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Abstract

Single-prover interactive proofs can recognize PSPACE; if certain complexity assumptions are made,

they can do so in zero-knowledge. Generalizing to multiple non-communicating provers extends this

class to NEXP, and at the same time removes the complexity assumption needed for zero-knowledge.

However, it was recently discovered that the non-communication condition might be insufficient

to guarantee soundness. The provers can form joint randomness through non-local computation

without communicating. This could break protocols that rely on the statistical independence of the

provers.

In this work, we analyze multi-prover interactive proofs under the constraint of statistical isola-

tion, introduced in [5], which prohibits non-local computation. We show that there exists perfect

zero-knowledge proofs for NEXP under statistical isolation.
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Chapter 1

Introduction

The theory of interactive proofs sits at the intersection of cryptography, computational complexity

and information theory. It is a study of those languages L for which there exists a protocol proving

x ∈ L by a computationally unbounded and possibly malicious prover to a polynomial-time verifier

beyond reasonable doubt. The set of all such languages is called IP.

There are two main results in this field. The first is that IP = PSPACE [9]. That is, those

languages which require a polynomial amount of space to recognize (with no restrictions on time)

are exactly those which are accepted by IP. The second is that any protocol of IP can be executed

in zero-knowledge, which informally means that a potentially malicious verifier will learn nothing

from the interaction with the prover other than the single bit of information ‘x ∈ L’, where L is the

language in question.

However, an assumption is needed to achieve zero-knowledge: the existence of one-way functions.

The cryptography side of interactive proofs’ family abhors unfounded assumptions, no matter how

many it must live with in practice.

In order to remove this assumption, [1] changed the setting of interactive proofs from a single

prover to multiple, non-communicating provers. The class of languages accepted under this setting is

called MIP. They showed that every language in NP has a zero-knowledge proof without complexity

assumptions. Later works showed that MIP = NEXP, and that it is possible to recognize the whole

of MIP in zero-knowledge without complexity assumptions as well.

However, there is a hidden fatal flaw in those protocols. While the assumption is that the

provers are not able to communicate through dedicated channels of their own, it was not shown that

those protocols would prohibit the provers to communicate through the verifier. Indeed, the zero-
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knowledge multi-prover protocol in [1] requires that the provers communicate in order to fend off

man-in-the-middle attacks by the verifier. No other existing zero-knowledge multi-prover protocol

addresses this problem.

In addition, it was later discovered that the ‘no-communication’ condition that is imposed on

these provers might be insufficient to guarantee security; under this condition, the provers can form

joint randomness through some non-local processes. These processes do not allow communication,

but they nevertheless could be used to break the security of some protocols which relies on the

no-communication assumption alone. The verifier could even be used to implement these non-local

computations without breaking the no-communication assumption! Clearly, the no-communication

assumption is not strong enough.

How then do we guarantee that the verifier is not used by the provers to communicate or perform

non-local computations? This is the question that we address in this work.

Our Contribution

We apply the concept of statistical isolation from [5] to form strongly isolating verifiers. Such verifiers

can be guaranteed to resist any attempt by the provers to communicate or compute non-locally.

We show that an existing (non-zero-knowledge) multi-prover protocol for oracle-3-SAT, a NEXP-

complete language, can be implemented by a strongly isolating verifier; however, existing zero-

knowledge multi-prover protocols for oracle-3-SAT cannot. We construct a zero-knowledge protocol

for oracle-3-SAT that can be implemented by a strongly isolating verifier.
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Chapter 2

Mathematical Preliminaries

2.1 Asymptotic Notations

Let f, g : N→ R be functions. We define the following notations:

• f = O(g) if there exists k, C ∈ R such that x > k ⇒ |f(x)| < C|g(x)|

• f = o(g) if limx→∞ f(x)/g(x) = 0

• f = Ω(g) if there exists k,C ∈ R such that x > k ⇒ f(x) > Cg(x)

• f = Θ(g) if f = O(g) and f = Ω(g)

• f ∼ g if limx→∞f(x)/g(x) = 1

• f is a negligible function if f(x) = o(1/poly(x)) for every polynomial poly

The same asymptotic notations can be defined for functions whose domain or range is a subset

of R analogously.

2.2 Strings and Languages

Any finite set S is called an alphabet in the context of language. The exact nature of the elements

of S is irrelevant; we only care that they are distinguishable.

We denote by S∗ = {(s1, . . . , si)i≤n : n ∈ N, si ∈ S} the set of all finite sequences (or strings) of

elements of S. Any subset L ⊂ S∗ is called a language. The length of a string x ∈ L, denoted |x|, is

the length of the sequence. Note that S∗ is an infinite set unless S = ∅.
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In this work we will mainly be interested in the alphabet {0, 1} and languages L ⊂ {0, 1}∗.

Similarly, states and symbols simply are distinguishable members of finite sets, in the context of

Turing machines, to be defined below.

2.3 Turing Machines

A Turing machine is a tuple (Q,Γ, b,Σ, q0, qF , δ) where

• Q is a finite set of states,

• Γ is an alphabet,

• b ∈ Γ is the blank symbol,

• Σ ⊂ Γ is a set of input symbols,

• q0 ∈ Q is the initial state,

• qF is the halted state,

• δ : Q\{qF } × Γ→ Q× Γ× {L,R} is the transition function.

Intuitively, a Turing machine operates on an infinitely long tape, consisting on infinitely many

cells, each of which contains one symbol from the set Γ. The input of a Turing machine is the initial

configuration of the tape, on the condition that only finitely many cells contain a non-blank symbol.

A Turing machine reads a single cell at a time and, according to the transition function δ,

overwrites the symbol in that cell, and then move left or move right, and enters a new state. The

Turing machine halts if it enters the state qF .

The output of a Turing machine is the content of the tape after it halts. If it does not halt, then

its output is undefined.

We will use the shorthand M(x) = y to denote that upon executing M with input x, it halts

and outputs y.

A more formal treatment of Turing machines will be counter-productive here; it can be found in

any elementary computability textbook. The proofs for the following results can be found in them.

Theorem 2.1. Turing machines with multiple tapes are equivalent to those with a single tape.

Theorem 2.2. Turing machines with a single tape that is infinite in one direction only are equivalent

to those with two-way infinite tapes.

4



A turing machine is probabilistic if it has an additional infinitely long random tape which, when

the machine is initialized, is filled with uniformly random symbols from some alphabet which will

be clear from context, or explicitly defined.

2.4 Recognition of Languages by Turing Machines

Let L ⊂ S∗ be a language. If there exists a Turing machine M with S ∪ {accept, reject} as its

alphabet such that for every input x ∈ S∗,

• the machine halts after finitely many steps,

• if x ∈ L then it outputs accept,

• if x /∈ L then it outputs reject,

then we say that L is computable and that M decides L.

2.5 Circuits

A circuit is a finite simple directed acyclic graph where the edges (or wires) take on a value from

some alphabet and for every vertex there corresponds a function which takes the values of the in-

edges and outputs values for the out-edges. Vertices of in-degree zero are input gates. Vertices of

out-degree zero are output gates.

Any particular circuit can only take inputs of a fixed length since there is a fixed number of input

gates. Therefore, to represent a function whose domain might contain strings of (possibly infinitely

many) different lengths, we use families of circuits {Ci}i∈I , where each Ci is a circuit, and I is an

index set.

A family of circuits {Ci}i∈I is f-uniform if there exists a Turing machine M such that for all

i ∈ I, M(i) produces an appropriately encoded description of Ci, taking less than f(i) steps.

2.6 Complexity of Turing Machines and Circuits

Let M be a Turing machine, x be an input on which M halts, and |x| be the length of x. Let t(|x|)

denote the number of steps it takes for M to halt on x. We call t the complexity function of M .

Very often t cannot be defined explicitly by elementary functions, so we will bound it asymptotically

with simpler functions.

5



Let C be a circuit. The circuit size of C is its number of vertices. The circuit depth is the length

of its longest directed path.

We will adopt the usual convention in deeming Turing machines of polynomial complexity and

polynomial-uniform circuits to be those that are efficient or feasible.

2.7 Complexity Classes

The following common complexity classes will be discussed in this work. They contain languages L

with the following properties.

• P – L can be recognized in polynomial-time.

• P/poly – L can be recognized by a polynomially-sized family of circuits.

• BPP – L can be recognized in probabilistic polynomial-time with an error for soundness and

completeness of at most 1/3.

• NP – Every x ∈ L has a witness wx such that {(x,wx) : x ∈ L} ∈ P.

• co-NP – Every x /∈ L has a witness wx such that {(x,wx) : x /∈ L} ∈ P.

• PSPACE – There exists a polynomial p and a Turing machine M such that, for all x ∈ L, M

accepts x while not using more than p(|x|) cells of M ’s tape.

• EXP – L can be recognized by a Turing machine in exponential-time.

• NEXP – Every x ∈ L has a witness wx such that {(x,wx) : x ∈ L} ∈ EXP.

Other complexity classes will be defined if the need arises.

2.8 Probability and Entropy

Let S be a finite set. Let X : S → R be a function. We call S the sample space and X a discrete

random variable. We will only deal with discrete random variables in this work, so we will omit the

word ‘discrete’ from now on.

Associated with each random variable X is a probability mass function, fX : R → [0, 1] which

defines the probability that X takes on a particular value. That is fX(x) = Pr(X = x). This

function satisfies
∑

x∈R

fX(x) = 1.
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The Shannon entropy H of a random variable describes the amount of uncertainty a random

variable contains. We define it as

H(X) = −
∑

x∈S

fX(x) log2 fX(x).

In this work, we will be looking at the case where S = {0, 1}n, or the entropy of bit-strings. In the

special case where n = 1, H(X) represents the amount of uncertainly we have about the value of a

particular bit. When H(X) = 0, we know for certain its value, whereas when H(X) = 1, we have

no idea what it is. For example, if we use X to describe the outcome of a coin-toss, then H(X)

describes the bias of the coin, from a coin which only lands on one side (H(X) = 0) to a perfectly

fair coin (H(X) = 1) and everything in between.

A more detailed description of Shannon’s entropy function can be found in any information

theory textbook.
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Chapter 3

Single-Prover Interactive Proofs

3.1 Introduction

Traditionally, proofs are static. You should be convinced of a proof by reading it without help from

its author. The proof should speak for itself is the old adage. We can relate two complexity classes

to this analogy. The class P can be thought of as those proofs which can be efficiently produced

by an author, and the class NP as the class of proofs which can be efficiently verified by a reader.

Whether P = NP is an open problem at the time of this writing, but it is widely believed that we are

able to verify much more efficiently than we are able to prove (P ( NP). Intuition and experience

tells us that this is the case, but we may yet be surprised.

The natural question which arises is that if we can interact with the author, do we benefit over

having only a static proof? The question is not one of pedagogy, but of computational power. If we

call the class of languages we can accept by interacting with a prover IP, do we have NP ( IP?

Before we answer that, we must decide how to model this interaction. Informally, we can think

of IP as languages having protocols for two parties, a probabilistic polynomial-time verifier, and a

potentially malicious all-powerful prover. The prover must try and convince the verifier that x ∈ L

given a language L. The protocols must with high probability allow the prover to convince the

verifier if indeed x ∈ L (completeness), and with high probability will fail to convince the verifier if

that is not the case (soundness), despite the difference in computational power.

Returning to the question of whether interaction with a prover is beneficial, the answer is ‘yes’

with an asterisk. It turns out that if we do not demand perfect soundness, then IP = PSPACE,

therefore this question is reduced to answering the NP
?
= PSPACE question, which is open at this
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time. Although it is widely believed that NP 6= PSPACE, unfortunately as of now we once again

have only intuition and not concrete proof.

One potential problem with this model is that a verifier, taking advantage of an interaction

with an all-powerful prover, could try and learn something other than what was intended, and in

a cryptographic setting this may not be acceptable. The solution is the concept of zero-knowledge

proofs, in which the verifier can learn the one bit of knowledge ‘x ∈ L’ and nothing else.

For most languages in PSPACE, all currently known single-prover zero-knowledge proofs depend

on the existence of one-way functions. In fact, the existence of a single-prover zero-knowledge proof

for NP-complete languages which does not use one-way functions would imply the collapse of the

polynomial hierarchy. Thus is very unlikely that we can remove this complexity assumption in

general, in the single prover case. All existing exceptions, for example graph-isomorphism, are not

known to be NP-complete.

However, this assumption is not needed in the multi-prover model, which we will discuss in the

next chapter.

3.2 Definitions

Definition 3.1. An interactive Turing machine is a deterministic Turing machine with

• a read-only input tape,

• a read-only auxiliary input tape,

• a read-write work tape,

• a write-only output tape,

• a read-only incoming communication tape,

• a write-only outgoing communication tape,

• a read-write switch tape,

• and a read-only random tape (also called random coins).

Each interactive Turing machine has an identity, which is an unary string σ ∈ {1}∗. If σ is equal

to the contents of its switch tape, then the machine is said to be active. Otherwise it is idle. While

idle, the contents in all of its tapes are not modified.
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A set of k interactive Turing machines are linked if they have distinct identities, their input and

switch tapes coincide, and every pair of the machines Mi,Mj have their own incoming and outgoing

communication tapes ini, outi, inj , outj such that ini = outj and inj = outi. All other tapes are

distinct.

A joint computation of a set of k linked interactive Turing machines, on a common input x, is a

sequence of k-tuples representing the local configurations of all machines.

If a machine halts while the contents of the switch tape equals to its identity, then we say that

all machines have halted. The outputs of these machines are the set of their individual outputs.

Let S ⊆ {1, . . . , k}. We adopt the notation outS 〈A1(a1), . . . , Ak(ak)〉 (x) to denote the random

variable associated with the local outputs of the machines indexed by S on common input x, with

individual auxiliary inputs a1, . . . , ak; unless otherwise specified, the randomization is uniformly and

independently over each bit on the random tapes of Ai.

When no S is specified, we will write 〈A1(a1), . . . , Ak(ak)〉 (x) as the joint outputs of all machines,

randomized over any of their random tapes. If no auxiliary input is specified, then the empty string

is used.

Note that in some texts these are called ‘interactive Turing machines with auxiliary inputs’, but

we will not make that distinction since auxiliary inputs are necessary for our constructions later on.

For now, we will only need the case where k = 2.

Definition 3.2. A pair of interactive machines (P, V ) is an interactive proof system for a language

L if V is probabilistic polynomial-time in the length of the input x and that

• (Completeness) ∀(x ∈ L) ∃y ∀z ∈ {0, 1}∗ : Pr(outV 〈P (y), V (z)〉 (x) = accept) ≥ 2/3,

• (Soundness) ∀(x /∈ L,P ∗, y ∈ {0, 1}∗, z ∈ {0, 1}∗) : Pr(outV 〈P
∗(y), V (z)〉 (x) = accept) ≤

1/3, where P ∗ is an interactive Turing machine and the probabilities are over V ’s private

random tape.

Define IP to be the set of languages having interactive proof systems.

The constant 2/3 in the completeness definition turns out to be redundant. It is possible to

replace it with 1.

Theorem 3.1. Every language in IP has an interactive protocol with perfect completeness (an honest

prover will never fail to convince the verifier).

The proof of the above theorem follows from an analysis of the protocol for TQBF found in [8].
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3.3 Arthur-Merlin Protocols

In the previous section, the soundness of interactive proofs relies on the fact that the verifier has

access to a private random tape which the prover does not – recall that soundness is randomized

over these random coins. In fact, this private random tape completely determines the verifier. It

would seem counterintuitive that it is possible to design interactive proofs where the only things

the verifier sends to the prover are its private coins, but it is. We call such protocols public coin or

Arthur-Merlin protocols.

Definition 3.3. Define the class AM[poly] exactly as IP above, except that the verifier’s messages

are restricted to be contents of his random tape.

Note that even in this case, the verifier is not expected to give all of its random coins to the

prover at once.

Theorem 3.2. AM[poly] = IP = PSPACE

Theorem 3.3. Every language in AM[poly] has a public-coin protocol with perfect completeness.

The proofs of the above theorems depend on a generalization of the sumcheck protocol, con-

struction 4.1, made to work on the arithmetization of true quantified boolean formulas, which is a

PSPACE-complete language.

For details, see [8], section 8.2.

3.4 Bit-Commitment Schemes

We take a slight detour here to introduce bit-commitment schemes, which are crucial for constructing

zero-knowledge proofs later. Suppose that a sender, Alice, wishes to send a message to a receiver,

Bob; however, Alice does not want Bob to read the message immediately, so Alice encrypts the

message with a private key of her choosing, and then when the time comes to reveal what the

message was, she sends the key.

However, most encryption schemes do not offer the guarantee that a message can be decrypted

in only one way. Alice could, in principle, encrypt the message m under key k (enck(m)) and send

it to Bob. Later, she could find some other key k′ such that m 6= deck′(enck(m)).

We say that most encryption schemes, although concealing (Bob cannot know what the message

is until Alice gives him the key), are not binding (Alice can change her mind about what the message

was after she sent it).
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Bit-commitment schemes, on the other hand, have those two properties. They can be thought

of as Alice carving a message into a piece of stone, locking it in an unbreakable safe, then sending

the safe to Bob. Only when it is time to reveal what the message was will the combination of the

safe be sent.

The two conditions of bit-commitment schemes, binding and concealing, can have different

strengths attributed to them: perfect, statistical, or computational. For our purposes, we will only

discuss statistically binding and computationally concealing bit-commitment in the single-prover

case.

We will adopt the notation [a] for the commitment of a bit a.

Definition 3.4. A bit-commitment scheme is a two-phase, two-party protocol between two proba-

bilistic polynomial-time machines, A (sender Alice) and B (receiver Bob), as follows:

• Alice and Bob agree on a security parameter n. Alice has a bit b that she wishes to commit.

• (commit phase) Alice takes b and her auxiliary information (including random coins) rA and

exchanges messages with Bob, who outputs his auxiliary tape rB and the transcript T of the

interaction.

• (unveil phase) Alice sends (b, rA) to Bob, who accepts if and only if simulating their commit

phase with inputs (b, rA, rB) produces the right transcript T .

The protocol must satisfy

• (statistically binding) for all but negligible fraction of rB there are no random coins for the

sender r′A such that, when Bob simulates the commit phase with (b, r′A, rB) he produces the

transcript T ,

• (computationally concealing) for every family of polynomial-time algorithm B∗ interacting

with A, the ensembles {(A(0), B∗)(1n)}n>0 and {(A(1), B∗)(1n)}n>0 are computationally in-

distinguishable.

We will now construct a bit-commitment scheme based on the existence of one-way functions.

Lemma 3.1. If one way functions exist, then there exist pseudorandom generators G : {0, 1}∗ →

{0, 1}∗ such that |G(x)| = 3|x| for all x ∈ {0, 1}∗.

For a proof of the above lemma, see [12].
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Construction 3.1. Let n be the security parameter. To commit a bit, Alice selects r ∈ {0, 1}3n

uniformly at random and sends it to Bob, who then selects s ∈ {0, 1}n uniformly at random. Suppose

that Alice wishes to commit a bit b. If b = 0 then she sends G(s), and if b = 1 she sends G(s)⊕ r.

To unveil a bit, Alice sends s. Bob then computes whether he received G(s) or G(s) ⊕ r,

corresponding to a commitment of 0 and 1, respectively.

Theorem 3.4. The above construction is a statistically binding and computationally concealing

bit-commitment scheme.

For a detailed proof of the above theorem, see [7], section 4.4.1.3. We will sketch it here. To see

that the construction is statistically binding, without loss of generality suppose that Alice had sent

G(s), in order for her to change her mind there must exist s′ such that G(s) = G(s′) ⊕ r, which

is exponentially unlikely. It is computationally concealing because of Bob is too weak to invert the

one-way function, and thus the pseudorandom generator.

In the case where an all-prover prover is committing, it is necessary that we use a scheme that

is either statistically or perfectly binding for obvious reasons. The reader might wonder why we did

not construct a perfectly concealing and perfectly binding bit-commitment scheme. Unfortunately,

with only two parties (a prover and a verifier) and no additional assumptions, it can be shown that

this is impossible to achieve.

3.5 Bit-Commitment Equality

Given two commitments from Alice to Bob, [a] and [b], of bits a and b respectively, Alice would like

to show Bob that a⊕ b = c for some c without revealing what the commitments are. Specifically, if

c = 0, then the committed bits are equal.

We show that this is possible by constructing a bit-commitment scheme with equality from an

arbitrary bit-commitment scheme.

Construction 3.2. Bit-commitment equality from any existing bit-commitment scheme.

1. Alice and Bob agree on a security parameter k.

2. (Commit with equality) Alice prepares a commitment of bit a by committing random bit pairs

([aiL], [aiR])i≤k of random bits aiL, aiR such that for all i ≤ k, aiL ⊕ aiR = a. She does the

same for bit b as (biL, biR)i≤k.
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3. (Equality check) Suppose that Alice wishes to show that a = b. For each i, she computes

di = aiL ⊕ biL. She sends {di} to Bob. Bob tosses k coins {ci} and sends them to Alice. For

each i, if b1 = 0 then Alice unveils [aiL], [biL], else she unveils [aiR], [biR]. Bob checks whether

for all i, aiL ⊕ biL = di or aiR ⊕ biR = di. If any of these fails, reject. Otherwise accept.

A proof of its security can be found in [10].

As constructed, the commitments are not reusable. That is, once a proof of equality (or inequal-

ity) between two bits has been executed, neither commitments can be used to show its equality (or

inequality) to any other commitments. The above construction can be slightly modified so that the

commitments are reusable (attributed to Steven Rudich in [10]).

It is easy to see that bit-commitment equality retains the concealing and binding strengths of

the scheme on which it is based; also, since it is only polynomially slower, we will assume henceforth

that all bit-commitments are done with reusable equality.

3.6 Committed Circuit Evaluation

Suppose that Alice and Bob share a boolean gate G, and that Alice has committed bits [a], [b] and

[c] to Bob. Alice wishes to convince Bob that c = G(a, b) without revealing their values. We show

that this is possible with the help of bit-commitment equality from the previous section.

Recall that a boolean gate can be thought of as a truth table [(i, j, G(i, j))]0≤i,j≤1.

Construction 3.3. Committed gate evaluation.

1. Alice and Bob agree on a security parameter k.

2. Alice takes the truth table for gate G, applies a random permutation to its rows, and commits

this permuted truth table to Bob.

3. Bob flips a coin d. If d = 0 then Bob asks Alice to unveil the commitments of the permuted

truth table for G. If d = 1 then Bob asks Alice to prove to him, using bit-commitment equality,

that the triplet ([a], [b], [c]) is equal to one of the rows of the committed, permuted truth table.

4. Steps 2 and 3 are repeated k times.

A proof of security for the above construction can be found in [10].

In order to evaluate an entire circuit in committed form, Alice commits a triple ([a], [b], [G(a, b)])

for each gate. She and Bob then topologically sort the circuit, and then evaluate the circuit gate-by-

gate along the sorted order. When the input [a] of a gate is the output of a previous gate [G(x, y)],
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Alice convinces Bob using bit-commitment equality that a = G(x, y). Finally, when the output gate

is shown to have been evaluated correctly, Alice can then choose to unveil the output, if she desires.

In particular, a prover P and a verifier V can agree on a circuit of some other verifier Λ to be

evaluated in committed form. V provides a source of randomness that P is bound to, and P can

show V that ‘I am doing everything Λ would have done correctly, in encrypted form’. This is the

basic idea behind the technique of turning interactive proofs into zero-knowledge proofs. This is the

idea of ‘public-coin interactive proofs’ which will be discussed later.

We also need for V to “provide a source of randomness” to P . This will be the topic of the

following section.

3.7 Two-Party Coin-Toss

Suppose that Alice is on the phone with Bob and they wish to toss a coin. They do not trust each

other, they cannot meet up in person to physically toss a coin, and they have no mutually trusted

friends to help them. Is it possible for them to agree on a coin flip?

With the help of bit-commitment, it is possible. The protocol is simple:

Construction 3.4. Two-party coin-toss (also called coin-toss in a well).

1. Alice selects a random bit a and commits it to Bob as [a].

2. Bob selects a random bit b and sends it to Alice in the clear.

3. Alice unveils commitment [a] to Bob.

4. They output a⊕ b.

If at least one of them chooses a random bit, a⊕ b will be a random bit: since bit-commitment is

concealing, Bob does not know a, so he cannot control a⊕ b; and since bit-commitment is binding,

Alice cannot change the unveiling of a, so she cannot control a ⊕ b. The only way for a ⊕ b to be

non-random is for both of them to collude; they cannot unilaterally predict or control the outcome.

If Alice wishes that the outcome be unknown to Bob, they can execute the following instead.

Construction 3.5. Oblivious two-party coin-toss.

1. Alice selects a random bit a and commits it to Bob as [a].

2. Bob selects a random bit b and sends it to Alice in the clear.
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3. Alice commits a bit [c] to Bob and convinces him that [a]⊕ b = [c] using circuit evaluation in

committed form.

This way, Alice can commit a random bit to Bob who can be certain that the bit was the outcome

of a uniformly random event, even if he does not know what it is. This is how a verifier can ‘provide

a source of randomness’ to a prover.

3.8 Zero-Knowledge Proofs

So far, our approach to interactive proofs has been from a complexity-theoretic perspective. Now we

will do so from a cryptographic perspective. Previously, the provers were the potentially malicious

parties. Now, we will develop a scenario in which the verifier can behave badly.

When executing an interactive proof protocol, the ultimate goal of the prover is to convince the

verifier that ‘x ∈ L’. Suppose that there is a trusted third party, who interacts in the verifier’s place

with the prover. This third party can then come to the same conclusion as to whether ‘x ∈ L’ as

the verifier. But now the verifier needs only to know this one bit of ‘knowledge’ from the trusted

third party.

We would like a formal way of capturing this ideal case of having a trusted third party, thus we

need to formally define what it means for the verifier to not acquire ‘knowledge’.

A natural place to start is to define it in terms of information theory. However, this is too

coarse. Information theory deals with the question what can we know about x and how certain do we

know it? When x is given, everything there is to know about it is defined with certainty, including

whether x ∈ L. It does not address the fact that the verifier is bounded in computational power, and

that some things about x are harder to compute than others; indeed, it does not take into account

the very fact that the verifier is interacting with an all-powerful prover because it is too weak to

recognize L.

Intuitively then, we want to say that the verifier has not learned any new ‘knowledge’ from an

interaction if it cannot compute anything that it could not have from before the interaction. This

is the idea of simulation. If a conversation between a prover and a verifier can be simulated by a

machine with no more computational power than the verifier (in this case, an expected polynomial-

time simulator) without interacting with the prover, then the verifier cannot have learned anything

from the conversation.

Incidentally, if the reader finds that malicious verifiers are too artificial of a motivation for

studying zero-knowledge, we can rephrase it in the terms of an optimization problem – namely,
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minimizing knowledge leak. We are sure that the reader agrees that this is an interesting question

in itself.

We define two types of zero-knowledge, corresponding to two levels of ‘security’.

Definition 3.5. Let (P, V ) be an interactive proof system. The view of the verifier on a common

input x, denoted view(P, V, x), is the random variable of the sequence of V ’s outputs during its

interaction with P , over the random coins of V .

Definition 3.6. Let (P, V ) be an interactive proof system for a language L. We say that P is a

zero-knowledge interactive Turing machine if the following holds, depending on the type of zero-

knowledge considered.

For every probabilistic polynomial-time verifier V ∗, there is an expected polynomial-time simu-

lator S such that for all x ∈ L:

• (perfect zero-knowledge) S(x) and view(P, V ∗, x) are identically distributed.

• (computational zero-knowledge) S(x) and view(P, V ∗, x) are computationally indistinguish-

able: for every probabilistic polynomial-time distinguisher D, there exists N such that

|x| > N ⇒ |Pr(D(x, S(x)) = accept)− Pr(D(x, view(P, V ∗, x)) = accept)| < negl(|x|).

Where we think of S(x) as a random variable over its random coins.

We say that (P, V ) is a zero-knowledge interactive proof system for L if P is a zero-knowledge

interactive Turing machine and (P, V ) satisfies completeness and soundness.

There is another type of zero-knowledge, called statistical zero-knowledge. We will not consider

it, since in the single-prover case we have computational zero-knowledge, and in the multi-prover

case we can achieve perfect zero-knowledge.

Some texts require the simulator to be probabilistic polynomial-time as opposed to expected

polynomial-time. The two definitions are equivalent in that the resulting classes of languages having

zero-knowledge proofs are identical.

An implicit assumption made in the definition of zero-knowledge is that if the verifier deviates

from the protocol, then the prover will abort. This accounts for the arbitrary behavior of V ∗ that

a simulator must respond to.
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3.9 Zero-Knowledge for NP

Because of the properties of NP-completeness and polynomial-time reductions, we will only need to

exhibit a zero-knowledge protocol for a single NP-complete language. We choose the graph 3-coloring

problem.

Definition 3.7. Let G = (V,E) be a simple, finite, non-directed graph. A 3-coloring of G is a

function f : V → {1, 2, 3} such that for all (a, b) ∈ E, f(a) 6= f(b). The graph 3-coloring problem is

to decide, given G, whether such a function exists.

Theorem 3.5. Graph-3-coloring is NP-complete.

The above theorem is a well-known result. For details, see [8].

Thus if we wish to prove in zero-knowledge the membership of an NP-complete language, we

will simply need to reduce it in polynomial-time to an instance of graph 3-coloring, and execute the

zero-knowledge protocol for that instance.

Construction 3.6. The following is a zero-knowledge graph 3-coloring protocol between prover

Alice and verifier Bob.

1. They receive a graph G = (V,E) and a security parameter n as a common input. We assume

that Alice knows a 3-coloring function f : V → {1, 2, 3}.

2. Alice chooses uniformly at random a permutation π : {1, 2, 3} → {1, 2, 3}. Alice commits the

values π(f(v)) to Bob for each vertex v ∈ V .

3. Bob chooses an edge (a, b) ∈ E uniformly at random and asks Alice to unveil the commitments

for a and b. Bob rejects if they have the same value.

4. Steps 2 and 3 are repeated n times. Bob accepts if he did not reject at any point of this

repetition.

Theorem 3.6. The above construction is a zero-knowledge protocol for graph 3-coloring.

The intuition behind the above theorem is that if the graph is not 3-colorable, then there will be

an edge with two vertices committed with the same color. The probability that the verifier will ask

for such an edge to be unveil is at least 1/|E|, during a particular repetition, thus the probability

that a malicious prover will get away with cheating decreases exponentially in the number of runs.

For details, see [7], section 4.4.2.

18



The strength of zero-knowledge depends on the strength of the concealing property of the bit-

commitment protocol used in step 2. In our case, it is a computationally concealing bit-commitment

(construction 3.1), and therefore it is computational zero-knowledge.

3.10 Zero-Knowledge for PSPACE

Now we will extend the NP zero-knowledge protocol to PSPACE.

Recall that AM[poly] = IP (section 3.3), and therefore we can convert any interactive proof to a

public-coin protocol with perfect completeness, consisting of a polynomial-time machine A (Arthur)

and an all-powerful machine M (Merlin). The transcripts after executing such a protocol are of the

form (a1,m1, . . . , ak,mk), where ai are the coin flips sent by Arthur and mi are Merlin’s replies, in

order.

The key observation to make here is that if we replaced mi with a commitment [mi] in the

transcript, then the statement ‘this is a valid transcript where Arthur accepts’ is in NP, since if it

were true, then we can prove it in polynomial-time by unveiling the commitments [mi] and simulating

Arthur to check whether the transcript is valid (recall that Arthur is a deterministic polynomial-time

machine if we fix his random coins, and the protocol has perfect completeness, so a true statement

will always be accepted).

Construction 3.7. Given L ∈ PSPACE, prover P wishes to prove in zero-knowledge to verifier V

that x ∈ L for some string x ∈ {0, 1}∗.

1. P and V agree on a public-coin protocol with perfect completeness (A,M) for L.

2. Whenever Arthur tosses coins, P and V execute a committed two-party coin-toss protocol

where P commits to V the outcomes of the coin-tosses.

3. Whenever Merlin responds, P commits its answers to V .

4. When the Arthur-Merlin protocol is finished, V reduces the transcript to an instance of graph-

3-coloring G such that the transcript is valid if and only if there is a 3-coloring of G. V sends

the graph to P .

5. P verifies that G is indeed one that is 3-colorable if and only if the transcript is valid.

6. P and V execute a graph-3-coloring zero-knowledge protocol for G. V accepts or rejects

accordingly.
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There is an alternative way of constructing zero-knowledge protocols for PSPACE. If we instead

have a committed-with-equality transcript ([a1], [m1], . . . , [ak], [mk]), then a prover who knows how

to unveil the commitments can evaluate Arthur’s circuit with those inputs then send the committed

circuit to a verifier. The prover then convinces the verifier that the circuit is a valid evaluation in

committed form.

Construction 3.8. Given L ∈ PSPACE, prover P wishes to prove in zero-knowledge to verifier V

that x ∈ L for some string x ∈ {0, 1}∗.

1. P and V agree on a public-coin protocol with perfect completeness (A,M) for L.

2. Whenever Arthur tosses coins, P and V execute a committed two-party coin-toss protocol

where P commits to V the outcomes of the coin-tosses.

3. Whenever Merlin responds, P commits its answers to V .

4. When the Arthur-Merlin protocol is finished, P evaluates Arthur’s circuit with the coins tossed

earlier and his answers to V . P then commits the values of every gate to V .

5. P proves to V that the committed circuit is valid using circuit evaluation in committed form.

6. P unveils the output of the circuit. V accepts or rejects accordingly.

Once again the bit-commitment is computationally concealing, hence the strength of zero-

knowledge is computational. For details on how to construct simulators for the above constructions,

see [7], theorem 4.4.12.
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Chapter 4

Multi-Prover Interactive Proofs

4.1 Introduction

The soundness of single-prover interactive proofs holds against computationally unbounded provers.

This is the worst possible case in terms of computational power for an adversary. Even so, we can

catch any such cheating prover for all languages in PSPACE.

Suppose that the verifier now has access to two or more provers who are prohibited from commu-

nicating with each other. Have we gained anything? The intuition is that of a detective interrogating

two suspects in isolated rooms. Although the suspects may have a joint alibi, under separate interro-

gation the detective might uncover inconsistencies. Thus, having extra non-communicating provers

may actually weaken their individual ability to cheat without losing the generality and simplicity of

computational unboundedness. This multi-prover model was introduced in [1].

This turns out to be a powerful setup. There are two main results. The first is that the class of

languages having multi-prover interactive proofs (MIP) is the same as non-deterministic exponential-

time (NEXP), a complexity class that is believed to be much larger than PSPACE. The second is

that it is possible for any language in MIP to be accepted in perfect zero-knowledge.

We will present the proof thatMIP = NEXP, then discuss how the no-communication assumption

may be insufficient to guarantee soundness, and finally look at how this problem can be addressed.

4.2 Definitions

Definition 4.1. (P1, . . . , Pk, V ) is called a k-prover interactive protocol if the following holds.
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1. They form a set of k+1 linked interactive Turing machines, but without communication tapes

between Pi and Pj if i 6= j.

2. Each Pi is all powerful, and V is probabilistic polynomial-time.

3. There exists an infinitely long read-only random tape accessible by all Pi, but not V .

The Pi are provers and V is the verifier.

Definition 4.2. A language L has a k-prover interactive proof if there exists a probabilistic

polynomial-time interactive machine V such that:

1. (completeness) ∃(P1, . . . , Pk) such that (P1, . . . , Pk, V ) is a k-prover interactive protocol and

∀(x ∈ L) ∃(y1, . . . , yk) ∈ {0, 1}
∗ ∀z ∈ {0, 1}∗ Pr(outV 〈P1(y1), . . . , Pk(yk), V (z)〉 = accept) ≥

2/3.

2. (soundness) ∀(P1, . . . , Pk) such that (P1, . . . , Pk, V ) is a k-prover interactive protocol, ∀(x /∈

L) ∀(y1, . . . , yk) ∈ {0, 1}
∗ ∀z ∈ {0, 1}∗ Pr(outV 〈P1(y1), . . . , Pk(yk), V (z)〉 = accept) ≤ 1/3.

Definition 4.3. Let MIPk denote languages which have a k-prover interactive proof. Let MIP =

⋃
k≥1 MIPk.

4.3 MIP = NEXP

We will prove containment in the two directions, thereby proving equality.

Theorem 4.1. MIP ⊆ NEXP.

As shown in [2], we obtain this upper bound by proving equivalence between multi-prover proofs

and oracle machines. Unlike provers, oracles have no memory, although they are not necessarily

deterministic. Therefore an oracle’s future answers does not depend on its prior ones. They simply

represent the black-box computation of some function in a single step.

Definition 4.4. Let MH be a probabilistic polynomial-time machine with access to oracle H. A

language L is accepted by M if and only if

1. ∀x ∈ L∃ oracle H such that Pr[MH(x) = accept] > 2/3,

2. ∀x /∈ L∀ oracle H ′, Pr[MH′

(x) = accept] < 1/3,

where n = |x|.
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Lemma 4.1. A language L is accepted by a probabilistic polynomial-time oracle machine if and only

if it is accepted by a multi-prover interactive protocol.

We sketch a proof of theorem 4.1. Using the above lemma, given L ∈ MIP, there exists a

probabilistic oracle machine M which accepts L. A non-deterministic exponential-time machine can

be created to accept L by guessing the oracle’s answers to all questions whose length is bounded

by a polynomial, then go through all possible random coins of M , tallying the number of accepting

instances. Details can be found in [2].

Theorem 4.2. NEXP ⊆MIP.

We will present the strategy that was used in [3] to prove this theorem. We will first review

a single-prover protocol for languages in co-NP. Then we will present a NEXP-complete language

which can be accepted by an oracle/prover hybrid protocol. Finally, we will combine this with

arguments from [3] which shows that the oracle can be replaced by a prover. Proofs of the following

lemmas and the proof of correctness of the following constructions can be found in [3].

Definition 4.5. Let φ : {0, 1}m → {0, 1} be a Boolean function. An arithmetization of φ is a

polynomial f(x1, . . . , xm) ∈ Q[X1, . . . , Xm] such that for all z ∈ {0, 1}m, φ(z) = 0⇔ f(z) = 0.

Equivalently, the φ(z) = 0⇔ f(z) = 0 condition can be replaced with φ(z) = 1⇔ f(z) = 0.

Lemma 4.2. An arithmetization of a Boolean function φ : {0, 1}m → {0, 1} can be constructed in

polynomial-time.

The fact that a Boolean function is a tautology, that the function that always evaluates to true

regardless of input, can be expressed by the equation

1∑

x1=0

. . .

1∑

xm=0

f(x1, . . . , xm)2 = 0

For a suitably chosen polynomial f . We present the following protocol called the sumcheck

protocol which shows that tautologies can be proven by an interactive proof.

Construction 4.1. Sumcheck protocol.

Let φ(x1, . . . , xm) be the 3-CNF formula which the prover P is trying to show to be a tautology

to a verifier V .

1. V takes φ and computes its arithmetization f according to 4.2 and sends it to P .

2. V and P agree on a set I ⊂ Q of size at least 2dm where d is the degree of f .
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3. V assigns b0 = 0, which is supposed to be equal to the sum

1∑

x1=0

. . .

1∑

xm=0

f(x1, . . . , xm)2 = 0

4. i← 1.

5. P sends the coefficients of the univariate polynomial in x,

gi(x) = h(r1, . . . , ri−1, x) =

1∑

xi+1=0

. . .

1∑

xm=0

f(r1, . . . , ri−1, x, xi+1, . . . , xm)2

6. V checks whether bi−1 = gi(0) + gi(1). If not, abort.

7. V chooses a random ri ∈ I, computes bi = gi(ri) and sends ri to P .

8. If i ≤ m then i← i+ 1 and go to step 4.

9. V checks whether bm = f(r1, . . . , rm)2.

The idea behind this protocol is that the two different polynomials of degree n will agree on at

most n points, so that if the prover cheats, it would have to cheat during every round. At the end

(step 9), the polynomial which was adaptively constructed by the prover must agree with f on some

input. If the prover has cheated at some point, there is a high chance that the final results would

disagree. For a proof of its correctness, see [8].

Note that the last step does not require interaction. V merely substitutes the random values it

has chosen during the protocol’s loop into the explicit polynomial f2 and checks whether it is equal

to the last value stated by P .

Definition 4.6. Let r, s > 0 be integers. Let z, b1, b2, b3 be strings of variables, where |z| = r and

|bi| = s. Let B(z, b1, b2, b3, t1, t2, t3) be a Boolean formula in r+3s+3 variables. A Boolean function

A : {0, 1}s → {0, 1} is a 3-satisfying oracle for B if

B(z, b1, b2, b3, A(b1), A(b2), A(b3)) = 1

for every string z, b1, b2, b3.

B is oracle-3-satisfiable if such a function A exists.

The Oracle-3-SAT problem (B, r, s) asks whether a Boolean formula B is oracle-3-satisfiable,

where r and s denote the lengths of z and bi, as above.
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Oracle-3-SAT problems are similar to demonstrating that a Boolean function is a tautology,

except that the last three inputs are reserved for the oracle. Not surprisingly, we will adapt the

sumcheck protocol for oracle-3-SAT later.

Lemma 4.3. Oracle-3-SAT is NEXP-complete.

Lemma 4.4. Let L ∈ NEXP and x ∈ L. Then it is possible to compute in polynomial-time an

instance of oracle-3-SAT (B, r, s) such that B is oracle-3-satisfiable if and only if x ∈ L.

Lemma 4.5. Given an instance of oracle-3-SAT (B, r, s), it is possible to compute in polynomial-

time an integer polynomial g with the same variable symbols as B such that a function A : {0, 1}s →

Q is a 3-satisfying oracle if and only if

∑

z∈{0,1}r,bi∈{0,1}s

g(z, b1, b2, b3, A(b1), A(b2), A(b3)) = 0

Definition 4.7. A polynomial f ∈ Q[X1, . . . , Xm] is multilinear if the degrees of all variables are

≤ 1.

Lemma 4.6. Let A : {0, 1}s → Q. Then A has a unique multilinear extension Â : Qs → Q.

Furthermore,

• If A only takes on integer values then so does Â when restricted to Z.

• Let I = {0, . . . , N − 1}. Then for any x ∈ Is we have that |Â(x)| < (2N)s.

Note that Â might contain exponentially many summands.

Lemma 4.7. Suppose that an oracle H stores a function A. Then there is a polynomial-time oracle

machine interacting with H that will always accept if A is multilinear, but reject with probability

exponentially close to 1 in some security parameter if A is not.

Oracles differ from provers in that they do not have memory, so they do not let their current

answer depend on any previous answers. When we ask a prover to simulate an oracle, we are asking

it to answer non-adaptively. We can catch a cheating prover by asking one of the queries to a second

prover who we have not communicated with before, then amplify this probability by repeating. A

prover which is only asked a single question can be thought of as an oracle. Details can be found in

[3].

Now we have the necessary preliminaries to construct a multi-prover protocol for NEXP.
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Construction 4.2. A multi-prover protocol (P1, P2, V ) for L ∈ NEXP. Given x ∈ L as common

input.

1. V computes an instance of oracle-3-sat (B, r, s) if and only if x ∈ L as per lemma 4.4.

2. By lemma 4.5, V converts (B, r, s) into a polynomial g in r + 3s + 3 variables with integer

coefficients such that (B, r, s) is satisfied if and only if there exists a Boolean function A′ whose

multilinear extension A is such that

∑

z∈{0,1}r,bi∈{0,1}s

g(z, b1, b2, b3, A(b1), A(b2), A(b3)) = 0

The provers do the same.

3. (multilinearity test) V asks P1 to simulate an oracle storing the function A. V executes the

protocol from lemma 4.7 to decide whether to accept A as multilinear. If this test fails, abort

the entire protocol. Let Q1, . . . , Qk be V ’s questions during this phase.

4. (sumcheck with oracle) V and P1 execute the sumcheck protocol from construction 4.1 to check

that the equation from step 2 holds. Note that the values of A are supplied by P1 during this

step. Let Qk+1, . . . , Qk+3 be V ’s questions during this phase.

5. (non-adaptiveness test) V chooses uniformly at random an i such that 1 ≤ i ≤ k + 3 and asks

Qi to P2. If P2’s answer differs from that of P1, reject. Otherwise accept.

Steps 1 to 5 are repeated until the completeness and soundness probabilities are ≥ 2/3 and ≤ 1/3

respectively.

Proposition 4.1. The above protocol has perfect completeness.

The idea behind the proof of theorem 4.2 is that given L ∈ NEXP, we reduce it to an instance

of oracle-3-SAT, then we check it with multiple provers using construction 4.2. Details can be found

in [3].
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Chapter 5

Non-Locality

5.1 Introduction

The previous chapter introduced the idea of multi-prover protocols whose soundness rests on the

fact that the provers cannot communicate, a fact which was used to force non-adaptive behavior

upon them.

There are two problems with existing multi-prover protocols. The first is that although the

provers have no direct way of communication, they can still do so through V if V allows it, inadver-

tently or not. So although it is possible that a particular protocol requires V to courier a message

across provers for whatever reason, in most cases this is probably not desired. The existing analyses

of multi-prover protocols do not rule out that the protocols, and hence V , can be exploited by the

provers to communicate.

The second problem is that the provers can technically share a ‘non-communicating non-local

box’, a trusted party implementing a multiparty computation that does not allow communication.

This, in turn, may be used to break some protocols which can be ‘proven secure’ with just the

no-communication assumption. While this may be very contrived, it is allowed. We give a simple

example below.

Construction 5.1. A non-local box known as a PR-box.

1. P1 inputs bit a. P2 inputs bit b.

2. P1 receives a uniformly random bit s. P2 receives t = s⊕ (a ∗ b).

Details about this construction can be found in [11].
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Since s is uniformly random and independent of a and b, the PR-box does not allow the provers

to communicate. However, with its help, the provers can establish the joint input-output correlation

((a, b), (s, t)) where a ⊕ b = s ∗ t with certainty, whereas without the PR-box they can only do so

with 3/4 chance, when the inputs are uniformly random. Therefore if the soundness of a protocol

depends on this gap of 1/4 in probability, provers with PR-boxes will break it.

As a concrete example, we invite the reader to skip ahead and look at construction 6.1. With

the help of a PR-box, we will now break it in the same way as in [5]. For the ith bit of the string,

P2 inputs into the PR-box the ith bit of the verifier’s random string a = zi, and obtains an ouput s,

which is sent to the verifier. P1 discloses some random bit x. To unveil a bit e, P1 inputs into the

PR-box b = x⊕ e and obtains t = s⊕ (zi ∗ b), which is sent to the verifier, along with e.

If b = 0, then the verifier will find that t = s, which is the correct ith bit for unveiling. If b = 1,

then t = s⊕ zi, again the correct ith bit for unveiling. Do this for every bit of the unveil string. P1

can thus unveil either way, at will. This is not good.

An example of a violation of the soundness of non-zero-knowledge multi-prover protocols, based

on quantum entanglement (a special kind of non-locality), can be found in [4].

While it is possible to remedy these particular cases with an additional assumption such as the

provers do not share entanglement or the provers do not share non-local boxes, in general, analyses

of multi-prover protocols do not take into account of any possible non-locality which might be

inadvertently established by the verifier, a much weaker condition than the verifier accidentally

allowing communication. We can even plainly ask the verifier to execute some non-local box (such

as the PR-box, or simulating entanglement) with the provers, with the verifier acting as the trusted

party, and it would not be a violation of the no-communication assumption.

It is also not possible to guarantee soundness when many multi-prover protocols are composed,

for the same reasons. Specifically, it is not possible to guarantee that repeating a primitive protocol,

which normally would amplify soundness, would in fact not break it by inadvertently allowing the

provers to communicate or establish non-locality.

Determining the exact class of languages that can be accepted by a multi-prover protocol when

the provers have access to non-locality is an open problem which we will not discuss further. Trivially,

it must lie somewhere between PSPACE and NEXP.

Rather, we will discuss how to guarantee that the provers are unable to exploit the verifier into

allowing communication or establishing non-local correlations in the first place, and the languages

that a verifier can accept normally and in zero-knowledge under such constraints.
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5.2 Isolation

Suppose that the provers have only the verifier to talk to, and not some other third parties or

non-local boxes. We want to make sure that the verifier does not unwillingly establish non-local

correlation between provers. We define as in [5] the notion of isolation.

Definition 5.1. Let (P1, . . . , Pk, V ) be a k-prover interactive protocol. V is strongly isolating if

every message sent or received by the verifier is tagged with a tag T ∈ P({1, . . . , k}) as follows:

• Every message computed without any previous messages is tagged with T = {1, . . . , k}.

• Every message received from prover Pi is tagged with T = {i}.

• Every message computed from previous messages is tagged with the intersection of the tags of

those messages.

A message (m,T ) can be sent to prover Pi only if i ∈ T . In particular, if T = ∅ then the message

cannot be sent to anyone.

We call this notion strong isolation in order to differentiate it from another notion of isolation

(one based on information theory) found in [5].

Theorem 5.1. If V is a strongly isolating verifier then the provers cannot establish non-local cor-

relations using V . In particular, they cannot use V to communicate with each other.

The intuition behind the fact that a strongly isolating verifier cannot let provers communicate is

that a message tagged with T cannot contain any information about messages tagged with {1, . . . , k}

T . Thus through an inductive argument, if a message is sent to a prover, that message cannot contain

information that the recipient does not already possess.

As for non-local computation, without loss of generality suppose that P1 sends the verifier a bit

a1, and the verifier replies with a uniformly random bit b1. The verifier receives P2’s message a2 and

replies b2. For there to be any correlation between b2 and a1 or b2 and b1, the verifier must have

done some kind of computation involving all three bits. But then such a message would have been

tagged with the empty tag, and would not have been sent to P2.

For details, see [5].

Definition 5.2. Amulti-prover protocol is strongly isolating if it can be implemented with a strongly

isolating verifier.
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5.3 NEXP Revisited

We will take another look at the multi-prover protocol for NEXP introduced in the previous chapter.

Theorem 5.2. Protocol 4.2 can be implemented with a strongly isolating verifier.

Proof. Let us look at the construction step by step and tag all of the messages sent by V .

1. V does not send any messages in this step.

2. V does not send any messages in this step.

3. The queries qi sent to P2 are generated from V ’s random tape only, thus are tagged (qi, {1, 2, 3})

and are cleared to be sent to P2. One such query qk is selected at random, thus is still tagged

as (qk, {1, 2, 3}). This query is cleared to be sent to P3.

4. This step involves looking at construction 4.2 and noting that all of the messages sent by V

to P1, including b1, b2 and b3, are random numbers generated independent from any previous

messages. Those messages are thus tagged with {1, 2, 3}.

5. b1, b2, b3 are cleared from the previous step to be sent to P2 or P3.

All messages have been accounted for, thus V is strongly isolating.

The fact that this protocol is already strongly isolating is fortuitous, but unsurprising. P2 only

needs to answer a single question regarding the multilinear function. The difficulty will arise in the

context of zero-knowledge, in which case the provers must somehow jointly fend off the verifier’s

attempts at gaining knowledge. Already they cannot communicate, but now we must place the

additional constraint of strong isolation upon them.
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Chapter 6

Zero-Knowledge MIP

6.1 Introduction

The difficulty with turning construction 4.2 into a zero-knowledge proof under isolation lies in the

fact that P2 must answer an encrypted question in order to show non-adaptivity. P1 must be the

one who encrypts it. V must make sure that it is encrypted correctly, and that the question is

not an attempt at communication. P2 must make sure the question was not altered by V in a

man-in-the-middle attack. Finally, P2 must answer the question in committed form.

The existing solution is essentially the following. All the parties agree on some random hash

function which will be used by the provers for authentication, and P1 will commit a random string

which will be used as a one-time pad between it and P2. P1 takes an existing oracle question of V ’s

choosing and commits the hash. P1 shows V obliviously that the hashing was done correctly. P1

then encrypts the question with the one-time pad and shows that the encryption was done with the

committed random string. This guarantees V that the ciphertext is that of the question, and not

some attempt at communication, while the hash confirms to P2 that the question genuine. V sends

P2 the encrypted question and the hash, who decrypts and authenticates it before answering.

The reason for this elaborate dance between the parties is that the verifier must ask P2 a question

which it has already asked P1 in order for the protocol to remain zero-knowledge. Suppose that the

verifier asks one prover question x, and the other question y, then a polynomial-time simulator would

have to store a possibly exponentially large function A in order to simulate the transcript. This is

because it must simulate acceptance or rejection by the verifier based on whether A(x)
?
= A(y),

which it cannot know.
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The problem with the above solution is that the message which must be couriered by V from P1

to P2 will be tagged with P1’s tag. Thus it cannot be sent if the verifier is strongly isolating.

Our solution is simple. We will not ask V to courier any message. Instead, we will ask the

provers to encrypt the answer with the question as the encryption key, and we will let the verifier

ask a non-adaptive test question of its choosing to each prover. If the same question is asked, then

the verifier will receive the same random string. Otherwise, it will receive two independent and

uniformly random strings.

6.2 Preliminaries

Zero-knowledge for multi-prover interactive proofs is defined in the same way as the single-prover

case: as the ability to generate the view of any verifier in polynomial time with the same distribution

as the actual conversations with honest provers.

Definition 6.1. Let (P1, . . . , Pk, V ) be a multi-prover interactive proof system. The view of the

verifier on an input x, denoted view 〈P1(y1), . . . , Pk(yk), V (z)〉 (x), is the sequence of its outputs

during its interaction with P1, . . . , Pk on input x and auxiliary inputs y1, . . . , yk, z. Note that it is a

random variable which depends on the random coins of V .

Definition 6.2. Let (P1, . . . , Pk, V ) be a multi-prover interactive proof system for a language L.

Let PL(x) be the set of auxiliary inputs for the provers that satisfies completeness for x.

We say that {P1, . . . , Pk} is a zero-knowledge interactive Turing machine set if for every prob-

abilistic polynomial-time verifier V ∗, there is an expected polynomial-time simulator S such that

∀x ∈ L∀y1, . . . , yk ∈ PL(x), ∀z ∈ {0, 1}
∗, S(x, z) and view 〈P1(y1), . . . , Pk(yk), V

∗(z)〉 (x) are identi-

cally distributed, where the randomness is over the random coins of S and V .

(P1, . . . , Pk, V ) is a zero-knowledge multi-prover interactive proof system if {P1, . . . , Pk} is a set

of zero-knowledge interactive Turing machines.

Zero-knowledge multi-prover protocols are a special case of general multi-prover protocols. Thus

the definition of strongly isolating protocols carries over; i.e., a zero-knowledge multi-prover protocol

is strongly isolating if it can be implemented with a strongly isolating verifier.

6.3 Information-Theoretically Secure Bit-Commitment

The strength of zero-knowledge in the single-prover case rested on the strength of the bit-commitment

protocol. We will show that it is possible to construct a statistically binding and perfectly concealing
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bit-commitment scheme in the multi-prover case (we will focus on the 2-prover case). This will give

us perfect zero-knowledge protocols for all languages in NP by switching from computationally

binding bit-commitments to perfect ones [1].

This bit-commitment is from a prover to the verifier only. We will not need commitment for the

other direction.

Construction 6.1. Statistically binding, perfectly concealing 2-prover bit-commitment protocol.

All parties agree on a security parameter k. P1 and P2 partition some of their private random

tape into k + 1-bit strings {(ci, wi)}i≤N, where ci are bits and |wi| = k.

Pre-computation phase:

• V chooses a k-bit string z uniformly at random and sends it to P2.

• P2 responds with di = wi ⊕ ci · z, for 1 ≤ i ≤ N , where N is sufficiently large (depending on

the protocol which uses this bit-commitment scheme as a sub-protocol), and ci · z are thought

of as the product between a scalar ci and a vector z, over Z2.

Commit phase:

• P1 wishes to commit bi to V as [bi] = bi ⊕ ci.

Unveil phase:

• P1 sends wi to V .

• V computes ci = 1 if di ⊕wi = z, or ci = 0 if di ⊕wi = ~0 and recovers bi = [bi]⊕ ci. V rejects

if di ⊕ wi does not equal to either z or ~0.

The prover which executes the pre-computation phase with the verifier for bit i cannot be the

prover who unveils bit i. It is possible and simpler to delegate a prover PBC to do nothing but

execute this pre-computation phase, in a given protocol. Any other prover could then be trusted

to unveil bits. Moreover, any prover (again, except PBC) can unveil any bit, not necessarily one

committed by itself, if it so chooses. They simply have to partition their private random tape

appropriately beforehand.

It is sufficient for the verifier to fix a single ‘master key’ z and execute the pre-computation phase

many times with a dedicated prover. This way, during the course of the protocol, provers will be

able to show commitment equality, as will be discussed below.

It is clear that without executing the pre-computation phase with the appropriate prover, the

verifier cannot know what bit has been committed.
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Theorem 6.1. Construction 6.1 is a perfectly concealing and statistically binding bit-commitment

scheme

Proof. Perfectly concealing – the verifier does not know the provers’ shared uniformly random secret

string wi. Thus di ⊕ wi is uniformly random from the verifier’s point of view, and thus so is ci and

hence bi.

Statistically binding – The prover who unveils does not know the verifier’s secret string z which

is used during the pre-computation phase. The verifier will only accept two strings during unveiling,

wi and wi ⊕ z. The prover can only guess the second one with exponentially small probability.

It follows that every language in PSPACE has a perfect two-prover interactive proof by aug-

menting construction 3.8 with the above perfectly concealing bit-commitment.

It also follows that we have two-party information-theoretically secure coin-tossing by executing

construction 6.1 with the perfect bit-commitment scheme above.

6.4 Bit-Commitment Equality

A feature of the above bit-commitment scheme is that there is a proof of bit-commitment equality

built-in. If a prover wishes to show to the verifier that [b1] is a commitment to the same bit as

[b2], then the prover needs only to provide w1 ⊕ w2. The verifier computes d1 ⊕ d2 ⊕ w1 ⊕ w2 =

c1 · z ⊕ c2 · z = E.

Now, we have the following.

• If E = ~0, then c1 = c2, and thus b1 = b2 if and only if [b1]⊕ [b2] = 0.

• If E = z, then c1 6= c2, and thus b1 = b2 if and only if [b1]⊕ [b2] = 1.

• If E is neither ~0 nor z, the verifier rejects.

As before, any prover can prove that any two commitments are equal, even if said prover is

not the one who commits, since all of the provers share the same private random tape, and its

partitioning.

Note that this only works if the two commitments [b1] and [b2] are under the same random key

the verifier sent during their respective pre-computation phase. However, as discussed above, it is

sufficient for the verifier to set a single ‘master key’ for an entire protocol.
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This bit-commitment equality is naturally reusable. After [b1] and [b2] are shown to be equal

by unveiling w1 ⊕ w2, a prover can show that [b3] is equal to both of them by revealing w1 ⊕ w3.

Neither w1, w2, nor w3 has been revealed during this process.

6.5 Strongly Isolating Perfect Zero-Knowledge MIP

Recall that the technique used to in construction 3.7, a zero-knowledge protocol for all of PSPACE,

involved proving to the verifier that the committed transcript is a valid one. This is an NP statement

which is reducible to an instance of the graph-3-coloring problem.

This technique will not work directly in the case of MIP because given a committed transcript,

it is not possible for the verifier to know that it was generated by provers who were not actually

communicating, and the bit-commitment used is perfectly concealing, making the statement no

longer an NP one1. We will instead adapt construction 3.8 for MIP.

By theorem 5.2, the NEXP-complete protocol, construction 4.2 is already strongly isolating. The

phases which only involves P1 can be made zero-knowledge by executing it in committed form, as

in the single-prover case. The phase in which the verifier asks P2 a question can also be executed in

committed form.

The problem is that in this interaction with P2, the verifier must ask a question that it has asked

P1 in order to assure zero-knowledge. This problem is addressed in [1] by asking the first prover to

compute the verifier’s question in committed form, add a message authentication tag using a secret

key that the provers share and finally ask the verifier to courier the message to P2, who then checks

whether the authentication is valid before executing its part of the protocol.

This solution is problematic because it cannot be implemented with a strongly isolating verifier

even if the provers were to show that their authentication tag is not an attempt at communication.

The message and its authentication would be tagged with P1’s tag only, so they could not be sent

to P2.

We present a different zero-knowledge MIP protocol which addresses this problem. Our solution

basically asks the provers to encrypt an answer with a key that is based on the verifier’s question.

This way, there is no need for P1 to authenticate the question that the verifier will ask P2, since an

honest verifier will receive two answers which can be proven to be equal, but a dishonest one will

receive two independent uniformly random answers. This can be simulated, proving zero-knowledge;

and it can be implemented by a strongly isolating verifier, proving isolation.

1Since the bit-commitment is perfectly concealing, there exists unveilings of either bit, whereas if the bit-

commitment is computationally concealing, there is only one possible unveiling, which is the NP-witness
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Construction 6.2. (Strongly isolating perfect zero-knowledge multi-prover protocol for MIP)

Let L ∈ NEXP be a language, let x ∈ L and let (P ′
1, P

′
2,Λ) be a multi-prover protocol from

construction 4.2 with perfect completeness which accepts x. We construct a zero-knowledge protocol

for provers P1, P2, PBC and verifier V . There will be at most N bit-commitments. Let K be the

number of coins needed by Λ to compute each question.

P1 and P2 agree on N + 1 random strings w1, . . . , wN and γ of length K.

All parties agree on a security parameter σ.

The provers normalize the lengths of their answers uniformly to (a suitably large enough) D.

This can be done by padding short answers with blank symbols, for example. We will not explicitly

mention the normalization of the provers’ messages in the protocol since it is straightforward.

1. (pre-computation)

(a) The verifier chooses a commitment master key Γ of length σ uniformly at random.

(b) V and PBC execute the pre-computation phase of construction 6.1 2N times using Γ as

his random string for all bit-commitments, preparing N strings to be used for unveiling

by P1 and P2 respectively.

(c) V chooses uniformly at random a permutation π in SN and sends it to P1.

(d) V constructs the arithmetization g of an instance of oracle-3-SAT (B, r, s) which can be

satisfied if and only if x ∈ L. V asks the provers to store the appropriate oracle A.

(e) P1 commits [γ] to V .

2. (multilinearity test) Let k be the number of oracle queries in this phase. For 1 ≤ i ≤ k:

(a) P1 and V execute committed coin-tosses where P1 commits [wπ(i)] before receiving the

K-bit random string ri from V . The committed coins are [wπ(i) ⊕ ri].

(b) P1 evaluates the circuit of Λ in committed form under committed input [wπ(i) ⊕ ri],

resulting in a committed question [Qi] which is sent to V . This is the question which

would have been asked by Λ with coins wπ(i) ⊕ ri.

(c) P1 commits his answer [A(Qi)].

3. After committing all of his answers, P1 and V evaluate a circuit description of Λ in committed

form with inputs [A(Q1)], . . . , [A(Qk)]. P1 unveils the circuit’s output. If it rejects, V rejects.
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4. (sumcheck with oracle):

Let

g(z,Qk+1, Qk+2, Qk+3, A(Qk+1), A(Qk+2), A(Qk+3))

be the arithmetization in question, and let z be a string of length r and Qk+1, Qk+2, Qk+3

be strings of length s, as described in construction 4.2. V and P1 execute construction 4.2 in

committed form, using committed coin-toss as usual. Let rk+1, rk+2, rk+3 be V ’s half of the

coin tosses for each bit of Qk+1, Qk+2, Qk+3 respectively, and let wπ(k+1), wπ(k+2), wπ(k+3)

be P1’s half. At the end of this phase, P1 will show that the committed final value is equal to

g([z], [Qk+1], [Qk+2], [Qk+3], [A(Qk+1)], [A(Qk+2)], [A(Qk+3)]),

an evaluation in committed form of g using the committed random bits that was used during

the protocol’s loop. If this fails, V rejects.

5. (non-adaptiveness test):

(a) V randomly chooses 1 ≤ i ≤ k + 3, the index of an oracle query which was made to P1,

and sends i to P1.

(b) P1 responds with the commitment [Ω1] = [A(Qi)]⊕〈[ri], [γ]〉, where the brackets indicate

the dot-product, and proves to V that Ω1 is computed correctly, using the commitments

it has already made.

(c) V sends (ri, π(i)) to P2.

(d) P2 computes2 Qi from ri, wπ(i) and Λ’s circuit. It responds with the commitment [Ω2] =

[A(Qi)]⊕ 〈[ri], [γ]〉.

(e) P2 shows, using bit-commitment equality from construction 6.1, that Ω1 = Ω2 (recall that

with our multi-prover bit-commitment scheme, any prover can unveil any bit, including

those which are not its own). If equality is valid, V accepts. Otherwise reject.

Theorem 6.2. The above construction is a strongly isolating zero-knowledge multi-prover protocol.

Proof.

Completeness – If x ∈ L, an honest prover is simply executing construction 4.2 in committed

form, so Λ will always accept, and hence so will the verifier.

2In construction 4.2, P2 does not learn the index of the question that is asked to him. To reduce the soundness of

the current protocol to construction 4.2, we introduced the permutation π of the indices of the questions to P1. This

does not change P1’s part of the protocol, but makes oblivious to P2 the index of the question.
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Soundness – We claim that, assuming isolation, a prover cannot know how to unveil a bit

differently than when the commitment occurs. That is, if the prover does not know how to unveil a

bit when it is committed, it will never gain the information necessary at any later point. This, coupled

with the statistical binding condition, guarantees that the prover cannot cheat after commitment,

and that the soundness of our protocol reduces to the soundness of the underlying protocol from [2].

To see this, note that the pre-computation phase is completed before the verifier engages with

anyone else. During this phase, to prepare for the ith bit-commitment [bi], PBC sends to the verifier

x. From this point on, there are only two strings which the verifier will accept for the unveiling of

the [bi]: x and x⊕ Γ.

LetH be Shannon’s entropy function. LetX and Y be random variables denoting P1’s knowledge

of x and x⊕ Γ respectively. Since Γ is uniformly random and independent of x, and also unknown

to P1, we have H(X) +H(Y ) ≥ σ.

Let U denote the messages sent by the verifier to P1. Since we have isolation, H(X|U) = H(X),

and H(Y |U) = H(Y ). This gives us H(X|U) + H(Y |U) = H(X) + H(Y ) ≥ σ. Note that P1 can

only unveil if H(X) < ε or H(Y ) < ε for small epsilon, since the probability of P1 guessing the bits

correctly decreases exponentially as ε→ 0.

From this we can conclude that if a prover can unveil a commitment in one way after interaction

with V , then it can do so at the time of commitment, and that it can only unveil in at most one

way.

Now, P1 and V must evaluate Λ in committed form. So if a string is not in the language, either Λ

rejects with probability 2/3, or P1 fails the non-adaptiveness test with some probability. Conditioned

on Λ rejecting, there must be a gate which is wrongfully evaluated, and which P1 must either unveil

to be the case or not know how to unveil at all. Λ being a polynomial-sized circuit, the probability

of P1 being detected is thus at least (2/3)poly(|Λ|), which can be amplified exponentially fast.

If P1 fails the non-adaptiveness test, [2] showed that there is at least 1/poly(k) of being detected.

By the same arguments regarding P1, P2 must fail to unveil correctly, or at all, with at least such a

probability, in the non-adaptiveness test.

Perfect Zero-knowledge – We provide a perfect simulator for a probabilistic polynomial-time

machine V ∗ interacting with the three provers P1, P2, PBC .

We will restate here the assumption that if V ∗ deviates from the protocol by not sending a

message from the space of expected messages (for example, if the verifier sends a string of incorrect

length, or containing symbols from an invalid alphabet), then the simulator outputs what it has so

far and aborts, mirroring what the provers would do.
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The simulation is long but straightforward, and relies on the following three facts:

1. The simulator will execute the pre-computation phase as PBC with V ∗, thus it will know V ∗’s

bit-commitment master key Γ. Hence, the simulator can unveil any commitment as either 0 or

1. In particular, it can always unveil the output of Λ to be accept, and it will always succeed

in convincing the verifier that a gate has been correctly evaluated in committed form.

A malicious verifier may execute the protocol out of order, for example by interacting with

PBC last. This is not a problem, as the verifier needs both the information from either P1 or

P2, and the pre-computation strings from PBC to fully unveil a bit. Thus the simulator can

retroactively decide which strings to send when emulating PBC appropriately.

2. The provers’ answers are committed strings of equal length D, and by the perfectly conceal-

ing property of the bit-commitment, from the verifier’s point of view, they are independent

uniformly random strings of the same length.

3. Whether the final outputs Ω1 and Ω2 are equal depends on whether the verifier has asked

the two provers the same question during the non-adaptive test. By the perfectly concealing

property of the bit-commitment and the fact that the verifier does not know the uniformly

random string γ, either Ω1 and Ω2 are the same random string (if the verifier has asked the

same question, as it should), or two independent uniformly random strings (if the verifier

cheats and does not ask the same question).

Here is a high-level description of the simulator. The ability of the simulator to unveil any

bit-commitment either way makes a detailed description redundant.

1. The simulator begins by taking V ∗ and fill its random tape with as many fresh coins as needed.

It executes the pre-computation phase by emulating PBC and obtains V ∗’s bit-commitment

master key Γ. The simulator commits a uniformly random string γ to be used later during the

non-adaptiveness test. From then on it ignores V ∗’s messages and responds with uniformly

random strings of the correct length.

2. The simulator initiates the multilinearity test. It coin-tosses with V ∗, who sends the strings

ri, and computes its questions Qi correctly. The simulator ignores the questions and answers

with [A(Qi)], uniformly random strings of length D.

When everything has been computed, the simulator uses the fact that it can unveil any com-

mitment either way to show that Λ accepts.
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3. The simulator executes the zero-knowledge sumcheck exactly in the same way. It will succeed

again by the fact that it can open the commitments either way. Let Qk+1, . . . , Qk+3 be the

questions asked by V ∗ during this phase, and let rk+1, . . . , rk+3 be V ∗’s half of the coin-tosses.

4. For the non-adaptiveness test, V ∗ will ask P1 to encrypt the existing answer A(Qi). The

simulator emulates P1 by answering honestly by computing in committed form [Ω1] = [A(Qi)]⊕

〈[ri], [γ]〉 with V ∗, where [A(Qi)] is the bogus answer it gave earlier.

V ∗ will then ask P2 to toss coins using r. The simulator ignores the coins and commits a

uniformly random string [Ω2].

If r = ri, then the simulator unveils [Ω1] and [Ω2] to be the same uniformly random string

by tossing coins. If not, then the simulator will unveil them to be two independent uniformly

random strings by tossing twice as many coins.

Strong Isolation – All messages sent by V are independent coin-flips, which are computed without

any previous inputs. Thus they are all cleared to be sent to every prover. This includes (ri, π(i))

which, although is sent to both P1 and P2, is not computed from any previous messages.

We reiterate the two key ideas behind the simulator.

The first is that the simulator behaves as all three provers, in particular PBC , and thus it knows

the bit-commitment master key Γ. This allows the simulator to unveil any commitment either way,

allowing for any circuit to be correctly evaluated in committed form, and its output to be unveiled

to be whatever the simulator wants. The fact that the underlying protocol (P ′
1, P

′
2,Λ) has perfect

completeness means that the simulator does not have to guess Λ’s accept probability when x ∈ L.

The second is that the final answers are two identical uniformly random strings when the verifier

is honest, and two independent random strings when the verifier is not. The simulator only has to

check the question, and does not have to know anything about the oracle A.
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Chapter 7

Open Problems

It was shown in [1] that, in the case of non-zero-knowledge mutli-prover protocols, two provers

suffice. In fact, if we do not consider the problem of isolation, two provers suffice for zero-knowledge

multi-prover protocols as well. However, our approach to isolation uses three provers, one of which

is dedicated to the pre-computation phase of our bit-commitment protocol. This is because in the

non-adaptiveness test of construction 6.2, P2 must be able to unveil the commitments of P1, so a

third prover is used to achieve statistical binding. We leave the problem of whether it is possible to

construct strongly isolating zero-knowledge protocols for MIP with only two provers to the reader.

In the case of single-prover zero-knowledge proofs, there is a sequential composition theorem which

states that executing different zero-knowledge proofs in sequence remains zero-knowledge [7]. We

would like to see a composition theorem which preserves both zero-knowledge and strong isolation.

One possible problem in the case of strong isolation is that while going from one sub-protocol to

another we would keep the same provers, and thus it is unclear how messages should be tagged. Also,

since the provers have different roles, it is unclear whether having them switch roles from one sub-

protocol to the next would affect zero-knowledge or isolation. Some notion of a multi-prover protocol

‘parity’ may need to be defined, so that protocols of a certain form, when composed with protocols

of the same form (but not necessarily the same protocol), retain zero-knowledge and isolation.

In this work, we answered the question of how to isolate the provers so that it is impossible for

non-local correlations to form between them. But suppose that we were to grant the provers the

ability to perform arbitrary non-communicating non-local computation, how would soundness be

affected? What class of languages would be accepted by such non-locally augmented multi-prover

protocols? The answer must lie somewhere between PSPACE and NEXP.
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