RESULTS FOR COLPITTS OSCILLATOR.

Additive Noise (TRAC = 200, M = Number of MonteCarlo Trials, B = Number of Bootstrap Trials, P.V = Process Variation, A = Accept, R = Reject)

No Shot/Thermal Noise & P.V Shot/Thermal Noise Only P.V Only Shot/Thermal Noise & P.V
M= Tail MonteCarlo BootStrap MonteCarlo BootStrap MonteCarlo BootStrap MonteCarlo BootStrap
B= Test A R A R A R A R A R A R A R A R

Lower 192 8 200 0 179 21 191 9 180 20 187 13 147 53 184 16
1000 Upper 194 6 200 0 173 27 194 6 178 22 189 11 153 47 182 18

Two 190 10 200 0 169 31 189 11 175 25 181 19 138 62 180 20

Lower 188 12 200 0 164 36 193 7 172 28 185 15 151 49 179 21
10000 Upper 187 13 200 0 163 37 194 6 180 20 187 13 143 57 184 16

Two 183 17 200 0 164 36 191 9 175 25 181 19 132 68 179 21

Lower 188 12 200 0 159 41 189 11 177 23 182 18 122 78 174 26
50000 Upper 187 13 200 0 161 39 188 12 174 26 181 19 127 73 179 21

Two 181 19 200 0 159 41 183 17 171 29 179 21 120 80 173 27

Multiplicative Noise

Lower 194 6 200 0 188 12 196 4 180 20 187 13 189 11 194 6
1000 Upper 197 3 200 0 190 10 193 6 178 22 189 11 185 15 196 4

Two 193 7 200 0 185 15 194 6 175 25 181 19 177 23 189 11

Lower 199 1 200 0 181 19 191 9 172 28 185 15 180 29 184 16
10000 Upper 197 3 200 0 183 17 193 7 180 20 187 13 177 23 181 19

Two 194 6 200 0 188 12 196 4 175 25 181 19 179 21 184 16

Lower 197 3 200 0 187 13 191 9 177 23 182 18 181 19 188 12
50000 Upper 197 3 200 0 182 18 193 7 174 26 181 19 171 29 185 15

Two 195 5 200 0 186 14 191 9 182 18 187 13 164 36 181 19
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Fig. 8. Shmoo Plotting of Colpitts Oscillator Results.

worst case run-time for M/B = 50000 is around 5-6 hrs,
which though is considerably less than a simulation done at
the circuit level.

B. Band-Gap Reference Generator

For any biasing circuits, one of the most important perfor-
mance issue is their dependence on temperature. The variation
in temperature, noise and process variation attributes to the
fractional change in the output voltage/current, thereby affect-
ing the functionality of the design [16]. Figure 9 shows a BJT
based reference generator biasing circuit, and the question is
“How does the variation of noise with respect to temperature
affect the behavior of the circuit?”

The output voltage is based on the summation of the voltage
across the base-emitter (VBE) and the reference voltage (VT ).
The behavior of the above circuit can be described as

dVO

dT
= (γ − β)

VT

T

(
T0 − T

T

)
(17)

where VT is the input voltage. If we consider a temperature
varying shot noise process ζ(T ) in the transistor, Equation 17,
can be rewritten to incorporate randomness in additive and

Generator

V CC

I

−

+

V o = + V
T

SUM

TV TV

V BE V BE

Fig. 9. Band Gap Reference Circuit [16].

multiplicative form as

dVO

dT
= (γ − β)

VT

T

(
T0 − T

T

)
+ ζ(T )

dVO

dT
= (γ − β)

VT

T

(
T0 − T

T

)
+ ζ(T )Vo(T )

(18)

where γ and β are temperature independent constants [16] and
T is the temperature. The shot noise process in Equation 18
is modeled with the technique described in Section III. For
additive/multiplicative SDEs in the form of Equation 18, the
Euler/Milstein scheme described in Section III is applied to
generate the following numerical model:

VOn+1 = VOn + (γ − β)
VT

T

(
T0 − T

T

)
∆n +∆Wsn

VOn+1 = VOn + (γ − β)
VT

T

(
T0 − T

T

)
+∆Wsn +

1

2

(
(∆Wsn)

2 −∆n

)
VOn

(19)

In the statistical analysis presented for the band-gap refer-
ence generator, since manufacturing techniques for BJT are
different from those of CMOS, the effect of process variation
for BJT’s are not considered. The effect of the variation in the
input voltage (VT ) is also studied.

The property of interest is: “Whether for the given set of
parameters and variation in temperature T, will the output
voltage VO be greater than a certain threshold voltage?” The
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analysis was done only for thermal noise in additive form and
does not provide a statistical estimate to gain confidence in
the circuit verification.

For statistical run-time verification, it would be intriguing
to extend the above property to “Whether for the given
confidence level α, M MonteCarlo trials and B Bootstrap
trials, what is the probability of acceptance and rejection
of the output voltage VO for multiple trajectories TRAC
and varying input voltage VT ?” Here, TRAC is used to
depict the band-gap reference circuit under different shot noise
processes. For instance, if TRAC = 100, it represents “100”
band-gap reference circuit models that have independent shot
noise characteristics. For this case, the output voltage Vo

should be bounded within [Vo ≥ 3.13mV ] [16]. As a result,
the null hypothesis H0 and the alternative hypothesis H1 of
this property can be, respectively, expressed as

H0 : Vo ≥ 3.13e−3;
H1 : Vo < 3.13e−3;

(20)

Both the MonteCarlo and Bootstrap experiments were con-
ducted for the confidence level δ = 0.95 (α = 0.05) for dif-
ferent tail tests, with shot noise only and with TRAC = 200.
The results are summarized in Table III.

TABLE III
STATISTICAL RUNTIME VERIFICATION RESULTS FOR BAND-GAP

REFERENCE GENERATOR.
Additive Noise (P.V = Process Variation, A = Accept, R = Reject)

No Noise With Shot Noise and VT
M = Tail MonteCarlo BootStrap MonteCarlo BootStrap
B = Test A R A R A R A R

Lower 197 3 200 0 151 49 185 15

1000 Upper 193 7 200 0 159 41 187 13

Two 191 9 200 0 147 53 176 24

Lower 198 2 200 0 142 58 181 19

10000 Upper 199 1 200 0 151 49 182 18

Two 193 7 200 0 152 48 178 22

Lower 198 2 200 0 133 67 186 14

50000 Upper 198 2 200 0 127 83 190 10

Two 197 3 200 0 121 89 179 21

Multiplicative Noise

Lower 200 0 200 0 181 19 199 1

1000 Upper 199 1 200 0 181 19 199 1

Two 199 1 200 0 179 21 194 6

Lower 199 1 200 0 188 12 199 1

10000 Upper 198 2 200 0 183 17 199 1

Two 198 2 200 0 171 29 198 2

Lower 198 2 200 0 193 7 197 3

50000 Upper 199 1 200 0 191 9 197 3

Two 197 3 200 0 191 9 191 9

From Table III, it is interesting to see that even in the
absence of noise (shaded column), irrespective of the tail test,
the MonteCarlo technique produces some rejection. This is
because of the MonteCarlo theoretical assumption of normal
distribution of the output voltage Vo has resulted in this
false rejection. As the Bootstrap technique does not take
into account any assumption on the output distribution, it
has 100% acceptance of the output in the absence of noise
(column 5). In cases where the shot noise and VT variation are
considered (columns 7-10), it can be seen that Bootstrap has
more acceptance than MonteCarlo because of their resampling
method. Also, the effect of additive shot noise is greater than
that of multiplicative noise. This is because, the amplitude of
shot noise is in the order of millivolts and hence the effect
is almost negligible. In addition, the higher the number of

MonteCarlo/Bootstrap trials, the higher the rejection but at
the cost of simulation run-time. The effect of shot noise and
VT on the statistical results can be pictured using shmoo plots
as shown in Figure 10.
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Fig. 10. Shmoo Plotting of Band-Gap Reference Generator Results.

For each VT , the circuit is evaluated for different shot
noise models by sweeping the amplitude appropriately. In
the end, the total statistical result represents the number of
passed/failed circuits that equal the total number of trajectories
TRAC. The hypothesis testing result is analyzed by writing
’1’ for acceptance or ’0’ for rejection. The plot is shown for
the MonteCarlo statistical results.

For this circuit, the worst case run-time for M/B = 50000
is around 3-4 hrs, which though is considerably less than the
simulation done at the circuit level.

C. PLL Based Frequency Synthesizer

One of the major challenges for the verification of an AMS
design, such as the PLL, is evaluating the uncertainties due
to short-term frequency perturbation known as the jitter [2].
Jitter, a time-domain measure, is an unwanted contraction
or expansion in the output oscillating signal from its ideal
position. Such instability can result in wrong synchronization
of the AMS design and eventually leads to the loss of data.

Recently, the authors in [26] have made use of the jitter
models from [2] and have combined MonteCarlo and hypoth-
esis testing to provide a statistical estimate of the jitter property
specification. Unfortunately, they have failed to address the
issue related to noise in the filter circuit and process varia-
tion associated with the circuit elements. Figure 11 shows a
PLL based frequency synthesizer that is commonly seen in
communication systems for clock generation and recovery. It
is composed of two comparators, a phase/frequency detector,
charge pump, analog filter, voltage controlled oscillator (VCO)
and a divider.

The reference signal (Ref Signal) at the input is a sim-
ple sinusoidal wave with frequency ω0. The VCO output
(VCO out) is a cosine signal with frequency N+1 times of the
reference frequency, where N is determined by the frequency
select signal (Freq Sel). If the Freq Sel is ‘0’, the frequency
of the reference input and VCO output will be the same or else
the frequency will be divided accordingly based on the divider.
The jitter model from [26] is used to address the issue of
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Fig. 11. PLL Based Frequency Synthesizer

period jitter associated with the VCO. The SDE representation
of the filter behavior with additive and multiplicative thermal
noise can be described as

Ḟo =
1

RC
(CPo(t)− Fo(t)) +

2∑
k=1

αξk(t)

Ḟo =
1

RC
(CPo(t)− Fo(t)) + αξk(t)Fo(t)

(21)

where, Fo and CPo represent the filter and charge-pump
outputs, respectively, and R and C represent the resistor and
capacitor components in the filter circuit. The next step is to
apply the Euler/Milstein scheme described in Section III to
generate the following numerical model:

FOn+1 = FOn +

(
∆n

RC

)
(CPo(n)− Fo(n)) + α∆Wsn

FOn+1 = FOn +

(
∆n

RC

)
(CPo(n)− Fo(n)) + α∆Wn +

1

2

(
(∆Wn)

2 −∆n

)
FOn

(22)
The lock-time is an isolated property for all PLL based

frequency synthesizers, i.e., once the PLL gets locked, the
VCO will start oscillating until there is a change to the
Freq Sel signal. The method of verifying the “lock time”
property is to check if the output of the low-pass filter has
reached a new DC value within the lock time. In [25], the
authors have verified the property without accounting for jitter
in VCO and thermal noise in the filter as shown in Figure 12.
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Fig. 12. PLL Lock-Time Verification

For statistical run-time verification, the lock-time property
is “For the given confidence level α, M Monte Carlo trials, B
Bootstrap trials, and multiple trajectory TRAC, what is the
probability of acceptance and rejection that the PLL meet the

lock-time?” In this case, the PLL has been design with a lock-
time of 0.001sec [25]. Hence, the null hypothesis H0 and the
alternative hypothesis H1 of this property can be, respectively,
expressed as

H0 : lock time ≤ 0.001;
H1 : lock time > 0.001;

(23)

The simulation was carried out under the confidence interval
α = 0.05 and the jitter deviation as a normally distributed
model. The results for “200” trajectories are summarized in
Table IV. From Table IV, the combined jitter/thermal noise and
process variation (columns 15-18) have substantially increased
the PLL rejection, meaning the PLL has failed to lock.
The presence of jitter/thermal noise alone has shown higher
rejection. This is obvious that the effect of thermal noise is
reflected through the filter output, and at the VCO input, which
again adds up the jitter noise. As the VCO is considered to
be very sensitive, even a slight change to the input may cause
substantial changes to its output. In some cases, the failure to
lock does not mean that the VCO is not oscillating but, the
oscillation is either “ugly” or delayed.

It is also obvious that the case of process variation only
(columns 11-14) for additive/multiplicative noise have resulted
in the same number of rejection. This is because, both these
cases have been simulated with the same process variation
parameters. Also, both the additive/multiplicative noise have
an equal influence on the overall rejections. This is because
of the sensitive nature of the VCO, and even a millivolt drift
in the input can cause substantial changes to the oscillation. A
shmoo plot representing the pass/fail based on the lock-time
is shown in Figure 13. For this circuit, the worst case run-time
for M/B = 50000 is around 7-8 hrs, which is substantially
high compared to previous circuits.
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Fig. 13. Shmoo Plotting of PLL Results.

VI. CONCLUSION

This paper presented a methodology for the statistical verifi-
cation of noise and process variation in analog circuits. The ap-
proach is based on thermal and shot noise modeling in additive
and multiplicative form using stochastic differential equations,
and then integrating the device variation due to the 0.18µm
fabrication process in an SDE based simulation framework. We
have combined hypothesis testing with MonteCarlo/Bootstrap
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TABLE IV
STATISTICAL RUNTIME VERIFICATION RESULTS FOR THE PLL LOCK-TIME PROPERTY.

Additive Noise (P.V = Process Variation, A = Accept, R = Reject)

No Noise & P.V Noise Only P.V Only Noise & P.V Only
M= Tail MonteCarlo Bootstrap MonteCarlo Bootstrap MonteCarlo Bootstrap MonteCarlo Bootstrap
B= Test A R A R A R A R A R A R A R A R

Lower 152 48 200 0 129 71 181 19 180 20 187 13 137 63 174 26
1000 Upper 154 46 200 0 123 77 184 16 178 22 189 11 133 67 172 28

Two 150 50 200 0 129 71 189 11 175 25 181 19 131 69 170 30

Lower 168 32 200 0 124 76 173 27 172 28 185 15 121 79 169 31
10000 Upper 167 33 200 0 123 77 174 26 180 20 187 13 123 77 167 33

Two 163 37 200 0 124 76 171 29 175 25 181 19 122 78 164 36

Lower 148 52 200 0 119 81 177 23 177 23 182 18 112 88 164 36
50000 Upper 147 53 200 0 111 89 178 22 174 26 181 19 117 83 169 31

Two 141 59 200 0 107 93 171 29 171 29 179 21 110 90 161 39

Multiplicative Noise

Lower 154 46 200 0 128 72 189 11 180 20 187 13 139 61 177 26
1000 Upper 157 43 200 0 120 80 185 15 178 22 189 11 135 65 176 24

Two 153 47 200 0 125 75 181 19 175 25 181 19 137 63 175 25

Lower 159 41 200 0 121 79 175 25 172 28 185 15 130 70 174 26
10000 Upper 157 43 200 0 123 77 174 26 180 20 187 13 127 73 171 29

Two 154 46 200 0 118 82 171 29 187 13 188 12 124 76 169 31

Lower 147 53 200 0 107 93 171 29 175 25 181 19 111 89 168 32
50000 Upper 147 53 200 0 102 98 172 28 177 23 182 18 111 89 165 35

Two 145 55 200 0 106 94 169 31 171 29 179 21 114 86 161 39

technique for verifying the statistical properties of the design.
Our approach is illustrated on a Colpitts Oscillator and a PLL
based frequency synthesizer circuit.

The statistical run-time verification method involves re-
peated simulation and can consume a lot of time and memory
resources. The idea is to build a certain level of confidence in
the circuit by analyzing the results from a large sample. The
total number of samples depends on the values of MonteCarlo
and Bootstrap trials (M and B), and it is obvious that
the higher those values, the higher will be the confidence.
As 100% confidence cannot be achieved using the run-time
verification approach, it is necessary to complement them
with other methods. Many enhancements can be made by
combining run-time verification with formal methods to prove
properties of a given circuit. The formalization and verification
of AMS design is an interesting direction. The theories and
infrastructure developed in the context of higher-order logic
(HOL) have used random variables to verify the statistical
properties of probabilistic systems. Due to the stochastic nature
of noise, it would be intriguing to use HOL to develop an
infrastructure for noise.
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