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ABSTRACT 

Exergy-based Index for the assessment of building sustainability 

Ahmed El shenawy, Ph.D. 

Concordia University, 2013 

 The declining state of the environment, combined with the increasing scarcity of 

natural resources and economic recession, presents us with the need to discover building 

practices that are capable of producing sustainable buildings. Building promoters are 

racing to certify the sustainability of their projects, aware that building sustainability 

assessment will delineate the features of current and future building practice. A 

sustainable building implies that resource depletion and waste emissions are considered 

during its whole life cycle. This research project proposes a new methodology and 

Exergy-based Index to assess building sustainability and to assist decision makers 

comparing building alternatives, since the wrong decisions can lead to serious 

consequences and even precipitate crises. The proposed methodology uses the SBTool 

that has been utilized for defining the criteria for analysing and ranking the 

environmental performance of buildings. Over the past decade, significant efforts have 

been made in developing Sustainable Building (SB) assessment tools that allow all 

stakeholders/actors to be aware of the consequences of various choices and to assess 

building performance. These SB tools, approaches, rating systems, indices and methods 

of assessment have already been utilized in the market (e.g., Multi-Criteria Assessment 

(MCA) methods, such as LEED and SBTool, Life Cycle Analysis (LCA) systems, like 

ATHENA, and the Single Index (SI) approach (Ecological footprint)). However, are 

existing SB assessment tools actually capable of considering the regional issues? Is it 
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possible to use them to assess all types of buildings? Are they objective, easy to 

customize? Is it easy to interpret their final assessment results and are those results 

transparent to the end users? Despite the usefulness of the current assessment methods in 

contributing towards a more sustainable building industry, some of the limitations and 

critiques of these assessment methods indicate that the tools should evolve toward a 

genuinely generic and scientifically global SB assessment tool.  

After discussing and summarizing the limitations of the existing definitions, 

indices and rating systems for building sustainability assessment, a definition of a 

sustainable building in terms of thermodynamics is proposed, mainly based on the exergy 

concept. This proposal is supported by a general mathematical calculation for the exergy-

based index of building sustainability. The index uses the comparison between the 

available solar exergy (considered to be the only renewable energy source) and the 

exergy lost due to a building’s construction and operation to measure the a building’s 

sustainability. Moreover, the selection and transfer of data from the SBTool, and the 

assumptions and additional calculations required for the assessment of the exergy-based 

index of sustainability are presented and quantified. A rating scale is also presented along 

with the index of building sustainability. Finally, case studies of residential and 

commercial buildings are used to demonstrate the framework’s reliability. The 

contribution of the proposed Exergy-based index is evaluated by comparing its 

similarities and differences with a selection of the available building assessment tools and 

methods. 

Keywords: sustainable buildings, assessment tools, rating systems, single index, 

exergy  
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1 INTRODUCTION 

1.1 Background 

Buildings have a profound impact on the quality of our lives all along the 

different stages of their life cycle. They are a visible stamp of our culture on the 

environment. Buildings provide countless benefits to society, especially in more 

inclement areas such as the Canadian climate (Canadians spend about 90% of their time 

indoors), and they also have a dramatic impact on their occupants and the environment.  

As our planet becomes more populated, ever more buildings have been 

constructed to fulfill human aspirations, with corresponding material, water and energy 

consumption. This use of resources is not even distributed equitably, but indicates a 

shameful contrast in resource use between rich and poor countries, as well as between the 

elites and the lower classes. European environmentalists have determined that 80% of the 

world’s resources are consumed by 20% of the world’s population (Holladay 2010). The 

prospects for the global system do not look promising. 

The estimated material, water and energy consumption since the 1980’s have 

superseded the environment’s ability to replenish itself (DeArmon 2009). Certainly, little 

attention was paid to the environmental impacts of unsustainable practices before then. 

Today, the voracious use of our planet’s finite resources, which consists in part of non-

renewable fossil fuel energy  and the resulting increases in  carbon emissions and 

disposal of wastes, is accompanied by global environmental deterioration (Chichilnisky 

1997). Matters could soon reach the point of instability.  
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Kravanja (2012) stated that, based on detailed measurements, that the earth’s 

global energy balance is being progressively modified. Our planet is currently absorbing 

.5 PW more than what is being emitted back to the universe, which is 30 times more than 

the total world energy consumption (16 TW)) and results in total climate forcing of about 

1.8 W/m
2
 relative to 1880. . 

Global warming is just one of the many environmental problems caused by or 

related to the intensive use of materials, water and conventional energy resources, 

generally related to unsustainable practices and particularly due to unsustainable building 

practices through construction and operations. Unsustainable practices are often coupled 

with the releasing of vast amounts of anthropogenic-based materials. Canada’s 

anthropogenic GHG emissions on a per capita net basis are relatively high compared to 

other nations. While Canada produces 2.2% (720 million tonnes of CO2 equivalent) of 

total global GHG emissions, it only roughly has .5% of the world’s population (Canada 

2001). Moreover, one of the estimates suggests that the building sector in Canada alone 

accounts for 33% of energy production, 50% of extracted natural resources, 25% of 

landfill waste, 10% of airborne particulates and 35% of greenhouse gases (Lucuik 2005). 

Furthermore, ozone layer depletion, global warming, ecosystem destruction and resource 

depletion are considered to be some of the most serious environmental crises that have 

increasing importance in our daily life, linked directly or indirectly with the sector of 

building construction (Ding 2005). The scale of these environmental problems has 

extended from local to global, capturing the world’s attention. Climate change has been 

the focus of constant mass media reports nationally and worldwide, which gives an 

indication of how human activity has already reached levels at which it could alter the 
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planet’s climate and its biological viability unless revolutionary sustainability measures 

are employed.  

1.2 Problem statement 

A significant number of environmental problems are caused by or related to the 

intensive use of materials, water and conventional energy resources for building 

construction and operations. The evolution of those environmental impacts generated by 

building construction and operation has stimulated the development of several tools, 

methods and assessment approaches assessment for engineers, architects and researchers.  

Considerable efforts have been made in developing the Sustainable Building (SB) 

assessment tools which enable all stakeholders/actors to be aware of the consequences of 

various design choices and to assess building performance. Sustainable building 

assessment tools aim to go beyond the design stage to consider the importance of 

sustainable choices throughout the project appraisal stage when environmental matters 

are best incorporated. A large variety of SB tools, approaches, rating systems, indices and 

methods of assessment have been developed and are in use by different stakeholders (Seo 

2002). Despite the usefulness of the existing assessment methods and rating systems in 

contributing towards a more sustainable building industry, these methods and assessment 

tools still have several problems and limitations.  

Many of these approaches, rating systems and assessment methods are limited in 

that they only address isolated elements based on a single-dimensional approach, or 

based on multi-criteria analysis. A single-dimensional approach uses separate indicators 

or benchmarks (e.g., use a single criterion to monitor air quality and indoor comfort) 
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while sustainability assessment requires a multi-dimensional approach due to the 

complexity of the system (a building in this case). The single-dimensional approach 

focuses on only one aspect of the issue and does not allow the evaluation of alternatives 

where lower consumption of materials could be offset by higher GHG emissions or vice 

versa. Multi-criteria Analysis (MCA) is a decision making tool developed for complex 

problems. By using Multi-criteria Analysis  (e.g., LEED, BREEAM and SBTool) the 

members of an evaluation committee do not have to reach a general consensus in a 

multidisciplinary application, but merely agree on the relative importance of the criteria 

or the ranking of the alternatives.  Each member enters his or her own judgment and 

makes a distinct, identifiable contribution to a jointly-reached conclusion. These 

approaches consider the pillars of sustainability separately, and so fail to meet the 

increasingly popular desires of decision makers who ask that the links between these 

pillars are better-defined and quantified using linkage-based frameworks for 

sustainability assessment (Waheed et al. 2009). This challenge has not yet been solved, 

but some progress has been made in the last decade with the introduction of a two-part 

coupled framework (Dietz et al. 2009) and (Prescott-Allen 2001).  

There remains much room to improve the basis for sound decision making, such 

as the integration of many complex issues into a single decision criterion while providing 

simple and individual objectives that a busy decision maker can understand and use for 

comparison purpose. The fundamental challenge due to the complexity of sustainability 

requires a shift to systems thinking, to go beyond a mere collection of parts (considering 

the pillars of sustainability separately) and apply a more holistic assessment based on a 
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science-oriented approach to consider the sustainability of the whole system, the 

building, as composed of interacting subsystems.   

The use of a single index for assessing the progress towards sustainability is not a 

common practice. Two such sustainability metrics are monetary and biophysical. They 

utilize a common currency/denominator (e.g., money, land or energy).  

 

To date, no approach has been proposed by the building industry to assess 

building sustainability using a single index approach. Monetary tools have been set aside 

for their over-dependence on subjective valuations, and because they are not flexible 

enough to assess the progress towards sustainability in holistic manner. In addition, 

monetary metrics are  inadequate since sustainability assessment goes beyond economic  

or what some call the profitability versus the environment debate (Schley and Laur 1996). 

Among the biophysical metrics, exergy has been widely used as a thermodynamic 

property of a system, and  some authors (Rosen and Dincer 2001; Wall and Gong 2001a) 

have advocated using the exergy concept as a sustainability indicator, while others have 

based their buildings’ designs on exergy (e.g., ‘Minimum-energy house’ built in 1982–

1983 by architect Jon Kristinsson).  

Therefore, a new prototype framework is proposed in this thesis for the 

estimation, at the conceptual design stage, of a building’s sustainability over its assumed 

life span using an Exergy-based Index as an effective single decision indicator. This 

index is structured to allow the potential design alternatives to be explored in the search 

for the best sustainable alternative. 
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1.3 Organization 

This dissertation is organized as follows: 

Chapter 2 is a literature review of the definitions of sustainability, sustainable 

building and sustainability assessment. In addition to presenting a literature review of 

earlier categorizations of sustainability assessment tools, methods and approaches, a 

review about existing sustainability assessment methods is presented. An attempt to 

overcome the limitations of existing assessment methods was the major driver for the 

formulation of the proposed framework. A review about previous related indices of 

sustainability focused on using exergy is also presented. In chapter 3, a sensitivity 

analysis is applied to SBTool in order to investigate which issues to select for 

consideration based on the extent of their importance in influencing the final SBTool 

assessment results. Chapter 4 gives a detailed presentation of the proposed Exergy based-

Index of Sustainability (ExSI) methodogy. Chapter 5 introduces several case studies to 

demonstrate the application of the proposed framework. Finally, chapter 6 ends this 

dissertation with conclusions, contributions and future work.  
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2 LITERATURE REVIEW 

A deep understanding of the existing tools, methods and approaches of building 

sustainability assessment is required in order to grasp their characteristics. Building 

assessment methods are often used to evaluate building performance against specific 

standards or benchmarks. According to Kates et al. (2001), sustainability assessment 

assists decision makers in their evaluation of systems in both the short and the long term 

in order to determine which action should be taken to attain sustainable achievement. For 

a better understanding of the methodology behind the development of the proposed 

framework, the progress in sustainability assessment is reviewed in this thesis in the 

following three domains: (i) analysis of the definitions of sustainability and sustainable 

building and the conceptual challenges of sustainability (e.g., time- and location-

dependence, capturing diversity), (ii) classification and the (earlier) categorizing of tools 

and assessment methods are presented and a brief outline is provided for each category, 

complemented by identification of their key aspects, and (iii) evaluation of the existing 

sustainability assessment tools, approach, indices and methodologies. Finally, based on 

analysis of the published information about conceptual limitations and critiques of the 

existing tools and methods of assessment, the objectives for this study are set. 

2.1 Sustainability and sustainable buildings 

Sustainability has been defined in a variety of ways; virtually all are covered in the 

following section.  



8 

 

2.1.1 Sustainability definitions 

The concept of sustainability has been reviewed in different fields in an attempt to 

clarify the use of the term. Linguistically, Brown et al. (1987) define sustainable as 

“capable of being upheld; maintainable” according to the Oxford English Dictionary. 

Sustainability thus is the capacity of a system or a process to maintain itself indefinitely 

in harmony with the biophysical systems of the planet. In resource management, Tivy et 

al. (1981) define sustainable yield as the “management of a resource for maximum 

continuing production, consistent with the maintenance of a constantly renewable stock.” 

In terms of carrying capacity, sustainability is defined as “the maximum population size 

that the environment can support on a continuing basis” as well as “the number of people 

that a given amount of land can support”. A sustainable society is seen by Brown (1981) 

as “an enduring one, self-reliant and less vulnerable to external forces”, which means that 

a sustainable society is more independent. Although these definitions contain many 

differences, overall they have a set of common foci which is based on a social, economic, 

or ecological perspective. The meaning of sustainability varies according to who is using 

it and in what context. 

Becker (1997) shows the normative and scientific aspects of sustainability. He also 

indicates that a critical analysis of the normative concept of sustainability is required in 

order to avoid its misuse for ideological objectives and/or economic interest. Hill et al. 

(1997) represent some of the writers’ and economists’ opinions on how to achieve 

sustainability. Writers such as Leopold (1949) and Carson (1962) call on people to 

embrace a lifestyle that shows much more consideration for our Earth’s life support 

systems. They (and many others since their time) advocate for a so-called post-
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materialistic society that gives precedence to spiritual and psychological well-being 

rather than materialistic consumption. Economist Solow (1993) proposed practical steps 

toward sustainability and argued that its development will cause some drawdown of 

current non-renewable resource stocks, and so sustainability should mean more than 

merely the preservation of natural resources; other steps to offset these drawdowns are 

necessary. Clifton (2010) discusses how humans could live sustainably on the Earth and 

how they might go about achieving that goal. He noted that existing typologies (e.g., 

sustainable world dimension typologies that focus on presenting a picture of what is 

meant by a sustainable world) are useful but they remain merely descriptive. These 

observations support the growing need for tools to assess the progress of achieving 

sustainable world outcomes. The sustainability concept has undergone a period of 

maturing in terms of basic understanding of what sustainability implies, which is well 

described by Hueting et al. (2004) and Laws et al. (2004). In just a few years, sustainable 

development received more than 200 formal definitions through the work of Parkin 

(2000). 

Glavic et al. (2007) provide the results of their literature survey of sustainability 

terms and their definitions. They suggest that a hierarchical classification and the 

relationships of sustainability terms needs to be developed to achieve improved and 

easier understanding among the varied fields it touches.  

2.1.2 Sustainable buildings definitions 

The term “Sustainable construction” or more specifically “sustainable building’ is 

always introduced in the context of sustainability, introduced for the first time in Tampa 
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(1994) as “the creation and responsible maintenance of a healthy built environment based 

on the resource efficient and ecological principles” (Kibert, 1994). That broad definition 

can be viewed as a starting point from which to build and develop a more objective 

definition for sustainable construction. Since then, the international research symposia of 

the Civil Engineering Research Foundation (CERF) in 1996 and of the International 

Council for Research and Innovation in Building and Construction (CIB) in 1998 served 

as platforms to answer  questions about the consequences of sustainable development in 

the construction industry (Brochner et al. 1999). In 1998, the CIB report presented the 

contributions of the 14 participating countries towards a definition of sustainable 

construction after describing their national constraints and specific issues that provided 

the context to those definitions (Bourdeau 1999). In the same context, Brown  elaborated 

that the term sustainability is strongly dependent  upon the context and that it will be 

much more useful if the temporal and spatial scales are being considered (Brown et al. 

1987).  

Some of the synonyms for sustainable buildings that have been used by different 

authors and organizations are: “energy-efficient buildings”, “environmental buildings”, 

“eco-buildings”, “green buildings” and “high-performance buildings” (Keeping 2000). 

Hill and Bowen (1997) presented the semantic problems of describing sustainable 

construction as an activity that can continue forever, while a construction project has a 

limited lifespan (e.g., 75 years).  

The dynamic versus the static features of the meaning of sustainability have been 

discussed by Kemmler et al. (2007) and Zmeureanu (2006). Kemmler et al. (2007) 

explained that while sustainability, in theory at least, is an ultimate goal for nations, 
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communities, and firms, its quantification remains difficult since it does not have a fixed 

condition, nor is there a final sustainable state. It is inherently a dynamic process, as 

successive generations, with different knowledge, technology, and needs, will define 

sustainability in their own way based on a society’s worldviews and values. On the 

contrary, Zmeureanu (2006) specified that in order to achieve sustainability, the final 

destination must be defined in such a way that sustainability indices can be measured and 

compared with accepted benchmarks. Lee et al. (2007) stated that preferences must be 

made explicitly in the decision-making process when choosing between options. 

Furthermore, in the absence of full knowledge, a measurement must be based on 

judgments about what is important.  

2.2 Challenges to sustainability assessment 

The ultimate goal of sustainability assessment is to assist designers, developers and 

regulatory bodies to overcome the challenges they face when potential design alternatives 

are explored in the search for the most sustainable alternative while balancing the often 

conflicting requirements of short-term political success, social progress, economic 

growth and environmental sustainability. This goal raises a number of challenges that 

have not yet been addressed satisfactorily. In this section, we consider some challenges 

that our approach specifically raises: conceptual challenges of sustainability, time and 

location dependence, capturing diversity, users’ involvement and their building capacity, 

and scales. 
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2.2.1 Conceptual challenges 

Consensus on how to change sustainability from a buzz word to a meaningful 

concept that could then become useful for decision making on a broad basis remains a 

distant goal. 

The uncertainty over the meaning of sustainability has given those involved in 

sustainable development the opportunity to add their own input to the meaning of 

sustainability. All definitions can thus remain fashionable, and this may, in fact, be self-

reinforcing and sustainable on its own. Kidd (1992) argues that since people differ in 

their economic, social, and environmental conditions, it is probably not possible or even 

desirable to have a single definition to promote across this diversity. Such a dynamic 

concept must evolve and be refined as our knowledge, experience and understanding 

develops.  

However, the lack of general consensus on the definition of sustainable buildings is a 

good reason to return to the fundamental definition of sustainable development as given 

by Brundtland’s report as “a way to meet the needs of the present without compromising 

the ability of future generations to meet their own needs” (Brundtland 1987). A crucial 

matter in this definition is that, “ meeting the needs” is a rather ambiguous phrase since it 

does not define the current needs, the future generation’s needs, the type of resources that 

would be used (renewable or non-renewable) and their availability. The definition implies 

that all required resources are available and ignores that there are ultimate limits to the 

stock of material resources, of certain energy sources and to the environment’s ability to 

absorb wastes and other stresses (Lélé 1991). The lack of clear definition of those 

elements makes the quantification of sustainability very difficult and eliminates the 



13 

 

possibility to operationalize it into a concept that can be used to build a suitable 

framework with which to measure sustainable buildings. Bender et al. (1997) proposed 

the degree of consensus as a measure for achieving sustainability, which calculates the 

level of agreement between the set of interested or affected stockholders about the 

ranking for each alternative.  

The need for a scientifically-based definition that can be used as an acceptable 

platform for an assessment tool is certainly one of the numerous challenges to 

sustainability.  

2.2.2 Spatial and temporal dimensions of sustainability 

 A global consensus on the path toward sustainability and its corresponding targets 

and measures would be a very practical achievement.  In  this  context,  the spatial  and  

temporal  scales  at which a system is observed are  the  key  elements for achieving 

sustainability (Gavrilescu et al. 2011). The scale limitations of assessment tools affect 

their utility for decision-making (Ness et al. 2007). The importance of where the system 

boundary resides, the ‘spatial’ boundaries of assessment, is already recognized when the 

concept of sustainability is concerned. Such problems gave rise to the concept of ‘life 

cycle assessment’ or LCA, also known as cradle-to-grave analysis. The spatial scale may 

correspond to a single-family home up to the whole planet. However, these scales are 

interlinked and it is not easy to separate them. While Mayer (2008) shows that the data 

availability tends to be complete for politically-bounded systems, it remains sparse for 

smaller and non-politically-bounded defined systems. Bell et al. (2008) argue that 

political boundaries such as those of a city may not be of much theoretical use if that 
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boundary is heavily influenced or even dependent upon what happens outside the area. 

The smaller the scale, the less and the more precise the data that needs to be collected 

(e.g., in the case of micro-level assessment, only building-specific data is considered). 

Scales can be “gate-to-gate” (narrow), “cradle-to-gate” (broad), or “cradle-to-grave” 

(with a very broad boundary) (Hammond and Jones 2008). Unsustainability states, trends, 

and drivers may be apparent only when an appropriate spatial scale is considered. To 

illustrate this need for an appropriate scale, a relevant example is given by (Moldan and 

Dahl 2007), in which a local community can appear sustainable if it exports its 

unsustainable consumption or waste disposal. This is highlighted as a leakage 

phenomenon (Mayer 2008). Jeswani et al. (2010) present the importance of spatial 

differentiation to integrate environmental problems on different system levels. 

The temporal scale over which sustainability needs to be achieved is a further 

challenge. If one only considers the sustainability of a system across a short time horizon 

rather than the whole life span, the picture could be quite different. Mayer (2008) shows 

that a common resolution for sustainability data is one year. However, Bell et al. (2008) 

argue that different systems may require different timescales, and that even in the same 

system different components of sustainability may best be measured in different time 

frames. The interpretation of the sustainability trend may be quite different based on 

which duration is considered (Harrington 1992). Moreover, sustainability could fluctuate 

with time. While some periods could show unsustainability as the quality of the system 

declines, other periods could show a marked sustainability due to a rapid increase in the 

system quality after renovation. The importance of the reference point for gauging 
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sustainability is thus quite obvious, as careful selection of both the scale and reference 

point, can be used to prove almost any conclusion.  

There are several different conceptual foundations currently used in quantitative 

sustainability research, which generally fall within either a weak or a strong sustainability 

approach category.   

2.2.3 Weak sustainability versus strong sustainability 

Within the same system and time scale, it is quite possible to arrive at different 

judgements depending upon what some call the costs of achieving sustainability, or what 

Schely et al. (1996) call the ‘profitability versus environmental debate’. The debate 

currently focuses on the substitutability between the economy and the environment. A 

debate is captured in terms of “weak” vs. “strong” sustainability (Neumayer, 2003), and a 

number of frameworks have been proposed. The two different visions of sustainability 

can be regarded as mutually exclusive rather than as two ends of a spectrum. The strong 

sustainability viewpoint equates to what some have called ecological sustainability. In 

this case, there is little if any consideration of the financial and other costs of attaining 

sustainability, and the system quality is assessed in terms of the physical measures of 

things. To better assess strong sustainability, a stock of resources that cannot be 

substituted by other stocks or capital to perform the same functions were introduced by 

the concept of critical natural capital (CNC) (Ekins et al. 2003). In this vision of 

sustainability there is no trade-off between economic gains and long-term environmental 

quality; the health of the environment is clearly highest priority. 
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At the other end of the sustainability spectrum, weak sustainability inevitably 

equates to a sort of economic sustainability in which financial value is a key element of 

system quality. This concept promotes a type of assessment in which environmental 

quality can be traded against economic gain, which simply means that environmental 

quality is valued in monetary terms. Ayres (2007) considers the arguments for weak vs. 

strong sustainability. He supports the strong sustainability vision and concludes that new 

technology can and will create viable substitutes for natural capital. Optimum 

technological solutions remain to be discovered, since they have not yet proven to be 

better or less costly.   

As mentioned above, unless the sustainability challenges are met in a satisfactory 

way, sustainability cannot be achieved because they contain the context in which the 

process must take place. 

2.3 Sustainability assessment methods  

The process of developing a more appropriate measurement framework requires both 

a critical assessment of the existing methods and an innovative approach that can handle 

the limitations of existing assessments (see section 2.4). The existing sustainability 

assessment methods are explored to define their limitations and to gain from their lessons 

to develop an effective framework for sustainability assessment. That framework is 

presented in detail in the proposed methodology, chapter 4. 

2.3.1 Sustainability assessment definitions 

Some of the definitions for sustainability assessment that have been proposed by 

different authors include : “a tool that can help the decision makers and the policy makers 
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decide which action they should or not take in an attempt to make society more 

sustainable” (Devuyst et al. 2001). “a process by which the implications of an initiative 

on sustainability are evaluated, where the initiative can be a proposed or existing policy, 

plan, program, project, piece of legislation, or a current practice or activity” (Pope et al. 

2004). Later, (Gasparatos et al. 2008) defined sustainability assessment as a framework 

or tool that provides guidance for a shift towards sustainability as well as a measure for 

that shift. Handfield et al. (2001) concluded that sustainability will not be successfully 

incorporated into firm actions until there are effective ways to measure progress towards 

it. He also mentioned that the first way for an engineer to optimize their design for 

sustainability is to measure. The above-mentioned definitions implicitly highlight the 

main functions of the assessment tools: (i) decision-making, (ii) performance assessment, 

(iii) support tools, and (iv) measurement methods.  

2.3.2 Existing categorization of sustainability assessment methods 

Based on a limited understanding of the sustainability concept, and based on what 

dimensions have been considered and employed by different authors and organizations, 

several classifications have been introduced to understand the state of the art in the field 

of building assessment. A classification of the assessment tools, methods, and indicators 

has demonstrated that they are categorized based on numerous factors or dimensions, 

such as the nature of input data, the scope, the timing, etc., or they are based on the 

certification type, which can follow a standard or custom and non-standard rating system 

(Foliente et al. 2007). Haapio et al. (2008) added that assessment tools can be categorized 

based on their content and characteristics. These characteristics include: 1) the building 
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type, 2) the tools’ users, 3) the life cycle phases, 4) the tools’ databases, and 5) the forms 

of the results (the results of a building assessment can be presented in the form of graphs, 

tables, grades, certificates, and/or reports). Forsberg et al. (2004) use contextual and 

methodological aspects to compare different tools conceptually and analytically. 

Contextual aspects include the type of decision maker, the overall purpose, the specific 

objective/primary type of building and the object(s) analysed, while methodological 

aspects include the dimensions investigated, the type of environmental parameters, the 

system boundaries, the presentation of the results and the aggregation of the results. 

i. Forsberg et al. (2004) classified assessment tools into qualitative and quantitative 

types;  the first category is based on scores and criteria (e.g. LEED and SBTool are 

examples of widespread and well-known tools), and the second category is based on 

physical life cycle assessment with quantitative input and output data indicating the  

flows of matter and energy. 

ii. Gasparatos et al. (2008) suggested that sustainability assessment tools have thus far 

relied either on reductionist methodologies (e.g. monetary tools and biophysical 

models) or a holistic approach (e.g., multi-criteria assessment). The former is 

adopted for a better understanding and description of a system while the latter is 

referring to as the set of considerations that have to be addressed by the analyst and 

decision makers during the assessment stage.  

iii. Ness et al. (2007) classified assessment tools based on their temporal focuses which 

either look back in time as retrospective indicators/indices (e.g., Ecological 

Footprint), or are forward-looking (prospective, forecasting) integrated assessment 

tools. (e.g., Multi-Criteria Analysis (MCA)).  
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iv. Pope et al. (2004) reviewed the evolving concept of sustainability assessment and its 

origins that include environmental impact assessment and strategic environmental 

assessment. He also discussed their expansion to include social and economic 

considerations in the forms of EIA-driven integrated assessment and objective-led 

integrated assessment. The previously-mentioned approaches are classified as 

‘direction to target’ approaches (the exact position on the scale between less 

sustainable and more sustainable is not defined as well as the sustainable target is). 

Pope also concluded that the ‘distance from target’ approach is becoming more 

useful as a means to assess whether an initiative is, or is not sustainable. 

v. Haapio et al. (2008) mentioned two of the well-known classification systems for 

building environmental assessment tools. One was developed by the ATHENA 

Institute (AthenaTM, 2007) and the other by IEA Annex 31 (IEA, 2001). While 

Athena classification has three levels which are mainly dependent upon where in the 

assessment process they are used and for what purpose, IEA Annex classification is 

much broader (see table 2.1). 

Table ‎2.1: Athena versus IEA Annex 31 classifications  

Athena IEA Annex 31 

  1. Energy Modelling software 

Level 1: product comparison tools and information 

sources (e.g., BEES 3.0 and TEAM™) 

2. Environmental LCA Tools for Buildings and 

Building Stocks 

▪ Level 1: BEES 3.0 and TEAM™ 

▪ Level 2: ATHENA™, BEAT 2002, BeCost, Eco-

Quantum, Envest 2, EQUER, LEGEP® and 

PAPOOSE 

▪ Level 3: EcoEffect and ESCALE 

Level 2: whole building design or decision support 

tools (e.g., ATHENA™, BEAT 2002, BeCost, Eco-

Quantum, Envest 2, EQUER, LEGEP® and 

PAPOOSE) 

Level 3: whole building assessment frameworks or 

systems (e.g., EcoEffect, ESCALE, EcoProfile, 

BREEAM, Environmental Status Model, and 

LEED®) 

3. Environmental Assessment Frameworks and 

Rating Systems 

▪ Level 3: EcoProfile, BREEAM, and LEED® 

  

  

  

4. Environmental Guidelines or Checklists for Design 

and Management of Buildings 

5. Environmental Product Declarations, Catalogues 

Reference Information, Certifications and Labels. 
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vi. IEA (2001) described interactive software and passive tools, the former includes 

the first and second category presented in IEA 31 and the latter includes the third, 

fourth and fifth category. Interactive tools provide calculation and evaluation 

methods which enable the user or decision maker to explore a range of options in 

an interactive way, while passive tools support decisions without much interaction 

with the user and without the degree of customization and the computational 

support given by life cycle analysis tools and simulation models. Table  2.2 

summarizes these approaches towards categorizing sustainability assessment.  

Table ‎2.2: Existing categorization of methods, tools and indicators of sustainability assessment 

Categorization 

dimensions 
Category no.1 Category no.2 Reference 

Nature of data Qualitative Quantitative Forsberg and von Malmborg, 2004 

Approach Holistic approach 
Reductionist 

approach 
Gasparatos et al., 2008  

Temporal Prospective Retrospective Ness et al., 2007 

Achievement Direction to target Distance from target Pope et al., 2004 

Scale  

(assessment level) 
Whole building Building products 

Haapio and Viitaniemi, 2008; Trusty 

2003  

Interaction Passive tools Interactive tools IEA, 2001 

 

Integrating two categories of assessment tools into one hybrid tool has been 

suggested by some authors, such as Soebarto and Williamson (2001) and Trusty and 

Horst (2002). Soebarto et al. (2001) integrate a holistic and a reductionist approach. They 

suggest a new methodology for approaching a multi-criteria problem, converting it into a 

two-criterion problem by forming a weighted sum of the benefits and cost for each 

solution and formulated it in terms of a familiar benefit-cost analysis model to then 

calculate the net benefit for the solution. Trusty et al. (2002) clarify the significant 

benefits of integrating LCA tools into criteria scoring systems, which may also reduce 

assessment complexity and cost. The U.S. Green Building Council’s USGBC work to 
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incorporate the life cycle assessment of buildings materials as part of the LEED program 

is a direct result. 

2.4 Critical analysis of existing sustainability assessment methods  

The building sustainability assessment field has provided a key focus for building 

research and practice in the past decades since it is used as an interface between 

environmental, social, and economic concerns in a decision making framework which 

enables all the stakeholders/actors to be aware of the consequences of various choices.  

There is a variety of tools and methods of assessment that have been used and 

tested with different goals as to what objectives to analyse. These assessment methods are 

at different stages of development. Suggestions about the insufficiencies of current 

building assessment methods are available in the literature. It is necessary to study the 

existing tools and methods in sufficient detail in order to learn lessons from their 

strengths and weaknesses. Therefore, critical analysis is conducted after grouping the 

existing methods based on the proposed categorization (see table 2.2). 

Haapio and Viitaniemi (2008) clarify the importance of analyzing the building 

sustainability assessment methods in groups rather than separately, which enables the 

investigation of shared aspects and common features, emphasizes the differences, and 

makes it easier to identify the limitations and weaknesses. Therefore, the current situation 

of building assessment methods tools is analyzed in groups (see section 2.4.2).  

2.4.1 Categorization of existing tools/methods of sustainability assessment 

Over the last two decades, sustainability assessment has witnessed a rapid increase 

in the number of building assessment methods. A new categorization is proposed and an 
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appraisal of contemporary assessment methods addressing sustainability at the micro 

(individual building) level is conducted to understand the mechanics of assessment. 

The proposed categorization of building sustainability assessment consists of three 

general categorizations: 1) Multi Criteria Assessment (MCA), 2) Life Cycle Analysis 

(LCA), and 3) Single Index (SI). Life Cycle Analysis is categorized separately for its 

uniqueness in using a unique single indicator, such as life cycle cost, life-cycle energy 

consumption, life cycle impact, life cycle exergy lost and life cycle CO2 emissions, or 

using more than one indicator. ISO (1997) presents the importance of using a single 

indicator, as it may reduce the difficulty of comparing different design alternatives by 

decreasing the number of objective functions that will be handled through the assessment.  

2.4.1.1 Multi Criteria Assessment (MCA) methods 

Multi criteria assessment (MCA) is an approach that allows the designer or the 

user to test the design strategies against different sets of criteria where the performance of 

a building is always compared to a reference building. References are usually selected to 

lend meaning and to give political weight to the available data. They are mostly used in 

the results’ interpretation. These references might be threshold values (distance to 

collapse), baselines (distance to a certain meaningful state), targets (distance to political, 

hard or soft targets), or benchmarks (difference from another country or standard). Multi-

criteria assessment can also be used to investigate incremental improvement assessed 

against a single criteria (i.e., reduced energy consumption) (Soebarto and Williamson 

2001). Criteria scoring systems are considered as a type of subjective assessment. 
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Assessment methods within this category have the advantage of covering the most issues 

and providing detailed insights, but these sets are complex and difficult to interpret. 

Two types of approaches can be distinguished by how they describe a building’s 

overall performance: with a single value or with an array of values. Two steps are used to 

reduce the overall assessment score to a single value: starting with the simple designation 

of a number of points for each criterion, using a different scoring system and without 

concern for the relative importance of one criterion relative to others, and then using a 

simple aggregation to provide a total score. The array method uses a common scale as the 

basis for assessing all criteria and then applies weightings to acknowledge the different 

significance of each criterion prior to deriving the aggregate score (Cole 1999). While a 

single result approach is easy to understand, the array approach provides more detail. 

LEED is as an example of an assessment methodology utilizing the single number 

approach, while SBTool uses the array approach.  

2.4.1.2 Life Cycle Assessment (LCA) of energy, cost and emissions 

Life cycle assessment is a methodological framework for estimating and assessing 

the environmental impacts (e.g., climate change, stratospheric ozone depletion, 

eutrophication, acidification, toxicological stress, depletion of resources, water use and 

others). It is an analytical tool to assess a product, whether goods or services, by taking a 

“systems” perspective across all life phases. It considers all attributes or aspects of human 

health, ecosystem quality, resource and life cycle cost attributable to the life cycle of a 

product, process, or service across all life phases except the operation phase (Rebitzer et 
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al. 2004; Szalay 2007). Simpson et al. (2011) described LCA as an extension of first-law 

analysis since it tracks the mass and energy of the inputs and outputs of a system. 

Crawley et al. (1999) clarify the difference between Environmental Impact 

Assessment EIA and LCA, since the former focus on assessing the actual performance of 

an object located on a given site and in given context, whereas LCA is formulated to 

assess the non-site-specific potential environmental impacts. LCA considers all the 

phases of the building process. The life cycle of a building spans from resource extraction 

to final demolition and recycling, through production, construction and sometimes 

maintenance and renovation throughout the operation stage. LCA requires some 

assumptions such as the expected lifetime of a building and user behaviour (Nibel et al. 

2005).    

According to Wang et al. (2000), four major phases are recognized through the 

LCA process: 1) goal definition and scoping (the purpose and the temporal and spatial 

boundaries are defined); 2) inventory analysis (input and output are quantified using the 

same unit; otherwise, transformations between different units are involved); 3) impact 

analysis (evaluation of the potential impacts of inflow and outflow following some 

mandatory steps, as well as one or more of the optional steps). Mandatory steps include 

the selection of impact categories, classification, and characterization; optional steps 

include normalization, grouping and weighting; and 4) interpretation (verification of the 

impact assessment results according to predefined goals from the first phase and 

reporting them in a neutral and informative manner).  

Distinctions between two types of LCA, attributional and consequential, have 

been presented by many authors (e.g., Heintz et al. (1992); Weidema (1993); and Ekvall 
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(2000)). The distinction between these types of LCA, which is based on their goals, is 

quite important since it affects how the product system is modeled. While the term 

“attributional LCA” is used to describe a product system and its environmental 

exchanges, “consequential LCA” describes the expected change of the system as a result 

of actions taken in the system. 

Functional units, technological change and data- and labor-intensive aspects are 

the three issues that most need to be addressed in LCA building assessment. According to 

Finnveden et al. (2009), LCA differs from other assessments in its definition of 

functional units (e.g., emission to air) and in how the boundary between a system, a 

building, and the environment is drawn (extended in time and space) -- a definition which 

is often decisive for the result of an LCA study. Frijia et al. (2012) elaborate on that 

concept and argue the importance of applying a restricted functional unit, bounding the 

functional unit to a climate-controlled space rather than to the activities that occur within 

the building space. If restricted functional is applied, the building’s life cycle energy that 

can be attributed to materials and construction is increased from 0.4-11% to 

approximately 30%. LCA is criticized for its retrospective approach which can be 

overturned by technological developments. Forecasting retrospective trends in material 

flows or constructing future technology scenarios and then relating such scenarios to 

material flows are two of the means suggested to deal with the consequences of 

technological changes. Since LCA is data- and labor-intensive, parametric models could 

be implemented to address those challenges. 

Some examples of LCA-based tools include BEES (U.S.A), ENVEST (UK), 

ATHENA (North America), EcoQuantum (Netherlands), EcoEffect (Sweden), Ecoprofile 
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(Norway), and BEAT 2000 (Denmark) (Seo 2002). ENVEST (UK) is one of the tools 

that calculates the operating energy consumption with simplified methods and that  also 

brings a broader range of considerations to the assessment process (Cole et al. 2005). If 

the LCA is combined with life cycle costing (LCC) then two pillars of sustainable 

development (environmental and economic) will be covered. Baouendi et al. (2005) 

developed EEE as a prototype tool that is coupled life-cycle energy consumption, 

greenhouse emissions, and life cycle cost for house. 

2.4.1.3 Single Index (SI) methods 

Sustainability indicators are considered as an effective means for assessing the 

degree of sustainable development (SD). Useful indicators are those that can be adopted 

effectively to translate abstract concepts into quantifiable data and describable measures. 

SI methods are capable of characterizing various aspects of sustainability, such as 

cumulative indices or collections of indicators into a useful metric. However, it is a 

challenge to turn indicators into a decision-support system. Numerous researchers have 

indicated the four main categories of issues that need to be resolved: 1) the ability to 

monitor the progress towards sustainability, 2) ease of use, with indicators that are easily 

understood by decision makers, 3) flexibility in selecting indicators and units of analysis, 

and 4) providing research results in a format that is clear to non-professionals.  

The usefulness of a sustainability assessment method depends on the number of 

indicators: too few may not provide an adequate description, and too many could make 

the cost of completing the assessment prohibitively high. Identifying the best indicators 

and the optimal number that present the issues of sustainability will be a real advance. It 



27 

 

is extremely difficult to interpret the results of assessments that do not combine their 

indicators into a small set of indices, whereas those that do combine their indicators into a 

limited number of indices can provide a clear picture of an entire system. However, the 

aggregation itself may have a significant influence on the overall scores, which could 

intentionally or unintentionally introduce arbitrary weightings or other user-controlled 

features. 

Single index (SI) assessment is the third category of sustainability assessment 

methods, and provides evaluations through the development and utilization of single 

sustainability metrics. Mayer (2008) defines an index as a single measure that can 

quantitatively aggregate the value of several indicators to provide a simplified, coherent, 

and multidimensional view of a system. Even though SI methods are quite contrary to the 

MCA in approach, they are also complementary. The MCA analyses the elementary 

components of a system (criteria-based) in order to evaluate it, whereas the SI approach 

seeks to consider the entire system in its complete complexity by using one single index. 

ISO (1997) presents the importance of a using single indicator that may reduce the 

difficulty of comparing different design alternatives by decreasing the number of 

objective functions that will be handled through the assessment. Two metrics that can be 

put into practice as sustainability metrics are monetary and biophysical metrics, which 

have a similar procedure of initial quantification and subsequent aggregation for the 

diverse issues of sustainability (Gasparatos et al. 2008). These tools utilize a common 

currency/denominator (e.g., money, land or energy) which is defined as the tool’s metric. 

Pearce et al. (1989) and Pezzey et al. (2002) noted that monetary tools were the 

ones first proposed for assessing sustainability, but, due to the inadequate expression of 
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environmental and social issues in monetary terms. Other measures with a solid 

foundation in natural science using biophysical models were subsequently proposed. 

Monetary tools 

Monetary measures of sustainability represent an attempt by economists to 

incorporate the concept of sustainability into an existing theoretical framework. Monetary 

indices are classified  into two types, those pertaining to green national accounting and 

those attempting to measure general well-being  (Farrell and Hart 1998).  

A number of monetary tools that have the potential for assessing sustainability are 

reviewed by Gasparatos et al. (2008): the Contingent Valuation Method (CVM), Cost 

Benefit Analysis (CBA), and the Index of Sustainability Economic Welfare (ISEW), 

where money is used as common denominator or currency. Adapting existing monetary 

tools to assess sustainability has gained validity due to their strong theoretical 

foundations in economic theory. Pearce et al. (1989) argue that money is a useful metric 

because of the intensity of that preference, and because monetary values are relatively 

easy to be understood by non-experts and relevant stakeholders. However, Alberti (1996) 

shows that monetary tools are over-dependent on subjective valuations, not flexible 

enough to assess the progress towards sustainability in a holistic manner, and inadequate, 

since sustainability assessment goes beyond economic efficiency.  

 Furthermore, several criticisms related to the methodological and conceptual 

aspects of valuing certain environmental and social issues (e.g., placing dollar values on 

human life) have recognized that some issues cannot be translated meaningfully into a 

valuation in terms of product services in existing markets. This aspect renders the 

generalization of research results quite problematic (Pearce et al. 1989). Sinden (2004) 



29 

 

observes that the monetary approach lacks authenticity as to how individuals actually 

value diverse goods. Howarth (1996) adds that discounting is an important and 

controversial aspect, performed in order to compare future values with present ones. 

Consequently, future impacts with long time horizons and a greater discount rate count 

for very little in the present, which is contrary to the goal of equity between different 

generations.  

Biophysical tools 

The foregoing criticisms related to monetary tools were the major drivers behind 

the establishment of biophysical tools that use a metric other than money (Nonmonetary 

tools). Ecological footprint (EF), emergy synthesis and exergy analysis are the most 

comprehensive tools in this category, and to date are the only three that have gained some 

acceptance among academics.  

Ecological Footprint was founded by M. Wackernagel and W. Rees (Wackernagel 

and Rees 1996). It is based on the area of land as a limiting factor. The most acceptable 

definition that conveys the meaning of the approach is an accounting tool that estimates 

the productive land area, measured by “global hectares” (gha) that is required to sustain 

the current load of resource consumption and waste discharge by a defined human 

population or economy, using existing technology (Hau and Bakshi 2004). This index is 

sensitive to geographical location, and it is criticized because it requires a large number 

of conversion coefficients to be developed. 

Emergy analysis (EMA) is a type of quantitative analysis that explicitly 

determines the value of ecological and economic aspects (Brown and Herendeen 1996), 

services and commodities in common units of solar energy, abbreviated as sej (Odum 
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1988). It is described by Sciubba et al. (2005) as a “Top-down” process. Emergy flows 

are aggregated to provide a simplified picture of the metabolism of a system, linked to 

relevant aggregated flows such as renewable resources (R), non-renewable production 

(N), and purchased services (imports/exports) (F) (Giannetti et al. 2006). The attractive 

features and criticisms of EMA have been clarified (Hau et al. 2004; and Gasparatos et al. 

2008). Among these attractive features are: 1) the ability to compare different 

materials/energy sources, using its common unit; 2) it jointly addresses economic and 

ecological systems which could be considered as an alternative for many holistic 

approaches that go beyond the single process; and 3) it takes into account the contribution 

of the ecosystems to human well-being. Inversely, some of emergy analysis’ criticisms 

are that: 1) it ignores the human preference, and 2) it has an uncertainty in its utilized 

transformity values.  

2.4.2 Review of building assessment methods 

Some of the existing approaches are studied in detail to learn from their strengths 

and weaknesses. The review covers the three categories of assessment methods. The 

choice of these assessment methods was guided by the need to study methods that assess 

the whole individual buildings and systems; assessment methods at an urban scale and for 

products are excluded as their objectives are not within the scope of this research. Most 

of the selected assessment methods are already in use in Canada. The main reasons for 

selecting these methods are summarized in Table  2.3. 
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Table ‎2.3: Reasons for selecting assessment methods and tools for review 

  Category Assessment 

method 

Reasons for selection Reviewed 

Table 

1 LCA ATHENA 
Construction oriented, considers overlap, waste 

and other miscellaneous ancillary materials 
Table  A.1 

2 

MCA 

LEED 
Uses single number approach 

Table  A.2 
Wide international acceptability 

3 SBTool 

Uses array approach 

Table  A.3 One of the most comprehensive approaches 

Internationally tested in more than 14 countries 

4 

SI 

Cost Benefit 

Analysis 

Universal applicability of the concept 
Table  A.4 

Money is used as a single metric 

5 
Ecological 

footprint 

General applicability 
Table  A.5 

Area is used as a single metric 

6 Exergy 
Universal applicability of the concept 

Table  A.6 
Exergy is used as a single metric 

 

Each method was assessed for its ability to address sustainability as a function of 

social, economic, and environmental factors. The structural organization, functional and 

performance aspects  as well as several other aspects were examined, including:  

framework (defines the theoretical approach underpinning the method);  scale (defines 

the level of assessment that can be handled, spans from building product to urban); scope 

(defines the range of criteria, and the temporal and spatial boundaries); approach (defines 

the dynamics of the assessment process adopted by the tool); objectives (define the 

relationship between objectives, methods and results); indicators (determine which 

aspects of the building are being assessed); methods of measurement (define the 

techniques and  data that are required to achieve the objectives; weighting (defines how 

weighting is used to show the relative importance of the issues assessed); and reporting 

results (how the final results are presented to be understood by people).  
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2.4.3 Limitations of existing rating systems and indices 

Despite the usefulness of the current assessment tools and methods in contributing 

towards more sustainable buildings, these tools have limitations that may affect their 

future effectiveness in the context of assessing building sustainability. Some of these 

limitations are applicable to the three types of assessment tools and methods and some 

are more specific to one type.  

Specific limitations emerging from the experience of reviewing building 

assessment methods include the following:  

i. The scope and boundaries of the existing tools do not cover the whole life cycle 

of a building which limits their credibility; 

ii. Most of the existing tools are not complete since they are limited to a few 

parameters (each parameter includes several criteria) and none of these methods 

incorporate all of the parameters, especially economic and social aspects (e.g., 

ATHENA indicators cover only primary energy, global warming, solid waste, air 

pollution index, and water pollution index);  

iii. Most of the assessment tools and methods are not widely utilized because they 

entail a level of complexity and require significant time to input and process the 

data. The expense incurred to prepare the assessment makes such tools 

unattractive to users; 

iv. The current tools have different options to define, customize and quantify 

benchmarks in order to evaluate indicators. Benchmarks are location- and time-

dependent variables. The time dependency of a benchmark makes it difficult to be 

defined as it is a function of future building standards. Over time, benchmarks 
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need periodic review and eventually modification in order to comply with new 

standards (e.g., LEED benchmarks are adapted yearly based on new standards) 

(LEED 2007). The location-dependency of benchmarks explains the need for a 

third party to define some user-defined benchmarks to comply with regional 

applications (e.g., SBTool is not valid as an assessment tool unless it is calibrated 

to local conditions). In many tools the benchmarks were developed to satisfy a 

specific context (local use) and do not allow for national or regional variations. 

Benchmarks are essential for building assessment but they should not use skewed 

standards to assess today’s building alternatives; 

v. The subjective nature of the scoring system makes it difficult to provide reliable 

results, since existing tools are mainly based on relative performance. These tools 

evaluate a building against specific requirements rather than measuring building 

performance against carrying capacity (Cooper 1999); 

vi. Most of the existing assessment tools and methods use the approach of weighting 

different criteria in order to calculate a single performance index. Applying 

weightings emphasizes the difference among criteria and summarizes the 

performance results using an aggregated score, but does so at the expense of 

introducing some subjectivity into the tools and assessment frameworks.  It is also 

diminishes the ability to highlight priority issues to address. LEED allocates equal 

weights to each criterion, and SBTool allocates weights through a subjective 

voting process.  

vii. There is no sensitive scale with which to differentiate between the potential 

building alternatives based on the methods used to assess the indicators. Existing 
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approaches use  either a binomial approach (e.g., in LEED, a building earns a 

point if it meets certain requirements or loses a point if it fails to satisfy a 

predefined requirement) or rang-based models (e.g., SBTool subdivides the level 

of performance achievement using a rang-based model from -1 to +5);  

viii. There is an absence of a clear target (a clear objective function) to be achieved or 

to be optimized; and 

ix. The variety of sustainability indicators poses a huge problem, especially since 

decision makers demand an aggregate index that can be clearly interpreted and 

easily communicated to non-expert users and the general public. 

2.5 Indices of sustainability using exergy-based methods 

Exergy is defined as the maximum amount of useful work that can be delivered by 

a system as it undergoes a reversible process from the specified initial state to the state of 

its environment (dead state) (Cengel and Boles 2008). Exergy analysis can evaluate 

quantitatively the cause of thermodynamics imperfection of the process. While energy 

analysis can be misleading since it does not measure the approach to ideality, exergy does 

by taking into account the quantity of energy available as well as the quality of that 

energy, the first and second law thermodynamics. Therefore, exergy gives a clear 

indication of where system inefficiencies are located as well as the locations, types and 

true magnitudes of wastes and losses (Dincer and Rosen (2007)). 

After introducing earlier categorizations of sustainability assessment methods and 

the new categorization, this section focuses on those indices that are used to assess 

sustainability in terms of environmental impacts.  
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 Wall (1977) observed that resources can be quantified based on exergy flows since 

society is dependent either on exergy flows from finite deposits, exergy in minerals or 

exergy flows from funds (e.g., forest and fields which convert solar energy). He 

suggested that quality is what is consumed during the conversion of energy and 

matter.  

 Kotas (1985) and Szargut et al. (1988) explained that exergy analysis is focused on 

the efficiency of the production process. It is implemented either for single processes 

or for a whole production chain. The former usage compares the total exergy included 

in the products, the by-products, and the heat and waste that is utilized from the 

exergy embodied in resources. The later shows the overall efficiency of the 

production chain through the ratio of the exergy embodied in the product over the 

cumulative exergy consumption (CExC). This analysis shows the depletion of 

environmental resources induced by product generation. 

 An exergy tax was suggested by Wall (1993) as a first step to decrease environmental 

destruction and to improve present resource use. 

 Cornelissen (1997) suggested that exergy losses should be minimized to obtain 

sustainable development, and he also showed that environmental effects associated 

with emissions and resource depletion can be expressed in terms of an exergy-based 

indicator.       

 Dewulf et al. (2000) used a set of three sustainability indicators to express the 

sustainability of technological processes: α for renewability (resource utilization), η 

for the conversion of the energy in the process, and ξ for the environmental 

compatibility of the process. The first two indicators are scaled between 0 and 1. The 
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value of zero for both parameters means a zero fraction of renewable exergy in the 

resource use and an efficiency of zero. The value of 1 means 100% renewable-based 

and efficient processes. The third indicator ξ relates the exergy required to run the 

process to the exergy required to run the process in an environmentally sound way. 

The environmental parameter goes to 1 only if a process requires no abatement 

exergy. Dewulf et al. combined the second and third indicators into an overall 

efficiency parameter ηoverall. They defined the overall sustainability coefficient S as an 

average of the two sustainability parameters α and ηoverall.  

 Rosen et al. (2001) illustrated how sustainability increases and environmental impact 

decreases as the exergy efficiency of a process increases (e.g., when exergy efficiency 

approaches 100%, environmental impact approaches zero, since there is no exergy 

loss corresponding to the conversion from one form to another, and the sustainability 

index approaches infinity when a process approaches reversibility).  

 Gong et al. (2001) found that the proposed thermodynamic conditions of sustainable 

life support system based on Delin’s definition of sustainability offers an accurate 

measurement for sustainability. Moreover, the measurement is insensitive to political 

and economic effects. Delin’s definition implies that exergy must be stored on the 

earth, which means that the incoming energy from the sun has to be greater than the 

outgoing energy (Zmeureanu 2006). Gong et al. used the life cycle exergy analysis to 

define sustainable engineering. If the input of exergy used to build any building 

application is less than the output of exergy over the service life for that application 

then it is considered to be sustainable.  
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 Arons et al. (2004) revised the quantification method expressed earlier by Dewulf et 

al. (2000) in a set of three independent sustainability indicators, α, η, and ξ. The first 

parameter is completely different from the element given by Dewulf while the second 

and third are revised elements. He calculates α using resource time depletion, τ, 

instead of considering renewable versus non-renewable sources. The depletion time is 

used as a measure for the rate at which the known reserves of a resource are being 

depleted (based on the gap between the consumption and regeneration rate of that 

resource).  

 Dewulf et al. (2005) considered two other sustainability indicators which reflect the 

integration of the process with the natural ecosystem: (i) the re-use indicator ρ is the 

fraction of waste used as a resource in the overall package of resources, and (ii) the 

recoverability indicator σ is the fraction of the generated product that can be 

recovered later. 

 Cornelissen et al. (2002) concluded that the exergetic life cycle assessment can be 

applied to determine the depletion of a natural resource as the difference between the 

life cycle irreversibility Ilifecycle and the exergy content of the renewable Exrenewable (the 

positive effects of the exergy absorption are assigned on the moment when the exergy 

is absorbed in renewable fuels, since the CO2 emissions from using renewable 

resources do not increase the greenhouse effect). 

 Rosen et al. (2008) expressed the sustainability of a fuel resource as a sustainability 

index; the inverse of the depletion number. The depletion number is defined as the 

ratio between the exergy destroyed (ExD) and the exergy input (Exin) by fuel 

consumption. The relationship between depletion factor and efficiency is also 
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represented by the difference between the ideal state (when the exergy input is equal 

to the network produced by the system) and the depletion number.  

 Lee et al. (2007) implemented a sustainability index for Taipei city that clearly 

belongs to the weak sustainability approach. Statistical data is adopted to identify the 

trend of SD from 1994 to 2004. The sustainability index was calculated for the four 

dimensions (economic, social, environmental and institutional) for Taipei as a whole. 

Standard deviation was the basic method for calculating the sustainability index, as 

has been applied in this study. It standardizes the indicator values so that each 

standardized value falls between 0 and 1. Finally, the equal weight method was 

applied for initial integration and to analyze the overall sustainability trend. 

2.6 Objectives of the thesis 

Based on the overview of research on the sustainability assessment, this study focuses 

on the use of the exergy concept to quantify building sustainability. A global assessment 

framework capable of considering the regional issues, valid to assess all types of 

buildings, that is easy to customize, objective, and easy to interpret is needed in the field 

today. The primary objective of this research is to develop a new methodology for the 

estimation, at the conceptual design stage, of a building’s sustainability over its assumed 

life span, Lservice, that allows for the potential design alternatives to be explored in the 

search for a sustainable design alternative. A new index is proposed along with a rating 

scale. 

Other sub-objectives of this thesis are: 

i) The development of a new quantitative and scientifically based definition of 
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building sustainability that can be used as an acceptable platform for a reliable 

framework that allows the level of building sustainability to be systematically 

evaluated; 

ii) The measurement of building sustainability within its wider context, in relation to 

energy and non-energy natural resources; 

iii) The development of benchmarks to meet the need for temporal and spatial changes 

in a building, and to compare buildings in the same city or in different countries; 

iv) The development of an objective assessment and elimination of the use of 

subjective weights; and 

v) The estimation of the potential for improving building performance. 

2.7 Scope and methodology 

This research proposes a new methodology for the estimation, at the conceptual 

design stage, of a building’s sustainability over its assumed life span, which produces and 

utilizes a new Exergy Index of Sustainability (ExSI). The prototype tool presented in this 

thesis uses data extracted from SBTool; however, work should be done to have a stand-

alone evaluation tool that can accept data from other tools (via text files) and/or receive 

inputs from users. ExSI is built on the limitations of existing methods and tools of 

assessment. In order to satisfy the stated objectives, the research proceeds as explained in 

the four main phases shown in Figure  2.1. 

In phase no.1, a literature review was conducted to examine the existing assessment 

methods, tool rating systems, and approaches. This review was mainly devoted to 

exploring the key aspects that exist either implicitly or explicitly in all assessments (e.g., 
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scope and boundaries, scale of measurement, references and benchmarks, scaling 

increments, target performance, and interpretation). The review extended to cover the 

classification of sustainability assessment methods to better understand the state of the 

art. A review of selected building assessment methods covering the three categories of 

assessment methods helped to structure their limitations in a useful fashion. The indices 

of sustainability using exergy-based methods were also presented. 

The SBTool is detailed in the second phase as a sustainability assessment 

framework, one that has been widely adopted in different countries and that is rated 

higher than many multi-criteria rating tools. SBTool is the most nominated method to 

assess the buildings sustainability, despite some shortcomings (weighting). SBTool 

exposes and addresses a broad range of aspects of building performance (179 criteria can 

be used to assess building sustainability), including some that are still controversial. 

Sensitivity analysis was used to focus the research scope so that the most significant 

issues for assessing building performance could be identified. The results given by the 

SBTool is the starting point for this study. To assess building sustainability by calculating 

the proposed exergy-based index, the following steps are conducted: 

Step 1: Extraction of the results from the SBTool for each criterion;  

Step 2: Process the results from SBTool and perform additional calculations, when 

needed, to estimate the energy use for each criterion; 

Step 3: Calculate the exergy lost for each criterion; 

Step 4: Calculate the annualized total exergy lost due to the building construction and 

operation, as a sum of the corresponding values for all criteria; 
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Step 5: Calculate the annual exergy index of renewability αex.The annual exergy index of 

renewability αen is the ratio between the annual available solar exergy that can be 

harvested by the building footprint (horizontal plane) and the exergy lost in the 

building construction and operation;  

Step 6: Calculate the annual exergy index of building sustainability (ExSI) by using the 

corresponding index of renewability αex; and  

Step 7: Evaluate the overall performance using a proposed rating scale.  

The third phase in the research methodology deals with applying the proposed 

framework to several case studies. Detailed calculations of the proposed methodology are 

only presented for case study no.1, while for the other case studies only the major results 

and findings are presented. The benefits of using the proposed exergy-based index is 

demonstrated by conducting a comparison between the results obtained using the 

proposed ExSI and the results obtained using the sustainability indices found in the 

literature. Index disparities are discussed and methodological issues are directly 

addressed. The final phase, phase no.4, is the final part of the research methodology 

which is devoted to presenting the research conclusions, contributions, and 

recommendations for future work. 
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Figure ‎2.1: Research methodology 
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3 SBTOOL FLOW PROCESS  

SBTool (iiSBE, 2010) was developed by an international committee and is 

structured so that it can be tailored to respond to national specifications. It assesses 

buildings in terms of seven issues: site selection, energy and resource consumption, 

environmental loading, indoor environmental quality, service quality, social and 

economic aspects, and cultural-perceptual aspects. Each issue is divided into several 

categories, and in each category there are a specific number of criteria, assessed and 

assigned a score ranging from -1 to +5. Individual criteria are weighted to indicate their 

importance, their scores are multiplied by these weights and the resulting values are 

summed. 

3.1 SBTool’s‎Features‎ 

SBTool is the latest version of software formally known as GBTool, promoted by 

the Green Building Challenge (GBC). It was initially launched by Natural Resource 

Canada in 1996, but responsibility was handed over to the International Initiative for a 

Sustainable Built Environment (iiSBE) in 2002. The generic framework has been 

calibrated and is being used and developed through collaborative work supported in more 

than 20 countries. The change of the name reflects the inclusion of a range of issues that 

includes socio-economic variables. SBTool has three levels of parameters: Issue as 

parameter no.1 (e.g., B issue Energy and Resource Consumption); Category as parameter 

no. 2 (e.g., B1 category Total life cycle non-renewable energy); and Criterion as 

parameter no. 3 (e.g., B1.1 criterion Annualized non-renewable primary energy embodied 

in construction materials), see Figure  3.1.  
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Figure ‎3.1: Schematic of SBTool scoring and weighting 

 

The issues covered by SBTool include: A (site selection, project planning and 

development), B (Energy and resource consumption), C (Environmental loadings), D 

(Indoor environmental quality), E (Service quality), F (Social and economic aspects), and 

G (Cultural and perceptual aspects). The scope of the SBTool can be modified to cover as 

much as desired, from a minimum of 6 to a maximum of 125 criteria; a reflection of the 

system’s flexibility. The scope can be defined in different forms, as shown in Figure  3.2: 

a form that suits the definition of a Sustainable Building, another form that suits the 

definition of a green building, or a compact form suitable for agencies. The most 

important feature of the SBTool is that it can handle all four major phases of the building 

life-cycle for both new and renovation projects, with up to three occupancy types (out of 

a total of 18 different occupancy types) in a single project. 
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Figure ‎3.2: Scope of the SBTool system 

3.2 SBTool Flow Process 

SBTool is a rating framework, and is only valid as a rating tool when a third party 

calibrates it for their region by setting scope, context, weights and performance 

benchmarks according to the local conditions (see Figure  3.3).  

 

 

 

 

  

 

 

 

Figure ‎3.3: SBTool flow process  
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SBTool is designed to incorporate consideration of regional conditions and values 

without destroying the value of a common structure and terminology.  

The SBTool system consists of three interconnected modules using excel files A, 

B, and C as presented in Figure  3.3. File A is used by regional third-party organizations 

to establish the context information, occupancy type, locally-valid weights, and 

benchmarks settings (through a review of regulations or by consensus within small expert 

groups), defines the associated assessment score of from -1 to 5 for each benchmark, and 

establishes parameter weights that reflect the relative importance of issues, categories, 

and criteria in each region. File B represents both the “input module” and the “assessment 

module”. The input module contains a considerable amount of information related to the 

case study building and its context, and the assessment module influences where the 

performance scores are assigned to the different criteria being examined in the 

assessment process. File C represents the output module, which is used to identify the 

design target and self-assessed scores and also presents the results for all these 

calculations along with the absolute performance results. 

3.3 Sensitivity Analysis of SBTool 

The sensitivity analysis for the SBTool evaluates how the total final building 

score changes with the change of actual performance as per contract documents (SBTool, 

2007), or with a change in the selected weights. 

3.4 Sensitivity analysis of the SBTool final score to change for each criterion 

A sensitivity analysis was conducted to assess how sensitive the final building 

score is to changes in the actual performance, assuming that SBTool default weights are 
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used. The change of the actual value of the Annualized non-renewable primary energy 

embodied in construction materials (B1.1 criterion) is given as an example. The predicted 

embodied energy for materials used in the structure and building envelope is changed 

from 115 MJ/m
2
 per yr or –1 as the lowest performance score (worst scenario for actual 

performance) to 67 MJ/m
2
 per yr or 5 as the best performance that can be achieved (best 

scenario for the actual performance). The incremental change of each weighted score is 

equivalent to 8 MJ/m
2
 per yr. The actual performance for criterion B1.1 is tied to a 

specific weighted score, as shown in Figure  3.4. The relationship between the weighted 

score for each criterion in SBTool versus the actual performance is a linear one.  

 

 

Figure ‎3.4: Linear relationship between the weighted score for the B1.1 criterion versus the actual 

performance 

The following steps were followed: 

i. Changing the values of the actual performance score for each criterion. Note that 

all the values of the actual performance for each criterion were evenly distributed; 

linked to the weighted scores in a range of -1 to +5. Table 3.1 is an example of the 

changing values for the actual performance score of the (B1.1) Annualized non-

renewable primary energy embodied in construction materials. 

 

M 
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Table ‎3.1: The change of weighted score (-1, 0, 3, and 5) for criterion B1.1 and its effect on the relative 

performance results given by the total weighted building score 

 

ii. Identifying the relationship between Y, the total relative weighted score for the 

building and X, the weighted score (Figure  3.4).  

Issue

Categoery

Criteria

Weighted score Apartment Retail Indoor parking

-1 115 168 152

0 107 160 147

3 83 136 131

5 67 120 120

Unites used MJ/m2 per yr MJ/m2 per yr MJ/m2 per yr

Active Weights Weighted scores

A Site selection 8.1% 2.68
B Energy and Resource Consumption 22.5% 2.64
C Environmental Loading 27.0% 2.23
D Inddor Environmental Quality 18.0% 2.60
E Service Quality 16.2% 2.19
F Social and Economic aspects 5.4% 2.51
G cultural and Perceptual 2.7% 3.50

2.47

A Site selection 8.1% 2.68
B Energy and Resource Consumption 22.5% 2.68
C Environmental Loading 27.0% 2.23
D Inddor Environmental Quality 18.0% 2.60
E Service Quality 16.2% 2.19
F Social and Economic aspects 5.4% 2.51
G cultural and Perceptual 2.7% 3.50

2.48

A Site selection 8.1% 2.68
B Energy and Resource Consumption 22.5% 2.82
C Environmental Loading 27.0% 2.23
D Inddor Environmental Quality 18.0% 2.60
E Service Quality 16.2% 2.19
F Social and Economic aspects 5.4% 2.51
G cultural and Perceptual 2.7% 3.50

2.51

A Site selection 8.1% 2.68
B Energy and Resource Consumption 22.5% 2.91
C Environmental Loading 27.0% 2.23
D Inddor Environmental Quality 18.0% 2.60
E Service Quality 16.2% 2.19
F Social and Economic aspects 5.4% 2.51
G cultural and Perceptual 2.7% 3.50

2.53

B1 Total life Cycle Non-Renewable Energy

B Energy and Resource Consumption

Actual performance

Total weighted building score (Self-Assessment Score)

Total weighted building score (Self-Assessment Score)

Total weighted building score (Self-Assessment Score)

Total weighted building score (Self-Assessment Score)

Change the 

weighted score 

to -1  for B1.1 

criterion

Change the 

weighted score 

to  5  for  B1.1 

criterion

Change the 

weighted score 

to 0 for  B1.1 

criterion

Change the 

weighted score 

to 3  for  B1.1 

criterion

B1.1
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Figure ‎3.5: Relationship between the total building score and the weighted score for the B1.1 criterion 

under the B1 Total Life cycle Non-Renewable Energy category 

 

iii. Identifying the sensitivity of the final building score by finding the slope of each 

linear relationship “e.g., the B1.1 slope”. The greater the slope the more sensitive 

is the final score to the change of the weighted score of that criterion.  

The results found by changing the score for each criterion reveal that the final 

score is more sensitive to changes in the actual performance related to issue B 

(Energy and resource Consumption), and C issue (Environmental Loadings) than 

to the D, G, E, and A issues (Indoor Environmental Quality, Social and Economic 

aspects, Service Quality, and site selection, respectively). This approach is applied 

to all criteria. The results of changes to issue B are presented in Table  3.2.  

If we consider the slope of .01 as the threshold value, then those criteria with 

slopes greater than .01 are considered to have significant effect on the final assessment 

results. The total weighted building score is thus more sensitive to those criteria. 
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As an example, issue B (Energy and Resource Consumption) includes 18 criteria, 

13 of which have a trend line with a slope bigger or equal to .01. The proportion of the 

issue B criteria with a relatively high effect on the final assessment result as judged by 

the change in the actual performance is 72 % (Table  3.2). 

Table ‎3.2: issue B criteria whose relationship between the total weighted building score and the weighted 

score‎can‎be‎represented‎by‎a‎trend‎line‎with‎slope‎≥‎.01 

B. Energy and Resource Consumption   

B1. Total Life Cycle Non-Renewable Energy 2/2 
B1.1 Annualized non-renewable primary energy embodied in construction materials. y = 0.01x + 2.46 

B1.2 Annual non-renewable primary energy used for facility operations y = 0.0311x + 2.32 

B2. Electrical peak demand for facility operations 1/1 
  Electrical peak demand for facility operations y = 0.0118x + 2.49 

B3. Renewable Energy 2/2 
B3.1 Use of off-site energy that is generated from renewable sources. y = 0.0118x + 2.48 

B3.2 Provision of on-site renewable energy systems. y = 0.0118x + 2.48 

B4. Materials 6/10 
B4.1 Re-use of suitable existing structure(s). y = 0.0221x + 2.41 

B4.5 Re-use of salvaged materials. y = 0.0136x + 2.43 

B4.6 Use of recycled materials from off-site sources. y = 0.01x + 2.52 

B4.7 Use of bio-based products obtained from sustainable sources. y = 0.0136x + 2.44 

B4.8 Use of cement supplementing materials in concrete. y = 0.02x + 2.47 

B4.10 Design for disassembly, re-use or recycling. y = 0.0143x + 2.46 

B5. Potable Water 2/3 
B5.1 Use of potable water for site irrigation. y = 0.0121x + 2.48 

B5.2 Use of potable water for occupancy needs. y = 0.0129x + 2.45 

Number of criteria that have slope ≥ .01 to the total number of criteria under each category 13/18 =      (72%) 

 

One can conclude that 72% of the issue B criteria and 63% of issue C criteria 

(those with slopes greater than .01) have led to significant change in the total weighted 

building score. Only 18%, 6%, and 7% of the criteria related to the D, E, and F issues, 

respectively, have the same condition (a slope greater than .01). This conclusion justifies 

why this study only addresses B & C issues through the suggested proposed approach for 

assessing building sustainability. 
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3.5  Sensitivity analysis of SBTool in relation to a subjective selection of weights 

A sensitivity analysis is conducted to evaluate the effect of changing the subjective 

selection of weights for the three parameter levels (Issues, Category, and criteria) on the 

total weighted building score. The weights are implemented throughout the system, 

which strongly affect the validity of the system. The SBTool system uses the weights, 

which should be adjusted depending on the relative importance of the issues, categories, 

and criteria parameters for the building types and the regions. Although the default 

weights for the issues level might be seen as having some consensus relevance, the 

default weights for the categories requires adjustment to suit various project types within 

different regions. It is desirable to have a scientific basis to select such weights, and such 

a scientific basis is not yet available (Larsson 2007).  

The process of conducting the sensitivity analysis for a subjective selection of weights for 

the highest two levels of parameters (Issues and Categories) follows these steps: 

i. Change the weights for each issue; weights range from 0 to 5. The change of the 

subjective selection of weights for issue B is represented as an example in Table 

 3.3. The weight for issue B (Energy and Resource Consumption) is changed from 

0 to 5.  

ii. Calculate the nominal weights adjusted for number of active Categories using 

equation ( 3-1); the calculated values are listed in the third column of Table  3.3. 

Equation ( 3-2) is then used to calculate the weighted percent for issue B, and 

finally the total weighted building scores are obtained.  

       
                                  

                                  
 
                         

                     
                                        

( 3-1) 
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iii. The percentage of change for the total weighted building score (last column in 

Table  3.3) is then calculated as a ratio of the difference between the maximum 

and the minimum total weighted building score and the intervals of the score (e.g., 

6 intervals between -1 and 5).  

Table ‎3.3: Effect of the subjective selection of weights for issues B Energy and Resource Consumption and 

C Environmental loading on the Total weighted building score 

 

Issues Weights Nominal 

weights 

adjusted for 

number of 

active 

Categories 

Weighted 

percent 

Total 

weighted 

building 

score 

% of change 

for total 

building 

score 

B Energy and Resource Consumption 

 

 0 0.0 0.0% 2.42 

1.8% 

 1 0.7 5.5% 2.45 

 2 1.4 10.4% 2.47 

 3 2.1 14.9% 2.49 

 4 2.9 18.9% 2.51 

 5 3.6 22.5% 2.53 

C Environmental Loading 

 

 0 0.0 0.0% 2.64 

1.8% 

 1 0.9 6.9% 2.61 

 2 1.7 12.9% 2.59 

 3 2.6 18.2% 2.57 

 4 3.4 22.9% 2.55 

 5 4.3 27.0% 2.53 

 

The maximum percentage of the changes in the total building weighted score does 

not exceed 1.8%. A process similar to performing the sensitivity analysis for the 
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subjective selection of weights for Categories is followed, and the maximum percentage 

for the change in the total building weighted score does not exceed the 2.7% for the C6 

category. To conclude, the system is sensitive to the subjective selection of weights in 

both levels: the issues level and the categories level, which proves that SBTool could 

produce different results depending on the weights selected. Therefore, an alternative 

approach to remove subjective selection and improve the system is urgently needed. 

3.6 Conclusion 

As a sustainability assessment framework, SBTool is ahead of many other multi-

criteria rating tools, making it the most-nominated method to assess building 

sustainability, despite some shortcomings. A sensitivity analysis is therefore conducted to 

evaluate the objectivity and validity of the assessment process. Weighting, one of the 

characteristic assessment methods, remains one of the most problematic issues on the 

route to achieving a completely objective assessment. Weighting is considered to be a 

real challenge facing the recently-developed rating system. SBTool’s sensitivity to local 

issues was essential to achieve the most powerful outcome, which implicitly highlights 

the importance of a weighting system inherited from the rating system as a tool to 

represent the relative importance of different issues.  Recent weighting systems use either 

an equal weight, such as the LEED weighting system, or subjectively address their 

weights, as with the SBTool weighting system, which prompts us to avoid using the 

weighting system until it has been adopted scientifically. 

The main conclusion from this sensitivity analysis is that the total weighted 

building scores are 72% and 63% sensitive to change for the criteria linked to issue B 
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(Energy and Resource Consumption) and issue C (Environmental Loading), respectively. 

Therefore, the sensitivity analysis indicates that the B and C issues of SBTool are the 

most important issues to be considered through the proposed exergy-based index for 

assessing building sustainability as a prototype tool.  

 Several authors have reinforced the previous conclusion. Aotake et al. (2005) 

showed that the highly weighted coefficients of the items related to energy and pollution 

(equivalent to issue B and C issues, SBTool) exist in many tools such as CASBEE, 

BREEAM98 and LEED 2.1 are .5, .27 and .25, respectively). Chang (2005) investigated 

the results of assessment weighting values according to different field experts (designers 

and industry, government, and academic and civil authorities) using the AHP (Analytic 

hierarchy process) method and showed that the statistics indicate the prioritizing of the B 

and C issues of GBTool (SBTool recently) over the other issues. Moreover, in their study 

of the priority weightings of issues and category parameters of SBTool in the Indian 

context, Bhatt et al. (2010) showed that 9 of top-11 ranked parameters are related to B 

and C issues. 
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4 PROPOSED FRAMEWORK FOR THE ASSESSMENT OF 

BUILDING SUSTAINABILITY  

 

The literature review (Chapter 2) presented different rating systems and 

assessment methods to evaluate building sustainability, including the multi-criteria 

assessment approach, life cycle assessment and single index. Among the existing 

assessment methods and tools, developed and used by different stakeholders, there is a 

marked lack of a unique metric for articulating the extent to which, and the ways in 

which most current buildings are unsustainable. We show the growing acknowledgement 

of the limitations of current tools and methods and their failure to fulfill fundamental 

scientific requirements (e.g., no generally-accepted procedure for normalization and 

weighting) as well as their often misleading decision making advice. 

The developers of an assessment method or a rating system should aim for a balance 

between “heavy science” that few people understand and a simpler approach. The 

approach proposed in this thesis, based on applied thermodynamics, belongs to the heavy 

science view, which would give more accurate and science-based accounts of 

sustainability, as a viable alternative to simpler approaches such as LEED ratings that are 

based on experience, consensus, and market forces, and which are more easily accepted 

by the market. While based solely on applied thermodynamics, future developments, 

especially in terms of the calibration of a rating scale, should involve using or modifying 

the market-driving forces.  

The proposed framework uses the strong sustainability approach rather than the weak 

sustainability approach. While the strong sustainability approach requires that different 
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types of natural capital must be maintained indefinitely for future generations, the weak 

sustainability approach provides some allowance for the substitutability of different 

sources (between human-made capital, or between different sources) (Ayres et al. 1998).  

In this context, solar radiation, which is renewable and expected to be available on 

very large time scale, is a natural capital available for building construction and 

operation. The use of the exergy of solar radiation brings together the amount of energy 

received and used, as well as the quality of the energy flows. The available solar exergy, 

which is harvested on the building footprint, is used exclusively to define the maximum 

natural capital, and a building’s sustainability is defined with respect to that maximum 

value. In the proposed index, natural capital is seen as the foundation on which all 

building activity is based. Therefore, available solar exergy is used exclusively to define 

building sustainability. Solar exergy was the only renewable energy source considered 

here for many reasons: i) it is inexhaustible and offers many benefits compared to 

conventional energy sources; ii) all energy sources present on the earth are actually 

derived to a great extent from the solar radiation incident on earth. Potential energy in 

water masses, the energy content of biomass and crops or fossil fuels is to a great extent 

derived from incident solar radiation, for implicitly solar energy is their primal driver; 

and iii) Solar energy systems can easily be integrated on a building-level, in turn 

decreasing the impact of electricity production and transformation (Hepbasli 2008).  

According to this new definition, a 100 % sustainable building has an exergy index of 

sustainability ExSI equal to 100. This definition implies that any building exergy lost, 

due to construction and operation, can be substituted by the available solar exergy, which 

is harvested on the building’s footprint. 
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The proposed framework is a combination of three categories: Multi-criteria 

assessment, Life Cycle Analysis (LCA), and Single Index (see Table 4.1). The purpose of 

nesting the three approaches is to enhance the efficiency in measuring building 

sustainability. Multi-criteria assessment uses the holistic approach to cover all of the 

building aspects that help the designer understand the building within its wider context. 

SBTool is the selected tool for this category. The ATHENA Impact Estimator is the 

selected tool for the Life Cycle Assessment of buildings and their consequences on the 

surrounding environment. Finally, exergy is used as single commodity to aggregate the 

multi-criteria scores into one single score that describes how much a building can achieve 

in sustainability based on the proposed rating scale.  

Table ‎4.1: The combination of the three approaches in the proposed Exergy-based index 

  Categorization dimensions 
 

1 Nature of data  Qualitative 
 

Quantitative 

2 Approach  Holistic approach 
 

Reductionist approach 

3 Temporal  Prospective 
 

Retrospective 

4 Achievement Direction to target 
 

Distance from target 

5 Scale (assessment level)  Whole building Building/ Products 
 

6 Interaction  Passive tools Interactive tools 
 

 

Multi Criteria 

Assessment (MCA) 
LCA Single Index (SI) 
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Proposed Exergy-based Index 
 

 

A new index is proposed in order to fulfill the thesis objectives, with the 

following goals: 1) to measure building sustainability within its wider context, in relation 

to energy and non-energy natural resources; 2) to easily adjust benchmarks to fit the need 

of temporal and spatial changes in a building; 3) to provide an objective assessment and 

eliminate subjective weights; 4) to provide a yardstick that can be used to compare 
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buildings whether in the same city or in different countries; and 5) to find the potential 

for improving building performance. 

4.1 Overall approach of the proposed method 

This chapter presents the underlying mathematical models used to calculate the 

exergy lost as a first step in the proposed framework, which provides a new Exergy Index 

of Sustainability (ExSI). The prototype tool is currently connected with the SBTool from 

which most data are extracted; it assumes that SBTool had already been used by a design 

team for assessing building performance, and therefore that such data is available. 

However, it can be developed as a standalone tool. We selected two issues for presenting 

our proposed methodology, energy and resource consumption and environmental loading. 

These two issues are among the most influential in the assessment of buildings based on 

sensitivity analysis, as presented in chapter 3. Several other issues could be included in 

the evaluation of building sustainability; some can be quantified, such as energy use and 

durability, and others can only be discussed in qualitative terms such as satisfaction with 

indoor environments or the social benefits of knowledge generated in buildings. The 

integration of all of the issues contributing to the assessment of such an index of building 

sustainability is beyond the scope of this thesis.  

To achieve the main purpose of the research, that is, to assess building 

sustainability by calculating the proposed index of sustainability, the steps of our 

proposed methodology are presented in Figure  4.1 and commented on below: 

Step 1: Extraction of results from the SBTool for each criterion (e.g, Criterion B1.1 refers 

to the annualized non-renewable energy embodied in construction materials, see Table 
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 4.3). In this study, only the energy and resource consumption (B issue), and the 

environmental loadings (C issue) are considered. Our sensitivity analysis proved that 

these two issues have the highest impact on the total building score. 

Step 2: Processing of the results from SBTool and perform additional 

calculations, when needed, to estimate the energy use for each criterion. 

Step 3: Calculation of exergy lost for each criterion. 

Step 4: Calculation of annualized total exergy loss due to the building construction and 

operation as a sum of the corresponding values for all criteria. 

Step 5: Calculate the annual exergy index of renewability αex. This value is determined 

by equation ( 4-1):  

The annual exergy index of renewability αen is the ratio between the annual 

available solar exergy that can be harvested by the building footprint (horizontal plane), 

and the annualized exergy lost in the building construction and operation. 

                                  
                              

                   
       ( 4-1) 

The available exergy could be solely dependent upon solar energy or it may also 

depend on other renewable sources such as geothermal or wind, which can be used at the 

building level (e.g. a small wind system or a geothermal system). Other renewable energy 

sources such as nuclear and hydro power would not be taken into consideration because 

they cannot be used at the site level.   

Step 6: Calculation of annual exergy index of building sustainability (ExSI), by using the 

corresponding index of renewability αex.  
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Figure ‎4.1: Proposed methodology to assess the building exergy-based index 

 

To define the research scope for the proposed assessment framework, two 

parameters have to be considered: the system boundary and the functional unit. 

The system boundary is used to determine the scope of the research. It is difficult 

and time consuming to compile of all of the possible criteria that are used to evaluate the 

building performance in a quantitative way (e.g. 179 criteria are used to assess 

sustainable buildings using SBTool (iiSBE 2010)). Therefore, the proposed framework 

includes only those criteria that are characterized by the outputs with a significant impact 
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on the final result of the building assessment process. The research scope is identified by 

the dashed line (Table  4.2). It includes two of the most significant issues used to assess 

building performance, i.e., energy and resource consumption (issue B), and 

environmental loading (issue C). Other issues (A, D, E, F, or G) could be integrated in 

future studies. Only issues B and C are covered in the thesis.  

Table ‎4.2: Research scope covered in this study from the SBTool issues. 

 

The functional unit in the case of office buildings is 1 m
2
 of conditioned floor 

area. Therefore, the comparison between several alternatives for evaluating existing 

buildings will be based in this study on MJ per m
2
 of conditioned floor.  

The results given by the SBTool is the starting point for this study. One challenge of this 

study is to find the most suitable ways for converting the selected outputs from the 

SBTool, which are measured in different units, into the corresponding exergy lost. The 

total exergy lost for the building construction and operations becomes one unique 

measure of building performance by including different aspects such as embodied energy, 

operating energy, the energy used for water treatment, etc. 

Issues

A

B

C

D

E

F

G

Service Quality

Social and Economic aspects

Site Selection, Project Planning and Development

Cultural and Perceptual Aspects

Energy and Resource Consumption

Environmental Loadings

Indoor Environmental Quality
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4.2 Evaluation of annualized exergy loss for energy and resource consumption    

(issue B of SBTool) 

This section presents the calculation method of the exergy lost for selected 

criteria, based on the SBTool results (Table  4.3). There are substantial criteria that can be 

used to carry out a detailed sustainable building assessment. Some simplifications are 

made based on the following principles: (1) the criteria that have no effect on the total 

exergy lost are excluded in the calculation of the final balance equation; (2) criteria that 

assess the adaptability of a building to future renewable technologies are excluded; and 

(3) criteria that are not building-specific are excluded since that would be beyond the 

scope of this research.  

Table ‎4.3: B and C issues criteria in the SBTool 

B Energy and Resource Consumption Units 

B1.1 
Annualized non-renewable primary energy embodied in construction 

materials. 
MJ/m

2
*yr 

B1.2 Annual use of purchased electricity for operations, delivered MJ/m
2
*yr 

B3.1 Use of off-site energy that is generated from renewable sources (delivered) % by energy 

B4.4 Use of durable materials. % by cost 

B4.5 Re-use of salvaged materials from off-site % by cost 

B4.6 Use of recycled materials from off-site sources. % by cost 

B4.7 Use of bio-based products obtained from sustainable sources. % by cost 

B5.1 Use of potable water for site irrigation. m
3
/m

2
 

B5.2 Use of potable water for occupancy needs. L/pp/day 

C Environmental Loadings  

C1.1  Annualized GHG emissions embodied in construction materials kg/m2∙yr 

C1.2 Annualized GHG emissions from all energy used for facility operations kg/m2∙yr 

C2.1 Emissions of ozone-depleting substances during facility operations g/m2∙yr 

C2.2 Emissions of acidifying emissions during facility operations kg/m2∙yr 

C2.3 Emissions leading to photo-oxidants during facility operations g/m2∙yr 

 
The exergy lost as calculated in this section, using the final balance equation ( 4-2), 

is equal to the denominator of equation ( 4-1). The final balance equation for annual 

exergy lost          is calculated as follows:  
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( 4-2) 

where the subscript b1.1 makes reference to the first criterion B1.1 (see Table  4.3).  

The Total annualized exergy lost is used to unify all the considered criteria and to 

facilitate calculating the exergy index of renewability using the formula of ( 4-1). An 

example of the relationship of dependent and independent criteria (of issue B) used to 

evaluate the building sustainability is presented graphically in Figure  4.2. 

 

Figure ‎4.2: Relationship of dependent and independent criteria used to evaluate sustainability building 

 

The following sections present in detail the calculation method for converting the 

results from each criterion to exergy lost. Subsequently, the results are integrated into the 

final balance equation that calculates the total amount of energy consumption or exergy 

lost. The description stage, extraction stage and finally the formulas used to convert the 
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values of energy, emissions and other criteria given by the SBTool into equivalent exergy 

values are presented. 

4.2.1 Annualized non-renewable embodied energy in construction materials 

(B.1.1) 

Generally the embodied energy is subdivided into two main categories: 1) initial 

embodied energy; and 2) recurring embodied energy. The initial embodied energy refers 

to the energy consumed in the acquisition of raw materials, processing, manufacturing, 

transportation to the site, and construction. The recurring embodied energy considers the 

energy consumed in the maintenance, replacement and demolition phases. The total 

embodied energy        as well as the embodied energy for each component of the 

building is clearly defined in the SBTool. The criterion (B1.1) considers only the initial 

embodied energy. Mechanical, electrical, pumping and vertical transportation systems are 

not included in this analysis. 

The total annualized embodied energy       , [MJ/yr]  for the project as listed by 

the SBTool is the sum of the total embodied energy for new structural elements         
 

and walls         
[MJ], existing structural elements         

and walls         
[MJ], 

and heavy materials        
[MJ], see equation ( 4-3): 

       
 

                 
                  

        

         
 ( 4-3) 

where 

          : is the assumed building life span in years. 

The embodied energy of the existing structural elements and walls        
is 

calculated according to the following conditions: (a) if the existing building is at the end 
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of its service life and it will be demolished then the embodied energy will be equal to the 

estimated embodied energy used in the process of demolition        
; hence the 

demolition of an existing building is penalized; and (b) if the existing building is to be 

renovated then the existing embodied energy will be the difference between the embodied 

energy of the new materials, components and systems        
and that energy either 

removed during refurbished        
or assumed to be decreased with the time passing of 

the estimated service life. The flowchart for the process used by the SBTool in the 

calculation for the total annualized embodied energy        is given in Figure  4.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure ‎4.3: The total embodied energy En b 1.1 and its subcomponents assessed by B 1.1 

 

The corresponding annualized exergy lost is calculated as follows:   

Embodied energy for new 

structural elements  
          

 MJ 

 

Embodied energy for new 

walls                             

          
 MJ 

 

Embodied energy 

in heavy materials         
       

 MJ 

 

 

Embodied energy for 

existing structural 

elements    
          

 MJ 

 
Embodied energy for 

existing walls                             
          

 MJ 

 

Total annualized Embodied energy                  

       
        

        
        

 

         
  MJ/yr 

Embodied energy 

in new materials 
       

MJ 

 

 

Embodied energy in 

existing materials 
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a 

 Total annualized embodied energy 

per square meter per year  
       

      

         

        MJ/yr*m2 
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 ( 4-4) 

where 

       : is the total annualized exergy lost, MJ/yr; 

        
 

: is the exergy lost corresponding to the embodied energy in the new 

structure, MJ; 

        
 

: is the exergy lost corresponding to the embodied energy in new walls, 

MJ; 

        
 

: is the exergy lost corresponding to the embodied energy in the existing 

structure, MJ; 

        
 

: is the exergy lost corresponding to the embodied energy in the existing 

walls, MJ; 

        
 

: is the chemical exergy lost corresponding to the embodied energy in 

heavy materials that are not subject to any manufacturing process, MJ; and 

        
 

: is the exergy lost corresponding to the embodied energy in heavy 

materials (subjected to a manufacturing process), MJ. 

The exergy lost for new building components (structural and walls) and for heavy 

materials (masonry, steel, and glass) are calculated as follows: 

The embodied energy is extracted from the SBTool, and both the annual average 

temperature Tko,a (reference environmental temperature) and the maximum temperature 

Tkmax in the process are pre-set. 

        
          

    
     

     
 

 

 (‎4-5) 

        
          

    
     

     
 

 

 (‎4-6) 
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 (‎4-7) 

where 

        
 : is the exergy lost corresponding to the embodied energy in the new 

structure, MJ; 

        
 : is the embodied energy in the new structure, MJ; 

        
 : is the exergy lost corresponding to the embodied energy in new walls, 

MJ; 

        
 : is the embodied energy in new walls, MJ; 

      : is the annual average outdoor air temperature, K; RETScreen software 

(RETSceen International, 2007) is used to extract the annual average 

outdoor air temperature, which is assumed to be the reference 

environmental temperature TK o,a. 

      : is the maximum temperature in the overall manufacturing, transportation 

and installation process, K; 

  : the material; 

        
 : is the exergy lost corresponding to the embodied energy in heavy 

materials, MJ; and 

        
 : is the embodied energy in heavy materials, MJ. 

The chemical exergy of any substance is defined as the maximum work which can 

be obtained when the considered substance is brought in a reversible way from a 

restricted dead state to the state of the reference substance present in the reference 
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environment, which is called the dead state (Xiang et al. 2004). To obtain the chemical 

exergy for any substance (chemical compound) the following process must be followed:  

1) define the chemical formula for the substance; 2) define the molar Gibbs free 

energy in KJ/mol (http://www2.ucdsb.on.ca/tiss/stretton/Database/inorganic_thermo) at 

fixed conditions 289.15 K and 101.325 KPa (Rivero and Garfias 2006) ; 3) calculate the 

standard chemical exergy for the chemical formula using the advanced exergy calculator 

KJ/mol (http://www.exergoecology.com/excalc) with the results of steps 1 and 2 as 

inputs to calculate the standard chemical exergy; 4) calculate the molar weight for the 

formula in g/mole using a molecular weight calculator 

(http://www.lmnoeng.com/molecule); 5) calculate the specific exergy KJ/g using the 

formula given in equation  ( 4-8); and finally, 6) the total exergy can be calculated using 

formula ( 4-9): 

                      
 

            
 ( 4-8) 

        
                 

         

    
 ( 4-9) 

where 

      : is the specific chemical exergy, KJ/g; 

            : is the standard chemical exergy, KJ/mole; 

             : is the molecular weight, g/mole; 

        
 : is the total chemical exergy lost, MJ; and 

       : is the total mass, t. 

Similar calculations are performed for the exergy lost due to existing structures 

        
and wall  s         

. A gradual reduction in the embodied energy for existing 

http://www.exergoecology.com/excalc
http://www.lmnoeng.com/molecule
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structures and walls is applied by using the amortization rate (AR) and the age of the 

existing structural elements (n); see formula ( 4-10) (SBTool, 2010):  

       
           

            

 

 ( 4-10) 

        
          

    
     

     
 

 

 ( 4-11) 

        
          

    
     

     
 

 

 ( 4-12) 

The total annualized exergy lost        is added to the final balance equation.  

4.2.2 Annual non-renewable delivered energy used for facility operations (B.1.2) 

The annual non-renewable energy used for facility operation        is given by 

SBTool: 

                 
         

         
         

 

   

 ( 4-13) 

where 

        : is the total non-renewable annual delivered energy consumption, MJ/yr; 

       
 : is the annual electrical energy consumption delivered;  can be between 

100% from hydro sources or 100% from fossil sources, MJ/m
2
*yr; 

       
 : is the annual fuel-based delivered energy consumption, MJ/m

2
*yr; and 

       
 : is the net area for each occupancy type, m

2
. 

The annual on-site exergy lost is calculated as follows, based on the information 

extracted from SBTool:  

               
        

 ( 4-14) 

where 

        : is the total annual exergy lost, MJ/yr; 
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 : is the annual exergy lost due to the electricity delivered and used on site, 

MJ/yr; and 

       
 : is the annual exergy lost due the use of fossil fuel (e.g., for a natural gas 

fired boiler), MJ/yr. 

The exergy lost due to electricity use        
is equal to the on-site electricity 

use        
. To calculate the exergy lost due to using fuel on-site, first the entropy 

generation within the boiler has to be calculated under steady state conditions, and then 

the exergy lost can be obtained:  

                    
  ( 4-15) 

The terms Sgen represents the total entropy generation within the system boundary 

and SHW and Sloss are the entropy transfers from the hot water and the entropy generation, 

respectively, due to the energy losses of the boiler (e.g., through the chimney). The last 

term in the equation, Sgas, is the entropy input by the natural gas flame (see Figure  4.4). 

 

Figure ‎4.4: Natural gas-fired boiler 

                 
                   

                  
 

         
         

    
         

     
  

         
         

 

        

 

         

( 4-16) 

where 

            
 

       
 

                  
                  

 

        Natural 

Gas-fired 

Boiler 
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     : is the entropy generation within the natural gas-fired boiler, 

MJ/K*yr; 

           
 : is the mass flow rate of water going through the natural gas-fired 

boiler, kg/yr; 

                  
 : is the specific entropy of the water leaving the boiler at Tw, out g-boiler, 

Patm, kJ/kg. K; 

                 
 : is the specific entropy of the water entering the boiler at Tw, in g-boiler, 

Patm, kJ/kg. K; 

       
 : is the annual natural gas energy used, delivered to the building, 

MJ/m
2
*yr;  

       
 : is the net area for each occupancy type, m

2
; 

        : is the energy efficiency of the natural gas-fired boiler, in percentage; 

      : is the annual average outdoor air temperature, K; and 

        : is the adiabatic boiler flame temperature, K. 

The typical efficiency of the natural gas fired boiler is assumed to meet the 

minimum performance levels proposed by Natural Resources Canada at.82 (Energy 

Efficiency Regulations, 2009).  

       
            ( 4-17) 

The total annualized exergy lost,        , is added to the final balance equation 

(see formula ( 4-2)). 
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4.2.3 Use of on-site energy generated from renewable sources (B.3.1) 

In our case this criterion applies only to electricity. Therefore, it would be simpler 

and more accurate to calculate this item by considering the on-site electrical delivered 

energy instead of the off-site energy consumed, since it is the delivered energy data that 

is commonly available. SBTool applies a conversion factor (gross-up factor) to delivered 

energy values to convert them to primary energy, including the combustion and delivery 

loss.  

This criterion shows the percentage of annual purchased electricity that is 

obtained from renewable energy sources. The energy consumed and the exergy lost 

values are calculated based on the following data given by SBTool: 1) the annual amount 

of delivered electrical energy used for operation        
, MJ/m

2
*yr; 2) the net area of 

each occupancy types        
, m

2
; and 3) the percentage of electricity purchased annually 

from renewable energy sources extracted from the SBTool as B 1.3. Based on these data 

the annual amount of electricity purchased from renewable energy sources [MJ/yr] is 

calculated using ( 4-18)). 

        
         

        
 
                     

   
   

 ( 4-18) 

where 

        
 : is the annual purchased of electricity from renewable energy sources, 

MJ/yr; and 

       
 : is the annual electrical energy delivered and used in the operation stage 

of the buildings, MJ/m
2
*yr. 

The exergy lost is identical to the annual on-site electricity purchased from 

renewable energy sources: 
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 ( 4-19) 

The exergy lost given by this criterion will be deducted from the final exergy 

balance equation since it is from renewable sources, see formula ( 4-2). 

4.2.4 Use of durable materials (B.4.4) 

The calculation of the exergy lost due to the recurring embodied energy comprises 

three steps: 1) the percentage of the initial embodied energy of durable materials 

(materials that are predicted to meet or exceed service life expectations),walls and heavy 

materials, to the total initial embodied energy       is estimated from the SBTool data 

as the ratio between the cost of durable materials and the total construction materials 

costs; 2) the number of replacements (N) of non-durable materials is calculated using the 

service life expectation (e.g., Mservice for concrete is 40 years) (Scheuer et al., 2003), Mexist 

service and Lservice (given by SBTool); Equations ( 4-20) and ( 4-21) apply to new and existing 

building materials, respectively, (the first part of equation ( 4-21) is then approximated to 

the first decimal degree); and 3) the recurring energy used or the exergy lost are 

calculated with Equations ( 4-22) and ( 4-23), respectively.  

      
         

         
 ( 4-20) 

         
                                    

         
  

                           

         
 ( 4-21) 

             
   

   
  

 

 
 
         

 

               

 

        

        

 

     

 

 
 

 ( 4-22) 

             
   

   
  

 

 
 
         

 

               

 

        

        

 

     

 

 
 

 ( 4-23) 
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The annualized recurring energy used and the corresponding annualized recurring 

exergy lost are calculated as follows: 

       
         

         
 ( 4-24) 

       
         

         
 ( 4-25) 

The annualized recurring exergy will be added to the final balance equation since 

B1.1 and B1.2 only consider the initial embodied energy and the operation energy, 

respectively, without considering the recurring exergy evaluated by this criterion. 

4.2.5 Re-use of salvaged materials (B.4.5) 

The indicator implemented to evaluate this criterion is the percentage, τ in % by 

cost of materials that are salvaged and refurbished or re-used from on-site or from off-site 

sources (as extracted from the SBTool). Salvaged materials differ from the existing 

materials that are considered by the B 1.1 criterion as they have to be adapted to meet 

their functional requirements with a moderate amount of renovation. The cost of re-use 

given by the SBTool implicitly considers the cost of the materials themselves as well as 

the cost of renovating the salvaged materials to meet their functional requirements. While 

the costs for installation, operation and maintenance of the buildings are conventionally 

based on energy, many researchers (Silveira et al., 2010), however, recommend that costs 

are better distributed among outputs based on the exergy. They recognize that exergy, 

and not energy, is the commodity of value in the system. 

To calculate the energy use in salvaged materials, in terms of both energetic cost 

(ENC) in MJ and the thermoeconomic cost (TEC) in $ have to be determined. The values 

of ENC and TEC are calculated using ( 4-26) and ( 4-27) respectively. 
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 ( 4-26) 

                                                      ( 4-27) 

The unit energetic cost (energy used per unit capital construction cost) [MJ/$] is 

determined using the following equation: 

    
   

   
 ( 4-28) 

The cost of salvaged materials is calculated using the following equation: 

                      

   

    ( 4-29) 

Knowing the cost of the salvage materials (given by the SBTool) and the unit 

energetic cost (calculated), the energetic cost for using salvaged materials on-site and off-

site can be calculated using ( 4-30): 

          
                

         
 ( 4-30) 

The unit exergetic cost (exergy lost per unit capital construction cost) [MJ/$] is 

determined using the following equation: 

    
   

   
 ( 4-31) 

where EXC is the exergy lost due to the initial embodied energy (MJ),calculated 

using ( 4-32). 

            
         

        
         

         
 ( 4-32) 

The annual exergy lost from re-used salvaged materials is calculated using the 

following: 

        
               

         
 ( 4-33) 

Calculating the unit energetic cost based on the assumption that the construction 

cost TEC (thermoeconomic cost) does not include the cost of salvaged, recycled and bio-

based materials. The annualized exergy lost associated with the use of salvaged materials 

       has to be added for the final exergy balance equation.  
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4.2.6 Use of recycled materials from off-site sources (B.4.6) 

The intent is to encourage the use of recycled materials from off-site as part of a 

new facility. Using recycled materials is highly recommended, especially for those 

materials that are energy intensive in production such as steel, which also has the 

advantage of being highly recyclable. The cost of recycled materials             is 

calculated based on the percentage of the contribution of recycled materials, θ in %, of 

the total building cost, given in equation ( 4-34):  

                       

   

   ( 4-34) 

The annualized energy used and annualized exergy lost for using recycled 

materials from off-site sources are calculated using the formulas in eqns ( 4-35) and ( 4-36), 

respectively: 

        
   

               

         
 ( 4-35) 

        
   

               

         
 ( 4-36) 

Based on the assumption that the cost of recycled material             is not 

included in the construction cost TEC as previously mentioned (see section 4.2.5), the 

corresponding value for embodied exergy lost         
 attributable to using recycled 

material has to be added to the final balance equation.  

4.2.7 Use of bio-based products obtained from sustainable sources (B.4.7) 

The indicator used to assess this criterion is the percentage by cost, μ in %, of bio-

based products’ cost from off-site. It is expected that most of these products will have a 

more benign effect on the environment, will be biodegradable, and will have lower 

disposal and cleanup costs than the fossil energy-based products they will replace. 
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The cost of the bio-based products is calculated using the following equation: 

                        

   

      ( 4-37) 

The annualized exergy lost by using recycled materials from off-site sources due 

to the use of bio-based products is calculated as follows:  

        
   

                   

         
 ( 4-38) 

        
   

                   

         
 ( 4-39) 

Based on the assumption that the cost of bio-based products              is not 

included in the construction cost TEC, the exergy lost         
 due to using bio-based 

materials has to be added to the final balance equation, given by formula ( 4-2).  

4.2.8 Use of potable water for site irrigation (B.5.1) 

The annual energy expended for water treatment to be used for the irrigation of 

site areas, landscaped with non-native species Anon-native [m
2
], (excluding stored 

rainwater or grey water used for this purpose) is calculated using equation ( 4-40): 

        
                                                 ( 4-40) 

where                  = irrigation rate [m
3
/m

2∙yr],        =.452 [KWh/m
3
]=1.6272 

[MJ/m
3
], the specific energy expended for water treatment in Montreal [MJ/m

3
] (Dumas, 

2010). The exergy lost is equal to the electrical energy used, which is mostly used in the 

treatment process. The value of          is added to the final exergy balance (Equation 

( 4-2)).  

4.2.9 Use of potable water for occupancy needs (B.5.2) 

The predicted building annual water use at the design stage (TAPWocc), [m
3
/yr] is 

calculated using equation ( 4-41):  
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 ( 4-41) 

where 

        : is the predicted total annual potable volume of water for occupancy 

fixtures and use, m
3
/yr; 

    : is the amount of water in liters used per unit time for occupancy need, (L 

/pp); 

    : is the number of “L” used per day per person, (1/day); 

  : projected population; 

       : number of days of operation, (day). 

Since electricity is the energy used for the water treatment, the exergy lost is 

equal to the energy use:  

                                                 ( 4-42) 

The annual energy used for the heating of domestic hot water (using either gas or 

electric water heaters) is calculated with equation ( 4-43), and the corresponding exergy 

lost with equation ( 4-44) or ( 4-45): 

           
 

  
                          

       
           ( 4-43) 

                            
     

       
  ( 4-44) 

                         ( 4-45) 

where    = specific heat of water, J/ (kg. 
o
K); assumed to be constant in the 

calculation (4186 J/kg. 
o
K); Tsupply = supply water temperature [K]; T inlet= 6-10 ºC, the 

inlet water temperature from city main; TAPW hot-occ= estimated total annual domestic 

hot water use for occupancy fixtures and uses [m
3
/yr] using equation ( 4-46): 
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 ( 4-46) 

The electrical energy and the corresponding exergy lost due to fixture operation is 

calculated using the following formula: 

             
        

                                           
   

 
( 4-47) 

where hOp = operating hours per day for the fixture, [h/day]; loadE  = electricity 

load for the fixture [kW]; cycleD = the duty cycle, which is the proportion of time during 

which a component or device is operated [%]; and fixN = the number of fixtures in the 

building. The total annual energy used for potable water is calculated as follows:   

        
                                       ( 4-48) 

The corresponding exergy lost is calculated using either ( 4-49) for a gas water 

heater or ( 4-50) for an electric water heater. 

        
                                          ( 4-49) 

        
                                          ( 4-50) 

Assuming that the annual energy consumption calculated for B1.2 does not include 

the energy consumption for hot water, water treatment and the energy used by water 

fixtures, then the annual exergy lost EX b5.2 will be added to the final exergy balance 

equation. 

4.3 Evaluation of annualized exergy lost due to environmental loading (issue C of 

SBTool) 

The exergy assessment in section 4.2 is proposed to quantify the exergy lost due 

to energy and resource consumption, while this section considers the pollutant discharges 

which have been analyzed with reference to the abatement exergy. The exergy 

assessment of building environmental loading thus formulated contains two aspects, one 
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from the aspect of building materials using the (EXC1.1) indicator, and one from the 

aspect of building energy utilization, using the (EXC1.2, EXC2.1, EXC2.2, EXC2.3) indicators 

(Liu et al. 2010). Assessing the environmental impact from the pollutant discharge is 

complex (e.g., quantifying the impacts on the atmosphere) since it is difficult to evaluate 

these systems uniformly. Neutralization of the environment is therefore required in order 

to avoid these impacts. Subsequently, all of the pollutants are required to be released in a 

harmless state so that they can be assimilated by the ecosphere or at least do not affect the 

ecosphere’s normal production capacity. Methods that could be employed to measure 

waste emissions using exergy are: (1) Direct Measurement (DM), (2) Ecological Cost 

Coefficient (ECC), and (3) Abatement Exergy (AE) methods. Significant shortcomings of 

the first and second methods have been identified. A detailed review of these 

shortcomings is provided by Szargut et al. (1988) and Wang (2005).  

Considering the weaknesses of the previous two methods using exergy, this thesis 

uses abatement exergy. Abatement exergy consumption is proposed to evaluate 

environmental loading, which can be quantified under certain conditions with existing 

technology by regulating pollutants into the exergy consumption during their 

neutralization.  

According to Barnthouse et al. (1998) in their study of global and long term 

environmental impacts, a relatively high precision can be obtained, whereas uncertainty 

about the precision of the results is realized in local environmental impacts such as bio-

toxicity. This thesis therefore only refers to pollutants and discharges that cause global 

warming, ozone-depletion, acidification, and photo-oxidants.   
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4.3.1 Annualized GHG emissions embodied in construction materials (C.1.1) 

An estimate of the emission profile for a building can be obtained from the fuel 

breakdown of the energy associated with the building materials’ production, assembly 

and process emissions. This information can either be obtained using programs such as 

ATHENA or by using historical data of building stock with similar building 

constructions. Should a comprehensive emission profile not be available, an evaluation of 

Greenhouse Gas emissions GHG can be made by multiplying the total annualized 

embodied energy derived in criterion B1.1 by the national or regional average CO2 for 

the building industry (aaver).  

The abatement exergy approach is used in this study to assess the environmental 

impact of emissions because of its advantages: (i) easy to apply once the abatement 

exergy is known for each waste emission, (ii) the availability of some waste emission 

data in the literature, and (iii) the possibility of adding the corresponding exergy value 

directly to the exergy lost values of other indicators.  

The annualized abatement exergy lost corresponding to the emissions embodied 

in construction materials is calculated as follows:  

        
                    ( 4-51) 

where 

       : is the abatement exergy lost corresponding to the embodied energy, 

MJ/yr; 

       : is the total annualized embodied energy, MJ/yr; 

      : is the assumed regional fuel emission value kg of CO2 per GJ of primary 
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operating energy (e.g., the emissions for residential usage taken from 

average Canadian building stock values for 1999 (SBTool) is 55, kg 

CO2/GJ), kg CO2/GJ; and 

      : is the specific abatement exergy (e.g., according to reference data, exergy 

consumption in CO2, SO2, and NOx processing are 5.86 MJ/kg (Dewulf et 

al. 2001), 57 MJ/kg (Bashford and Robson 1995), and 16 MJ/kg 

(Cornelissen 1997), respectively). 

The total annualized abatement exergy        corresponding to the annualized 

GHG emissions embodied in construction is added to the final balance equation. 

4.3.2 C 1.2 Annualized GHG emissions from all the energy used for facility 

operations 

This criterion assesses the annualized greenhouse gas emissions kg CO2 equiv/yr 

associated with building operation. GHG emission is emerging as a major consideration 

in building assessment. Among many activities throughout the building process, the use 

of energy represents by far the largest source of emissions. The calculation of the major 

GHG emissions (e.g., Carbon Dioxide (CO2), Nitrous Oxide (N2O) and Methane (CH4)) 

for facility operations is achieved by the breakdown of the primary energy by fuel type 

(e.g., Natural gas, Oil and Coal) and multiplication by the appropriate regional emission 

coefficient for on-site use for various fuel sources (g/MJ). The annual equivalent CO2 

emission is calculated (for the most part) based on two major components: (1) the off-site 

generation of electricity        
, and (2) the on-site fossil fuel        

consumption. The 
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former is calculated using equation ( 4-52) and the latter is calculated using equation 

( 4-53).  

                

  

    

 

          
         

 

   

       ( 4-52) 

where 

           
: is the annual equivalent CO2 emissions related to electricity generation, 

kg /yr; 

    

: the pollutant coefficient for each   GHG for specific energy sources j 

used for off-site generation of electricity only, given by SBTool (e.g., 

          is 131.39), Kg/GJ; 

   

: the contribution percentage of different energy sources j to the off-site 

generation of electricity, (e.g., contribution percentages in Ontario are 

24.6, .5, 8.4, 40.8, 24.9 and .7 for coal, oil, natural gas, nuclear, hydro and 

other sources, respectively, given by SBTool in percentage; 

       
 

: is the annual primary operating energy corresponding to electricity 

consumption, MJ/m
2
*yr; 

       
 : is the annual fuel-based energy consumption, MJ/m

2
*yr; and 

       
 : is the net area for each occupancy type (OCC), m

2
. 

 

On the other hand, the annual equivalent CO2 emissions due to the on-site fossil 

fuel use are calculated by multiplying the estimated annual operating energy consumption 

by the regional emission coefficients from combustion in g/MJ for GHG, as presented in 

Table  4.4 for the province of Ontario. Scientifically sound conversion factors based on 
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environmental impact assessment often enable us to aggregate other emissions into a 

single index that could consider the relative harmfulness of certain individual pollutants 

(e.g., GWP). A set of the Intergovernmental Panel on Climate Change (IPCC) values has 

produced a set of GWP indicators that compare the global warming impact of 1 kg of any 

GHGs and I kg CO2 (e.g., GWP for CO2, CH4, and N2O are 1, 310 and 21, respectively 

(IPCC 1996))(Houghton et al. 1996).  The equation ( 4-53) is implemented.  

                          
         

 

   

       ( 4-53) 

where 

           : is the annual equivalent CO2 emissions related to on-site fossil fuel use, 

kg /yr; 

    : is the pollutant coefficient for each   GHG for specific energy sources j 

used for on-site heating or cooling only (e.g.,           is 50.95), for other 

pollutant coefficients for Ontario province, see table 3.5, Kg/GJ; 

       : the Global warming potential,  a dimensionless weighting factor for the 

emitted substance i integrated over years a and measured in kg of CO2 

equivalent per unit mass of the substance i, kg CO2 eq./kg; and 

       
 : is the annual fuel-based energy consumption, MJ/m

2
*yr. 

 

Table ‎4.4: Pollutant coefficients [g/MJ] for the province of Ontario  

Pollutant coefficient,     

Fuel used for on-site heating or cooling 

only, j 

Emissions data for each GHG, i 

CO2 CH4 NOx SO2 

Natural gas 50.95 .00117 .04201 .00041 

Propane or LPG 57.52 .00113 .04531 .00197 

Light Oil 72.94 .00067 .01427 .45412 

Heavy Oil 73.57 .00286 .17400 .06286 

Coal 81.37 .47059 .13889 .46732 
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Finally the annual abatement exergy is obtained by multiplying the value of total 

equivalent             emissions [Kg CO2 eq.] (calculated only for CO2 and CH4) by the 

value of the  unit Abatement exergy for CO2, which is found in the literature to be 5.86 

MJ/kg (Dewulf et al. 2001), see equation ( 4-54). 

        
                       ( 4-54) 

where 

            : is the total annual equivalent CO2 emissions, the sum of            and 

          , kg /yr; and 

          : is the specific abatement exergy for CO2, MJ/kg. 

Another method, using an assumed average value of CO2 per GJ of primary 

operating energy (     ), given by SBTool, could be implemented to calculate        as 

follows: 

                              
 

   

           ( 4-55) 

The total annualized abatement exergy        corresponding to the annualized 

GHG emissions from the total energy used for facility operations is added to the final 

balance equation. 

4.3.3 C 2.1 Emissions of ozone-depleting substances during facility operations 

The intent of this criterion is to minimize ozone depletion from the leakage of 

CFC-11eq. The main concern stem from the release of Ozone Depleting Substances 

(ODSs), via (i)  normal refrigeration equipment leakage, (ii) the threat of potential 

accidental catastrophic discharge, or (iii) due to the ultimate safe disposal of ODS when 

they outlast their usefulness in specific application. Up to the 1930s, carbon dioxide, 
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ammonia and other fluids were used as refrigerants; later on Chlorofluorocarbons 

(CFCs), Hydrochloroflourocarbons (HCFCs) and halocarbons quickly occupied the 

market. After alarming ozone depletion, an international agreement for limiting the 

HCFCs was concluded in 1992 and a phase-out schedule to 2030 has been in place for 

some time (Halozan 2007).  

Emissions due to specific amounts and types of refrigerants, emitted during 

building construction and operation, are one of the causes of the decomposition of the 

stratospheric ozone layer. This decomposition in turn has caused increased UV radiation, 

leading to multiple impacts on humans (e.g., skin cancer, cataracts) (http:// 

www.irs.gov/.../Ozone-Depleting-Chemicals-(ODC)-Excise-Tax-Audit-Techniques-

Guide – August 03, 2012).  

This criterion assesses the environmental impact based on the predicted annual 

emissions of CFC-11eq, in g/m
2
∙yr (normalized for net usable building area). The value 

for annual CFC-11eq is the accumulated value assigned to the total the potential hazard 

offered by each type of refrigerant, as given by equation ( 4-56), and which in turn is 

obtained by multiplying the quantity of each substance by its Ozone Depleting Potential 

(      ). 

The value obtained for each CFC is normalized for the net usable building area. 

The total Ozone Depletion, OD, is expressed in kg of the reference substance, CFC-11. 

Values of        factors are given by the 

(http://www.epa.gov/ozone/science/ods/classone.html). Examples are given in Table  4.5.  
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Table ‎4.5:         factors  

ith substance Ozone Depletion factor        

CFC-11 1 

CFC-115 .6 

Halon 2402 6 

 

         
           

       

 ( 4-56) 

where 

         : is the total annual equivalent CO2 emissions corresponding to an ozone-

depleting substance, g/m
2
∙yr; 

       :is the  steady-state Ozone Depletion Potential for the emitted substance i 

measured in kg of CFC-11 equivalent per unit mass of substance i, (kg 

CFC-11eq./kg);  

   : is the quantity of the emitted substance i, kg; and 

       
 : is the net area for each occupancy type (OCC), m

2
. 

The total annualized exergy        corresponding to the emission of ozone-

depleting substances during facility operations is obtained using equation ( 4-57), and it 

will be added to the final balance equation. 

                             
                     ( 4-57) 

where 

          : Global warming potential (GWP) for CFC-11; and 

          : is the specific abatement exergy for CO2, MJ/kg. 

4.3.4 C 2.2 Emissions of acidifying emissions during facility operations 

The criterion assesses the gas emissions associated with a building’s operation 

that lead to acidification; SO2 and NOx are the major emissions that cause acid 

precipitation. Specialists have considered that the current accepted levels for these 

emissions is not acceptable in practice, since they affect the productivity and health of 
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many lakes, rivers and forests (Jeffries et al. 2003). The indicator used to assess this 

criterion is the annual kg of SO2eq normalized for the net usable building area Anetocc, 

given by the SBTool or calculated using equation ( 4-58), while the corresponding annual 

abatement exergy is calculated using ( 4-59), and which will be added to the final balance 

equation. All calculations are mainly based on primary energy use and take into account 

the characteristics of available fuels. The potency factor for atmospheric acidification 

(     ) are presented in (Tallis 2002). Examples are given in Table  4.6.  

Table ‎4.6:        factors  

i 
th

 Substance Potency Factor PF 

      1 

     .88 

    1.6 

      .7 

           .65 

 

      
 

          

       

 ( 4-58) 

        
              

           ( 4-59) 

where 

      : the total annual sulphur dioxide equivalent corresponding to acidification 

is the unit of the ith environmental burden, kg/m
2
∙yr CO2; 

      : is the potency factor of substance i for acidification as an environmental 

burden, (kg SO2eq./kg);  

   : is the weight of substance i emitted, including accidental and 

unintentional emissions, kg; 

       
 : is the net area for each occupancy type (OCC), m

2
; and  

          : is the specific abatement exergy for SO2, MJ/kg. 
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4.3.5 C 2.3 Emissions leading to photo-oxidants during facility operations 

An annual emission of gases leading to the formation of photo-oxidants from building 

operations is assessed through this criterion. The indicator measures the annual Ethane 

equivalent normalized for net usable building area, in gm, see equation ( 4-60).  

        
 

          

       

 ( 4-60) 

where 

        
 : is the emission of Ethane equivalent per year in gm per unit area 

corresponding to the photo chemical oxidant potential, g/m
2
∙yr; 

      : is the potency factor of substance i for photo chemical oxidants’ potential 

as an environmental burden, (kg C2H6 eq./kg);  

   : is the weight of substance i emitted, kg; and 

       
 : is the net area for each occupancy type (OCC), m

2
. 

The potency factors for this category are obtained from the potential of substances 

to create ozone photo chemically, see (Tallis 2002). Some examples are given in Table 

 4.7.  

Table ‎4.7: Photo-oxidant i  factors  

ith substance Ozone Depletion factor        

Methane 0.034 

Ethane 0.14 

Propane 0.411 

Propylene 1.08 

Nitrogen dioxide 0.028 

Sulphur dioxide 0.048 

Carbon monoxide 0.027 

 

The aggregation of pollutants to total environmental burdens due to photo-oxidants 

is based on the concept of equivalency potentials. For example, methane destroys only 
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0.034 times as many ozone molecules before being removed from the stratosphere as 

ethylene, it is assigned photo-oxidant potential of .034. All photochemical ozone 

substances are multiplied by their potency factor and then summed up to give the total 

pollution load in ethane equivalents. Since the abatement exergy for ethane C2H4 has not 

been found in the literature, it is derived by assuming it is proportional to the global 

warming potential index. The value of         
 is found in the literature to be extremely 

small, about 20 (Zhu et al. 2006). The constant value .001 takes into account the 

conversion from g to Kg. The total annualized abatement exergy        corresponding to 

photo-oxidants is calculated using equation ( 4-61), and it is added to the final balance 

equation. 

        
                     

        
           ( 4-61) 

4.4 Available solar exergy 

Our planet is a thermodynamic system open to solar radiation and almost closed 

to any material flux from the universe. Therefore the solar radiation can be considered as 

the sole sustainable energy source. Many studies have been undertaken on this topic 

Petela (1964), Landsberg et al. (1976), and Press (1976),  including various approaches to 

calculate the exergy-to-energy ratio for radiation for determining the available exergy due 

to thermal emission at the solar radiation temperature (TKsun). Among these, the first 

one, which is called the maximum efficiency ratio (ψ), is calculated as proposed by 

(Petela 1964), Eq. ( 4-62). 

            
 

 
 
   

 
 
 

 
    

  
 ( 4-62) 
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 The maximum efficiency ratio term was  also been derived by Szargut et al. 

(1988), who presented a simple system that transformed radiation energy into mechanical 

or electrical work assuming that solar radiation has a similar composition to that of a 

black body. The history of Eq. ( 4-62) is presented by Millan et al. (1996). It has been 

reported that the most widely used formula for heat radiation exergy are those derived by 

(Petela 1964), (Spanner 1964), and (Jeter 1981), see Table  4.8.   

Table ‎4.8: Energy efficiency of radiation utilization by different researchers 

Researchers 
Output 

(numerators) 

Input 

(denominators) 
Energy efficiency of radiation 

(Petela 1964)  
Radiation exergy 

or Useful work 
Radiation energy             

 

 
 
   

 
 
 

 
    

  
 

(Spanner 

1964) 
Absolute work Radiation energy             

    

  
 

(Jeter 1981) 
Net work or a heat 

engine 
Heat             

   

 
 

The annual available solar energy and the annual available solar exergy on a 

building’s footprint (BFP) are calculated using Eqs. (‎4-63) and ( 4-64) :  

                        

 

 (‎4-63) 

                          
 

 
 

   

    
 
 

 
    

     
      

 

 ( 4-64) 

where Toi = the average environmental temperature for month i [K]; Tsun = solar 

radiation temperature 6000 K (Petela 2005); Ii= total incident solar energy per unit area 

of horizontal surface for month i (extracted by using TRNSYS software 

[kWh/m
2
.month];  and ABFP= building footprint [m

2
] (Klein et al. 2004).  

While the proposed approach considered the technical boundary by using sun as an 

infinite heat source at 6000 K, another approach considering the physical boundary is 

proposed and explained by Torio and Schmidt (2010). With physical boundary, the 
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maximum possible collector temperature is considered when determining the exergy 

efficiency rather than using the sun temperature as proposed in this thesis.  

4.5 Exergy‎Index‎of‎Renewability‎αex 

The exergy index of renewability is the ratio between the theoretical available 

solar exergy (as presented in section 4.4) and the total annualized exergy lost within the 

building (as presented in sections 4.2 and 4.3), equation ( 4-2).  

The Exergy Index of Renewability, Eq. ( 4-1), is the ratio between the annual 

theoretical available solar exergy on the building footprint (as presented in section 4.4), 

equation ( 4-64), and the total annualized exergy lost due to the building construction and 

operation (as presented in section 4.3), equation ( 4-2). 

This approach implicitly considers the theoretical potential of 100% of the solar 

exergy being harvested. However, the theoretical potential is reduced by losses associated 

with the conversion from the primary source to the secondary resource. Würfel (2002) 

discussed the thermodynamic limitation on solar energy conversion based on the entropy 

concept, and that the upper efficiency is calculated to be 86%, this is identified as a 

“technical potential” for solar technology. The technical potential is made possible at cost 

levels that are competitive with other energy sources (commercial PV cells have 

efficiencies from 2 to 8% as calculated by Sahin et al. (2007)), which can also be 

identified as an “economic potential”.  

The rating scale is developed based on some assumptions: (i) the renewability 

index of buildings (αex) follows a normal distribution around the average value, (ii) 50% 

of the buildings on the market are assumed to be Energy Efficient Buildings (EEB), with 
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αex between 40&60. These buildings will receive an “average exergy efficient” under the 

proposed rating scale, (iii) the probability of finding a Net Zero Energy Building (NZEB, 

wich αex between 60 and 80) on the market is only half  that of finding an EEBs, or .21. 

These buildings received an exergy efficiency rating scale; and (iv) this new probability, 

along with the performance of the buildings that could compensate for 80% of their 

exergy lost due to construction and operation by the available exergy that could be 

harvested on their horizontal footprint, represent only 1-4 % of the building market today, 

with αex of between 80 and 100. These are called Sustainable Buildings (SB). Figure  4.5 

shows the probability density function (PDF) for the Exergy Index of Sustainability 

(ExSI).  
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Figure ‎4.5: Probability density function for Exergy Index of Sustainability (ExSI) 

 

The cumulative distribution function, which presents the Exergy Index of 

Sustainability, is presented in Figure  4.6. 
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Figure ‎4.6:‎Exergy‎Index‎of‎Sustainability‎versus‎the‎Exergy‎Index‎of‎Renewability‎(αex) 

 

4.6 Exergy Index of Sustainability (ExSI) 

The ExSI was developed by imposing the following three constraints: (a) the index 

should tend to zero when the Exergy Index of Renewability tends to zero, (b) the index 

should tend to 100 when the Exergy Index of Renewability tends to 100%; in this last 

case, exergy lost due to building construction and operation is equal to or less than the 

available exergy that can be harvested on the horizontal surfaces; and (c) the ExSI of 50 

corresponds to the Exergy Index of Renewability (αex) of 50%.  
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The rating scale has an asymptotic variation when the index approaches the two 

extremes, i.e., when the building is either unsustainable or sustainable. The nonlinearity 

causes the exergy sustainability index ExSI to be less sensitive at a small renewability 

index and at a high renewability index. Since the ExSI is less sensitive at these two 

extreme conditions, it can be improved only if the building achieves significant reduction 

of exergy lost, for a given location and footprint. Such reduction will enable 

breakthrough solutions to take place rather than incremental technological improvements. 

The Exergy index of Sustainability (ExSI) is calculated in terms of renewability 

exergy       as follows: 

      
   

                   
  ( 4-65) 

Buildings with identical exergy loss may achieve different ratings if different rating 

scales are implemented. The proposed rating system uses a continuous unipolar function. 

The value of parameter λ in Equation ( 4-56) represents the strength of the policy 

implemented. To help achieve sustainability in the building sector; this parameter 

determines the slope and spread of the relationship between the sustainability index ExSI 

and the renewability index αex. A policy may involve any positive initiative, which could 

include a variety of recycling programs, reducing pollutions and wastes, and conservation 

of energy and or water. The value of λ, of between 0 and 1, is set by the developer of a 

rating scale based on local or national goals, market penetration of technologies and 

shareholders surveys. If a specific ExSI rating scale is set as a target to be achieved (e.g., 

ExSI=4) then the renewability index, which is only a function of the total normalized 

annual exergy lost, has to satisfy an extra reduction under a restrictive sustainability 
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policy (Figure  4.7a) rather than what should be satisfied if a lenient sustainability policy 

is implemented (Figure  4.8b). 

In this study we propose setting λ = 0.11 (Figure  4.7 b), which allows for a 

Gaussian-type distribution of buildings in terms of exergy performance. Implementing a 

restrictive sustainability policy, for instance by using λ = 0.9 (Figure  4.7a), would 

exclude many buildings from being considered as sustainable. The effect of changing the 

value of lambda is graphically represented (see Figure  4.7).  

 

  

Figure ‎4.7: Graphical representation of Eq. (‎4-65) and‎change‎of‎ExSI‎as‎a‎function‎of‎λ 

 

4.7 Rating scale for building sustainability  

Rating systems achieve different levels of sensitivity based on the method used to 

assess their indicators. In the best case, earlier rating systems used binomial approaches 

or rang-based models to evaluate their indicators. In LEED systems, a binomial approach 

is used where points are given to a building if it meets certain requirements, or are 

deducted if it fails to satisfy predefined requirements. In SBTool, however, the interval 

b 

 

a 

 

ExSI=

4 

ExSI=

4 

20% 
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le 
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45% 
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98 

 

approach is used; the level of performance achievement for each criterion is normalized, 

and values are converted into a scale bounded between -1 and 5. The difference between 

the previous approaches and the proposed framework is presented graphically in Figure 

 4.8.  

 

 

Figure ‎4.8: Sensitivity of the proposed rating scale versus the previous ones 

 

Different rating scales and their corresponding linguistic representation have been 

used by different authors. These rating typically take the form of a singular, easily 

recognizable designation, e.g. ‘Gold’, ‘Excellent’, or they use a numerical index. The 

former is more market-oriented while the latter is more effective at supporting decision 

makers. 

Ahluwalia (2008) listed some of the available rating scales that have been used for 

buildings. The rating scale proposed in this study is an extension of Zmeureanu et al. 
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(1999), which was itself compared against rating scales such as ERHA, STAR POINT, 

and HERS, using energy use. The proposed rating scale is based on exergy lost instead of 

energy cost to avoid geo-political and market condition influences. The proposed rating 

scale assesses building sustainability in five categories, in terms of the Exergy Index of 

Sustainability: Sustainable, Exergy efficient, Average exergy efficient, Less than average 

exergy efficient, and Unsustainable Table  4.9.  

Table ‎4.9: Rating scale based on ExSI value. 

Rating scale Range of ExSI value 

Sustainable  96 % <ExSI ≤ 100 % 

Exergy efficient 75 % < ExSI ≤ 96 % 

Average exergy efficient  25% < ExSI ≤ 75 % 

Less than average exergy efficient 4 % < ExSI ≤ 25 % 

Unsustainable 0% ≤ ExSI ≤ 4 % 

 

4.8 Conclusion 

An exergy-based index is an attempt to help guide decision making towards 

sustainability through sustainable building practice. The goal is to develop a simple but 

powerful rating system that gives a viable assessment of building sustainability. It could 

be very useful as a compass, rather than as a route map, while also serving as a single 

proactive indicator that permits an ex-post analysis as well as ex-ante measures. The 

developed exergy-based index can support decision makers as they evaluate, compare 

and improve building performance. This index could also be useful to rank and to define 

the relative importance of each criterion based on the percentage of their contribution to 

the total annualized exergy loses; thereby identifying the criterion to prioritize for further 

investigation before making a decision. The proposed exergy-based index uses an 

innovative approach, in which the annualized exergy lost is compared with a single 
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benchmark, the available solar exergy that can be harvested on a building’s footprint. 

Using this benchmark provides a yardstick that can easily be used to evaluate a building’s 

sustainability locally as well as globally. The proposed exergy-based index attempts to 

overcome the limitations of the subjectively-defined weights that are allocated to 

different criteria used in the assessment of building sustainability. The proposed exergy-

based index is generic, since it can be used at every stage and it is valid for all building 

types. The distinctive characteristic of the proposed framework is the calculation and 

aggregation of different sustainability dimensions into a single commodity, exergy. Even 

though other SBTool issues, besides the B and C issues, are important to be mentioned, 

the lack of sufficient data did not allow for the inclusion of exergy losses corresponding 

to those issues in this thesis. It would be desirable to include some of those important 

issues in the evaluation procedure in future research work. Changing the constraints that 

define sustainability as a moving target (i.e. a temporal function) that depends on 

scientific understanding of sustainability concepts and of the transient nature of 

technology has been avoided through the proposed framework by using the maximum 

theoretical available solar exergy.  
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5 CASE STUDIES 

 

Fourteen carefully-designed case studies were conducted to study various aspects 

of the proposed framework for evaluating the energy and exergy sustainability indices 

(ExSI) of a building by means of the exergy approach. The proposed methodology was 

numerically implemented based on the data given by the SBTool and according to the 

theoretical procedure used to estimate the ExSI (as presented in chapter 4).  

For simplicity, the detailed calculations (all of the required calculations, from 

extracting the data from SBTool to calculating the ExSI) are only presented for case 

study no.1; the major results and finding of all the others (nos. 2-14) are presented in 

tabulated format in section 5.8.  

5.1 Case‎Studies’‎Description‎ 

The proposed assessment method was applied to fourteen case studies. The following 

paragraphs give only a few indications about each case. For more detailed information, 

readers are encouraged to consult the following references ((SBTool 2010), (Leckner and 

Zmeureanu 2012), (Bin and Parker 2011), (Scheuer et al. 2003), and (Monteiro and Freire 

2012)). The critical characteristics of case studies (2-14) are listed in Table  5.1: Critical 

characteristics of case studies (2-14). 

 



 

 

Table ‎5.1: Critical characteristics of case studies (2-14)  

Design 

Parameter 

Case studies 
Case no.2 

(BCH)  

Case no.3  

 (NZEH) 

Case no.4 

(REEP) 

Case no.5 

(REEP)  

Case no.6 

(SH) 

Case no.7  

(EEH) 
Case nos 8-14 

Location 
Montreal, 

Quebec 

Montreal, 

Quebec 

Kitchener, 

Ontario 

Kitchener, 

Ontario 

Detroit, 

Michigan 

Detroit, 

Michigan 

Coimbra, 

Portugal 

Total heated 

area  m
2
 

208.4 208.4 280 280 657 657 132 

Building types Single detached Single detached 

Two story single 

detached brick 

house 1910 

Two story single 

detached brick 

house retrofit in 

2007 

Two story single 

detached 

Two story single 

detached 

Single family 

house 

Net area of 

the overall 

plan m
2
 

83.6 83.6 140 140 228 228 70 

L service (yr) 40 40 100 70 50 50 50 

Envelope 

Insulation of 

above ground 

walls 

(RSI-value) 

3.52 m
2
∙K/W 

140 mm mineral 

wool 

6.25 m
2
∙K/W 

235 mm 

improved mineral 

wool 

13 44 

15 

fibreglass 

insulation 

35 

cellulose 

insulation 

.47 -.51 

(W/m
2
*

o
C) U 

value 

Window/Floor 

Area Ratio 
11% 20% 8% 16% 

(14%) 

337 ft2 

(20%) 490 ft2 

(337 (old 

glass)+153 Low 

E glass, argon) 

11% 

Windows: 
Double Pane 

0.391 m
2
∙K/W 

All Triple Pane 

Argon Filled. 

1.03 m
2
∙K/W 

Double-glazed 

windows 

Double-glazed 

windows 
Double glazing 

double glazing, 

low E coatings 

with argon fill 

Double glazing 

U=1.1 

Natural Air 

Infiltration 

(ACH) 

0.1635 

(3.27 ACH @ 50 

Pa) 

0.061 

(1.22 ACH @ 50 

Pa) 

N/A N/A 

.67 

effective leakage 

area ELA=153 

in2 

.4 

effective leakage 

area ELA=20 in2 

.6 air change per 

hour 



 

 

Energy Efficient Equipment 

Lighting type Incandescent CFL Incandescent CFL Incandescent  CFL Incandescent  

Appliances Standard models Energy Efficient Standard models Energy Efficient Energy Efficient 
Energy Efficient 

run on NG. 
N/A 

Annual 

energy used 

kWh/yr 

25,615  

 (123 kWh/m
2
) 

11,600  

(67 kWh/m
2
) 

61380  11000  
14493 GJ  

(50 yrs) 

4725 GJ  

(50 yrs) 
905500 MJ 

Embodied 

energy 

kWh 

281,193   

511,825  

160,709 (due 4 

solar collector 

and 35.8 PV) 

133000  

 77.8% from clay 

68000  

49.9 % from 

Polyurethane 

1540 GJ  

(50 yrs) 

1703 GJ  

(50 yrs) 
597630 MJ 

Domestic Hot 

Water Use 

236 litres/day 

Low flow 

faucets: 165 

litres/day 

N/A N/A N/A N/A N/A 

Electric heating 

element in the 

tank (5.5 kW) 

Solar Collector & 

Electric Heating 

(1 kW) 

N/A N/A N/A N/A N/A 

DHW Energy 

Recovery 
N/A 

Drain Water Heat 

Recovery 

Effectiveness of 

0.6 

N/A N/A N/A 

Copper waste 

water heat 

exchanger coil, 

decrease NG use 

by 40% 

N/A 

Renewable Energy Technologies 

Heating 

System 

Electric 

Baseboard 

Heaters 

Radiant Floor 

Heating (2 kW & 

4 kW electric 

elements) 

the fuel used to 

heat the REEP 

house is natural 

gas 

N/A 
passive solar 

heating 

natural gas 

heating system 
N/A 

Furnace N/A N/A 
furnace is 80% 

efficiency 

furnace is 96% 

efficiency 
80% 95% N/A 

Electricity Electrical Utility 
Photovoltaic 

Panels 
Electrical Utility Electrical Utility Electrical Utility Electrical Utility Electrical Utility 

Emissions N/A N/A 
33882 kg  

(1.902kgCO2/m
3
) 

15397 kg 1013 t CO2.eq 374 t CO2.eq 

12.9 kg CO2 

eq/m2.yr or  

85 t CO2eq over 

(50 yrs) 
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5.1.1 Case study no.1 

Case study no.1 is a large commercial and residential building located in Ottawa, 

Ontario, Canada (SBTool 2010) and has three occupancy types (apartment, retail, and 

indoor parking), with total floor area of 11,200 m
2
 and building footprint of 800 m

2
. The 

building’s life span is considered to be 75 years. Aluminum and glass curtain walls and 

30 cm reinforced concrete walls are the main type of building envelope. The building 

cost, excluding the operation cost, is $ 10,800,000, $ 15,200,000, $ 2,900,000 for the 

apartment, retail, and indoor parking sectors, respectively. The cost includes the 

construction cost (thermoeconomic cost), salvaged, recycled, and bio-based materials 

costs.  

The value of the annual exergy lost is calculated for the building footprint ABFP 

corresponding to each criterion. These values are case-sensitive because they incorporate 

specific technologies and processes for materials, including their extraction, 

manufacturing, transportation, and installation. 

5.2 Energy consumption and Exergy lost  

The components contributing to all of the energy consumption and exergy lost 

within the building are evaluated based on the SBTool criteria. Each component is 

presented according to the sequence followed in the calculation of energy consumption 

exergy lost. 

The calculation method for several criteria is presented in this section along with 

some numerical results for case study no.1. The results from the other case studies are 

presented is section 5.8. The process begins with the data extracted from the SBTool (see 
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Table  5.2). Next, the procedure used to calculate the energy consumption within the 

building is described and carried out, finishing with the equation that converts the energy 

consumed  to the associated exergy lost, with the implementation of the set of equations 

presented in the theoretical/methodology chapter. 

Table ‎5.2: Selected criteria of issue B as extracted from the SBTool 

B 

Energy and Resource 

Consumptions 

 

Units 

Extracted data 

from SBTool 
Total 

Apart. Retail 
Indoor 

parking 

B1.1 

Annualized non-renewable primary 

energy embodied in construction 

materials. 

MJ/m
2
∙yr 296   296 

B1.2 
Annual use of purchased electricity for 

operations, delivered. 
MJ/m

2
∙yr 111 533 36 680 

B3.1 
Use of off-site energy generated from 

renewable sources, delivered. 

% by 

energy 
22 22 22 14,960 

B4.4 Use of durable materials. % by cost 4 
 

B4.5 
Re-use of salvaged materials from off 

site. 
% by cost 700,000 2,200,000 2,200,000 5,100,000 

B4.6 
Use of recycled materials from off-site 

sources. 
% by cost 200,000 300,000 

 
500,000 

B4.7 
Use of bio-based products obtained 

from sustainable sources. 
% by cost 1,400,000 2,700,000 

 
4,100,000 

B5.1 Use of potable water for site irrigation. m
3
/m

2
∙yr 2.5 2.5 2.5 

 

B5.2 
Use of potable water for occupancy 

needs. 
L/pp/day 148 41 41  

5.2.1 Annualized non-renewable embodied energy in construction materials 

(B.1.1) 

The total embodied energy for the project is 404,050,142 MJ, which is the sum of 

the embodied energy for new structural elements (368,782,744 MJ), new walls 

(5,562,000 MJ), heavy materials (10,477,500 MJ), existing structural elements 

(15,006,260 MJ), and existing walls (4,221,638 MJ). The total annualized non-renewable 

primary energy embodied in construction materials is calculated using formula ( 4-3): 
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 ( 4-3) 

       
 

                                                       

  
                 

 

The calculation of the exergy lost from new RC slabs, beams, and columns is 

given as an example for new structural elements. This exergy is calculated using the 

formula (‎4-5). The embodied energy for new RC slabs, beams and columns is given by 

the SBTool as 190,747,316 MJ. The embodied energy is calculated based on the RC 

slabs’, beams’ and columns’ total volume (20,817.1 m
3
), their density (2,450 Kg/m

3
) and 

specific energy (00374 GJ/Kg). The annual average temperature Tko,a in Ottawa is 5.8
o
C 

(278.95 K). The maximum temperature T max occurs when the raw meal or slurry is fed to 

a rotary kiln, where it is heated to a temperature of about 1450
o
C (1723 K) to convert 

slurry into clinker (Athena™ 2005).  

        
          

    
     

     
 

 

 (‎4-5) 

        
                 

      

    
                  

The exergy lost from new 20 cm masonry walls (        
) and from steel as heavy 

materials (        
) are given as examples, calculated using formulas (‎4-6) and (‎4-7), 

respectively. 

        
          

    
     

     
 

 

 (‎4-6) 

        
             

      

   
              

        
          

    
     

     
 

 

 (‎4-7) 
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A similar process is followed for all the other new structural elements, walls and 

heavy materials, except for sand and aggregate, to obtain the values for the exergy lost. 

The chemical exergy lost for sand is calculated using the steps described in 

section 4.2.1. The chemical formula is SiO2; the molar Gibbs free energy is -856.7 

KJ/mol; the standard chemical exergy is 1.37 KJ/mol; and the molar weight for sand is 60 

g/mol. The specific exergy is calculated as 02283 KJ/g using formula ( 4-8), and in the last 

step, the total exergy is calculated using formula ( 4-9) and found to be 2,283 MJ.  

                      
 

            
 ( 4-8) 

               
 

  
              

        
                 

         

    
 ( 4-9) 

        
             

         

     
           

The exergy lost by the existing structure and by its walls is calculated using 

equations ( 4-10) and ( 4-11), respectively. The exergy loss calculation for the existing 

reinforced slabs, beams and columns is presented as an example. The energy used is 

14,651,637 MJ, the amortization rate is .02 per year and the estimated age of the existing 

structure is 12 years; all of these values are given by the SBTool.  

       
           

            

 

 ( 4-10) 

        
                                         

        
          

    
     

     
 

 

 ( 4-11) 

        
               

      

        
                 

The total exergy for new structural elements, new walls, for two types of  heavy 

materials, and for existing structural elements and existing walls are 300,539,383 MJ, 
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4,643,865MJ, 8,197,805 MJ, 9,133 MJ, 12,556,598 MJ, and 3,432,967 MJ, respectively 

(see Table  5.3). 

 Table ‎5.3: Energy consumption and exergy lost for the building materials 

Building materials Energy Exergy 

New RC slabs, beams & columns 190,747,316 159,868,424 

New steel deck & concrete topping 12,920,000 10,208,467 

New precast concrete slabs, beams & columns 165,115,427 130,462,492 

New structural elements [        
] 368,782,744 300,539,383 

30 cm. RC 4,200,000 3,520,088 

20 cm. Masonry*  165,000 115,088 

Curtain wall, glass/alum. 1,197,000 1,008,689 

New walls [        
] 5,562,000 4,643,865 

Existing RC slabs, beams & columns 14,581,309 12,220,832 

Existing steel columns & beams or joists 424,950 335,766 

Existing Structural elements [        
] 15,006,260 12,556,598 

X 30 cm. RC 1,642,080 1,376,254 

X 20 cm. Masonry* 806,112 562,263 

X Curtain wall, glass/alum. 1,773,446 1,494,450 

Existing walls [        
] 4,221,638 3,432,967 

Masonry* 1,250,000 871,876 

Steel 8,000,000 6,321,032 

Glass 1,192,500 1,004,897 

Heavy material          
] 10,442,500 8,197,805 

Sand* 5,000 2,283 

Aggregate* 30,000 6,850 

Heavy material [        
] 35,000 9,133 

Total heavy materials 10,477,500 8,206,938 

ENC and EXC 404,050,142 329,379,751 

*Renewable materials 

The total annualized exergy lost from materials is calculated using the following 

formula ( 4-4): 

       
 

        
         

         
         

          
         

 

         
 ( 4-4) 

       

 
                                                          

  
                  

 

The total annualized exergy lost (4,391,730 MJ/yr) will be added to the final 

balance equation (see equation ( 4-2)). 
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5.2.2 Annual non-renewable delivered energy used for facility operations (B.1.2) 

The total delivered operating energy amounts are given by SBTool;                 

for the electrical energy and                  for the fuel-based energy (see Table  5.4). 

The total delivered operating energy        is extracted from the SBTool and 

is                . 

Table ‎5.4: Operating energy consumption used for facility operations 

Performance calculations for  

operating energy consumption 

Delivered energy Total 

project Apartment Retail Parking 

Total net area, m
2
 4,520 3,750 2,200 10,470 

Annual amount of fuel-based energy used for 

operations, MJ/m
2
*yr 

442 87 114 246 

Project fuel-based MJ/year 2,000,000 325,000 250,000 2,575,000 

Annual amount of electrical energy used for 

operations, MJ/m
2
*yr 

111 533 36 246 

Project electrical MJ/year 500,000 2,000,000 79,200 2,579,200 

Total non-renewable delivered energy, MJ/yr     5,154,200 

 

The annual on-site exergy due to electricity use per square meter        
is equal 

to the electricity consumed per square meter on site        
; therefore the exergy lost 

       
 is 246 MJ/m

2
*yr.  

The entropy gain in the natural gas boiler is calculated as follows (see eqn. 4-16), 

starting from the assumption that its efficiency is assumed to meet the minimum 

performance level proposed by Natural Resource Canada, at .82 (Natural Resource 

Canada, 2009a). The building’s estimated annual water consumption is given by the 

SBTool for each occupancy type as: 2431, 713, and 15 (m
3
/yr), for the apartment, retail 

and indoor parking sectors, respectively. The total potable water yearly demand is 3,158 

m
3
. The mass flow rate is calculated based on the potable water demand with an 

equivalent mass of 3,158,000 Kg/yr, assuming that the density of water is 1000 kg/m
3
, 

then the mass flow rate will be 3,158,000 Kg/year. The specific entropy of the water 
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leaving the boiler at 55 C
o
                    

  is .7679 KJ/ kg. K. The specific entropy of the 

water entering the boiler at 10 C
o
                   

  is .1510 KJ/ kg. K. 

             
             

                   
                  

 

         
         

    
         

     
  

         
         

 

        

          
( 4-16) 

             
                          

 

    
 

               
     

      
      

          

        
        

 

             
                    

The exergy lost in a process due to the fuel used on-site                    is the 

product of entropy generation              
 in the same process, with the reference 

environment temperature         (278.95 K). 

       
                                  ( 4-17) 

The total exergy lost is calculated using ( 4-14) formula as follows: 

                                             ( 4-14) 
The annual exergy lost due to using non-renewable energy will be added to the 

final energy/exergy balance equations. 

5.2.3 Use of on-site energy generated from renewable sources (B.3.1) 

The total annual delivered on-site electrical energy used is 2,579,200 MJ/yr 

(renewable and non-renewable on-site energy), given by the SBTool. The annual 

delivered electrical energy use of each occupancy type is 111 MJ/m
2
*yr for apartment, 

5,333 MJ/m
2
*yr for retail and 36 MJ/m

2
*yr for indoor parking. The net area for each 

occupancy type is 4520 m
2
 for apartment, 3750 m

2
 for retail, and 2200 m

2
 for indoor 

parking. The percent of annual renewable purchased electricity is 22% of the total 
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electrical energy used, as extracted from the SBTool. The annual renewable purchased 

electricity is calculated by using ( 4-18), using Table  5.5. 

        
         

        
 
                     

   
   

 ( 4-18) 

        
           

    

   
            

    

   
           

    

   
   

        
                

 

Table ‎5.5: Breakdowns for annual energy consumption (renewable and non-renewable) 

Occupancy types 

Net 

area, 

m
2
 

Non-renewable Renewable 

B 1.2 B 1.2 B 3.1 B 3.2 

Fuel 
Electricity renewable on-

site Non-renewable renewable 

MJ/yr MJ/yr MJ/yr MJ/yr 

Apartment 4,520 2,000,000 390,000 110,000 320,000 

Retail 3,750 325,000 1,560,000 440,000 65,000 

Indoor parking 2,200 250,000 61,776 17,424 8,000 

Total 
 

2,575,000 2,011,776 567,424 393,000 

The exergy lost,         
, is equal to the annual electricity purchased from 

renewable sources, 567,424 MJ/yr. The value obtained for exergy lost is deducted from 

the final energy/exergy balance equations.   

5.2.4 Use of durable materials (B.4.4) 

The percentage of durable materials by cost, i.e., of those materials predicted to 

meet or exceed Service Life expectations (excluding structural materials) is given by the 

SBTool as 4%. Calculating the recurring embodied energy lost based on the .96 figure for 

non-durable materials follows the three steps presented below.  

1) Assume that the 4% of each material by cost (given by SBTool) which will not be 

replaced is equivalent to the percentage of embodied energy used for these materials.  

2) Estimate the replacement frequencies (N). For an example, a new curtain wall from 

glass and aluminum is expected to be replaced once over the predicted service life 
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expectation, Mservice = 40 yr (Scheuer et al. 2003), as given in  formula ( 4-20). For 

other materials see Table  5.6.  

      
         

         
 ( 4-20) 

       
  

  
     

Table ‎5.6: Recurring embodied energy and recurring exergy 

Parameter 

Curtain 

wall, 

glass/alum 

X 30 cm. 

RC 

X 20 cm. 

Masonry 

X Curtain 

wall, 

glass/alum 

Glass Total 

Initial embodied energy, MJ 1,197,000 1,642,080 806,112 1,773,446 1,192,500 20,261,138 

Initial exergy, MJ 1,008,689 1,376,254 562,263 1,494,450 1,004,897 16,283,820 

Predicted service life 

expectation, Yr 
40 63 63 28 40  

Frequencies of replacement 1 1 1 2 1  

Total recurring embodied 

energy, MJ 
1,149,120 1,576,397 773,868 3,405,016 1,144,800 8,049,201 

Total recurring exergy, MJ 968,341 1,321,204 539,772 2,869,344 964,701 6,663,363 

3) Calculate the recurring embodied energy due the non-durable material and due to the 

recurring exergy using formulas ( 4-22) and ( 4-23), respectively.  

             
   

   
  

 

 
 
         

 

               

 

        

        

 

     

 

 
 

 ( 4-22) 

             
 

   
 

                                               
                            

 

             
   

   
  

 

 
 
         

 

               

 

        

        

 

     

 

 
 

 ( 4-23) 

             
 

   
 

                                               
                            

 

The total annualized recurring embodied energy is calculated using equation ( 4-24): 

       
         

  
               ( 4-24) 
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The total annual exergy lost due to replacement for non-durable materials is 

calculated using: 

       
         

  
              ( 4-25) 

 The total annual exergy lost (88,845 MJ/yr) values due to replacement of non-

durable material will be added to the final balance equation given in section 4.2. 

5.2.5 Re-use of salvaged materials (B.4.5) 

 To calculate the energetic cost of using salvaged materials, the unit energetic cost 

needs to be determined using Eq. ( 4-28)). Consequently, both the energetic cost (ENC) 

and the thermoeconomic cost (TEC) need to be estimated, using the formulas given in 

Eqns. ( 4-26) and ( 4-27), respectively.  

 The values of all of the materials re-used from salvaged sources on site and/or 

from off-site sources, as a percent of total construction cost, τ in % by cost, are given by 

the SBTool and presented in Figure  5.7.  

Table ‎5.7: Cost of salvaged materials, recycled, and bio-based materials 

Given data from SBTool Apartment Retail 
Indoor 

parking 
Total 

Total cost of the building construction (structural, 

wall, and heavy materials), $ 
10,800,000 15,200,000 2,900,000 28,900,000 

τ in % by cost 6.5% 14.5% 75.9%  

Cost of salvaged materials (on-site and off-site), $ 700,000 2,200,000 2200000 5,100,000 

θ in % by cost 1.85% 1.97% 0%  

Cost of recycled materials, $ 200,000 300,000 0 500,000 

μ in % by cost 12.96% 17.76% 0%  

Cost of bio-based materials, $ 1,400,000 2,700,000 0 4,100,000 

 
 The energetic cost (ENC) and the exergetic cost (EXC) are calculated for the 

construction phase (structural, walls, and heavy materials) using ( 4-26) and ( 4-32) 

respectively, see Table  5.3. 

            
         

        
         

         
 ( 4-26) 
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 Knowing: i) the total building cost of 28,900,000 $ (10,800,000 $ for apartment, 

15,200,000 $ for retail and 2,900,000 $ for indoor parking); and ii) the cost of salvaged, 

recycled, and bio-based materials, given by SBTool, based on the percentage of their 

contribution to the total construction cost using τ, θ, and μ % respectively, the 

thermoeconomic cost (TEC) can be obtained using eqn. ( 4-27).  

                                                      ( 4-27) 

                                                            

The unit energetic cost (enc) is calculated using ( 4-28):  

    
   

   
 ( 4-28) 

    
           

          
             

Knowing the cost of salvage materials (given by the SBTool) and the unit 

energetic cost (calculated), the energetic cost for using salvaged materials on-site and off-

site can be calculated using ( 4-30): 

          
                

         
 ( 4-30) 

          
               

  
                  

Similar to the process used for calculating the energetic cost (the energy 

consumed for salvaged materials), the exergetic cost (EXC), and the unit exergetic cost 

(exc) are calculated using ( 4-32) and ( 4-31):  

            
         

        
         

         
 ( 4-32) 

                                                        
                

 

    
   

   
 ( 4-31) 

    
           

          
              

The exergetic cost for using salvaged materials is calculated using ( 4-30): 
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 ( 4-33) 

        
                 

  
                  

The annual exergy lost by using salvaged materials both on-site and off-site is 

1,166,880 MJ/yr. This value will be added to the final energy and exergy balance 

equations (see Table  5.10). 

5.2.6 Use of recycled materials from off-site sources (B.4.6) 

 Given the total construction cost (        ) and the percentage of θ, the cost of 

the recycled materials can be calculated using ( 4-34): 

                       

   

   ( 4-34) 

                                                              
                         

The annual energy used and the annual exergy lost by using recycled materials 

from off-site sources are calculated using formulas ( 4-35) and ( 4-36), respectively. 

        
   

               

         
 ( 4-35) 

        
   

                

  
                

        
   

               

         
 ( 4-36) 

        
   

                

  
                 

The annual exergy lost by using recycled materials from off-site, 114.368 MJ/yr, 

will be added to the final energy and exergy balance equation (see Table  5.10). 

5.2.7 Use of bio-based products obtained from sustainable sources (B.4.7) 

The cost or value of bio-based materials from sustainable sources that are certified 

by a recognized certification agency is calculated using ( 4-37), based on the total 

construction cost and value of μ in %, extracted from the SBTool.  
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      ( 4-37) 

                                                               

                          

 The unit energetic cost (21.04 MJ/$), as well as the unit exergetic cost (17.16 

MJ/$), were calculated using ( 4-28) and ( 4-31), respectively. The annual energetic and 

exergetic cost for using bio-based products are then calculated using equations ( 4-38) and 

( 4-39), respectively: 

        
   

                   

         
 ( 4-38) 

        
   

                  

  
                  

        
   

                   

         
 ( 4-39) 

        
   

                  

  
                

The annual energy consumed and the exergy lost by using bio-based products 

obtained from sustainable sources are 1,150,421 MJ/yr and 937,817 MJ/yr, respectively. 

The cost of the bio-based products              (4,100,000 $) is not included in the 

construction cost TEC corresponding to the initial embodied energy used ENC (see 

formula ( 4-26)) or exergy lost EXC (see formula ( 4-32)), therefore the exergy lost 

(937,817 MJ/yr) calculated for the bio-based products will be added to the final energy 

and exergy balance equation (see Table  5.10). 

5.2.8 Use of potable water for site irrigation (B.5.1) 

 The site area landscaped with appropriate native species that do not require 

watering, Anative = 3400 m
2
 and the site area landscaped with non-native species that 

requires watering Anon-native = 400 m
2
. Both areas are given by the SBTool. The irrigation 

rate I irrigation-rate is 2.5 m
3
/m

2
*yr (extracted from the SBTool) which indicates the volume 
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of water used for one square meter of the landscaped site area. The energy rate 

       =.452 [KWh/m
3
] =1.6272 [MJ/m

3
]. The annual energy used for treating this water 

is calculated using formula ( 4-40): 

        
                                                 ( 4-40) 

        
                                         

 

The annual energy consumption and the annual exergy lost due to site irrigation 

for non-native species are identical since it is mainly in the form of electricity (1,627.2 

MJ) which will be added to the final exergy balance equation.  

5.2.9 Use of potable water for occupancy needs (B.5.2) 

 

The predicted total potable water, in [L/pp/day], used for each occupancy type 

based on occupancy, fittings and fixtures is given by the SBTool. The daily use per 

person, the number of uses per day, the days of operation and the estimated population 

are given in Table  5.8. The (TAPWocc) is calculated using ( 4-41): 

                         
       

    
 

      

 ( 4-41) 
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Table ‎5.8: the total predicted annual potable water 

Type of occupancy Apartment Retail Parking 

Type of fixture 
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Lpt (L/ pp) 6 1.5 6 70 90 15 40 6 1.5 6 70 90 15 40 6 1.5 6 70 90 15 40 

Tpd (1/Day) 2 3 4 0.8 0.2 2 0.2 2 3 4 0.8 0.2 2 0.2 2 3 4 0.8 0.2 2 0.2 

Liters per day (L/pp/Day) 12 4.5 24 56 18 30 8 12 4.5 24 56 18 30 8 12 4.5 24 56 18 30 8 

Number of  fixture 75 0 75 65 60 20 20 8 4 2 0 0 0 0 1 1 1 0 0 0 0 

Area of occupancy 4,800 4,000 2,400 

Contribution for cold water  1.00 1.00 1.00 0.50 0.50 0.43 0.77 1.00 1.00 1.00 0.50 0.50 0.43 0.77 1.00 1.00 1.00 0.50 0.50 0.43 0.77 

Contribution for hot water  0.00 0.00 0.00 0.50 0.50 0.57 0.23 0.00 0.00 0.00 0.50 0.50 0.57 0.23 0.00 0.00 0.00 0.50 0.50 0.57 0.23 

L pp/ day 148.0 40.5 40.5 

Estimated population 45 55 1 

Assumed days of operation 365 320 364 

TAPW, m3*yr 2,431 713 15 

Total 3,158 

The annual energy consumption for treating potable water for occupancy needs 

and the corresponding exergy lost are equal, since the energy used is the electricity, 

calculated using ( 4-42): 

                                                 ( 4-42) 

                                                         

The amount of potable hot water is estimated using equation ( 4-46): 

                               
   

    
                  

      

 ( 4-46) 

                       
        

    
 

      

    
 

        

    
 

         

    
  

            
 

By assuming that the temperature for the domestic hot water T tank is 55 
o
C 

(328.15 
o
K), and assuming the Tinlet from the city main is 10 

o
C (283.15 

o
K), then the 

annual energy consumption to deliver hot water through the plumbing fixtures is 

calculated using ( 4-43):  

           
 

  
                                            ( 4-43) 
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The annual average outdoor air temperature is 5.8
o
C (278.95 

o
K) (Natural 

Resources Canada  RETScreen, 2007) and the adiabatic flame temperature for natural gas 

Tkflame is (2255 
o
K) (Williamson et al. 2003). The exergy lost using gas water heaters 

             and electric water heaters              are calculated using ( 4-44) and 

( 4-45) formulas respectively: 

                            
     

       
  ( 4-44) 

                           
      

    
                 216,710.8MJ/yr  

                                

The electrical energy used to operate water fixtures such as washing machines and the 

corresponding exergy lost is calculated using ( 4-47): 

                         
       

   
                          

   

 ( 4-47) 

                              
  

   
                            

                 
 

The total annual energy consumption for potable water use is the sum of equations ( 4-42), 

( 4-43) and ( 4-47): 

        
                                       ( 4-48) 

        
                                            

The total annual exergy lost is calculated using either eqn. ( 4-49) or ( 4-50): 

        
                                          ( 4-49) 

        
                  

        
                                          ( 4-50) 

        
                  

The total annual energy consumption due to water use is 635,604.3 MJ/yr and the 

total annual exergy lost is either 605,012.2 MJ/yr, using gas water heaters, or 635,604.3 

MJ/yr using electric water heaters. The values calculated for this criterion will be added 

to the final exergy balance equations (see Table  5.10). 
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5.3 Evaluation of annualized exergy lost for environmental loading issue C 

(SBTool) 

This section evaluates the annualized abatement exergy that is lost in order 

remove harmful pollution from the waste discharged to the environment (see Table  5.9). 

The product of the waste emissions mass and its unit abatement exergy is used to 

calculate the annualized abatement exergy consumption. 

Table ‎5.9: Selected criteria of C issue as extracted from the SBTool 

C Environmental loadings Units 

Data 

Extracted 

from 

SBTool 

C1.1  Annualized GHG emissions embodied in construction materials kg/m
2
∙yr 16.19 

C1.2 Annualized GHG emissions from energy used for facility operations kg/m
2
∙yr 42.3 

C2.1 Emissions of ozone-depleting substances during facility operations g/m
2
∙yr .07 

C2.2 Emissions of acidifying emissions during facility operations kg/m
2
∙yr .42 

C2.3 Emissions leading to photo-oxidants during facility operations g/m
2
∙yr .15 

5.3.1 Annualized GHG emissions embodied in construction materials (C.1.1) 

The abatement exergy method is implemented in this research to assess the 

environmental impact of emissions. It has several advantages: easy to apply once the 

exergy is known for each waste emission, the availability of some specific waste 

emissions in the literature, and the possibility of adding the corresponding exergy value 

directly to the exergy lost value of another indicator(s). The method evaluates the exergy 

required to remove or isolate harmful emissions from the environment. 

The annualized abatement exergy lost corresponding to the emissions embodied 

in construction materials is calculated as follows:  

        
                    ( 4-51) 

        
           

  

    
                    



121 

 

where aaver = the regional annual fuel emission value kg CO2 per embodied GJ 

(e.g., the emissions for residential units taken from average Canadian building stock 

values for 1999 (SBTool 2010) is 55 kg CO2/GJ; eabat = specific abatement exergy (e.g., 

the abatement exergy for CO2 is found to be 5.86 MJ/kg (Dewulf et al. 2001)). 

5.3.2 Annualized GHG emissions from the energy used for facility operations 

(C.1.2) 

The total annualized abatement exergy, EXC1.2,  corresponding to the annualized 

GHG emissions from the overall energy used for facility operations is added to the final 

balance equation and  is calculated using the following equation: 

                              
 

   

           ( 4-55) 

       
  

    
                                 

5.3.3  Emissions of ozone-depleting substances during facility operations (C.2.1) 

The predicted annual emission of CFC-11eq is 0.07 g/m
2
∙yr (SBTool). The total 

annualized exergy EXC2.1 corresponding to the emission of ozone-depleting substances 

during facility operations is obtained using equation ( 4-59). In Equation ( 4-57), the net 

areas for each occupancy type Anetocc are automatically derived from the building 

definition; the specific abatement exergy for CO2 is 5.86 MJ/kg, based on the technology 

used (Dewulf et al. 2001).   

                             
                     ( 4-57) 
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5.3.4 Emissions of acidifying emissions during facility operations (C.2.2) 

The annual emissions of SO2eq normalized for the net usable building area Anetocc 

is 0.42 (SBTool), while the corresponding annual abatement exergy is calculated using 

equation ( 4-59). The abatement exergy for SOx is 57 MJ/kg (Dewulf et al. 2001). The 

annual abatement exergy will be added to the final balance equation. 

        
              

           ( 4-59) 

        
                               

5.3.5 Emissions leading to photo-oxidants during facility operations (C.2.3) 

The annual Ethane equivalent normalized for net usable building area is 0.15 

g/m
2
∙yr (from SBTool). The annual abatement exergy is calculated using Equation ( 4-61). 

        
                     

        
           ( 4-61) 

        
                                    

5.4 Accumulative annualized exergy lost 

The exergy lost values for case no.1 are summarized and given in Table  5.10 and 

presented in Figure  5.1. The total exergy lost calculated for case no.1 with Equation ( 4-2) 

is 15,152,635 MJ/yr. This value is equal to the denominator of Equation ( 4-1). 

Table ‎5.10: Total annual exergy lost for the B and C criteria 

Criteria  Annual exergy lost 

B1.1 + 4,391,730 

B1.2 + 3,819,116 

B3.1 - 567,424 

B4.4 + 88,845 

B4.5 + 1,166,880 

B4.6 + 114,368 

B4.7 + 937,817 

B5.1 + 1,627 

B5.2 + 605,013 

C1.1 + 1,736,338 

C1.2 + 2,592,457 

C2.1 + 15,032 

C2.2 + 250,652 

C2.3 + 184 

Total 15,152,635 
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Figure ‎5.1: Distribution of exergy lost among B & C criteria of case no.1 

 

5.5 Available solar energy/Available solar exergy  

The monthly available solar energy on the building footprint was extracted from 

the TRNSYS program for Ottawa (Klein et al. 2004) and presented in Table 5.11for case 

study no.1. The reference environment is defined by using the monthly mean values of 

outdoor air temperature. Petala’s method is used to calculate the exergy of solar radiation 

using equation ( 4-46); the calculation of available solar exergy in January is given as an 

example, for other values see Table 5.11.  

                      
 

 
  

     

    
 
 

 
       

      
                

              

( 4-64) 
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Table ‎5.11: Available solar energy and available solar exergy in the horizontal surface 

Month Toi 

(K) 

Total monthly solar 

radiation- kWh/m
2
 

Total monthly available 

solar energy radiation 

(horizontal) kWh 

Total monthly available 

solar exergy radiation 

(horizontal) kWh 

Jan 263.4 51.67 41,340 38,921 

Feb 265.0 77.66 62,125 58,467 

Mar 271.5 122.92 98,333 92,401 

Apr 279.8 141.79 113,436 106,384 

May 287.0 179.86 143,892 134,717 

Jun 292.1 187.09 149,670 139,956 

Jul 295.0 186.54 149,230 139,449 

Aug 293.4 155.41 124,332 116,227 

Sep 288.5 117.30 93,841 87,826 

Oct 282.1 78.04 62,435 58,522 

Nov 275.2 40.28 32,222 30,251 

Dec 266.6 38.48 30,782 28,959 

Total solar radiation (kWh) 1,101,637 1,032,081 

Total solar radiation (MJ) 3,965,893 3,715,491 

Available solar energy and available solar exergy results for other case studies are 

presented in Table  5.12. 

 Table ‎5.12: Available solar exergy in the horizontal surface for case studies 2-14 

Month 
Case no. 2 &3 Case no. 4 &5 Case no. 6 &7 Case no. 8 – 14 

Toi (K) Exavail Toi (K) Exavail Toi (K) Exavail Toi (K) Exavail 

Jan 263.9 3,861 267.3 6,058 271.2 9,856 267.3 1,742 

Feb 265.4 5,710 267.2 8,836 272.6 14,372 267.2 2,258 

Mar 271.8 9,390 272.2 13,890 276.9 22,596 272.2 3,497 

Apr 279.9 10,785 279.6 17,765 283.5 28,905 279.6 4,623 

May 287.1 13,807 286.1 23,008 289.9 37,437 286.1 5,604 

Jun 293.0 14,578 291.6 24,392 295.3 39,690 291.6 5,594 

Jul 295.0 14,603 294.1 25,202 298.0 41,005 294.1 5,500 

Aug 293.6 11,806 293.2 21,870 296.9 35,586 293.2 4,766 

Sep 288.7 9,462 289.4 15,654 292.6 25,475 289.4 3,939 

Oct 282.5 6,174 283.1 10,614 286.0 17,273 283.1 2,969 

Nov 275.8 2,884 276.4 5,190 279.8 8,446 276.4 1,900 

Dec 267.3 2,866 270.1 4,501 273.8 7,323 270.1 1,483 

Total  105,927  176,981  287,964  43,876 

Total  381,336  637,130  3,052,416  157,952 

 

5.6 Exergy index of renewability αex  

The exergy index of renewability is the ratio between the theoretical available solar 

exergy, 3,715,491 MJ (as presented in section 4.3) and the total annualized exergy lost 

within the building, 15,152,635 MJ: 
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             ( 4-1) 

5.7 Exergy Index of Sustainability  

The exergy index of sustainability (ExSI) is calculated in terms of the renewability 

exergy  α     as follows: 

      
   

                   
  ( 4-65) 

      
   

                      
        

 

The Exergy Index of Sustainability (ExSI) of case study no. 1, a large commercial 

and residential building located in Ottawa, is equal to 5.7%. This figure indicates that 

from the ideal conversion rate of 100% of solar energy, only 5.7% of the annualized 

exergy lost could be compensated by the incident exergy of solar radiation on the 

building footprint. 

5.8  Rating scale for building sustainability (ExSI) 

According to the proposed rating scale, with an ExSI=5.7% case study no. 1 would be 

qualified as a “less than average exergy efficient” building in terms of sustainability. This 

is the maximum value of the theoretical index of sustainability that this case study 

building could achieve. There is very little likelihood that this building will become a 

more “sustainable” building.  
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Figure ‎5.2: The proposed rating scale based on the ExSI 

 

To keep this thesis reasonably succinct, for the other case studies (nos. 2-14) only 

the major results are presented, in section 5.10. 

5.9 Other‎case‎studies’‎descriptions 

Case studies nos.2 and 3 are two-storey houses in Montreal, Quebec, Canada 

(Leckner and Zmeureanu 2012), each with a building footprint of 84 m
2
 and a total 

heated floor area of 208 m
2
. Case study no.2 is an energy-efficient house, built in 

compliance with current codes using electric baseboard heaters; while case study no.3 is a 

Net-Zero Energy House with a solar combisystem for heating and domestic hot water, 

plus photovoltaic panels for electricity and a radiant floor heating system. The thermal 
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insulation value of above ground walls is 3.52 m
2
·K/W and 6.25 m

2
·K/W for cases no.2 

and 3, respectively. The houses’ life spans are considered to be 40 years.  

Case study no.4 is a two-storey single-detached brick house (see Fig. 5.3) of 140 m
2
 

heated floor area built in 1910, in Kitchener, Ontario, Canada (Bin and Parker 2012). The 

house’s life span is considered to be 100 years. Outside bricks account for most of the 

initial embodied energy and the corresponding GHG emissions (Bin and Parker 2011). 

The same house became case study no. 5 after renovation with increased thermal 

insulation. Natural gas is the energy source for heating and domestic hot water in both 

cases. An old furnace was used in case no.4, with an average efficiency of 80%, while a 

new furnace with 96% efficiency is used in the renovated house, case 5.  

Like the previous four cases, case studies 6 and 7 are also paired. Case study no.6 is a 

residential home (referred to throughout this thesis as the Standard Home, SH) built in 

Ann Arbor, Michigan, United States (see Figure  5.4, Scheuer et al. 2003). The total floor 

area is 228 m
2
. Published data were used to determine the annual energy consumptions 

and environmental burdens. The life span is assumed to be 50 years.  

Case study no.7 (referred to as the Energy Efficient Home, EEH) mirrors the original 

size and layout of case no. 6, which was then modeled to examine the effect of design 

changes made to reduce life cycle energy demands, using various energy efficiency 

strategies and substitutions of selected materials with lower embodied energy (e.g., 

cellulose insulation instead of the fiberglass insulation in the SH).  Its 12’’ thick and R-35 

walls, constructed from double 2 x 4 studs with 3.5” spacing between the inner and outer 

wall studs are some of the defining features that show how the EEH evolved into a much 

more energy efficient structure. Furnace efficiency was increased from 80% to 95%. 
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Blanchard et al. (1998) describe the major energy-efficient strategies investigated in the 

design of the EEH.  

  

Figure ‎5.3: REEP House (case nos. 4 and 5) (Bin 

and Parker 2011) 

Figure ‎5.4:‎South‎elevation‎of‎“Priceton‎home”,‎

Standard Home (SH), (case no.6 and 7)(Scheuer et 

al. 2003) 

 

Case studies nos. 8-14 are all based on a single-family home in Portugal with 

seven alternative exterior wall solutions. The walls have different materials in their 

composition, as detailed in Table  5.13. A similar global thermal coefficient (U-values 

0.47- 0.51 W/m
2
 
o
C) is obtained by using insulation layers with different thicknesses. The 

house is located in Coimbra, has 132 m
2
 of living area and an expected life span of 50 

years.  

Table ‎5.13: Different exterior walls scenarios  (Monteiro and Freire 2012) 

Exterior walls 
H0 H1 H2 H3 H4 H5 H6 
kg kg kg kg kg kg kg 

Masonry hollow brick (30*20*11) 25879 49433 8141.1 8141.1 8141.1 8141.1 8141.1 
Light weight concrete blocks 0 0 40860 0 0 0 0 
Thermal concrete blocks masonry 0 0 0 24730 0 0 0 
Auto calved aerated concrete blocks  0 0 0 0 24730 0 0 
Ext. wood cladding 0 0 0 0 0 3662.9 8500 
Cement mortar 13321 17059 7290.8 11287 11287 11287 2406.8 
Water 1998.1 2558.8 1093.6 1693 1693 1693 361 
XPS- extruded polystyrene 377.6 377.6 111.6 111.6 111.6 377.6 377.6 
EPS- expanded polystyrene 0 0 12.432 9.9456 7.4592 0 0 
Masonry hollow brick (30*20*15) 21527 21527 0 0 0 21527 0 
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5.10 Assessment results and discussion 

Table  5.14 presents the annualized exergy lost, calculated for each case study for 

selected criteria from issues B and C, the Exergy Index of Renewability and the Exergy 

Index of Sustainability.  



 

 

Table ‎5.14: Exergy-based Index of Sustainability calculated for fourteen case studies using the B and C issues from SBTool 

 

LEGEND: 
+       : Added to the final balance equation 

-   : Subtract from the final balance equation 
 

Annual exergy use [MJ/yr] 

 
Criteria 

 
 

Case study 

no.1 
Case study 

no.2 
Case study 

no.3 
Case study 

no.4 
Case study 

no.5 

B1.1 Annualized non-renewable primary energy embodied in construction materials + 4,391,730 20,625 37,542 3,710 2,108 
B1.2 Annual use of purchased electricity for operations, delivered + 3,819,116 63,158 33,196 183,541 27,507 
B3.1 Use of off-site energy that is generated from renewable sources (delivered) - 567,424 0 40,478 0 0 
B4.4 Use of durable materials + 88,845 0 0 0 4,542 
B4.5 Re-use of salvaged materials from off-site + 1,166,880 0 0 0 0 
B4.6 Use of recycled materials from off-site sources. + 114,368 0 0 0 0 
B4.7 Use of bio-based products obtained from sustainable sources. + 937,817 0 0 0 0 
B5.1 Use of potable water for site irrigation. + 1,627 113 57 0 0 
B5.2 Use of potable water for occupancy needs. + 605,013 29,195 7,380 21,860 6,277 
C1.1 Annualized GHG emissions embodied in construction materials. + 1,736,338 8,156 14,846 1,985 1,628 
C1.2 Annual GHG emissions from all energy used for facility operations. + 2,592,457 20,356 10,699 89,330 15,330 
C2.1 Emissions of ozone-depleting substances during facility operations. + 15,032 299 299 402 402 
C2.2 Emissions of acidifying emissions during facility operations. + 250,652 4,989 4,989 6,703 6,703 
C2.3 Emissions leading to photo-oxidants during facility operations. + 184 4 4 5 5 

 
Total annualized exergy lost [MJ/yr] 

 
15,152,635 146,895 68,535 307,537 64,502 

 
Available solar exergy [MJ/yr] 

 
3,715,491 381,336 381,336 637,130 637,130 

 
Building footprint [m

2
] 

 
800 83.7 83.7 140 140 

 
Exergy Index of Renewability αex 

 
25% 260% 556% 207% 988% 

 
Exergy Index of Sustainability estimated at 100% (theoretical potential) 

 
5.7% 100.0% 100.0% 100.0% 100.0% 

 
Exergy Index of Sustainability estimated at 40% (technical potential) 

 
1.2% 99.7% 100.0% 97.4% 100.0% 

 
Exergy Index of Sustainability estimated at 20% (technical potential) 

 
.7% 55.3% 100.0% 28.0% 100.0% 

 
Exergy Index of Sustainability estimated at 5 % (economical potential) 

 
.5% 1.7% 8.0% 1.3% 48.3% 

(Continued) 



 

 

Table 5.14 (Continued): Exergy-based Index of Sustainability calculated for fourteen case studies using the B and C issues from SBTool 

 
Criteria 

 
Annual exergy use [MJ/yr] 

 
Case study 

no.6 
Case study 

no.7 
Case study 

no.8 
Case study 

no.9 
Case study 

no.10 
B1.1 Annualized non-renewable primary energy embodied in construction materials + 14,601 10,383 6,486 6,486 5,790 
B1.2 Annual use of purchased electricity for operations, delivered + 178,301 92,806 217,320 217,320 217,320 
B3.1 Use of off-site energy that is generated from renewable sources (delivered) - 0 0 0 0 0 
B4.4 Use of durable materials + 6,270 4,958 1,144 1,216 1,299 
B4.5 Re-use of salvaged materials from off-site + 0 0 0 0 0 
B4.6 Use of recycled materials from off-site sources. + 0 0 0 0 0 
B4.7 Use of bio-based products obtained from sustainable sources. + 0 0 0 0 0 
B5.1 Use of potable water for site irrigation. + 0 0 0 0 0 
B5.2 Use of potable water for occupancy needs. + 0 0 19,845 19,845 19,845 
C1.1 Annualized GHG emissions embodied in construction materials. + 11,566 10,237 4,816 5,509 4,234 
C1.2 Annual GHG emissions from all energy used for facility operations. + 353,712 112,944 1,984 2,029 1,945 
C2.1 Emissions of ozone-depleting substances during facility operations. + 943 943 2 2 2 
C2.2 Emissions of acidifying emissions during facility operations. + 15,729 15,729 31 33 32 
C2.3 Emissions leading to photo-oxidants during facility operations. + 12 12 2 2 2 

 
Total annualized exergy lost [MJ/yr] 

 
581,133 248,012 251,629 252,801 250,469 

 
Available solar exergy [MJ/yr] 

 
3,123,650 3,123,650 157,952 157,952 157,952 

 
Building footprint [m

2
] 

 
228 228 70 70 70 

 
Exergy Index of Renewability αex 

 
538% 1259% 63% 62% 63% 

 
Exergy Index of Sustainability estimated at 100% (theoretical potential) 

 
100.0% 100.0% 80.3% 79.8% 80.8% 

 
Exergy Index of Sustainability estimated at 40% (technical potential) 

 
100.0% 100.0% 6.1% 6.0% 6.1% 

 
Exergy Index of Sustainability estimated at 20% (technical potential) 

 
99.8% 100.0% 1.6% 1.6% 1.6% 

 
Exergy Index of Sustainability estimated at 5 % (economical potential) 

 
7.3% 80.6% 0.6% 0.6% 0.6% 

(Continued) 

 

+       : Added to the final balance equation 

-       : Subtract from the final balance equation 

 



 

 

Table 5.14 (Continued): Exergy-based Index of Sustainability calculated for fourteen case studies using the B and C issues from SBTool 

 
Criteria 

 
Annual exergy use [MJ/yr] 

 
Case study 

no.11 
Case study 

no.12 
Case study 

no.13 
Case study 

no.14 
B1.1 Annualized non-renewable primary energy embodied in construction materials + 5,812 6,354 6,517 6,531 
B1.2 Annual use of purchased electricity for operations, delivered + 217,320 217,320 217,320 217,320 
B3.1 Use of off-site energy that is generated from renewable sources (delivered) - 0 0 0 0 
B4.4 Use of durable materials + 1,268 1,252 1,131 1,034 
B4.5 Re-use of salvaged materials from off-site + 0 0 0 0 
B4.6 Use of recycled materials from off-site sources. + 0 0 0 0 
B4.7 Use of bio-based products obtained from sustainable sources. + 0 0 0 0 
B5.1 Use of potable water for site irrigation. + 0 0 0 0 
B5.2 Use of potable water for occupancy needs. + 19,845 19,845 19,845 19,845 
C1.1 Annualized GHG emissions embodied in construction materials. + 4,751 4,729 3,574 2,309 
C1.2 Annual GHG emissions from all energy used for facility operations. + 1,979 1,978 1,902 1,819 
C2.1 Emissions of ozone-depleting substances during facility operations. + 2 2 2 2 
C2.2 Emissions of acidifying emissions during facility operations. + 31 36 31 29 
C2.3 Emissions leading to photo-oxidants during facility operations. + 2 2 2 2 

 
Total annualized exergy lost [MJ/yr] 

 
251,009 251,517 250,323 248,890 

 
Available solar exergy [MJ/yr] 

 
157,952 157,952 157,952 157,952 

 
Building footprint [m

2
] 

 
70 70 70 70 

 
Exergy Index of Renewability αex 

 
63% 63% 63% 63% 

 
Exergy Index of Sustainability estimated at 100% (theoretical potential) 

 
80.6% 80.3% 80.9% 81.5% 

 
Exergy Index of Sustainability estimated at 40% (technical potential) 

 
6.1% 6.1% 6.2% 6.3% 

 
Exergy Index of Sustainability estimated at 20% (technical potential) 

 
1.6% 1.6% 1.6% 1.6% 

 
Exergy Index of Sustainability estimated at 5 % (economical potential) 

 
0.6% 0.6% 0.6% 0.6% 

+       : Added to the final balance equation 

-       : Subtract from the final balance equation 
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In case no.1, a large, multi-storey commercial and residential building, the annualized 

exergy lost due to energy use for construction and operation is 10,518,756 MJ/year or 

about 70% of the total annualized exergy lost considered in this study. The annualized 

exergy used due to purchased electricity accounts for 36% of exergy lost due to the 

energy used. These proportions are 83,783 MJ/year (75%) for case no. 2, 70,738 MJ/year 

(47%) for case no. 3, 187,251 MJ/year (98%) for case no. 4, 34,157 MJ/year (81%) for 

case no. 5, 199,172 MJ/year (90%) for case no. 6, 108,147 MJ/year (86%) for case no. 7, 

224,949 MJ/year (97%) for case no. 8, 225,382 MJ/year (96%) for case no. 9, 224,409 

MJ/year (97%) for case no. 10, 224,400 MJ/year (97%) for case no. 11, 224,926 MJ/year 

(97%) for case no. 12, 224,968 MJ/year (97%) for case no. 13, and 224,884 MJ/year 

(97%) for case no. 14. The most significant reduction in the exergy lost due purchased 

electricity is achieved by case study no.3 (NZEH), due to its  capturing of solar energy 

using solar collectors and PV modules (renewable sources); whereas case study no.4 has 

the highest percentage of contribution of exergy lost due to purchased electricity. This is 

because that house was originally poorly insulated and so its energy efficiency was low 

compared to the standard.  

Traditionally, the majority of building assessment methods and rating systems have 

linked a building’s energy use to its operation, and therefore much attention has been 

dedicated to reducing this energy through technical innovation and regulatory controls. 

However, this effort is sometimes accompanied by an increasing amount of materials and 

systems dedicated to reducing operational energy use. The results indicate that a large 

increase in exergy loss is due to non-renewable primary energy embodied in construction 

materials, as shown by case no.2’s 20,625 MJ/year before adding solar technologies and 
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case no.3’s 37,542MJ/year with solar combisystem technologies installed. The 

contribution of the total annualized exergy lost due to the embodied energy in 

construction materials  increased from 14% in case no.2 to 54.8%  in case no.3, and from 

1.2% to 3.3% for case nos.4 and .5, respectively. The reduction of exergy lost due to 

operation is accompanied with an extra 47% decrease of exergy lost due to emissions. 

Compared to the annualized exergy lost for building operations, the annual exergy lost 

due to GHG emissions from all the energy used for facility operations represents about  

30% in cases no.2 and 3, 50% in cases no. 4 and 5, and close to 1% in case studies 8-14. 

In case no.1, the available solar exergy can compensate for only 25% of the exergy 

lost due to the construction and operation of that large, multi-purpose building, while for 

case studies 8-14 the available solar exergy can compensate for 63% of the exergy lost 

due to construction and building operation (see Table  5.14). In the other six case study 

houses (case no.2-7), the available solar exergy can entirely compensate for the exergy 

lost: the Exergy Index of Renewability is equal to 260% for case no.2, 556% for case 

no.3, 207% for case no.4, 988% for case no.5, 538% for case no.6, and 1259% for case 

no.7. In case studies 2-7, the building consumes much less exergy than it could 

theoretically harvest on its horizontal footprint. 

 The Exergy Index of Sustainability (ExSI) of the large commercial building (case 

study 1) is 5.7. This result shows that under the ideal conversion of 100% of solar exergy, 

only 5.7% of the annualized exergy lost is compensated by the incident exergy of solar 

radiation on the building footprint. According to the proposed rating scale, the case study 

building with ExSI=5.7 receives the qualification of a “Less than average exergy 

efficient” building. This is the maximum value of the theoretical index of sustainability 
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that this case study building could achieve. There is very little likelihood that this 

building could become a more “sustainable” building, according to the definition 

proposed in this thesis.  

The case study houses nos. 2 to 7 achieve an ExSI=100, and so receive the 

qualification of “Sustainable” under the proposed definition.  

As can be seen in Figure  5.5, case study no.14 (wood frame and cladding) has the 

lowest total annualized exergy lost, 248,890 MJ/year, and achieved an ExSI=81.5, while 

case study no.9 (double facing and hollow brick masonry) has the highest exergy lost 

among the seven alternative exterior wall solutions at 252,801 MJ/year, and it achieved 

an ExSI of 79.8 (see Table  5.14).  
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Figure ‎5.5: First level (A) of applicable comparison between different building scenarios.  

 

However, a more detailed assessment shows that case no. 9 has 58.1%, 15%, 10.4%, 

and 4.6% more exergy lost compared to case study no.14 in terms of GHG emissions due 

the construction process (C1.1), the use of durable materials (B4.4), GHG emissions due 

operation (C1.2), and the annual non-renewable primary energy (B1.1), respectively (see 

Figure  5.6). 
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Figure ‎5.6: Second- and third-levels (C& D issues) of applicable comparison between different building 

scenarios.  

 

If a photo-voltaic (PV) system with an overall system efficiency of 5% (Sahin et al. 

2007) is used, the Exergy Index of Sustainability drops from 100 to 1.7 (case no.2), to 8 

(case no.3), to 1.3 (case no.4), to 48.3 (case no. 5), to 7.3 (case no.6), and to 80.6 (case 

no.7). For all other case studies, the ExSI drops from 63 to .6. These values correspond to 

the economical potential of such PV systems. 
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Case studies 8-14 represent a single-family detached house in Portugal with different 

exterior wall scenarios and with different material compositions, comparatively assessed 

based on the corresponding exergy loss of each criterion to support the selection of more 

sustainable exterior wall solutions.  

Assessing the results (criterion by criterion, the following variations between the 

alternatives with the lowest and highest exergy lost were determined: for B1.1, 

annualized exergy lost due construction, case no.10 has 15.4% less of a loss than case 

no.9. Regarding the other criterion, case no.14, the scenario with wood frame and 

cladding, has the lowest exergy lost (see Figure  5.6),  and has an ExSI=81.5, which is 

more sustainable than the other scenarios and therefore is the most preferable option. 

Case no. 14 achieved the qualification of “exergy efficient” under the proposed definition 

and according to the proposed rating scale.  

The ExSI is evaluated using PV systems with overall system efficiencies of  20% 

(Hoffmann 2006) and 40% (www.reuk.co.uk/40-Percent-Efficiency-PV-Solar-

Panels.htm), which correspond to the technical potential of such PV systems. The results 

emphasize the large difference between the maximum theoretical index of sustainability 

and the potential for sustainability by applying the current and potential technologies (see 

Figure  5.7).  
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Figure ‎5.7: Exergy Index of sustainability estimated for theoretical, technical and economical potential.  

 

Two cases have a high potential to become more sustainable: case studies nos. 5 and 

no.7 (Figure  5.8). As can be deduced from comparing  case study no.1 to case no.7, based 

on the economic potential, implementing  residential energy efficiency retrofits (as in 

case no.5) and employing various energy efficient strategies as in case no.7 is found to be 

exergy efficient and sustainably sound (see Figure  5.8).  
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Figure ‎5.8: Exergy Index of Sustainability (ExSI) estimated at 100, 40, 20, and 5% using PV systems for 

cases no.4 to .7  

 

As illustrated in Figure  5.9 , there is an inversion of the most significant exergy lost 

from case study nos.2 and 3, the net-zero energy house (NZEH). The increase of exergy 

lost due to implementing solar technologies and the corresponding GHG emissions, 
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which is 2.6, is totally compensated by the decrease of exergy lost in building operations 

and the corresponding GHG emissions.  

 

Figure ‎5.9: Comparison between the exergy loss of significant criteria for case no. 2 vs. case no. 3  

 

5.11 Conclusion 

Data was extracted in detail from the SBTool for case study no.1, while for the 
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estimated using software (e.g, ATHENA for estimating the embodied energy and 

emissions), which was more suitable for the defined locations. Using different software to 

estimate embodied energy and energy consumption may affect the final assessment 

results. Therefore, for comparison purpose, it is recommended to use the same software 

to derive the required information. A software program that will allow greater flexibility 

for estimating embodied energy and its corresponding emissions is needed. The proposed 

exergy-based index would be enhanced by such generic estimation software.  

The application of the proposed exergy-based index revealed that large 

commercial buildings with several floors cannot achieve a high level of sustainability by 

using only the building’s footprint as the reference surface for harvesting solar energy. 

This type of building is a candidate for the weak sustainability approach, with a partial 

use of non-renewable energy sources. All four residential buildings could achieve the 

highest theoretical potential of building sustainability and the highest technical potential 

by using PV technologies with 40% efficiency.   

The results of case studies indicated that there is a substantial difference between the 

maximum theoretical index of sustainability (as proposed in this paper) and the potential 

for sustainability of current PV technologies with 5 to 20% efficiency. 

5.12 Comparison of ExSI with other indices 

This section presents the comparison of the proposed exergy-based index against 

other indices that are recommended in the literature (see section 2.5) for the assessment 

of sustainability of processes or systems. Equations used to calculate those indices are 
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presented in Table  5.15, and Table  5.17 lists the numerical results of case studies 1, 2, 

and 3.  

Table ‎5.15: Original equations used to present sustainable indices (SIs)  

Index Formula Reference 
Cumulative exergy 

consumption 

indicator 
  

           

    
 Kotas (1985) 

Sustainability 

coefficient 

 

  
               

      
 

Dewulf et al. 

(2000) 

  
      

      
 

  
     

                  
 

  
 

 
             

Sustainability Index    
 

  
 

     
            

 Rosen (2008) 

Exergy Index of 

Sustainability 

 

    
            

       
 

El shenawy et 

al. (2013) 
            

where 

     : Cumulative exergy consumption;  the total amount of exergy that has to 

be invested from the natural ecosystem to deliver the desired product, MJ; 

           : the exergy embodied in the product, MJ; 

               : the  exergy input from renewable resources, MJ; 

       : the useful exergy output, MJ; 

      : the exergy input to the production process, MJ; 

        : the exergy required to abate the emissions and wastes of the production 

process, MJ; 

        : the total exergy lost; called the exergy destruction in Rosen’s formula, 
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MJ; and 

             : the annual available solar exergy of the building footprint, MJ. 

 

Although some of previously-discussed indices (see section 2.5, literature review) 

were not developed for assessing building sustainability, their application is expanded to 

buildings and discussed in this section. The following equivalences between terms are 

presented and their values calculated and listed in Table  5.17, in relation to the case 

studies in this thesis. 

The sustainability index defined by Rosen et al. (2008) is the closest formulation to the 

ExSI. In general terms, both indices are calculated as the ratio of exergy input to the 

system divided by the exergy lost (destroyed) in the system or process. The terms used in 

ExSI are defined in relation to the proposed concept of building sustainability. Exavailable 

is the available exergy that could potentially become the exergy input, as generated by a 

renewable energy source, solar energy; Exlost is the life cycle exergy lost, including the 

embodied exergy, abatement exergy and operation exergy. Rosen’s index is defined in 

generic terms as the ratio of exergy input to the exergy destroyed. If the two indices 

(ExSI and SI) use the same definition of terms and the same boundary, then they have the 

same meaning and numerical values. 

The clarification of why those indices are considered to be indicators of 

building/system/process sustainability is given below: 

The CExC index proposed by Kotas assessed resource degradation as an indicator 

of sustainability by focusing on the production process/system analysis in terms of the 
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efficiency through the comparison of the embodied exergy in the final product versus the 

cumulative exergy consumption that has to be extracted from the natural ecosystem in 

order to deliver the desired product. 

The S index proposed by Dewulf shows that different aspects of process, system 

and building sustainability can be quantified by using three of the sustainability 

parameters: (1) renewability, which focuses on the sustainable nature of the resource used 

in the process and distinguishes between renewable and non-renewable resources; (2) an 

efficiency parameter, based on the production process; and (3) the environmental 

compatibility parameter, which defines the extra exergy needed to abate the emissions 

and to run the system so that it is compatible with the natural environment. 

The SI index proposed by Rosen is considered as an indicator of sustainability 

since it is defined as the inverse of the depletion number that characterizes the efficiency 

of the process/system or building using a ratio of exergy destruction to the exergy input.  

The ExSI index evaluates the building sustainability based on the renewability 

factor, which compares the exergy lost using life cycle analysis to the maximum 

theoretical available solar exergy as a single benchmark to enhance the advantage of 

openness on the earth surface and of utilizing solar power instead of degrading finite 

resource that must be extracted from the earth. 

Systematic diagrams have been created to facilitate relative comparisons of 

sustainability indices, see Table 5.16.  
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Figure ‎5.10: Equivalence between terms used in formulas 

 

Table ‎5.16: Comparison of ExSI and sustainability indices found in the literature  

a 

 

 The CExC indicator as proposed 

by Kotas (1985) is used to 

describe the efficiency of a 

production or process. It should 

also reflect the other 

sustainability issues illustrated in 

Table  5.15 (renewability, 

compatibility, and efficiency of 

the process).   

b 

 

 The environmental parameter ζ 

considers the abatement of 

emissions. It should account for 

the abatement of all negative 

effects related to the process 

itself. By doing this, a system’s 

compatibility with the 

environment can truly be 

determined.  

 The combination of the three 

parameters to obtain S is highly 

subjective. 
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The comparison led to several observations: 

 Despite the efforts invested in developing  an index that adequately represents the 

sustainability of a building, according to this comparison, existing sustainability 

indices are not yet  completely satisfactory since they do not fully reflect all of the 

sustainability issues (renewability, compatibility, and efficiency of the process). The 

comparison shows that the previous indices need to be improved to fully cover all of 

the sustainability issues. 

 The common grounds for comparison are based on two parameters: production 

efficiency       , and process efficiency          , (see Figure  5.10). As the depletion 

of resources was the main focus of the CExC, it only covers the first parameter, while 

the second parameter, process efficiency      , was not covered at all. It is worth 

c 

 

 The index compares the Exdestroyed 

against the Exin. 

d 

 

 The results have two 

considerations: one factor reflects 

the importance of increasing the 

reliance  on renewable resources 

by using Exavailable instead of Exin 

and compares it against total life 

exergy lost attributable to 

construction, operation, and 

emissions instead of (Exembodied), 

as presented by  (Kotas 1985), or 

(Exoper) as presented by (Rosen et 

al. 2008). 
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noting that a high value of overall efficiency does not necessarily guarantee a high 

level of sustainability, since this index does not consider renewability as part of 

sustainable resource utilization. Furthermore, the interaction between the production 

and consumption process and the environment is neglected.  

 With the available exergy Exavailable as a single benchmark to compare against, the 

focus can now be on enhancing building sustainability by using renewable solar 

energy rather than using Exin provided by the earth. Our planet is neither an infinite 

supplier of resources, nor an infinite absorber of waste (unless when geothermal 

energy is used). In this context, the exergy-based index might help us to test whether 

the exergy losses of buildings are within those buildings’ capacities based on the 

available solar exergy that can be harvested on the buildings’ horizontal footprints. 

Using Ex available instead of Exin implicitly considered that the efficiency production 

      = 1, all resources used in the process are renewable using solar energy        

= 1, and no exergy is needed to abate harmful emissions   = 1. 

Table ‎5.17: Exergy calculations and exergy-based indices   

Exergy calculations 
Process/system or building 

1 2 3 
Exin, renewable, MJ/yr 2,125,784 107,759 24,767 
Ex abat, MJ/yr 4,594,663 33,804 30,838 
Exin, MJ/yr 16,285,856 146,895 149,434 
Ex destroyed/Ex lost, MJ/yr 15,152,635 146,895 68,535 
Ex out, MJ/yr 11,123,769 112,978 78,118 
Ex available, MJ/yr 3,715,491 381,336 381,336 
α 0.13 0.73 0.17 
η 0.68 0.77 0.52 
ζ 0.22 0.19 0.17 
S (Sustainability coefficient) 0.14 0.44 0.13 
SI (Sustainability Index) 1.07 1.00 2.18 
ExSI  estimated at  the economic potential (5% efficiency) .5% 1.7% 8.0% 
ExSI  estimated at  the technical potential  (35% efficiency) 1 % 98.9% 100% 
ExSI estimated at the theoretical potential (100% efficiency) 5.7% 100% 100% 
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A summary of exergy calculations is presented in Table  5.17. These calculations 

are based on the detailed exergy lost given in Table  5.14. The exergy-based index (ExSI) 

is shown in the last three rows. As can be seen from Table  5.17, the Exlost has different 

values than the Exout, due to differences in the boundaries used to calculate the terms. The 

boundary considered in the calculation of the first term is the whole life cycle.  

 The efforts to (approximately) achieve an NZEH (case no.3), and thus to attain a 

lower loss of operational exergy, do not come without drawbacks. This smaller amount of 

lost exergy  is accompanied by a drop in renewability α, efficiency η, and compatibility ζ 

, from 0.73, 0.77, and 0.19 in case no.2 (BCH) to 0.17, .52, and 0.17 in case no.3 

(NZEH), respectively.  

Table  5.17 shows that the sustainability indices proposed by Rosen and by this 

research produce the same conclusion, that case no.3 (NZEH) is more sustainable than 

case no.2 (BCH). However, the indices cannot be compared in an equitable fashion 

unless the boundaries are set to be identical to validate the calculation of the terms used 

in the exergy calculation. The ExSI estimated at the technical potential with the 

maximum laboratory PV efficiency of 35 % is used in the comparison with other exergy-

based indices (Green et al. 2004).  

The sustainability level of case no.2 (BCH) was rated at 98.9% using the ExSI 

index, which is very close to the 1.0 rating using the SI index. The NZEH (case no.3) was 

rated at 100% using ExSI, while it was rated at 2.18% using SI. 

The Exin, renewable of case no.1 (2,125,784 MJ/yr) is based on detailed calculations of 

the renewable materials in Table  5.3 (1,558,360 MJ/yr) and of the off-site renewable 
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energy (B3.1) in Table  5.14 (567,424 MJ/yr). The Exin, renewable of case studies no.2 and 3 

(107,759 and 24,767 MJ/yr, respectively) are estimated based on re-modeling those two 

case studies by using ATHENA to consider only the renewable materials that were used 

in each case, see Table  5.18.  

Table ‎5.18: Athena table report   

Base Case House 
Environmental 
Assessment 

  40 year Life Cycle 

  
Hydroelectri

city MJ 

Total 
(Primary 

Fuels) (MJ) 
Total 

Energy (MJ) 

Manufacturing 
Material 93,637 365,808 459,445 

Transportation 0 7242 7,242 

Construction 
Material 2,203 237 2,440 

Transportation 0 32,308 32,308 

Operations & 
Maintenance 

Material 55,033 166,337 221,370 

Transportation 0 3,990 3,990 

Operating Energy 3,577,903 384,362 3,962,265 

End-of-Life 
Material 0 18 18 

Transportation 0 5,641 5,641 

Total 

Material 150,873 532,400 683,273 

Transportation 0 49,181 49,181 

Operating Energy 3,577,903   3,577,903 

  
 

3,728,776 581,581 4,310,357 

Total (MJ/yr)   107,759 
     
Net Zero Energy House 

Environmental 
Assessment 

  40 year Life Cycle 

  
Hydroelectri

city MJ 

Total 
(Primary 

Fuels) (MJ) 
Total 

Energy (MJ) 

Manufacturing 
Material 128,096 493,881 621,977 

Transportation 0 9,469 9,469 

Construction 
Material 2,090 225 2,315 

Transportation 0 33,580 33,580 

Operations & 
Maintenance 

Material 88,523 224,107 312,630 

Transportation 0 5,365 5,365 

Operating Energy 0 0 0 

End-of-Life 
Material 0 21 21 

Transportation 0 5,329 5,329 

Total 

Material 218,709 718,234 936,943 

Transportation 0 53,743 53,743 

Operating Energy 0 0 0 

    218,709 771,977 990,686 

Total (MJ/Yr)   24,767 
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6 SUMMARY, CONCLUSIONS, LIMITATIONS AND FUTURE WORK  

 

The work undertaken to complete this research and thesis, as well as the expected 

contributions are presented in this chapter.  

6.1 Summary and conclusions 

Despite the obvious advantages of the existing assessment methods in 

contributing towards more sustainable buildings, some limitations have been recognized. 

While weighting is recognized as an essential part of many of the current assessment 

tools as a means to reduce assessment scores to a manageable number, the basis behind 

these weightings and the manner in which the weighting process itself affects the 

interpretation of the aggregated result is considered one of the critical limitations that 

needs to be addressed. Other user-controlled features that can influence the results, such 

as defining the critical threshold of each criterion or using a reference building have been 

also considered. These limitations have led towards the development of a scientifically-

based SB assessment tool.   

Furthermore, the spatial and temporal dimensions of sustainability have been 

observed to be key elements of achieving sustainability and therefore the impact of 

changing a building’s location and the temporal scale over which sustainability is 

assessed have been taken into account in the proposed methodology. The long-term 

building sustainability is therefore assessed by comparing the annualized life cycle 

exergy lost due a building’s construction and operation, over the building’s life time, with 
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the annualized available solar exergy that could be harvested on the building footprint, 

assumed to be the sole sustainable energy source.  

Using the available solar exergy as a single, theoretical benchmark avoids the 

need for periodic reviews as well as for any modification in order to comply with new 

standards. The solar exergy benchmark also eliminates the need to comply with regional 

applications, which in turn nullifies SBTool’s requirement for a third party to define user-

defined benchmarks to facilitate that compliance.    

This research contributes to the development of a generic sustainable building 

assessment framework. It is an attempt to improve building-design decision making 

towards sustainability through a thermodynamic-based assessment process. This is partly 

achieved by proposing a new definition of building sustainability based on a strong 

sustainability concept that requires various categories of natural capital to be maintained 

indefinitely for future generation. This scientifically-based definition is used as an 

acceptable platform for the proposed assessment framework.  

The proposed approach is an attempt to achieve a balance between the “heavy 

science” that few people understand, and a simpler approach that still offers a practical 

meaning. The approach proposed in this thesis, based on applied thermodynamics, 

belongs to the former category, and will provide a more accurate and science-based 

accounting of sustainability. The simpler approaches, such as LEED, are based on 

experience, consensus, and market forces, and are more easily accepted by the market. 

This research is solely based on applied thermodynamics; future developments however, 

especially in relation to the calibration of a rating scale, should involve those who utilize 

or modify the market driving forces.  
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 The integration of the three main categories of assessment tools: multi-criteria 

assessment, life cycle analysis and single index, minimized the limitations that may affect 

their future effectiveness in the context of assessing building sustainability. SBTool, as 

one of the most comprehensive sustainability assessment frameworks, is ahead of other 

many multi-criteria rating tools, making it the most-nominated method to assess building 

sustainability, despite some shortcoming. Two issues of SBTool, energy and resource 

consumption (issue B), and environmental loading (issue C) are among the most 

influential issues in building assessment, based on the sensitivity analysis. Several other 

issues could be included in the evaluation of building sustainability, some can be 

quantified, such as energy use and durability, and others can only be discussed in 

qualitative terms such as satisfaction with the indoor environment or the social benefits of 

knowledge generated in buildings. The integration of all of the factors contributing to the 

assessment of such an index of building sustainability could be considered in the future 

for assessing building sustainability as a prototype tool.  

ATHENA provides detailed evaluations that make it possible to retroactively 

design buildings. It involves a construction-oriented life cycle perspective that considers 

overlap, waste products and other global warming, among other issues. Exergy is the 

single index implemented throughout this study for its distinguished features over other 

methods of assessment to the best of the author’s knowledge. An exergy approach is 

employed to detect and to quantitatively evaluate the causes of the thermodynamics 

imperfection of a building under certain conditions and therefore can indicate the 

practicality of possible improvements. It is a significant tool in addressing the impact of 

energy resource utilization on the environment and to determine the true magnitude of 
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wastes and losses. Using exergy analysis to address sustainability issues is effective, as it 

is not affected by geo-political or market conditions. Exergy is also the unit to which 

costs could be assigned.  

The proposed assessment framework enables different types of useful 

comparisons to be made: (1) a comparison of the overall building sustainability, locally 

or internationally (A and B level of comparison, see Figure 5.5) which invariably requires 

the reduction of the overall assessment score to a single value by normalizing the scoring 

values. Such a challenge was implicitly considered through the distinctive characteristic 

of the proposed framework which calculates and aggregates different sustainability 

dimensions into a single commodity using exergy; (2) a comparison of performance 

based on the exergy loss of one criterion (C level of comparison, see Figure 5.6) with 

other criteria for the same building to  identify where trade-offs and compromises could 

be made; and (3)  comparing the  performance with that of another building either in the 

same or in a different location reflects the importance of using absolute scoring values 

rather than a relative score (D level of comparison, see Figure 5.6). 

The applicability of implementing the proposed methodology was examined 

through fourteen case studies of different building types and locations.  

For case study no.1 the data was collected from the SBTool, while for other case 

studies data was extracted either from the published literature or estimated using software 

(e.g., ATHENA), whichever was more suitable for the defined locations.  

The application of the proposed exergy-based index revealed that large 

commercial buildings with several floors cannot achieve a high level of sustainability by 

using only the building’s footprint as the reference surface for harvesting solar energy. 
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This type of building is a candidate for the weak sustainability approach, with a partial 

use of non-renewable energy sources. The residential case study buildings could achieve 

the highest theoretical potential of building sustainability, and the highest technical 

potential by using PV technologies with 40% efficiency.   

The case study results also indicated that there is a large difference between the 

maximum theoretical index of sustainability (as proposed in this thesis) and the potential 

for sustainability by using current PV technologies with 5% to 20% efficiency. 

The results obtained using the proposed framework are compared with the results 

obtained by using an applicable single index found in the literature. The sustainability 

index based on exergy efficiency defined by Rosen et al. (2008) is the closest formulation 

to the ExSI. If the two indices (ExSI and SI) use the same definition of terms and the 

same boundary, they have the same meaning and numerical values. 

6.2 Research Limitations 

The developed method has some limitations that are listed below: 

 The research is mainly focused on two issues, the energy and resource 

consumptions and the environmental aspects. These two issues are among the 

most influential in the assessment of buildings. Several other issues could be 

included. 

 This study used the following scale: (1) Sustainable (96 % <ExSI ≤ 100 %); (2) 

Exergy efficient (75 % < ExSI ≤ 96 %); (3) Average exergy efficient (25% < 

ExSI ≤ 75 %); (4) Less than average exergy efficient (4 % < ExSI ≤ 25 %); and 



156 

 

(5) Unsustainable (0% ≤ ExSI ≤ 4 %), however other scales could be studied, in 

the future work. 

6.3 Contributions 

The study aims at enhancing sustainability assessment at the micro level (building). 

An exergy-based index is developed to aid in the assessment of building sustainability. 

The research contributions can be summarized as follows: 

1. A new definition of sustainable buildings in the absence of general consensus on 

specific definitions is introduced;  

2. Critical analysis of several existing assessment methods was conducted to learn from 

their strengths and weaknesses; 

3. The proposed exergy-based index overcomes the limitations of subjectively defined 

weights allocated to different criteria for building sustainability assessment. It is also 

much more beneficial to use a single numerical benchmark (available solar exergy) 

that can easily be adjusted to temporal and spatial changes in a building than to 

utilize several of benchmarks for which there is no consensus on how to define, 

customize and quantify them;  

4. A distinctive characteristic of the proposed framework is the calculation and 

aggregation of different sustainability dimensions into a single commodity, the 

exergy. The annualized exergy lost can easily be used to compare building 

sustainability locally as well as globally; 
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5. Applying the proposed index to 14 case studies of different types and at different 

locations proved the validity of a universally applicable assessment tool that can be 

widely and easily adopted in different countries;  

6. This approach allows a new perspective on the sustainability of buildings, a question 

of concern to all citizens; and 

7.   Using the annualized exergy lost can improve decision processes by providing a 

quantifiable sustainability target. 

6.4 Recommendations for Future work 

Several avenues for work, building on the framework presented here, are suggested 

and can be summarized as follows: 

1. Expanding the proposed exergy-based index to consider other issues from the 

SBTool rating tool; 

2. Evaluating other available exergy that can be harvested on vertical outside 

surfaces and studying the shading effect of surrounding buildings, as well as 

considering other renewable energy sources using the strong sustainability 

approach for assessing building sustainability. It would also be  interesting to 

evaluate hybrid systems for their potential to meet the technical challenges and 

address the intermittency of renewable energy; 

3. Evaluating other building sustainability assessment approaches, using the weak 

sustainability concept, where some percentage of energy/exergy will be provided 

by non-renewable sources; 
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4. We considered solar energy as the sole sustainable energy source because of its 

long term availability. Certainly a discussion about the long term availability of 

hydropower or geothermal sources would be of interest;  

5. The development of a user interface for the proposed exergy-based index; 

6. The development of a stand-alone prototype tool, independent of SBTool; 

7. Improving the proposed rating scale that is derived based on assumptions; and 

8. Many of the issues addressed in this thesis may be manifested in the restructuring 

of SBTool, and its application can continue to contribute to the wider debate on 

building sustainability assessment. 
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  APPENDICES 

A. REVIEW OF BUILDING ASSESSMENT METHODS 

Table ‎A.1: Summary of an appraisal of ATHENA (LCA category) 

  ATHENA  

        

A Structural 

organization  

Description • An LCA-based environmental decision support tool.  

• Practical, ease-to-use decision support tool using preset assembly 

dialogues. 

• Easily tracks your entries through the tree that is built by the spreadsheet 

software. 

• Checks the effects of assembly addition and pinpoints which one is 

causing a particular environmental effect. 

  Developer Athena Sustainability Institute in 2000 (now the Athena Sustainable 

Materials Institute) 

  Purpose  To improve the sustainability of buildings through the implication of LCA 

by encouraging the selection of alternatives with lower environmental 

impacts.  

  Type assessed Industrial, institutional, office, single and multi-unit residential buildings 

  Present status First commercial version of Athena Environmental Impact Estimator, 

Athena 2.0, was released in June, 2002.  

        

B Functioning 

and 

performance 

Functioning  • Describes a building in architectural terms;  

• Helps architects assess and compare the environmental implications of 

designs for both new building and major renovations; 

• Incorporates ATHENA's databases, which cover structural and envelope 

systems that are typically used in residential and commercial buildings, 

adapted for various climate regions. 

  Social 

performance 

N.A 

  Economic 

performance 

N.A 

  Environmental 

performance 

Provides users with LCA-based environmental evaluations of proposed 

alternative designs and materials choices.  

        

C Aspects 

examined 

Framework Ecological, long-range economic. 

  Scale Whole-building and building assemblies  

  Scope Life Cycle Analysis: embodied energy used, global warming potential, 

solid waste emissions, pollutants to air, pollutants to water, and natural 

resources use. 

  Objectives Provides high quality environmental data to allow informed environmental 

choices. 

  Indicators Energy or resource and environmental impact (Global warming potential, 

solid waste emissions, pollutants to air, pollutants to water and natural 

resource use) 

  Measuring Total embodied energy (material extraction and manufacturing, related 

transportation, construction, maintenance, repair, replacement, demolition 

and disposal). 

  Weighting No weighting 

  Reporting A comparison dialogue feature allows side-by-side tabular and graphical 

comparison of as many as five separate conceptual designs. 
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  Limitations Complexity, cost [1], uncertainty (because a building may undergo many 

changes during its life span) [2]. Evaluation is limited to only a few 

parameters. There could be a lack of data in the early design phase. 
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Table ‎A.2: Summary of an LEED appraisal (MCA category) 

  LEED  

        

A Structural 

organization  

Description LEED (Leadership in Energy & Environmental Design) is currently the 

dominant system in the United States and Canadian market. It was 

developed and piloted in the United States in 1998 by the U.S. Green 

Building Council (USGBC) as a consensus-based building rating system 

[9]. 

Main 

developer 

U.S. Green Building Council in 2000 

Purpose  Voluntary, market-driven rating system  

Type assessed New and existing commercial; institutional; office; and high-rise 

residential buildings 

Present status 400 building have received LEED ratings and 3400 buildings have been 

registered.  

        

B Functioning 

and 

performance 

Functioning  • Identifies and acknowledges sustainable buildings and distinguished 

professionals working in this area.  

• Provides guidelines and training program for moving closer to 

sustainable buildings [5]. 

Social 

performance 

N.A 

Economic 

performance 

N.A 

Environmental 

performance 

• provides the opportunity for building owners and operators to reduce the 

impacts of their building in environment and on occupant health.  

        

C Aspects 

examined 

Framework Ecological and economic 

Scale whole building  

Scope Multiple: site; energy; materials and resources and indoor environmental 

quality  

Objectives Ratings 

Indicators Sustainable site, water efficiency, reducing energy consumption and CFC 

in HVAC equipment, materials and resources; indoor environmental 

quality ; and innovation credits 

Measuring Checklist. Credits are earned for satisfying each criterion. Users define 

criteria for scoring. Each category (e.g., Sustainable site) has a specific 

number of prerequisites and credits. 

Weighting • Each criterion is specified with its credits, users select criteria for scoring.   

• Criteria are weighted equally, except for the number of points assigned 

[3]. 

Reporting • Points are assigned to each criteria/sub-criteria and then a building is 

certified as " certified" 26-32 points-“Silver” 33-38 points, “Gold” 39-51 

points or “Platinum” 52-69 points)[6]. 

Limitation • The lack of quantitative metrics and the subjective nature of the scoring 

system make it difficult to provide in-depth results. 

• Cannot be customized to reflect regional bias [8].  

• Users can choose the criteria to be included in the final score, a situation 

which does not allow the negative aspects to be reflected and therefore the 

score does not reflect the strengths and weaknesses of the building [10]. 

• Unable to compare structurally different buildings [4]. 
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Table ‎A.3: Summary of an appraisal of SBTool (MCA category) 

  SBTool  

        

A Structural 

organization  

Description • The Green Building Challenge (GBC) assessment frame work prompted 

the development of SBTool (formally known as GBTool) for assessing 

building performance. It began in Canada, but responsibility was handed 

over to the international initiative for a Sustainable Built Environment 

(iiSBE) in 2002 [40]. 

• The SBTool is mainly concerned with the advancement of assessment 

methods and building performance [11]. 

Developer National Resource Canada (NRC) in 1995 

Purpose  Research/contribute to the state-of-the-art of building design and 

modification. 

Type assessed 19 types of buildings can be assessed, such as detached and attached 

houses, apartments,  hotels - Motels, offices, day cares, theatres - Cinemas, 

retail, food service, supermarkets,  etc., 

Present status Participating teams from more than 25 countries [9] 

        

B Functioning 

and 

performance 

Functioning  • SBTool is calibrated by each national team and is tested by building case 

studies to establish a common language for describing green buildings 

(results are presented at international SB conferences). 

• Its strength lies in its ability to reflect regional conditions and values 

while maintaining the value of a common structure and terminology. 

• Provides building owners and other decision makers with common and 

variable sets of criteria as a means and mechanism to influence the 

building market. 

Social 

performance 

Assesses certain qualitative issues such as quality of service, quality of 

amenities, thermal optical and acoustic comfort. 

Economic 

performance 

Several social aspects have been examined such as construction accidents, 

access for physically handicapped persons, access to private open space 

and to views from work areas; access to/effects of direct sunlight, levels of 

visual privacy and the social utility of a building’s primary function.  

Environmental 

performance 

SBTool deals with greenhouse gas emissions; ozone depletion; acid rain, 

solid and liquid waste generation; impacts on sites and adjoining 

properties; and consumption of materials, energy, water and land. 

        

C Aspects 

examined 

Framework Ecological, economic and social 

  Scale Whole building  

Scope Multiple: assessment elements of SBTool are classified into three levels: 

the highest level is called performance issues, the second level is called 

categories (29 categories), and the third level is called criteria (125 

criteria). Seven performance issues are included in the highest level such 

as: site selection; energy and resource consumption; environmental 

loading; indoor environmental quality; functionality and controllability of 

building systems, long-term performance, and social and economic 

aspects.  

Objectives Advancement of assessment methods and building performance. 

C  Indicators Net annual consumption of primary energy for building operations; GHG 

emissions and waste water from building operations, and net land area 

consumed for building and related works. 

Measuring N.A 
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Weighting • Weighting factors are established by a third party to reflect the varying 

importance of issues in each region.  

• Factors are used to transpose scores from one level to another. (e.g., 

category scores are obtained by aggregating the weighted scores of 

constituent criteria).  

• Criterion weight is set to zero if it is not applicable to a region and all 

other weights are re-distributed amongst other active criteria [12]. 

Reporting • A linear scale from -1 to +5 is used to express the evaluation. The scale is 

interpreted as -1 indicates negative performance, 0 minimum acceptable 

performance (usually but not always defined by regulation), 3 good 

practice and 5 best practice. In the case of numeric parameters, scoring is 

done by setting two numeric values at 0 and +5 levels, and then numeric 

values for -1 and +3 performance levels are defined based on the slope of 

the line. It is more subjective for text-based parameters: default text 

benchmark statements are provided to describe a range of conditions from 

negative (-1) to best practice (+5) (Lee, 2006, iiSBE, 2007a). 

Limitation • Neglects the interrelationship between criteria; 

• Allows subjectivity in weighting the criteria; 

• It has to be prepared by first customizing the benchmarks to reflect 

regional conditions; 

• Is too complex and expensive due to its extensive demand for data and 

local adaptation; 

•Is not commonly known; 

• Benchmarks are inconsistent and lose their validity over time due to 

technological changes; and 

•  Uniform integration is difficult because SBTool  includes different 

indicators for different issues.  
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Table ‎A.4: Summary of an appraisal of Cost Benefit Analysis (SI category) 

  Cost Benefit Analysis  

        

A Structural 

organization  

Description Cost Benefit Analysis (CBA) estimates the value of the monetary costs 

and benefits that would be applicable to a community. It is a generic tool 

that can be adapted to utilize metrics other than money [12]. 

Developer A formalized CBA was first used by the US Corps of Engineers in 1936.  

Purpose  • To determine a project’s feasibility by comparing the sum of the 

anticipated benefits against their costs; 

• To estimate a project's impact on national net income, net exports and 

labor markets. 

Type assessed Used in different disciplines to assist other tools when monetary values are 

needed for goods and service not found in the marketplace. 

Present status Very few, if any, sustainability assessments have yet attempted CBA. . 

        

B Functioning 

and 

performance 

Functioning  Provides a framework for project assessment using two stages of 

computations: first calculate annual costs and benefits, and then estimate 

the current worth by applying depreciation to the future values.  

Social 

performance 

Public participation is something this process invokes a great deal. Social 

costs can be described in terms of dollars and assessment effectiveness 

depends on how discounting is applied.  

Economic 

performance 

Used for putting a value on projects by taking into account the value of 

money over time (appreciation and depreciation). Provides a good "bottom 

line" for decision-making in equivalent monetary value. 

Environmental 

performance 

Evaluates the pollution created by waste generated throughout the process, 

using environmental protection authority licensing fees as well as the cost 

of measures taken to mitigate emissions.  

        

C Aspects 

examined 

Framework Economic 

Scale Multiple 

Scope Single: using money as single metric 

Objectives Project evaluation using monetary values under a given set of conditions. 

Indicators Real cash (used for economic assessment) and theoretical cash (used for 

social assessment). 

Measuring project cost and project benefit are compared  

Weighting No weighting 

Reporting Reported in dollars as the common currency/denominator utilized in this 

method. 

Limitation • CBA  is criticized for being in opposition/contradiction to one of the 

particular aspects of sustainability -- the need for intergenerational and 

intragenerational equity) due to its discounting and aggregation methods 

[13]; 

• Is exclusively  biased towards the current generation, unless the current 

net benefits can be reinvested to benefit future generations; 

• Does not evaluate how far a project meets its objectives [12]; 

• It is inherently difficult to represent natural phenomena in monetary 

terms; 

• Its over-reliance on subjective valuations; 

• It gives values for what is used by humans, other aspects  will not be 

considered, which restricts its  ability to assess if a project will pose a 

threat to the natural environment or to biodiversity; and 

   Comparison between monetized quantities is relatively easy and 

straightforward and, easily understood by non-experts and others alike. 
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Table ‎A.5: Summary of an Ecological footprint (SI category) appraisal 

  Ecological footprint  

        

A Structural 

organization  

Description Ecological footprint (EF) is an inverse of the carrying capacity concept, as 

it quantifies "the total area of productive land and water ecosystems 

required to produce the resources that the population consumes and to 

assimilate the wastes that the population produces, where on Earth that 

land and water may be located' [15]. It not only reflects the demand but 

also indicates the direction to move towards. 

Developer Mathis Wackernagel and William Rees in the early 90's 

Purpose  Quantify humanity's long-term impact on the global environment 

Type assessed The EF of a sub-national level (population or product) using a component- 

based approach, and the EF of a national and global level (countries) using 

compound-based method. 

Present status It is an evolving methodology and still needs a considerable amount of 

research before the approach can be standardized. 

        

B Functioning 

and 

performance 

Functioning  • Used an intuitive approach for investigating the demand of a given 

population or, in a different manner, to measure both  the ecological 

supply account and the human demand account, where both are measured 

with a common unit of measurement (ghr), making their comparison 

feasible. .  

• Component-based and compound-based approaches have been 

recognized as two distinct methodologies, used by the ecological footprint 

approach; the former has characteristics of a "bottom-up" approach and the 

later has those of a "top-down"[13].  

Social 

performance 

• The entire analysis is based on the assumption of global equity (which 

may not be recognized by all ‘parties’.  

• It is a powerful educational and awareness method thanks to the 

simplicity of the concept, which makes it easily understood by everyday 

people as well as professionals. 

Economic 

performance 

EF has great flexibility to incorporate all of the desired criteria within the 

assessment process. The method begins by assessing the economic health 

of societies and later expands to assess other sustainability aspects. 

Environmental 

performance 

• Assessing the impact of humanity on nature has been set as EF's primary 

objective, assuming that resource consumption by humanity is the main 

culprit of unsustainable development.  

• Quantifying pollution or biodiversity levels or impacts are not included 

in its current form.  

• Provides guidelines and training programs for moving closer to 

sustainable buildings [5]. 

        

C Aspects 

examined 

Framework Ecological and economic 

Scale Multiple scales: regional, city, institution, household and product level; 

Scope Multiple: site; energy; materials and resources and indoor environmental 

quality  

Objectives To quantify the amount of natural resources appropriated for human 

consumption. 

Indicators Based on a small group of indicators.  

Measuring Measures the area land required to supply resources or to absorb wastes. 

C Aspects 

examined 

Weighting Criteria are equally weighted and their actual estimate aggregated for the 

final result. 
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Reporting Results are reported in terms of global hectares of land per person per year. 

Limitation • Pollution levels and the state of biodiversity are not incorporated in EF’s 

current form which means it can produce misleading information when 

comparing different products or even at the national level. 

• Only covers a few major resources (subsumed within land types) and 

consumption activities.  

• Is very limited in terms of measuring recycling.  

• It neglects the multifunctional nature of land.  

• Artificial, political boundaries, the use of ecological productivity 

averages and the assumed static nature of resource productivity; all 

contribute to the production of unconvincing comparisons based purely on 

consumption and availability, which does not lend any credibility to the 

accuracy of the results. 

• In its e current state, EF does not account for dynamic entities such as 

technological development, or social health issues, since it is dependent 

upon static estimates.  
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Table ‎A.6: Summary of an Exergy (SI category) appraisal 

  Exergy  

        

A Structural 

organization  

Description • Is an important thermodynamic concept which can be used to better 

assess and more accurately present the whole picture of a system and 

precisely measure its sustainability based on the combination of the first 

and second law of thermodynamics (Simpson and kay, 1989); 

• Considers the physical aspects of a system and its uses (building's uses 

influence the internal heat load, lighting and power demand);  

• Can provide for better understanding of energy utilization and  the 

location of inefficient areas to target for improvement. 

Developer The roots of the exergy analysis concept can be traced to the 19th Century 

and the pioneering work of S. Carnot and W. Gibbs, while the term was 

coined and presented for the first time in 1956 by Z. Rant [17]. 

Purpose  Measures the degradation of energy quality during a process based on the 

second law of thermodynamics. It is also used in energy optimization 

studies. 

Type assessed Energy conversion system and heating system [18], [19] 

Present status N.A 

        

B Functioning 

and 

performance 

Functioning  • Can determine the location and magnitude of exergy loss in the 

production process where only the exergy of relevant materials and 

products is needed [16]; 

• Is ideal for the design and analysis of energy systems, as its methodology 

combines the conservation of mass and energy with the second law of 

thermodynamics; 

• Quantifies waste and energy losses so it can provide important 

information for more efficient resource use . 

Social 

performance 

Can be extended to handle societal metabolism [22].  

Economic 

performance 

Suggests avoiding energy use at a significantly higher level than needed 

for a task for economic reasons. 

Environmental 

performance 

• Was used to study depletion of natural resources in 1974 (later, Szargut 

introduced several interesting related concepts) [21];  

• Can be used to calculate the exergy lost in an irreversible process during 

the use of non-renewable resources, and to try to minimize this loss to 

obtain sustainability; and 

• Has been used to express all the environmental effects associated with 

emissions [21],[23]. 

        

C Aspects 

examined 

Framework Ecological and economic 

Scale Whole building, systems, energy sources [20] 

Scope Multiple 

Objectives Measuring the efficiency and quality of energy sources and their use. 

Indicators Uses a single metric based on exergy  

C Aspects 

examined 

Measuring Measures energy consumption and the corresponding exergy lost through 

the process, and estimate the difference between the overall energy 

efficiency and overall exergy efficiency [25]. 

Weighting Does not use weights. 

Reporting Single number [MJ/m2*year] 
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Limitation • Exergy analysis has been widely applied in parallel with energy analysis 

in order to find the most rational use of energy, and therefore it cannot be 

used separately, which means it is an extra time consuming analysis [24];  

• Exergy analysis may be more sensitive to the reference environment than 

energy, especially when indoor conditions are close to the reference ones; 

• A general agreement on the proper choice of the dead state is not found 

in the literature. 
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