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ABSTRACT

Model-Driven Aspect-Oriented Software Security Hardening

Djedjiga Mouheb, Ph. D.

Concordia University, 2012

Security is of paramount importance in software engineering. Nevertheless, secu-

rity solutions are generally fitted into existing software as an afterthought phase of the

development process. However, given the complexity and the pervasiveness of today’s

software systems, adding security as an afterthought leads to huge cost in retrofitting

security into the software and further can introduce additional vulnerabilities. Further-

more, security is a crosscutting concern that pervades the entire software. Consequently,

the manual addition of security solutions may result in the scattering and the tangling

of security features throughout the entire software design. Additionally, adding security

manually is tedious and generally may lead to other security flaws. In this context, the

need for a systematic approach to integrate security practices into the early phases of the

software development process becomes crucial. In this thesis, we elaborate an aspect-

oriented modeling framework for software security hardening at the UML design level.

More precisely, the main contributions of our research are the following: (i) We define

a UML profile for the specification of security hardening mechanisms as aspects. (ii)

We design and implement a weaving framework for the systematic injection of security

aspects into UML design models. (iii) We explore the theoretical foundations for aspect

matching and weaving. (iv) We conduct real-life case studies to demonstrate the viability

and the scalability of the proposed framework.
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Chapter 1

Introduction

Software-intensive systems have become an inseparable part of our today’s lives. Our

dependence on software systems is very high in several sectors of our daily activities, such

as, telecommunications, financial services, electronics, home appliances, transportation,

etc. At the same time, software complexity is increasing drastically. Therefore, software

systems become more susceptible to defects and vulnerabilities. In fact, the statistics

provided by the National Institute of Standards and Technology (NIST) show that the

amount of software security vulnerabilities, collected and analyzed from different sources,

raises almost every year (Figure 1.1)1. In this setting, the security engineering of such

software-intensive systems has become a major concern. This is emphasized by the fact

that, in spite of significant efforts on software security from academia and industry, the

scale and the severity of security breaches have been increasing with no complete victory

against attacks.

1.1 Motivations and Problem Statement

Nowadays, software security hardening is generally conducted as an afterthought phase of

the software development life cycle, usually during the maintenance and the deployment

1http://web.nvd.nist.gov/view/vuln/statistics
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Figure 1.1: NIST Statistics: Software Vulnerabilities

phases, by applying security updates and patches. In fact, security mechanisms are usually

fitted into pre-existing software without the consideration of whether this would jeopar-

dize the main functionality of the software and produce additional vulnerabilities [120].

However, given the complexity and the pervasiveness of modern software systems, adding

security mechanisms as an afterthought leads to a huge cost in retrofitting security into

the software and further can introduce additional vulnerabilities. Studies have shown

that considering security during the early stages of the software development life cycle

decreases significantly the cost of the development [47, 84]. For example, a study con-

ducted in [47] estimates that a single security vulnerability costs around $7,000 if it is

fixed during the testing phase and can even reach $14,000 if the vulnerability is fixed at

the maintenance phase. However, this cost can be reduced to less than $500 if the vul-

nerability is repaired during the design phase [47]. Given the large number of security

vulnerabilities that a software can contain, it is clear that fixing those vulnerabilities early

saves a substantial amount of money. As shown in Figure 1.2, the cost can be reduced by

$2.3M for 200 vulnerabilities [47]. Another research suggests that if the cost of solving

a vulnerability in the design phase is $1, this cost will increase to $60-$100 to solve the

same vulnerability during later phases [84]. Furthermore, approximately 60% of all vul-

nerabilities are usually introduced into software during the design phase [28]. Therefore,

security must be addressed during the early phases of the software engineering process.

2
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Figure 1.2: Cost of Fixing Vulnerabilities [47]

A promising approach to early security hardening is to adopt the emerging Model-

Driven Software Engineering (MDE) [39] paradigm and prominent modeling languages,

such as the Unified Modeling Language (UML) [128]. MDE is a software development

methodology that considers software modeling the primary focus of the development pro-

cess. UML is the de facto standard language for software specification and design. In

addition, these paradigms are widely accepted by industry and academia due to their ex-

pressiveness, easiness, and tool support.

Furthermore, security is a crosscutting concern that pervades the entire software.

Indeed, a security solution is not confined to one element in the software design but may

impact several elements. Moreover, one element of the design can integrate several se-

curity solutions fixing different security vulnerabilities. Therefore, if the developers add

security solutions manually into a UML design, security features may remain tangled and

scattered throughout the whole UML design, especially in case of large scale software

(e.g., hundreds or thousands of classes). Consequently, the resulting UML design mod-

els may become more complex and difficult to understand. Additionally, adding security

manually is tedious and generally may lead to other security flaws.

In this respect, Aspect-Oriented Programming (AOP) [97] is an appropriate paradigm

for security hardening. AOP has received considerable attention from researchers and
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industrial practitioners alike. It allows a more advanced modularization by separating

crosscutting concerns, such as security, from the software functionalities by introduc-

ing new modules, called aspects, that capture generally one concern. The adoption of

AOP techniques for developing secure software has become the center of many research

activities [26, 38, 45, 109, 119, 143, 165, 170]. This could be justified by the following

observations: (i) Aspect-oriented techniques allow security solutions to be carefully and

precisely specified in isolation without altering the logic of the software. (ii) Developers

can systematically integrate the security solutions into the software without digging into

the inner working of those solutions.

In this research, we aim at leveraging this technique to perform security hardening

of software at the UML design level through Aspect-Oriented Modeling (AOM) [22, 30,

152]. AOM allows software developers to conceptualize and express concerns in the form

of aspects at the modeling stage, and integrate them into their UML diagrams using UML

composition techniques. The concepts of AOM are similar to the ones of AOP (pointcut-

advice model), namely, adaptations, join points, and pointcuts. An adaptation specifies

the modification to be performed on the base model. A join point is a location in the base

model where an adaptation should be applied. A pointcut is an expression that designates

a set of join points. The process of identifying join points is called matching and the

process of composing aspects with base models is called weaving.

Using AOM, security aspects can be precisely defined at UML design level, and

systematically injected, at the right places, into UML design models. However, in spite of

the increasing interest, to date, there is neither a standard language for specifying UML

aspects, nor a standard mechanism for weaving aspects into UML design models. Accord-

ingly, the primary objective of this thesis is to elaborate an aspect-oriented modeling and

weaving framework, with the underlying theoretical foundations, for software security

hardening at the UML design level.

This thesis is conducted as part of an open source project (MOBS2)2, supported

2https://forge.ericsson.net/projects/mobstwo/
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by an NSERC Collaborative Research and Development grant in collaboration with Er-

icsson Canada, on the model-based engineering of secure software and systems. This

project aims at providing an end-to-end framework for secure software development. By

end-to-end, we mean a framework that starts from the specification of the needed secu-

rity properties on UML models, verification and validation of the UML models against

the specified properties, security hardening of UML models, and ends with secure code

generation. In this thesis, we focus on security hardening of UML design models. In

the following, we enumerate the objectives of this research work along with the achieved

contributions.

1.2 Objectives

The primary objective of this thesis is to elaborate an AOM framework for the specifi-

cation and the systematic integration of security aspects into UML design models. More

precisely, the targeted objectives are to:

• Explore the relevance and the appropriateness of AOM as a paradigm for the spec-

ification and the execution of security hardening practices on UML design models.

• Elaborate a UML profile for the specification of security hardening practices on

both structural and behavioral UML diagrams.

• Elaborate a weaving framework for the automatic injection of security aspects into

actual UML models.

• Define semantics for aspect matching and weaving and investigate the completeness

and the correctness of these processes with respect to the semantic models.

• Conduct real-life case studies to validate the importance, the relevance, and the

practicality of the proposed framework.

5



1.3 Contributions

To achieve our objectives, we have designed and implemented an AOM framework for the

specification and the systematic injection of security aspects into UML design models.

In addition, we have elaborated a formal semantics for the matching and the weaving

processes. More precisely, our contributions are:

1.3.1 UML Profile for Security Aspect Specification

The main contribution of this work is the elaboration of a UML extension for security

aspects specification. The related achievements are the following:

• We have elaborated an AOM approach for systematic security hardening of soft-

ware at the UML design level. The proposed approach allows security experts to

specify security solutions as aspects including the details on where and how to ap-

ply them in the software application. Afterwards, these solutions can be used by

developers with limited security knowledge.

• We have devised a UML profile that assists security experts in specifying security

solutions as aspects. The proposed profile supports both structural and behavioral

views of aspects. In addition, it covers the most prominent UML diagrams, i.e.,

class diagrams, state machine diagrams, sequence diagrams, and activity diagrams.

The profile supports two types of adaptations: (i) Add adaptations, which add new

elements to a diagram before, after, or around specific join points, and (ii) remove

adaptations, which delete existing elements from a diagram.

• We have defined a UML-specific and user-friendly pointcut language to designate

the locations where aspects should be injected into base models. Regarding the join

point model, the novelty of it is twofold. First, in activity diagrams, we consider not

only executable nodes, i.e., action nodes, but also various control nodes, e.g., fork,

join, decision, and merge nodes. Some of these join points cannot be captured at
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code level with existing pointcuts. Thus, capturing such control nodes at the design

level allows modeling the crosscutting concerns that are needed with alternatives,

loops, exceptions, and multithreaded applications. Second, in state machine dia-

grams, we consider not only static states as join points, but also we capture the

states that dynamically depend on the transitions that are triggered to reach them.

1.3.2 Security Weaving Framework

The main contribution of this work is the elaboration of a weaving framework to system-

atically inject security aspects into UML design models. It is important to mention here

that this framework is developed as part of MOBS2 project, and its implementation is

shared with a colleague in MOBS2 team. The related achievements are the following:

• We have designed and implemented a weaving framework, based on model-to-

model transformation [124], to systematically inject aspects into UML models. The

weaver is integrated as a plug-in within IBM-Rational Software Architect (RSA)

[87]. The advantages of this framework over the existing model weavers are the

portability and the expressiveness thanks to the standards Object Constraint Lan-

guage (OCL) [129] and Query/View/Transformation (QVT) language [126].

• We have proposed an instantiation mechanism, through a weaving interface, for

developers to specialize the generic aspects, provided by security experts, in order

to instantiate them to their application.

• We have developed several case studies, which demonstrate the usefulness and the

relevance of the proposed framework. We have experimented adding various secu-

rity mechanisms into large-scale applications, such as SIP-Communicator [2] and

OpenSAF [14].
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1.3.3 Matching and Weaving Semantics

The main contribution of this work is the elaboration of theoretical foundations for the

proposed framework by formalizing the matching and the weaving processes. The related

achievements are the following:

• We have elaborated a formal semantics for aspect matching and weaving in UML

activity diagrams following an operational style. We have focused on activity di-

agrams since they contain various kinds of actions and control nodes that can be

captured as join points. In this respect, the syntax of activity diagrams and their cor-

responding adaptations have been defined to express the matching and the weaving

semantic rules. Afterwards, we have derived, from these semantic rules, algorithms

for implementing the matching and the weaving processes. In addition, we have

explored the correctness and the completeness of these algorithms with respect to

the defined semantics.

• We have elaborated dynamic semantics for aspect matching and weaving in Exe-

cutable UML (xUML) [113]. The latter captures complete and precise behaviors,

which allow handling more security-related primitives. We have focused on exe-

cutable activity diagrams and the standard Action Language for Foundational UML

(Alf) [132]. The semantics is based on the so-called Continuation-Passing Style

(CPS) [159] since this style of semantics provides a precise and elegant description

of aspect-oriented mechanisms [61]. To this end, a denotational semantics, a CPS

semantics, and a frame-based semantics of activity diagrams and Alf language have

been defined. Afterwards, we have formalized matching and weaving for basic

pointcuts as well as flow-based ones [96,109] since they are important and relevant

from a security perspective. I have also to mention that this contribution is shared

with another colleague in MOBS2 team.
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1.4 Thesis Structure

This thesis is organized into 10 chapters as follows. Chapter 2 presents the background on

software modeling that is related to the research conducted in this thesis. We mainly intro-

duce Model-Driven Engineering (MDE), Unified Modeling Language (UML), Executable

UML (xUML), Aspect-Oriented Modeling (AOM), and model transformations. Chapter 3

presents the current literature related to security at the modeling level. We first review the

main mechanisms used to address security at the modeling level, namely security design

patterns, mechanism-directed meta-languages, and AOM. Then, we present the research

contributions proposed for security specification and hardening at the design level. Chap-

ter 4 presents the proposed UML profile for security aspects specification. Moreover, we

present our pointcut language proposed to designate UML join points. Chapter 5 details

the design and the implementation of the security weaving framework. We first provide a

high-level overview that summarizes the main steps of the weaving approach. Then, we

detail each weaving step, namely, aspect specialization, join point matching, and actual

weaving. Chapter 6 presents details about our prototype implementation. This includes

the authoring of the AOM profile and the implementation of the weaving plug-in. In addi-

tion, we present several case studies to illustrate our approach and explore its usefulness

for security hardening. Chapter 7 explores the semantics of the matching and the weaving

processes in activity diagrams using deductive proof systems. In addition, we formalize

algorithms for matching and weaving and prove the correctness and the completeness of

these algorithms with respect to the proposed semantics. Chapter 8 and Chapter 9 are

dedicated for presenting dynamic semantics for aspect matching and weaving based on

CPS and defunctionalization. The purpose is to describe the semantics in a precise and

elegant way. For clarity and to facilitate understanding, we elaborate the semantics in two

steps. First, in Chapter 8, we present the CPS semantics for matching and weaving in λ -

calculus. Second, in Chapter 9, we present the CPS semantics in xUML models. Finally,

Chapter 10 briefly summarizes our achievements. In addition, it provides an evaluation of

the proposed framework as well as possibilities of future extensions.
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Chapter 2

Software Modeling: Background

2.1 Introduction

The primary objective of this thesis is to elaborate a framework for the systematic security

hardening of software at the modeling level. As such, we start in this chapter by presenting

the current literature on software modeling that is related to the research conducted in this

thesis. We first present an overview of Model-Driven Engineering (MDE) [39] and its

main terms and concepts that are used in this thesis. Then, we provide the necessary

background on modeling languages, focusing on the Unified Modeling Language (UML)

[128] since it is the de facto standard language for software specification and design. In

addition, we introduce Executable UML (xUML) [113], which is used to precisely define

UML model behaviors. Afterwards, we introduce the aspect-oriented paradigm, with a

focus on Aspect-Oriented Modeling (AOM) [22, 30, 152]. Finally, we give an overview

about model transformations and the main transformation languages.

2.2 Model-Driven Engineering

Model-Driven Engineering (MDE) [39] is a promising approach adopted for software de-

velopment. It aims to raise the level of abstraction in program specification by considering
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models as the primary focus of development. Once designed, the software model is used

to direct all the different phases followed for development of the software. These include

code generation, verification and testing, maintenance, etc. The main goal of MDE is to

increase productivity by automating the development process as much as possible. More-

over, it aims at maximizing compatibility between systems by using standardized models

and best practices in the application domain. We start in this section by introducing the

main concepts of MDE, which are used in the course of this thesis.

• Model: It is an abstract representation of a specification, a design, or a system, from

a particular point of view [158]. A model usually focuses on a certain aspect of the

system and omits all other details.

• Executable model: It is a model that contains enough details that are required to

produce the desired functionality of a single problem domain.

• Modeling language: It is a specification language, generally defined by a syntax and

a semantics, for expressing models. It can be either graphical or textual. A graph-

ical modeling language uses diagrams to represent concepts and the relationships

between them. An example of such language is UML (Section 2.3). A textual mod-

eling language uses reserved keywords associated with parameters. An example of

such language is Alf language [132] (Section 2.4.2).

• Meta-model: It is a model of a modeling language. It describes the structure, the

semantics, and the constraints for a modeling language elements. By analogy, a

model should conform to its meta-model as a program conforms to the grammar

of a particular programming language. A meta-model itself should be expressed in

some language, such as Meta-Object Facility (MOF) [127].

• Meta-Object Facility (MOF): It is an OMG standard language for defining meta-

models. It is also a meta-model and often called a meta-meta-model.

11



• Abstract syntax: It defines the concepts of a language and their relationships. It is

often defined using a meta-model.

• Concrete syntax: It defines how elements of a language should be formed. For

example, in the case of a graphical language, a concrete syntax defines the graphical

appearance of the language concepts and how they may be combined into a model.

• Semantics: In the context of MDE, a semantics for a model describes the effect of

executing that model.

• Model transformation: It is the process of converting one model into another model

of the same system based on some transformation rules [124]. More details about

this process are provided in Section 2.6.

In the following sections, we present prominent modeling languages that are adopted

in this thesis, i.e., Unified Modeling Language (UML) and Executable UML (xUML). We

also provide more details about model transformations and transformation languages.

2.3 Unified Modeling Language

The Unified Modeling Language (UML) [128] is a general-purpose modeling language

in the field of software engineering. It was created and standardized by the Object Man-

agement Group (OMG) in 1997. The objective of UML is to provide system architects,

software engineers, and software developers with tools to specify, construct, visualize,

and document models of object-oriented software systems. It is now considered the

de facto language for software specification and design. Currently, UML is at version

2.4.1 [128]. A major update has been done at version 2.0 compared to version 1.x.

UML 2.0 has been enhanced with significantly more precise definitions of its abstract

syntax rules and semantics, a more modular language structure, and a greatly improved

capability for modeling large-scale systems [128]. In addition, UML now is defined in
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terms of Meta-Object Facility (MOF) [127], which makes it compliant with other meta-

models defined by OMG. In the following sub-sections, we present an overview of the

main UML diagrams, UML extension mechanisms, and the Object Constraint Language

(OCL) [129].

2.3.1 UML Diagrams

The visual notation of UML models is expressed in a rich set of diagrams. UML 2 consists

of fourteen diagram types describing different views of a software system. The OMG’s

UML specification classifies UML diagrams into two main categories: structural and be-

havioral diagrams (Figure 2.1). Structural diagrams describe the static structure of objects

in a system as well as the relationships and the dependencies between the objects. Behav-

ioral diagrams describe the dynamic behavior of objects in a system. Table 2.1 provides

a brief description of each UML diagram.
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Figure 2.1: Taxonomy of UML Diagrams
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UML Diagram Specifies

Class classes, entities, business domain, databases, etc.
Package the organization of packages, sub-systems
Object objects and their relationships at one point in time
Component software and hardware elements that make up a system
Composite Structure component of object behavior at run-time
Deployment the hardware architecture of a system
Profile UML extensions
Activity a sequence of actions of a flow within the system
Sequence object interactions over time and the exchanged messages
Interaction Overview interactions at a general high level
Communication exchange of messages between objects over time
Timing changes in the state or value of elements in a timeline
State Machine the behavior of an object at run-time
Use Case system functionality from the user’s viewpoint

Table 2.1: UML Diagrams

2.3.2 UML Extension Mechanisms

Even though UML is very expressive, there are situations where the language needs to be

extended to support specifications in a specific platform or domain. This is where UML

extension mechanisms come into play. They enable the addition of new features that are

not provided by the UML standard. There are two main standard extension mechanisms

in UML: (1) Stereotypes and tagged values, packaged in a so-called UML profile, and (2)

constraints. In the following, we provide an overview of these extension mechanisms.

Stereotypes and Tagged Values

A stereotype defines how an existing meta-class may be extended [128]. Therefore, it is

considered as a user-defined meta-class. Its structure matches the structure of an existing

UML meta-class, which is referred to as “base class”. In this respect, a stereotype repre-

sents a sub-class of the base class. A stereotype may have properties, which are referred
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to as “tags”. When a stereotype is applied to a model element, the values of the proper-

ties are referred to as “tagged values”. They are used to add the additional information

needed to specify the stereotype intent. A stereotype is denoted by �StereotypeName�
and can extend any kind of UML meta-class, such as, Class, Operation, Dependency, etc.

A tagged value consists of a name and one or many values.

Constraints

Constraints extend the semantics of UML by specifying rules and restrictions on model

elements. Certain kinds of constraints are predefined in UML, while others may be user-

defined [128]. A user-defined constraint is described using a specific language. The

language used by UML to specify constraints is generally the Object Constraint Language

(OCL) [129], which is described in the next sub-section.

2.3.3 Object-Constraint Language

The Object Constraint Language (OCL) [129] is a formal language used to specify ex-

pressions on UML models. These expressions typically specify constraints that must hold

for the system being modeled or queries over objects described in a model. OCL is mainly

used to specify application-dependent constraints for UML models. In addition, it is used

to specify invariants of the UML meta-language. More precisely, the main purposes for

which OCL can be used are to: (1) query UML elements, (2) specify invariants on classes

and types in the class model, (3) specify type invariants for stereotypes, (4) describe pre

and post conditions on operations, and (5) describe guards [129]. OCL is a pure specifi-

cation language; the evaluation of OCL expressions over UML elements cannot change

anything in the model. This means that when an OCL expression is evaluated, it simply

returns a value. It cannot have any effect on the state of the system even though an OCL

expression can be used to specify a state change (e.g., a post-condition) [129].
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2.4 Executable UML

UML provides software designers with graphical modeling notations to specify, construct,

visualize, and document the artifacts of a software system. However, the standard nota-

tions of UML are not always sufficient to capture the detailed software behavior, such as

variable and attribute assignments, operation calls, transition effects, etc. As a result, the

models specified using UML notations remain abstract and high level. In addition, the

standard UML specification does not offer precise and complete execution semantics for

UML elements. In fact, the semantics is defined informally in English. Consequently, it

is not possible to define fully executable UML models that can be simulated and validated

before development. Furthermore, in the security context, some vulnerabilities, such as

the ones related to data flow, cannot be easily detected on high-level models since these

vulnerabilities involve variables and their data values. Accordingly, it is important to have

detailed and executable specifications to be able to detect and fix such vulnerabilities.

Fortunately, the Object Management Group (OMG) proposed a new standard called

Semantics of a Foundational Subset for Executable UML Models [133]. This standard

defines the precise execution semantics for a selected subset of UML, the so-called foun-

dational UML (fUML) [133]. However, fUML provides only the abstract syntax of ex-

ecutable UML and does not specify how executable models should be formed. Conse-

quently, the creation of executable models remains a difficult task, especially for large-

size executable UML models. For these reasons, OMG defined another standard, called

Action Language for Foundational UML (Alf) [132], to provide a concrete syntax for

fUML. In the following, we present the main elements of fUML. Afterwards, we provide

a brief introduction to Alf language.

2.4.1 Foundational UML

Foundational UML (fUML) [133] is an executable subset of the standard UML that can

be used to specify, in an operational style, the structural and the behavioral semantics of a
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system. The main elements of fUML are activities, actions, structures, and asynchronous

communications [133]. In the following, we present the basic features of activities and

actions as they are used in Chapter 9.

Activities are specifications of control flow and data flow dependencies between

functions or processes in a system. An activity is composed of nodes connected by edges

(control flows and object flows) in the form of a complete flow graph. A control flow

specifies the sequencing of activity nodes. An object flow provides a path for passing

objects or data between activity nodes. There are mainly three kinds of activity nodes:

action nodes, object nodes, and control nodes. Actions are fundamental units of exe-

cutable behaviors that represent single steps within activities. They operate on control

and data they receive through their incoming edges, and provide control and data to other

actions through their outgoing edges. Foundational UML supports various kinds of ac-

tions, which can be classified into four groups:

• Invocations actions: Include invocations of behaviors such as activities, invocations

of operations, and communication actions such as sending of signals and accepting

of events.

• Object actions: Include creating objects and destroying objects.

• Structural feature actions: Include reading structural features, adding, removing,

and clearing structural feature values.

• Link actions: Include reading links, creating new links, destroying existing links,

and clearing associations.

Object nodes are used to hold data temporarily as the data wait to move through the

control flow graph. There are two main kinds of object nodes: activity parameter nodes

and input/output pins. Activity parameter nodes hold inputs and outputs to activities,

while pins hold inputs and outputs to actions. Control nodes are nodes that coordinate

flows in an activity. The main control nodes are initial node, final node, fork node,

17



join node, decision node, and merge node. The initial/final node starts/terminates

the activity execution. The fork and join nodes are used to model concurrency and

synchronization. The decision and merge nodes are used to model branching.

An activity execution can be described in terms of tokens’ flow. A token is a locus

of control or a container for an object/data that may be present at an activity node. For

example, Figure 2.21 illustrates a simple activity, which is invoked with an argument of 1

for its input parameter. Consequently, a data token with a value of 1 is placed on the input

activity parameter node. Then, that data token flows to the input pin of the action A along

the object flow a. Consequently, the action A fires and produces a result as a data token.

Then, this data token flows to the output activity parameter node along the object flow c.

In addition, the action A produces a control token, which flows to the action B along the

control flow b. Finally, the action B accepts the control token and fires, producing a data

token that flows to the output activity parameter node along the object flow d.

�������	�
����������������������

Figure 2.2: Example of an Activity

1http://www.omg.org/news/meetings/tc/agendas/va/xUML_pdf/Seidewitz_Tutorial.pdf
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2.4.2 Action Language for Foundational UML

Action Language for Foundational UML (Alf) [132] is a textual representation for spec-

ifying executable fUML behaviors within a UML model. Such a text may specify only

parts of a UML model, or it may specify an entire UML model, at least within the limits

of the fUML subset [132]. The key components of Alf are: (1) An abstract syntax, which

is a MOF meta-model that defines the concepts of Alf and their relationships, (2) a con-

crete syntax, which is a BNF specification for fUML model elements, (3) a semantics,

which is defined by mapping Alf abstract syntax meta-model to fUML abstract syntax

meta-model, and (4) a standard model library, which consists of primitive types and be-

haviors from fUML model library, collection functions similar to OCL ones, and collec-

tion classes such as Set, List, etc. In addition of being a standard, Alf is highly expressive

and provides a compact representation for specifying precise and detailed behaviors. Alf

is composed of three main constructs:

• Expressions: An expression is a behavioral unit that evaluates to a (possibly empty)

collection of values. Expressions may also have side effects, such as changing the

value of an attribute of an object. Alf expressions may be used any place where a

UML value specification may be defined. For example, they may be used as the

body of a UML opaque expression or may be compiled into an equivalent UML

activity to act as the specification of such an expression.

• Statements: A statement is a behavior that is executed for its effect and does not

have values. Statements are the primary units of sequencing and control in Alf.

Alf statements may be used to define the detailed behavior of a UML action or a

complete UML behavior within a UML model.

• Units: A unit is a namespace defined using Alf notation. Units are lexically inde-

pendent segments of Alf text that provide a level of granularity similar to typical

programming language text files [132]. Alf units may be used to represent a model
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element, e.g., class and activity, within a UML model, or may be used to represent

an entire UML model.

The execution semantics of Alf is given by mapping Alf abstract syntax to fUML.

The result of executing an Alf code is thus given by the semantics of the fUML model to

which it is mapped [132]. Figure 2.32 shows an example of Alf code, which has the same

execution semantics as the fUML model presented in Figure 2.2.
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Figure 2.3: Example of Alf Code

In this thesis, we address the security hardening of UML and xUML models ex-

pressed using Alf language. To perform this task in a systematic way, we resort to aspect-

oriented techniques [30, 97], which will be introduced in the following section.

2.5 Aspect-Oriented Modeling

Aspect-orientation emerged as a paradigm that allows advanced modularization of cross-

cutting concerns. A crosscutting concern is a concern that cannot be easily and efficiently

modularized into a single entity using object-oriented techniques. Thus, such a concern

remains scattered and tangled throughout various places in the application. Scattering

means that one concern is located in different modules whereas tangling means that one

module contains many concerns. These concerns may vary depending on the application

domain; they can be functional or non-functional, high-level or low-level features. Se-

curity, logging, and synchronization are some examples of such concerns. The objective

2http://www.omg.org/news/meetings/tc/agendas/va/xUML_pdf/Seidewitz_Tutorial.pdf
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of aspect-orientation is to encapsulate those concerns that cross-cut an application into

single units of modularization called aspects. Then, define a mechanism to compose the

different aspects into a coherent program.

The aspect-oriented paradigm originally emerged at the programming level. Var-

ious Aspect-Oriented Programming (AOP) [97] models were proposed to achieve the

aforementioned goals. The most important models are: Pointcut-Advice [110], Multi-

Dimensional Separation of Concerns [135], and Adaptive Programming [134]. In addi-

tion, many AOP languages have been developed, such as, AspectJ [96] and HyperJ [136],

built on top of the Java programming language, AspectC [50] and AspectC++ [156], built

on top of the C and C++ programming languages, etc. However, due to the rise of MDE,

aspect-oriented techniques are no longer restricted to the programming stage, but are in-

creasingly adopted at prior stages of the software development life cycle. In this context,

Aspect-Oriented Modeling (AOM) aims at applying AOP mechanisms at the modeling

level, which encompasses requirements engineering, analysis, and design stages [22].

An appropriateness analysis study of the different AOP models from a security

point of view has been conducted in [24]. As a result of this study, the pointcut-advice

model was identified as the most appropriate approach for security hardening. Indeed, the

pointcut-advice model allows capturing subtle points in the control flow of applications

that are important from a security point of view, such as method calls, method executions,

getting and setting of attributes, etc. In addition, security behavior can be automatically

injected at these points. Hence, in the following, we present the main concepts of the

pointcut-advice model, as it is the one adopted in this research.

Aspect: As mentioned previously, an aspect is a unit of modularization that encapsu-

lates a cross-cutting concern of an application. Typically, an aspect contains a set of adap-

tations, specifying in what way a concern’s structure and behavior should be adapted, i.e.,

enhanced, replaced, or deleted [152].
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Advice and Introduction: Advice is a piece of code specifying how the behavior of an

application should be adapted at specific points. Whereas, an introduction specifies how

the structure of an application should be adapted. In AOM, we use the term adaptation to

refer to both structural and behavioral modifications.

Join Point and Pointcut: A join point is an event during the execution of a program

such as a method call or a method execution. At the modeling level, a join point represents

a location in a model where an event happens, such as, a call message in a sequence

diagram or an action in an activity diagram. A pointcut is an expression that designates a

set of join points.

Matching and Weaving: Matching is the process of selecting the join points that sat-

isfy a given pointcut expression. Whereas, weaving is the process of composing aspects

with the base modules. In other words, weaving is the process of applying the aspect

adaptations at the matched join points. Figure 2.4 shows a high-level representation of

an aspect and the result of the weaving process. As mentioned in the introduction of this

thesis, one of our objectives is to elaborate a weaving framework for the automatic in-

tegration of security aspects into design models. To achieve this goal, the technology of

model transformation can be of a great value. Indeed, model weaving can be seen as the

process of transforming a base model into a woven model according to a set of transfor-

mation rules given by the aspect. Thus, in the following section, we present the necessary

background about model transformations and the main transformation languages.

2.6 Model Transformations

Model transformation is the process of converting one model to another model of the same

system [124]. This process takes, as input, one or more models that conform to specific

meta-models, and produces, as output, one or more models that conform to specific meta-

models. The goal underlying the use of a model transformation is to save time and efforts
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Figure 2.4: Example of the Weaving Process

and reduce errors by automating the modification of models as much as possible. Model

transformation is an essential part of Model-Driven Architecture (MDA) [124], an OMG

initiative to MDE. In this context, model transformations are mainly used to convert a

model of a certain layer into another layer, such as transforming a platform-independent

model into a platform-specific model. However, model transformations are also useful for

transforming models within the same layer, such as to perform model weaving as we will

see in Chapter 5. A model transformation is specified as a set of mappings. Each mapping

consists of a set of refinements of model elements, addition of further details to a model,

or conversion between different kinds of models. There are four different transformation

approaches [124]: (1) Manual transformation, (2) transformation using a UML profile,
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(3) transformation using patterns and markings, and (4) automatic transformation using

tools and transformation languages. In this research, we are interested in the automatic

transformation. Thus, we describe in the following the main transformation languages

and tools.

2.6.1 Model Transformation Languages and Tools

There are several languages and frameworks for specifying model transformations, such

as, Query/View/Transformation (QVT) language [126], Atlas Transformation Language

(ATL) [1], IBM-Model Transformation Framework (MTF) [58], open Architecture Ware

(oAW) [6], Kermeta [16], etc. We have studied these transformation languages in order to

select the most appropriate one(s) for our needs. In the following, we provide an overview

of each language together with a comparative study.

Query/View/Transformation Language

Query/View/Transformation (QVT) [126] is an OMG standard language for model trans-

formation. It consists of three components: two declarative (QVT-Relations and QVT-

Core) and one imperative (QVT-Operational):

• QVT-Relations: It implements the transformation by providing links that identify

relations between elements in the source model and elements in the target model.

Traces between elements that are involved in a transformation are created implicitly.

• QVT-Core: It is a small language that only supports pattern matching. Thus, its

semantics can be defined in a simple way. However, QVT-Core does not have a full

implementation and it is not as expressive as QVT-Relations.

• QVT-Operational: It is an imperative language that is designed for writing unidi-

rectional transformations.
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QVT-Relations and QVT-Core languages are good for simple transformations where

the source model and the target model have a similar structure. However, when it comes

to more sophisticated transformations where elements in the target model are built with

no direct correspondence with elements in the source model, declarative languages can

be a limitation. Thus, the need for an imperative language becomes a must. Therefore,

QVT proposed the third language, which is QVT-Operational [91]. QVT integrates also

OCL language that it extends with imperative features. The Eclipse modeling framework

provides an implementation of QVT-Operational through its M2M open source project3.

Unlike other tools and languages that only support some concepts of the QVT standard,

Eclipse QVT-Operational (QVTO) implements the final adopted specification.

Atlas Transformation Language

The Atlas Transformation Language (ATL) [1] is a hybrid language that is a mix of declar-

ative and imperative constructs. It consists of three components: Atlas Model Weaver

(AMW) [66], ATL, and ATL Virtual Machine. AMW creates links between model ele-

ments and saves them in a separate model, commonly referred to as the weaving model.

ATL is the transformation language; it supports unidirectional transformations and it is

used to write ATL programs, which are executed by the ATL virtual machine. ATL is not

compliant with QVT, although, it implements similar concepts and functionalities.

Open Architecture Ware

Open Architecture Ware (oAW) [6] is a framework that supports model transformations

using a language called Xtend4. The latter supports transformation of models by running

a sequence of statements. These statements are called within a workflow and executed by

a workflow engine. Moreover, oAW provides special support for aspect-orientation [97]

through a model weaver called XWeave [82].

3http://www.eclipse.org/m2m/
4http://www.eclipse.org/xtend/
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IBM Model Transformation Framework

IBM Model Transformation Framework (MTF) [58] allows the specification of model

transformations as a set of relations between models. These relations are expressed using

a language called Relation Definition Language (RDL) [58]. For example, a relation can

be established between classes that have a matching attribute. These relations are then

parsed and evaluated by a transformation engine. MTF supports bi-directional transfor-

mations, i.e., transforming the source model to the target model and vice versa.

Kermeta

Kermeta [16] is a modeling and programming language for meta-model engineering. It

is considered the first executable meta-language that can be used for different purposes,

such as model and meta-model prototyping and simulation, verification and validation of

models against meta-models, model transformations, and aspect weaving [16].

2.6.2 Comparative Study of Model Transformation Languages

One of the biggest challenges we faced was to select the appropriate transformation lan-

guage, from the pool of available languages, that best suits our needs. To do so, we iden-

tify some characteristics that are desirable in transformation languages. The following is

a description of these characteristics:

• Transformation Approach: A transformation language is either declarative, imper-

ative, or hybrid. A declarative language is good for simple transformations that

are based on establishing relations between the input and the output models. An

imperative language is more suited for complex transformations as it describes the

different steps of the transformations. A hybrid language combines both declarative

and imperative features. Indeed, the process of weaving aspects into base models is

not always based on establishing direct relations between the models. In fact, it may
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require complex operations that declarative languages fail to achieve. Thus, imper-

ative or hybrid approaches will give us more expressiveness in terms of language

constructs when dealing with aspect weaving.

• Rule Scheduling: It is the order in which transformation rules are applied on the

models while executing the transformations. There are two kinds of rule schedul-

ing [52]: (1) Implicit scheduling, which is based on the implicit relations between

rules, and (2) Explicit scheduling, which is based on explicit specifications of rule

ordering. Additionally, explicit scheduling can be either explicit internal, which

is defined using explicit rule invocations, or explicit external, which defines the

scheduling logic outside the transformation rules by the means of some special lan-

guage. In the context of aspect weaving, it is necessary to have full control over the

order in which the rules are applied. Such control will help us in handling different

issues, such as conflicting advices where the application of one advice depends on

the application of the other.

• Traceability: It maintains links between elements in the source model and elements

in the target model. In the context of model weaving, traceability is important since

it allows to track aspect modifications on the base model. In addition, it is of high

value for documentation purposes.

• Standardization: The OMG defined QVT as a standard language for model transfor-

mations. It is important to choose a transformation language/tool that implements

the QVT standard. This will provide portability for the weaver through UML case

tools, which provide support for OMG standards.

Table 2.2 summarizes the different transformation languages. By comparing the

different languages/tools with regards to the aforementioned characteristics, we conclude

that QVTO is the best language to use as it meets our needs for model weaving.

27



Language/Tool Approach Rule Scheduling Traceability Standardiza-
tion

QVTO Imperative Explicit internal yes yes
ATL Hybrid Explicit internal yes no
oAW Imperative Explicit external no no
MTF Declarative Implicit yes no
Kermeta Imperative Explicit internal no no
Graph-based Declarative Explicit external no no
language
General-purpose Imperative Explicit internal no no
programming language

Table 2.2: Comparison of Model Transformation Languages and Tools

2.7 Conclusion

In this chapter, we have presented an overview of the software modeling topics that are

relevant to our research. We have presented the basic terms and concepts of MDE, a

promising approach that focuses on models for the engineering of software. We have also

provided an overview of UML, the de facto standard language for software specification

and design. In addition, we have introduced executable UML and its related standards

fUML and Alf. Moreover, we have provided the basic concepts of the aspect-oriented

paradigm, with a focus on AOM since it inspires the approach proposed in this thesis. Fi-

nally, we have described model transformations, focusing on the standard QVT language.

In the following chapter, we will address security at the modeling level and present the

current literature on this topic.
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Chapter 3

Model-Based Security

3.1 Introduction

This chapter presents the background related to security at the modeling level. We first re-

call some important concepts about software security and the main security requirements.

Then, we overview the main design mechanisms that are typically adopted to handle

security at the modeling level. These are security design patterns, mechanism-directed

meta-languages, and aspect-oriented modeling. We also highlight the challenges related

to the use of these mechanisms in UML design. Afterwards, we present the research con-

tributions that address security specification and hardening during the design phase of the

software development life cycle. Finally, we conclude this chapter by a discussion on the

relevance of these mechanisms for security hardening.

3.2 Software Security

Software security is the process of designing, building, and testing software, such that it

becomes resilient against attacks and threats. It gets to the heart of computer security by

identifying and expunging problems in the software itself [112]. Secure software should

be as vulnerability and defect free as possible. In addition, it should limit the damage
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resulting from any failure and recover as quickly as possible from this failure. Moreover,

it should continue functioning correctly under malicious attacks [28]. In the following,

we briefly recall some important concepts and security requirements, which will be con-

sidered in the course of this thesis.

• Security Policy: A security policy is a set of rules and guidelines that specify how to

achieve the needed security requirements for a system or an organization. It might

include rules for virus detection and prevention, granting and revoking access to

system resources, protecting critical information from unauthorized users, etc.

• Security Flaw: A security flaw is a defect in a program that can cause a system

to violate its security requirements. A software defect is the result of encoding of

human errors into the software.

• Security Vulnerability: A security vulnerability is a weakness in a system that could

be exploited to violate the system’s security policy. It is the result of exploiting a

security flaw by an attacker. Examples of flaws that usually lead to vulnerabilities

include: memory management errors (e.g., buffer overflow [73]) and input valida-

tion errors (e.g., format string, SQL injection, and cross-site scripting [72]).

• Attack: An attack or exploit is a technique that takes advantage of a security vul-

nerability to violate a security policy.

• Security Hardening: Security hardening can be defined as any process, methodol-

ogy, product, or combination that is used to add security functionalities, remove

vulnerabilities, and/or prevent their exploitation in a software [118].

• Security Mechanism: A security mechanism is a software/hardware solution target-

ing the enforcement of security policies. Examples of such mechanisms include

access control mechanisms such as Role-Based Access Control [69].

Security requirements can be classified into high-level and low-level requirements.

High-level security covers requirements such as, confidentiality, integrity, authentication,
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authorization, availability, etc. Low-level security deals with safety vulnerabilities that

can be introduced in the software source code during the implementation phase. Those

vulnerabilities depend on the platform and the programming language used for the de-

velopment of a software system. The most common low-level security vulnerabilities

include: buffer and integer overflows, format string errors, memory and file management

errors, SQL and command injection, cross-site scripting, directory traversal, clear and set

interrupts, TOCTTOU (Time-of-Check-To-Time-Of-Use) errors [35, 173], etc. Since we

are dealing with security hardening at design level, we are more interested in high-level

security than low-level security. In the following, we provide an overview of the main

high-level security requirements that are usually specified and verified on software.

• Confidentiality: The International Organization for Standardization (ISO) defines

confidentiality as “ensuring that information is accessible only to those authorized

to have access” [88]. Enforcing confidentiality is one of the main security services

provided by many cryptographic protocols. When properly enforced, it ensures that

the data that is sent between participants in a communication session reaches only

the intended receivers but unintended parties cannot determine what was sent.

• Integrity: It requires that data should not be accidentally or maliciously altered

or destroyed. In other words, the data received by the receiver should be exactly

the same as the data sent by the sender. The objective of integrity is to ensure

the correctness and the accuracy of data. Integrity can be compromised through

malicious altering, such as an attacker modifying a message in a communication

network, or accidental altering, such as a transmission error or a system crash.

• Authentication: The objective of an authentication requirement is to ensure that

users are who they claim to be. In other words, authentication provides assurance

that an entity is not pretending to have the identity of another entity without being

detected. To ensure the authentication property, a system must provide a mechanism

to verify the identity of its users before interacting with them.
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• Authorization: It stipulates which user is allowed to access one or more resources

in a system. After a user is authenticated, the authorization process determines

whether that user has access to a specified resource. Legal users are granted au-

thorization to the required resources while illegal ones are denied access to the

resources. The authorization requirement prevents unauthorized users from obtain-

ing access to inappropriate or confidential data. Authorization and authentication

are closely related because any meaningful authorization policy requires authenti-

cated users. Authorization requires that accessing critical information should be

controlled. Accordingly, different models of access control have been proposed.

The most known models are Role-Based Access Control (RBAC) [69], Mandatory

Access Control (MAC) [34], and Discretionary Access Control (DAC) [122]:

– In the RBAC model, access decisions are based on the roles and the respon-

sibilities of users within an organization. Users and permissions to perform

operations on objects are assigned to roles.

– In the MAC model, security levels (e.g., unclassified, confidential, secret and

top secret) are assigned to each object (classification) and each subject (clear-

ance). The permission for a subject to access an object depends on the relation

between the object’s classification and the subject’s clearance.

– In the DAC model, access restriction to objects is based on the identity of

subjects and/or groups to which they belong. In this model, every object has

an owner that controls the permissions to access the object. The owner of an

object can make decisions of who else in the system can access that object. In

addition, the owner is able to delegate his/her permissions to other users.

There are many mechanisms that are used in the literature to enforce security re-

quirements. In the next section, we introduce the main mechanisms that are followed for

security specification and hardening at the UML design level. Afterwards, in Section 3.4,

we present the existing contributions that have adopted these mechanisms.
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3.3 Model-Based Security Specification and Hardening

Mechanisms

Three main approaches are usually followed for the specification of security requirements

and hardening mechanisms at the UML design level. These approaches are design pat-

terns, mechanism-directed meta-languages, and aspect-oriented modeling. In the follow-

ing, we introduce these approaches and then highlight the challenges related to their use

in UML design.

3.3.1 Security Design Patterns

Design patterns are defined as generic reusable solutions to solve recurring problems in

software design. The idea of a pattern was first introduced as an architectural concept

by Christopher Alexander et al. [21] and was later adopted in the software engineering

community. One of the main goals of design patterns is to help designers in applying

good practices in software development. Indeed, design patterns capture the knowledge

of experts in a well-structured form that facilitates its reuse by designers. In recent years,

the application of the pattern concept in the field of information security has been widely

investigated. In this context, a security design pattern describes a particular recurring

security problem that arises in a specific context. In addition, it presents a well-proven

generic scheme for a security solution [154]. Like design patterns, security patterns en-

capsulate the knowledge of security experts in the form of proven solutions to common

problems. Thus, developers can benefit from the skills and the experience of security

experts.
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3.3.2 Mechanism-Directed Meta-Languages

Following the same intuition of design patterns, many contributions have proposed exten-

sions of the UML meta-model, each of which is dedicated to the design of a specific se-

curity hardening solution. UML extension mechanisms that are adopted are mainly UML

profiles (stereotypes and tagged values). The adoption of these extension mechanisms is

motivated by their expressiveness to specify a wide range of security requirements. In ad-

dition, UML standard extension mechanisms benefit from a good tool support since any

UML modeling framework supports the standard profile specification. Accordingly, many

UML extensions have been proposed in the literature for specifying security requirements.

The majority of these languages target RBAC security policies [18,23,60,107,145]. Other

security requirements, such as authentication, have been also addressed [115].

3.3.3 Aspect-Oriented Modeling

The applicability of aspect-oriented techniques to specify security requirements and hard-

ening mechanisms has been heavily studied in the literature both at the implementation

and design levels [26, 38, 45, 78, 94, 119, 139, 143, 144, 165, 170, 174]. Indeed, aspect-

oriented techniques support the idea of separating crosscutting concerns from the appli-

cation core functionality. Since security is a crosscutting concern that pervades the entire

software, it is natural to consider AOM as a mechanism for security hardening at the

modeling level. In fact, a security hardening solution consists of specifying the needed

security functionalities and the locations where these functionalities should be applied.

In addition, these security functionalities should be systematically injected into the base

models at specified locations, which could be achieved using AOM.

3.3.4 Challenges

The designer of security hardening mechanisms, using UML, has to deal with the follow-

ing challenges:
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• Non-Standardization: There is a lack of standardization efforts regarding the design

of security hardening mechanisms. Consequently, for the same security policy,

different security experts can adopt different designs (e.g., pattern, aspect). As

a result, this will limit the adoption of these solutions and may confuse the end-

designer when having to choose between different solutions.

• Adaptability to Users’ Design: The security mechanism design provided by the se-

curity expert is sometimes application-independent. This way, it will be generic

enough to be adapted to the design of the end-user. However, since this adapta-

tion/specialization will be performed by a non-security expert designer, it should

be as systematic and as easy as possible. It may be required that a well-detailed

procedure should accompany the security solution.

• Maintainability of Design and Security Mechanisms: During the development pro-

cess, the design models as well as the security solution may be in continuous mod-

ification. Consequently, the security hardening solution should take into consider-

ation the appearance of new elements and the disappearance of others. Indeed, the

appearance of some elements necessitates applying the security solution to these

elements without reapplying it to the existing elements that are already covered by

the solution. If some elements will be dropped from the design while they have

been covered by the solution, then the corresponding security elements should be,

in turn, dropped from the design. Similar maintenance modifications should be

applied when the security solution itself is updated.

• Validation: Security mechanisms are supposed to enforce the security policies they

are designed for. However, validating this claim is far from being a straightforward

task. Thus, rigorous verification and validation techniques should be applied on the

proposed security mechanism design.
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3.4 Related Work on Model-Based Security

In this section, we present the state-of-the-art initiatives on security specification and

hardening at the design level. We classify the related work according to the adopted

mechanisms into three main categories: (1) Security design patterns, (2) mechanism-

directed meta-languages, and (3) aspect-oriented modeling.

3.4.1 Security Design Patterns

Several security design patterns have been proposed in order to guide software engineers

in designing security models at different levels of the software development life cycle. A

detailed study of different security patterns can be found in [31, 98, 103, 155, 172]. We

present in the following an overview of the existing patterns. Kienzle et al. [98] present

29 security patterns for web applications. The patterns are classified into two categories:

structural and procedural patterns. The structural patterns include diagrams that describe

both the structure and the interaction of the design pattern. On the other hand, the proce-

dural patterns are used to improve the development process of security-critical software.

Romanosky [149] presents eight security design patterns that represent a collection of

security practices. The proposed patterns address high-level security concerns, such as,

how to provide secure communication in the presence of untrusted third-party, how to

make a system fails securely, etc. The discussion however has focused on architectural

and procedural guidelines more than on security patterns. Brown et al. [92] introduce the

authenticator pattern, which describes a general mechanism to provide identification and

authentication from a client to a server. This pattern has been later extended by Fernandez

and Warrier [68] for authentication and authorization.

The Open Group [37] presents a catalog of thirteen architectural-level and design-

level security patterns that are based on architectural framework standards. It also presents

a systematic methodology for using those security patterns to design a system, which

has good availability and protection properties. Fernandez [67] provides a methodology
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to build secure systems using patterns. The main idea of this approach is that security

principles should be applied through the use of security patterns at every stage of the

software development process, i.e., requirements, analysis, design, and implementation.

At the end of each stage, audits are performed to verify that the security policies are being

followed. Chan and Kwok [43] propose an object-oriented design pattern that models the

main entities of security design, such as, vulnerabilities, threats, risks, impact of loss and

countermeasures for different parts of an e-commerce system.

Schumacher et al. [154] present a list of forty-six patterns for integrating security

in systems engineering. The proposed patterns are at different levels of abstraction. They

range from high-level patterns targeting the development of secure applications, to low-

level patterns addressing the security of operating systems. An IP telephony case study is

provided to illustrate the application of the patterns. Dougherty et al. [42] propose security

patterns that are categorized according to their level of abstraction into: architectural-

level, design-level, and implementation-level patterns. The security design patterns are

proposed as extensions to the existing design patterns (e.g., factory and strategy design

patterns) by adding security-specific functionalities.

Yoshioka et al. [172] provide a survey of security patterns according to the different

phases of the software development life cycle. During the requirement phase, the different

assets of the system are identified as well as the purpose of protecting them. Additionally,

the security requirements are specified alongside the system requirements. During the de-

sign phase, various security functions are designed as patterns to protect the assets that are

identified in the requirement phase. For instance, such patterns may cover functions such

as authentication, authorization, and access control. Finally, implementation-level secu-

rity patterns are needed to guide programmers while writing programs with guidelines

illustrating the required techniques to write secure programs.
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3.4.2 Mechanism-Directed Meta-Languages

Considerable work has been done in the literature to provide UML meta-model extensions

for the integration of security into various stages of the software development life cycle. In

the following, we present a brief summary of those contributions. The UMLSec approach

[93] is among the first efforts in extending UML for the development of security-critical

systems. It provides a UML profile where general security requirements, e.g., secrecy,

integrity, fair exchange, are encapsulated using UML stereotypes and tagged values. It

also defines a formal semantics to evaluate UML diagrams against weaknesses. In order

to analyze security specifications, the behavior of a potential adversary, that can attack

various parts of a system, is formally modeled.

Basin et al. [107] propose an approach to model RBAC policies for model-driven

systems. This approach proposes a general schema, in which systems modeling languages

are combined with security modeling languages by defining dialects. These dialects iden-

tify the protected resources from elements of the system modeling language. This ap-

proach defines a general meta-model for generating security modeling languages. Se-

cureUML [106] is one instance of these languages defined for modeling RBAC policies.

It has an abstract syntax that is independent of any modeling language and a concrete

syntax that is defined as a UML extension using stereotypes and tagged values. From

models in the combined languages, access control infrastructures are automatically gen-

erated using MDA-based transformation mechanisms [124]. However, SecureUML only

focuses on specifying the RBAC model.

The approach of Doan et al. [60] incorporates RBAC, MAC, and lifetimes into

UML for time-sensitive application design. The main focus of this approach is that the

process of designing and integrating security in a software application captures not only

the current design state, but allows tracking the entire design evolution process via the

creation and the maintenance of a set of design instances over time. The design tracking

allows a software/security engineer to recover to an earlier design version that satisfies

specific security constraints.
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Zisman [177] proposes a framework to support the design and the verification of

secure peer-to-peer applications. Design models and security requirements are specified

using the UMLSec approach [93]. The modeling of abuse cases to represent possible

attack scenarios and potential threats helps designers to identify the security properties to

be verified in the system. In addition, this approach facilitates expressing the properties

to be verified by defining a graphical template language. It also allows the verification of

the models against the specified properties and visualization of the verification results.

Montangero et al. (For-LySa, DEGAS project) [115] present two UML profiles to

model authentication protocols: (1) the Static For-LySa profile, which describes how the

authentication protocol concepts (e.g., principals, keys, messages) can be modeled using

UML class diagrams, and (2) the For-LySa profile, which models the dynamic aspects of

the protocol in sequence diagrams, as well as the information needed to analyze the pro-

tocol. In order to validate a protocol, For-LySa defines a specification language together

with its semantics to write pre/post conditions and invariant constraints.

Ray et al. [145] address the issue of integrating different access control policies,

such as RBAC and MAC, into a single hybrid model. This approach uses parameterized

UML diagrams to model RBAC and MAC frameworks and then compose them manually

to produce a hybrid access control policy. It is the first approach that attempts to combine

different access control policies. However, it focuses only on how to model these policies

in UML without considering how they can be used to design a secure software system.

Painchaud et al. (SOCLe project) [137] provide a framework that integrates security

into the design of software applications. It also includes the verification of UML specifi-

cations and a graphical user interface that allows the designer to visualize the verification

results. In this approach, security policies are specified using the OCL language.

Alghathbar and Wijesekera [23] propose a framework, called AuthUML, to incor-

porate access control policies into use case diagrams. The aim of AuthUML is analyzing

access control policies during the early stages of the development life cycle before pro-

ceeding to the design to ensure consistent, conflict-free, and complete requirements.
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Popp et al. [140] propose an extension to the conventional process of developing

use case oriented processes. In addition to modeling security properties with UML, this

approach provides a method to incorporate these security aspects into a use case oriented

development process.

Ledru et al. (EDEMOI project) [104] aim at modeling and analyzing airport se-

curity. Security properties are first extracted from natural language standards and docu-

ments, then integrated into UML diagrams as stereotypes in a UML profile. The UML

specifications are then translated into formal models for verification purposes. This ap-

proach is not general enough to be used for software development.

Ahn and Shin [18] propose a technique to describe the RBAC model with three

views using UML diagrams: static view, functional view, and dynamic view. This ap-

proach focuses only on the way that UML elements can be used to model RBAC policies

rather than taking a larger view of examining secure software design. It does not provide a

systematic modeling approach that can be used by developers to create applications with

RBAC models.

Epstein and Sandhu’s work [64] is one of the first approaches that investigate the

possibility of using UML to model RBAC policies. However, it is limited to only one spe-

cific RBAC model, which is the RBAC Framework for Network Enterprises (FNE) [162].

The FNE model contains seven abstract layers that are divided in two different groups.

This approach allows to present each of the FNE model’s layers using UML notation by

defining new stereotypes. This approach can assist the role engineering process, however,

it does not include subtle properties of RBAC, such as separation of duty constraints, and

it does not provide a method for deriving roles.

Brose et al. [40] extend UML models to support the automatic generation of access

control policies for CORBA-based systems. They specify both permissions and prohibi-

tions on accessing system’s objects since the analysis phase in use case diagrams. The

UML design models are used to generate the specification of access control policies in

VPL (View Policy Language) that is deployed together with the CORBA application.
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Vivas et al. [166] propose a UML-based approach for the development of busi-

ness process-driven systems where security requirements are integrated into the business

model. Security requirements are first stated at a high level of abstraction within a func-

tional representation of the system using tagged values. Next, the UML specification is

translated into XMI representation. Finally, the resulting specification is translated into a

formal notation for consistency checking, verification, validation, and simulation.

3.4.3 Aspect-Oriented Modeling

The application of AOM to security has generated a lot of research interest in the last

few years. Various contributions that aim at modeling security concerns as aspects have

been published recently. In the following, we present a brief overview of these contri-

butions. Pavlich-Mariscal et al. [138] propose a new UML artifact called Role Slice to

capture RBAC [69] policies within UML class models. A role slice diagram contains

information on a role’s permissions that cut across all classes in an application. RBAC

constraints are represented within a role slice diagram using UML stereotypes. More-

over, this approach proposes algorithms that map access control policies, provided in role

slice diagrams, to AOP security enforcement code implemented in AspectJ. In another

effort [139], Pavlich-Mariscal et al. propose an aspect-oriented approach to model access

control policies. They augment the UML meta-model with new diagrams that are sepa-

rated from the main UML design to represent Role-Based Access Control (RBAC) [69],

Mandatory Access Control (MAC) [34] and Discretionary Access Control (DAC) [122]

models. The separated security diagrams are then composed with the main design us-

ing UML composition techniques. However, this approach is limited to access control

and specifies only the structural part of the access control policy without considering its

behavior.

Ray et al. [144] propose an AOM approach for enforcing access control policies.

An access control aspect is represented as a pattern using UML diagram templates. Other

functional design concerns are specified in a separate model referred to as a primary
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model. A composition mechanism is used to integrate access control features within the

primary model. The composition mechanism involves the instantiation of the aspect to

obtain a context-specific aspect, then composing context-specific aspects with the primary

model. This approach also is limited to access control and specifies only the structural part

of the access control policy. In another work [75], the authors propose Aspect-oriented

Architecture Models (AAMs) that show how different concerns can be described indepen-

dently of any underlying technology. AAM models consist of: (1) A set of aspect models,

(2) a primary architecture model, and (3) composition directives that define how aspect

models are composed with the primary model. Aspect models are defined as general

patterns represented using UML diagram templates. These patterns are instantiated by

binding the template parameters to actual application values to produce context-specific

aspects before composing them with the primary model.

Zhang et al. [174] propose an aspect-oriented modeling of access control in Web

applications. The approach extends the UML-based Web Engineering (UWE) method by

specifying the detailed behavior of each navigation node using a state machine. Access

control to navigation nodes is specified by refining the default state machines by a state

machine modeling the access control rules. This approach extends the UWE meta-model

to support aspects. In their AOM approach, an aspect contains navigation nodes that are

associated with the same access control rules. Access control rules are defined in the

aspect containing those navigation nodes.

Gao et al. [78] propose an aspect-oriented design approach for CORBA AC, a ref-

erence model for enforcing access control in middleware applications. The RBAC model

is used to implement a functional CORBA AC mechanism. In this approach, the RBAC

core model is specified as the base model and each RBAC concern is specified as an as-

pect. Thus, the approach presents four aspects: role hierarchy aspect, static constraints

aspect, temporal constraints aspect, and spatial constraints aspect. This approach uses

AspectJ [96] and its weaving rules for the implementation of the CORBA AC model.

Georg et al. [79] propose an aspect-oriented approach for modeling access control.

42



In this approach, aspects are patterns specifying structures and behaviors. An aspect

is defined in terms of structures of meta-roles called (meta-) Role Models [79]. Two

views are supported by an aspect: static and interaction views. These views are described

using two types of role models: Static Role Models (SRMs) and Interaction Role Models

(IRMs). Weaving is considered as a special case of UML model transformation using

design patterns. In another contribution, Georg et al. [80] propose an aspect-oriented

risk-driven methodology for designing secure applications. The proposed methodology

starts by identifying the assets of the application that need to be protected. Then, typical

attack scenarios are defined and modeled as aspects. The attack model is composed with

the application base model to produce the misuse model. After evaluating the application

against the defined attacks, and if the application presents a security risk, then a security

mechanism, specified also as an aspect, is incorporated into the application. Finally, the

resulting system is analyzed to give assurance that it is indeed resilient to the attack.

Jürjens and Houmb [94] present an AOM approach for developing and analyzing

security-critical systems at both modeling and implementation levels. In this approach,

security aspects are specified as UMLSec [93] stereotypes that are woven into base mod-

els. The resulting UML models and the generated code are verified against the specified

security requirements using automated theorem provers [86].

Dai et al. [53] propose an aspect-oriented framework called the Formal Design

Analysis Framework (FDAF). The latter supports the design and the analysis of non-

functional requirements defined as reusable aspects for distributed real-time systems using

UML and formal methods. The FDAF approach presents a UML extension to capture

performance aspect information in UML models as stereotypes. Then, it automatically

transforms the UML design into formal models to be able to analyze the response time.

3.4.4 Comparative Study

We have conducted a comparative study (Table 3.1) of the aforementioned approaches

according to a set of defined criteria, such as, the supported security requirements, the
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mechanisms used for the specification of those requirements, formalization of the ap-

proach, existence of a tool support, etc. From this study, we have observed the following:

Table 3.1: Comparative Study of Existing Approaches
Appro-
aches

Security
policies

Security
policy
specifica-
tion

Constraint
specifi-
cation

Formal
seman-
tics

Code
gene-
ration

V&V Appli-
cabi-
lity

Expre-
ssive-
ness

Lear-
ning
curve

Usage
in
indus-
try

[93] General
Security
require-
ments

Stereotypes � � � � �

[139] RBAC/
MAC/
DAC

New
diagrams,
stereotypes

� �

[177] Based on
UMLSec

� �

[106] RBAC Stereotypes OCL � �

[60] RBAC/
MAC

Tagged
values

� � �

[115] Authenti-
cation

Stereotypes Simple
language

�

[144] RBAC/
MAC

Parameteriz-
ed UML
diagrams

OCL,
diagram
templates

[23] Access
control,
Flow
control

Predicates OCL

[140] Access
rights

Based on
UMLSec

OCL

[137] OCL � �

[104] Stereotypes � �

[64] Subset of
RBAC

Stereotypes Natural
language

[18] RBAC OCL

[40] Access
control

Stereotypes Natural
language

�

[166] Tagged
values

� �
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• The focus of many surveyed projects is on the specification of security policies, and

sometimes analyzing UML models against the specified policies. There is a lack of

approaches for the enforcement of such policies in software systems.

• Most of the approaches adopt Role Based Access Control (RBAC), with an addition

of different flavors of access control based on labels, that is, Mandatory Access

Control (MAC). However, with the growing complexity of software, UML models

must embed more complex security policies.

• The OCL language is employed in many of the surveyed projects for expressing

formal constraints in the specification of security policies. Tagged values are also

used for expressing access control properties.

• We have noticed the absence of expressiveness, applicability, and learning curve

in the majority of approaches. These criteria are important and must be taken into

account in future methodologies. As the final users of these methods will be human

developers, these criteria can decide whether this approach is realistic or not.

• The approach [139] uses UML stereotypes to represent security policies and then

uses AOP to enforce those policies at execution time. The approach transparently

enforces access control in software components by implementing/weaving the ac-

cess control aspect based on roles defined at the UML design step. In our opinion,

this approach provides the right trade-off between security needs and ease of use

through demanding relatively smaller effort from the developers and providing high

level of abstraction of the security policies. However, further extension of this work

is still necessary for better expressing more security policies.

• In regards to secure code generation, further efforts are needed for reducing the

performance overhead of deploying these mechanisms in code. To the best of our

knowledge, the generation of efficient code has not been addressed in any of the

surveyed approaches.
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3.5 Conclusion

We have presented in this chapter existing approaches for specifying and enforcing secu-

rity mechanisms at the design level. These approaches have adopted one of these three

mechanisms: security design patterns, mechanism-directed meta-languages, and aspect-

oriented modeling. We have seen that security design patterns mainly provide textual de-

scriptions for solving a given security problem. Although this approach provides reusable

solutions to integrate security best practices early during the software development pro-

cess, it has some shortcomings. In fact, security design patterns are provided as high-level

and abstract solutions; information about the behavior of security solutions is generally

missing in these patterns. In addition, they generally lack the structure and the method-

ologies needed for their application. Moreover, although they are meant to be applied at

the design stage, some of the patterns are provided as directions written in English, which

makes them hard to implement by designers and limits their adoption by industry.

Furthermore, we observed that existing contributions that adopt the use of dedicated

meta-models mainly focus on specifying security requirements and sometimes analyzing

UML models against the specified requirements. How to systematically enforce the spec-

ified requirements is not their main concern. In addition, the majority of these approaches

target mainly RBAC model. However, with the growing complexity of software, UML

models must embed more complex security policies as well. Furthermore, this approach

seems to be ineffective for non-security experts as it requires continuous interaction with

security experts during software design in order to ensure the appropriate enforcement of

security requirements.

The adoption of AOM for security specification and enforcement overcomes the

limitations observed in the previous approaches. Indeed, using AOM, security experts

independently specify security enforcement mechanisms as aspects. Moreover, this ap-

proach provides a way to automate the process of integrating those security mechanisms

within the application base models. However, this approach suffers from the lack of stan-

dardization for aspects specification and weaving. In addition, the adoption of AOM for
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security hardening requires a well-defined procedure for the specialization of the generic

aspects designed by security experts. Moreover, from the state-of-the-art related to AOM

and security, we noticed that the majority of existing approaches are limited to mainly

specifying access control policies. Additionally, they are limited in the supported UML

diagrams; sometimes, only the structural part of a security solution is specified without

considering its behavior. In the following chapters, we will address these issues by pro-

viding a more expressive and generic AOM approach for specifying and systematically

integrating security aspects into both structural and behavioral UML diagrams.
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Chapter 4

Security Aspect Specification

4.1 Introduction

As mentioned in the introduction of this thesis, security should be addressed during the

early phases of the software development life cycle. From the state-of-the-art survey pre-

sented in Chapter 3, we have concluded that AOM is the most appropriate approach to

achieve this objective. In this context, we propose, in this chapter, an AOM approach

for specifying and systematically integrating security solutions into UML design mod-

els, and therefore enabling secure code generation. The targeted security concerns are

those high-level requirements that are usually specified and verified on software, and

for which a security solution can be provided as an aspect. Examples of such require-

ments are: confidentiality, integrity, authentication, authorization, access control, etc.

In the proposed approach, the security expert specifies the needed security solutions as

application-independent aspects. In addition, he/she specifies how these aspects should

be integrated into the design models. The developer then specializes the application-

independent aspects to his/her design. Finally, our framework automatically injects the

application-dependent aspects at the appropriate locations in the design models.

In this chapter, we focus on the specification of security aspects. To this end, we de-

vise a UML profile that assists security experts in specifying security solutions as aspects.
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The proposed profile covers the main UML diagrams that are used in software design,

i.e., class diagrams, state machine diagrams, sequence diagrams, and activity diagrams.

In addition, it covers most common AOP adaptations, i.e., adding new elements before,

after, or around specific points, and removing existing elements. Moreover, we define

a high-level and user-friendly pointcut language to designate the locations where aspect

adaptations should be injected into base models.

The remainder of this chapter is organized as follows. Section 4.2 summarizes our

approach for specifying and weaving aspects into UML design models. Before presenting

the profile specification, we provide, in Section 4.3, an overview of the main approaches

that are adopted in the literature for UML security specification. Afterwards, we present

our AOM profile in Section 4.4. Finally, the related work on AOM is given in Section 4.5.

4.2 Proposed AOM Approach for Security Hardening

In this section, we present an overview of our proposed AOM approach for security hard-

ening of software. The proposed approach assists security experts in designing security

solutions in a precise way without altering the software functionalities. In addition, the

proposed approach allows developers with limited security knowledge to reuse those so-

lutions with minimal intervention. The approach architecture is depicted in Figure 4.1.

The main steps of the proposed approach are the following:

• Security Aspect Specification: A security expert designs security solutions as applica-

tion-independent aspects. By analogy, these aspects are generic templates repre-

senting the security features independently of the application specificities and pre-

sented in a security aspects library. This design decision is useful in order to support

reusability of aspects in different application domains. Since there is no standard

language to specify aspects in UML, a UML profile is developed as part of our

framework in order to assist security experts in designing security aspects. This

profile is designed to allow as many modification capabilities as possible. These
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Figure 4.1: Specification and Weaving of UML Security Aspects

capabilities include the common modification capabilities characterizing the most

prominent AOP languages (AspectJ [96] and AspectC++ [156]). As part of this

UML profile, we have developed a high-level language to specify the pointcuts that

designate the locations in the base model where the aspect adaptations should be

performed. The details about the design of this profile are provided in Section 4.4.

• Security Aspect Specialization: The developer has the possibility to specialize the

application-independent aspects provided by the security expert according to the

application-dependent security requirements and needs. To specialize the aspects,

we provide a weaving interface, in which only the generic pointcuts are exposed

to the developers. By doing so, the complexity of the security solutions is kept

hidden from the developers. More details about security aspects specialization are

presented in Section 5.3.

• Join Point Matching: A security aspect mainly consists of a set of adaptations that

should be performed at some specific points (called join points in AOP) of UML
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design. Based on the pointcuts specified in the aspect by the security expert and

specialized by the developer, our framework identifies, without any developer in-

teraction, the join points from the base model where the aspect adaptations should

be performed. More details about join point matching are presented in Section 5.4.

• Security Aspect Weaving: This represents the automatic injection of the security

solutions into the design models at the identified join points. To provide a portable

solution, we adopt a model-to-model transformation language; the QVT language

[126]. QVT is an OMG standard compatible with UML and supports a large set of

modifications on UML models. For each aspect adaptation and the corresponding

base model elements, a set of QVT transformation rules are generated. The details

about the aspect weaving step are provided in Section 5.5.

This chapter focuses on describing the security aspect specification step. The re-

maining steps of our security hardening approach, i.e., security aspect specialization, join

point matching, and security aspect weaving are detailed in Chapter 5. Before presenting

our contribution on security aspects specification, we summarize, in the next section, the

main approaches that are adopted in the literature for security specification at the UML

design level.

4.3 Security Specification Approaches for UML Design

This section presents the main approaches that can be adopted for UML security specifica-

tion. From our study of the state-of-the-art, we have identified three main approaches that

have been followed for UML security specification. The first approach is based on using

the standard UML extension mechanisms, i.e., UML profiles. In the second approach, the

UML meta-model is augmented by new meta-model constructs for the specification of se-

curity requirements. The third approach consists in defining a new meta-model to specify

security on UML diagrams. In the following, we present each of these approaches:
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• UML Profile: A profile represents a standard and light-weight extension of UML.

It allows extending UML meta-model elements, by means of user-defined meta-

elements called stereotypes, without changing UML meta-model. Security aspects

can be specified by attaching stereotypes, along with their associated tagged values,

to selected elements of the design. Thus, a profile for security aspects specification

should be created by some expert for the specification of these stereotypes.

• Extending UML Meta-Model: In this approach, UML meta-model is directly ex-

tended, through inheritance and redefinition of meta-model elements, by a meta-

model specification language such as Meta-Object Facility (MOF) [127]. The latter

defines a simple meta-meta-model, and the associated semantics, allowing the de-

scription of meta-models in various domains. Extending UML meta-model is usu-

ally needed when the extension mechanisms provided by UML are not appropriate

for the target extension or when the resulting complexity is not tolerated.

• Creating New Meta-Models: In this approach, a new meta-model is defined using a

meta-model specification language such as MOF. The motivations of creating new

meta-models for security specification are the same as those of extending UML

meta-model for security specification. Indeed, this approach is used for the same

objectives and allows the specification of almost the same security requirements.

However, the vocabulary used by the meta-elements of the new meta-model is

domain-specific and much more precise than the one used for UML meta-elements.

We have studied the usability of the aforementioned approaches for security speci-

fication in the light of our survey of the state-of-the-art [161]. Each approach is evaluated

in terms of a set of defined criteria, namely, expressiveness, tool support, verifiability, and

complexity. In the following, we present a summary of this evaluation:

• Expressiveness: UML profiles are the most used for security specification by the

majority of the contributions. Among these contributions, we can cite [78,138,144,
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174], which provide UML stereotypes for the specification of aspects that enforce

access control policies within UML models. Jürjens and Houmb [94] have proposed

an AOM approach where security aspects are specified as UMLSec [93] stereo-

types, which are used to specify various security requirements, such as, secrecy,

integrity, authentication, fair exchange, role-based access control, secure communi-

cation links, and secure information flow. Stereotypes are also used by Montangero

et al. [115] for modeling authentication protocols. These contributions show that

various security requirements have been specified using stereotypes and tagged val-

ues. Regarding the extension of UML meta-model, only few contributions [139]

have investigated this approach for security specification. This is due to the fact

that this kind of modification requires a high expertise and knowledge of UML

meta-model and its objectives. Indeed, the extension may require the modification

of the whole meta-model, which is too complex. As for creating a new meta-model,

only [107] has investigated this approach to model access control policies. This is

due to the same reasons as extending UML meta-model.

• Tool support: UML profiles benefit from an excellent tool support since any UML

modeling framework supports profile specification. Extending UML meta-model is

a heavyweight extension as it “may require one to extend the CASE tool itself, in

particular the storage components, i.e., the repository, and the visualization com-

ponents” [106]. This negatively impacts the portability of any extension since any

UML modeling framework is heavily modified to allow the use of the new meta-

elements and their interpretation. Creating a new meta-model is better than extend-

ing UML meta-model in terms of tool support. In addition, the compiler needed to

parse the specification can be easily plugged into a UML modeling framework.

• Verifiability: Regarding UML profiles and UML meta-model extension, a lot of

work should be done to generate a formal semantics for the UML design, formally

specify the security property, verify the design against the property, and show the

53



verification result. The latter usually consists in displaying counter examples and

providing advice to fix the vulnerabilities. As for creating new meta-models, the

verifiability is better than the other approaches since security specification is exclu-

sively based on the new meta-elements and thus is easier to parse and translate.

• Complexity: The complexity of the information related to stereotypes and tagged

values added for security specification depends on the number of stereotypes and

tagged values used in each UML element. Thus, the designer of the profile has the

responsibility of compacting as possible the architecture of the profile. The com-

plexity of extending UML meta-model and creating new meta-models is relatively

acceptable since the new meta-elements specifying security aspects are separated

from those specifying the system behavior and are easily distinguishable from them.

In summary, profiles are the most usable technique for security specification since

they are the extension mechanism provided by UML. They allow the specification of

almost all security requirements that are usually specified and enforced on software. In

addition, they are easy to learn and use and benefit from high portability and excellent

tool support. Extending UML meta-model is a too constraining approach, though it has

its motivation. Creating a new meta-model should be then an appropriate alternative. For

these reasons, we have chosen to provide a UML profile for security aspects specification.

In the next section, we present the details of this profile.

4.4 A UML Profile for Aspect-Oriented Modeling

This section presents our AOM profile that extends UML for security aspects specifica-

tion. An aspect represents a non-functional requirement. It contains a set of adaptations

and pointcuts. An adaptation specifies the modification that an aspect performs on the

base model. A pointcut specifies the locations in the base model where an adaptation

should be performed. The elements of this profile will be used by security experts to spec-

ify security solutions for well-known security problems. However, the profile is generic
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enough to be used for specifying non-security aspects. In our AOM profile, an aspect

is represented as a stereotyped package (Figure 4.2). For example, Figure 4.3 shows a

partial specification of an aspect designed to enforce RBAC mechanisms1. The RBAC

aspect is modeled as a package stereotyped �aspect�. In the following subsections, we

show how adaptations and pointcuts can be specified using our AOM profile.
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Figure 4.3: Partial View of the RBAC Aspect

1The full specification of the RBAC aspect is presented in Chapter 6 (Section 6.4.1)
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4.4.1 Aspect Adaptations

As mentioned earlier, an adaptation specifies the modification that an aspect performs

on the base model. We classify adaptations according to the covered diagrams and the

modification rules that specify the effect of adaptations on the base model. UML allows

the specification of a software from multiple points of view using different types of dia-

grams, such as, class diagrams, activity diagrams, sequence diagrams, etc. Unfortunately,

most of existing AOM approaches specify aspects within the same modeling view (e.g.,

structural, behavioral). In this research, we propose an AOM approach that covers both

structural and behavioral views of a system. Notice that this does not mean that we cover

all existing UML diagrams. Instead, we focus on those diagrams that are the most used

by developers: class diagrams, sequence diagrams, state machine diagrams, and activity

diagrams. Figure 4.2 presents our specification of adaptations. We define two types of

adaptations: structural and behavioral adaptations.

Structural Adaptations

Structural adaptations specify the modifications that affect structural diagrams. We focus

on class diagrams since they are the most used structural diagrams in software design. A

class diagram adaptation is similar to an introduction in AOP languages (e.g., AspectJ).

A structural adaptation is modeled as an abstract meta-element named StructuralAdapta-

tion. It is specialized by the meta-element ClassAdaptation used to specify class diagram

adaptations, which contain adaptation rules for class diagram elements (See Sub-section

4.4.2). Notice that the meta-element StructuralAdaptation can be specialized to model

adaptations for other structural diagrams, such as, component diagrams, deployment dia-

grams, etc. As an example of a structural adaptation, RoleAddition in Figure 4.3 is a class

adaptation (stereotype �ClassAdaptation�) used for the integration of a class named

Role into a package, designated by the pointcut SubscriberPackagePointcut, as well as

the adaptation rules that are required to the adoption of an RBAC solution. The definition

and the specification of adaptation rules will be presented later in this section.
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Behavioral Adaptations

Behavioral adaptations specify the modifications that affect behavioral diagrams. In our

approach, we support the behavioral diagrams that are the most used for the specification

of a system behavior, mainly, state machine diagrams, sequence diagrams, and activ-

ity diagrams. A behavioral adaptation is similar to an advice in AOP languages (e.g.,

AspectJ). A behavioral adaptation is modeled as an abstract meta-element named Behav-

ioralAdaptation. We specialize the meta-element BehavioralAdaptation by three meta-

elements: StateMachineAdaptation, SequenceAdaptation, and ActivityAdaptation that are

used to specify adaptations for state machine diagrams, sequence diagrams, and activity

diagrams respectively. As for the meta-element StructuralAdaptation, the meta-element

BehavioralAdaptation can also be extended to model adaptations for other behavioral di-

agrams, such as, communication diagrams, interaction overview diagrams, etc. As an

example of a behavioral adaptation, CheckAccess in Figure 4.3 is a sequence adaptation

(stereotype �SequenceAdaptation�) defining the adaptation rules required to inject the

behavior needed to check user permissions before any call to a sensitive method.

4.4.2 Aspect Adaptation Rules

An adaptation rule specifies the effect that an aspect performs on the base model elements.

We support two types of adaptation rules: Adding a new element to the base model and

removing an existing element from the base model. Figure 4.4 depicts our specified meta-

model for adaptation rules.

Adding a New Element

The addition of a new diagram element to the base model is modeled as a special kind of

operation, to which a stereotype �Add� is applied. We use the same specification for

adding any kind of UML element, either structural or behavioral. Three tagged values are

attached to the stereotype �Add�:
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Figure 4.4: Meta-model for Specifying Adaptation Rules

• Name: The name of the element to be added to the base model.

• Type: The type of the element to be added to the base model. The values of

this tag are provided in the enumerations ClassElementType, StateMachineElement-

Type, SequenceElementType, and ActivityElementType.

• Position: The position where the new element needs to be added. The values of

this tag are given in the enumeration PositionType. This tag is needed for some

elements (e.g., a message, an action) to state where exactly the new element should

be added (e.g., before/after a join point). For some other elements (e.g., a class,

an operation), this tag is optional since these kinds of elements are always added

inside a join point.

The location where the new element should be added is specified by the meta-

element Pointcut (See Sub-section 4.4.3). For example, in Figure 4.3, the operation
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AddRole() stereotyped �Add� is an adaptation rule belonging to the class adaptation

RoleAddition. It adds a new class, named Role, to the package SubscriberPackage, matched

by the pointcut SubsriberPackagePointcut. The class Role is defined inside the RBAC as-

pect.

Removing an Existing Element

The deletion of an existing element from the base model is modeled as a special kind of

operation stereotyped �Remove�. The set of elements that should be removed are given

by a pointcut expression specified by the meta-element Pointcut (See Sub-section 4.4.3).

The same specification is used for removing any kind of UML element, either structural

or behavioral. No tagged value is required for the specification of a Remove adaptation

rule; the pointcut specification is enough to select the elements that should be removed.

The proposed profile for the specification of adaptations and their adaptation rules

is expressive enough to cover the common AOP adaptations; i.e., introductions and be-

fore/after/around advices. For example, the profile allows to specify the addition of a new

class to an existing package, a new attribute or an operation to an existing class, or a new

association between two existing classes. In addition, we can remove an existing class,

an attribute or an operation from an existing class, or an association between two exist-

ing classes. As for behavioral modifications, the profile allows to specify the injection of

any UML behavior before, after, or around any behavioral UML element matched by the

concerned pointcut. For example, the profile allows to specify the addition of an interac-

tion fragment before/after/around a specific message in a sequence diagram, or an action

before/after/around a specific action in an activity diagram. Moreover, the proposed adap-

tation rules are generic; they can be used to specify any security solution for any design.

Table 4.1 summarizes the main adaptation rules that are supported by our approach.
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Table 4.1: Supported Adaptation Rules
UML Diagram Supported Adaptation Rules

Adding/Removing a class
Class Adding/Removing an attribute
Diagram Adding/Removing an operation

Adding/Removing an association
Adding/Removing a package

State Adding/Removing a state machine
Machine Adding/Removing a state
Diagram Adding/Removing a transition

Adding/Removing a region
Adding/Removing an interaction

Sequence Adding/Removing an interaction use
Diagram Adding/Removing a lifeline

Adding/Removing a message
Adding/Removing an activity

Activity Adding/Removing an action
Diagram Adding/Removing a structured activity node

Adding/Removing a control flow

4.4.3 Pointcuts

A pointcut is an expression that designates a set of join points. To specify pointcuts, we

propose a pointcut language in a textual representation rather than using UML notations.

This choice is motivated by the expressiveness and the easiness of the textual represen-

tation comparing to UML. For example, expressing logical pointcuts in a textual way is

more readable than expressing them in UML. In our approach, a pointcut is modeled as a

meta-element stereotyped �Pointcut� with two tagged values (Figure 4.4):

• TextExpression: The pointcut expression specified in our proposed textual pointcut

language.

• OCLExpression: An OCL expression equivalent to the textual one, which will be

automatically generated during the weaving process as we will see in Chapter 5.
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The textual pointcuts are high-level and easy to write and understand. However,

they cannot be directly used to query UML elements and select the appropriate join points.

Thus, in our framework, we translate the textual pointcut expressions into OCL expres-

sions to query UML elements. By doing so, we benefit from the expressiveness of the

OCL language and, at the same time, we eliminate the overhead of writing such complex

expressions from the developers. More details about the generation of OCL expressions

from the textual ones are provided in Chapter 5.

Since the targeted join points are UML elements, pointcuts should be defined based

on designators that are specific to UML. To this end, we define a pointcut language that

provides UML-specific pointcut designators needed to select UML join points. The pro-

posed pointcut language covers all the kinds of join points where our supported adapta-

tions are performed. In the following, we present the primitive pointcut designators for

the main UML diagrams that are supported by our approach, i.e., class diagrams, state

machine diagrams, sequence diagrams, and activity diagrams. Those primitives can be

composed with logical operators (AND, OR, and NOT) to build other pointcuts.

Class Diagram Pointcuts

Table 4.2 presents the pointcut primitives that are proposed to designate class diagram el-

ements. We choose the main elements that are usually used in class diagrams, i.e., class,

attribute, operation, association, and package. Class diagram elements are designated ei-

ther by their main properties, e.g., name, type, visibility, container, and owned elements,

or by other associated elements. For example, the following pointcut expression desig-

nates a class, named c1, that is inside a package p1, and contains an operation op1:

Class(c1) && Inside_Package(p1) && Contains_Operation(op1)

Moreover, if we want to designate all classes that contain either private attributes or private

operations, then the following pointcut is an example of such expression:

Class(∗) && (Contains_Attribute(Of_Visibility(Private)) ||

Contains_Operation(Of_Visibility(Private)))
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Note that the symbol “∗” is used to designate all the elements of a particular type regard-

less of their names, as it is used in AspectJ [96].

Table 4.2: Class Diagram Pointcuts

Join Point Pointcut Designator Description

Class

Class(NamePattern) Selects a class based on its name.
Inside_Package(Package-
Pointcut)

Selects a class that belongs to a specific pack-
age matched by PackagePointcut.

Contains_Attribute(Attribute-
Pointcut)

Selects a class that contains a specific attribute
matched by AttributePointcut.

Contains_Operation(Operation-
Pointcut)

Selects a class that contains a specific opera-
tion matched by OperationPointcut.

Associated_With(ClassPointcut) Selects a class that is associated with a specific
class matched by ClassPointcut.

Attribute

Attribute(NamePattern) Selects an attribute based on its name.
Inside_Class(ClassPointcut) Selects an attribute that belongs to a specific

class matched by ClassPointcut.
Of_Type(TypePattern) Selects an attribute that is of a certain type.
Of_Visibility(VisibilityKind) Selects an attribute that is of a certain visibil-

ity (e.g., public, private).

Operation

Operation(NamePattern) Selects an operation based on its name.
Inside_Class(ClassPointcut) Selects an operation that belongs to a specific

class matched by ClassPointcut.
Args(TypePattern1, TypePat-
tern2, ...)

Selects an operation based on the type of its
arguments.

Of_Visibility(VisibilityKind) Selects an operation that is of a certain visibil-
ity (e.g., public, private).

Association

Association(NamePattern) Selects an association based on its name.
Between(ClassPointcut, Class-
Pointcut)

Selects an association that is between certain
classes.

Member_Ends(Attribute-
Pointcut, AttributePointcut)

Selects an association based on its member
ends.

Aggregation_Kind(Aggregation-
Kind)

Selects an association based on its aggregation
kind (e.g., composite).

Package
Package(NamePattern) Selects a package based on its name.
Inside_Package(Package-
Pointcut)

Selects a package that belongs to a specific
package matched by PackagePointcut.

Contains_Class(ClassPointcut) Selects a package that contains a specific class
matched by ClassPointcut.
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State Machine Diagram Pointcuts

Table 4.3 and Table 4.4 present the pointcut primitives proposed to designate the ele-

ments of state machine diagrams. We choose the main elements that are usually used in

state machine diagrams, i.e., state machine, region, state, and transition. A state machine

diagram element is designated either by its name, container, owned elements, specified

elements (in case of a state machine), incoming/outgoing transitions (in case of a state),

or source/target states (in case of a transition). For example, the following pointcut ex-

pression designates a state, named s1, with an incoming transition t1, and that belongs to

a state machine sm1:

State(s1) && Incoming(t1) && Inside_State_Machine(sm1).

Table 4.3: State Machine Diagram Pointcuts - Part 1

Join

Point

Pointcut Designator Description

State

State_Machine(NamePattern) Selects a state machine diagram based on its
name.

Machine

Contains_Region(Region-
Pointcut)

Selects a state machine that contains a specific
region matched by RegionPointcut.

Contains_State(StatePointcut) Selects a state machine that contains a specific
state matched by StatePointcut.

Contains_Transition(Transition-
Pointcut)

Selects a state machine that contains a specific
transition matched by TransitionPointcut.

Specifies_Class(ClassPointcut) Selects a state machine that specifies a specific
class matched by ClassPointcut.

Region

Region(NamePattern) Selects a region based on its name.
Inside_State_Machine(State-
MachinePointcut)

Selects a region that belongs to a specific state
machine matched by StateMachinePointcut.

Inside_State(StatePointcut) Selects a region that belongs to a specific state
matched by StatePointcut.

Contains_State(StatePointcut) Selects a region that contains a specific state
matched by StatePointcut.

Contains_Transition(Transition-
Pointcut)

Selects a region that contains a specific transi-
tion matched by TransitionPointcut.
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Table 4.4: State Machine Diagram Pointcuts - Part 2

Join

Point

Pointcut Designator Description

State

State(NamePattern) Selects a state based on its name.
Inside_Region(RegionPointcut) Selects a state that belongs to a specific region

matched by RegionPointcut.
Inside_State(StatePointcut) Selects a state that belongs to a specific state

matched by StatePointcut.
Inside_State_Machine(State-
MachinePointcut)

Selects a state that belongs to a specific state ma-
chine matched by StateMachinePointcut.

Incoming(TransitionPointcut) Selects a state that has a specific incoming tran-
sition matched by TransitionPointcut.

Outgoing(TransitionPointcut) Selects a state that has a specific outgoing transi-
tion matched by TransitionPointcut.

Contains_State(StatePointcut) Selects a state that contains a specific state
matched by StatePointcut.

Contains_Transition(Transi-
tionPointcut)

Selects a state that contains a specific transition
matched by TransitionPointcut.

Transition

Transition(NamePattern) Selects a transition based on its name.
Inside_Region(RegionPointcut) Selects a transition that belongs to a specific re-

gion matched by RegionPointcut.
Inside_State(StatePointcut) Selects a transition that belongs to a specific state

matched by StatePointcut.
Inside_State_Machine(State-
MachinePointcut)

Selects a transition that belongs to a specific state
machine matched by StateMachinePointcut.

Source_State(StatePointcut) Selects a transition that has a specific source state
matched by StatePointcut.

Target_State(StatePointcut) Selects a transition that has a specific target state
matched by StatePointcut.

Sequence Diagram Pointcuts

Table 4.5 presents the primitives proposed to designate sequence diagram elements. We

choose the main elements that are commonly used in sequence diagrams, i.e., interaction,

message, and lifeline. A sequence diagram element is designated either by its name, type,

container, owned elements, specified elements (in case of an interaction), or source/target

lifelines (in case of a message). For example, the pointcut SensitiveMethodPointcut in

Figure 4.3 is a conjunction of three pointcuts: (1) Message_Call(SensitiveMethod) selects
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any message that calls SensitiveMethod(), (2) Message_Source(User) selects any message

whose source is of type User, and (3) Message_Target(Resource) selects any message

whose target is of type Resource. The conjunction of these three pointcuts allows the

selection of all message calls to SensitiveMethod() from a User instance to a Resource

instance.

Table 4.5: Sequence Diagram Pointcuts

Join

Point

Pointcut Designator Description

Interaction

Interaction(NamePattern) Selects an interaction based on its name.
Contains_Message(Message-
Pointcut)

Selects an interaction that contains a specific
message matched by MessagePointcut.

Contains_Lifeline(Lifeline-
Pointcut)

Selects an interaction that contains a specific
lifeline matched by LifelinePointcut.

Specifies_Operation(Operation-
Pointcut)

Selects an interaction that specifies the behav-
ior of a specific operation matched by Opera-
tionPointcut.

Message

Message_Call(NamePattern) Selects a message call, either synchronous or
asynchronous, based on its name.

Message_Syn_Call(NamePattern) Selects a message that specifies a synchronous
call.

Message_Asyn_Call(Name-
Pattern)

Selects a message that specifies an asyn-
chronous call.

Reply_Message(NamePattern) Selects a reply message based on its name.
Create_Message(NamePattern) Selects a message that creates an object.
Destroy_Message(NamePattern) Selects a message that destroys an object.
Message_Source(TypePattern) Selects a message whose source is of a certain

type.
Message_Target(TypePattern) Selects a message whose target is of a certain

type.
Inside_Interaction(Interaction-
Pointcut)

Selects a message that belongs to a specific in-
teraction matched by InteractionPointcut.

Lifeline

Lifeline(NamePattern) Selects a lifeline based on its name.
Inside_Interaction(Interaction-
Pointcut)

Selects a lifeline that belongs to a specific in-
teraction matched by InteractionPointcut.

Covered_By_Fragment(Name-
Pattern)

Selects a lifeline that is covered by a specific
interaction fragment.

Contains_Execution(Name-
Pattern)

Selects a lifeline that contains a specific execu-
tion specification.
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Activity Diagram Pointcuts

Table 4.6 and Table 4.7 present the primitives proposed to designate the elements of activ-

ity diagrams. We choose the main elements that are commonly used in activity diagrams,

i.e., activity, action, and edge. An activity diagram element is designated either by its

name, type, container, owned elements, specified elements (in case of an activity), incom-

ing/outgoing edges (in case of an action), or source/target actions (in case of an edge). For

example, the following pointcut expression designates a call operation action, named a1,

that belongs to an activity act1: Call_Operation_Action(a1) && Inside_Activity(act1).

Table 4.6: Activity Diagram Pointcuts - Part 1

Join Point Pointcut Designator Description

Activity

Activity(NamePattern) Selects an activity based on its name.
Contains_Action(Action-
Pointcut)

Selects an activity that contains a specific ac-
tion matched by ActionPointcut.

Contains_Edge(EdgePointcut) Selects an activity that contains a specific ac-
tivity edge matched by EdgePointcut.

Specifies_Operation(Operation-
Pointcut)

Selects an activity that specifies the behavior
of a specific operation matched by Operation-
Pointcut.

Action

Action(NamePattern) Selects an action based on its name.
Call_Operation_Action(Name-
Pattern)

Selects an action that performs an operation
call.

Call_Behavior_Action(Name-
Pattern)

Selects an action that performs a behavior call.

Create_Action(NamePattern) Selects an action that creates an object.
Destroy_Action(NamePattern) Selects an action that destroys an object.
Read_Action(NamePattern) Selects an action that reads the value(s) of a

structural feature.
Write_Action(NamePattern) Selects an action that updates the value(s) of a

structural feature.
Inside_Activity(Activity-
Pointcut)

Selects an action that belongs to a specific ac-
tivity.

Input(TypePattern, ...) Selects an action based on the type of its input
pins.

Output(TypePattern, ...) Selects an action based on the type of its out-
put pins.
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Table 4.7: Activity Diagram Pointcuts - Part 2

Join Point Pointcut Designator Description

Control Node

Initial(NamePattern) Selects an initial node based on its name.
Final(NamePattern) Selects an activity final node based on its

name.
Flowfinal(NamePattern) Selects a flow final node based on its name.
Fork(NamePattern) Selects a fork node based on its name.
Join(NamePattern) Selects a join node based on its name.
Decision(NamePattern) Selects a decision node based on its name.
Merge(NamePattern) Selects a merge node based on its name.

Activity Edge

Edge(NamePattern) Selects an edge based on its name.
Inside_Activity(Activity-
Pointcut)

Selects an edge that belongs to a specific ac-
tivity.

Source_Action(ActionPointcut) Selects an edge that has a specific source.
Target_Action(ActionPointcut) Selects an edge that has a specific target.

4.5 Related Work on AOM

During the last decade, AOM has become the center of many research activities. Follow-

ing the success of AOP techniques in modularizing crosscutting concerns at the imple-

mentation level, considerable number of contributions worked on abstracting AOP con-

cepts and adopting them at different levels of abstraction. An overview and a comparison

of the existing approaches are presented in [22, 141, 152]. In the following, we provide a

summary of the main approaches.

Kienzle et al. [99, 100] have proposed Reusable Aspect Models (RAM); an AOM

approach that specifies a concern using class, state machine, and sequence diagrams. One

of the goals of the RAM approach is to support aspect reusability, i.e., build aspects with

complex functionalities by reusing simple ones, by means of aspect dependency chains. A

weaver is implemented using Kompose [71] for weaving class diagrams and Geko [116]

for weaving state machine diagrams and sequence diagrams.

The High-Level Aspects (HiLA) approach [175] extends UML state machines for

specifying history-dependent and concurrent behaviors. Join points in HiLA capture
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points when a transition is being fired. Pointcuts may also contain constraints, i.e., ad-

vices are only executed when the constraints are satisfied. To increase reusability, aspects

are specified as UML templates, which are then specialized to the designer’s application.

HiLA also allows transformational aspects, i.e., aspects that can match a sub-structure of

the base state machine and replace them by the advice.

Klein et al. [101] have proposed various formal definitions of join points in se-

quence diagrams. Aspects are specified as pairs of UML 2.0 sequence diagrams: One

sequence diagram for pointcuts and the other one for advice specification. Join points

can be either a single element or a collection of elements. This approach also provides a

formal definition of a new composition operator for sequence diagrams, called an amal-

gamated sum, and describes its implementation using Kermeta2.

Tkatchenko and Kiczales [163] have added a join point model (JPM) to UML meta-

model. They have covered three UML diagrams, namely, class diagrams, state machine

diagrams, and sequence diagrams. For class diagrams, the considered join points are

class and operation elements. For sequence diagrams, they have considered messages

and lifelines as join points. For state machine diagrams, states and call triggers have

been considered as join points. Comparing with our approach, we cover a wider range

of diagrams and UML elements as join points. In addition, the matching process in this

approach is based only on direct name matching or on signature comparison.

Clark et al. [48] have proposed an AOM approach called Theme/UML. This ap-

proach is a symmetric one, i.e., there is no distinction between the base model and the

crosscutting concerns. It is a general-purpose AOM language. Aspects are modeled as

templates that are bound to base elements through binding relationships. Package and

class diagrams are used for modeling structural adaptations and sequence diagrams are

used for modeling behavioral adaptations. This approach is possibly the most mature and

the most well-engineered approach to AOM. However, its main intent is the identification

of aspects in the requirements analysis phase and mapping those aspects to the design.

2http://www.kermeta.org/
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Some contributions have focused on abstracting AspectJ [96] into the modeling

level [65,157,171]. Evermann [65] has proposed a UML profile for AspectJ based on the

existing UML meta-model. An aspect is specified as a stereotyped class. Pointcuts are

modeled as stereotyped attributes, while advices are modeled as stereotyped operations.

In contrast to previous work on AspectJ profiles, this is possibly the most complete spec-

ification so far. Stein et al. [157] have proposed one of the earlier profiles for AspectJ.

Pointcuts and advices are specified as stereotyped operations. Join points are consid-

ered as messages in collaboration diagrams. The introduction of new class elements or

associations is specified using UML diagram templates. Weaving of advices and intro-

ductions into base models is modeled as relationships in collaboration diagrams denoting

the crosscutting effects of aspects on their base classes.

Yan et al. [171] have adopted the extension of UML meta-model by introducing an

AspectJ meta-model in order to support AspectJ software modeling. First, a meta-model

for Java was designed by tailoring UML meta-classes to Java. Then, the Java meta-model

was extended into AspectJ meta-model. This work aims at narrowing the gap between

conceptual modeling of aspects and their concrete implementation in AspectJ. The same

approach of extending UML meta-model for aspect specification was also proposed by

Chavez et al. [44]. However, the main limitation of such an approach is the fact that

extending UML meta-model requires either modifying existing UML case tools, or im-

plementing new ones in order to provide support for the newly defined meta-classes.

One of the initial proposals in this field is the one of Aldawud et al. [19]. It provides

a UML profile for aspect specification by applying stereotypes on classes. Later, it has

been extended to support pointcut and advice specification [20]. Crosscutting associations

are used to show how aspect elements relate to base model elements. This profile is very

generic and captures only few concepts of AOP. Other contributions in this area [32, 33,

76, 95, 117, 142] have provided extensions of the UML language for modeling aspects

using standard UML extension mechanisms. However, the majority of these approaches

are programming language dependent and specify only few concepts of AOP.
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4.6 Conclusion

In this chapter, we have presented an AOM approach for specifying and weaving security

aspects into UML design models. This approach is well suited for job separation: security

experts provide high-level security solutions including the details on how to apply them

in UML diagrams and the designers apply them in their design by adapting them to the

design context. With our approach, even the designers with limited security knowledge

can use the security solutions to enforce the needed security requirements in a systematic

way in their design. As another result of our contribution, security solutions can be in-

tegrated into software from the early phases of the development life cycle. This in turn

helps accelerating the development of secure applications and reducing errors and costs.

We have seen from the literature review of AOM that there exist different mecha-

nisms to specify aspects at the model level. Some contributions suggest extending UML

meta-model by adding new meta-classes or creating new meta-models to specify aspect-

oriented concepts. These techniques suffer from implementation and interoperability is-

sues, as UML case tools need to be extended to support the newly specified meta-classes.

The other technique, i.e., using standard UML extension mechanisms, is a better solution

as it overcomes the limitations identified in the previous approaches.

In this setting, we have developed a UML profile for the specification of aspects at

the design level. The proposed profile allows the specification of common aspect-oriented

primitives, i.e., adding new elements before/after/around join points and removing exist-

ing elements. In addition, the proposed profile supports both structural and behavioral

adaptations and covers the main diagrams that are used in UML design. Furthermore, we

have defined a high-level and user-friendly pointcut language that can be used by security

experts to designate UML elements. We have seen that the proposed pointcut language

is expressive enough to designate the main elements that are used in a software design.

In the next chapter, we will present our approach for systematically weaving the security

aspects, specified using our AOM profile, into UML design models.
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Chapter 5

Security Aspect Weaving

5.1 Introduction

This chapter presents our aspect weaving framework for security hardening. The pro-

posed framework allows software developers to systematically integrate security aspects,

specified using our AOM profile, into UML design models. More precisely, we provide

the design and the implementation of the weaving capabilities corresponding to the aspect

adaptations that are supported by our AOM profile.

We start by providing a high-level overview that summarizes the main steps and

the technologies that are followed to implement the weaving framework. Afterwards,

we present the details of each weaving step. The proposed weaver is implemented as a

model-to-model (M2M) transformation approach since the latter is defined following the

OMG’s standard recommendations. In addition, it provides many languages and tools that

can help in automating the weaving process. As a transformation language, we adopt the

OMG standard Query/View/Transformation (QVT) language [126] since it is compatible

with UML and supports a large set of modifications on UML models. As for join points

matching, we instrument the standard OCL language to query UML elements due to its

expressiveness and conformance to UML. The proposed weaver covers all the diagrams

that are supported by our approach, i.e., class diagrams, state machine diagrams, activity
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diagrams, and sequence diagrams. For each diagram, we provide algorithms that imple-

ment its corresponding weaving adaptations, i.e., before adaptation, after adaptation, and

around adaptation. In addition, we present the transformation rules that implement aspect

adaptation rules, i.e., add and remove adaptation rules.

The main advantages of our weaving framework are the portability and the expres-

siveness thanks to the use of OMG standards, namely, OCL and QVT. Using OCL, we

were able to match a large and variant set of join points. Using QVT allowed us to

support a wide variety of modifications on different UML diagrams. In addition, QVT

extends portability of the designed weaver to all tools supporting QVT language.

The remainder of this chapter is organized as follows. Section 5.2 gives an overview

of our security weaving approach. Section 5.3 presents the specialization of security

aspects. The matching process is presented in Section 5.4. Afterwards, we provide details

about the actual weaving process in Section 5.5. In Section 5.6, we discuss the related

work on model weaving. Finally, we conclude this chapter in Section 5.7.

5.2 Approach Overview

In this section, we present an overview of our security weaving approach. The proposed

approach allows software developers to systematically integrate security aspects, specified

by a security expert using our AOM profile, into UML design models. As we mentioned

previously, the weaving is based on model-to-model transformation technology. The main

steps and the technologies that are followed to implement the weaving capabilities are

presented in Figure 5.1. In the following, we provide a brief description of each step:

• Aspect Specialization: The developer specializes the application-independent as-

pect, provided by the security expert in a security aspects library, to his/her appli-

cation. An application-dependent aspect is automatically generated after this step.

More details about this step are presented in Section 5.3.
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Figure 5.1: Overview of the Proposed Security Weaving Approach

• Pointcut Translation: The textual pointcut expressions specified in the aspect using

our proposed pointcut language are automatically translated into equivalent OCL

expressions. The aspect will then be updated with the new OCL expressions. This

step and the previous one are preliminary steps before the actual weaving begins.

• Join Point Matching: The OCL expressions generated from the previous step are

evaluated on the base model to identify the locations where the weaving should

be performed. More details about pointcut translation and join point matching are

presented in Section 5.4.
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• QVT Transformation Rules Generation: Using the aspect adaptations and the loca-

tions identified from the previous step, we generate the equivalent QVT transforma-

tion rules. These rules, in turn, will be given as input to the transformation engine

along with the base model, which will result in a secure woven model.

In the following sections, we explain each step of the weaving approach starting

from specializing the application-independent aspects, to identifying the join point ele-

ments of the base model, where different kinds of adaptations need to be injected, all the

way through the process of the actual weaving.

5.3 Security Aspect Specialization

For the purpose of reuse, security aspects can be designed, by security experts, as generic

solutions that can be applied to any design model. More precisely, the pointcuts speci-

fied by security experts are chosen to match specific points of the design where security

methods should be added. Since security solutions are provided in a library of aspects,

pointcuts are specified as generic patterns that should match all possible join points that

can be targeted by security solutions. Thus, before being able to weave aspects into base

models, the developer needs to specialize the generic aspects to his/her application by

choosing the elements of his/her model that are targeted by the security solutions.

To specialize the aspects, we provide a graphical weaving interface that hides the

complexity of the security solutions and only exposes the generic pointcuts to the devel-

opers (Figure 6.5). Indeed, the developer does not need to understand the inner working of

the security solution. From this weaving interface and based on his/her understanding of

the application, the developer has the possibility of mapping each generic element of the

aspect to its corresponding element(s) in the base model. After mapping all the generic

elements, the application-dependent aspect will be automatically generated.

Notice here that this mapping operation has a one-to-many relationship. In other

words, one generic element in the pointcut expression can be mapped to multiple elements
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in the base model. For example, consider the following pointcut expression that aims at

capturing any call to a sensitive method: Message_Call(sensitiveMethod). In order to

specialize this expression, the developer maps the abstract element sensitiveMethod to

the corresponding operation(s) in his/her application (e.g., op1, op2). This will result in

an expanded expression, where all the selected elements are combined together with the

logical operator OR (||) as follows: Message_Call(op1) || Message_Call(op2).

Figure 5.2: Security Aspects Specialization

5.4 Join Point Matching

During this step, the actual join points where the aspect adaptations should be performed

are selected from the base model. To select the targeted join points, the textual pointcuts,

specified using our proposed pointcut language (Section 4.4.3), need to be translated to

a language that can navigate the base model and query its elements. In our approach,

we choose to translate the textual pointcut expressions into the standard OCL language

[129]. This is due to the high expressiveness of the OCL language and its conformance to

UML. In fact, OCL is defined as part of the UML standard and is typically used to write

constraints on UML elements. However, since OCL 2.0 [125], it has been extended to

include support for queries. Therefore, using OCL, we can match a large and variant set

of join points using matching criteria that take into consideration different properties of
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UML elements such as names, types, arguments, and locations.

We translate textual pointcuts to OCL constraints, which serve as predicates to se-

lect the considered join points. This translation is done by producing a parser that is

capable of parsing and translating any textual pointcut expression, that conforms to a

defined grammar, to its equivalent OCL expression. Indeed, this process is executed

automatically and in a total transparent way from the user. Once the OCL expression

is generated, it will be evaluated on the base model to select the targeted join points.

For example, the textual pointcut expression: “Message_Call(SensitiveMethod) && Mes-

sage_Source(User) && Message_Target(Resource)” will be tokenized into three tokens

connected with the logical operator && as follows: (1) Message_Call(SensitiveMethod),

(2) Message_Source(User), and (3) Message_Target(Resource). The parser will parse the

textual expression and will translate it into the following OCL expression:

“self.oclIsTypeOf(Message) and self.name=‘SensitiveMethod ’ and

self.connector. end-> at(1).role.name=‘User ’ and

self.connector. end-> at(2).role.name=‘Resource”’

This expression will then be evaluated on the elements of the base model and the matched

elements, which correspond to all message calls to SensitiveMethod from a User instance

to a Resource instance, will be selected as join points.

5.5 Security Aspect Weaving

During this step, the aspect adaptations are automatically woven into the base model at

the identified join points according to the specification of the security solution. In our

framework, the process of weaving aspects into UML models is considered as a model-

to-model transformation process, where the base model is being transformed into a new

model that has been enhanced with some new features defined by the aspect. As a trans-

formation language, we adopt QVT (Query/View/Transformation) language since it is an

OMG standard compatible with UML and supports a large set of modifications on UML
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models. The proposed model weaver is implemented using well-known standards, which

makes it a portable solution as it is independent of any specific UML tool. In the follow-

ing subsections, we present the details of the weaver design and implementation, starting

by a high-level description of the weaver architecture.

5.5.1 Weaver Architecture

The weaver is designed to manipulate both structural and behavioral UML diagrams. It

is capable of weaving different types of UML diagrams that are used to model different

views of a system. Figure 5.3 presents the general architecture of our model weaver. It

consists of two main components: (1) Join point matching module and (2) Transformation

module. The join point matching module is defined by extending the QVT engine through

the QVT Black-Box mechanism [126]. On the other hand, the transformation module is

composed of four different transformation definitions, each of which corresponds to a

particular kind of UML diagram. In the sequel, we detail each component.
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Figure 5.3: General Architecture of the Weaver
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Join Point Matching Module

The join point matching module allows evaluating pointcut expressions, specified in OCL,

on UML base model elements and identifying the appropriate join points that satisfy the

given expressions. In our framework, this module is defined as an extension to the QVT

main functionalities using the QVT Black-Box mechanism, which is an important feature

of the QVT language. QVT Black-Box mechanism facilitates the integration of external

programs, expressed in other transformation languages or programming languages, in

order to perform a given task that is un-realizable by the QVT language. Algorithm 5.1

presents the pseudo-code of our join point matching algorithm. It takes as input an OCL

expression along with the base model elements and returns as output a set of join point

elements that satisfy the given expression.

Algorithm 5.1: Join Point Matching
Input: OCLExp,BaseModelElements
Output: JoinPointElem-set

query = createQuery(OCLExp);
for all el in BaseModelElements do

result = validate(query,el);
if result is true then

JoinPointElem-set.update(el);
end if

end for

return JoinPointElem-set;

This algorithm is executed for each pointcut expression specified in the aspect.

However, when dealing with big models with a large set of elements, this process may

become a significant overhead on the system. Therefore, some optimizations are needed.

Since each pointcut expression belongs to a specific adaptation, we optimize this process

by applying a filtering mechanism, such that we only evaluate the pointcut expression on

those elements that conform to the given adaptation instead of evaluating it on all base

model elements. For example, in the case of a pointcut expression defined in a class

adaptation, the filtering mechanism will select from the base model only class diagram
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elements, and then pass them to the join point matching module. This optimization in-

creases the efficiency and the performance of the matching module.

Transformation Tool

The transformation tool consists of a set of transformation definitions, each of which tar-

gets a particular UML diagram. In addition, each transformation definition contains a

set of mapping rules that define how each element in the corresponding diagram should

be transformed. In our weaver, we classify the transformation definitions according to

the supported UML diagrams. Thus, we provide four types of transformation definitions:

class transformation definition, state machine transformation definition, activity transfor-

mation definition, and sequence transformation definition (Figure 5.3). For instance, the

class transformation definition consists of a set of mapping rules, which specify how each

element of the class diagram can be transformed or woven into the base model. A detailed

description of each transformation definition is provided in Sub-section 5.5.2.

When the transformation tool receives the base model as input, each transformation

definition applies some filtering operations on the input model to select the corresponding

set of diagrams. Then, each transformation definition executes the appropriate mapping

rules, using the underlying QVT engine, and produces the woven model as output. This

architecture facilitates the extension of the transformation tool to support a wider range

of UML diagrams since new components can be easily plugged-in without going through

the hassle of modifying the existing architecture. Moreover, since the definition of the

mapping rules is based on UML meta-model, the transformations can be used with any

UML model and are not dependent on a particular specification or implementation.

5.5.2 Transformation Definitions

The transformation definitions describe how each element in the source model (the base

model) is transformed in the target model (the woven model). This is achieved by using

mapping rules that describe a certain behavior. For each aspect adaptation (e.g., class
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adaptation), we specify a corresponding transformation definition (e.g., class transfor-

mation definition). By analogy, the aspect adaptations are program source code and the

transformation definitions are its execution semantics. In other words, a transformation

definition defines how and when each construct in the aspect adaptation should produce a

given behavior. In the following, the four kinds of transformation definitions are detailed.

Class Transformation Definition

The class transformation definition handles transformations of class diagrams. It contains

a set of mapping rules that specify how each class diagram element should be transformed.

To do so, the class transformation definition iterates through the different adaptations of

an aspect and selects the adaptation that is stereotyped ClassAdaptation. Then, for each

adaptation rule specified in the class adaptation, an equivalent mapping rule is applied.

The main difference between the class transformation definition and the other transfor-

mation definitions of behavioral diagrams is that class diagrams are structural in nature;

they are considered as a static view. For example, the class transformation definition

consists of adding/removing structural elements inside/between class diagram elements,

such as adding an attribute/operation inside a given class or an association between two

given classes. Whereas, the transformation definition of a behavioral diagram consists

of adding/removing elements before/after/around behavioral diagram elements, such as

adding a new interaction fragment before sending a message in a sequence diagram.

Figure 5.4 shows an example of a class transformation definition. The aspect de-

picted in this figure contains a class adaptation named RoleAddition. This class adaptation

specifies an add adaptation rule (addAssignRole) that adds an operation, named assign-

Role, to a class designated by the pointcut UserPointcut. Having a class adaptation and an

adaptation rule that adds an element of type Operation, the class transformation definition

is going to be selected and the mapping rule addOperation will be executed. The result

of this transformation will be the addition of the new operation assignRole() to the class

Client of the base model, i.e., the selected join point.
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Figure 5.4: Example of Class Transformation Definition

State Machine Transformation Definition

The state machine transformation definition handles transformations of state machine dia-

grams. It corresponds to an aspect adaptation that is stereotyped StateMachineAdaptation.

In our approach, when handling transformations of state machine diagrams, we identify

two kinds of pointcut designators: (1) State-based pointcut that designates a set of states

without any consideration of the transitions/events that were triggered to reach them, and

(2) Path-based pointcut that designates a set of states depending on the transitions that

triggered them. For example, consider the state machine diagram, depicted in Figure 5.5

(Part a), where we want to add a new state (State4) before the state State3 when triggered

by transition Tr1, as it is specified by the pointcut expression shown in Figure 5.6.

During the matching process, the OCL expression is evaluated on the base model

elements and the state State3 is identified as a join point. Then, the weaving process will
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Figure 5.5: Weaving Example for Path-Based Join Point
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Figure 5.6: Example of Path-Based Pointcut

inject the new state (State4) before the identified join point. However, if the state State3

has more than one incoming transition, which is the case in our example, the weaver will

add the new state before all incoming transitions, which is not what we aim for. To solve

this problem, the OCL expression is used not only as a query expression to identify the

join points, but is also used to put further constraints on the identified join points during

the weaving. Thus, our identified join point is the state State3 under the constraint of being

triggered by the transition Tr1. The result of the weaving is shown in Figure 5.5 (Part b).

In our approach, join points in state machine diagrams can be either states or transitions.

Furthermore, three weaving adaptations: before, after, and around are supported. In the

following, we provide the implementation details of each weaving adaptation.
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Weaving Before Adaptation

This adaptation adds a new node in a state machine diagram before an identified join

point. Hence, it requires not only identifying the targeted join point, but also its direct

predecessors should be identified. Algorithm 5.2 summarizes the steps needed to perform

this adaptation. As shown in the algorithm, the two kinds of join points, State and Tran-

sition, are considered. In addition, both kinds of pointcuts, State-based and Path-based

pointcuts, are matched. The algorithm takes as input a set of join points, an OCL expres-

sion, the new node to add, and a base model. It returns as output the woven model, where

the new node has been added before each of the identified join points.

Algorithm 5.2: State Machine Diagram: Weaving Before Adaptation
Input: JoinPointElem-set,OCLExp,newNode,BaseModel

edgeSet: Edge-set;
for nextJoinPoint in JoinPointElem-set do

if nextJoinPoint is of type STATE then

if isPathBased(OCLExp) then

oclConstraint = extractConstraint(OCLExp);
edgeSet = getInComingEdge(nextJoinPoint, oclConstraint);

else

edgeSet = getInComingEdges(nextJoinPoint);
end if

for all edge in edgeSet do

edge.setTarget(newNode);
end for

BaseModel = CreateEdge(newNode, nextJoinPoint);
else

if nextJoinPoint is of type TRANSITION then

temp = getSource(nextJoinPoint);
nextJoinPoint.setSource(newNode);
BaseModel = CreateEdge(temp, newNode);

end if

end if

end for

Weaving After Adaptation

This adaptation adds a new node in a state machine diagram after an identified join point.

Hence, it requires not only identifying the targeted join point, but also its direct successors.
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Algorithm 5.3 summarizes the steps needed to perform this adaptation. The algorithm

takes as input a set of join points, an OCL expression, the new node to add, and a base

model. It returns as output the woven model, where the new node has been added after

each of the identified join points. Similar to the before adaptation, we consider both kinds

of join points and pointcuts.

Algorithm 5.3: State Machine Diagram: Weaving After Adaptation
Input: JoinPointElem-set,OCLExp,newNode,BaseModel

edgeSet: Edge-set;
for nextJoinPoint in JoinPointElem-set do

if nextJoinPoint is of type STATE then

if isPathBased(OCLExp) then

oclConstraint = extractConstraint(OCLExp);
edgeSet = getOutGoingEdge(nextJoinPoint, oclConstraint);

else

edgeSet = getOutGoingEdges(nextJoinPoint);
end if

for all edge in edgeSet do

edge.setSource(newNode);
end for

BaseModel = CreateEdge(nextJoinPoint, newNode);
else

if nextJoinPoint is of type TRANSITION then

temp = getTarget(nextJoinPoint);
nextJoinPoint.setTarget(newNode);
BaseModel = CreateEdge(newNode, temp);

end if

end if

end for

Weaving Around Adaptation

Around adaptations are performed in place of the join points they operate over, rather

than before or after. Additionally, inspired by AspectJ [96], the original join point can

be invoked, within the behavior of the around adaptation, using a special element named

proceed. Around adaptations can have one of two effects:

• In case there is no proceed element in the adaptation, then the join point is replaced
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by the adaptation behavior.

• In case the adaptation contains a proceed element, then all the elements that appear

before the proceed element are injected before the join point, and similarly, all the

elements appearing after the proceed element are injected after the join point.

Algorithm 5.4 summarizes the steps needed to perform an around adaptation in a

state machine diagram. The algorithm takes as input a set of join points, an OCL ex-

pression, the new state machine element to add, and a base model. The algorithm then

replaces the current join point with the new state machine element. In addition, it checks

whether the new state machine element contains a proceed element or not. If the pro-

ceed element exists, then it will be identified and replaced with the current join point.

Algorithm 5.4: State Machine Diagram: Weaving Around Adaptation
Input: JoinPointElem-set,OCLExp,newSMElem,BaseModel

for nextJoinPoint in JoinPointElem-set do

replace(nextJoinPoint, newSMElem);
if isProceed(newSMElem) then

proceedElement = findProceed(newSMElem);
replace(proceedElement, nextJoinPoint);
delete(proceedElement);

else

delete(nextJoinPoint);
end if

end for

Procedure replace:

Input: oldElement,newElement
edgeSet: Edge-set;
edgeSet = inComingEdges(oldElement);
for all edge in edgeSet do

edge.setTarget(newElement);
end for

edgeSet = outGoingEdges(oldElement);
for all edge in edgeSet do

edge.setSource(newElement);
end for
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Activity Transformation Definition

The activity transformation definition handles transformations of activity diagrams. It cor-

responds to an aspect adaptation that is stereotyped ActivityAdaptation. In our approach,

join points in activity diagrams can be either nodes or edges. A node can be either an ac-

tion or a control node (e.g., fork, join, decision, merge). Since an activity diagram models

the flow of actions in a business process, then ordering must be taken into consideration

when weaving a new behavior into such a flow. Weaving adaptations in activity diagrams

are very similar to those of state machine diagrams, as both diagrams are constructed from

nodes and edges. In the following, we describe each weaving adaptation.

Weaving Before Adaptation

This adaptation adds a new node in an activity diagram before a join point. It requires

identifying the join point kind, whether it is an action, a control node, or an edge, and its

direct predecessor(s). In case of an action, all incoming edges are redirected to the new

node. As such, a new edge is created between the new node and the join point. However,

if the join point is a join or a merge node, where there is more than one incoming edge,

then the new node is duplicated for each edge. Thus, each incoming edge to the join or

the merge nodes is redirected to the new nodes. Moreover, two new edges are created

between the new nodes and the join point (Figure 5.7). Algorithm 5.5 summarizes the

steps of the before weaving adaptation in activity diagrams. The algorithm takes as input

a set of join points, the new node to add, and a base model. It returns as output the woven

model together with the new node added before each of the identified join points.
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Figure 5.7: Example of Join Node as Join Point
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Algorithm 5.5: Activity Diagram: Weaving Before Adaptation
Input: JoinPointElem-set,newNode,BaseModel

edgeSet: ActivityEdge-set;
for nextJoinPoint in JoinPointElem-set do

if nextJoinPoint is of type ActivityNode then

edgeSet = getInComingEdges(nextJoinPoint);
if nextJoinPoint is of type JoinNode or MergeNode then

for all edge in edgeSet do

copy newNode;
edge.setTarget(newNode);
BaseModel = CreateEdge(newNode, nextJoinPoint);

end for

else

for all edge in edgeSet do

edge.setTarget(newNode);
end for

BaseModel = CreateEdge(newNode, nextJoinPoint);
end if

else

if nextJoinPoint is of type ActivityEdge then

temp = getSource(nextJoinPoint);
nextJoinPoint.setSource(newNode);
BaseModel = CreateEdge(temp, newNode);

end if

end if

end for

Weaving After Adaptation

This adaptation adds a new node in an activity diagram after a join point. In case the join

point is an action, all outgoing edges are redirected to the new node. Accordingly, a new

edge is created between the join point and the new node. However, if the join point is

a fork or a decision node, where there is more than one outgoing edge, then a new node

is created for each edge. Moreover, two new edges are created between the new nodes

and the original join point successors (Figure 5.8). Algorithm 5.6 summarizes the steps

of weaving an after adaptation in activity diagrams. It takes, as input, a set of join points,

the new node to add, and a base model. It returns, as output, the woven model, with the

new node added after each of the identified join points.
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Figure 5.8: Example of Fork Node as Join Point

Algorithm 5.6: Activity Diagram: Weaving After Adaptation
Input: JoinPointElem-set,newNode,BaseModel

edgeSet: ActivityEdge-set;
for nextJoinPoint in JoinPointElem-set do

if nextJoinPoint is of type ActivityNode then

edgeSet = getOutgoingEdges(nextJoinPoint);
if nextJoinPoint is of type ForkNode or DecisionNode then

for all edge in edgeSet do

copy newNode;
edge.setSource(newNode);
BaseModel = CreateEdge(nextJoinPoint, newNode);

end for

else

for all edge in edgeSet do

edge.setSource(newNode);
end for

BaseModel = CreateEdge(nextJoinPoint, newNode);
end if

else

if nextJoinPoint is of type ActivityEdge then

temp = getTarget(nextJoinPoint);
nextJoinPoint.setTarget(newNode);
BaseModel = CreateEdge(newNode, temp);

end if

end if

end for

Weaving Around Adaptation

This adaptation replaces a join point in an activity diagram with a new behavior. In

addition, the original join point may be invoked using the proceed element. The corre-

sponding algorithm is similar to the one described previously for state machine diagrams.
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Sequence Transformation Definition

The sequence transformation definition handles transformations of sequence diagrams. It

corresponds to an aspect adaptation that is stereotyped SequenceAdaptation. A sequence

diagram is used to describe the interactions between different entities in a system. Order-

ing in sequence diagrams is realized by a trace of events (e.g., send and receive events),

each of which is specified by an element called Occurrence Specification (Figure 5.9). In

our approach, we consider messages as join points, where a new behavior may be added

before, after, or around the occurrence of send/recieve message events. In the following,

we describe each weaving adaptation in sequence diagrams.
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Figure 5.9: Send/Recieve Events in a Sequence Diagram

Weaving Before Adaptation

This adaptation adds a new element in a sequence diagram before a join point. As men-

tioned previously, the order in sequence diagrams is represented by a trace of events.

Here, we are particularly interested in the send and the receive events of the exchanged

messages. Weaving an adaptation before a join point message means that the adapta-

tion should be performed before the “send event” of the message is fired. Algorithm 5.7

describes the steps needed to weave a new element before a join point message. The al-

gorithm takes, as input, a set of join point messages, the new element to add, and a base

model. It returns, as output, the woven model, where the new element has been added

before each join point. The algorithm extracts the trace of events from the base model

and identifies the send event of the join point message. Then, it inserts the send and the

receive events of the new element before the identified send event of the message.
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Algorithm 5.7: Sequence Diagram: Weaving Before Adaptation
Input: JoinPointMessage-set,newElement,BaseModel

traceEvent: Event-list;
traceEvent = getEventTrace(BaseModel);
for all nextJoinPointMessage in JoinPointMessage-set do

sndEvent = getSendEvent(next joinPointMessage);
indx = traceEvent.getindexOf(sndEvent);
newSendEvent = CreateSendEvent(newElement);
newReceiveEvent = CreateReceiveEvent(newElement);
if indx = 1 then

traceEvent = traceEvent.prepend(newReceiveEvent);
traceEvent = traceEvent.prepend(newSendEvent);

else

traceEvent.insertAt(indx,newSendEvent);
traceEvent.insertAt(indx+1,newReceiveEvent);

end if

end for

Weaving After Adaptation

This adaptation adds a new element in a sequence diagram after a join point. In contrast

with a before weaving adaptation, here we are interested in the receive event of the join

point message. In this case, the send/recieve events of the new element are inserted after

the receive event of the join point message. Algorithm 5.8 summarizes the steps needed

to weave a new element after a join point message. The algorithm takes, as input, a set of

join point messages, the new element to add, and a base model. It returns, as output, the

woven model, where the new element has been added after each join point.

Weaving Around Adaptation

Weaving around adaptation in a sequence diagram is simply a replace operation. Both

send and receive events of the join point message are replaced with the new element.

Algorithm 5.9 presents the steps needed to weave a new element around an identified join

point message. The algorithm takes as input a set of join point elements, the new element

to add, and a base model. It returns as output the woven model, where the new element

has been added around each of the identified join points.
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Algorithm 5.8: Sequence Diagram: Weaving After Adaptation
Input: JoinPointMessage-set,newElement,BaseModel

traceEvent: Event-list;
traceEvent = getEventTrace(BaseModel);
for all nextJoinPointMessage in JoinPointMessage-set do

rcvEvent = getReceiveEvent(next joinPointMessage);
indx = traceEvent.getindexOf(rcvEvent);
newSendEvent = CreateSendEvent(newElement);
newReceiveEvent = CreateReceiveEvent(newElement);
if indx = traceEvent.size() then

traceEvent = traceEvent.append(newSendEvent);
traceEvent = traceEvent.append(newReceiveEvent);

else

traceEvent.insertAt(indx+1,newSendEvent);
traceEvent.insertAt(indx+2,newReceiveEvent);

end if

end for

Algorithm 5.9: Sequence Diagram: Weaving Around Adaptation
Input: JoinPointElem-set,newElem,BaseModel

for nextJoinPoint in JoinPointElem-set do

replace(nextJoinPoint, newElem);
if isProceed(newElem) then

proceedElement = findProceed(newElem);
replace(proceedElement, nextJoinPoint);
delete(proceedElement);

else

delete(nextJoinPoint);
end if

end for

Procedure replace:

Input: oldMsg,newMsg
traceEvent = getEventTrace(BaseModel);
sndEvent = getSendEvent(oldMsg);
rcvEvent = getReceiveEvent(oldMsg);
snd_indx = traceEvent.getindexOf(sndEvent);
rcv_indx = traceEvent.getindexOf(rcvEvent);
traceEvent.insertAt(snd_indx, newMsg.sendEvent);
traceEvent.insertAt(rcv_indx, newMsg.receiveEvent);
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5.5.3 Transformation Rules

In this section, we present the transformation rules, also called mapping rules, that spec-

ify how elements of the base model should be transformed into the woven model. These

mapping rules conform to the adaptation rules presented in Chapter 4. Two adaptation

rules are supported in our approach: add and remove. We classify UML elements tar-

geted by the adaptations into three main categories: (1) Simple elements, (2) Composite

elements, and (3) Two-end elements. Simple elements are those that are compact, i.e.,

they are single atomic elements. Examples of simple elements are attributes, operations,

simple states, and actions. Composite elements are those that are composed of other UML

elements or contain references to other UML elements. Examples of composite elements

are classes, sub-machine states, and structured activity nodes. Two-end elements are those

that connect two UML elements together, such as associations, transitions, massages, and

edges. Table 5.1 summarizes all the supported elements according to their categories.

Table 5.1: Classification of the Supported UML Elements
UML Diagram UML Element Category Type

Package Composite
Class Class Composite
Diagram Operation Simple

Attribute Simple
Association Two-end
State Machine Composite

State State Simple
Machine Sub-machine State Composite
Diagram Transition Two-end

Region Composite
Interaction Composite

Sequence Interaction Use Composite
Diagram Lifeline Simple

Message Two-end
Activity Composite

Activity Action Simple
Diagram Structured Activity Node Composite

Edge Two-end
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Before describing the defined mapping rules, we first introduce the main operators

that are defined by QVT language:

• “map” operator: It is used to apply a mapping rule to a single element or a set of

elements.

• “→” operator: It is used to iterate on a collection of elements. When combined

with the map operator, it facilitates the access to each element of a collection in

order to apply the mapping rule to it.

• “·” operator: It is used to access properties or operations of single elements.

For instance, the following QVT expression shows how to apply a mapping rule addAt-

tribute, which adds an attribute attr to a given set of Class elements Set{classElem}, using

the map and → operators:

Set{classElem} → map addAttribute(attr);

The → operator iterates through the set classElem and, for each element in that set, it

applies the mapping rule addAttribute to it. The result of executing this expression is a

new set of classes, where each class has the new attribute attr added to it. In the following,

we detail the defined mapping rules.

Add Mapping Rule

Add mapping rule is called on all adaptation rules in the aspect that have the stereotype

�add�. It is important to mention here that the order of adaptation rules, as specified

in the aspect, is preserved during the weaving. The following QVT expression illustrates

how the add mapping rule is applied to each add adaptation rule extracted from the aspect.

OrderedSet{addAdaptationRules} → map addMappingRule();

For each add adaptation rule, the associated tagged values determine the appropriate map-

ping rule to be invoked. In fact, the tagged value type determines the appropriate add
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sub-rule to be performed. In addition, the name of the new added element is identified by

the tagged value name. The tagged value position of the add adaptation rule references

the position where to add the new element in contrast with other existing elements in the

base model. For instance, it indicates whether to add the new element before, after, or

around the identified join point. In the case of a class adaptation, the value of the position

property is set to its default value (inside) because of the nature of class diagrams, and

therefore it is not taken into consideration during the weaving. Finally, the value of the

tagged value pointcut is passed to the join point matching module to identify the set of

join point elements. Depending on the type of the added element, one of the following

add sub-rules is applied to the matched join points:

1. Add Simple Element(elemName, position)

This mapping rule adds a simple element to the base model. It takes two parameters:

the name of the element that should be added (elemName), and the position where

to add the element (position). This mapping rule creates the appropriate meta-

element object and sets its name to elemName. Depending on the position value,

the newly created element is placed in the base model accordingly.

object simple-meta-element {name := elemName};

2. Add Composite Element(elemName, position)

This mapping rule adds a composite element to the base model. It is similar to

the add simple element rule. In addition, it adds a reference to the behavior of the

composite element provided in the aspect. For example, in the case of an interaction

use, a reference to the corresponding interaction is required. Thus, this mapping

rule iterates through the elements of the aspect and selects the behavior that matches

the element to add. Finally, the composite element is created.

behElem := Set{aspectElem} → Select(el where el.name = elemName);

object composite-meta-element{name := elemName; refersTo := behElem};
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3. Add Two-End Element(elemName, position, sourceExp, targetExp)

Dealing with a two-end element is different from simple and composite elements

because it requires the specification of the source and the target of that element.

Therefore, two additional pointcuts are needed: one to select the source element,

and one to select the target element. These two pointcuts are specified as parameters

for the add adaptation, such that the first parameter represents the source pointcut

whereas the second parameter represents the target pointcut.

Set{sourceElem} := Set{baseModelElem} → joinPointMatching(sourceExp);

Set{targetElem} := Set{baseModelElem} → joinPointMatching(targetExp);

object two-end-meta-element{name := elemName; source := sourceElem;

target := targetElem;}

Remove Mapping Rule

The remove mapping rule is applied to each adaptation rule in the aspect that has the

stereotype �remove�. It reads the value of the tagged value pointcut and passes it to

the join point matching module to identify the set of elements to be removed. Unlike the

additive rules, the type of the element to be removed is not important. Thus, there is only

one general rule to remove any kind of UML element. Each identified join point element

is removed using the destroy method provided by QVT.

Set{elemToRemove} := Set{baseModelElem} → joinPointMatching(pointcut);

Set{elemToRemove} → destroy();

Indeed, the remove operation is very sensitive and should be dealt with cautiously, other-

wise it may result in an incorrect woven model. For instance, removing a state in a state

machine diagram without reconnecting its predecessor with its successor may result in

two disconnected state machines. Therefore, we assume that in case of any remove oper-

ation, it should be followed by an add operation that either replaces the removed element

or corrects any arising problematic issues.
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Tagging Mapping Rule

Tagging mapping rules are used to trace the modifications that are performed on the base

model. Each element that has been added or modified by the transformation needs to

be easily identified in the woven model. To this end, we define special keywords, e.g.,

�AddedElement� and �ModifiedElement�, and apply them to the affected elements.

When the woven model is generated, the affected elements can be easily distinguished

using these keywords. Note that keywords are properties of UML elements [128]. Some

keywords are predefined in UML. Moreover, user-specific keywords can be defined as it

is the case here. Table 5.2 and Table 5.3 summarize all the supported mapping rules.

Table 5.2: List of All Mapping Rules - Part 1
Transformation Definition Mapping

Rule

Sub-Rule

addClass
Add addAttribute

addOperation
addPackage

Class addAssociation
Transformation removeClass
Definition Remove removeOperation

removeAssociation
removeAttribute
removePackage

Tag tagElement
addState

Add addTransition
addSubMachineState

State addStateMachine
Machine addRegion
Transformation removeState
Definition Remove removeTransition

removeSubMachineState
removeStateMachine
removeRegion

Tag tagElement

96



Table 5.3: List of All Mapping Rules - Part 2
Transformation Definition Mapping

Rule

Sub-Rule

addAction
Add addControlFlow

addObjectFlow
addStructuredActivityNode

Activity addActivity
Transformation removeAction
Definition Remove removeControlFlow

removeObjectFlow
removeStructuredActivityNode
removeActivity

Tag tagElement
addMessage

Add addInteractionUse
Sequence addInteraction
Transformation addLifeline
Definition removeMessage

Remove removeInteractionUse
removeInteraction
removeLifeline

Tag tagElement

5.6 Related Work on Model Weaving

Various approaches have been proposed for weaving aspects into UML design models.

Some of them adopt a symmetric approach [71,85], where there is no distinction between

aspects and base models, while others follow an asymmetric approach [51, 82, 101, 116,

146, 169], where there is a clear distinction between aspects and base models. In the

following, we present a discussion of the main contributions.

Cui et al. [51] have presented an approach for modeling and integrating aspects into

UML activity diagrams. Base models are modeled as activity diagrams while aspect mod-

els, consisting of pointcut and advice models, are depicted as activity diagrams extended

by a set of stereotypes and tagged values. Compared to this contribution that supports
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only adding new elements before and after the matched join points, our framework con-

siders also replacing existing elements by new ones and removing elements. In addition,

control nodes are also considered as join points in our approach. Algorithms for matching

and weaving are provided in [51]. However, the implementation strategies have not been

detailed. Additionally, there is no formal semantics for these processes.

MATA [169] is a tool for weaving UML models based on graph transformations. It

supports weaving aspects into class, sequence, and state machine diagrams. In contrast to

our approach, in MATA there are no explicit join points; any model element can be a join

point. The UML base model is transformed into an instance of type graph. Similarly, the

aspect model is transformed into a graph rule that is automatically executed on the base

graph. After the weaving, the result is transformed back to a UML model. Graph the-

ory and tools allow MATA to perform some analysis such as aspect/feature interactions.

MATA is one of the few tools that support both structural and behavioral composition.

However, the weaving is not done on UML models directly, but rather is executed as a

graph rule using graph transformation tools.

GeKo (Generic Composition with Kermeta) [116] is a generic AOM approach that

can be applied to any well-defined meta-model. It supports both structural and behavioral

composition. The weaving is implemented as model transformations using Kermeta [16],

while the matching is performed using a Prolog-based pattern matching engine. GeKo is

one of the few approaches that provide a clear semantics for the different operators used in

the weaving. It supports adding, removing, and updating elements of the base model. The

graphical representation of the woven model is supported. However, there is no support

for traceability, meaning that the effect of an aspect on the base model is not visualized.

Fleury et al. [71] have presented a generic tool, called Kompose, for model compo-

sition based on Kermeta [16]. Kompose focuses only on the structural composition of any

modeling language described by a meta-model and does not support behavioral compo-

sition. In addition, it adopts a signature comparison mechanism for the matching of join

points, which makes the specified aspects specific rather than generic.

98



Groher and Voelter [82] have presented XWeave; a weaver that supports the weav-

ing of models and meta-models. This weaver is implemented following a model-to-model

transformation approach using the openArchitectureWare framework1. The main limita-

tion of XWeave is the fact that it only supports the addition of new elements to the base

model. It does not support removing or replacing existing elements. In addition, there are

no supported theoretical foundations for this weaver.

Hovsepyan et al. [85] have proposed an approach, called Generic Reusable Concern

Compositions (GReCCo), for composing concern models. It supports composition of

class and sequence diagrams. To support reusability, concerns are specified in a generic

way. In order to compose two concerns, a composition model is specified, which provides

directions to the transformation engine on how to compose the two models. The GReCCo

tool is implemented using ATL language [1]. Since concerns are specified as generic

models, their specialization to a particular context is needed in the composition model.

However, this suggests that for each composition operation, a separate composition model

needs to be specified, which may be a costly task in terms of effort and complexity.

Klein et al. [101] have proposed a semantic-based weaving algorithm for sequence

diagrams. Similar to our approach, they support adding, replacing, and removing behav-

iors. The weaving algorithm is implemented as a set of transformations. The matching

process consists of transforming the original model in such a way that pointcuts only

match a finite number of paths, which is a limitation of this approach.

ATLAS Model Weaver (AMW) [66] has been developed for establishing links be-

tween models. These links are stored in the weaving model. The latter is created con-

forming to a specific weaving meta-model, which enables creating links between model

elements and associations between links. AMW is based on ATL language, which sup-

ports automatic creation of traceability links between the source and the target models.

However, AMW requires continuous interaction with the developer to build the weaving

model. Additionally, AMW deals only with the XMI representation of the models.

1http://www.eclipse.org/workinggroups/oaw/
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Reddy et al. [146] have presented an approach for composing aspect-oriented class

models. The authors have described a composition approach that utilizes a composition

algorithm and composition directives. Composition directives are used when the default

composition algorithm is known or expected to yield incorrect models. The prototype tool

is based on Kermeta [16]. However, it supports only the default composition algorithm but

not the composition directives. Other model weaving approaches [77,89,176] that handle

executable UML (xUML) models are presented in the related work section of Chapter 9.

Table 5.4 summarizes the existing model weavers. It also compares the weavers

according to the supported diagrams, formalization of the weaving, tool support, aspect

reusability, weaver extensibility, and whether the approach adopts any standards for the

implementation of the tool. The terms “CD”, “SMD”, “SD”, and “AD” in the table refer

respectively to class diagrams, state machine diagrams, sequence diagrams, and activity

diagrams. The term “Generic” means that the approach supports any kind of models with

a well-defined meta-model. From this table, we conclude that our approach is the only

one that handles UML diagrams in a comprehensive way in terms of the defined criteria.

Table 5.4: Existing Model Weavers - Summary and Comparison

Research Proposal Diagrams Formality Tool Aspect

Reuse

Extensibi-

lity

Standards

Cui et al. (Jasmine-AOI)
[51]

AD Algorithms �

Fuentes and Sánchez [77] AD
Zhang et al. (Motorola
WEAVR) [176]

SMD � � �

Groher and Voelter
(XWeave) [82]

Generic � �

Morin et al. (GeKo) [116] Generic � � � �
Whittle et al. (MATA) [169] Generic � Partially � �
Klein et al. [101] SD � � �
Kienzle et al. (RAM) [99] CD, SMD,

SD
Partially �

Reddy et al. [146] CD Partially �
Hovsepyan et al. [85] CD, SD � � �
Our Approach CD, SMD,

SD, AD
� � � � �
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5.7 Conclusion

In this chapter, we have presented our weaving framework for integrating security as-

pects into UML design models. We have detailed the main steps of the proposed weaving

approach. Additionally, we have presented the weaving algorithms that implement the

weaving capabilities for each of the supported UML diagrams. The different transforma-

tion definitions and the mapping rules used to perform the weaving were also detailed.

The main advantages of our weaving approach are the portability and the expressiveness

thanks to the use of OMG standards, namely, OCL and QVT languages. By adopting

OCL for evaluating the pointcuts, we were able to match a rich join point model with

a large and variant set of join points. For instance, in activity diagrams, we consider

not only executable nodes, i.e., action nodes, but also various control nodes, e.g., fork,

decision, etc. Some of these join points cannot be captured at the code level with ex-

isting pointcuts. Thus, capturing such control nodes, at the design level, allows modeling

crosscutting concerns needed with alternatives, loops, exceptions, and multithreaded ap-

plications. Also, in state machine diagrams, we consider not only static states as join

points, but also, we capture states that dynamically depend on the transitions that are trig-

gered to reach them. The adoption of QVT for implementing the weaving allowed us to

support a wide variety of modifications on different UML diagrams. In addition, QVT ex-

tends portability of the designed weaver to all tools supporting QVT language. Moreover,

traceability of the performed weaving operations is also supported through the tagging

rules for the added and the modified elements. After weaving the needed security aspects,

the developer can validate the hardening of the models by making use of verification and

validation tools [57, 105]. In our approach, these tools take, as inputs, the woven model

and the corresponding security properties, and provide, as output, whether the security

properties are satisfied or not. It is important to mention here that the verification and

the validation task has been performed as another thread in MOBS2 project. In the next

chapter, we will present a prototype implementation of our weaving framework together

with case studies that illustrate the usefulness of the proposed framework.
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Chapter 6

Tool Support and Case Studies

6.1 Introduction

To demonstrate the feasibility of our security hardening approach, we have designed and

implemented a prototype to support the specification and the systematic integration of

security aspects into UML design models. The prototype is developed as a plug-in to

IBM-Rational Software Architect (RSA) [87]. RSA is an advanced model-driven devel-

opment tool. It contains a very powerful UML modeler that is compliant with UML 2

standard. In addition, it supports many important functionalities such as model manipu-

lation, code generation, reverse engineering from Java and C++, etc. Moreover, as RSA

is built on top of Eclipse1, our tool can be easily integrated with any IDE that is based

on the Eclipse platform. This plug-in is part of an open source project on model-based

engineering of secure software and systems2. In this chapter, we provide details about the

authoring of our AOM profile and the weaving plug-in. In addition, we develop several

case studies to illustrate our approach and explore its usefulness for security hardening.

1http://www.eclipse.org
2https://forge.ericsson.net/projects/mobstwo/
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6.2 AOM Profile

This section provides details about the authoring of our AOM profile, presented in Chapter

4, in IBM-RSA tool. In RSA, UML Profiles are files with “.epx” extension. The modeling

perspective of RSA provides creating and editing capabilities of UML profiles using the

UML extensibility feature. Figure 6.1 depicts a screenshot of the AOM profile editor.

The two main views that are used in profile authoring are the Model Explorer and the

Properties View. The Model Explorer is used to create the stereotypes of the profile, e.g.,

classAdaptation, pointcut, add, and remove. The Properties View is used to create and

set the tagged values that are associated with each stereotype, e.g., name, type, position,

and pointcut that are associated with the stereotype add. In addition, the Properties View

shows the profile properties, such as, the profile name, the file location and size, the time

when the file was last modified, and whether or not the file is editable.

Figure 6.1: AOM Profile Editor
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6.3 Weaving Framework

This section presents the design and the implementation details of our weaving tool. As

mentioned previously, this tool has been implemented as a plug-in on top of IBM-RSA

since it contains a very powerful UML modeler. In addition, RSA can be augmented with

Eclipse plug-ins, which allows our weaving tool to be embedded into any Eclipse-based

development environment. Figure 6.3 shows a screenshot of RSA tool with the weaving

plug-in being deployed.

�������	�
����������

Figure 6.2: Weaving Plug-in Integrated to IBM-RSA

The weaving plug-in consists of 253 Java classes, 51 QVT mappings with a total

of around 21300 lines of code. This plug-in provides the weaving capabilities needed

to weave the security aspects, specified using our AOM profile, into UML base models.

Figure 6.3 highlights the different components that have been implemented as part of this

plug-in. In the following, we detail each component.
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Figure 6.3: Weaving Plug-in

6.3.1 Security Property Editor

The developer should be able to specify the security requirement that he/she wants to

enforce on his/her design. To this end, we have implemented a security property editor,

where the developer can select the model that he/she wants to harden, and on the other

hand the needed security requirement. Afterwards, the security aspect that provides the

security solutions for the needed requirement is automatically selected from the security

aspects library. The covered security requirements are those commonly specified and

verified on software, and for which a security solution can be provided as an aspect.

Examples of these security requirements are secrecy, authentication, authorization, etc.

Figure 6.4 depicts a screenshot of the security property editor.

Figure 6.4: Security Property Editor
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6.3.2 Aspect Specialization through a Weaving Interface

Since security aspects are provided as generic solutions, the developer should be able to

specialize those aspects to his/her application before weaving them into base models. To

this end, we have implemented a graphical weaving interface to ease the specialization

of aspects and their weaving in a systematic way. As shown in Figure 6.5, the weaving

interface presents, on the left hand side, all the generic elements of the aspect, and on the

right hand side, all the elements of the base model. From this weaving interface and based

on his/her understanding of the application, the developer maps each generic element of

the aspect to its corresponding element(s) in the base model. Using this weaving interface,

the developer does not need to understand how the security solution is specified. Indeed,

all the details of the security solution are kept hidden from the developer and only the

generic elements of the aspect are exposed to him/her. After mapping all the generic

elements, the application-dependent aspect is automatically generated.

Figure 6.5: Weaving Interface

6.3.3 Aspect and Pointcut Parsers

The aspect parser is responsible for parsing the selected aspect, and identifying the dif-

ferent kinds of adaptations that are contained in the aspect. Then, for each adaptation
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kind, it will invoke the corresponding transformation definition. Furthermore, before ex-

ecuting the transformation rules, the textual pointcut expressions, specified in the aspect,

should be translated into OCL expressions. This is done by another component, the Point-

cut Parser, that is responsible of parsing and translating textual pointcut expressions into

OCL. In this context, we use CUP Parser Generator for Java3. This parser generator

takes as input: (1) The grammar of the pointcut language along with the actions required

to translate each primitive pointcut designator to its corresponding OCL primitive, and

(2) a scanner used to break the textual pointcut expression into meaningful tokens. It pro-

vides as output a Java parser that is capable of parsing and translating any textual pointcut

expression into its equivalent OCL one. It is important to mention here that this process

is executed automatically and in a total transparency to the developer.

6.3.4 Weaving Process

This component is responsible for performing the actual weaving of the aspect and the

base model. It includes two main sub-components: Join Point Matching Module and

Transformation Rules. The join point matching module is responsible for querying the

base model elements using the generated OCL expressions, and returning those elements

that satisfy the OCL expressions. This module is implemented as a Java program and inte-

grated to the weaving framework by extending the QVT engine through the QVT/Black-

Box mechanism [126]. This QVT feature allows the integration of external programs, ex-

pressed in other transformation languages or programming languages, to the QVT rules.

The transformation rules implement the aspect adaptation rules. They are executed on the

identified join points to produce the woven model. These rules are expressed using the

Eclipse M2M QVT Operational [91], that we installed as a plug-in on top of IBM-RSA.

3http://www2.cs.tum.edu/projects/cup/

107



6.4 Case Studies

In this section, we detail the experiments that demonstrate the feasibility and the relevance

of our security hardening framework. We conduct case studies to add security mecha-

nisms and fix various security vulnerabilities in different applications. These conducted

case studies can be summarized as follows:

• Adding input validation and access control to a service provider application.

• Adding authorization, blocking spam, and handling maximum size of instant mes-

sages in SIP-Communicator [2].

• Replacing deprecated functions in OpenSAF [14].

In the following, we detail these case studies to show how our defined approach can

be applied to detect vulnerable points in UML design models, and afterwards inject the

needed solutions at these points.

6.4.1 Service Provider Application

In this case study, we show how to automatically integrate different security mechanisms

into a service provider application. The class diagram of the service provider application

is depicted in Figure 6.6. The class Client represents the application’s users (e.g., admin-

istrator, subscribers, managers). Each type of users has specific privileges. A client can

login to the database of subscribers (ResourceDB) through an interface Provision, which

is implemented by the classes SubscriberManager and ServiceManager for manipulat-

ing subscribers and services respectively. Before clients can access a particular service,

they must first authenticate by providing username and password as their credentials. The

authentication process is modeled as an activity diagram (Figure 6.7).

Furthermore, when a client issues a request to delete a subscriber, the method

delete() of the SubscriberManager class is invoked. Then, this method executes the com-

mand to delete the subscriber from the database. Afterwards, the database destroys the
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Figure 6.6: Class Diagram for a Service Provider Application
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Figure 6.7: Activity Diagram Specifying the Authentication Process
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respective instance of the subscriber by sending the destroy message. To guarantee the

deletion of the subscriber instance, the SubscriberManager asks for the confirmation and

sends the results to the client. The client’s permissions must be verified before deleting

a subscriber (i.e., only the administrator can delete a subscriber). Figure 6.8 represents a

sequence diagram specifying the behavior of the method SubscriberManager.delete().
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Figure 6.8: Behavior of the Method SubscriberManager.delete()

In the sequel, we show how our framework can be used to specify and integrate

two security aspects to the service provider application: (1) Input Validation to check

user input, and (2) Role-Based Access Control to check user permissions before deleting

a subscriber.

Input Validation

The authentication process, as specified in Figure 6.7, might be vulnerable to various se-

curity attacks such as SQL injection and Cross-site Scripting (XSS) [72] due to malicious

inputs from the user. To fix such vulnerabilities, a security solution can be provided as

an aspect that validates user input as shown in Figure 6.9. The input validation aspect is

specified using our proposed AOM profile presented in Chapter 4. The aspect contains an

activity adaptation specifying the addition of an input validation behavior that sanitizes

user input before being processed. In other words, it checks the user input for special

110



characters. If any special character exists then the aspect sanitizes the input to remove its

effect. This behavior will be injected as a structured activity node after any action that

gets user input. In the following, we show how our framework can be used to weave this

aspect into the authentication scenario presented in Figure 6.7.
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Figure 6.9: Input Validation Aspect

The first step of the weaving is to specialize the input validation aspect to the au-

thentication scenario (Figure 6.7). To this end, the developer uses the weaving interface,

depicted in Figure 6.10, where he/she maps the abstract action GetUserInput to the actions

getUserName and getPassword. After this step, the application-dependent aspect is auto-

matically generated. Its specification is similar to the application-independent one except

for InputPointcut that will have the value: action(getUserName) or action(getPassword).

Figure 6.10: Weaving Interface: Specializing the Input Validation Aspect
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The next step of the weaving is the automatic identification of the join points where

the input validation behavior should be injected. To achieve this, we first translate the

textual expression of InputPointcut to OCL. The resulting OCL expression is as follows:

“(self.oclIsKindOf(Action) and self.name=‘getUserName’) or

(self.oclIsKindOf(Action) and self.name=‘getPassword ’)”

This expression is evaluated by the join point matching module on the base model. Ac-

cordingly, the actions getUserName and getPassword are selected as matched join points.

The last step of the weaving is the automatic injection of the input validation behavior into

the authentication scenario at the identified join points. This is achieved by executing the

QVT mapping rule that corresponds to the adaptation SanitizeInput (Figure 6.9). Finally,

the resulting woven model is generated as shown in Figure 6.11.

Figure 6.11: Authentication Scenario - Woven Model
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Role-Based Access Control

Now, we show how a security expert can use the designed AOM profile to specify an

RBAC aspect needed for enforcing access control into the design models of the service

provider application (Figure 6.6 and Figure 6.8). Before illustrating the design of the

RBAC aspect, first we give a short background on the different RBAC models. RBAC is

organized into four models:

1. Flat RBAC: It is the core model that embodies the essential concepts of RBAC:

users, roles, and permissions. It specifies the assignment of users to roles and the

assignment of permissions to roles.

2. Hierarchical RBAC: It extends the Flat RBAC by supporting role hierarchies.

3. Constrained RBAC: It extends the Hierarchical RBAC by supporting separation of

duty constraints.

4. Symmetric RBAC: It extends the Constrained RBAC by adding the ability to perform

permission-role review.

In our case study, the Flat RBAC is used to enforce access control. The specification

of the RBAC aspect is presented in Figure 6.12. In order to enforce RBAC access control

mechanisms on the different resources of the service provider application, we need to in-

troduce the RBAC components into the application using aspect adaptations. The RBAC

aspect contains two kinds of adaptations: Class Adaptation and Sequence Adaptation.

The Class Adaptation specifies the necessary modifications that should be performed on

the class diagram of the service provider application (Figure 6.6). More precisely, it adds

two classes, named Role and Permission, to the service provider application by the add

adaptations AddRole and AddPermission respectively. The location where to add these

two classes is provided by the pointcut SubscriberPackagePointcut. In addition, it en-

forces the RBAC concepts, i.e., user-role assignment and role-permission assignment, by
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adding two associations: UserAssignment between the classes (User, Role) and Permis-

sionAssignment between the classes (Role, Permission). Furthermore, the class adaptation

adds two new operations, assignRole and getPermission, to assign different roles to users

and get their permissions.

The Sequence Adaptation specifies the necessary modifications that should be per-

formed on the sequence diagram of the service provider application (Figure 6.8). More

precisely, it adds a check access behavior, by the adaptation AddCheckAccess, before call-

ing a sensitive method. This behavior is responsible for checking whether the user, trying

to access a given resource, has the appropriate privileges or not. The location where to

inject this behavior is specified by the pointcut SensitiveMethodPointcut, which selects all

message calls to SensitiveMethod() from a User instance to a Resource instance.
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Figure 6.12: Specification of the RBAC Aspect
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In what follows, we show how the developer can use our framework to apply the

RBAC aspect to the base model of the service provider application (Figure 6.6 and Fig-

ure 6.8). This RBAC aspect is though application-independent and must be specialized

by the developer to the service provider application, as shown in Figure 6.13. In this

case, the developer maps SensitiveMethod to SubscriberManager.delete(). The same way,

the developer maps User to Client, Resource to Subscriber, and SubscriberPackage to

ServiceProviderApplication.

Figure 6.13: Security Aspects Specialization

Having the RBAC aspect specialized to actual elements from the service provider

application, each pointcut element is automatically translated into its equivalent OCL ex-

pression. For example, the pointcut SensitiveMethodPointcut, presented in Figure 6.12

with the textual expression: “Message_Call(delete) && Message_Source(Client) &&

Message_Target(SubscriberManager)”, will be tokenized by the scanner into three tokens

connected with the logical operator && as follows: (1) Message_Call(delete), (2) Mes-

sage_Source(Client), and (3) Message_Target(SubscriberManager). The pointcut parser

will parse the textual expression and will translate it into the following OCL expression:

“self.oclIsTypeOf(Message) and self.name=‘delete’ and

self.connector. end-> at(1).role.name=‘Client’ and

self.connector. end-> at(2).role.name=‘SubscriberManager”’
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This expression will then be evaluated on the elements of the service provider application

and the matched elements will be selected as join points. Figure 6.14 shows the result of

evaluating the previous OCL expression on the DeleteSubscriber sequence diagram.

/������ /����������,������ /)������+ 
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Figure 6.14: Message SubscriberManager.delete() Identified as Join Point

After identifying all the existing join points, the next step is to inject the different

adaptations of the RBAC aspect at the exact locations in the base model. This is done

by executing the QVT mapping rules that correspond to the adaptation rules specified

in the RBAC aspect. These mapping rules are then interpreted by the QVT transforma-

tion engine that transforms the base model into a woven model. Figure 6.15 and Figure

6.16 show the final result after weaving the RBAC aspect into the base models of the ser-

vice provider application. Note that the classes Role and Permission have been added to

the class diagram as well as the associations UserAssignment and PermissionAssignment

(Figure 6.15). In addition, the methods assignRole and getPermission have been added to

the class Client. As for the DeleteSubscriber sequence diagram, the CheckAccess frag-

ment, in Figure 6.12, has been added as an interaction use before sending the message

delete()(Figure 6.16).
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Figure 6.15: Woven Model of Class Diagram
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Figure 6.16: Woven Model of DeleteSubscriber
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6.4.2 SIP-Communicator

SIP-Communicator4 is an open source software that provides internet-based audio/video

telephony and instant messaging services. It supports some of the most popular instant

messaging and telephony protocols, e.g., Session Initiation Protocol (SIP) [150], Exten-

sible Messaging and Presence Protocol (XMPP) [151], and Internet Relay Chat (IRC)

protocol [130]. It is composed of more than 1400 Java classes and 150K lines of code

based on version 1.0. In this sub-section, we use our framework to solve various issues

that are reported in SIP-Communicator issue list5. The conducted experiments can be

summarized as follows: (1) Adding authorization, (2) blocking spam in messaging ac-

counts, and (3) handling maximum size of instant messages. In the following, we detail

these experiments to show how our framework can be used to pick out specific points in

UML design models of SIP-Communicator and afterwards inject the needed solutions at

these points.

Authorization

We present, in this experiment, how to add an authorization mechanism into the design

models of SIP-Communicator to allow communication between only authorized clients.

The activity diagram, presented in Figure 6.17, depicts the specification of sending an

instant message using SIP protocol. The action SendRequest, that invokes the method

sendRequest(), is responsible for sending a request message. This method is being called

in 32 different places inside functions implementing the operations of SIP communica-

tor, i.e., instant messaging, telephony, presence, notification, etc. The activity diagram,

presented in Figure 6.17, is an example showing just one occurrence of this method call.

An authorization mechanism is required before any execution of the action SendRequest.

For this purpose, we catch all the actions named SendRequest in the design models and

automatically inject the authorization mechanism at the appropriate locations.

4https://jitsi.org/
5http://java.net/jira/secure/IssueNavigator.jspa?mode=hide&requestId=10290
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Figure 6.17: Activity Diagram for Sending an Instant Message - Base Model

The authorization aspect, presented in Figure 6.18, specifies the addition of an ac-

cess control behavior that checks client permissions based on the information contained

in a message request. This is accomplished by defining the adaptation AddCheckPer-

mission that injects the authorization behavior as a structured activity node before any

sensitive method picked out by the pointcut SensitiveMethod. This aspect is application-

independent and must be specialized by the developer.

The first step of the weaving is to specialize the authorization aspect to the base

model depicted in Figure 6.17. In this experiment, the developer maps the abstract method

SensitiveMethod to the method sendRequest as shown in Figure 6.19. After this step, the

application-dependent aspect is automatically generated and without the user interven-

tion. Its specification is similar to the application-independent one except for the pointcut

SensitiveMethod that will have the value action(SendRequest).
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Figure 6.18: Authorization Aspect

Figure 6.19: Specialization of the Authorization Aspect

The next step of the weaving is the automatic identification of the join points where

the check permission behavior, shown in Figure 6.18, should be injected. To achieve this,

our framework first automatically translates the textual expression of the pointcut Sensi-

tiveMethod to OCL. The resulting OCL expression is as follows:“self.oclIsTypeOf(Action)

and self.name=‘SendRequest”’.
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The evaluation of this OCL expression by the join point matching module returns all the

actions named SendRequest as join points. The last step of the weaving is the automatic

injection of the check permission behavior into the base model at the identified join points.

This is achieved by executing the QVT mapping rule that is generated automatically from

the adaptation AddCheckPermission shown in Figure 6.18. Finally, the resulting woven

model for sending an instant message is generated as shown in Figure 6.20.

Figure 6.20: Sending an Instant Message with Authorization - Woven Model
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Blocking Spam in Messaging Accounts

In this sub-section, we address the problem of spam in instant messaging accounts. To

prevent this problem, we suggest, in this experiment, to reject any messages from people

who are not on the contact list. The activity diagram, presented in Figure 6.21, depicts the

specification of handling an incoming message in SIP-Communicator. The action named

MessageReceived is a call operation action that is invoked each time an instant message

is received in a chat room.

Figure 6.21: Activity Diagram for Handling an Incoming Message - Base Model
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To implement the aforementioned solution, we provide an aspect as depicted in

Figure 6.22. The aspect contains an add adaptation (CheckMessageSource) that adds a

new behavior to reject any message whose sender is not in the contact list. This new

behavior should be invoked after receiving any instant message, i.e., after any call to the

method MessageReceived, picked out by the pointcut MessageReceived.

Figure 6.22: Aspect for SPAM Blocking

Since the aspect of Figure 6.22 is application-dependent, there is no need to spe-

cialize it to SIP-Communicator application. To identify the join points where the as-

pect adaptation CheckMessageSource should be performed, our framework automatically

translates the textual expression of the pointcut MessageReceived to OCL. The resulting

OCL expression is as follows:

“self.oclIsTypeOf(CallOperationAction) and self.operation.name=‘MessageReceived”’

The evaluation of this OCL expression, by the join point matching module, returns as

join points all the call operation actions that are invoking the method MessageReceived().

Finally, the last step of the weaving is the execution of the QVT mapping rule correspond-

ing to the adaptation CheckMessageSource. As a result, the new behavior CheckMessage-

Source is injected after the call action MessageReceived as shown in Figure 6.23.
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Figure 6.23: Activity Diagram for Handling an Incoming Message - Woven Model

Handling Maximum Message Size

In SIP-Communicator, various protocols are able to send messages of various sizes. In

this experiment, we handle the case where a user is trying to send messages that exceed

the maximum length allowed by the protocol. After sending a long message to someone,

we are never actually sure if it is received or not. One possible solution to this issue is
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to return an error indicating that the message exceeds the maximum size allowed. The

detailed behavior of sending an instant message in SIP-Communicator is depicted in the

activity diagram of Figure 6.24.

Figure 6.24: Activity Diagram for Sending an Instant Message - Base Model

The action named SendMessage is a call operation action that sends an instant mes-

sage. An aspect is depicted in Figure 6.25 to return an error indicating that the message

exceeds the maximum size allowed. It contains an add adaptation (CheckMessageSize)

that adds a new behavior to check the size of the message to be sent. This new behavior

should be invoked around sending any instant message, i.e., around any call to the method

SendMessage, picked out by the pointcut SendMessage.
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Figure 6.25: Aspect for Handling the Size of Instant Messages

Before weaving the aspect of Figure 6.25 into the base model of Figure 6.24, we

first identify the join points where the aspect adaptation CheckMessageSize should be

applied. For this purpose, our framework translates automatically the textual expression

of the pointcut SendMessage to OCL. The resulting OCL expression is as follows:

“self.oclIsTypeOf(CallOperationAction) and self.operation.name=‘SendMessage”’

The evaluation of this OCL expression by the join point matching module returns as join

points all the call operation actions that are invoking the method SendMessage(). Finally,

the last step of the weaving is the execution of the QVT mapping rule corresponding to

the adaptation CheckMessageSize. As a result, the new behavior CheckMessageSize is

injected around the call action SendMessage as shown in Figure 6.26. If the message size

exceeds the maximum allowed, an error message is displayed to the user. Otherwise, the

Proceed action in the aspect of Figure 6.25 is replaced by the original join point, i.e., the

action SendMessage.
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Figure 6.26: Activity Diagram for Sending an Instant Message - Woven Model

6.4.3 Replacing Deprecated Functions in OpenSAF

OpenSAF [14] is an open source project established to develop high availability mid-

dleware that is consistent with the Service Availability Forum specifications [13]. The

OpenSAF project consists of more than 4800 files and 1.7M lines of code written in Java

and C languages based on the release 4.0.M4. We have conducted an analysis of the C

part of OpenSAF from a security point of view using a security verification tool [164].

The analysis tool has reported more than 100 potential errors of deprecated functions.
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These functions are quite abundant in the C library. In addition, they are vulnerable to

attacks such as buffer overflows [12]. The usage of safe alternatives is required as a pre-

ventive measure. We present next how to use our defined framework to fix OpenSAF

vulnerabilities that are related to the use of deprecated functions.

We illustrate our methods on two activity diagrams describing the behavior of the

functions GetNode and GetChassisType as shown in Figure 6.27(a) and Figure 6.27(b) re-

spectively. Both activity diagrams include call operation actions that invoke a vulnerable

function sprintf(). This function uses a format string argument that enable programmers

to specify how strings should be formatted for output. This function is a deprecated func-

tion, which if not properly used, can be exploited to perform buffer overflows [11]. To

avoid this vulnerability, one possible solution is to use the secure function sprintf _s() in-

stead of sprintf(). Indeed, the function sprintf _s() allows checking the size of the output

buffer and the format string for valid formatting characters.

(a) Activity Diagram of GetNode (b) Activity Diagram of GetChassisType

Figure 6.27: OpenSAF - Base Models
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An aspect is depicted in Figure 6.28 to implement this solution. It contains the add

adaptation ReplaceSprintf that replaces any call to the function sprintf(), picked out by

the pointcut Deprecated, by a call to the secured function sprintf _s().

Figure 6.28: Aspect for Replacing Deprecated Functions

Since the aspect of Figure 6.28 is application-dependent, there is no need to spe-

cialize it to OpenSAF application. To identify the join points where the aspect adaptation

should be performed, we first translate the textual expression of the pointcut Deprecated

to OCL. The resulting OCL expression is as follows:

“self.oclIsTypeOf(CallOperationAction) and self.operation.name=‘sprintf ”’

The evaluation of this OCL expression by the join point matching module returns, as join

points, all the call operation actions that are invoking the function sprintf(). Finally, the

last step of the weaving is the execution of the QVT mapping rule corresponding to the

adaptation ReplaceSprintf. As a result, all the calls to the function sprintf() are replaced

by a call to the secured function sprintf _s() as shown in Figure 6.29(a) and Figure 6.29(b).
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(a) Woven Activity Diagram of GetNode (b) Woven Activity Diagram of GetChassisType

Figure 6.29: OpenSAF - Woven Models

6.5 Conclusion

We have presented, in this chapter, the details of our prototype implementation, including

the authoring of our AOM profile and the different components that make up the weaving

framework. The latter has been developed as a plug-in on top of IBM-RSA, which makes

it portable to any IDE that is based on Eclipse. In addition, the adoption of the standard

QVT language for implementing the adaptation rules extends portability of the weaver to

all tools supporting QVT language beyond current implementation in RSA. We have also

explored the viability and the relevance of our framework by using it to inject security

mechanisms into various mid-size open source projects, such as SIP communicator and

OpenSAF. Using our framework, we successfully solved different security vulnerabili-

ties in SIP communicator, replaced deprecated functions in OpenSAF, and added access

control and input validation mechanisms into a service provider application.
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Chapter 7

Static Matching and Weaving Semantics

in Activity Diagrams

7.1 Introduction

Aspect-Oriented Modeling (AOM) is an emerging solution for handling security concerns

at the software modeling level. In this respect, we have proposed, in Chapters 4, 5, and

6, an AOM framework for specifying and systematically integrating security aspects into

UML design models. In this chapter, we present formal specifications for aspect matching

and weaving in UML activity diagrams. In fact, most of the existing work on weaving

aspects into UML design models is presented from a practical perspective and lacks for-

mal syntax and semantics. Accordingly, there is a desideratum to put more emphasis on

the theoretical foundations that allow for rigorous definitions, establishment of theoretical

results, and consequently a better understanding of AOM.

We focus on activity diagrams typically used to model business processes and op-

erational workflows of systems [128]. Activity diagrams have a rich join point model,

and accordingly, it will be very useful to formalize their matching and weaving processes.

We formalize both types of adaptations, i.e., add adaptations, which add new elements to

an activity diagram before, after, or around specific join points, and remove adaptations,
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which delete existing elements from activity diagrams. To the best of our knowledge, this

is the first contribution in handling formal specifications of adaptation weaving specifi-

cally for around adaptation with or without proceed. Regarding the join point model, its

novelty is that we consider not only executable nodes, i.e., action nodes, but also various

control nodes, i.e., initial, final, flow final, fork, join, decision, and merge

nodes. Actually, some of these join points cannot be captured at the code level, and thus,

capturing such control nodes, at the design level, allows modeling crosscutting concerns

with alternatives, loops, exceptions, and multithreaded applications.

The remainder of this chapter is structured as follows. Section 7.2 presents the

syntax of UML activity diagrams and aspects. In Section 7.3, we define formal semantics

for aspect matching and weaving. Afterwards, in Section 7.4, we formalize algorithms

for matching and weaving. In addition, we prove the correctness and the completeness of

these algorithms with respect to the proposed semantics.

7.2 Syntax

This section presents the syntax of UML activity diagrams and aspects. The proposed

syntax covers all the constructs that are required for the matching and the weaving se-

mantics. We need first to introduce the notations that are used to express our semantics.

Notation

• The algorithms and notations are written with respect to OCaml [15].

• Given a record structure D= { f1 : D1; f2 : D2; . . . ; fn : Dn} and an element e of type

D, the access to the field fi of an element e is written as e. fi.

• Given a record structure D= { f1 : D1; f2 : D2; . . . ; fn : Dn} and an element e of type

D, the update operation that produces a copy e′ of the element e with a new value v

for the field fx, where 1 ≤ x ≤ n, is written as e′ = {e with fx = v}.
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• Given a type τ , we write τ-set to denote sets having elements of type τ .

• Given a type τ , we write τ-uset to denote sets having a unary element of type τ .

• Given a type τ , we write τ-list to denote lists having elements of type τ .

• The type Identifier classifies identifiers.

7.2.1 Activity Diagrams Syntax

An activity diagram, as shown in Figure 7.1 and Figure 7.2, consists of a set of nodes

and a set of edges. An edge is a directed connection between two nodes represented by

source and target. In addition, an edge may have a guard condition specifying if the edge

can be traversed. A node can be either an executable node (e.g., action, structured

activity) or a control node (e.g., initial, final). We consider the following nodes:

• Initial: represents an initial node, at which the activity starts executing. It has one

outgoing edge and no incoming edges.

• Final: represents a final node that can be either: (1) an activity final, at which the

activity execution terminates, or (2) a flow final, at which a flow terminates. It has

one incoming edge and no outgoing edges.

• Fork/Decision: represents a fork or a decision node. It has one incoming edge and

multiple outgoing edges.

• Join/Merge: represents a join or a merge node. It has one outgoing edge and mul-

tiple incoming edges.

• Action: represents an action node. It has one incoming and one outgoing edge.

Moreover it has input pins and output pins represented as a list of types. The type,

as specified in [131], can be Int to classify integers, Nat to classify naturals, Bool

to classify the usual truth values true or false, String to classify a sequence of

characters, or enumeration to represent user-defined data types. There are various

kinds of actions in UML 2. Among them, we consider the following:
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Activity 	 A ::= {name: Identifier; (Activity)
nodes: Node-set;
edges: Edge-set}

Node 	 n ::= Initial | Final | ForkDecision (Node)
| JoinMerge | Action
| StrActivity

Initial 	 i ::= {type: initial; (Initial)
name: Identifier;
outgoing: Edge-uset}

Final 	 f ::= {type: final | flowfinal; (Final )
name: Identifier;
incoming: Edge-uset}

ForkDecision 	 fd ::= {type: fork | decision; (Fork/Decision)
name: Identifier;
incoming: Edge-uset;
outgoing: Edge-set}

JoinMerge 	 jm ::= {type: join | merge; (Join/Merge)
name: Identifier;
incoming: Edge-set;
outgoing: Edge-uset}

Action 	 a ::= OpaqueAction | SpecificAction (Action)
OpaqueAction 	 oa ::= {type: action;

name: Identifier;
incoming: Edge-uset;
outgoing: Edge-uset;
inpin: Type-list;
outpin: Type-list}

SpecificAction 	 sa ::= {type: call | read | write| create
| destroy
name: Identifier;
operand: Identifier;
incoming: Edge-uset;
outgoing: Edge-uset;
inpin: Type-list;
outpin: Type-list}

Type 	 τ ::= Int | Nat | Bool | String | Enumeration (Type)
Enumeration 	 enu ::= {name: Identifier;

enuliteral: Identifier-list}
StrActivity 	 sta ::= {type: structured_activity; (Structured Activity)

name: Identifier;
incoming: Edge-uset;
outgoing: Edge-uset;
nodes: Node-set;
edges: Edge-set}

Figure 7.1: Activity Diagrams Syntax - Part 1
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Edge 	 e ::= {name: Identifier; (Edge)
source: Node;
target: Node;
guard: true | false}

PrNode 	 prn ::= Node | Proceed (Proceed)
Proceed 	 pr ::= {type: proceed;

incoming: Edge-uset;
outgoing: Edge-uset}

PrStrActivity 	 prsa ::= {type: proceed_str_activity; (Proceed Structured Activity)
name: Identifier;
incoming: Edge-uset;
outgoing: Edge-uset;
nodes: PrNode-set;
edges: Edge-set}

Figure 7.2: Activity Diagrams Syntax - Part 2

– Opaque action represented by action.

– Call operation action represented by call. The operation to be invoked by the

action execution is specified by the operand field.

– Read structural feature action represented by read. The structural feature to

be read is specified by the operand field.

– Write structural feature action represented by write. The structural feature to

be written is specified by the operand field.

– Create object action represented by create. The object to be created is spec-

ified by the operand field.

– Destroy object action represented by destroy. The object to be destroyed is

specified by the operand field.

• Proceed: represents a node that can be any of the previously defined nodes or a

proceed node. A proceed node is a special node that is used within the around

adaptation to represent the original computation of the matched join point. A pro-

ceed node has one incoming and one outgoing edge.

• Structured Activity: represents a structured activity node, which may have in turn

its own nodes and edges. It has one incoming and one outgoing edge.
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• Proceed Structured Activity: represents a structured activity that may have pro-

ceed nodes. It has one incoming and one outgoing edge.

7.2.2 Aspect Syntax

An aspect, as depicted in Figure 7.3, includes a list of adaptations. An adaptation can be

of two kinds:

Aspect 	 s ::= Adaptation-list (Aspect)
Adaptation 	 ad ::= {kind: add; (Adaptation)

elem: Action | StrActivity;
pos: before | after;
pcd: Pcd}

| {kind: add;
elem: Action | PrStrActivity;
pos: around;
pcd: Pcd}

| {kind: remove;
pcd: Pcd}

Pcd 	 p ::= true (Pointcut)
| ¬p
| p ∧ p
| {kind: initial | final | flowfinal | fork| join

| decision | merge | action | call | read | write
| create | destroy | inside_activity;

name: Identifer}

Figure 7.3: Aspect Syntax

• Add adaptation: It includes the following:

– The activity element to be injected at specific locations picked out by point-

cuts. It can be either a basic element (action) or a composed element (struc-

tured activity or proceed structured activity).

– The insertion point that specifies where the activity element should be in-

jected. It can have the following three values: before, after, and around.

A before- (respectively after-) position means that the new element should
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be added before (respectively after) the identified location, while an around-

position means that the existing element at the identified location should be

replaced with a new one. In the case of around, the adaptation element may

contain a proceed node that represents the computation of the matched join

point.

• Remove adaptation: It includes a pointcut that picks out the elements that should

be removed from the activity diagram.

A pointcut specifies a set of join points in the activity diagram where the aspect

adaptations should be applied. We consider the following kinds of basic pointcuts: ini-

tial, final, flowfinal, fork, join, decision, merge, action, call, read, write,

create, destroy, args, and inside_activity. The pointcuts initial, final, flow-

final, fork, join, decision, merge, and action pick out the nodes initial, final,

flowfinal, fork, join, decision, merge, and action respectively. The pointcut call

picks out action nodes that perform specific operation calls. The pointcut read (respec-

tively write) picks out action nodes that read (respectively write) the values of a specific

structural feature. The pointcut create (respectively destroy) picks out action nodes

that create (respectively destroy) objects. The pointcut args picks out call actions where

the types of their input pins are instances of the specified types in the pointcut. The point-

cut inside_activity picks each join point inside a specific activity diagram. These

basic pointcuts can be combined with logical operators to produce more complex ones.

7.3 Matching and Weaving Semantics

In this section, we present the matching and the weaving semantics. The matching seman-

tics describes how to identify the join points targeted by the activity adaptations, whereas

the weaving semantics describes how to apply the activity adaptations at the identified

join points.
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7.3.1 Matching Semantics

We define the judgment A,n �match pcd, which is used in the matching semantic rules,

presented in Figure 7.5 and Figure 7.6, to describe that a node n belonging to the activity

A matches the pointcut pcd. A node n can be an initial node i, an activity final node af,

a flow final node ff, a fork node f , a join node j, a decision node d, a merge node m, an

action node a, a call operation action node coa, a read structural feature action node ra,

a write structural feature action node wa, a create object action node ca, a destroy object

action node da, or either of these nodes sn. Before presenting the matching rules, we need

to explain the notation of equality of type lists presented in Figure 7.4, since it is used in

the rule Args. Two lists of types are equal if the nth item in the first list is an instance of

the nth item in the second list.

L1 = τ1 :: L′
1 L2 = τ2 :: L′

2 τ1 � τ2
L′

1 ≡ L′
2

L1 ≡ L2

L1 = [ ] L2 = [ ]
L1 ≡ L2

τ1 = Int τ2 = Nat
τ1 � τ2

Figure 7.4: Equality of Type Lists

In the following, we explain the matching semantic rules:

Initial Describes the case where the current node is an initial node, the current point-

cut is an initial one, and the pointcut name equals the node name. In such a

case, the initial node matches the pointcut.

Final Describes the case where the current node is an activity final node, the current

pointcut is a final one, and the pointcut name equals the node name. In such

a case, the activity final node matches the pointcut.
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pcd.kind = initial pcd.name = i.name
A, i �match pcd

(Initial)

pcd.kind = final pcd.name = af .name
A,af �match pcd

(Final)

pcd.kind = flowfinal pcd.name = ff .name
A, ff �match pcd

(FlowFinal)

pcd.kind = fork pcd.name = f .name
A, f �match pcd

(Fork)

pcd.kind = join pcd.name = j.name
A, j �match pcd

(Join)

pcd.kind = decision pcd.name = d.name
A,d �match pcd

(Decision)

pcd.kind = merge pcd.name = m.name
A,m �match pcd

(Merge)

pcd.kind = action pcd.name = a.name
A,a �match pcd

(Action)

pcd.kind = call pcd.name = coa.operand
A,coa �match pcd

(Call)

pcd.kind = read pcd.name = ra.operand
A,ra �match pcd

(Read)

pcd.kind = write pcd.name = wa.operand
A,wa �match pcd

(Write)

pcd.kind = create pcd.name = ca.operand
A,ca �match pcd

(Create)

pcd.kind = destroy pcd.name = da.operand
A,da �match pcd

(Destroy)

pcd.kind = inside_activity pcd.name =A.name
A,sn �match pcd

(InsideActivity)

pcd.kind = args pcd.input ≡ coa.inpin
A,coa �match pcd

(Args)

Figure 7.5: Matching Semantics - Part 1
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A,n �match pcd1 A,n �match pcd2
A,n �match pcd1 ∧ pcd2

(And)

A,n �match pcd1
A,n �match pcd1 ∨ pcd2

(Or1)

A,n �match pcd2
A,n �match pcd1 ∨ pcd2

(Or2)

A,n �match pcd
A,n �match ¬pcd

(Not)

Figure 7.6: Matching Semantics - Part 2

FlowFinal Describes the case where the current node is a flow final node, the current

pointcut is a flow final one, and the pointcut name equals the node name. In

such a case, the flow final node matches the pointcut.

Fork Describes the case where the current node is a fork node, the current pointcut

is a fork one, and the pointcut name equals the node name. In such a case, the

fork node matches the pointcut.

Join Describes the case where the current node is a join node, the current pointcut

is a join one, and the pointcut name equals the node name. In such a case, the

join node matches the pointcut.

Decision Describes the case where the current node is a decision node, the current

pointcut is a decision one, and the pointcut name equals the node name. In

such a case, the decision node matches the pointcut.

Merge Describes the case where the current node is a merge node, the current point-

cut is a merge one, and the pointcut name equals the node name. In such a

case, the merge node matches the pointcut.

Action Describes the case where the current node is an action node that can be either

an opaque action, a call operation action, a read structural feature action,

a write structural feature action, a create object action, or a destroy object

action, the current pointcut is an action one, and the pointcut name equals the
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node name. In such a case, the action node matches the pointcut.

Call Describes the case where the current node is a call operation action node,

the current pointcut is a call one, the pointcut name equals the name of the

operation to be invoked. In such a case, the call operation action node matches

the pointcut.

Read Describes the case where the current node is a read structural feature action

node, the current pointcut is a read one, the pointcut name equals the name

of the structural feature to be read. In such a case, the read structural feature

action node matches the pointcut.

Write Describes the case where the current node is a write structural feature action

node, the current pointcut is a write one, the pointcut name equals the name of

the structural feature to be written. In such a case, the write structural feature

action node matches the pointcut.

Create Describes the case where the current node is a create object action node, the

current pointcut is a create one, the pointcut name equals the name of the

object to be created. In such a case, the create object action node matches the

pointcut.

Destroy Describes the case where the current node is a destroy object action node, the

current pointcut is a destroy one, the pointcut name equals the name of the

object to be destroyed. In such a case, the destroy object action node matches

the pointcut.

InsideActivity Describes the case where the current node is an sn node, i.e., initial, final,

flow final, fork, join, decision, merge, or action node, the current pointcut is

an inside_activity one, and the pointcut name equals the name of the activity

containing the node. In such a case, the sn node matches the pointcut.

Args Describes the case where the current node is a call operation action, the cur-

rent pointcut is an args one, and the types given in the pointcut are equal to the

types given in the input pins of the action. In such a case, the call operation
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action matches the pointcut.

And, Or1, Or2, and Not Describe the cases where pointcuts are combined using logical

operators to produce more complex ones.

7.3.2 Weaving Semantics

The weaving semantics, shown in Figure 7.10, is represented by the weaving configura-

tion 〈Activity,Aspect,Node,State〉. The state State is a flag that represents the stage of

the weaving process, which is either weaving or end. The flag is equal to weaving when

adaptations still have to be woven, whereas it becomes end when the weaving is com-

pleted. Hence, the transformation 〈A,s,n,weaving〉 ↪→ 〈A′, [ ],n′,end〉 means that the

activity diagram A′ is the result of weaving all the applicable adaptations in the adapta-

tion list s into the node n. A node whose type is proceed is denoted pr, whereas the set

{action, call, read, write, create, destroy} is called actionSet. Before presenting

the weaving rules, we need to explain the following notation:

• The axiom � n defines that the node n is of type proceed or it is a structured activity

node having, at least, one proceed node. Derivations of proceed nodes are shown

in Figure 7.7.

n.type = proceed

� n

n.type = proceed_str_activity � n′ n′ ∈ n.nodes
� n

Figure 7.7: Derivation of Proceed Nodes

• The axiom � n defines that the node n is not of type proceed or it is a structured

activity node that none of its nodes is of type proceed. Derivations of no proceed

nodes are shown in Figure 7.8.

142



n.type �= proceed n.type �= proceed_str_activity
� n

� /0

s = {n}∪ s′ � n � s′
� s

n.type = proceed_str_activity � n.nodes
� n

Figure 7.8: Derivation of No Proceed Nodes

• The representation s′ = s[n1 → n2] describes that the set s′ comes out as a result

of substituting n1 by n2 wherever n1 appears in the set s, as long as the nodes in

the set s are not proceed structured activities. This is accompanied by modifying

the incoming and the outgoing edges of the node n2 together with modifying the

corresponding edges’ sources and targets. In the case that a node in the set s is a

proceed structured activity, we substitute n1 by n2 wherever n1 appears in the nodes

of this proceed structured activity. The substitution rules are shown in Figure 7.9.

n1.type �= proceed_str_activity e ∈ n1.incoming e′ ∈ n1.outgoing
n′ = {n2 with incoming = e,outgoing = e′} e.target = n′ e′.source = n′

{n′}= {n1}[n1 → n2]

n.type �= proceed_str_activity n �= n1
{n}= {n}[n1 → n2]

s = /0
/0 = s[n1 → n2]

s = {n}∪ s′ s1 = {n}[n1 → n2] s2 = s′[n1 → n2]
s1 ∪ s2 = s[n1 → n2]

n.type = proceed_str_activity s = n.nodes[n1 → n2] n′ = {n with nodes = s}
{n′}= {n}[n1 → n2]

Figure 7.9: Substitution Rules
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s = ad :: s′ ad.kind = add ad.pos = before n.type �= initial

A,n �match ad.pcd es = n.incoming e ∈ es e′′ = {e with target = ad.elem}
e′ = buildEdge(ad.elem,n) n′′ = {ad.elem with incoming = e′′,outgoing = e′}

n′ = {n with incoming = (es\{e})∪{e′}} no =A.nodes ed =A.edges
A′ = {A with nodes = (no\{n})∪{n′,n′′},edges = (ed\{e})∪{e′,e′′}}

〈A,s,n,weaving〉 ↪→ 〈A′,s′,n′,weaving〉

(Before)

s = ad :: s′ ad.kind = add ad.pos = after n.type �= final

n.type �= flowfinal A,n �match ad.pcd os = n.outgoing e ∈ os
next = e.target e′ = buildEdge(ad.elem,next) e′′ = {e with target = ad.elem}

n′ = {ad.elem with incoming = e′′,outgoing = e′} es = next.incoming
n′′ = {next with incoming = (es\{e})∪{e′} no =A.nodes ed =A.edges
A′ = {A with nodes = (no\{next})∪{n′,n′′},edges = (ed\{e})∪{e′,e′′}}

〈A,s,n,weaving〉 ↪→ 〈A′,s′,n,weaving〉

(After)

s = ad :: s′ ad.kind = add ad.pos = around � ad.elem
n.type ∈ actionSet A,n �match ad.pcd e ∈ n.incoming e′ ∈ n.outgoing

e′′ = {e with target = ad.elem} e′′′ = {e′ with source = ad.elem}
{n′′}= {ad.elem}[pr → n] n′ = {n′′ with incoming = e′′,outgoing = e′′′}

no =A.nodes ed =A.edges
A′ = {A with nodes = (no\{n})∪{n′},edges = (ed\{e,e′})∪{e′′,e′′′}}

〈A,s,n,weaving〉 ↪→ 〈A′,s′,n′,weaving〉

(AroundWProceed)

s = ad :: s′ ad.kind = add ad.pos = around � ad.elem
n.type ∈ actionSet A,n �match ad.pcd {n′}= {n}[n → ad.elem]

no =A.nodes A′ = {A with nodes = (no\{n})∪{n′}}
〈A,s,n,weaving〉 ↪→ 〈A′,s′,n′,weaving〉

(AroundWoutProceed)

s = ad :: s′ ad.kind = remove n.type ∈ actionSet
A,n �match ad.pcd e ∈ n.incoming e′ ∈ n.outgoing

next = e′.target e′′ = {e with target = next} es = next.incoming
n′ = {next with incoming = (es\{e′})∪{e′′} no =A.nodes ed =A.edges

A′ = {A with nodes = (no\{n,next})∪{n′},edges = (ed\{e,e′})∪{e′′}}
〈A,s,n,weaving〉 ↪→ 〈A′,s′,next,weaving〉

(Remove)

s = ad :: s′ A,n �match ¬ ad.pcd
〈A,s,n,weaving〉 ↪→ 〈A,s′,n,weaving〉 (NoMatch)

s = [ ]
〈A,s,n,weaving〉 ↪→ 〈A, [ ],n,end〉 (End)

Figure 7.10: Weaving Semantics

In the following, we explain the weaving semantic rules:

Before Describes the case where an add before adaptation matches a specific node.

This adaptation can be applied before this matched node unless it is an initial

node since this node starts the activity execution. The activity element of the
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adaptation is inserted before the matched node.

After Describes the case where an add after adaptation matches a specific node.

This adaptation can be applied after this matched node unless it is a final

node or a flow final node since those nodes terminate the activity execution.

The activity element of the adaptation is inserted after the matched node.

AroundWProceed Describes the case where an add around adaptation matches an action

node. Additionally, the adaptation element is a structured activity having, at

least, one proceed node. The activity element of the adaptation replaces the

matched node. Moreover, every occurrence of a proceed node in the nodes

of the adaptation element is replaced by the corresponding matched node.

AroundWoutProceed Describes the case where an add around adaptation matches an

action node. Additionally, the adaptation element is an action node or a struc-

tured activity that none of its nodes is a proceed one. The activity element

of the adaptation replaces the matched node.

Remove Describes the case where a remove adaptation matches a specific node. This

adaptation can be applied just on matched action nodes. The matched node is

deleted from the activity diagram.

NoMatch Describes the case where the current adaptation pointcut does not match a

node n. In this case, the activity diagram remains the same and the weaving

process continues with the rest of the adaptations.

End Describes the case where there are no more adaptations to apply on the ac-

tivity diagram. In this case, the activity diagram remains the same and the

weaving process terminates.

7.4 Completeness and Correctness of the Weaving

In this section, we address the correctness and the completeness of the weaving in UML

activity diagrams. We first present the algorithms that implement the matching and the
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weaving semantics reported in the rules in Figure 7.5, Figure 7.6, and Figure 7.10. Then,

we prove the correctness and the completeness of the matching and the weaving algo-

rithms with respect to the semantics rules. By correctness (or soundness), we mean

the output of the matching/weaving algorithm is predicted by its corresponding semantic

rules. By completeness, we mean the behavior, derived from a semantic rule, corresponds

to a particular execution of the corresponding algorithm.

7.4.1 Algorithms

In this sub-section, we present algorithms that implement the matching and the weaving

processes. We have four algorithms: containProceed in Figure 7.11, substitute in Figure

7.12, M in Figure 7.13, and W in Figure 7.14 and Figure 7.15. In the algorithms M and

W , actionSet is the set {action, call, read, write, create, destroy}. The algorithm

containProceed takes a node n as input. It returns true if the node n is of type proceed

or if it is a structured activity node that at least one of its nodes is of type proceed.

containProceed(n) = case n.type of

proceed ⇒ true

proceed_str_activity ⇒ containProceed(n′) and n′ ∈ n.nodes
otherwise ⇒ false

Figure 7.11: Proceed Algorithm

The algorithm substitute takes three arguments: a set s and two nodes n1 and n2.

It returns a set that comes out as a result of substituting n1 by n2 wherever n1 appears in

the set s as long as the nodes in the set s are not proceed structured activities. This is

accompanied by modifying the incoming and the outgoing edges of the node n2 together

with modifying the corresponding edges’ sources and targets. In the case that a node in

the set s is a proceed structured activity, we substitute n1 by n2 wherever n1 appears in

the nodes of this proceed structured activity.
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substitute(s,n1,n2) = case s of

/0 ⇒ /0
{n} ⇒ if n.type �= proceed_str_activity and n �= n1 then {n} else

if n.type �= proceed_str_activity and e ∈ n.incoming and e′ ∈ n.outgoing
then

let n′ = {n2 with incoming = e,outgoing = e′}
e.target = n′
e′.source = n′

in {n′}
else

if n.type = proceed_str_activity then

let s = substitute(n.nodes,n1,n2)
n′ = {n with nodes = s}

in {n′}
{n}∪ s′ ⇒ let s1 = substitute({n},n1,n2)

s2 = substitute(s′,n1,n2)
in s1 ∪ s2

Figure 7.12: Substitute Algorithm

The matching algorithm M takes three arguments: A set of activity diagrams AS ,

a node n, and a pointcut pcd. It returns true if the node n in the activity diagram A,

which belongs to the set AS , matches the pointcut pcd, and returns false otherwise.

M(AS,n, pcd) = if A ∈AS and n ∈ A.nodes then case pcd.kind of

inside_activity ⇒ if n.type ∈ {initial,final,flowfinal,fork,join,
decision,merge,action,call,read,write,create,
destroy} then pcd.name =A.name

initial|final|
flowfinal|fork|
join|decision|merge ⇒ if n.type = pcd.kind then n.name = pcd.name
action ⇒ if n.type ∈ actionSet then pcd.name = n.name
call|read|write|
create|destroy ⇒ if n.type = pcd.kind then pcd.name = n.operand
args ⇒ if n.type = call then

let rec eq pcd.input n.inpin= match pcd.input n.inpin with

τ1 :: l′1,τ2 :: l′2 →
if (τ1 = τ2) || (τ1 = Int and τ2=Nat) then

eq l′1 l′2
else

false

| [ ], [ ]→ true

Figure 7.13: Matching Algorithm
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The weaving algorithm W takes three arguments: An activity diagram A, an adap-

tation list s, and a node n. The outcome of the weaving algorithm is an activity diagram

A′ that represents the woven diagram. The function buildEdge, used in the weaving al-

gorithm, takes two nodes, as inputs, and returns an edge between these two nodes as

follows:

buildEdge : Node × Node→ Edge

buildEdge(s, t) = e where (e.source = s)∧ (e.target = t)

W(A,s,n) = case s of

ad :: s′ ⇒ if M({A},n,ad.pcd) then

case ad.kind of

add⇒ case ad.pos of

before⇒ if n.type �= initial then

let es = n.incoming
e ∈ es
e′′ = {e with target = ad.elem}
e′ = buildEdge(ad.elem,n)
n′′ = {ad.elem with incoming = e′′,outgoing = e′}
n′ = {n with incoming = (es\{e})∪{e′}}
no =A.nodes
ed =A.edges
A′ = {A with nodes = (no\{n})∪{n′,n′′},

edges = (ed\{e})∪{e′,e′′}}
in W(A′,s′,n′)

after ⇒ if n.type �= final and n.type �= flowfinal then

let os = n.outgoing
e ∈ os
next = e.target
e′ = buildEdge(ad.elem,next)
e′′ = {e with target = ad.elem}
n′ = {ad.elem with incoming = e′′,outgoing = e′}
es = next.incoming
n′′ = {next with incoming = (es\{e})∪{e′}
no =A.nodes
ed =A.edges
A′ = {A with nodes = (no\{next})∪{n′,n′′},

edges = (ed\{e})∪{e′,e′′}}
in W(A′,s′,n)

Figure 7.14: Weaving Algorithm - Part 1
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around⇒ if n.type ∈ actionSet and containProceed(ad.elem) then

let e ∈ n.incoming
e′ ∈ n.outgoing
e′′ = {e with target = ad.elem}
e′′′ = {e′ with source = ad.elem}
{n′′}= substitute({ad.elem}, pr,n)
n′ = {n′′ with incoming = e′′,outgoing = e′′′}
no =A.nodes
ed =A.edges
A′ = {A with nodes = (no\{n})∪{n′},

edges = (ed\{e,e′})∪{e′′,e′′′}}
in W(A′,s′,n′)

else

if n.type ∈ actionSet and ¬containProceed(ad.elem) then

let {n′}= substitute({n},n,ad.elem)
no =A.nodes
A′ = {A with nodes = (no\{n})∪{n′}}

in W(A′,s′,n′)

remove⇒ if n.type ∈ actionSet then

let e ∈ n.incoming
e′ ∈ n.outgoing
next = e′.target
e′′ = {e with target = next}
es = next.incoming
n′ = {next with incoming = (es\{e′})∪{e′′}
no =A.nodes
ed =A.edges
A′ = {A with nodes = (no\{n,next})∪{n′},edges = (ed\{e,e′})∪{e′′}}

in W(A′,s′,next)

else W(A,s′,n)

[ ] ⇒ A

Figure 7.15: Weaving Algorithm - Part 2

7.4.2 Completeness and Correctness

In this sub-section, we state and prove results that establish the soundness and the com-

pleteness of the algorithms containProceed in Figure 7.11, substitute in Figure 7.12, M
in Figure 7.13, and W in Figure 7.14 and Figure 7.15 with respect to the semantics re-

ported in Figure 7.7, Figure 7.9, Figure 7.5, Figure 7.6, and Figure 7.10 respectively.
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The following lemma states the soundness of the algorithm containProceed.

Lemma 7.4.1. (Soundness of containProceed). Given a node n. If containProceed then

� n.

The following lemma states the completeness of the algorithm containProceed.

Lemma 7.4.2. (Completeness of containProceed). Given a node n. If � n then contain-

Proceed .

The proofs of Lemma 7.4.1 and Lemma 7.4.2 are straightforward since the algorithm con-

tainProceed results from the rules presented in Figure 7.7.

The following lemma states the soundness of the algorithm substitute.

Lemma 7.4.3. (Soundness of substitute). Given a set s and two nodes n1 and n2. If

substitute(s,n1,n2) = s′ then s′ = s[n1 → n2].

The following lemma states the completeness of the algorithm substitute.

Lemma 7.4.4. (Completness of substitute). Given a set s and two nodes n1 and n2. If

s′ = s[n1 → n2] then substitute(s,n1,n2) = s′.

The proofs of Lemma 7.4.3 and Lemma 7.4.4 are straightforward since the algorithm sub-

stitute results from the rules presented in Figure 7.9.

The following lemma states the soundness of the matching algorithm M.

Lemma 7.4.5. (Soundness of M). Given a set of activity diagrams AS , an activity node

n, and a pointcut pcd. If M(AS,n, pcd) where A∈AS and n∈A.nodes then A,n�match

pcd.

Proof. The proof of Lemma 7.4.5 is straightforward by case analysis. Let us take as

example the following cases:
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• Case (initial):

From the algorithm M, we have:

pcd.kind = initial

n.type = initial

n.name = pcd.name

Since n.type = initial then n is an initial node i.

By the rule (Initial) of the matching rules presented in Figure 7.5, we conclude:

A, i �match pcd

• Case (call):

From the algorithm M, we have:

pcd.kind = call

n.type = call

pcd.name = n.operand

Since n.type = call then n is a call operation action node (coa).

By the rule (Call) of the matching rules presented in Figure 7.5, we conclude:

A,coa �match pcd

• Case (read):

From the algorithm M, we have:

pcd.kind = read

n.type = read

pcd.name = n.operand

Since n.type = read then n is a read structural feature action node (ra).

By the rule (Read) of the matching rules presented in Figure 7.5, we conclude:

A,ra �match pcd

• Case (Write):

From the algorithm M, we have:

pcd.kind = write

n.type = write
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pcd.name = n.operand

Since n.type = write then n is a write structural feature action node (wa).

By the rule (Write) of the matching rules presented in Figure 7.5, we conclude:

A,wa �match pcd

• Case (inside_activity):

From the algorithm M, we have:

pcd.kind = inside_activity

n.type = action

pcd.name =A.name

Since n.type = action then n is a simple node (sn).

By the rule (InsideActivity) of the matching rules presented in Figure 7.5, we con-

clude:

A,sn �match pcd

The following lemma states the completeness of the matching algorithm M.

Lemma 7.4.6. (Completeness of M). Given a set of activity diagrams AS , an activity

diagram A where A ∈AS , an activity node n where n ∈ A.nodes, and a pointcut pcd. If

A,n �match pcd then M(AS,n, pcd).

Proof. The proof of Lemma 7.4.6 is straightforward by propagating the matching rules

presented in Figure 7.5 and Figure 7.6 from conclusion to premises. Let us take as exam-

ple the following case:

• Case (initial):

From the rule (Initial), we have:

pcd.kind = initial

pcd.name = i.name
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Since n is an initial node i, then n.type = initial.

Since A ∈AS and n ∈ A.nodes, by the algorithm M presented in Figure 7.13, we

conclude:

M(AS,n, pcd)

The following theorem states the soundness of the weaving algorithm W .

Theorem 7.4.1. (Soundness of W). Given an activity diagram A, an adaptation list s,

and a node n. If W(A,s,n)=A′′ then 〈A,s,n,weaving〉 ↪→ 〈A′′, [ ],n′′,end〉.

Proof. The proof is done by induction over the length of s.

1. Induction basis (s = [ ]):

By the algorithm W , we have:

W(A, [ ],n)=A
From the algorithm W , we conclude that s = [ ].

From the rule (End) of the semantic weaving rules presented in Figure 7.10, we

conclude:

〈A,s,n,weaving〉 ↪→ 〈A, [ ],n,end〉

2. Induction step:

We assume as induction hypothesis:

If W(A,s′,n)=A′′ then 〈A,s′,n,weaving〉 ↪→ 〈A′′, [ ],n′′,end〉.
Now, let us consider (s = ad :: s′). Since ad.kind can be:

• Case (add):

Since ad.pos can be:

– Subcase (before):

From the algorithm W , we have:

153



M({A},n,ad.pcd)

ad.kind = add

ad.pos = before

n.type �= initial

es = n.incoming

e ∈ es

e′′ = {e with target = ad.elem}
e′ = buildEdge(ad.elem,n)

n′′ = {ad.elem with incoming = e′′,outgoing = e′}
n′ = {n with incoming = (es\{e})∪{e′}}
no =A.nodes

ed =A.edges

A′ = {A with nodes = (no\{n})∪{n′,n′′},
edges = (ed\{e})∪{e′,e′′}}

By the soundness of the algorithm M, we conclude:

A,n �match ad.pcd

From the rule (Before) of the semantic weaving rules presented in Figure

7.10, we conclude:

〈A,s,n,weaving〉 ↪→ 〈A′,s′,n′,weaving〉
By the hypothesis, we conclude:

〈A′,s′,n′,weaving〉 ↪→ 〈A′′, [ ],n′′,end〉
By the transitivity of ↪→, we conclude:

〈A,s,n,weaving〉 ↪→ 〈A′′, [ ],n′′,end〉
– Subcase (after):

From the algorithm W , we have:

M({A},n,ad.pcd)

ad.kind = add

ad.pos = after
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n.type �= final

n.type �= flowfinal

os = n.outgoing

e ∈ os

next = e.target

e′ = buildEdge(ad.elem,next)

e′′ = {e with target = ad.elem}
n′ = {ad.elem with incoming = e′′,outgoing = e′}
es = next.incoming

n′′ = {next with incoming = (es\{e})∪{e′}
no =A.nodes

ed =A.edges

A′ = {A with nodes = (no\{next})∪{n′,n′′},
edges = (ed\{e})∪{e′,e′′}}

By the soundness of the algorithm M, we conclude:

A,n �match ad.pcd

From the rule (After) of the semantic weaving rules presented in Figure

7.10, we conclude:

〈A,s,n,weaving〉 ↪→ 〈A′,s′,n,weaving〉
By the hypothesis, we conclude:

〈A′,s′,n,weaving〉 ↪→ 〈A′′, [ ],n′′,end〉
By the transitivity of ↪→, we conclude:

〈A,s,n,weaving〉 ↪→ 〈A′′, [ ],n′′,end〉
– Subcase (around with proceed):

From the algorithm W , we have:

M({A},n,ad.pcd)

ad.kind = add

ad.pos = around
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n.type ∈ actionSet

containProceed(ad.elem)

e ∈ n.incoming

e′ ∈ n.outgoing

e′′ = {e with target = ad.elem}
e′′′ = {e′ with source = ad.elem}
{n′′}= substitute({ad.elem}, pr,n)

n′ = {n′′ with incoming = e′′,outgoing = e′′′}
no =A.nodes

ed =A.edges

A′ = {A with nodes = (no\{n})∪{n′},
edges = (ed\{e,e′})∪{e′′,e′′′}}

By the soundness of the algorithm M, we conclude:

A,n �match ad.pcd

By the soundness of the algorithm containProceed, we conclude:

� ad.elem

By the soundness of the algorithm substitute, we conclude:

{n′′}= {ad.elem}[pr → n]

From the rule (AroundWProceed) of the semantic weaving rules pre-

sented in Figure 7.10, we conclude:

〈A,s,n,weaving〉 ↪→ 〈A′,s′,n′,weaving〉
By the hypothesis, we conclude:

〈A′,s′,n′,weaving〉 ↪→ 〈A′′, [ ],n′′,end〉
By the transitivity of ↪→, we conclude:

〈A,s,n,weaving〉 ↪→ 〈A′′, [ ],n′′,end〉
– Subcase (around without proceed):

From the algorithm W , we have:
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M({A},n,ad.pcd)

ad.kind = add

ad.pos = around

n.type ∈ actionSet

{n′}= substitute({n},n,ad.elem)

no =A.nodes

A′ = {A with nodes = (no\{n})∪{n′}}

By the soundness of the algorithm M, we conclude:

A,n �match ad.pcd

By the soundness of the algorithm containProceed and the rules presented

in Figure 7.7 and Figure 7.8, we conclude:

� ad.elem

By the soundness of the algorithm substitute, we conclude:

{n′}= {n}[n → ad.elem]

From the rule (AroundWoutProceed) of the semantic weaving rules pre-

sented in Figure 7.10, we conclude:

〈A,s,n,weaving〉 ↪→ 〈A′,s′,n′,weaving〉
By the hypothesis, we conclude:

〈A′,s′,n′,weaving〉 ↪→ 〈A′′, [ ],n′′,end〉
By the transitivity of ↪→, we conclude:

〈A,s,n,weaving〉 ↪→ 〈A′′, [ ],n′′,end〉
• Case (remove):

From the algorithm W , we have:

M({A},n,ad.pcd)

ad.kind = remove

n.type ∈ actionSet

e ∈ n.incoming

e′ ∈ n.outgoing
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next = e′.target

e′′ = {e with target = next}
es = next.incoming

n′ = {next with incoming = (es\{e′})∪{e′′}
no =A.nodes

ed =A.edges

A′ = {A with nodes = (no\{n,next})∪{n′},edges = (ed\{e,e′})∪{e′′}}

By the soundness of the algorithm M, we conclude:

A,n �match ad.pcd

From the rule (Remove) of the semantic weaving rules presented in Figure

7.10, we conclude:

〈A,s,n,weaving〉 ↪→ 〈A′,s′,next,weaving〉
By the hypothesis, we conclude:

〈A′,s′,next,weaving〉 ↪→ 〈A′′, [ ],n′′,end〉
By the transitivity of ↪→, we conclude:

〈A,s,n,weaving〉 ↪→ 〈A′′, [ ],n′′,end〉
• Case (no match):

By the soundness and the completeness of the algorithm M, we conclude:

A,n �match ¬ ad.pcd

From the rule (NoMatch) of the semantic weaving rules presented in Figure

7.10, we conclude:

〈A,s,n,weaving〉 ↪→ 〈A,s′,n,weaving〉
By the hypothesis, we conclude:

〈A,s′,n,weaving〉 ↪→ 〈A′′, [ ],n′′,end〉
By the transitivity of ↪→, we conclude:

〈A,s,n,weaving〉 ↪→ 〈A′′, [ ],n′′,end〉
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The following theorem states the completeness of the weaving algorithm W .

Theorem 7.4.2. (Completeness of W). Given an activity diagram A, an adaptation list

s, and a node n.

If 〈A,s,n,weaving〉 ↪→ 〈A′′, [ ],n′′,end〉 then W(A,s,n)=A′′.

Proof. The proof is done by induction over the length of s.

1. Induction basis (s = [ ]):

By the rule (End) of the semantic weaving rules presented in Figure 7.10, we have:

〈A,s,n,weaving〉 ↪→ 〈A, [ ],n,end〉
From the rule (End) of the semantic weaving rules presented in Figure 7.10, we

conclude that s = [ ].

From the algorithm W , we conclude:

W(A, [ ],n)=A.

2. Induction step:

We assume as induction hypothesis:

If 〈A,s′,n,weaving〉 ↪→ 〈A′′, [ ],n′′,end〉 then W(A,s′,n)=A′′.

Now, let us consider (s = ad :: s′). Since ad.kind can be:

• Case (add):

Since ad.pos can be:

– Subcase (before):

From the rule (Before) of the semantic weaving rules presented in Figure

7.10, we conclude:
ad.kind = add

ad.pos = before

n.type �= initial

A,n �match ad.pcd

es = n.incoming
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e ∈ es

e′′ = {e with target = ad.elem}
e′ = buildEdge(ad.elem,n)

n′′ = {ad.elem with incoming = e′′,outgoing = e′}
n′ = {n with incoming = (es\{e})∪{e′}}
no =A.nodes

ed =A.edges

A′ = {A with nodes = (no\{n})∪{n′,n′′},
edges = (ed\{e})∪{e′,e′′}}

By the completeness of the algorithm M, we conclude:

M({A},n,ad.pcd)

From the algorithm W , we conclude:

W(A,s,n)=W(A′,s′,n′)

By the hypothesis, we conclude:

W(A′,s′,n′) =A′′

– Subcase (after):

From the rule (After) of the semantic weaving rules presented in Figure

7.10, we conclude:
ad.kind = add

ad.pos = after

n.type �= final

n.type �= flowfinal

A,n �match ad.pcd

os = n.outgoing

e ∈ os

next = e.target

e′ = buildEdge(ad.elem,next)

e′′ = {e with target = ad.elem}
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n′ = {ad.elem with incoming = e′′,outgoing = e′}
es = next.incoming

n′′ = {next with incoming = (es\{e})∪{e′}
no =A.nodes

ed =A.edges

A′ = {A with nodes = (no\{next})∪{n′,n′′},
edges = (ed\{e})∪{e′,e′′}}

By the completeness of the algorithm M, we conclude:

M({A},n,ad.pcd)

From the algorithm W , we conclude:

W(A,s,n)=W(A′,s′,n)

By the hypothesis, we conclude:

W(A′,s′,n) =A′′

– Subcase (around with proceed):

From the rule (AroundWProceed) of the semantic weaving rules presented

in Figure 7.10, we conclude:

ad.kind = add

ad.pos = around

� ad.elem

n.type ∈ actionSet

A,n �match ad.pcd

e ∈ n.incoming

e′ ∈ n.outgoing

e′′ = {e with target = ad.elem}
e′′′ = {e′ with source = ad.elem}
{n′′}= {ad.elem}[pr → n]

n′ = {n′′ with incoming = e′′,outgoing = e′′′}
no =A.nodes
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ed =A.edges

A′ = {A with nodes = (no\{n})∪{n′},
edges = (ed\{e,e′})∪{e′′,e′′′}}

By the completeness of the algorithm M, we conclude:

M({A},n,ad.pcd)

By the completeness of the algorithm containProceed, we conclude:

containProceed(ad.elem)

By the completeness of the algorithm substitute, we conclude:

{n′′}= substitute({ad.elem}, pr,n)

From the algorithm W , we conclude:

W(A,s,n)=W(A′,s′,n′)

By the hypothesis, we conclude:

W(A′,s′,n′) =A′′

– Subcase (around without proceed):

From the rule (AroundWouProceed) of the semantic weaving rules pre-

sented in Figure 7.10, we conclude:

ad.kind = add

ad.pos = around

� ad.elem

n.type ∈ actionSet

A,n �match ad.pcd

{n′}= {n}[n → ad.elem]

no =A.nodes

A′ = {A with nodes = (no\{n})∪{n′}}

By the completeness of the algorithm M, we conclude:

M({A},n,ad.pcd)
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By the completeness of the algorithm containProceed, we conclude:

¬containProceed(ad.elem)

By the completeness of the algorithm substitute, we conclude:

{n′}= substitute({n},n,ad.elem)

From the algorithm W , we conclude:

W(A,s,n)=W(A′,s′,n′)

By the hypothesis, we conclude:

W(A′,s′,n′) =A′′

• Case (remove):

From the rule (Remove) of the semantic weaving rules presented in Figure

7.10, we conclude:
ad.kind = remove

n.type ∈ actionSet

A,n �match ad.pcd

e ∈ n.incoming

e′ ∈ n.outgoing

next = e′.target

e′′ = {e with target = next}
es = next.incoming

n′ = {next with incoming = (es\{e′})∪{e′′}
no =A.nodes

ed =A.edges

A′ = {A with nodes = (no\{n,next})∪{n′},
edges = (ed\{e,e′})∪{e′′}}

By the completeness of the algorithm M, we conclude:

M({A},n,ad.pcd)

From the algorithm W , we conclude:
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W(A,s,n)=W(A′,s′,next)

By the hypothesis, we conclude:

W(A′,s′,next) =A′′

• Case (no match):

From the the rule (NoMatch) of the semantic weaving rules presented in Figure

7.10, we conclude:

A,n �match ¬ ad.pcd

By the soundness and the completeness of the algorithm M, we conclude:

notM({A},n,ad.pcd)

From the algorithm W , we conclude:

W(A,s,n)=W(A,s′,n)

By the hypothesis, we conclude:

W(A,s′,n)=A′′

7.5 Conclusion

We have presented in this chapter our contribution towards ascribing a formal seman-

tics for the proposed weaving framework. We have focused on UML activity diagrams

since they offer a rich join point model that includes various kinds of actions and control

nodes. However, a formal semantics for matching and weaving for the other diagrams,

i.e., class diagrams, state machine diagrams, and sequence diagrams, can be provided in

the same vein as for activity diagrams. In this respect, a syntax of activity diagrams to-

gether with their corresponding adaptations has been defined to express the matching and

the weaving semantics. Then, we have elaborated formal specifications for the matching

and the weaving processes. We have addressed all kinds of adaptations that are supported

in our framework, namely, add before/after/around (with and without proceed), and re-

move adaptations. Afterwards, we have provided algorithms that implement the matching
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and the weaving processes and proved the correctness and the completeness of these al-

gorithms with respect to the defined semantics. It is important to mention here that our

implementation of the weaving rules, presented in Chapter 5, is derived from these se-

mantic descriptions. This work on formalizing the matching and the weaving processes

in UML activity diagrams constitutes a first contribution towards elaborating robust the-

oretical foundations for AOM. In the next chapters, we will extend this framework with

executable specifications to allow matching and weaving in the presence of more complex

pointcut primitives.
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Chapter 8

Dynamic Matching and Weaving

Semantics in λ -Calculus

8.1 Introduction

In Chapter 7, we have presented a formal semantics for aspect matching and weaving

in UML activity diagrams. To get the full advantages of our AOM framework for secu-

rity hardening, we have decided to enrich it with more security-related pointcuts together

with their semantic foundations. An example of such pointcuts is the dataflow pointcut

(dflow) [109]. This pointcut analyzes information flow in a system to detect input vali-

dation vulnerabilities, such as SQL injection and Cross-site Scripting (XSS) [72]. These

vulnerabilities, if exploited by attackers, may lead to serious security problems, such as

breaking the confidentiality and the integrity of sensitive information.

In order to match this kind of pointcut, UML models should be detailed enough

to include behaviors that manipulate variables and their data values that are useful to be

analyzed in terms of dataflow. In addition, runtime values should be available at the time

of matching in order to track dependencies between these values. To this end, we extend

our semantic framework to support executable UML (xUML) [113] specifications and

capture the semantics of matching and weaving dynamically during the execution of the
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models. For clarity and to facilitate the understanding of the semantics, we proceed in

two steps: First, we elaborate the dynamic semantics for matching and weaving on λ -

calculus [46], since it serves as a base for many programming languages and contains

constructs that are similar to the ones of action languages. In addition, it offers a powerful

mathematical tool based on solid theoretical foundations. Afterwards, in Chapter 9, we

present the dynamic semantics for matching and weaving on xUML models.

Various research proposals have investigated formal semantics of aspect-oriented

languages [25, 41, 49, 54, 63, 74, 90, 108, 111, 167, 168]. However, the proposed semantic

models mainly define join points in an intuitive and ad-hoc manner. In many cases, aux-

iliary structures need to be maintained for representing join points and executing pieces

of advice. As a result, the semantics for the matching and the weaving processes become

difficult to express, especially in the case of complex pointcut primitives. Accordingly,

there is a desideratum to put more emphasis on the theoretical foundations that capture the

definitions of aspect-oriented mechanisms in a precise and rigorous way. Such theoretical

foundations can serve both as a reference for an implementation and as a foundation to

establish theoretical properties and mathematical proofs.

The goal of this chapter is to provide a formal semantics for aspect matching and

weaving based on Continuation-Passing Style (CPS) [159]. As a first step, we consider

a core language based on λ -calculus. More precisely, we perform advice matching and

weaving during the evaluation of λ -expressions. We choose CPS as the basis of our

semantics because, as previously demonstrated in [61], modeling aspect-oriented con-

structs, i.e., join points, pointcuts, and pieces of advice, in a frame-based continuation-

passing style provides a concise, accurate, and elegant description of these mechanisms.

Indeed, in CPS join points arise naturally as continuation frames during the evaluation

of the language expressions. In this setting, pointcuts are expressions that designate a

set of continuation frames. An advice specifies actions to be performed when continua-

tion frames satisfying a particular pointcut are activated. In addition, by modeling join

points as continuation frames, matching and weaving can be described in a simplified and
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unified way for different kinds of primitives. Furthermore, CPS simplifies matching flow-

based pointcuts (e.g., cflow [96] and dflow [109] pointcuts), that are usually complex to

express and require additional structures to maintain the order of join points.

We start by formalizing matching and weaving semantics for basic pointcuts, such

as get, set, call, and exec pointcuts. These pointcuts are useful for injecting security

at specific points, such as, adding authorization before calling a sensitive method, adding

encryption before sending a secret message and decryption after receiving the message,

etc. In addition, we extend our semantic framework with flow-based pointcuts, namely,

cflow and dflow pointcuts. These pointcuts are important from a security perspective

since they can detect and fix a considerable number of vulnerabilities related to informa-

tion flow, such as Cross-site Scripting (XSS) and SQL injection attacks [72].

The remainder of this chapter is organized as follows. We start in Section 8.2 by

presenting the necessary background needed to understand the semantics. Section 8.3

presents the syntax of a core language based on λ -calculus and its denotational semantics.

We transform the semantics into a frame-based CPS style in Section 8.4. Section 8.5

explores the semantics for matching and weaving based on CPS. In Section 8.6, we extend

our work by considering flow-based pointcuts and present an example to illustrate the

proposed framework. We discuss related work in Section 8.7. Finally, concluding remarks

are presented in Section 8.8.

8.2 Background

This section provides the background knowledge that is needed to understand the seman-

tics presented in this chapter. We start by an overview of λ -calculus, more specifically, the

untyped λ -calculus since it is the language targeted in this chapter. Then, we introduce

the denotational semantics. Afterwards, we review the concepts of continuation-passing

style and defunctionalization.
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8.2.1 λ -Calculus

λ -calculus is a theory of functions introduced by Alonzo Church in the 1930s as a foun-

dation for functional computing [46]. It provides a simple notation for defining functions.

The notation consists of a set of λ -expressions, each of which denotes a function. A key

characteristic of λ -calculus is that functions are values, just like booleans and integers.

In other words, functions in λ -calculus can be passed as arguments to other functions or

returned as values from other functions. In the following, we provide details about the

syntax and the semantics of λ -expressions based on the work done in [81].

Syntax

The pure λ -calculus contains three kinds of λ -expressions, as shown in Figure 8.1:

1. Variables: represented by x, y, z, etc.

2. Function abstractions (or function definitions): represented by the expression λx. e,

where x is a variable that represents the argument and e is a λ -expression that rep-

resents the body of the function. For example, the expression λx. square x is a

function abstraction that takes a variable x and returns the square of x.

3. Function applications: represented by the expression e e′, where e and e′ are λ -

expressions. The expression e should evaluate to a function that is then applied to

the expression e′. For example, the expression (λx. square x) 3 evaluates, intu-

itively, to 9, which is the result of applying the squaring function to 3.

e ::= x variable

| λx. e abstraction

| e e′ application

Figure 8.1: Syntax of λ -Calculus
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Free and Bound Variables

An occurrence of a variable in a λ -expression is either bound or free. An occurrence of a

variable x in a λ -expression is bound if there is an enclosing λx. e, otherwise, it is free.

Example: Let us consider the following λ -expression:

e = λx. (x (λy. y z) x) y

In this expression:

• Both occurrences of the variable x are bound since they are within the scope of λx.

• The first occurrence of the variable y is bound since it is within the scope of λy.

• The last occurrence of the variable y is free since it is outside the scope of λy.

• The variable z is free since there is no enclosing λ z.

Semantics of λ -Expressions

The meaning of a λ -expression is obtained after all its function applications are carried

out. The process of evaluating a λ -expression is called conversion (or reduction). There

are three kinds of λ -conversion: α-conversion, β -conversion, and η-conversion. In the

following, we provide a brief description of them. The notation e[e′/x] used hereafter

means substituting e′ for each free occurrence of x in e. The substitution is called valid if

no free variable in e′ becomes bound after the substitution.

α-conversion

It deals with the manipulation of bound variables by allowing their names to be changed.

More precisely, it states that any abstraction λx. e can be converted to λy. e[y/x] provided

that the substitution of y for x in e is valid. For example, the expression λx. x can be α-

converted to λy. y. However, the expression λx. λy. x cannot be α-converted to λy. λy. y

because the substitution (λy. x)[y/x] is not valid since y that substitutes x becomes bound

in λy. y.
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β -conversion

It is the most important conversion in evaluating λ -expressions. It states that any appli-

cation (λx. e1) e2 can be converted to e1[e2/x] provided that the substitution of e2 for x

in e1 is valid. This conversion is similar to the evaluation of a function call, i.e., the body

e1 of the function λx. e1 is evaluated in an environment, in which the formal parameter x

is bound to the actual parameter e2. For example, the expression (λx. (λy. x)) 2 can be

β -converted to λy. 2. However, the expression (λx. (λy. x)) y cannot be β -converted to

λy. y because the substitution (λy. x)[y/x] is not valid since y that substitutes x becomes

bound in λy. y.

There are different ways by which a β -reduction can be performed. For example, the

expression (λx. square x) ((λy. y) 3) may be β -reduced to either (λx. square x) 3 or

square ((λy. y) 3). The order in which β -reductions are performed results in different

semantics, such as, call-by-value and call-by-name semantics:

• Call-by-value: ensures that functions are only called on values, i.e., given an ap-

plication (λx. e) e′, call-by-value semantics makes sure that e′ is first reduced to a

value before applying the function.

• Call-by-name: applies the function as soon as possible, i.e., given an application

(λx. e) e′, call-by-name semantics does not need to ensure that e′ is a value before

applying the function.

η-conversion

It expresses the property that two functions are equal if they always give the same results

when applied to the same arguments. More precisely, it states that an abstraction λx. (e x)

can be converted to e provided that x is not free in e. As we have seen, the function

λx. (e x) when applied to an argument e′ returns (e x)[e′/x]. If x is not free in e then

(e x)[e′/x] = e e′. Thus λx. (e x) and e denote the same function since both return the same

result, namely e e′, when applied to the same argument e′. For example, the expression
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λy. (f x y) can be η-converted to f x. However, the expression λx. (f x x) cannot be

converted to f x because x is free in f x.

8.2.2 Denotational Semantics

Denotational semantics is an approach proposed by Christopher Strachey and Dana Scott

in the late 1960s to provide a formal semantics of programming languages [153]. Con-

cisely, it gives programs a meaning (or denotation) by mapping the syntactic constructs of

a language to mathematical objects [153]. The important characteristic of this approach

is that it is generally compositional, i.e., the denotation of a program is built out of the

denotations of its sub-expressions. Denotational semantics is mostly used to illustrate the

essence of a language feature, without specifying how these features are actually real-

ized. Hence, the semantics is abstract and does not provide full implementation details.

In this semantics, each syntactic construct is mapped directly into its meaning by defining

a semantic function [[ _ ]] and a semantic domain D, such that every syntactic construct is

mapped by [[ _ ]] to elements of D, which are abstract values such as integers, booleans,

tuples of values, and functions [114]. Therefore, for each syntactic construct, a semantic

equation is defined to describe how the semantic function acts on the construct.

In denotational semantics, the context in which expressions are evaluated is called

an environment. The latter maps variables to values. Given two sets A and B, we will write

A→m B to denote the set of all mappings from A to B. A mapping m ∈ A→m B could be

defined by extension as [a1 �→ b1, ...,an �→ bn] to denote the association of the elements bi’s

to ai’s. Given two mappings m and m′, we will write m†m′ to denote the overwriting of the

mapping m by the associations of the mapping m′. Figure 8.2 presents the denotational

semantics of the λ -expressions presented in Figure 8.1. Given an expression e and an

environment ε , the semantic function [[ _ ]] yields the computed value v. In the case of:

• Variables: The denotation (computed value) is the value that the variable is bound

to in the environment.
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• Function abstractions: The denotation is a closure 〈x,e,ε ′〉 capturing the function

parameter x, the function body e, and the evaluation environment ε ′, which maps

each free variable of e into its value at the time of the declaration of the function.

• Function applications: The denotation is computed in three steps: (1) The expres-

sion e′, which is the argument, is evaluated to a value v, (2) the expression e, which

is an abstraction, is evaluated to a closure 〈x,e′′,ε ′〉, (3) the expression e′′ is evalu-

ated in the environment ε ′ where the variable x is bound to the value v.

[[ x ]]ε = ε(x)

[[ λx. e ]]ε = 〈x,e,ε ′〉

[[ e e′ ]]ε = let v = [[ e′ ]]ε in

let 〈x,e′′,ε ′〉 = [[ e ]]ε in

[[ e′′ ]]ε ′ † [x �→ v]
end

end

Figure 8.2: Denotational Semantics of λ -Calculus

8.2.3 Continuation-Passing Style

Continuation-Passing Style (CPS) is a style of programming, in which every aspect of

control flow and data flow is passed explicitly in the form of a continuation [159]. Con-

tinuations were first discovered in 1964 by Van Wijngaarden [148]. Later in the 1970s,

many researchers [102,147,160] have applied them in a wide variety of settings [148]. In

the following, we start by explaining the concept of a continuation then we provide the

main steps of a CPS transformation.

Continuations

A continuation is a function that describes the semantics of the rest of a computation.

Instead of returning a value, as in the familiar direct style, a function in CPS style takes
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another function as an additional argument, to which it will pass the current computa-

tional result. This additional function argument is the continuation. To better illustrate

the idea of continuations, let us consider the example presented in Figure 8.3, which is

taken from [29].

let prodprimes n =

if (n = 1) then 1

else if (isprime(n)) then n∗prodprimes(n−1)

else prodprimes(n−1)

Figure 8.3: Example of an OCaml Function in Direct Style

The function prodprimes computes the product of all prime numbers that are less

than or equal to a given number n. There are several points in the control flow of this

program where control is returned. For example, the call to the function isprime returns

to a point κ1 with a boolean value b. The first call to the function prodprimes (in the

then clause of the second if) returns to a point κ2 with an integer i, and the second call to

prodprimes returns to a point κ3 with an integer j. Similarly, the call to the main function

prodprimes returns to a point κ with a result r.

These return points represent continuations that express “what to do next”. In addi-

tion, each of these points can be considered as an additional argument to the corresponding

function. When the function call terminates, this additional argument will tell us where

to continue the computation. For example, the function prodprimes can be given as addi-

tional argument the return point (the continuation) κ , and when it has computed its result

r, it will continue by applying κ to r. Similarly, the function isprime can be given as addi-

tional argument the return point κ1, and when it has computed its result b, it will continue

by applying κ1 to b. The same treatment can be done to the other function calls. Figure

8.4 shows another version of the example presented above using continuations. Notice
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that all the return points mentioned above, κ , κ1, κ2, and κ3 are continuation functions.

Thus, as we can see, returning from a function in CPS style is just like a function call.

let prodprimes n κ =

if (n = 1) then κ (1)

else let κ1 b =
if (b) then

let κ2 i = κ(n∗ i) in prodprimes(n−1,κ2) end

else

let κ3 j = κ(j) in prodprimes(n−1,κ3) end

in

isprime(n,κ1)
end

Figure 8.4: Example of an Ocaml Function in CPS Style

CPS Transformation

Given a λ -expression e, it is possible to translate it into CPS. This translation is known

as CPS conversion. In the following, we provide the main steps of this conversion. An

expression e is in a tail position if it is a sub-expression of an expression e′ and when it is

evaluated, it will be returned as the result of the evaluation of e′. The keyword return is

used hereafter just to indicate that e is in a tail position.

1. Each function definition should be augmented with an additional argument; the

continuation function to which it will pass the current computational result.

let f args = e ⇒ let f args κ = e

2. A variable or a constant in a tail position should be passed as an argument to the

continuation function instead of being returned.

return e ⇒ κ e
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3. Each function call in a tail position should be augmented with the current contin-

uation. This is because in CPS, each function passes the result forward instead of

returning it.

return f args ⇒ f args κ

4. Each function call that is not in a tail position needs to be converted into a new

continuation, containing the old continuation and the rest of the computation. Here,

op represents a primitive operation, which could include an application.

op (f args) ⇒ f args (λ r. κ op r)

8.2.4 Defunctionalization

Defunctionalization is a technique by which higher-order programs, i.e., programs where

functions can represent values, are transformed into semantically equivalent first-order

programs [147]. In a defunctionalized program, a first-class function is represented with

a constructor, holding the values of the free variables of a function abstraction, and it is

eliminated with a case expression dispatching over the corresponding constructors [56].

More precisely, the defunctionalization process consists of two main steps:

1. Transform each function abstraction into a data structure holding the free variables

of the function abstraction and replace all function abstractions with their corre-

sponding data structures.

2. Define a second-class apply function that takes a data structure, which represent the

original function, and a value as its arguments. Basically, the apply function is a

collection of the bodies of all original functions with a case expression dispatching

over the corresponding data structures. Afterwards, replace all function applications

with a call to the apply function.

Therefore, the result of the transformation is a program that contains only first-

order functions. However, the original higher-order structure is implicit in the program.
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For a better understanding of the defunctionalization process, let us consider the example,

shown in Figure 8.5, which was initially provided in [56]. The function aux takes a first-

class function f as an argument, applies it to 1 and 10, and outputs the summation of the

two applications. The function main calls aux twice and outputs the multiplication of the

results.

aux : (Int→ Int)→ Int
main : Int× Int×Bool→ Int

let aux f = f 1 + f 10
let main x y b = aux(λ z. z+ x) ∗ aux(λ z. if (b) then y+ z else y− z)

Figure 8.5: Example of a Higher-Order Program

There are two function abstractions in the main function. To defunctionalize the

program, we should define data structures for these function abstractions and their cor-

responding apply function. The first function abstraction (λ z. z+ x) contains one free

variable (x, of type integer), and therefore the first data structure requires an integer. The

second function abstraction (λ z. if (b) then y+z else y−z) contains two free variables (y,

of type integer, and b, of type boolean), and therefore the second data structure requires

an integer and a boolean. The newly defined data structures are shown in Figure 8.6 and

their corresponding apply function is presented in Figure 8.7.

type Lam = Lam1 | Lam2

type Lam1 = {id : Int}

type Lam2 = {id : Int; cond : Bool}

Figure 8.6: New Data Structures

Lastly, we rewrite the program by replacing the function abstractions with their cor-

responding data structures and their applications with the newly defined apply function.

The defunctionalized program is presented in Figure 8.8.
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apply : Lam× Int→ Int

let apply l z = match l with

Lam1 l ⇒ z+ l.id

| Lam2 l ⇒ if (l.cond) then l.id+ z else l.id− z

Figure 8.7: Apply Function

aux def : Lam→ Int
main def : Int× Int×Bool→ Int

let aux def f = apply(f ,1)+apply(f ,10)
let main def x y b = aux def(Lam1(x)) ∗ aux def(Lam2(y,b))

Figure 8.8: Defunctionalized Program

8.3 Syntax and Denotational Semantics

In this section, we present the syntax of our core language and its denotational semantics.

The language is based on untyped λ -calculus. The syntax is presented in Figure 8.9. We

consider the following expressions:

• Constants and variables

• Functional constructs (function abstraction and function application)

• Local definitions

• Conditional expressions

• Sequential expressions

• Imperative features (referencing, dereferencing, and assignment expressions). The

expression ref e allocates a new reference and initializes it with the value of e. The

expression ! e reads the value stored at the location referenced by the value of e.

The expression e := e′ writes the value of e′ to the location referenced by the value

of e.
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e ::= c constant

| x variable

| λx. e abstraction

| e e′ application

| let x = e in e′ local definition

| if e1 then e2 else e3 conditional

| e1; e2 sequence

| ref e referencing

| ! e dereferencing

| e := e′ assignment

Figure 8.9: Core Syntax

The denotational semantics of the core language is presented in Figure 8.10. It

associates a value to each expression of the language. First, we define the function and

the types that are used in the semantics:

[[ _ ]]_ _ : Exp→ Env→ Store→ Result

Result : Value×Store

Value : Int | Bool | Unit | Location | Closure
Closure : Identifier×Exp×Env

Env : Identifier→ Value

Store : Location→ Value

Given an expression e, a dynamic environment ε , and a store σ , the dynamic eval-

uation function [[ _ ]] yields a pair (v, σ ′), where v is the computed value and σ ′ is the

updated store. The environment ε maps identifiers to values. The store σ maps locations

to values. A value can be either a constant, a location, or a closure. In the case of an ab-

straction expression λx. e, the computed value is a closure 〈x,e,ε ′〉 capturing the function

parameter x, the function body e, and the evaluation environment ε ′, which maps each

free variable of e to its value at the time of the declaration of the function. The function

alloc used in the semantics allocates a new cell in the store and returns a reference to it.
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[[ c ]]ε σ = (c,σ)

[[ x ]]ε σ = (ε(x),σ)

[[ λx. e ]]ε σ = (〈x,e,ε ′〉,σ)

[[ e e′ ]]ε σ = let (v,σ ′) = [[ e′ ]]ε σ in

let (〈x,e′′,ε ′〉,σ ′′) = [[ e ]]ε σ ′ in [[ e′′ ]]ε ′ † [x �→ v] σ ′′ end

end

[[ let x = e in e′ ]]ε σ = let (v,σ ′) = [[ e ]]ε σ in [[ e′ ]]ε † [x �→ v] σ ′ end

[[ if e1 then e2 else e3 ]]ε σ = let (v,σ ′) = [[ e1 ]]ε σ in

if (v) then [[ e2 ]]ε σ ′ else [[ e3 ]]ε σ ′
end

[[ e1; e2 ]]ε σ = let (v,σ ′) = [[ e1 ]]ε σ in [[ e2 ]]ε σ ′ end

[[ ref e ]]ε σ = let (v,σ ′) = [[ e ]]ε σ in

let �= alloc(σ ′) in (�,σ ′ † [� �→ v]) end

end

[[ ! e ]]ε σ = let (�,σ ′) = [[ e ]]ε σ in (σ ′(�),σ ′) end

[[ e := e′ ]]ε σ = let (�,σ ′) = [[ e ]]ε σ in

let (v,σ ′′) = [[ e′ ]]ε σ ′ in ((),σ ′′ † [� �→ v]) end

end

Figure 8.10: Denotational Semantics

8.4 Continuation-Passing Style Semantics

In this section, we transform the previously defined denotational semantics into CPS style.

As we mentioned earlier, frame-based semantics allows describing AOP semantics in

a precise and unified way. To help understanding this transformation, we proceed in

two steps. First, we elaborate CPS semantics by representing continuations as functions.

Then, we provide CPS semantics by representing continuations as frames.
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8.4.1 Representation of Continuations as Functions

The CPS semantics is presented in Figure 8.11. We translate the denotational semantics

into CPS following the original formulation of the CPS transformation [70]. In essence,

we modify the evaluation function to take a continuation as an additional argument as

follows:

[[ _ ]]_ _ _ : Exp→ Env→ Store→ Cont→ Result

Cont = Result→ Result

The continuation, represented as a λ -expression, receives the result of the current evalua-

tion and provides the semantics of the rest of the computation.

[[ c ]]ε σ κ = κ(c,σ)

[[ x ]]ε σ κ = κ(ε(x),σ)

[[ λx. e ]]ε σ κ = κ(λ (v,κ ′). [[ e ]]ε † [x �→ v] σ κ ′)

[[ e e′ ]]ε σ κ = [[ e′ ]]ε σ (λ (v,σ ′). [[ e ]]ε σ ′ (λ f . f v κ))

[[ let x = e in e′ ]]ε σ κ = [[ e ]]ε σ (λ (v,σ ′). [[ e′ ]]ε † [x �→ v] σ ′ κ)

[[ if e1 then e2 else e3 ]]ε σ κ = [[ e1 ]]ε (λ (v,σ ′). if (v) then [[ e2 ]]ε σ ′ κ else [[ e3 ]]ε σ ′ κ)

[[ e1; e2 ]]ε σ κ = [[ e1 ]]ε σ (λ (v,σ ′). [[ e2 ]]ε σ ′ κ)

[[ ref e ]]ε σ κ = [[ e ]]ε σ (λ (v,σ ′). let �= alloc(σ ′) in κ(�,σ ′ † [� �→ v]) end)

[[ ! e ]]ε σ κ = [[ e ]]ε σ (λ (�,σ ′). κ(σ ′(�),σ ′))

[[ e := e′ ]]ε σ κ = [[ e ]]ε σ (λ (�,σ ′). [[ e′ ]]ε σ ′ (λ (v,σ ′′). κ((),(σ ′′ † [� �→ v]))))

Figure 8.11: CPS Semantics: Continuations as Functions
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8.4.2 Representation of Continuations as Frames

Continuations, which are λ -expressions, are often represented as closures. Ager et al. [17]

have provided a systematic conversion of these closures into data structures (or frames)

and an apply function interpreting the operations of these closures. This conversion is

based on the concept of defunctionalization [147]. Each frame stores the value(s) of

the free variable(s) of the original continuation function and awaits the value(s) of the

previous computation. Following this technique, we transform the continuation functions,

obtained from the previous step, into frames as shown in Figure 8.12 and Figure 8.13.

# The GetF frame does not store any value.
# It awaits a location and a store.
type GetF = {}

# The SetF frame stores a location.
# It awaits a value and a store.
type SetF = {loc : Value}

# The CallF frame stores a function abstraction and an environment.
# It awaits the value of the function argument.
type CallF = {fun : Exp; env : Env}

# The ExecF frame stores the value of the argument.
# It awaits a closure, which is the result of the evaluation of the function
# abstraction, and a store.
type ExecF = {arg : Value}

# The LetF frame stores an identifier, a body of a let expression,
# and an environment.
# It awaits the value of the identifier and a store.
type LetF = {id : Identifier; exp : Exp; env : Env}

# The IfF frame stores then and else expressions and an environment.
# It awaits the value of the condition and a store.
type IfF = {thenExp : Exp; elseExp : Exp; env : Env}

Figure 8.12: Frames - Part 1
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# The SeqF frame stores the next expression and an environment.
# It awaits the value of the first expression and a store.
type SeqF = {nextExp : Exp; env : Env}

# The AllocF frame does not store any value.
# It awaits the value to be stored in the newly allocated cell and a store.
type AllocF = {}

# The RhsF frame stores the right-hand side expression of an assignment
# and an environment.
# It awaits a location and a store.
type RhsF = {exp : Exp; env : Env}

Figure 8.13: Frames - Part 2

Using frame-based semantics, the continuation κ consists of a list of frames. Before

presenting the semantics, we first define the primitive functions that will be used. The

primitive push extends a continuation list with another frame.

push : Frame→ Cont→ Cont

let push f κ = f :: κ

The primitive apply, defined in Figure 8.14, extracts the top frame from the continua-

tion list and evaluates it based on its corresponding continuation function. When the list

becomes empty, the primitive apply returns the current value and store as a result.

apply : Cont→ (Value×Store)→ (Value×Store)

let apply κ (v,σ) = match κ with

[ ] ⇒ (v,σ)
| f :: κ ′ ⇒ F [[ f ]]σ v κ ′

Figure 8.14: Apply Function

In this style, the semantics is defined in two parts: (1) The expression side, shown in

Figure 8.15, provides the evaluation of the language expressions, and (2) the frame side,

shown in Figure 8.16, provides the evaluation of the frames.
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[[ c ]]ε σ κ = apply(κ,(c,σ))

[[ x ]]ε σ κ = apply(κ,(ε(x),σ))

[[ λx. e ]]ε σ κ = apply(κ,(〈x,e,ε ′〉,σ))

[[ e e′ ]]ε σ κ = [[ e′ ]]ε σ (push(CallF(e,ε), κ))

[[ let x = e in e′ ]]ε σ κ = [[ e ]]ε σ (push(LetF(x,e′,ε),κ))

[[ if e1 then e2 else e3 ]]ε σ κ = [[ e1 ]]ε σ (push(IfF(e2,e3,ε),κ))

[[ e1; e2 ]]ε σ κ = [[ e1 ]]ε σ (push(SeqF(e2,ε),κ))

[[ ref e ]]ε σ κ = [[ e ]]ε σ (push(AllocF(),κ))

[[ ! e ]]ε σ κ = [[ e ]]ε σ (push(GetF(),κ))

[[ e := e′ ]]ε σ κ = [[ e ]]ε σ (push(RhsF(e′,ε),κ))

Figure 8.15: Frame-Based CPS Semantics: Expression Side

Example: To illustrate this transformation, let us consider the following very simple

expression: e = (λx. x)(1)

By applying the CPS semantics presented in Figure 8.11, the evaluation of this

expression is as follows:

[[ e ]]ε σ κ = [[ 1 ]]ε σ (λ (v,σ ′). [[ λx. x ]]ε σ ′ (λ f . f v κ))

The defunctionalization process consists of transforming the following λ -expressions

into frames as shown below:

λ (v,σ ′). [[ λx. x ]]ε σ ′ (λ f . f v κ) transformed into CallF(λx. x, ε)

λ f . f v κ transformed into ExecF(1)

Using these frames, the evaluation of the expression e is provided as follows, by

applying the frame semantics presented in Figure 8.15 and Figure 8.16:
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F [[ _ ]]_ _ _ : Frame→ Store→ Value→ Cont→ Result

F [[ GetF f ]]σ v κ = apply(κ,(σ(v),σ))

F [[ SetF f ]]σ v κ = apply(κ ,((),σ † [f .loc �→ v]))

F [[ CallF f ]]σ v κ = [[ f .fun ]](f .env) σ (push(ExecF(v),κ))

F [[ ExecF f ]]σ v κ = [[ e ]]ε ′ † [x �→ f .arg] σ κ where v = 〈x,e,ε ′〉

F [[ LetF f ]]σ v κ = [[ f.exp ]](f .env)† [f .id �→ v] σ κ

F [[ IfF f ]]σ v κ = if (v) then [[ f.thenExp ]](f .env) σ κ else [[ f.elseExp ]](f .env) σ κ

F [[ SeqF f ]]σ v κ = [[ f.nextExp ]](f .env) σ κ

F [[ AllocF f ]]σ v κ = let �= alloc(σ) in apply(κ ,(�,σ † [� �→ v])) end

F [[ RhsF f ]]σ v κ = [[ f .exp ]](f .env) σ (push(SetF(v),κ))

Figure 8.16: Frame-Based CPS Semantics: Frame Side

[[ e ]]ε σ κ = [[ 1 ]]ε σ (push(CallF(λx. x,ε),κ))

= apply(κ,(1,σ))

= [[ λx. x ]]ε σ (push(ExecF(1),κ))

= apply(κ,(〈x,x,ε〉,σ))

= [[ x ]]ε † [x �→ 1] σ κ

= apply(κ,(ε(x),σ))

= (ε(x),σ)

= (1,σ)

The frames CallF and ExecF correspond respectively to the states where the func-

tion λx. x is being called and executed with an argument equal to 1. In AOP, these states

are join points where a certain advice can be applied. Thus, by transforming the deno-

tational semantics into a frame-based style, the join points automatically arise within the

semantics, which makes it an appropriate approach for defining the semantics of AOP.
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8.5 Aspect Syntax and Semantics

In this section, we present our aspect extension to the core language and elaborate its

semantics. Our methodology of using CPS is based on a previous effort describing the

semantics of a first-order procedural language (PROC) [61]. In the following, we start by

presenting the aspect syntax. Then, we elaborate the matching and the weaving semantics.

8.5.1 Aspect Syntax

An aspect, depicted in Figure 8.18, includes a list of advice. An advice specifies actions to

be performed when join points satisfying a particular pointcut are reached. As in AspectJ

[96], an advice may also compute the original join point through a special expression

named proceed. Hence, as shown in Figure 8.17, we extend the core syntax with an

additional expression, proceed (e), to denote the computation of the original join point

with possibly a new argument e.

e ::= ...
| proceed (e) proceed

Figure 8.17: Proceed Expression

Syntactically, an advice contains two parts: (1) A body, which is an expression, and

(2) a pointcut, which designates a set of join points. An advice can be applied before,

after, or around a join point. However, before and after advice can be expressed as around

advice using the proceed expression [61]. Hence, we consider all kinds of advice as

around advice as this does not restrict the generality of the approach.

A pointcut is an expression that designates a set of join points. We first consider

the following basic pointcuts: GetPC, SetPC, CallPC, and ExecPC. The pointcut GetPC

(resp. SetPC) picks out join points where the value of a variable is got from (resp. set to)

the store. The pointcut CallPC (resp. ExecPC) picks out join points where a function is

called (resp. executed).
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type Aspect = Advice list

type Advice = {body : Exp; pc : Pointcut}

type Pointcut = GetPC | SetPC | CallPC | ExecPC | NotPC | AndPC

type GetPC = {id : Identifier}

type SetPC = {id : Identifier; val : Value}

type CallPC = {id : Identifier; arg : Identifier}

type ExecPC = {id : Identifier; arg : Identifier}

type NotPC = {pc : Pointcut}

type AndPC = {pc1 : Pointcut; pc2 : Pointcut}

Figure 8.18: Aspect Syntax

8.5.2 Matching Semantics

Matching is a mechanism for identifying the join points targeted by an advice. In a de-

functionalized continuation-passing style, join points correspond to continuation frames

and arise naturally when a particular continuation frame receives the value that it awaits.

The matching semantics is shown in Figure 8.19.

Given a pointcut p, the current frame f, the current value v, an environment ε , a

store σ , and a continuation κ , the matching semantics examines whether f matches p.

Matching depends on three factors: the kind and the content of the frame f and the current

value v that f receives. In the case of:

• GetPC pointcut, there is a match if f is a GetF frame and the location of the identifier

given in p is equal to the location that f receives.

• SetPC pointcut, there is a match if f is a SetF frame and the location of the identifier

given in p is equal to the location that is stored in f.
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match pc : Pointcut→ Frame→ Value→ Store→ Env→ Cont→ Bool

let match pc p f v σ ε κ = match (p, f ) with

(GetPC p,GetF f ) ⇒ ε(p.id) = v

| (SetPC p,SetF f ) ⇒ ε(p.id) = f .loc

| (CallPC p,CallF f ) ⇒ let (v′,σ ′) = [[ f .fun ]] ε σ κ in

let (v′′,σ ′′) = [[ ε(p.id) ]]ε σ κ in v′ = v′′ end

end

| (ExecPC p,ExecF f ) ⇒ let (v′,σ ′) = [[ ε(p.id) ]] ε σ κ in v = v′ end

| (NotPC p,Frame f ) ⇒ not match pc(p.pc, f ,v,σ ,ε,κ)

| (AndPC p,Frame f ) ⇒ match pc(p.pc1, f ,v,σ ,ε,κ) and

match pc(p.pc2, f ,v,σ ,ε,κ)

| otherwise ⇒ false

Figure 8.19: Matching Semantics

• CallPC pointcut, there is a match if f is a CallF frame and it holds a function equal

to the one given in p. Notice that the pointcut p contains only the function identifier

id and ε(id) gives its abstraction, assuming that in the environment identifiers map

to values in case of variables and function abstractions in case of functions.

• ExecPC pointcut, there is a match if f is an ExecF frame and the evaluation of the

function given in p is equal to the closure that f receives.

• NotPC pointcut, there is a match if f does not match the sub-pointcut of p.

• AndPC pointcut, there is a match if f matches both its sub-pointcuts.

Example: Let us consider the previous expression (slightly changed to define a function

f):

e = (let f = λx. x in f (1) end)
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and a pointcut p that captures any call to the function f with an argument x:

CallPC p = {id = f ; arg = x}

As shown in the previous section, the frame-based semantics of the expression e use the

frames CallF(λx. x,ε) and ExecF(1), which correspond to the states where the function

λx. x is called and executed respectively. By applying the matching semantics presented

in Figure 8.19, it is clear that the pointcut p matches the CallF frame.

8.5.3 Weaving Semantics

The weaving semantics describes how to apply the matching advice at the identified join

points. Since join points correspond to continuation frames, advice body provides a means

to modify the behavior of those continuation frames. The weaving is performed directly

in the evaluation function. To do so, we redefine the apply function, as shown in Figure

8.20, to take an aspect α and an environment ε into account. Accordingly, the signatures

of the evaluation functions as well as the matching ones are also modified to take the

aspect and the environment as additional arguments.

The weaving is done in two steps. When a continuation frame is activated, we first

check for a matching advice by calling the get matches function. If there is any applica-

ble advice, the function execute advice is called. Otherwise, the original computation is

performed. In the following, we explain these two steps.

Advice Matching

Advice matching is shown in Figure 8.21. To get an applicable advice, we go through the

aspect and check whether its enclosed pointcuts match the current frame. This is done by

using the function match pc defined previously in Figure 8.19. In case there is a match,

we return a structure MatchedAD containing the advice itself and the pointcut arguments

that will pass values to the advice execution.
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apply : Cont→ (Value×Store)→ Env→ Aspect→ (Value×Store)

let apply κ (v,σ) ε α = match κ with

[ ] ⇒ (v,σ)

| f :: κ ′ ⇒ let ms = get matches(f ,v,σ ,ε,α,κ ′) in

if ms = [ ] then F [[ f ]]ε σ v α κ ′
else

let argV = match f with

SetF f ⇒ v
| CallF f ⇒ v
| ExecF f ⇒ f .arg
| otherwise ⇒ ()

in execute advice(ms, f ,argV,σ ,ε,α,κ ′)
end

end

Figure 8.20: Redefined Apply Function

Advice Execution

Advice execution is shown in Figure 8.22. It starts by evaluating the body of the first

applicable advice. The remaining applicable pieces of advice as well as the current frame

are stored in the environment by binding them to auxiliary variables, &proceed and &jp

respectively. To evaluate the advice body, we define a new continuation frame, AdvExecF,

as follows:

type AdvExecF = {matches : MatchedAD list; jp : Frame}
F [[ AdvExecF f ]]ε σ v α κ = execute advice(f .matches, f .jp,v,σ ,ε ,α ,κ)

The evaluation of the proceed expression is provided below. The value of its argument

is passed to the next advice or to the current join point if there is no further advice. To

execute the remaining pieces of advice, the AdvExecF frame is added to the list of frames.

[[ proceed (e) ]]ε σ α κ = [[ e ]]ε σ α (push(AdvExecF(ε(&proceed),ε(&jp)),κ))

When all applicable pieces of advice are executed, the original computation, i.e., the
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type MatchedAD = {arg : Identifier; ad : Advice}
get matches : Frame→ Value→ Store→ Env→ Aspect→ Cont

→ MatchedAD list

let get matches f v σ ε α κ = match α with

[ ] ⇒ [ ]

| ad :: α ′ ⇒ let p = ad.pc in

if match pc(p, f ,v,σ ,ε,α ,κ) then

let arg = match p with

SetPC p ⇒ p.id
| CallPC p | ExecPC p ⇒ p.arg
| otherwise ⇒ ()

in

MatchedAD(arg,ad) :: get matches( f ,v,σ ,ε,α ′,κ)
end

else

get matches( f ,v,σ ,ε,α ′,κ)
end

Figure 8.21: Advice Matching

execute advice : MatchedAD list→ Frame→ Value→ Store→ Env→ Aspect
→ Cont→ Result

let execute advice ms f v σ ε α κ = match ms with

[ ] ⇒ apply(push(MarkerF(),(push(f ,κ))),(v,σ),ε,α)
| m :: ms′ ⇒ let ad = m.ad in

[[ ad.body ]]ε † [&proceed �→ ms′,&jp �→ f ,m.arg �→ v] σ α κ
end

Figure 8.22: Advice Execution

current join point, is invoked. To avoid matching the currently matched frame repeatedly,

we introduce a new frame, MarkerF, which invokes the primary apply function, renamed

here as apply prim.

type MarkerF = { }
F [[MarkerF f ]]ε σ v α κ = apply prim(κ,(v,σ))
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Example: If we consider the previous example:

Expression: e = (let f = λx. x in f (1) end)

Pointcut: CallPC p = {id = f ; arg = x}

and we define advice a as:

Advice a = {body = proceed (2); pc = p}

As we have seen in the matching semantics, the frame CallF(λx. x,ε) is matched as

a join point. The advice a is then executed at the state when this frame is extracted from

the continuation list, i.e., when it receives the value of the argument. Since the advice

body is proceed (2), the frame CallF(λx. x,ε) will be evaluated with an argument equal

to 2 instead of 1.

8.6 Semantics of Flow-Based Pointcuts

In this section, we extend our framework to flow-based pointcuts, namely, control flow

(cflow) [96] and dataflow (dflow) [109] pointcuts. These pointcuts are useful from a

security perspective since they can detect a considerable number of vulnerabilities related

to information flow, such as Cross-site Scripting (XSS) and SQL injection attacks [72].

First, we extend the aspect syntax with these two pointcuts, as shown in Figure 8.23, and

then we provide their semantics in the following subsections.

type Pointcut = ... | CFlowPC | DFlowPC

type CFlowPC = {pc : Pointcut}

type DFlowPC = {pc : Pointcut; tag : Identifier}

Figure 8.23: Syntax of cflow and dflow Pointcuts
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8.6.1 Control Flow Pointcut

The control flow pointcut, cflow(p), picks out each join point in the control flow of the

join points picked out by the pointcut p [96]. One of the techniques that are used to

implement cflow is the stack-based approach [59, 111]. The latter maintains a stack of

join points. The algorithm for matching cflow pointcut starts from the top of the stack and

matches each join point against p. If there is a match then the current join point satisfies

the cflow pointcut [111]. Implementing the cflow pointcut by adopting this approach

in our framework is straightforward as the stack of join points corresponds to the list of

continuation frames in our model. Figure 8.24 shows the cflow matching semantics.

type JpF = GetF | SetF | CallF | ExecF

let match pc p f v σ ε α κ = match (p, f ) with

...
| (CFlowPC p,JpF f ) ⇒ let b1 =match pc(p.pc, f ,v,σ ,ε,α,κ) in

if (b1) then

let κ ′ = push(CflowF(p.pc),κ) in b1 end

else

exists(CflowF(p.pc),κ)
end

Figure 8.24: Matching Semantics of the cflow Pointcut

When a frame matches the sub-pointcut p of a cflow pointcut, a special marker

frame, CFlowF, is pushed into the continuation list. The purpose of using this marker

frame is to detect exit points of join points that match p. For example, if p is a call

pointcut, the marker frame is pushed into the continuation list if the top frame matches p.

Then, the marker frame will be extracted from the continuation list when the evaluation

of the function call terminates. The CFlowF is defined as follows:

type CFlowF = {pc : Pointcut}
F [[ CFlowF f ]]ε σ v α κ = apply(κ,(v,σ),ε,α)

In summary, a join point frame f matches a cflow pointcut that contains a pointcut
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p if: (1) The frame f matches the sub-pointcut p, or (2) a CFlowF marker frame that con-

tains p exists in the continuation list. The primitive function exists used in the matching

semantics is defined in Figure 8.25. This function takes a frame f and a continuation list

κ and checks whether f exists in the list or not.

exists : Frame→ Cont→ Bool

let exists f κ = match κ with

[ ] ⇒ false

| f ′ :: κ ′ ⇒ let b = match f ′ with

CflowF f ′ ⇒ f ′.pc = f .pc
| otherwise ⇒ false

in

b or exists(f ,κ ′)
end

Figure 8.25: Exists Function

8.6.2 Dataflow Pointcut

The dataflow pointcut, as defined in [109], picks out join points based on the origins of

values, i.e., dflow[x, x′](p) matches a join point if the value of x originates from the value

of x′. Variable x should be bound to a value in the current join point whereas variable x′

should be bound to a value in a past join point matched by p. Therefore, dflow must be

used in conjunction with some other pointcut that binds x to a value in the current join

point [109]. To match a dflow pointcut, tags are used to discriminate dflow pointcuts

and track dependencies between values [109]. This pointcut is useful where information

flow is important, such as to detect input validation vulnerabilities in Web applications.

As defined in Figure 8.23, the dflow pointcut has a sub-pointcut pc and a unique

tag that discriminates this dflow pointcut from other dflow pointcuts. In order to track

dependencies between values, we use a tagging environment γ that maps values to tags.

As shown in Figures 8.26 and 8.27, tag propagation is performed dynamically at the same
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time we evaluate each expression. Thus, we augment the signatures of the evaluation

functions as well as the apply function with the tagging environment as follows:

[[ _ ]]_ _ _ _ _ : Exp→ Env→ Tag Env→ Store→ Aspect→ Cont→ Result

F [[ _ ]]_ _ _ _ _ _ : Frame→ Env→ Tag Env→ Store→ Value→ Aspect

→ Cont→ Result

apply : Cont→ (Value×Store)→ Env→ Tag Env→ Aspect

→ (Value×Store)

[[ c ]]ε γ σ α κ = apply(κ,(c,σ),ε,γ † [c �→ { }],α)

[[ x ]]ε γ σ α κ = apply(κ,(ε(x),σ),ε,γ ,α)

[[ λx. e ]]ε γ σ α κ = apply(κ ,(〈x,e,ε ′,γ ′〉,σ),ε,γ,α)

[[ e e′ ]]ε γ σ α κ = [[ e′ ]]ε γ σ α (push(CallF(e,ε), κ))

[[ let x = e in e′ ]]ε γ σ α κ = [[ e ]]ε γ σ α (push(LetF(x,e′,ε),κ))

[[ if e1 then e2 else e3 ]]ε γ σ α κ = [[ e1 ]]ε γ σ α (push(IfF(e2,e3,ε),κ))

[[ e1; e2 ]]ε γ σ α κ = [[ e1 ]]ε γ σ α (push(SeqF(e2,ε),κ))

[[ ref e ]]ε γ σ α κ = [[ e ]]ε γ σ α (push(AllocF(),κ))

[[ ! e ]]ε γ σ α κ = [[ e ]]ε γ σ α (push(GetF(),κ))

[[ e := e′ ]]ε γ σ α κ = [[ e ]]ε γ σ α (push(RhsF(e′,ε),κ))

[[ proceed (e) ]]ε γ σ α κ = [[ e ]]ε γ σ α (push(AdvExecF(ε(&proceed),ε(&jp)),κ))

Figure 8.26: Frame-Based CPS Semantics with the dflow Pointcut: Expression Side

Notice that the definition of the apply function does not change, only the tagging

environment is passed to the matching function. Notice also that in the case of an abstrac-

tion expression, the closure 〈x,e,ε ′〉 is extended with a tagging environment γ ′ to capture

the tags generated during the function execution. In addition, we define a marker frame
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F [[ GetF f ]]ε γ σ v α κ = apply(κ,(σ(v),σ),ε,γ † [σ(v) �→ γ(v)],α)

F [[ SetF f ]]ε γ σ v α κ = apply(κ ,((),σ † [f .loc �→ v]),ε,γ † [f .loc �→ γ(v)],α)

F [[ CallF f ]]ε γ σ v α κ = [[ f .fun ]](f .env) γ σ α (push(ExecF(v),κ))

F [[ ExecF f ]]ε γ σ v α κ = [[ e ]](ε ′ † [x �→ f .arg])(γ ′ † [ε(x) �→ γ( f .arg)]) σ α (push(DflowF(γ),κ))
where v = 〈x,e,ε ′,γ ′〉

F [[ LetF f ]]ε γ σ v α κ = [[ f.exp ]](f .env † [f .id �→ v])(γ † [ε(f .id) �→ γ(v)]) σ κ

F [[ IfF f ]]ε γ σ v α κ = if (v) then [[ f.thenExp ]](f .env) γ σ α κ else [[ f.elseExp ]](f .env) γ σ α κ

F [[ SeqF f ]]ε γ σ v α κ = [[ f.nextExp ]](f .env) γ σ α κ

F [[ AllocF f ]]ε γ σ v α κ = let �= alloc(σ) in apply(κ ,(�,σ † [� �→ v]),ε,γ † [� �→ γ(v)],α) end

F [[ RhsF f ]]ε γ σ v α κ = [[ f .exp ]](f .env) γ σ α (push(SetF(v),κ))

F [[ AdvExecF f ]]ε γ σ v α κ = execute advice(f .matches, f .jp,v,σ ,ε,γ,α ,κ)

F [[ MarkerF f ]]ε γ σ v α κ = apply prim(κ,(v,σ))

F [[ CFlowF f ]]ε γ σ v α κ = apply(κ ,(v,σ),ε,γ ,α)

F [[ DFlowF f ]]ε γ σ v α κ = apply(κ ,(v,σ),ε, f .tag_env † [v �→ getTags(γ)],α)

Figure 8.27: Frame-Based CPS Semantics with the dflow Pointcut: Frame Side

DflowF that is used for tag propagation in the case of an application expression. This

frame stores a tagging environment before entering a function call and awaits the result

of the call.

type DflowF = {tag_env : Env}

In the following, we explain the tag propagation rules for the affected expressions:

• The value of a constant is associated with an empty set.

• In the case of an application expression (λx. e) e′, the tags of the value of the
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argument e′ propagate to the value of the variable x. This is performed during the

evaluation of the ExecF frame as shown in Figure 8.27. In addition, the tags of the

argument as well as the tags that are generated during the execution of the function

body propagate to the result of the function call. For this reason, we use a DflowF

frame to access the result of the function call and restore the tagging environment

after returning from the call. The function getTags(γ) is used to retrieve all the tags

stored in the tagging environment γ .

• In the case of a let expression (let x = e in e′), the tags of the value of the

expression e propagate to the value of x. This is performed during the evaluation of

the LetF frame as shown in Figure 8.27.

• In the case of a referencing expression ref e, the tags of the value of the expression

e propagate to the value of the expression ref e. This is performed during the

evaluation of the AllocF frame as shown in Figure 8.27.

• In the case of a dereferencing expression !e, the tags of the value of the reference

e propagate to the value stored at that reference. This is performed during the

evaluation of the GetF frame as shown in Figure 8.27.

• In the case of an assignment expression e := e′, the tags of the value of the expres-

sion e′ propagate to the value of the expression e. This is performed during the

evaluation of the SetF frame as shown in Figure 8.27.

The matching semantics of the dflow pointcut is presented in Figure 8.28. A join

point frame f matches a dflow pointcut that contains a pointcut pc and a tag t if: (1) The

frame f matches the pointcut pc of the dflow pointcut, or (2) the set of tags of the value

that the frame f awaits (captured by the variable val′) contains the tag t. In case a frame f

matches the pointcut pc of the dflow pointcut, the tag t propagates to the value associated

with the frame f (captured by the variable val).
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let match pc p f v σ ε γ α κ = match (p, f ) with

...
| (DFlowPC p,JpF f ) ⇒ let (b,γ ′) =match pc(p.pc, f ,v,σ ,ε,γ ,α ,κ) in

let val = match f with

GetF f ⇒ v
SetF f ⇒ v
CallF f ⇒ let p = p.pc in

let (v′,σ ′) = [[ ε(p.id) ]]ε γ σ α κ in

v′
end

end

ExecF f ⇒ v
in

if (b) then (true,γ ′ † [val �→ γ ′(val)∪{p.tag}])
else let val′ = match f with

CallF f ⇒ v
otherwise ⇒ val

in

(p.tag ∈ γ ′(val′),γ ′)
end

end

end

Figure 8.28: Matching Semantics of the dflow Pointcut

8.6.3 Example

To illustrate the semantics of the dflow pointcut, let us consider the following example:

Expression:

let userId = 1 in

let getInput = λx. e1 in # getInput : gets a user input

let write = λx′. e2 in # write : writes a string on a web page

z = getInput(userId);

w = write(z)

end

end

end
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The presented example is vulnerable to Cross-Site Scripting (XSS) attacks [72] since an

untrusted input received from a user has not been sanitized before being placed into the

contents of a web page. Therefore, it enables an attacker to inject malicious scripts into

a web page and reveal confidential information. The dflow pointcut can be remarkably

used to address XSS flaws as shown in [109]. Below, we provide a sanitizing aspect to fix

the discussed vulnerability.

Aspect (Pointcuts and Advice):

CallPC p1 = {id = getInput; arg = x}
DFlowPC p2 = {pc = p1; tag = t}
CallPC p3 = {id = write; arg = y}
AndPC p = {pc1 = p2; pc2 = p3}
Advice a = {body = let sanitize = λ r. e3 in proceed (sanitize(y)); pc = p}

The pointcut p1 is a call pointcut that captures all calls to the getInput function. Like-

wise, the pointcut p3 captures all calls to the write function. The pointcut p2 is a dflow

pointcut that captures all join points that depend on the join points captured by the point-

cut p1. Finally, the pointcut p picks out all calls to the write function that are dependent on

the results of invoking the function getInput. The advice a first sanitizes the arguments of

the join points captured by p, and then invokes the original join points with the sanitized

arguments. More precisely, advice a picks out all calls to write(z) that depend on the

result of getInput and replaces them with write(sanitize(z)) by the following justification:

• The call to getInput(userId) matches the pointcut p2, and consequently, the tag t is

added to the tagging environment of the function and is given to the result of the

function evaluation.

• According to the tag propagation rule for assignment expressions, the value of the

variable z gets the tag t.
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• Subsequently, the call to write(z) matches the pointcut p since it matches both sub-

pointcuts of p. More precisely, it matches the pointcut p3 as it is a call to the write

function, and matches the pointcut p2 as the value of the argument z has the tag t.

Therefore, the advice a will be woven at this point and the function write will be

called with the sanitized input, which is the result of calling sanitize(z).

8.7 Related Work on AOP Semantics

There are many research contributions that have addressed AOP semantics [25,26,41,49,

54,61,63,74,90,108,111,167,168]. Among these contributions, we explore those that are

more relevant to our work, mainly contributions that are based on CPS or those handling

flow-based pointcuts. Dutchyn [61] has presented a formal model of dynamic join points,

pointcuts, and advice using a first-order procedural language called PROC [61]. The

proposed semantic model is based on defunctionalization and continuation-passing style.

The author has demonstrated that modeling AOP concepts in this style provides a natural

and precise way of describing these mechanisms. The proposed model supports get, set,

call, and exec pointcuts. The author has also provided some hints for implementing

the cflow pointcut but did not provide the matching algorithm. Compared to [61], our

contribution provides a clear presentation allowing a better view of this style of semantics.

In addition, we extend the aspect layer with flow-based pointcuts.

Masuhara et al. [108] have proposed the point-in-time join point model, where they

redefine join points as the states at the beginning and the end of certain events. Based

on this new model, the authors have designed a small AOP language and defined its for-

mal semantics in CPS. Moreover, they have demonstrated that this approach is useful to

model advanced pointcuts, such as exception handling and control flow. The idea of this

work is similar to ours in using continuations to model matching and weaving semantics.

However, the main difference is that our semantics is based on frames, while in [108]

the semantics follows the style of Danvy and Filinski [55] that represent continuations as
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λ -functions. As we have seen, presenting continuations as frames is a better approach

since join points arise naturally within this semantics.

Wand et al. [168] have proposed semantics for AOP that handles dynamic join

points and recursive procedures. They have provided a denotational semantics for a mini-

language that embodies the key features of dynamic join points, pointcuts, and advice.

Three kinds of join points were supported, namely pcall, pexecution, and aexecu-

tion. The proposed model is implemented as part of Aspect Sandbox (ASB) [62], which

is a framework for modeling AOP systems. This model is based on a direct denotational

semantics. Consequently, separate data-structures are required for maintaining the dy-

namic join points, while in our semantics the join points arise from the continuation list.

Djoko et al. [59] have defined an operational semantics for the main features of As-

pectJ including cflow. The semantics of the cflow pointcut presented in this approach

is slightly different from AspectJ as they restricted the sub-pointcut to the call pointcut.

Comparing to this approach, our semantics of the cflow pointcut is more general as we

support all kinds of pointcuts. In addition, this approach requires additional structures

to maintain the join points. By adopting operational semantics and partial evaluation ap-

proaches, Masuhara et al. [111] have provided a compilation framework for a simple AOP

language named AJD. They have also provided two methods for implementing the cflow

pointcut, namely, stack-based and state-based implementations. However, no formal se-

mantics is given for the defined pointcut.

The dflow pointcut was initially proposed by Masuhara and Kawauchi [109]. The

authors have argued about the usefulness of this pointcut in the field of security through

an example of a Web-based application. They have also provided the design of the dflow

pointcut and its matching rules based on the origins of values. The dflow pointcut has

been implemented as an extension to Aspect Sandbox (ASB) [62]. However, no formal

semantics has been provided for this pointcut.

Alhadidi et al. [26] have presented the first formal framework for the dflow point-

cut based on λ -calculus. In this work, dataflow tags are propagated statically to track
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data dependencies between λ -expressions. Compared to our framework, [26] makes use

of the effect-based type system for propagating dataflow tags, matching pointcuts, and

weaving advice. Though a static approach can help in reducing the runtime overhead,

expressions in this approach need to be typed since matching depends primarily on types.

The authors have also provided dynamic semantics and proved that it is consistent with

the static semantics. The pointcut enclosed in a dflow pointcut is restricted to call and

get pointcuts in this approach, while we consider the general case in our framework, i.e.,

the sub-pointcut of the dflow pointcut can be any pointcut.

8.8 Conclusion

In this chapter, we have provided formal semantics for aspect matching and weaving in

λ -calculus. We chose CPS as the basis of our semantics because it provides a concise,

accurate, and elegant description of aspect-oriented mechanisms. Using this style of se-

mantics, one can easily notice that CPS and defunctionalization make join points explicit

and facilitate the aspect matching and weaving mechanisms. For instance, we did not need

to use any additional structure; the join points correspond exactly to continuation frames.

We have addressed basic pointcuts, i.e., get, set, call, and exec pointcuts. These point-

cuts are useful from a security perspective since they can pick out important points, where

security mechanisms such as authorization, encryption, and decryption, may be added be-

fore, after, or around these points. In addition, we have extended our semantic framework

with flow-based pointcuts, namely, cflow and dflow pointcuts, since they are widely

used to detect and fix vulnerabilities related to information flow. The contribution pre-

sented in this chapter is a first step towards establishing a dynamic semantics for aspect

matching and weaving based on CPS and defunctionalization. In the next chapter, we will

apply the results of this work to our AOM framework to elaborate semantics for matching

and weaving on executable UML models.
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Chapter 9

Dynamic Matching and Weaving

Semantics in Executable UML

9.1 Introduction

In this chapter, we elaborate dynamic semantics for aspect matching and weaving in Exe-

cutable UML (xUML) [113]. More precisely, we specify xUML models using the Action

Language for Foundational UML (Alf) [132] proposed by OMG. In addition of being a

standard, Alf is highly expressive. Moreover, Alf provides precise semantics for spec-

ifying detailed and executable behaviors within a UML model, such as creating class

instances, establishing links between these instances, performing operations on variables

and attributes, etc. Therefore, more security checks can be performed at the modeling

phase and numerous flaws can get resolved before entering the implementation phase.

This, in turn, significantly reduces costs and leads to more trustworthy software.

Existing AOM approaches that handle xUML models [77, 89, 176] mainly focus

on providing a framework for executing the woven model for the purposes of simulation

and verification. Moreover, these approaches are presented from a practical perspective;

to date we are not aware of any work that explores the semantic foundations for aspect

matching and weaving in xUML. It is our aim, in this chapter, to define such a semantics,

203



particularly on executable activity diagrams. We elaborate the semantics in a frame-based

CPS style by applying the results, presented in Chapter 8, on xUML models. As we have

seen in Chapter 8, a semantics, based on CPS and defunctionalization, provides a precise

and elegant description of aspect-oriented mechanisms. Furthermore, by expressing exe-

cutable models in a frame-based representation, matching and weaving can be described

in a simplified and unified way for both UML elements and action language constructs.

As we did in Chapter 8, we start by formalizing the matching and the weaving

processes for basic pointcuts, i.e., get, set, call, and exec pointcuts. Then, we elaborate

the semantics for the dataflow pointcut. Notice here that we match these pointcuts on

both activity diagram elements and Alf expressions. For example, an operation call can

be performed as a call operation action, which is an activity element, and as a function

call inside Alf code. Consequently, our framework should be able to capture both points.

The remainder of this chapter is organized as follows. Section 9.2 introduces a

motivating example. The syntax of activity diagrams and Alf is presented in Section 9.3,

followed by their denotational semantics in Section 9.4. We transform the semantics into

CPS in Section 9.5. Afterwards, Section 9.6 explores the semantics for matching and

weaving. In section 9.7, we extend the semantics with the dataflow pointcut. We discuss

related work in Section 9.8. Finally, concluding remarks are represented in Section 9.9.

9.2 Example

To clarify our motivation, let us consider a simple example of a caching process as shown

in Figure 9.1. The caching executable activity diagram starts by executing the action Get-

DataRequest. This action is a UML accept action that awaits a data request. When a

request is received, it checks whether the requested data is already cached or not. If yes,

then the action ReturnData, which is a call operation action, is called and the requested

data is returned. Otherwise, the action Caching&ReturningData is activated. This ac-

tion is an opaque action whose behavior is specified using Alf action language. In this
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case, first the data is fetched and the cache is updated accordingly. Then the operation

ReturnData is called and the requested data is returned.
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Figure 9.1: Caching Example

Let us assume that our goal is to insert logging before calling the operation Return-

Data. As it is highlighted in the example, this operation is called in two ways: as a call

operation action and as an Alf expression. Therefore, the matching semantics should be

able to capture both points. To do so, we provide a frame-based representation for both

activity elements and Alf expressions and perform matching and weaving on frames.

9.3 Syntax

In this section, we present the syntax of activity diagrams and Alf language. An activ-

ity diagram starts with an initial node (•) that is connected to the subsequent nodes (n)

through an edge (→). A node can be either an executable node or a control node. For the

sake of illustration, we choose a small subset of nodes that captures the essence of activity

diagrams and omit complex features, such as concurrency and exception handling. The

proposed syntax is shown in Figure 9.2. The purpose of using labels is to uniquely refer

to already defined nodes. In the following, we explain the activity constructs:

• The notation • → n denotes an activity diagram, where • is the initial node and n

is the subsequent flow of nodes.
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ad ::= • → n activity

n ::= a action

| l : decision (e, n1, n2) decision

| l : merge→ n merge

| l : � activity final

| a → n node sequence

| l label

a ::= l : opaque (e) opaque action

| l : callOp (f) call operation

| l : read (x) read variable

| l : write (x) write variable

Figure 9.2: Syntax of Activity Diagrams

• a is an action node, that can be either:

– l : opaque (e), a labeled opaque action, where e is an Alf expression specifying

the behavior of the action.

– l : callOp (f), a labeled call operation action that invokes a function f.

– l : read (x), a labeled read variable action that reads the value of x.

– l : write (x), a labeled write variable action that updates the value of x.

• l : decision (e, n1, n2) denotes a labeled decision node having two alternative flows

n1 and n2.

• l : merge→ n denotes a labeled merge node that is followed by a flow of nodes n.

• l : � denotes a labeled activity final node.

• a → n denotes an action that is followed by the subsequent flow of nodes n.

• l denotes a label that uniquely refers to a node.

Figure 9.3 presents the syntax of Alf language. To keep the presentation simple and

readable, we choose the main constructs of Alf and omit the object-oriented characteristic

of the language. We consider the following expressions:
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• Constants and variables

• Functional constructs

• Conditional expressions

• Sequential expressions

• Imperative features (referencing, dereferencing, and assignments). The expression

new e allocates a new reference and initializes it with the value of e. The expression

! e reads the value stored at the location referenced by e.

e ::= c constant

| x variable

| f (x) = e operation def.

| f (e) operation call

| if e1 then e2 else e3 conditional exp.

| e1; e2 exp. sequence

| new e referencing

| ! e dereferencing

| x := e assignment

Figure 9.3: Syntax of Alf Language

9.4 Denotational Semantics

This section presents the denotational semantics of activity diagrams and Alf expressions.

The functions and the types used in the semantics are defined in Figure 9.4.

A[[ _ ]]_ _ : Activity→ Env→ Store→ Result
η [[ _ ]]_ _ _ _ : Node→ Env→ Store→ Token→ Value→ Result
ξ [[ _ ]]_ _ : Exp→ Env→ Store→ Result
Result : Value×Store
Env : Identifier→ Value
Store : Location→ Value
Value : Boolean | Natural | String | Unit | Location | Closure

Figure 9.4: Semantic Functions and Types
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9.4.1 Denotational Semantics of Activity Diagrams

The denotational semantics of activity diagrams is presented in Figure 9.5. Given an

activity diagram ad, a dynamic environment ε , and a store σ , the function A[[ _ ]] yields the

computed value v and the updated store σ ′ after the termination of the activity execution.

When an activity starts executing, a control token t is created and placed on the initial

node. This token then propagates along the edges to the subsequent nodes. A node starts

executing when it gets the required tokens and data values. Thus, the evaluation function

for nodes η [[ _ ]] takes a token t and a value v as inputs, in addition to the environment

ε and the store σ . When the execution of a node terminates, it returns a value and the

updated store that will be passed to the subsequent nodes.

A[[ • → n ]]ε σ = let t = createToken() in η [[ n ]]ε σ t () end

η [[ l : opaque (e) ]]ε σ t v = ξ [[ e ]]ε σ

η [[ l : callOp (f) ]]ε σ t v = let (〈x,e,ε ′〉,σ ′) = ξ [[ ε(f) ]]ε σ in

ξ [[ e ]]ε ′ † [x �→ v] σ ′
end

η [[ l : read (x) ]]ε σ t v = let (�,σ ′) = ξ [[ x ]]ε σ in (σ ′(�),σ ′) end

η [[ l : write (x) ]]ε σ t v = let (�,σ ′) = ξ [[ x ]]ε σ in ((),σ ′ † [� �→ v]) end

η [[ l : decision (e, n1, n2) ]]ε σ t v = let (v′,σ ′) = ξ [[ e ]]ε σ in

if (v′) then η [[ n1 ]]ε σ ′ t v
else η [[ n2 ]]ε σ ′ t v

end

η [[ l : merge→ n ]]ε σ t v = η [[ n ]]ε σ t v

η [[ l : � ]]ε σ t v = let b = destroyAllTokens() in (v,σ) end

η [[ a → n ]]ε σ t v = let (v′,σ ′) = η [[ a ]]ε σ t v in η [[ n ]]ε σ ′ t v′ end

η [[ l ]]ε σ t v = η [[ ε(l) ]]ε σ t v

Figure 9.5: Denotational Semantics of Activity Diagrams
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In the following, we explain the semantics of each activity construct. The semantics

of an opaque action, l : opaque (e), depends on the semantics of its Alf expression e. A

call operation action, l : callOp (f), invokes the function f with the argument value v that it

receives from its input. A read variable action, l : read (x), reads the value of the variable

x from the store. A write variable action, l : write (x), updates the value of the variable x

with the value v that it receives from its input. A decision node, l : decision (e, n1, n2),

guides the flow depending on the value of the condition e. If e evaluates to true, the node

n1 is executed, otherwise the node n2 is executed. A merge node, l : merge→ n, passes the

token and the data that it receives to its subsequent node n. A final node, l : �, terminates

the activity execution. Accordingly, all tokens in the activity are destroyed. Finally, the

semantics of a label l depends on the semantics of the referenced node. Notice that the

semantics of an edge is to transfer tokens and data values from the source node to the

target node. In our syntax, a node is explicitly connected to its subsequent nodes (e.g., a

→ n). Therefore, there is no need to separately define the semantics of an edge since it is

taken care of during the evaluation of the nodes.

9.4.2 Denotational Semantics of Alf Language

The denotational semantics of Alf language is presented in Figure 9.6. Given an expres-

sion e, a dynamic environment ε , and a store σ , the dynamic evaluation function ξ [[ _ ]]

yields the computed value v and the updated store σ ′. Notice that in the case of a function

definition f (x) = e, the computed value is a closure 〈x,e,ε ′〉 capturing the function pa-

rameter x, the function body e, and the evaluation environment ε ′, which maps each free

variable of e to its value at the time of the function declaration. The function alloc used

in the semantics allocates a new cell in the store and returns a reference to it.
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ξ [[ c ]]ε σ = (c,σ)

ξ [[ x ]]ε σ = (ε(x),σ)

ξ [[ f (x) = e ]]ε σ = (〈x,e,ε ′〉,σ)

ξ [[ f (e) ]]ε σ = let (v,σ ′) = ξ [[ e ]]ε σ in

let (〈x,e′,ε ′〉,σ ′′) = ξ [[ ε(f ) ]]ε σ ′ in ξ [[ e′ ]]ε ′ † [x �→ v] σ ′′ end

end

ξ [[ if e1 then e2 else e3 ]]ε σ = let (v,σ ′) = ξ [[ e1 ]]ε σ in

if (v) then ξ [[ e2 ]]ε σ ′ else ξ [[ e3 ]]ε σ ′
end

ξ [[ e1; e2 ]]ε σ = let (v,σ ′) = ξ [[ e1 ]]ε σ in ξ [[ e2 ]]ε σ ′ end

ξ [[ new e ]]ε σ = let (v,σ ′) = ξ [[ e ]]ε σ in

let �= alloc(σ ′) in (�,σ ′ † [� �→ v]) end

end

ξ [[ ! e ]]ε σ = let (�,σ ′) = ξ [[ e ]]ε σ in (σ ′(�),σ ′) end

ξ [[ x := e ]]ε σ = let (v,σ ′) = ξ [[ e ]]ε σ in

let (�,σ ′′) = ξ [[ x ]]ε σ ′ in ((),σ ′′ † [� �→ v]) end

end

Figure 9.6: Denotational Semantics of Alf Language

9.5 Continuation-Passing Style Semantics

In this section, we transform the previously defined denotational semantics into CPS. As

we mentioned earlier, frame-based semantics allows describing matching and weaving

processes in activity diagrams and Alf language in a precise and unified way. To help

understanding this transformation, we proceed in two steps. First, we elaborate a CPS

semantics by representing continuations as functions. Then, we provide a CPS semantics

by representing continuations as frames.
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9.5.1 Representation of Continuations as Functions

As we did in the previous chapter, we translate the denotational semantics into CPS fol-

lowing the original formulation of the CPS transformation [70]. The CPS semantics of

activity diagrams is presented in Figure 9.8 and the CPS semantics of Alf is presented in

Figure 9.9. First, we modify the evaluation functions to take a continuation as an addi-

tional argument as shown in Figure 9.7.

A[[ _ ]]_ _ _ : Activity→ Env→ Store→ Cont→ Result
η [[ _ ]]_ _ _ _ _ : Node→ Env→ Store→ Token→ Value→ Cont→ Result
ξ [[ _ ]]_ _ _ : Exp→ Env→ Store→ Cont→ Result
Cont : Result→ Result
Result : Value×Store

Figure 9.7: Redefined Semantic Functions and Types

A[[ • → n ]]ε σ κ = let t = createToken() in η [[ n ]]ε σ t () κ end

η [[ l : opaque (e) ]]ε σ t v κ = ξ [[ e ]] ε σ κ

η [[ l : callOp (f) ]]ε σ t v κ = ξ [[ ε(f) ]]ε σ (λ (v′,σ ′). ξ [[ e ]]ε ′ † [x �→ v] σ ′ κ)
where v′ = 〈x,e,ε ′〉

η [[ l : read (x) ]]ε σ t v κ = ξ [[ x ]]ε σ (λ (�,σ ′). κ(σ ′(�),σ ′))

η [[ l : write (x) ]]ε σ t v κ = ξ [[ x ]]ε σ (λ (�,σ ′). κ((),σ ′ † [� �→ v]))

η [[ l : decision (e, n1, n2) ]]ε σ t v κ =
ξ [[ e ]]ε σ (λ (v′,σ ′). if (v′) then η [[ n1 ]]ε σ ′ t v κ else η [[ n2 ]]ε σ ′ t v κ)

η [[ l : merge→ n ]]ε σ t v κ = η [[ n ]]ε σ t v κ

η [[ l : � ]]ε σ t v κ = let b = destroyAllTokens() in κ(v,σ) end

η [[ a → n ]]ε σ t v κ = η [[ a ]]ε σ t v (λ (v′,σ ′). η [[ n ]]ε σ ′ t v′κ)

η [[ l ]]ε σ t v κ = η [[ ε(l) ]]ε σ t v κ

Figure 9.8: CPS Semantics of Activity Diagrams: Continuations as Functions
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ξ [[ c ]]ε σ κ = κ(c,σ)

ξ [[ x ]]ε σ κ = κ(ε(x),σ)

ξ [[ f (x) = e ]]ε σ κ = κ(λ (v,κ ′). [[ e ]]ε † [x �→ v] σ κ ′)

ξ [[ f (e) ]]ε σ κ = ξ [[ e ]]ε σ (λ (v,σ ′). ξ [[ ε(f ) ]]ε σ ′ (λ (v′,σ ′′). ξ [[ e′ ]]ε ′ † [x �→ v]σ ′′ κ))
where v′ = 〈x,e′,ε ′〉

ξ [[ if e1 then e2 else e3 ]]ε σ κ =
ξ [[ e1 ]]ε σ (λ (v,σ ′). if (v) then ξ [[ e2 ]]ε σ ′ κ else ξ [[ e3 ]]ε σ ′ κ)

ξ [[ e1; e2 ]]ε σ κ = ξ [[ e1 ]]ε σ (λ (v,σ ′). ξ [[ e2 ]]ε σ ′ κ)

ξ [[ new e ]]ε σ κ = ξ [[ e ]]ε σ (λ (v,σ ′). let �= alloc(σ ′) in κ(�,σ ′ † [� �→ v])) end

ξ [[ ! e ]]ε σ κ = ξ [[ e ]]ε σ (λ (�,σ ′). κ(σ ′(�),σ ′))

ξ [[ x := e ]]ε σ κ = ξ [[ e ]]ε σ (λ (v,σ ′). ξ [[ x ]]ε σ ′ (λ (�,σ ′′). κ((),σ ′′ † [� �→ v])))

Figure 9.9: CPS Semantics of Alf Language: Continuations as Functions

9.5.2 Representation of Continuations as Frames

Using the defunctionalization technique [147], we transform the continuation functions,

obtained from the previous step, into frames as shown in Figure 9.10. In the following,

we provide details about each frame:

• GetF does not store any value. It awaits a location and a store.

• SetF stores a value. It awaits a location and a store.

• CallF stores a function identifier and an environment. It awaits the value of the

function argument.

• ExecF stores the value of the argument. It awaits a closure, which is the result of

the evaluation of the function definition, and a store.
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• IfF stores then and else expressions and an environment. It awaits the value of the

condition and a store.

• DecisionF stores then and else nodes, an environment, a control token, and a value.

It awaits the value of the condition and a store.

• ExpSeqF stores the next expression and an environment. It awaits the value of the

first expression and a store.

• NodeSeqF stores the next node, an environment, and a control token. It awaits the

output value of the first node and a store.

• AllocF does not store any value. It awaits the value to be stored in the newly allo-

cated cell and a store.

• RhsF stores an identifier and an environment. It awaits a location and a store.

type GetF = {}
type SetF = {val : Value}
type CallF = {fun : Identifier; env : Env}
type ExecF = {arg : Value}
type IfF = {thenExp : Exp; elseExp : Exp; env : Env}
type DecisionF = {thenNode : Node; elseNode : Node; env : Env;

token : Token; val : Value}
type ExpSeqF = {nextExp : Exp; env : Env}
type NodeSeqF = {nextNode : Node; env : Env; token : Token}
type AllocF = {}
type RhsF = {id : Identifier; env : Env}

Figure 9.10: Frames

The frame-based semantics of activity diagrams is presented in Figure 9.11 and

the frame-based semantics of Alf is presented in Figure 9.12. Figure 9.13 shows the

evaluation of the frames that are needed for computations. The primitive functions used

in the semantics are the same as defined in the previous chapter.
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A[[ • → n ]]ε σ κ = let t = createToken() in η [[ n ]]ε σ t () κ end

η [[ l : opaque (e) ]]ε σ t v κ = ξ [[ e ]] ε σ κ

η [[ l : callOp (f) ]]ε σ t v κ = apply(push(CallF(f ,ε),κ),(v,σ))

η [[ l : read (x) ]]ε σ t v κ = ξ [[ x ]]ε σ (push(GetF(),κ))

η [[ l : write (x) ]]ε σ t v κ = ξ [[ x ]]ε σ (push(SetF(v),κ))

η [[ l : decision (e, n1, n2) ]]ε σ t v κ = ξ [[ e ]]ε σ(push(DecisionF(n1,n2,ε, t,v),κ))

η [[ l : merge → n ]]ε σ t v κ = η [[ n ]]ε σ t v κ

η [[ l : � ]]ε σ t v κ = let b = destroyAllTokens() in κ(v,σ) end

η [[ a → n ]]ε σ t v κ = η [[ a ]]ε σ t v (push(NodeSeqF(n,ε, t),κ))

η [[ l ]]ε σ t v κ = η [[ ε(l) ]]ε σ t v κ

Figure 9.11: Frame-Based Semantics of Activity Diagrams

ξ [[ c ]]ε σ κ = apply(κ ,(c,σ))

ξ [[ x ]]ε σ κ = apply(κ ,(ε(x),σ))

ξ [[ f (x) = e ]]ε σ κ = apply(κ,(〈x,e,ε ′〉,σ))

ξ [[ f (e) ]]ε σ κ = ξ [[ e ]]ε σ (push(CallF(f ,ε), κ))

ξ [[ if e1 then e2 else e3 ]]ε σ κ = ξ [[ e1 ]]ε σ (push(IfF(e2,e3,ε),κ))

ξ [[ e1; e2 ]]ε σ κ = ξ [[ e1 ]]ε σ (push(ExpSeqF(e2,ε),κ))

ξ [[ new e ]]ε σ κ = ξ [[ e ]]ε σ (push(AllocF(),κ))

ξ [[ ! e ]]ε σ κ = ξ [[ e ]]ε σ (push(GetF(),κ))

ξ [[ x := e ]]ε σ κ = ξ [[ e ]]ε σ (push(RhsF(x,ε),κ))

Figure 9.12: Frame-Based Semantics of Alf Language
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F [[ GetF f ]]σ v κ = apply(κ,(σ(v),σ))

F [[ SetF f ]]σ v κ = apply(κ ,((),σ † [v �→ f .val]))

F [[ CallF f ]]σ v κ = ξ [[ (f .env)(f .fun) ]](f .env) σ (push(ExecF(v),κ))

F [[ ExecF f ]]σ v κ = ξ [[ e ]]ε ′ † [x �→ f .arg] σ κ where v = 〈x,e,ε ′〉

F [[ IfF f ]]σ v κ = if (v) then ξ [[ f.thenExp ]](f .env) σ κ
else ξ [[ f.elseExp ]](f .env) σ κ

F [[ DecisionF f ]]σ v κ = if (v) then η [[ f.thenNode ]](f .env) σ (f .token) (f .val) κ
else η [[ f.elseNode ]](f .env) σ (f .token) (f .val) κ

F [[ ExpSeqF f ]]σ v κ = ξ [[ f.nextExp ]](f .env) σ κ

F [[ NodeSeqF f ]]σ v κ = η [[ f.nextNode ]](f .env) σ (f .token) v κ

F [[ AllocF f ]]σ v κ = let �= alloc(σ) in apply(κ,(�,σ † [� �→ v])) end

F [[ RhsF f ]]σ v κ = ξ [[ f .id ]](f .env) σ (push(SetF(v),κ))

Figure 9.13: Semantics of Frames

9.6 Aspect Syntax and Semantics

In this section, we present our aspect extension to executable activity diagrams and elab-

orate its frame-based semantics. We start by presenting the aspect syntax. Then, we

elaborate the matching and the weaving semantics.

9.6.1 Aspect Syntax

An aspect, as shown in Figure 9.15, includes a list of advice. An advice specifies actions

to be performed when join points satisfying a particular pointcut are reached. An advice

may also compute the original join point through a special expression named proceed.

Hence, as shown in Figure 9.14, we extend Alf syntax with an additional expression to

denote the computation of the original join point with possibly a new argument e.
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e ::= ...
| proceed (e) proceed

Figure 9.14: Proceed Expression

type Aspect = Advice list
type Advice = {body : Exp; pc : Pointcut}
type Pointcut = GetPC | SetPC | CallPC | ExecPC | NotPC | AndPC
type GetPC = {id : Identifier}
type SetPC = {id : Identifier; val : Value}
type CallPC = {id : Identifier; arg : Identifier}
type ExecPC = {id : Identifier; arg : Identifier}
type NotPC = {pc : Pointcut}
type AndPC = {pc1 : Pointcut; pc2 : Pointcut}

Figure 9.15: Aspect Syntax

Syntactically, an advice contains two parts: (1) A body, which is an Alf expression,

and (2) a pointcut, which designates a set of join points. An advice can be applied before,

after, or around a join point. However, before and after advice can be expressed as around

advice using the proceed expression. Hence, we consider all kinds of advice as around

advice as this does not restrict the generality of the approach. We first consider basic

pointcuts: GetPC, SetPC, CallPC, and ExecPC. The pointcut GetPC (respectively SetPC)

picks out join points where the value of a variable is got from (respectively set to) the

store. The pointcut CallPC (respectively ExecPC) picks out join points where a function

is called (respectively executed).

9.6.2 Matching Semantics

Matching is a mechanism for identifying the join points targeted by the advice. In our ap-

proach, join points correspond to specific points in the execution of both activity diagrams

and Alf expressions. However, since the semantics is in a frame-based style, both kinds

of join points are continuation frames and arise naturally within the semantics. Therefore,
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our matching semantics examines whether a continuation frame satisfies a given pointcut

or not, as shown in Figure 9.16. In the following, we explain the matching rules.

match_pc : Pointcut→ Frame→ Value→ Store→ Env→ Cont→ Boolean
let match_pc p f v σ ε κ = match (p, f ) with

(GetPC p,GetF f ) ⇒ ε(p.id) = v
| (SetPC p,SetF f ) ⇒ ε(p.id) = v
| (CallPC p,CallF f ) ⇒ p.id = f .fun
| (ExecPC p,ExecF f ) ⇒ let (v′,σ ′) = ξ [[ ε(p.id) ]] ε σ κ in v = v′ end

| (NotPC p,Frame f ) ⇒ not match_pc(p.pc, f ,v,σ ,ε,κ)
| (AndPC p,Frame f ) ⇒ match_pc(p.pc1, f ,v,σ ,ε,κ) and

match_pc(p.pc2, f ,v,σ ,ε,κ)
| otherwise ⇒ false

Figure 9.16: Matching Semantics

Given a pointcut p, the current frame f, the current value v, a store σ , an environment

ε , and a continuation κ , the matching semantics examines whether f matches p. Matching

depends on three factors: the kind and the content of the frame f and the current value v

that f receives. In the case of:

• GetPC, there is a match if f is a GetF frame and the location of the identifier given

in p is equal to the location that f receives.

• SetPC, there is a match if f is a SetF frame and the location of the identifier given

in p is equal to the location that f receives.

• CallPC, there is a match if f is a CallF frame and it holds a function identifier that

is equal to the one given in p.

• ExecPC, there is a match if f is an ExecF frame and the evaluation of the function

given in p is equal to the closure that f receives.

• NotPC, there is a match if f does not match the sub-pointcut of p.

• AndPC, there is a match if f matches both sub-pointcuts of p.
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9.6.3 Weaving Semantics

The weaving semantics describes how to apply the matching advice at the identified join

points. Since join points correspond to frames, advice body provides a means to modify

the behavior of those frames. The weaving is performed automatically during the execu-

tion. Therefore, we redefine the apply function, as shown in Figure 9.17, to take an aspect

α and an environment ε into account. The weaving is done in two steps. When a frame

is activated, we first check for a matching advice by calling the function get_matches. If

there is any applicable advice then the function execute_advice, defined in Figure 9.19, is

called. Otherwise, the original computation is performed. In the following, we explain

these two steps.

apply : Cont→ (Value×Store)→ Env→ Aspect→ (Value×Store)
let apply κ (v,σ) ε α = match κ with

[ ] ⇒ (v,σ)
| f :: κ ′ ⇒ let ms = get_matches(f ,v,σ ,ε,α ,κ ′) in

if ms = [ ] then F [[ f ]]ε σ v α κ ′
else let argV = match f with

SetF f ⇒ f .val
| CallF f ⇒ v
| ExecF f ⇒ f .arg
| otherwise ⇒ ()

in execute_advice(ms, f ,argV,σ ,ε,α,κ ′)
end

end

Figure 9.17: Redefined Apply Function

Advice Matching

To get an applicable advice, we go through the aspect and check whether its enclosed

pointcuts match the current frame (Figure 9.18). This is done by calling the function

match_pc defined previously in Figure 9.16. In case there is a match, we return a structure

MatchedAD containing the advice itself and the pointcut arguments that will pass values

to the advice.
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type MatchedAD = {arg : Identifier; ad : Advice}
get_matches : Frame→ Value→ Store→ Env→ Aspect→ Cont

→MatchedAD list

let get_matches f v σ ε α κ = match α with

[ ] ⇒ [ ]
|ad :: α ′ ⇒ let p = ad.pc in

if match_pc(p, f ,v,σ ,ε,α ,κ) then

let arg = match p with

SetPC p ⇒ p.id
| CallPC p | ExecPC p ⇒ p.arg
| otherwise ⇒ ()

in MatchedAD(arg,ad) :: get_matches( f ,v,σ ,ε ,α ′,κ)
end

else get_matches( f ,v,σ ,ε,α ′,κ)
end

Figure 9.18: Advice Matching

Advice Execution

Advice execution is shown in Figure 9.19. It starts by evaluating the first applicable

advice. The remaining pieces of advice as well as the current frame are stored in the

environment by binding them to auxiliary variables &proceed and &jp respectively. To

evaluate the advice body, we define a new frame, AdvExecF, as follows:

type AdvExecF = {matches : MatchedAD list; jp : Frame}
F [[ AdvExecF f ]]ε σ v α κ = execute_advice(f .matches, f .jp,v,σ ,ε,α,κ)

execute_advice : MatchedAD list→ Frame→ Value→ Store→ Env→ Aspect
→ Cont→ Result

let execute_advice ms f v σ ε α κ = match ms with

[ ] ⇒ apply(push(MarkerF(),(push(f ,κ))),(v,σ),ε,α)
|m :: ms′ ⇒ let ad = m.ad in

ξ [[ ad.body ]]ε † [&proceed �→ ms′, &jp �→ f ,m.arg �→ v] σ α κ
end

Figure 9.19: Advice Execution

The evaluation of the proceed expression is provided below. The value of its argument
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is passed to the next advice or to the current join point if there is no further advice. To

execute the remaining pieces of advice, the frame AdvExecF is added to the frame list.

[[ proceed (e) ]]ε σ α κ = [[ e ]]ε σ α (push(AdvExecF(ε(&proceed),ε(&jp)),κ))

When all the applicable pieces of advice are executed, the original computation, i.e., the

current frame is invoked. To avoid matching the currently matched frame repeatedly, we

introduce a new frame, MarkerF, which invokes the primary apply function (apply_prim).

type MarkerF= { }
F [[MarkerF f ]]ε σ v α κ = apply_prim(κ,(v,σ))

9.7 Semantics of the Dataflow Pointcut

In this section, we explore the semantics of the dflow pointcut in xUML. As mentioned in

the previous chapter, this pointcut is useful from a security perspective since it can detect

a considerable number of vulnerabilities related to information flow, such as Cross-site

Scripting (XSS) and SQL injection [72]. As defined below, the dflow pointcut has a

sub-pointcut pc and a unique tag that discriminates it from other dflow pointcuts.

type DFlowPC = {pc : Pointcut; tag : Identifier}

In order to track dependencies between values, we use a tagging environment γ

that maps values to tags. Tag propagation is performed dynamically during the execution

of the activity diagram and Alf expressions. In particular, this is done at the frames

side (Figure 9.20). Notice that the functions now take the tagging environment γ as an

additional argument. Notice also that in the case of an ExecF frame, the closure 〈x,e,ε ′,γ ′〉
is extended with a tagging environment γ ′ to capture the tags generated during the function

execution. In addition, we define a marker frame DflowF that is used for tag propagation

in the case of a function call. The DflowF frame stores a tagging environment before

entering a function call and awaits the result of the call.

type DflowF = {tag_env : Env}
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F [[ GetF f ]]ε γ σ v α κ = apply(κ,(σ(v),σ),ε,γ † [σ(v) �→ γ(v)],α)

F [[ SetF f ]]ε γ σ v α κ = apply(κ ,((),σ † [v �→ f .val]),ε,γ † [v �→ γ(f .val)],α)

F [[ CallF f ]]ε γ σ v α κ = ξ [[ (f .env)(f .fun) ]](f .env) γ σ α (push(ExecF(v),κ))

F [[ ExecF f ]]ε γ σ v α κ = ξ [[ e ]](ε ′ † [x �→ f .arg]) (γ ′ † [ε(x) �→ γ( f .arg)]) σ α (push(DflowF(γ),κ))
where v = 〈x,e,ε ′,γ ′〉

F [[ IfF f ]]ε γ σ v α κ = if (v) then ξ [[ f.thenExp ]](f .env) γ σ α κ else ξ [[ f.elseExp ]](f .env) γ σ α κ

F [[ DecisionF f ]]ε γ σ v α κ = if (v) then η [[ f.thenNode ]](f .env) γ σ (f .token) (f .val) α κ
else η [[ f.elseNode ]](f .env) γ σ (f .token) (f .val) α κ

F [[ ExpSeqF f ]]ε γ σ v α κ = ξ [[ f.nextExp ]](f .env) γ σ α κ

F [[ NodeSeqF f ]]ε γ σ v α κ = η [[ f.nextNode ]](f .env) γ σ (f .token) v α κ

F [[ AllocF f ]]ε γ σ v α κ = let �= alloc(σ) in apply(κ,(�,σ † [� �→ v]),ε,γ † [� �→ γ(v)],α) end

F [[ RhsF f ]]ε γ σ v α κ = ξ [[ f .id ]](f .env) γ σ α (push(SetF(v),κ))

F [[ AdvExecF f ]]ε γ σ v α κ = execute_advice(f .matches, f .jp,v,σ ,ε,γ,α,κ)

F [[ MarkerF f ]]ε γ σ v α κ = apply_prim(κ ,(v,σ))

F [[ DFlowF f ]]ε γ σ v α κ = apply(κ ,(v,σ),ε, f .tag_env † [v �→ getTags(γ)],α)

Figure 9.20: Semantics of Frames with the dflow Pointcut

In the following, we explain the tag propagation rules for the affected frames:

• In the case of a GetF frame, the tags of the location v propagate to the value stored

at that location.

• In the case of a SetF frame, the tags of the value of the right-hand side of an assign-

ment propagate to the location of the assignment identifier.

• In the case of an ExecF frame, the tags of the argument value f .arg propagate to the

value of the variable x. In addition, the tags of the argument and the tags that are
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generated during the function execution propagate to the result of the function. For

this reason, we use a DflowF frame to access the result of the function call and re-

store the tagging environment after returning from the call. The function getTags(γ)

used in F [[ DFlowF f ]] retrieves all the tags stored in the tagging environment γ .

• In the case of an AllocF frame, the tags of v propagate to the created location �.

The matching semantics of the dflow pointcut is presented in Figure 9.21. A join

point frame f matches a dflow pointcut that contains a pointcut pc and a tag t if: (1) The

frame f matches the pointcut pc of the dflow pointcut, or (2) the set of tags of the value

that the frame f awaits (captured by the variable val′) contains the tag t. In case a frame f

matches the pointcut pc of the dflow pointcut, the tag t propagates to the value associated

with the frame f (captured by the variable val).

type JpF = GetF | SetF | CallF | ExecF
let match_pc p f v σ ε γ α κ = match (p, f ) with

...
| (DFlowPC p,JpF f ) ⇒ let (b,γ ′) = match_pc(p.pc, f ,v,σ ,ε,γ,α ,κ) in

let val = match f with

GetF f ⇒ v
SetF f ⇒ f .val
CallF f ⇒ let (v′,σ ′) = ξ [[ ε(f .fun) ]]ε γ σ α κ in

v′
end

ExecF f ⇒ v
in

if (b)
then (true,γ ′ † [val �→ γ ′(val)∪{p.tag}])
else let val′ = match f with

CallF f ⇒ v
otherwise ⇒ val

in (p.tag ∈ γ ′(val′),γ ′)
end

end

end

Figure 9.21: Matching Semantics of the dflow Pointcut
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Example: To illustrate the dflow pointcut in xUML, let us consider the SearchPage ac-

tivity diagram presented in Figure 9.22. The activity starts by accepting a search request.

Then, the searched phrase is extracted by the action GetQuery. If the requested phrase is

empty, an error message is generated. Otherwise, the action Search is executed and the

result message, containing both the requested phrase and the search result, is generated.

Finally, the generated message is printed on the web page.

 �3������������3������

 �� ��	���!������� �����
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Figure 9.22: Search Page Activity Diagram

The presented example is vulnerable to XSS attacks since the untrusted input, re-

ceived from the user, has not been sanitized before being placed into the contents of the

web page. Therefore, it enables an attacker to inject malicious scripts into the web page

and reveal confidential information. To fix this vulnerability, we need to sanitize the

untrusted input and all the data that originated from it before printing them on the web

page. The dflow pointcut can be remarkably used to address this problem. Indeed, the

dflow pointcut, dflow(p), picks out all points in the activity execution where values are

dependent on the join points that are previously picked out by p. Therefore, by defining
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pointcut p as CallPC(GetQuery), the pointcut dflow(p) picks all join points that are orig-

inated from the search phrase, which is the user input. Below, we provide a sanitizing

aspect for fixing the discussed vulnerability.

Aspect (Pointcuts and Advice):

CallPC p1 = {id = GetQuery; arg = x}
DFlowPC p2 = {pc = p1; tag = t}
CallPC p3 = {id = Print; arg = y}
AndPC p4 = {pc1 = p2; pc2 = p3}
Advice a = {body = proceed (Sanitize(y)); pc = p4}

Briefly, the aspect captures points where the function Print is called with an argu-

ment that is originated from the user input. The aspect first sanitizes the argument by

calling the function Sanitize and then calls the function Print with the sanitized argument.

The join points targeted by this aspect are matched based on the following:

• The call to the function GetQuery (Figure 9.22) matches the pointcut p2 since it

matches the sub-pointcut p1. Consequently, the tag t of the dflow pointcut (p2)

is added to the tagging environment of the function GetQuery, and is given to the

result of the function evaluation.

• Then, if the search phrase is not empty then the action Search and its enclosing Alf

code are executed. According to the tag propagation rules for assignment and call

operation expressions, the values of the variables result and resultMessage, used in

the Alf expressions, get the tag t.

• Subsequently, the call to the function Print matches p4 since it matches both sub-

pointcuts of p4 (p2 and p3). More precisely, the call to the function Print matches

the pointcut p3 as p3 is a call to the function Print. In addition, the call to the

function Print matches the pointcut p2 as the value of its argument (resultMessage)

has the tag t. Therefore, the sanitizing advice will be woven at this point.
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9.8 Related Work on Aspect Semantics in xUML

Existing AOM approaches that handle xUML models are presented from a practical per-

spective [77, 89, 176]. In addition, they mainly focus on providing a framework for exe-

cuting the woven model for the purposes of simulation and verification. In the following,

we provide an overview of these approaches.

Fuentes and Sánchez [77] have proposed a dynamic weaver for aspect-oriented ex-

ecutable UML models. A UML profile, called AOEM, is elaborated to support aspect-

oriented concepts. Advice pieces are modeled as activity diagrams and injected into the

base model as structured activities. Pointcuts, that intercept message sending and receiv-

ing, are specified using sequence diagrams. The weaving process is defined as a chain

of model transformations. However, no model transformation language is used. Instead,

Java and standards, like XSLT and XPath, are used to directly manipulate the XMI repre-

sentation of the models. In addition, this approach does not support action languages.

Zhang et al. [176] have presented Motorola WEAVR, a tool for weaving aspects

into executable UML state machines. Motorola WEAVR is one of the stable weavers

that is developed in an industrial environment. In addition, it concentrates on executable

modeling, and therefore it is more suited to detailed design. Motorola WEAVR supports

two types of join points that are action and transition. Aspect interference is handled

by allowing precedence relationships to be specified at the modeling level. However,

this weaver is based on the Telelogic TAU G2 [9] implementation. Therefore, it is tool-

dependent and not portable. In addition, the graphical representation of the woven models

is not supported by the tool; the woven models cannot be manually inspected.

Jackson et al. [89] have introduced an approach for specifying and weaving exe-

cutable class diagrams and sequence diagrams. This weaver is based on Kermeta action

language [121] for defining precise behaviors and providing executability. However, it

only supports weaving of executable class diagrams, as all behavioral diagrams, such as

sequence diagrams, are defined as methods. Furthermore, Kermeta has been designed for

specifying meta-model behaviors and it is not as expressive as UML action languages.

225



9.9 Conclusion

In this chapter, we have presented a formal semantics for aspect matching and weaving in

xUML models expressed using the standard Alf language. We have elaborated frame-

based CPS semantics since this style of semantics allows formalizing aspect-oriented

mechanisms in a precise and elegant way. In fact, one can easily notice that CPS and

defunctionalization make join points explicit and facilitate aspect matching and weav-

ing. In addition, by expressing the semantics of activity diagrams and Alf constructs in a

frame-based representation, the matching and the weaving processes are performed in a

unified way for both activity diagrams and Alf constructs.

We have addressed useful pointcuts from a security perspective that pick out join

points where functions are called and executed, and where variables are get and set. These

pointcuts are useful since they detect important points, where security mechanisms, such

as, authorization, encryption, and decryption, may be added before, after, or around these

points. In addition, we have elaborated semantics for the dataflow pointcut. This pointcut

identifies join points based on data dependencies between values, and therefore allowing

the detection of vulnerabilities related to information flow.

This contribution is very useful in the field of software security hardening since it

targets matching and weaving on precise and detailed specifications that are, at the same

time, high-level and independent of any programming language. Such a semantics allows

capturing more join points that cannot be easily identified on high-level and abstract UML

models. Therefore, numerous flaws can get resolved before entering the implementation

phase, which significantly reduces costs and leads to more trustworthy software. The

proposed semantics is a first step towards a complete semantic framework, where more

security-related pointcuts can be addressed together with their semantic foundations.
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Chapter 10

Conclusion

With the increasing complexity and pervasiveness of today’s software systems, security

should be integrated to software since the first stages of the development life cycle. In this

context, model-driven engineering is a promising approach to early software hardening.

This approach aims at alleviating the complexity of software development by shifting the

development efforts from the code level to the modeling level, where models are first-

class entities and are considered in every step of the software development life cycle.

Moreover, because of the pervasive nature of security concerns and the lack of security

knowledge among developers, there is a clear need for a systematic way to integrate those

concerns into the software development process. In this respect, aspect-oriented modeling

is the most appropriate paradigm. Indeed, by separating security concerns from the main

functionalities, software developers can make use of the expertise of security specialists

and systematically integrate security solutions into design models. In this setting, we

have elaborated an AOM framework for specifying and systematically integrating security

hardening solutions into UML design models.

For the specification of security aspects, we have devised, in Chapter 4, a UML

profile allowing the specification of common aspect-oriented primitives and covering the

main UML diagrams, i.e., class diagrams, state machine diagrams, sequence diagrams,

and activity diagrams. The proposed profile allows specification of security solutions for
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high-level security requirements, such as, confidentiality, integrity, authentication, access

control, etc. It supports adaptations, which add new elements before, after, or around

join points, and remove existing elements. In addition, we have defined a UML-specific

pointcut language that provides high-level and user-friendly primitives to designate UML

join points. Regarding the join point model, in activity diagrams, we consider not only

executable nodes but also various control nodes to allow modeling crosscutting concerns

that are needed with alternatives, loops, exceptions, and multi-threaded applications. In

state machine diagrams, we consider not only static states, but also we capture states that

dynamically depend on the triggered transitions. For purposes of reuse, the aspects can

be designed as generic solutions, then specialized to a particular application.

Furthermore, we have designed and implemented, in Chapter 5 and Chapter 6, a

weaving framework to specialize the security aspects and automatically inject them into

base models. The weaver covers all the diagrams that are supported in our approach. In

addition, it supports all kinds of adaptations that can be specified using our AOM profile

presented in Chapter 4. The adoption of a model-to-model transformation to implement

the weaving process helped in generating the weaving rules in an automatic way without

having to manipulate the internal representation of UML models. Moreover, the adop-

tion of the standard OCL language for evaluating the pointcuts allowed us to match a

wide set of join points belonging to various UML diagrams. Besides, the adoption of the

standard QVT language for implementing the adaptation rules extends portability of the

designed weaver to all tools supporting QVT language. To get the full advantages of this

comprehensive and portable framework, we have developed it as a plug-in to IBM-RSA

tool. To demonstrate the viability and the relevance of our framework, we have used it to

experiment adding various security mechanisms in mid-size open source projects such as

SIP communicator and OpenSAF. The supported security mechanisms are those related

to high-level security requirements such as access control, authentication, authorization,

etc. Finally, to validate the correctness of our weaving methods, we can provide the wo-

ven model, together with the needed security properties, to verification and validation
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tools [57, 105], that will verify the woven model against the specified security properties.

From a theoretical point of view, our contribution is two fold: First, we have elab-

orated formal specifications, in an operational style, for matching and weaving in UML

activity diagrams. The purpose of elaborating this semantics is to derive algorithms for

implementing our weaving adaptations presented in Chapter 5. In this respect, a syntax

of activity diagrams together with their corresponding adaptations have been defined to

express the matching and the weaving semantic rules. Afterwards, we have derived al-

gorithms for matching and weaving and proved the correctness and the completeness of

these algorithms with respect to the defined semantic rules. To the best of our knowl-

edge, this is the first contribution in handling formal specifications for adaptation weav-

ing, specifically for around adaptations with or without proceed. We have elaborated the

semantics for activity diagrams mainly because of their richness in terms of actions and

control nodes that can be captured as join points. However, a formal semantics for match-

ing and weaving for the other diagrams, i.e., class diagrams, state machine diagrams, and

sequence diagrams, can be provided in the same vein as for activity diagrams.

Second, to be able to address advanced security concerns such as information-flow

vulnerabilities, we have extended our weaving framework to include xUML models ex-

pressed using the standard Alf language. Indeed, xUML allows to specify detailed and

precise behaviors that include variables, assignments, operation calls, etc. We have elabo-

rated a semantics for matching and weaving in xUML following a CPS/frame-based style

because this style of semantics provides a concise, accurate, and elegant description of

aspect-oriented mechanisms. Indeed, CPS and defunctionalization make join points ex-

plicit, and therefore allow the aspect matching and weaving in a straightforward manner.

In addition, by expressing the semantics of activity diagrams and Alf language in a frame-

based representation, the matching and the weaving processes are performed in a unified

way for both activity diagram elements and Alf expressions. We have addressed useful

pointcuts from a security perspective that pick out join points where functions are called
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and executed, and where variables are get and set. In addition, we have elaborated seman-

tics for flow-based pointcuts, which are useful to detect and fix vulnerabilities related to

information flow. Using a CPS/frame-based style simplified greatly the specification of

the matching and the weaving semantics for this kind of pointcuts, which is an advantage

compared to expressing them in an operation style, where lots of implementation details

need to be specified. Regarding the implementation of the matching and the weaving in

xUML, it is not addressed in this thesis mainly because of the lack of tools that support

the execution of Alf expressions.

In the following, we evaluate our framework from different perspectives as follows:

• User Friendliness: To facilitate the use of our framework, we have proposed a

pointcut language in a textual representation to designate join points in a user-

friendly way. It is important to mention here that the process of translating the

textual pointcuts into OCL is completely automatic and without any user inter-

vention. On the other hand, the added or the replaced-by elements, specified by

adaptations, are graphically represented using the concrete syntax of the modeling

language. The use of the concrete syntax makes our framework broadly applicable

because no experience with meta-modeling is required from developers. This facili-

tates using the framework by modelers who are unlikely to have enough knowledge

about UML abstract syntax. Moreover, the framework allows visualizing the woven

model easily.

• Formality: We have explored two styles of semantics for the formalization of the

matching and the weaving processes. First, we used a structured operational style,

in which our semantics is defined using deductive proof systems. Second, we used

a denotational style, in which our semantics is defined using CPS and defunction-

alization. Our main target is the activity diagram. However, the formal definitions

for the other diagrams can be provided in the same vein that we provide them for

activity diagrams. Klein et al. [101] have proposed formal definitions for matching

and weaving. However, their approach is limited to the detection of join points for
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basic or combined sequence diagrams. Generic AOM approaches based on graph

transformation [116, 169] have a formal underpinning, but this is an advantage of

using graph transformations.

• Expressiveness: Our framework is more expressive than previous ones, in the sense

that it supports a large set of modifications of UML models since it views model

weaving as simply as model transformation. Moreover, the elements allowed as

join points are more than in many previous approaches. However, the approaches

that are based on graph transformation, such as MATA [169] and GeKo [116], are

considered more expressive because they allow any modeling element to be a join

point. Another point to mention is that MATA supports sequence pointcuts, that is,

an aspect may match against a sequence of messages or a sequence of transitions.

We do not address this pointcut in this thesis. However, this can be achieved in the

future by instrumenting OCL to identify specific sequences of model elements.

• Extensibility and Portability: In our framework, aspect adaptations are specified

using a UML profile. This mechanism allows extending UML meta-model ele-

ments, by means of stereotypes, without changing UML meta-model. Therefore,

new AOM extensions for security hardening can be easily added to our framework

by extending our AOM profile with the needed stereotypes and their associated

tagged values. In addition, since profiles are standard UML extensions, almost any

UML modeling framework can store and manipulate them. Moreover, the defined

architecture for the weaving framework facilitates the extension of the transforma-

tion tool to support a wider range of UML diagrams. Indeed, new transformations

can be easily plugged-in without going through the hassle of modifying and alter-

ing the existing architecture. Additionally, since QVT mapping rules are defined

based on UML meta-elements, our framework is portable to any UML modeling

framework and to other tools supporting QVT language [3, 4, 5, 7, 8, 10].

• Reusability: In our framework, security aspects can be designed as generic tem-

plates independently of the application specificities. Generic aspects are important
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to define libraries of reusable aspects for special purposes such as security harden-

ing. Since generic pointcuts, as part of generic aspects, have no concrete specifi-

cation, an aspect needs to be specialized to a specific application before it can be

woven into base models. To this end, we have provided a weaving interface that

exposes the generic pointcuts to the developer. After mapping all the generic point-

cuts to their corresponding elements in the base model, the application-dependent

aspect is automatically generated by the defined framework. It is important to men-

tion here that aspects in our framework can be generic and specific as well. The

modeler chooses the kind of aspects that fulfils his/her needs.

The work presented in this thesis can be further pursued by identifying and elaborat-

ing new AOM extensions, i.e., pointcut and advice primitives, together with their semantic

foundations, for security hardening. An example of such extensions is tracematches [27].

Tracematches support matching a sequence of consecutive events rather than individual

join points. At the modeling level, this pointcut can help in capturing, for instance, a

sequence of messages in sequence diagrams or a sequence of transitions in state machine

diagrams. Tracematches are important from a security perspective because some vul-

nerabilities involve a sequence of events, such as transactions and race conditions [36].

Once new primitives have been identified, our AOM framework will be extended with

the newly-defined pointcuts and advices. This means extending our AOM profile with

the needed stereotypes along with their associated tagged values, as well as extending

our weaving framework with the needed transformation rules. It is also important to ex-

plore the definition of AOM security primitives for executable models, and in particular,

in UML action languages. Furthermore, the work that we did on UML can be extended

to other modeling languages, such as Systems Modeling Language (SysML) [123], to ad-

dress security hardening in systems engineering.
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From a theoretical perspective, our framework can be extended by elaborating the

matching and the weaving semantics in other UML diagrams, such as, class diagrams, se-

quence diagrams, and state machine diagrams. In addition, we have seen that CPS/frame-

based style is an elegant and interesting venue for the formalization of aspect-oriented

constructs. Therefore, it is important to investigate the formalization of other security

primitives using this style of semantics. Another interesting work is to explore the equiv-

alence between CPS/frame-based semantics and the practical techniques that are used to

implement matching and weaving, such as the shadow concept in AOP [83].
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