
CONTEXT-AWARE SERVICE DISCOVERY AND

SERVICE COMPOSITION OVER SMART PHONES

Jia Ning Wang

A thesis

in

The Department

of

Computer Science

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Computer Science

Concordia University

Montréal, Québec, Canada

March 2013

c© Jia Ning Wang, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/211516496?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

����������	��
�����
��������������������������

��

�� ��

�!������ ���

�!����"#�������!����������������#�!�����������$����#�!�������������%������

���

��#������&����������%������!���������	!�'��������!��#���������������������!������&���
��������������%�!�������!��$������(

��%!���"��������!����)�#�!�!%���##�����

**************************************������

**************************************��)�#�!��

**************************************��)�#�!��

**************************************������'����

�����'���"�**
���������������#�!��������������+��%��#���������

**
���!����,������

���� **

-./�0.12�3/12

45167869/:/;7�<7;=.>7�?.<>5=7;@�/1?�<7;=.>7�>5AB5<.6.51
5=7;�<A/;6�BC517<

D/<67;�5E�45ABF67;�G>.71>7

G/H.17�I7;2J7;

KC.;F=712/?/A�L/?C/M;.<C1/1

0.M5J/5<�K</16/J.<

NFC512�N/1

L5H.1�O;7:

PQRQS�TSUVUWU

XB;.J�YZ[�\]Ŷ

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Jia Ning Wang

Entitled: Context-aware service discovery and service composition

over smart phones

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Chair

Examiner

Examiner

Examiner

Supervisor

Approved
Chair of Department or Graduate Program Director

20

Rama Bhat, Ph.D.,ing., FEIC, FCSME, FASME, Interim

Dean

Faculty of Engineering and Computer Science

Abstract

Context-aware service discovery and service composition over smart

phones

Jia Ning Wang

One of the advantages of smart phones is the ubiquity of sensing and computing

power. The smart phone consists of a mobile computing platform. The Web browsers

installed on the platform make it possible to surf the Internet through mobile broad-

band and Wi-Fi. An important aspect of smart phones is that they have application

programming interfaces, which is able to take advantage of third-party applications.

Different from any desktop applications, the smart phone applications could be highly

adaptive to contexts, i.e. according to context information, e.g. location, identity,

and time, the applications are tuned to satisfy particular requirements in the con-

texts. On the other sense, service composition is a way to plan a business process to

fulfill business goals that cannot be achieved by individual business services. Service

composition can be modeled as a AI planning problem. Based on the initial context

and the goal context, planning-based service composition launches a goal-oriented

composition procedure to generate a plan. Service composition over smart phones

can be context-awareness. In this thesis, we want to investigate context based service

discovery and service composition over smart phones. We propose a constraint-based

context model. We include non-electronic services into service composition, which

extends the scope of services considered in existing service composition research.

Moreover, our composition algorithm suits mobile computation power because the

service composition can adjust to the computation power of mobile phones easily. As

a motivating example, we build an entertainment planner over an Android phone.

iii

Acknowledgments

I would like to express my gratitude and thanks to my supervisor Dr. Yuhong Yan for

all her help, guidance and supervision during the production of this thesis. Without

her brilliant ideas this thesis would not have been possible.

I also would like to take this opportunity to thank my friends who give me lots of

support and help, especially, Min Chen. Thank you for all the fruitful discussion and

encouragement.

Finally, the deepest gratitude goes to my family for all your caring, support and love.

Thank you for the comforts from the beginning to the end.

iv

Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Problem and Motivation . 1

1.2 Contribution . 2

1.3 Organization of the Thesis . 3

2 Fundamentals 4

2.1 Web Services . 4

2.1.1 Simple Object Access Protocol (SOAP) 5

2.1.2 Web Services Description Language (WSDL) 6

2.1.3 Universal Description Discovery and Integration (UDDI) . . . 7

2.1.4 Representational State Transfer (RESTful) 8

2.1.5 SOAP vs. REST . 9

2.1.6 Data as a Service(DaaS) . 10

2.2 Context Representation and Computing 11

2.2.1 Context Modeling Approaches 11

2.2.2 Mobile Computing . 19

2.2.3 Smart Phones and Contextual Awareness 20

2.3 Service Mashup . 24

2.4 Service Composition . 25

2.4.1 The Definition of Web Service Composition 25

2.4.2 Web Service Composition Modeling 26

2.4.3 Web Service Composition as an AI Planning problem 27

v

2.5 A Motivating Example: Personal Entertainment Planner 28

2.5.1 Android Phone . 28

2.5.2 Personal Entertainment Planner 29

3 Constraint Model for Context Representation 31

3.1 Context . 31

3.2 Use Cases of the Context Model . 35

3.3 Context Operations and Reasoning 36

3.4 Comparison with Existing Contexts 38

4 Service Discovery Mashup 41

4.1 Service Discovery in Practice . 42

4.2 The Available Search Engine Services 43

4.3 SOAP Services and MS Bing Services 43

4.4 RESTful Services and Google Maps Web Service 45

4.5 HTML Services and Google Show Time 47

4.6 Service Discovery Mashup . 49

5 Service Composition 53

5.1 Problem Description . 53

5.2 Service Composition Algorithm . 56

6 Implementation of the Entertainment Planner 59

6.1 Introduction . 59

6.1.1 Goals and objectives . 59

6.1.2 Statement of scope . 59

6.1.3 Major constraints . 59

6.2 Design Consideration . 60

6.2.1 Constraints . 60

6.2.2 System Environment . 60

6.3 System Architecture . 61

6.4 User Interface and Functions . 63

6.4.1 Design constraints . 63

6.4.2 System Icon . 63

6.4.3 Input UI . 64

vi

6.4.4 Result List UI and Detailed Result UI 65

6.5 Service Discovery Mashup Implementation 66

6.5.1 Ontology Data Mapping . 66

6.5.2 HTML Service . 69

6.5.3 SOAP Service . 70

6.5.4 RESTful Service . 71

6.6 Service Composition Implementation 72

6.6.1 Building Models . 72

6.6.2 Service composition Implementation 75

6.7 System Optimization . 82

6.8 Testing Issues . 83

6.8.1 Unit Testing . 83

6.8.2 Compatibility Testing . 86

6.8.3 Performance Testing . 86

6.9 Appendices . 88

6.9.1 Packaging and installation issues 88

6.9.2 Legal Considerations . 88

7 Conclusion 89

A Planner Beam Search Algorithm 91

Bibliography 110

vii

List of Figures

1 Web Service Architecture [Wik12c] 5

2 Layered Structure of WSDL [Wik12b] 7

3 Printer Entity [SMLP01] . 13

4 Modeling the scenario [HIR02] . 15

5 Context model showing the derivation dependencies [HIR02] 16

6 The GUIDE object model [CMD99] 17

7 Partial Definition of CONON upper ontology [WZGP04] 19

8 Partial definition of a specific ontology for home domain [WZGP04] . 20

9 The diagram of mashup . 50

10 The control flow of mashup . 51

11 The data flow of the mashup process 52

12 System Architecture Diagram . 61

13 System Sequence Diagram . 62

14 System icon . 64

15 Input UI . 64

16 Setting time . 64

17 Progress . 65

18 Result List UI . 65

19 Detailed Result UI . 65

20 Service Mashup Class Diagram . 67

21 Showtimes Screen shot . 69

22 Soap Service . 70

23 RESTful Service . 71

24 Class Digram for Models . 72

25 Search Tree Level 0 . 76

26 Search Tree Level 1.1 . 76

viii

27 Search Tree Level 1.2 . 80

28 Search Tree Level 1.3 . 80

29 Search Tree Level 2.1 . 81

30 Search Tree Level N . 81

31 The result of HTML service testing 84

32 The result of SOAP service testing 84

33 The result of RESTful service testing 85

34 The result of RESTful service testing 86

35 HTC Incredible S . 87

36 HTC Wildfire S . 87

37 Traceview Time Line . 87

ix

List of Tables

1 Attributes and their values . 12

2 Ontology for Entertainment Planner (also serve as domain terminology) 32

3 Variables . 33

4 Approximation Operators Used in Inputing Data (x is a variable) . . 34

5 A context example . 34

6 A context example - initial context, current context and goal context 36

7 A WatchMovie activity - pre-context and post-context 38

8 The MS Bing Maps Search Service 44

9 Restaurant and Coffee near Concordia University 45

10 The Request and Response of a RESTful Service 46

11 Google Maps Parameters . 47

12 The Request and Response of a HTML Service 48

13 A good plan . 65

14 Cost and Duration for Restaurants 71

15 Initial and goal context . 77

16 A movie activity a0 - pre and post context 78

17 A driving activity a1 - pre and post context 79

18 Context for state s1 . 79

19 The Heuristic costs of the top 10 nodes in the first level 80

20 Context for state s11 . 81

21 Test Results . 88

x

Chapter 1

Introduction

1.1 Problem and Motivation

Nowadays, the smart phone becomes the most common type of mobile computing

device. The fast development of software and hardware makes a smart phone have

the functionality of a small computer. In addition to making telephone calls, a smart

phone has many other functions, such as the ability of connecting to the Internet

through mobile broadband and Wi-Fi, GPS navigation, video camera, digital camera,

and media players. Moreover, smart phones consist of mobile operating systems, and

have application programming interfaces (API). This means that smart phones can

take advantage of applications, which are fully integrated with its hardware and

operating system.

Smart phones have location awareness. Nearly all smart phones are equipped

with a global position system (GPS). The GPS in a smart phone can determine

the device’s current location in real time. This allows the opportunity of designing

location-aware applications. Contextual-aware computing has been explored as a way

of using situational information to achieve goals of providing people with applications.

Since the smart phones have access to different type of services over the Inter-

net, it is possible to design an application through service composition to fulfill new

functions. Service composition is to create a business process by connecting multiple

services so as to fulfill some business goals that individual services cannot achieve.

Normally, service composition assumes that data sources provided by services are on

a consistent basis. However, in the real world, different types of services may return

1

the data in different format. This adds to the complexity of the problem.

A service composition procedure starts from service discovery and service selec-

tion. Then the composition algorithm automatically generates a target business pro-

cess (or processes) with the provided service sets. Business services studied by service

computing should not be limited to the electronically implemented ones. For exam-

ple, the UDDI standard covers all kinds of business services including retailers and

restaurants. However, most of the existing research on service composition tends to

focus on composing the electronic services.

1.2 Contribution

In this paper, we study context-aware service composition problem over smart phone

devices. We build an entertainment planner on an Android phone as an example to

demonstrate the procedure of context-aware service discovery and service composition

over smart phones. Our main contributions include:

1. We propose a constraint-based context model. In order to ease knowledge shar-

ing and reuse knowledge for future extension, we firstly build a domain related

ontology for context. Then, a constraint-based context model is build on the

top of the ontology. Moreover, our constraint-based context model are able

to deal with both propositions and real values. Using our context model, we

can express both the current context and the business goals. We also realize

context-awareness in service composition based on the constraint-based context

model.

2. We extend the services in service composition into non-electronic services such

that service composition can be performed on all kinds of services. Normally,

people limit the services to electronic services in existing research where the

inputs of a service are the output of another service. But the scope of ser-

vice computing should include non-electronic services as well, for example, all

businesses in a standard like North American Industry Classification System

(NAICS). In this thesis, we present a way to discover and compose not only the

electronic services but also the non-electronic services. The preconditions and

the post conditions of the services are modeled as contexts and the constraints

determine the execution order of the services in a composite business process.

2

3. We develop a service composition algorithm based on our service discovery

mashup suitable for a smart phone. Service composition employs the context

information obtained either from user’s inputs or from the smart phones sys-

tem. The capabilities of connecting to the Internet, detecting current position

through GPS (Global Positioning System), and hardware improvement make

it possible to perform service composition over smart phones. Moreover, our

service composition is implemented on smart phones platform such that service

composition can quickly response to user’s request.

1.3 Organization of the Thesis

The structure of this thesis is as follows: the first chapter starts with the introduction

of the problem, the motivation and the contributions. The second chapter gives an

overview of Web Services, service mashup and composition, and context representa-

tion and computing in particular. Later in this chapter, we introduce a motivating

example. The third chapter presents the related definitions in constraint model for

context representation. We discuss composed service discovery and mashup in the

fourth chapter. In this chapter, we elaborate three different types of Web services in

our planner and how to mashup them. The fifth chapter covers the details related

to algorithm of Web service composition. The sixth chapter describes the imple-

mentation of the entertainment planner. The last chapter concludes the thesis by

summarizing the contributions and pointing out possible future work.

3

Chapter 2

Fundamentals

2.1 Web Services

Given the definition by the World Wide Web Consortium (W3C) [W3C04b] ,

A Web service is a software system designed to support interopera-

ble machine-to-machine interaction over a network. It has an interface

described in a machine-processable format (specifically WSDL). Other

systems interact with the Web service in a manner prescribed by its de-

scription using SOAP messages, typically conveyed using HTTP with an

XML serialization in conjunction with other Web-related standards.

Web Services consist of computational elements, which interact with each other yet

are independent [Pie11]. These elements can perform a wide variety of tasks, which

range from simple request to complex processes, which are often used in business.

Most of these elements communicate with each other through messages using Ex-

tensible Markup Language (XML). These messages follow the Simple Object Access

Protocol (SOAP). These service elements are platform independent, self-contained,

and self-describing. They can be accessed using standard Internet protocols [CW10].

The basic architecture of Web services is shown in Figure 1. There are three roles

in the Web service architecture, service requesters, service providers, and service bro-

kers. Service providers provide the actual services. They implement Web services and

serve them online by publishing their associated WSDL document, which contain the

way to invoke those services they provide, to a service broker using UDDI specifica-

tion. Service requesters locate the services from a service broker and then invoke the

4

service from service requesters via SOAP protocol with the address specified in the

WSDL document.

Service UDDIService
Broker

UDDI

ServiceService

WSDL WSDL

Service
Provider

Service
Requester SOAP

Figure 1: Web Service Architecture [Wik12c]

Web Services are now an important technology which allows for automated in-

teractions between heterogeneous and distributed applications [BKH11]. There are

underlying technologies, which make these Web service elements possible. These ele-

ments are XML, SOAP, WSDL, and Universal Description Discovery and Integration

(UDDI).

2.1.1 Simple Object Access Protocol (SOAP)

Simple Object Access Protocol (SOAP) is used to exchange structured information

for implementation of specific Web services within computer networks [TAY10]. The

protocol makes use of XML and frequently uses other application layer protocols.

These can include Simple Mail Transfer Protocol (SMTP) and Hypertext Transfer

Protocol (HTTP) [Pie11].

The SOAP is frequently used as part of the Web services protocol stack [Pie11]. In

this case, SOAP will be the foundation layer upon which the stack is built. This means

SOAP is providing the basic framework upon which messaging between services can

occur. The protocol based on XML has three parts. These parts include the envelope,

encoding rules, and representation of procedure responses and calls. An advantage of

SOAP is that it can be used with a number of different transport protocols including

Job of Message Service (JMS), Transmission Control Protocol (TCP), SMTP, and

HTTP [Pie11].

Either HTTP or SMTP can be used as the application layer protocol which is used

to transport SOAP [Pie11]. However, HTTP is more widely used due to its common

5

use as part of the infrastructure involved with the Internet. One advantage of HTTP

is that it integrates well with most network firewalls [TAY10].

Another advantage of SOAP is that it can be used with Hypertext Transfer Pro-

tocol Secure (HTTPS) [Pie11]. This is a type of communication protocol, which is

widely used with computer networks that interact over the Internet. It is actually

not a standalone protocol. It consists of HTTP, which is layered on the Transport

Layer Security (TLS) or Secure Sockets Layer (SSL). These are both cryptographic

protocols, which allow for secure communication using the Internet. Both protocols

encrypt a segment of the network connection using a form of asymmetric cryptog-

raphy. In order for privacy to be achieved, symmetric encryption is used. Message

integrity requires the use of message authentication codes [Pie11].

SOAP is not without its disadvantages [TAY10]. The XML format can be sig-

nificantly slower than middle-ware technologies, which include the Common Object

Request Broker Architecture (CORBA). With regard to small messages, this is often

not a problem. However, the CORBA outperforms the SOAP when longer in complex

messages are being sent. Part of this problem has been alleviated with the Message

Transmission Optimization Mechanism (MTOM) which allows for the efficient trans-

fer of binary data between services [Pie11].

2.1.2 Web Services Description Language (WSDL)

Web Services need to employ a structured method (XML) to describe the invocation

and communication between them. The Web Services Description Language (WSDL)

specification provides an XML format for documents for this purpose [Wik12b]. The

WSDL provides an official description for Web Services in a machine-readable way.

It is an XML-based language that is used for describing Web Services and how the

services can be called, what parameters it expects, and what data structures it returns.

The WSDL defines Web Services as collections of “ports” (WSDL 1.1) or “endpoints”

(WSDL 2.0) (see Figure 2). Each “port” is associated a network address with a

reusable binding. And the binding section defines the “operations” (WSDL 1.1)

or “interfaces” (WSDL 2.0) to be related with supported operations of one Web

service. Each “operation” is a SOAP action called by service requesters, which is

like a method or function call in a traditional programming language. The format

of “input message” and “output message” in an “operation” is defined at “message”

6

sections and the data types used are defined in the “types” sections.

Figure 2: Layered Structure of WSDL [Wik12b]

2.1.3 Universal Description Discovery and Integration (UDDI)

Universal Description Discovery and Integration (UDDI) is an Extensible Markup

Language (XML) based registry, which is used by businesses throughout the world

in order to list their organization on the Internet. It also serves to locate and reg-

ister Web service applications [Sob10]. The UDDI is an industry initiative which is

sponsored by the Organization for the Advancement of Structured Information Stan-

dards (OASIS). This organization hopes that UDDI will help businesses discover each

other through published service listings. The UDDI can be thought of as an industry

standard which allows interactivity for Web service applications over the Internet.

Originally, the UDDI was proposed to be a standard core Web service which could

be interrogated by Simple Object Access Protocol (SOAP). This would allow access

to the Web Services Description Language (WSDL) based documents. These docu-

ments provide a description of the message formats and protocol bindings which are

required for interaction to occur with Web services [Zel10].

The UDDI registration of a business consists of three components [Sob10]. These

components are the green, yellow, and white pages. The green pages provide tech-

nical information regarding services, which are exposed by the business through the

business being registered. The yellow pages are categorizations, which are based on

7

standardized taxonomies. The white pages contain specific known identifiers, contact

information, and the business address [Zel10].

The white pages usually contain contact information for an organization, including

items such as its business address as well as a telephone number. There may also be

ratings of credit worthiness and other important information [Sob10].

The yellow pages are the business classification according to a standardized taxo-

nomic system [Zel10]. Standards were set by the United Nations Standard Products

and Services Code (UNSPSC), the North American Industry Classification System

(NAICS), and the Standard Industrial Classification (SIC).

The green pages provide information for accessing certain Web services [Zel10].

For example, the Internet address of the service as well as its parameters may be

listed in these pages. There may be information on interfaces and specifications of

the service. There may also be information regarding e-mail addresses. Some Web

services have multiple bindings, in which case, there will be several green pages. Each

page will correspond to a single binding [Zel10].

2.1.4 Representational State Transfer (RESTful)

A rival that challenged SOAP was the RESTful style of Web services in 2000 at the

University of California [IBM08]. It comprises of simple communication over HTTP

with the help of old XML versions. This technology was based upon the concept of

“Representative State Transfer” put forward by Roy Fielding in his thesis [Fie00].

REST attempts to describe architectures that use HTTP or similar protocols by

constraining the interface to a set of well-known, standard operations (like GET,

POST, PUT, DELETE for HTTP). Here, the focus is on interacting with stateless

resources, rather than messages or operations. Clean URLs are tightly associated

with the REST concept.

REST is based upon the following four basic design principles:

1. Explicit use of HTTP methods,

2. Being stateless,

3. Exposure of URIs similar to a directory structure, and

4. Transfer of XML or JavaScript Object Notation (JSON), or both.

8

REST can communicate between various clients written in different languages and

focuses on the system’s resources. Its ease of implementation and use has made it a

more predominant Web service design model. In many places it has displaced SOAP

and WSDL–based interface designs [IBM08]. Besides, an architecture based on REST

can use WSDL to describe SOAP messaging over HTTP, can be implemented as an

abstraction purely on top of SOAP (e.g. WS-Transfer), or can be created without

using SOAP at all.

The recently developed type of service abstraction for Web service composition is

the Representational State Transfer (RESTful). This is the language frequently used

for Web service composition. The RESTful approach allows for interaction primitives

to be directly mapped and published to Web applications, which already exist. This

means that the Hypertext Markup Language (HTML) pages are replaced with data

payloads using XML [BKH11].

2.1.5 SOAP vs. REST

Both these technologies have their advantages and disadvantages. For example, SOAP

is designed to handle distributed computing environments, has better support from

other standards like WSDL and WS-*, has built-in error handling and is extensible.

Its disadvantages include conceptual difficulties, being more verbose, difficulty in

developing and the tools required in development. However, it becomes a better

choice when a formal contract is required to elaborate the interface offered by the

Web service. Apart from that, it is also suitable for situations like the presence and

handling of complex non-functional requirements and the need for the architecture to

handle asynchronous processing and calls [Ora06].

On the other hand, REST also has its pros and cons. Its advantages include its

simplicity to develop; less reliance on tools and, hence, less learning curve; its concise

and its closeness to Web in design and philosophy. Its drawbacks are that its point-

to-point communication model is not usable when it faces distributed computing

environments; does not have standard support for security, policy, reliable messaging,

etc.; and that it is tied to the HTTP transport model.

REST is recommended in the following situations [Ora06]:

• Completely stateless Web services;

9

• The presence of control over caching infrastructure for better performance;

• The producers and the consumers of the service have mutual understanding of

the context and content;

• Limited bandwidth – REST is more useful in such environments like PDAs and

mobile phones;

• Where integration of Web service delivery and existing Web sites is required –

AJAX and DWR can be used to consume the services in the Web applications.

Apart from the above, Java API for XML Web Services (JAX-WS) is in full

support for building and deploying Web services.

With their own pros and cons, both SOAP and REST have attractions for the

designers and developers. It is their responsibility to evaluate their needs and make

the right decision.

2.1.6 Data as a Service(DaaS)

Data as a service (DaaS) is similar to software as a service [CW10]. The DaaS has

data as a product which can be provided when needed by the customer. When

this information is provided over the Internet, it can be sent to the consumer in

any location, which has a World Wide Web connection. This means the geographic

location of the customer is irrelevant. It also does not matter what type of platform

the data is being stored on. The popularity of service oriented architecture (SOA)

has solved this problem as well [BKH11].

When DaaS was introduced, it was used primarily in Web mashups [CW10]. These

consist of aggregation, visualization, and combination. They allow the data which

already exist to be more useful. Many mashups are posted online or are client applica-

tions. However, DaaS is now being widely used as a commercial service. Furthermore,

there are a number of international organizations such as the United Nations which

make use of DaaS repositories for preparing reports and setting policies [CW10].

Until recently, the majority of organizations made use of data which they had

stored in a repository which was self-contained [CW10]. This data could then be

accessed through software, which would allow people to understand the data and

give it meaning. This means that the software and data were generally bundled

10

in a single package. This was then sold to the consumer as one product. There

was a steady proliferation of the bundled software and data packages. This means

there are an increasing number of interactions between these packages that required

the creation of an interface layer. This became known as Enterprise Application

Integration (EAI) [BKH11].

The EAI layer requires consumers to purchase additional middle-ware [CW10].

This means many organizations must spend substantial money in order to ensure that

their hardware, software, and middle-ware are compatible. The software updates and

maintenance costs can be high. This situation led to the formation of DaaS as an

attractive option for many organizations and consumers. The use of DaaS allows for

separation between the cost of the data and the software platform being used [CW10].

2.2 Context Representation and Computing

2.2.1 Context Modeling Approaches

Since the 90’s, there has been an increase in research with regards to the use of con-

text awareness as the method of developing advanced computing applications that

are capable of working autonomously without much interference or control from the

user [BBH+10]. There are many benefits of formal context aware information mod-

eling. Firstly, due to the complexity of these applications (context-aware), there is

need of using adequate software engineering techniques, the main aim is to develop

applications that are evolvable [BBH+10]. Thus the applications designs should be

independent from the definition and evolution of context information often subjected

to change. High quality context information modeling reduces the complexity of these

applications and enhances their ability to evolve and being maintainable. In addition,

the cost of maintaining, gathering and evaluating context information is high thus,

the sharing and re-use of context information between these applications that are con-

text aware should be put in place at the beginning [BBH+10]. The availability of well

and professionally designed context information models enhances the development

and deployment of more future applications. Further more, for consistency checking,

there is need for a context data to be formally represented within a model [BBH+10].

This also facilitates sound reasoning carried on context data. There are several con-

text modeling approaches [Sch95, SAW94, Pas98, SBG99, CK00, Dey01, SLPF03],

11

but we will look at the most relevant ones in a summarized manner.

In [Dey01], context is defined as any information that can be used to characterize

the situation of an entity. The first step towards a common understanding of context

are certain types of context, that are more important than others, with respect to

location, identity, activity (also called environment) and time. The research on the

use of context-awareness as a technique is to develop pervasive computing applications

that are flexible and adaptable [BBH+10]. Context modeling and computing provides

a uniform way to represent contexts and use contextual information.

In this thesis, available information obtained from smart phone devices is the

context. In the existing work, context modeling approaches can be classified by the

scheme of data structures [SLP04].

• Key-Value Models

Key-value models use a set of attributes and their values such that each attribute

and its value is a key-value pair to model context information.

[SAW94] is a very early research work to use key-value models, which defines

context-aware computing and investigates four types of context-aware appli-

cations using PARCTAB [AGS+93, SAG+93]: proximate selection, automatic

contextual reconfiguration, contextual information and commands, and context-

triggered actions. These applications can examine and react to the changing

context. [SAW94] thinks that context includes not only the user’s location and

time but also the located-objects. There are three types of located-objects. The

first kind is the input and output devices nearby including printers, displays,

and video cameras. The second kind is the set of objects that you are inter-

acting with, such as people in the same room to whom you are talking. The

third kind is the set of places nearby including restaurants, night clubs, and gas

stations. An example of these attributes of the context is shown in Table 1.

Table 1: Attributes and their values

Attribute Value
Date and time after April 13 between 10 and 12 noon

Location in room 35-2200

[SMLP01] also uses key-value models to represent the context which proposes a

Context-Aware Packets Enabling Ubiquitous Service (CAPEUS) framework to

12

realize context-aware selection and execution of services. In the framework, a

mobile device acts as an access point for expressing service needs of the chang-

ing environment. CAPs (Context-Aware Packets) is designed to express service

needs on a high abstraction level. CAPs consists of three parts: context con-

straints, scripting, and data. The context constraints include abstract entities,

relations, and events. Figure 3 shows a printer entity. The attributes of the

printer are a list of key-value pairs. A relation describes the dependencies of

entities. One simple relation, inRoom, states that entities of this relation have

to be in the same room. An event describes a trigger to execute a CAP initiated

service call.

Figure 3: Printer Entity [SMLP01]

• Markup Schema Models

Markup schema models use a variety of hierarchical data structures expressed

with markup languages including XML. One example of this approach is to

use CC/PP (Composition Capabilities / Preference Profiles) in context-aware

systems [IRRH03]. CC/PP is an XML-based format standard developed by the

W3C to describe the context information related to device capabilities and user

preferences. When a device sends a request through the HTTP protocol, the

request is a CC/PP profile. CC/PP is based on the Resource Description Frame-

work (RDF), which consists of a set of statements. The context information

to be captured in pervasive computing includes location information, user com-

puting devices, computer application, operation system, user requirements and

preferences, and computing application’s requirement. For example, location

information can be described as a Location profile as shown as below [IRRH03]:

[LocationProfile

[PhysicalLocation [Country, State, City, Suburb]]

[LogicalLocation [IPAddress]]

[GeodeticLocation [Longitude, Latitude, Altitude]]

[Orientation [Heading, Pitch]]

13

[Modifications [VerticalError, HorizontalError, HeadingError, PitchError]]

]

LocationProfile is composed of several components: PhysicalLocation, Logical-

Location, GeodeticLocation, Orientation, and Modifications. Each component

is described by several attributes. The relationships can also be represented as

a profile as shown as below:

[UserDeviceProfile

[User [URI]]

[PermittedDevices [Bag of URI]]

]

The profile shows that the user at the given URI is permitted to use the devices

identified by the RDF bag of URI. The “depends” relation can be described in

the XML fragment as shown as below:

<ccpp:Attribute rdf:ID=‘‘bandwidth’’>

<rdf:range rdf:resource=‘#QoS’>

<constraints:depends rdf:resource=‘#batteryPower’>

</ccpp:Attribute>

Other context modeling approaches in this category are either limited to a small

set of contextual aspects or the appropriateness of these approaches remain

unknown [Hal01, Rya99, BBC97].

• Graphical Models

Graphical models use Unified Modeling Language (UML) to represent the con-

text in graphical structures.

A representative work of graphical models is proposed in [HIR02]. It firstly

introduces a case study of context-aware communication. In this case study,

Bob and Alice plan to arrange a meeting through their communication agents.

Therefore, communication agents will mediate the communication between Bob

and Alice and give suggestions to Bob and Alice. The agents in fact collect all

the context information about the participants and their communication devices

14

and channels. In order to model the context information, [HIR02] uses both the

Entity Relationship model and the class diagrams of UML to model the scenario

of the case study as shown in Figure 4. There are three entity types: Person,

Device and Channel. Each entity type has a number of attributes, e.g. Person

has the attributes of Activity, Name, Location Coordinates. The associations

between the entities and their attributes also capture the associations between

the entities. For example, both Person and Device connect to the attribute of

Location Coordinates. A dependency is a relation between associations, which

shows the dependency of one association on another one. Figure 5 is the context

model showing the derivation dependencies. For example, the dependency a1

dependsOn a2 is modeled as a directed arc leading from a1 to a2.

Figure 4: Modeling the scenario [HIR02]

There are also other research work using graphical models. Henrichsen et

al. [HIR03] design graphics oriented context model, which is an extension of

the Object-Role Modeling (ORM) approach [Hal01].

In all, graphical model is particularly appropriate for deriving an ER-model and

useful to structure a relational database.

• Object Oriented Models

Object oriented context models take the benefit of any object oriented ap-

proach, namely the encapsulation and re-usability, for the ease of describing

the dynamics of the context. A typical context-sensitive application using an

15

Figure 5: Context model showing the derivation dependencies [HIR02]

object model is the GUIDE project [CMD99] developed over pen-based tablet

PCs and PDAs. The objective of the GUIDE project is to provide city visitors

with recommended tours, a structured guide of the city or specific pieces of

information along the way. There are two types of context-sensitive informa-

tion modeled in the project, namely personal information and environmental

information. Personal information includes the visitor’s interests, the visitor’s

current location, the time visitors plan to spend on their visit, their budget

and any refreshment preferences visitors might have. Environmental context

includes the time of the day, the weather, and the current state of the city’s

transport system. The GUIDE object models are presented in Figure 6. A

visitor sends his request through the local Web browser. In Figure 6, there are

nine objects in the project, each of which is represented as a circle. For exam-

ple, the visitor’s profile object stating the visitor’s current preferences supports

a number of methods for returning the visitor’s details. Each object notifies

other objects by calling its methods, e.g. the returnPreferredLanguage method

of the visitor’s profile object can be invoked by either the control object, the

tour creator object or the local Web service object.

Besides the GUIDE project, cues [SBG99] developed with the TEA project

is another representative of this model. Both of the two approaches manage

16

Local Web
Browser

Local
Position
Sensor

GUIDE
Control

Visitor’s
Profile

Local Web
Server

Remote
Web

Server

Local
Proxy

Resolver

Local Remote

Tour
Creator

Figure 6: The GUIDE object model [CMD99]

context information into active objects such that details of the data are en-

capsulated within objects and invisible to other components of context-aware

application systems.

• Logical Based Models

Logical Based Models define the context as facts, expressions and rules using

logic theory. Any operation on the context information, such as adding, deleting

or updating, is based on logic reasoning. Formalizing Context is the first logic

based context modeling approach [McC93, MB97]. Both [McC93] and [MB97]

formalize context as abstract entities with properties such that axiom can be

applied. [McC93] defines the basic relation ist(c, p), which asserts that the

proposition p is true in the context c. The formulas associate the propositions

true to different contexts. The following example c0 asserts that it is true in

the context of the Sherlock Holmes stories that Holmes is a detective [McC93].

c0 : ist(context-of(“Sherlock Holmes stories”), “Holmes is a detective”)

[McC93] also defines other useful relations among contexts. Suppose specializes-

time(t, c) is a context related to c where the time is specialized to have the value

t. Then, we may have the following relation where at-time(t, p) asserts that the

proposition p is true at time t.

c0 : ist(specializes-time(t, c), at(jmc, Stanford))

≡ ist(c, at-time(t, at(jmc, Stanford))).

17

• Ontology Based Models

Ontology describes knowledge as concepts and relations, which is especially

suitable to model information in certain domains. There are several reasons

to model context based on ontology. One reason is that the use of context

ontology eases knowledge sharing since context ontology defines a common set

of concepts about context. The other reason is knowledge reuse in the sense that

developing large-scale context ontology can reuse well-defined Web ontology of

different domains rather than start from scratch.

A representative work of this model is the ontology-based formal context model

CONON [WZGP04]. Since formalizing all context information is likely to be

an innumerable task, the CONON model captures four types of fundamental

context information, namely location, user, activity, and computational entity.

In order to provide a flexible interface for domain-specific knowledge, CONON

designs a two-level ontology. The upper ontology captures the general feature

of context entities. An example of the upper ontology is presented in Figure 7.

The conceptual object includes Person, Activity, Computational Entity (Com-

pEntity) and Location, as well as a set of sub-class. The lower ontology is a

collection of ontologies that describe the details of general concepts and their

features in each sub-domain. Figure 8 gives an ontology in the home domain,

where several concrete sub-classes are defined to model specific context in a

given domain, e.g. the abstract class Device is classified into sub-classes TV,

DVDPlayer, and CellPhone. When modeling context based on an ontology,

context can be processed with logical reasoning mechanisms. Context reason-

ing is implemented in CONON model in two ways: ontology reasoning using

Description Logic (DL) and user-defined reasoning using first-order logic. DL

reasoning fulfills important logical requirements including concept satisfiabil-

ity, class subsumption, class consistency, and instance checking. User-defined

reasoning aims at defining user-defined context reasoning rules to derive user’s

situation.

There are also other research work on ontology-based context model. Ötztürk

and Aamodt [zA97] proposed an approach of ontology based modeling. They

take advantage of their strong background knowledge on normalization and

18

Office-Domain Ontology

Home-Domain Ontology

ContextEntity

PersonLocationCompEntity Activity

Device

Service

Application

Network

ScheduledActivity

DeducedActivity

Legend: owl:Class rdfs:subClassOf

U
pp

er

O
nt

o
lo

gy IndoorSpace

OutdoorSpace

Agent

D
om

ai
n-

S
pe

ci
fic

O
nt

ol
og

ie
s

owl:Property

...

...

...

...

...

Figure 7: Partial Definition of CONON upper ontology [WZGP04]

formality to study the difference between recall and recognition. Aspect-Scale-

ContextInformation(ASC) model [Str03] is another approach, which models the

context as concepts, sub-concepts and facts and the context knowledge is evalu-

ated using ontology reasoner. CoBrA [CFJ03] adopts OWL-DL ontology model

for context-awareness.

2.2.2 Mobile Computing

Human-computer interaction is divided into a number of different fields, including

that of mobile computing [CW10]. This subdivision of human-computer interaction

involves the computer frequently being transported as part of its normal use. Mobile

computing involves software and hardware. Mobile computing frequently involves

communications as well. There are a number of different devices used for mobile

computing. These devices include tablet computers, personal digital assistants, iPads,

laptop computers, and smart phones. The smart phones are now the most common

form of mobile computing [Gol11].

Another problem with mobile computing is a lack of bandwidth [BKH11]. Access-

ing the Internet through a mobile device such as a smart phone is usually quite a bit

slower than a cable connected desktop computer. However, some of these limitations

have been reduced through the use of third-generation mobile telecommunications

19

CompEntity
locatedIn

locatedIn

locatedIn

longtitude
latitude

altitude

e
n

g
a

g
e

dI
n

Activity utilize

ScheduledActivity

DeducedActivity

Device

startTime
endTime

temperature

lighting

noiseLevel

weatherCondOutdoorSpace

humidity

Party

Movie

Dinner

Shower

Entry

Corridor

curtainStatus

windowStatus

doorStatusname

homeAddress

situation

Person

nearBy

status

mode

CellPhone

volum
e

DVDPlayer

volume

Room

IndoorSpace

Legend:
Upper Class Specific Class owl:Property

volumeTV

rdfs:subClassOf

Cooking

Anniversary

Location
locatedIn

Garden

Dooryard

age . . .
. . .

. . .

. . .

.

Building

Figure 8: Partial definition of a specific ontology for home domain [WZGP04]

networks (3G) and other solutions such as high-speed uplink packet access (HSUPA).

It should be noted here that despite the claims of some telephone carriers that they

have 4G networks, this is not actually the case. In the United States, AT&T and

Sprint have advanced 3G networks, which approach 4G speeds. Nevertheless, even

these networks are quite a bit slower than a computer with a cable connection to the

Internet [Pie11].

2.2.3 Smart Phones and Contextual Awareness

Smart Phones

The number of mobile computing devices being used globally is staggering and exceeds

3 billion [Sob10]. The most common type of mobile computing device is now the smart

phone. It is estimated that one-third of individuals in the United States have some

type of smart phone. Similar figures exist for countries in Western Europe and other

developed areas around the world such as Australia and China [TAY10].

The smart phone is actually a small computer with the ability to make telephone

calls and connect to the Internet through mobile broadband and Wi-Fi [Pie11]. The

smart phone consists of a mobile computing platform. Some of the common mobile

operating systems include the Samsung Bada, Microsoft Windows Phone, BlackBerry

20

OS, Symbian, Apple iOS, and the Google Android. Nearly all smart phones also have

Web browsers, touch screens, GPS navigation, video cameras, digital cameras, media

players, and a variety of digital assistants [Pie11].

An important aspect of smart phones is that they have application programming

interfaces, which are able to take advantage of third-party applications [Pie11]. This

means that the smart phone can take advantage of applications, which are fully

integrated with its hardware and operating system. The API can be understood as an

interface which allows various software components to trade information. There may

be specifications for variables, object classes, data structures, and routines [Pie11].

An API can be language dependent or independent [TAY10]. Service-oriented

APIs is an advantage to be language independent. This allows the API to communi-

cate with multiple programming languages. It is then useful for many different types

of systems and processes. This can be considered as part of the service composability

which was previously discussed within this paper.

Global Positioning Systems and Location Awareness

Nearly all smart phones come equipped with a global positioning system (GPS) [Gol11].

This is a navigation system which is satellite-based. The system provides location

information for any place upon the earth when there is a line of site which is un-

obstructed to at least four GPS satellites. This system is accessible to anyone who

has a GPS receiver. The system was developed in 1973, but did not become fully

operational until 1994 [Zel10].

The GPS in a smart phone means that the device has location awareness [Pie11]. It

can actively or passively determine its location. These devices provide the opportunity

for the user to do navigating and locating in real time. This allows for the opportunity

of designing applications, which make use of this awareness [BKH11].

Since the smart phones have APIs, which allow for third-party applications, there

is a wide variety of applications, which make use of location awareness in smart

phones [TAY10]. For example, an individual with an iPhone has a choice of several

different applications, which provide directions for driving to a certain location. These

applications can be downloaded from the Web directly through the smart phone.

The individual can then access the application and enter their destination. Since

the telephone has location awareness, there is no need for the user to enter their

21

present location, only the destination. Many of these applications will then provide

the user with turn by turn directions while driving. Since the telephone has location

awareness, it can tell the driver to turn the proper time. These applications will

even recalculate directions if the driver passes the point at which they should have

turned [ODW11].

Contextual-aware Computing

Since the turn of the 21st-century, contextual-aware computing has been explored

as a way to use situational information [BKH11]. This is done through the use of

sensor technologies and mobile computing. Contextually aware computing has a goal

of providing people with applications, which are improved. These applications will

have superior functionality and the easier to use. Early applications of this approach

allowed for computing based on the physical parameters of the user. For example, a

contextually aware navigation system could compute the best route of travel taking

into account traffic congestion. It might use a route which avoids the most congested

part of an urban environment [ODW11].

Contextually aware computing arose out of a communication problem between

people and machines such as computers or other complex tools [ODW11]. People

interacting with new machines usually only have the provided instructions in order

to understand how to interact with the system. They are generally unaware of the

internal logic being used by the machine. The machine can only interpret the person’s

needs according to their direct actions. Traditionally, the machine has no knowledge

of the context in which the human’s actions are occurring [BKH11].

Part of the solution to the human-machine interaction problem involves making

the machine since the context in which the person’s actions are occurring [ODW11].

This means the machine must be given the appropriate tools to ascertain the context.

These tools may be in the form of sensors, cameras, or GPS systems. The machine

must also be designed with artificial intelligence so that it can adapt its output based

on the results of previous inputs, outputs, and the result [Zel10].

Smart Phones and Contextual Awareness

An idea which is related to location awareness is that of contextual awareness [Pie11].

This refers to the ability of a mobile computing device to determine the context in

22

which it is being used. The concept originated as part of pervasive computing. A

device which has context awareness, such as a smart phone, will be able to detect

the circumstances in which it is being used. Smart phones which have contextual

awareness can interact more easily with users and provide more relevant information.

For example, they are more effective at discovering services, which may be required by

the user. The contextually aware device has an interface which is adaptable [ODW11].

In order for a smart phone, or any other computing device, to be contextually

aware it must have sensors, which provide the appropriate information [BKH11]. In

the case of a smart phone, the GPS system, microphone, and camera can work as

sensors for contextual awareness. For example, an individual using an iPhone 4s

can simply ask the phone, “What is the weather going to be like tomorrow?” The

telephone will then tell the user the weather forecast for tomorrow in the area they are

located [iSUG12]. There is no need to inform the telephone of the user’s location as it

is aware of the location through the GPS system. The microphone has picked up the

voice request from the user. This information is subsequently processed by software

in the telephone and interpreted. Once the information request is interpreted, the

telephone will then gather the information from Web-based weather forecasts.

Siri

An example of an application of contextual awareness with a smart phone is the Siri

system available on the most-recent Apple iOS operating system [iSUG12].

This is a personal assistant which is intelligent. There is a user interface which

takes advantage of natural language in order to answer questions. Siri will also per-

form actions, make recommendations, and delegate requests [iSUG12]. The system

adapts to individual preferences of the user over time. There is a personalization

of results. The system takes advantage of location and contextual awareness. For

example, if the user asks Siri, “My car is making a terrible noise under the hood.

What should I do?” The answer is likely to be something such as, “I have found five

automobile repair shops near you.” The screen on the telephone will then list the

repair shops and their distance from the user. Tapping on one of the repair shops will

result in more information being provided. Tapping on the telephone number of the

repair shop will cause the phone to call the number [iSUG12].

Text messaging with Siri is an interesting experience [iSUG12]. If the user states,

23

“Siri, I would like to send a message”, the response is likely to be something such

as, “who would you like to send a message to?” This is an example of contextual

awareness because the smart phone has already detected that no contact has been

chosen [iSUG12]. If one first looks up a contact on their smart phone and then says

the exact same thing, a different response is given. For example, a user might access

a contact named John. They might then say, “Siri, I would like to send a message.”

This time the response is likely to be something such as “what would you like the

message to say?” The phone is aware of the context, and will send a message to John

unless otherwise specified [iSUG12].

2.3 Service Mashup

Service mashup refers to making data more useful through aggregation, visualization,

and combination [Sob10]. This data can then be more easily used by people in both

a professional and personal context. Mashups require that data be accessible on a

permanent and consistent basis. For this reason, a majority of mashups are posted

online or are part of the client application [Gol11].

There is an increasing trend toward Web applications publishing APIs enabling de-

velopers to integrate functions and data instead of building these from scratch [Sob10].

The emerging Web is experiencing an evolution in social software due to the active role

of mashups. There are a number of mashup composition tools, which are relatively

easy to use. Many of these mashups do not require the user to have programming

skills. Instead, the graphical user interface (GUI) consists of widgets. These widgets

often respond to the user in a more intuitive manner such as allowing instructions in

the native language of the user. In this way, the widget allows the user to interact

with the system without having to use a computer programming language [Sob10].

There is a wide range of mashup types [Gol11]. These include data mashups,

consumer mashups, and business mashups. The data mashup combines information

and media which are similar and from several sources and combines them to form

a single representation. This combination of resources means there is a novel Web

service which did not previously exist [Gol11].

The consumer mashup uses a combination of data types. Data from numerous

public sources are located and organized into a simplified GUI.

24

The business mashups are frequently applications, which combine an organiza-

tion’s resources, data, applications, and external Web services [Gol11]. This informa-

tion is presented in a manner, which allows the organization to collaborate with other

organizations or experts. These types of mashups are often visually rich applications

offered over the Web in a secure fashion.

2.4 Service Composition

2.4.1 The Definition of Web Service Composition

Service composition involves ensuring that several existing services can work to-

gether in order to provide a calm positive service which better meets user require-

ments [Gol11]. The increased interest in this type of composition is due to the emer-

gence of a wide variety of Web services, which can work in conjunction in order to

provide unique solutions for consumer needs. Many of the techniques used in service

composition consist of composite services and the expression of elemental services.

The composite services consist of a number of elemental services and possibly other

composite services. The composite services require that there be information, which

is controlled and flows between different services [ODW11].

The techniques used in service composition have been derived from languages for

workflow and business process modeling [ODW11]. There is also an overlap with

certain types of software engineering used in systems assembly. With regard to the

systems assembly, it is assumed that components will have services, which are well-

defined. The static aspects of service composition are dressed by the Architectural

Description Languages (ADLs). These include expression of the position of protocol

by using connectors [ODW11].

There are several different approaches used for service composition [Gol11]. Proac-

tive composition is done off-line and is used with stable resources, which are always

operational. These platforms are generally rich in resources. Reactive composition

is used with compound services, which must be created in real time as part of a

composition manager. This approach must often make use of real time parameters.

An example of this would be the available bandwidth of the network. There is also

a difference between mandatory-composite services and optional-composite services.

The mandatory-composite services require that the behaviors of all components be

25

corrected. The optional-composite services do not make this requirement, and some

components may not be available for correction [ODW11].

Service composition means that there must be commonality between services

[ODW11]. The Web Services Description Language (WSDL) has motivated and in-

creased interest with regard to service interoperability. This language has a binding to

SOAP, which is standardized. This means HTTPS and be used as a relatively univer-

sal communication infrastructure. Transporting data with XML allows for increased

flexibility with regard to transformation and encoding of data [Gol11].

Web services composition refers to the interconnection of Web services, which

are used to meet the requirements of certain processes [CW10]. The composition

refers to an accumulation of composite and elementary Web services. These services

can be combined to serve a function which is beyond the capability of any single

component [Gol11]. There are composition rules, which determine the order in which

the services are begun. These rules also cover the conditions which invoke the use

of such services. An important part of the services used in Web service composition

is their ability to be reused for new applications. The composition rules mean that

the applications adhere to certain protocols, which allow them to be compatible with

other applications [Pie11].

2.4.2 Web Service Composition Modeling

The 21st century service-led economies undergo constant change [Sob10]. This means

business processes must be flexible and able to both arrange and combine service

systems. The process activities are needed in order for 21st century organizations to

work efficiently and with high productivity. This environment has increased the need

for Web service composition. Considerable work has been done to combine existing

services in order to provide new functionality through a system which allows the

services to interact [CW10].

In order for the service systems to be properly integrated modeling must be

done [CW10]. One technique for Web service composition modeling uses petri nets.

These types of models can be simultaneously validated and verified. Another ap-

proach is to use XML nets for the modeling. This is actually a variation of the

higher-level petri nets. The XML nets are better at exchanging structured data be-

tween processes and describing objects [Sob10].

26

The XML nets are especially valuable for Web service composition modeling as

their messages tend to be more structured [CW10]. These messages can also be used

as place tokens in order to accomplish message passing. Message passing is crucial for

proper integration of services within a system. The filter schemas used in XML can

manipulate the XML-based tokens. This is useful when the constraints or criterion

must be modeled accurately [Sob10].

The XML nets are actually high level petri nets within which the places are used

as containers for the XML documents [Sob10]. These types of documents must have

the XML schemas identified by their place. Predicate logic expressions are used to

inscribe transitions. With this approach, the free variables are within the inscriptions.

These inscriptions have adjacent edges.

The XML net transition is enabled for a specific marking and instance of variables

within the transition environment. However, this is only accomplished when certain

conditions are met. Each place within the preset transition must contain a minimum

of a single XML document. This document must coincide with the filter schema.

Furthermore, there must be places within the post-said transition. Transitions which

modify the existing XML documents must be checked for validity. The transition

inscription needs to be evaluated as well [CW10].

2.4.3 Web Service Composition as an AI Planning problem

The WSDL files described the interfaces for a Web service [Sob10]. Both the output

and input parameters of the service can be defined by messages, which are within the

WSTL file. If a single Web service is unable to satisfy the business requirements, the

need is created for multiple Web services to meet the need. This means a composi-

tion of the services which works together as a system is required. The Web service

composition is used to determine which group of interconnected Web services can be

utilized in order to form the input of another group of Web services. This will allow

the composition request to be met by certain output parameters [Sob10].

The situation previously described is known as a Web service composition prob-

lem [Zel10]. These types of problems can be solved using a planning graph [YZ08,

ZY08]. This graph makes use of iterative deepening. When this occurs, the itera-

tion finds a new piece of the search space. In other words, the planning graph will

expand iteratively by single levels during iteration. This process continues until the

27

proposition set includes all the goal propositions. Alternatively, the process can be

discontinued at a predetermined fixed-point level. If the planning problem does not

have a solution, the planning graph will contain no output. If a solution is found, the

planning graph will describe a sequence of actions, which will result in the problem’s

solution [Zel10].

Planning graphs can be described by algorithms [Sob10]. These algorithms allow

the computer to use a planning graph in an automated fashion. These types of

algorithms are crucial factors for successful Web service applications. A wide variety

of methods has been used in order to attain this goal. However, the majority of

them are either artificial intelligence (AI) planning techniques or workflow-based.

Additional methods include finite-state machine techniques, model checking, Petri

nets, p-calculus, and algebraic processes [Zel10].

When the workflow-based technique is used, the Web services are conceptualized

as similar to the work flows [Zel10]. With this approach, there is control of the data

flow by the Web services. There are a number of industry standards, which use this

approach such as the Business Process Service mashup refers to making data more

useful through aggregation, visualization, and combination. This data can then be

more easily used by people in both a professional and personal context. Mashups

require that data be accessible on a permanent and consistent basis. For this reason,

a majority of mashups are posted online or are part of the client application [Sob10].

2.5 A Motivating Example: Personal Entertain-

ment Planner

2.5.1 Android Phone

Android is a Linux-based operating system for mobile devices such as smart phones

and tablet computers. It is developed by the Open Handset Alliance, led by Google,

and other companies. Google releases the source code of Android as open source,

under the Apache License. Android is becoming a major competitor to iPhone OS in

terms of openness. Android has a large community of developers writing applications

(“apps”) that extend the functionality of the devices. Applications for android devices

are written in Java language [Wik12a].

28

An app on Android OS can access system information. Below is a list of the types

of information an app can access [Per10]:

• SD storage - modify/delete SD card contents, such as pictures, videos, mp3s,

and even data written to the SD card by other applications.

• Contact list - read/write contact information

• Calendar data - read/write calendar data

• Location - fine (GPS) location, or coarse (network-based) location

• Mails - access preset mail accounts (e.g. Gmail accounts)

• Messages - read/send instance messages

• Network communication - full Internet access, view network status, view Wi-Fi

state.

Normally, it is forbidden to access information between different applications on

Android OS [And12]. However, two ways make destination applications accessible.

One is called SharedPreference [And12]. In this way, destination applications expose

their interfaces such that we could invoke them with a component called Content-

Provider. The other one is called SharedUserId [And12]. In this way, we can access

destination applications as our own data by setting with the same SharedUserId.

Hence, we are able to access the applications on Android OS, if the applications are

developed by ourselves or expose their application information in SharedPreference

way or in SharedUserId way. For example, if a weather forecast application exposes

its interface, we can call this application to get weather information. Otherwise, it is

impossible to access the destination applications. Please note that majority applica-

tions, such as social network application, e.g. Facebook and twitter, do not provide

any way to access their applications’ data , which is related with users’ private infor-

mation, such as contact list, on Android OS.

2.5.2 Personal Entertainment Planner

The goal of the Personal Entertainment Planner is to assist the owner in entertainment

scheduling / planning in accordance to other determining factors. For instance, when

29

you travel to a new city for a business trip, you would most likely want to entertain

yourself most often especially at night after a long day of hard work i.e. the business

schedule during the day. Now, suppose you carry a smart mobile device (smart phone

or tablet) which can be or is connected to the Internet. The device would be more

efficient and reliable to you if it could be having an application that can guide and/or

control you on how to spend, e.g. from 7:00PM to 11:00PM this evening, “I will

entertain myself somewhere not far from the current location”. The smart mobile

device’s entertainment planner application will need to use the information stored

in the device such as contacts, current locations. The owner of the device is casual

about what he or she can do for the evening. The owner is only constrained by time,

location, and money. The entertainment planner is expected to give the owner the

following options:

Option 1 : Dinner at Restrauant L’Autre Saison from 7:00-8:00; Watching movie

“The Help”at cinema “Cinema Banque Scotia Montreal”from 8:45-11:00;

Option 2 : Dinner at Seven Night Club and watch the Hockey game “Canadien

vs. Boston”from 7:30 to 11:00;

Option 3 : Dinner at my friend Brian’s home from 6:30-7:00; Concert at “Place

des Arts”, from 8:30-11:00;

The entertainment planner is a composed service for mobile devices. It invokes

related data services to get proper information e.g. the restaurants nearby, the movie

schedules, and driving directions etc. It may access personal information stored in the

mobile device for use to enhance its functionality and display them on the application’s

GUI through the device’s screen as List 2.5.1.

The entertainment planner also needs to be smart and flexible. The user can

either provide very weak requirements such as to “spend a few hours in downtown

Montreal” or provide more specific requirements such as, the category of activities,

the starting time and duration, budget, etc. The entertainment planner should be

able to search for all the possibilities at the local place and make a plan for the user.

30

Chapter 3

Constraint Model for Context

Representation

3.1 Context

Context is defined as “any information that can be used to characterize the situation

of an entity. An entity is a person, place, or object that is considered relevant to the

interaction between a user and an application, including the user and applications

themselves” [Dey01].

For the mobile application, entities are the knowledge that can either be auto-

matically detected by the mobile system, e.g. the location, the identity and the

current time (see Section 2.2.3), or provided by the user e.g. the budget and the

entertainment activities.

There are several context modeling approaches for context representation includ-

ing key-value models, markup schema models, object oriented models, graph models,

ontology models, and logic models (see Section 2.2.1). In this section, we propose

a constraint model for the description of various contexts in our mobile application.

Our context model can be regarded as key-value model plus inequalities. Though

based on defined ontology, our context is different from ontology model, where on-

tology models reason over low-level context to drive high-level context using logical

reasoning, but there are no reasoning tools embedded in a mobile phone. In our work,

we expect our context models have the expressive power to handle both facts and con-

straints assigned with real values, boolean propositions, and inequalities. Also, our

31

context model is expected to be handled by a compositional algorithm. Therefore,

we propose a constraint model for our context representation.

Firstly, we define a domain related ontology shown in Table 2.

Table 2: Ontology for Entertainment Planner (also serve as domain terminology)

type subtype sub-sub-type attributes
Location

Current location
Destination
Start location
Distance

Money
Cost

Time
Time point

Start time point
End time point

Duration
Entertainment

Movie
Dining

Service
Movie Theater
Restaurant

Self Service
Driving

Personal Identity
Me

Activity

ActivityName, Cost,
Duration, Distance,
StartLocation, Destination,
MovieName, StartTimePoint

Name
ActivityName
MovieName

Table 2 defines the ontology for the entertainment planner, which serves as domain

terminology for the motivating example presented in Section 2.5.

The context information is represented by types in the Table 2, which includes

location, money, time, entertainment, service, personal identity, activity and name.

A type can be a subset of another type. For example, Current location is a subtype

32

of Location. The attributes of an entity are defined as a set of types. The type

Activity has the attributes of ActivityName, Cost, Duration, Distance, Start Location,

Destination, MovieName, and StartTimePoint.

Based on the domain related ontology, we define the variables and the constraints

to be used by the application.

Definition 1 A variable is a tuple: 〈variableName, dataType, ontologyType〉.

In Definition 1, variableName is a symbol to represent a variable. dataType is the

data type for the value of the variable, which is defined as below:

dataType := real|nature number|integer|boolean|string.
ontologyType is a domain related ontology. We can find the corresponding values

of ontologyType in Table 2.

Example 1 m is used to represent the money the device owner currently has. Then,

variableName = m, dataType = real, and ontologyType = Money.

We define all variables in Table 3 according to the Definition 1.

Table 3: Variables

variableName dataType ontologyType variableName dataType ontologyType
l string Location ds real Distance
m real Money c real Cost
t Date Time d real Duration

mv boolean Movie dn boolean Dining
mt boolean Movie Theater r boolean Restaurant
dr boolean Driving p boolean Personal Identity
i boolean Me a string Activity
an string ActivityName mn string MovieName

Definition 2 A constraint is represented as an equality or an inequality of vari-

ables.

An equality gives the value of a variable. For example, current location l = “1455

De Maisonneuve West”. An inequality gives a range of the value of a variable. For

example, we can define a location l′ should be within 5 kilometers of current location

l as |l − l′| < 5.

33

For the convenience of describing the constraints, we can use the approximation

operators in Table 4 in our application. User can select approximation operators to

give the constraints.

Table 4: Approximation Operators Used in Inputing Data (x is a variable)

Operator values equality&inequality
near V, L |x− L| < V
less than V x < V
greater than V x > V
all V 1, V 2, V 3, ... x1 = V 1 ∧ x2 = V 2 ∧ x3 = V 3
any of V 1, V 2, V 3, ... x = V 1 ∨ x = V 2 ∨ x = V 3

After defining variables and constraints, we can define a context as below:

Definition 3 A context X is a set of constraints about the variables.

The constraints in a context can be over both proposition symbols and real value

variables. Proposition symbols take two values true or false. The constraints over

proposition symbols can be used to describe the status of a system. For example,

“entertainment=true”means the user have done the “entertainment”already. Other-

wise, the user does not have any “entertainment”yet. Also, the constraints can be

over real value variables, e.g. location, cost and duration.

Example 2 Suppose a user carries a mobile device. Then a context example is as in

Table 5

Table 5: A context example

variable name data type ontology type constraints
l string current location l = L
t string current time t = T
m real possessed money m = C
mv boolean movie mv = false

From the current context in Table 5, we know that the user is currently at location

L with C amount money in his pocket or in his online account. He has not watched

any movie yet. The current time is T .

One important characteristic of context-aware system is that actions that can be

preformed on the current context are algorithmically defined. We give the definition

of an activity as follows.

34

Definition 4 An activity a is a tuple 〈Prea, Attra, P
+
a , P−

a 〉, where Prea, P
+
a , P−

a

are finite set of constraints. Prea is a set of preconditions, P+
a and P−

a are positive

effects and negative effects respectively, and Attra is the attributes of a.

The attributes Attra of an activity a are described in Table 2, e.g. Cost Ca,

Duration Da, Start Location L1a, Destination L2a, and StartTimePoint Ta (used for

movie activity).

For an activity a, Prea, P
+
a and P−

a specify the constraints about the variables.

Prea is the precondition of a containing a set of constraints over propositional sym-

bols. P+
a and P−

a represents the positive and negative effects after performing activity

a respectively. The constraints in both P+
a and P−

a are over proposition symbols. We

can see an example of a dining activity a in the Equation 1.

a = 〈{dining = false}, {L1a = “2501 Notre Dame, Montreal, QC, CA, H3J1N6”,

L2a = “2501 Notre Dame, Montreal, QC, CA, H3J1N6”, Da = 120, Ca = 25}
{dining = true}, {dining = false}〉

(1)

Equation 1 shows a dining activity. Prea is a set of constraints. dining = false

means the activity a can be applied only if the user does not have dinner yet. Both

the start location L1a and the end location L2a are “2501 Notre Dame, Montreal,

QC, CA, H3J1N6”. Please note that if a is a driving activity, then we have L1a �= L2a

because people must drive from one place (L1a) to a different place (L2a). For any

other activities, for example, movie activity and dining acitivity, we have L1a = L2a

because people must stay in the same place to watch a movie or have a dinner.

Ca = 25 means the cost of activity a is 25 dollars. Da = 120 means the duration of

the activity a is 120 minutes (2 hours). {dining = true} and {dining = false} are

the positive effect P+
a and the negative effect P−

a respectively, which shows how the

problem space is affected after activity a is performed.

3.2 Use Cases of the Context Model

Example 3 Suppose the same user in Example 2, wants to spend the next D hours

entertaining him or herself around the current location. With a proper entertainment

35

planner’s UI, the inputs from the user can be translated to the initial context and goal

context as in Table 6. The current context at any given time is also shown in Table 6.

According to the context in Table 6, the user is currently at location L with C

amount of money in the pocket or in his or her online account. The current time is T .

The user wants to spend D hours having a dinner and watching movies nearby, and

does not mind driving from one place to another. The total expense is not supposed

to exceed C dollars. At any given time in the system, the current context is always

satisfying the distance requirement,i.e. the radius is within R kilometers, i.e. R ≤ 5,

the available money i.e. m ≤ C (the expense never exceeds the allocated budget)

and the time should not exceed D hours.

Table 6: A context example - initial context, current context and goal context

variable name data type ontology type
approximation
operators

value constraints

init-context

li string start location “L” li =“L”

mi real possessed money C mi = C

ti real start time T ti = T

current context

r real location range R r = R

l string location near
any location
point

|l − li| < R

d real duration D d = D

t real time within any time point t− ti < D

m real possessed money greater than
any amount
of money

m > 0

goal-context

lg string destination “L” lg =“L”

mg real possessed money greater than 0 mg ≥ 0

tg real end time near T ,D tg − T ≤ D

mv boolean movie true mv = true

dn boolean dining true dn = true

dr boolean driving any of true,false
dr = true ∨
dr = false

3.3 Context Operations and Reasoning

There are also relations among different contexts. In this section, we define the

operations between different contexts and the reasoning that we deduce from one

36

context to another context.

Definition 5 Suppose X is the current context. There exists an activity a applica-

ble to X, denoted as X � a, if the following conditions are satisfied:

• Start location satisfaction: l = L1a, where l is the location of X and L1a is the

start location of a;

• Start time satisfaction: t ≤ Ta, where t is the time of X and Ta is the start

time of a;

• Cost satisfaction: m ≥ Ca, where m is the money of X and Ca is the cost of a;

• Constraints satisfaction: Prea ⊆ PX , where Prea is the precondition of activity

a and PX is a set of the constraints over proposition symbols in X.

Example 4 Suppose there is an activity a, called WatchMovie presented as below:

a = 〈{movie = false}, {L1a = “L”,

L2a = “L”, Da = D,Ca = C, Ta = T}
{movie = true}, {movie = false}〉

(2)

Currently, the user is at location l with c amount of money in his pocket, where

l = L and c > C. The current time t is earlier than the start time of the movie, i.e.

T , and the user has not watched movie yet. We can see the activity a is applicable to

current context X, i.e. X � a.

Definition 6 Suppose X is the current context. If there exists an activity a and

X � a, a new context X ′ is transformed from the current context X when applying

the activity a on the current context. The procedure is denoted as X
a

==⇒ X ′. The

context X ′ satisfies the following constraints.

• l′ = L2a, where l′ is the location of X ′, and L2a is the destination of a;

• t′ = Ta +Da, where t′ is the time of X ′, Ta is the start time of a, and Da is the

duration of a;

• m′ = m−Ca, where m′ and m are the money of X ′ and X respectively, and Ca

is the cost of a;

37

• PX′ = PX + P+
a − P−

a , where PX′ and PX are the set of constraints over propo-

sition symbols in X ′ and X respectively.

Example 5 According to the Example 4, we can apply the reasoning, i.e. X
a

==⇒
Xa

post, to get a new context Xa
post, which is post-context of activity a. Table 7 lists the

pre-context and the post-context of a.

Table 7: A WatchMovie activity - pre-context and post-context

variable name data type ontology type constraints
pre-context
l string current location l =“L”
t date current time t = T ′

d real duration d = D
m real possessed money m = C ′

w boolean movie w = false
post-context
l string current location l =“L”
t date current time t = T +D
d real duration d = D
m real possessed money m = C ′ − C
w boolean movie w = true

3.4 Comparison with Existing Contexts

Comparing to our constraint context model, the existing context modeling approaches

including key-value models, markup schema models, graphical models, object-oriented

models, ontology based models and logical based models are not sufficient for our

context modeling.

• Key-value models use key-value pairs to model the context. The key-value

pairs define the properties and the values of the environment. Context-aware

applications using key-value models do not implement complex reasoning; they

implement only simple reasoning, e.g. IF-THEN rules. Also, Key-value pairs are

easy to manage, but lack capabilities of handling complex context information.

The context information in our work is more complex than key-value models,

since inequality is also included in our context model. Hence, key-value model

is not used.

38

• Markup schema models define the context into a hierarchical data structure

consisting of markup tags with attributes. The attribute of the markup tags is

recursively defined by other markup tags. There are no constraints defined in

markup schema models to describe the value of markup tags. However, in our

context modeling, it is necessary to define the constraints for the description

of variables values. Thus, our context modeling does not make use of Markup

schema models.

• Object oriented models aim at taking the benefit of the encapsulation and re-

usability of the object oriented approach. The process of managing the context

is encapsulated on an object level. The specified interfaces are defined to have

access to the context information. In our context modeling, it is unnecessary

to hide the details of context processing. Thus, our context modeling does not

make use of object oriented models.

• Graph models are extensions of object-oriented models. Graph models use

graphs with graphical notations to represent context information and the de-

pendency relations between classes / entities. However, graph models do not

assign the constraints with real values in contrast to our context modeling. As

a result, our context modeling does not make use of Graph models.

• Ontology models construct a context ontology using the Web Ontology Lan-

guage (OWL). Both the graph models and ontology models can translate con-

text information into DL. In ontology models, context reasoning is implemented

by DL reasoning to fulfill logical requirements. This model cannot handle con-

straints assigned with real value but only facts. We need a context model to

handle both facts and constraints assigned with real values. As a result, our

context modeling does not make use of Ontology models.

• The objective of Logic based models is to propose an adequate theory of rea-

soning with contexts. However, there is no reasoning tool for mobile phones.

Therefore, we do not consider logical based models in our context modeling.

Apart from the existing context modeling approaches, we use constraints in regard

to the ontology to describe our context. The characteristics of our context model are

as follows:

39

• No reasoning tools

One characteristic of context computing is that an operation can be triggered

by the current context. In our context models, the operations to be executed are

based on several predefined rules. Also, there are no reasoning tools embedded

on mobile phones. In addition we exclude logic rules in our constraint models.

• Expressive power

We want to handle both facts and constraints assigned with real values, boolean

propositions, inequalities etc. Our constraint model defines constraints consist-

ing value assignments and inequalities. Moreover, it is easy to implement this

context in programming.

• Extensibility

We want a model that can be used in any domain. In order to achieve this

purpose, we need to get the related ontology for the given domain. And then

define a set of variables. Based on them, the context model can be built to

fulfill the business goal.

• Algorithmic Processing

When we implement service composition using a search-based algorithm, we

define the constraints to be satisfied as the pre-condition to perform an opera-

tion. It is easy for a search algorithm to process constraints consisting of value

assignments and inequalities.

40

Chapter 4

Service Discovery Mashup

Through the smart phone UI, user can input business goals, the business goals can

be presented as constraints. Based on the business goals, we can discover related

services. The discovery of services paves the way to service composition for achieving

the business goals. What we want to do:

• We discover the real world services through querying online resources, including

common search engine, RESTful data services rather than UDDI in our work.

• In order to demonstrate the wide coverage of our service discovery technique,

we use different types of online resources. MS Bing service is picked as a repre-

sentative of SOAP search engine to search for business services, e.g. restaurant.

Google Maps Web service as a representative of RESTful search engine is to

find driving direction from the original place to the destination. Driving can

be considered as a self-service. Google show time as an HTML engine returns

movie services. These services are hand picked to cover all the three types,

rather than the merits of their functions.

• We translate the current context and the business goal context into query strings

and query criteria.

• We use a mashup to integrate the above different type of services. The mashup

invokes the services and collects the query outputs for the service composition

procedure. After the mashup procedure, services are turned into activities which

can be used in service composition algorithm.

41

4.1 Service Discovery in Practice

UDDI is a XML based registry to be used by businesses throughout the world in

order to list their organization on the Internet and also serves to locate and register

Web service applications [Sob10]. Though UDDI is designed for service discovery, it

is practically dead with no public UDDI server available. So currently, we use general

purpose search engines such as Google [Goo12a], Bing [Mic12a] or Yahoo [Yah12] to

discover services.

There are also Web service search engines, for example as following, which col-

lect information about SOAP and RESTful services, e.g. the URL, implementation

techniques, query format, query examples.

• Woogle [DHM+04] employs clustering technique to search the desired Web ser-

vices that satisfy user requirements described as keywords. Woogle obtains Web

services through Web service description registered on UDDI.

• Seekda [See12] uses the general purpose search engine Alexa to discover Web

services. The returned Web services are ranked according to not only the sim-

ilarities to the users’ requirement but also qualities of services, e.g. service

response time and service reliability.

• WSExpress [ZZL10] acquires Web service description through crawling the Web.

The search results are ranked according to both functional and non-functional

characteristics.

• SWSE [MSXZ10] and OSSE [Dan10] try to search Web services with higher

recall and precision by taking semantics retrieved from ontologies into consid-

eration.

In this thesis, we want to use services which are real world businesses e.g. restau-

rants, movies, more than electronic services in SOA domain, to achieve our business

goals. Therefore, we do not use any existing Web service indexing services to dis-

cover services. Instead, we use general purpose search engines to discover services

and businesses. Then, the discovered services, which are also search engines, are used

to discover services participating in service composition. In order to make different

types of search engine services work together, we propose a mashup phase to uniform

the format of inputs and the output of search engine services.

42

4.2 The Available Search Engine Services

Our service discovery engine takes the advantage of the use of online data services

discovery, business service, and self-services e.g. driving.

In order to demonstrate the wide coverage of our technique, we use different types

of online data services. More specifically, the search engines are SOAP services,

RESTful services, and HTML services. These services are hand picked to cover all

the three types, rather than the merits of their functions.

As their request and response formats are similar over the HTTP protocol, it is

possible to parse them in a uniformed way (e.g. using XML and XPath). Therefore,

we use mashup to enable different types of services to work together. The service

mashup engine is build by hand.

The inputs of the service mashup engine is a goal context and the outputs of the

service mashup engine are a list of services that can be used in the service composition

engine.

4.3 SOAP Services and MS Bing Services

The SOAP services provide an endpoint that exposes a set of operations to be in-

voked by the clients. The endpoint and the operations are described in a standard

WSDL [W3C07b] document. A client can invoke an operation by sending the service

an XML-based SOAP message. And the client receives an output SOAP message as

the response when defined. Purely based on the syntax definitions in WSDL, auto-

matic approaches are developed to compose/parse SOAP messages and invoke services

automatically. The semantics of the operations are not explicit in WSDL. And some-

times, additional documents, e.g. OWL-S [W3C04a] and SAWSDL [W3C07a], are

used to define the scope, effects, pre-conditions and assumptions made by service

designers.

The Microsoft Bing SOAP Services is a set of Web services that enables

users to search, discover, explore, plan, and share information about specific loca-

tions [Mic12b]. There are four Bing Maps SOAP Services: Geocode Service, Imagery

Service, Route Service, and Search Service. Search is the operation in the WSDL file

for the Search Service. Search returns a parsed query or search results for a given

search input string. The request and the response of this operation are SearchRequest

43

and SearchResponse respectively.

Table 8: The MS Bing Maps Search Service

Operation: Search()
Input Parameter: SearchRequest

SearchRequest.Credentials
SearchRequest.Query
SearchRequest.SearchOptions.Count
SearchRequest.SearchOptions.StartingIndex
SearchRequest.SearchOptions.ListingType
SearchRequest.SearchOptions.Radius
SearchRequest.SearchOptions.SortOrder
SearchRequest.SearchOptions.Filters

Output Parameter: SearchResponse
SearchResponse.ResultSets[i].Results[j].Name
SearchResponse.ResultSets[i].Results[j].Address
SearchResponse.ResultSets[i].Results[j].Distance
SearchResponse.ResultSets[i].Results[j].PhoneNumber
SearchResponse.ResultSets[i].Results[j].Categories
SearchResponse.ResultSets[i].Results[j].UserRating

Table 8 lists some of their properties used in our application. SearchRequest.Cr-

edentials identifies the requestor. SearchRequest.Query is a string containing the

query to parse and match to a search result. SearchRequest.SearchOptions is an ob-

ject to refine the search request. Useful settings inside SearchRequest.SearchOptio-

ns are Count an int specifying the number of search results to return, StartIndexing

an int specifying the zero-based array index of the first result to return, ListingType

an enumerable value identifying the listing type to search, e.g. “Business” for busi-

ness listing, Radius a double specifying the radius of the circle in which to search,

and SortOrder an enumerable value specifying how to sort the search results, e.g.

. by “Relevance”, “Rating”, and “Distance”. In addition, Filters specifies how

to filter the search results that are returned, e.g. Filters.Category = 11168 is to

search restaurants.

SearchResponse contains the results returned by the Search Service. Inside

SearchResponse, SearchResultSets is an object, each element of which contains

search results from a specific listing type. In a SearchResultSets element, Results

contains the search results. A Results element has the properties like Name, Address,

Distance, PhoneNumber, Categories, and UserRating.

44

Example: Table 9 shows partially the search results for restaurants and coffees

around the downtown campus of Concordia University. Input SeachRequest.Query is

“Concordia University, Restaurant”.

Table 9: Restaurant and Coffee near Concordia University

Name Address Distance Category

Angela Pizzeria & Restaurant
1662 boul de Maisonneuve O,
Montreal, QC, H3H 1J7

0.022 Pizza

Tapioca Thé
1672 boul de Maisonneuve O,
Montreal, QC, H3H 1J7

0.037 Restaurants

Restaurant Antep Inc
1626 boul de Maisonneuve O,
Montreal, QC, H3H 1J5

0.037 Restaurants

Magic Idea
1675 boul de Maisonneuve O,
Montreal, QC, H3H 1J6

0.04 Restaurants

Presse Café
1805 boul de Maisonneuve O,
Montreal, QC, H3H 1J9

0.078 Coffee & Tea

Convert goal context into query inputs. Input SeachRequest.Query is loca-

tion + goal propositions, e.g. “Concordia University, Restaurant”.

4.4 RESTful Services and Google Maps Web Ser-

vice

Representational State Transfer (REST) services are gaining attentions as a lightweight

approach for the provision of services on the Web. The RESTful services are consid-

ered as a part of SOA. Unlike WSDL-based services, the central elements in REST

are the resources, which are abstract entities identified by URIs that can be manip-

ulated through a set of standard HTTP operations, namely GET, POST, PUT, and

DELETE. Resource’s state is transferred to/from the clients as the consequence of

executing the standard operations. The state is portrayed to the clients by means of

representations, which are documents serialized according specific media types (e.g.

XML, HTML, JSON, text, etc.), and contain hyperlinks to related resources.

Table 10 shows the typical request and response to a RESTful service. The re-

quest is to get the customer information for a customer whose id is 1. The URI

of the resource is example.com/resources/customers/1/. The request indicates

the response should be in XML format. The request is sent by HTTP GET. In

45

Table 10: The Request and Response of a RESTful Service

Request:
GET /resources/customers/1/ HTTP/1.1
Host: example.com
Accept: application/xml

Response:
HTTP/1.1 200 OK
Date: Tue, 08 May 2007 16:41:58 GMT
Server: Apache/1.3.6
Content-Type: application/xml; charset=UTF-8
<?xml version=“1.0”?>
<customer xmlns=“. . . ”>
<customerID> . . .</customerID>
. . .
</customer>

the response following, we can see the XML formatted customer information. Many

RESTful services, e.g. delicious.com [Del12], can also accept query strings. A query

string is in the format of “?variable=value1&variable2=value2”. At the server

side, the query string is parsed to map to resources query.

As RESTful services do not have a uniform standard to describe their input and

output, the programmer needs to program the code to generate the input query

and interpret the output message.To do this, the RESTful services need to have

development documents in natural language for the programmers to use.

Google Maps Web Services [Goo12b] use HTTP requests to specific URLs,

passing URL parameters as arguments to the services. The output of the services are

in either JSON or XML for parsing by your application. A service request is of the

following format:

http://maps.googleapis.com/maps/api/service/output?parameters

In the above HTTP request, service indicates the particular service requested,

e.g. directions or geocode, and output indicates the response format, which usually

is JSON or XML. Some examples of parameters are listed in Table 11.

Example: A request http://maps.googleapis.com/maps/api/directions/xm

l?origin=H3H2P3&destination=H3N1G3 is for searching driving directions between

two places (Zip code H3H2P3 and H3N1G3), and not using sensor (e.g. a GPS as

location sensor). The Directions API can return multi-part directions using a series

46

Table 11: Google Maps Parameters

parameter name meaning
origin textual latitude/longitude value
destination textual latitude/longitude value
mode transport mode, e.g. driving
waypoints alter a route
alternatives provide more than one route
avoid avoid features, e.g. tolls
sensor whether use a location sensor
...

of waypoints. The structure of the XML is listed as below:

<DirectionsResponse>

<status>OK</status>

<route>

<leg>

<step> ... </step>

<step> ... </step>

<duration> ... </duration>

<distance> ... </distance>

<html_instructions> ...

</html_instructions>

</route>

...

</DirectionsResponse>

Convert goal context into query inputs. Query string is origin=l&destinatio-

n=l′, where l and l′ are two locations.

4.5 HTML Services and Google Show Time

HTML Services. We generally call all the Web sites that can return HTML pages

as HTML services. As they are the most widely used services, we would like to

study how to use the information returned from them to serve business goals in

service composition. The HTML services take HTTP query (URL+query string) as

47

input and generate HTML pages as output (see Table 12). Comparing Table 10 and

Table 12, one can see that from the HTTP operation point of view, a RESTful service

is a special sub-case of an HTML service. Their queries are a HTTP query, except

a HTML service returns a HTML page, while a RESTful service can return multiple

data formats, including HTML. Assuming the content structure of the HTML pages

are stable, we can program a parser to process the output HTML pages and get useful

information from them.

Table 12: The Request and Response of a HTML Service

Request:
GET /somedir/page.html HTTP/1.1
Host: example.com
Accept: text/html,application/xhtml+xml

Response:
HTTP/1.1 200 OK
Date: Tue, 08 May 2007 16:41:58 GMT
Server: Apache/1.3.6
Content-Type: text/html; charset=UTF-8
<html>
<head> . . .</head>
<body> . . .</body>
</html>

Google Show Time is part of Google search engine. You can send an HTTP

query like http://google.com/movies?near=h3h2p3 to get movie schedule near the

location you put in the query string. The returned response is in HTML format as

listed below:

<div id="movie_results">

<div class="theater">

<h2 class="name">

IMAX TELUS Montreal Science Centre

</h2>

<div class="info">

King Edward Pier, Montreal, QC,

Canada - (514) 496-4629

</div>

48

<div class="showtimes">

<div class="movie">

<div class="name">

Born To Be Wild IMAX 3D

</div>

40min-Rated G-Documentary

<div class="times">

Dubbed 12:10 2:20 3:25 5:35

7:45 10:00 6:40

</div>

...

</div></div></div>

</div>

4.6 Service Discovery Mashup

We use a class diagram as shown in Figure 9 to illustrate mashup process. The mashup

consists of three parsers, i.e. SOAPParser, HTMLParser, and RESTfulParser. Ev-

ery parser inheriting the super class called ServiceParser searches its corresponding

service, i.e. SOAP service, HTML service, or RESTful service, and parses the result

of the service into a list of corresponding activities, i.e. SOAPActivity, HTMLAc-

tivity, or RESTfulActivity in a uniformed format, where those activities inherit the

super class Activity. As for the SOAPParser, MS Bing search returns a response ob-

ject. The object is parsed and its properties are converted into activities. Also, as for

HTMLParser, the returned HTML page from Google movies showtime HTML service

is parsed and converted into activities. Similarly, the JSON returned by Google maps

in RESTfulParser is parsed and converted into activities. The generated activites

are part of the inputs of the planner.

Currently fully automatic mashup is not possible in the current technique level.

The control flow of our mashup shown in Figure 10 is the result of manual work.

The control flow begins with searching for restaurants and movies by invoking MS

49

Figure 9: The diagram of mashup

Bing business search (SOAP service) and Google movies showtime (HTML service).

These two actions can be executed in parallel. The mashup engine can compose the

query request for a service from the query response of another service. For example,

we use Google Maps service to get the driving directions. The origin and destination

addresses are from the query results of MS Bing Search and Google movies showtime.

Figure 11 shows data flows between the various input and output parameters of

the mashup process. The user inputs include the following parameters: “start time”,

“end time”, “start place”, “end place”, “budge”, “range”, and “activities”. During

the mashup process, the only parameter we use is “start place”. “start place” is

recognized as “Location” as shown in Figure 11 to search restaurants and movies

around.

Use MS Bing business search as an example. The values for the data fields “name”,

50

RESTfulParser

parse (JSON)

Composition Engine

SOAPParserHTMLParser

search (movies)
Google Show Time

search (businesses)
MS Bing

search (directions)
Google Maps

parse (HTML) parse (object)

Figure 10: The control flow of mashup

“categories”, “address”, and “phone number” are extracted from the response object

and are used to generate activities to be used by the composition engine (how to

generate activities is described in Chapter 6). “Location” is also used as the input to

Google Maps search.

Please note, we are not limited to use MS Bing business search and Google movies

showtime as our data services. For example, we can add a data service “search events”

from Tourisme Montreal events [Mon12] to our mashup process as shown in Figure 11

framed by dotted lines. Tourisme Montreal is also an HTML service and provides

plenty of events in Montreal . Once we tell a user is located in Montreal, we can send

an HTTP query like http://www.tourisme-montreal.org/What-To-Do/Ev-ents to

get events in Montreal today. Similarly, we can have the events in Toronto from

https://wx.toronto.ca/festevents.nsf/ if the user is located in Toronto. More-

over, we can add a service “VisitFriends”by getting the information about the ad-

dresses of the user’s friends from the contact list of the user’s smart phone, then use

their addresses as the input to Google Maps search.

51

search
(businesses)

search
(movies)

parse (object) parse (HTML)

search
(directions)

Location

Name

PhoneNumber
Movie
Time

Theater
Name

Address

Movie
Name

Activity
Name

DestinationCost

Restaurant Category
Activity
Name

duration

Destination Movie
Name

MovieT
heater

ActivityName DurationDistanceStartLocation Cost

parse (JSON)

StartLoc
ationStartLocationDuration

Destination

DestinationOrigin

Composition Engine

User inputs

DurationAddress

Category

Cost

DistanceDuration

search
(events)

Event
Time

Price

Event
Location

Event
Name

Phone

parse (HTML)

Phone

StartTime
Point

Activity
Attributes

…... …...

Figure 11: The data flow of the mashup process

52

Chapter 5

Service Composition

Service composition is to generate a business process to fulfill a functional goal that

can not be achieved by individual services. After service discovery mashup, the

outputs of different types of services are uniformed into the same format. Taking

advantage of service mashup, service composition is performed on a HTML service,

a SOAP service and a RESTful service provided with the outputs in an uniform

format. The objective of service composition is to develop an entertainment planner

over smart phones that can design some good entertainment plans according to users’

requirements and recommend to users.

Service composition can be modeled as an AI planning problem. During the

planning phase, a search tree to represent the problem space is constructed. Each

state node in the search tree corresponds to a context of the problem space. Since

our constraint context model defines constraints over propositions and real values,

state nodes in the search tree also contain constraints over propositions and real

values. Therefore, our search tree can handle both propositions and real values. In

the following, we first define the symbols used in our service composition algorithm.

In terms of the symbols, we then build the theoretical framework of the planning

problem for our service composition.

5.1 Problem Description

A system state s represents a current context of the system.

Definition 7 A system state s is a context, i.e. a set of constraints about variables.

53

For example, one possible initial state s0 for the motivating example in Section 2.5

can be described as below:

s0 = {movie = false, dining = false, driving = false,

t = 19 : 00, l = “H3K2S5”,m = 100} (3)

In the initial context as shown in Equation 3, the user does not have any enter-

tainment activities, such as watching some movies, having a dinner or driving out.

He stays at a place that can be identified by the postcode “H3K2S5” at 19 : 00. His

budget for all the entertainments is 100 dollars.

Definition 8 A service composition query is a tuple 〈sg, s0, C〉, where

• sg is a goal state;

• s0 is an initial state.

• C is a set of constraints at any time.

For a service composition query, sg contains both a set of expected business goals

that users want to achieve and a set of the constraints on the duration, location and

cost, s0 is the initial state (an example can be find in Equation 3), and C is the

constraints for any state. A possible composition query q for the motivating example

in Section 2.5 could be as follows:

q = 〈sg, s0, C〉, where
sg = {movie = true, dining = true,

tg − 19 : 00 ≤ 240, lg = “H3K2S5”,mg ≥ 0},
s0 = {movie = false, dining = false, driving = false,

t0 = 19 : 00, l0 = “H3K2S5”,m = 100},
C = {|l − “H3K2S5”| ≤ 20000}

(4)

In Equation 4, sg specifies the expected business goals which require the user to see

the movie and have dinner to entertain himself. sg also require that the user spends

no more than 100 dollars in 4 hours (240 minutes) starting from 19:00. The initial

state s0 is the same as in Equation 3. C means the user goes to any entertainment

place that cannot be far more than 20 kilometers from his original starting place

identified by the postcode “H3K2S5”.

54

Definition 9 The state transition function γ of a = 〈Prea, Attra, P
+
a , P−

a 〉 for

any state s is γ(s, a) = s′, iff a is applicable to s, i.e. s � a.

The state transition function of an activity defines the conditions that the activity

a can be executed at a state s and the effects after it is executed. The example of a

state transition function γ of the activity a for the state s0 described in the Equation 3

is γ(s0, a) = s′. Suppose the dining activity denoted in Equation 1 in Section 3.1 can

be applied to s0, then a new state s′ is generated by the transition γ(s0, a) as follows:

γ(s0, a) = {movie = false, dining = true, driving = false, t = 21 : 00,

l = “2501NotreDame,Montreal, QC,CA,H3J1N6”,m = 75} (5)

According to Equation 5, the business purpose of dining is achieved because

dining = true and the user has 75 dollars left in state s′. The time after dinner

is 21 : 00 o’clock.

Based on the definitions above, we now define the problem of service composition.

Definition 10 A service composition problem is a tuple 〈sg, A, s0, C〉, where

• sg is a goal state;

• A is a set of available activities;

• s0 is the initial state;

• C is a set of constraints satisfied at any time.

For a set of available activities A, a service composition problem is to generate a

business process that can both achieve all the business goals and satisfy the constraints

in sg from the initial state s0 provided that all the constraints in C are satisfied during

the composition process. The constraints in C are specified over real value variables,

e.g. the duration constraint, the location constraint, and the cost constraint.

For example, a composition problem can consist of s0 denoted in Equation 3, sg

denoted in Equation 4, and A = {a1, a2, ..., an}. For any state si, C can be expressed

as follows:
C = {ti − 19 : 00 ≤ 240,

|li − “H3K2S5”| ≤ 20000,

mi ≤ 100}
(6)

55

In Equation 6, ti − 19 : 00 ≤ 240 is a duration constraints, |li − “H3K2S5”| ≤ 20000

is the location constraint, and mi ≤ 100 is the cost constraint.

In the motivating example in Section 2.5, A is a series of entertainment activities

about watching movies, having dinners and driving. According to Definition 4, a1 and

a2 are different activities if they have different preconditions, positive effects, negative

effects or constraints. Even if both a1 and a2 are activities about watching the same

movie, a1 is different from a2 if the movie theater or show time of a1 is different from

that of a2.

Definition 11 A solution π to the service composition problem 〈sg, A, s0, C〉 is a

sequence of activities 〈π1; . . . ; πn〉, in which each πi (i ∈ [1, n]) is a set of paralleled

activities. π1 is applicable to s0. πi is applicable to γ(si−2, πi−1) when i = [2, n]. sg

hold at a goal state sg = γ(. . . (γ(γ(s0, π1), π2) . . . πn). C are satisfied at any state si,

i ∈ [0, n].

For example, the Option 1 for the motivating example in Section 2.5 can be

represented as π1 = {a1, a2}, where a1 represents the activity of having dinner at

Restaurant L’Autre Saison and a2 represents the activity of watching movie “The

Help”at cinema “Cinema Banque Scotia Montreal”.

5.2 Service Composition Algorithm

We use beam search algorithm to solve service composition problem. Beam search

algorithm uses breadth-first search to build its search tree and can handle different

types of constraints easily. At each level of the tree, it generates all successors of the

states at the current level, sorting them in increasing order of heuristic cost. However,

it only stores a predetermined number of states at each level (called the beam width).

The greater the beam width, the fewer states are pruned. With an infinite beam

width, no states are pruned and beam search is identical to breadth-first search. As

far as we know, beam search is used for the first time to solve service composition by

this thesis. It is chosen because we can easily control the computation resource it uses

by adjusting the beam width, which is very important for mobile devices. Since a goal

state could potentially be pruned, beam search sacrifices completeness (the guarantee

that an algorithm will terminate with a solution, if one exists) and optimality (the

guarantee that it will find the best solution).

56

Algorithm 1 Beam search algorithm

1: Q.insert(s0) and mark s0 as visited;
2: while Q �= 0∨ number of solutions < k do
3: s ← Q.popF irst();
4: if sg is satisfied at s then
5: retrieve solution;
6: for ∀a applicable to s ∧ C are satisfied after applying a do
7: s′ = γ(a, s);
8: if s′ not visited then
9: mark s′ as visited, remember s′’s parent as s;
10: Qtemp.insert(s′);
11: else
12: prune the branch from the duplicated node to s′;
13: if Q = 0 then
14: sort Qtemp with heuristic cost, keep only k top elements;
15: move all elements from Qtemp to Q;

Algorithm 1 presents the detailed steps of beam search algorithm. Beam search

algorithm starts from the initial state s0. Line 1 marks s0 as visited and inserts s0 into

queue Q. While Q is not empty and the obtained solutions are less than k (line 2),

a loop starts. Q pops out a state from the head of the queue and names the state as

the current state s (line 3). If all the constraints in the goal context sg are satisfied

at the current state s (line 4), a solution is retrieved from the tree (line 5). For any

activity a is applicable to s and constraint C is satisfied after applying a (line 6), a

new state s′ is generated from the state transition γ(a, s) (line 7). If s′ is not visited

(line 8), we mark s′ as visited and record s as the parent of s′ (line 9). s′ is also

inserted into the queue Qtemp (line 10). Otherwise, the whole branch rooted at s′

is pruned from the tree (line 12). If Q is empty (line 13), line 14 sorts the nodes in

Qtemp according to the heuristic cost and keeps only top k nodes. All the element

of Qtemp are moved into Q (line 15). Then, the next iteration starts.

The heuristics in our application is that we prefer the activities that cost less

money and closer to the original location, in addition, the location should be con-

venient for finding more entertainment activities. Therefore, we use the following

heuristic function (Eq. 7) to compare a set of states s1, · · · , sn. In Equation 7,

mmax = max({si.m}) and mmin = min({si.m}) are the maximum and the minimum

money a state can have. D0max = max({|s.l − l0|}) and D0min = min({|s.l − l0|})
are the maximum and the minimum distance to the original location l0. Nmax =

57

max(si.activities) and Nmin = min(si.activities) are the maximum and the mini-

mum number of available activities a state can have.

hs =
s.m−mmin

mmax −mmin

× 0.6 +
D0max − |s0.l − s.l|
D0max −D0min

× 0.2 +

Nmax − s.activities

Nmax −Nmin

× 0.2 (7)

Algorithm 1 terminates after k solutions are reported or no states to expand.

Theorem 1 The time complexity of beam search algorithm is linear to the beam width

k and the maximum depth m.

Proof 1 k is the beam width and m is the maximum depth of any path in the search

tree. The beam search algorithm only expand at most k nodes at each level. Thus, the

worst case time is O(km).

58

Chapter 6

Implementation of the

Entertainment Planner

In this chapter, we present the design and the implementation of the entertainment

planner for smart phones with the Google Android operating system.

6.1 Introduction

6.1.1 Goals and objectives

The goal of this system is to produce an interactive and entertainment application

for the users who expect entertainment plans for a period of time. This application is

playable on any phone supporting the Android operating system version 2.3 or above

with access to the Internet.

6.1.2 Statement of scope

The inputs to this application are the user’s selection and input, and the location

detected by the GPS module of the phone, and the only output is the entertainment

planners that is a consequence of the input.

6.1.3 Major constraints

In order for the entertainment planner application to be installed the user must be

using a mobile device running Google’s Android Operating System version 2.3 and

59

above along with a GPS module, as well as having access to the Internet.

The application resides a Android operation system version 2.3 or above. A JSON

formatted database resides on the system to store the information from the service

mashup phase.

6.2 Design Consideration

6.2.1 Constraints

All development for the entertainment planner is done in the Eclipse Integrated De-

velopment Environment (IDE) on Windows 7 machines with the Android Software

Development Kit (SDK). Testing of the application was done on the HTC Incredible S

and HTC Wildfire S. As long as the Internet access and a GPS module are available

to Google’s Android mobile Operating System users, the application will be main-

tainable and functional.

6.2.2 System Environment

We test our application in the following two kinds of smart phones.

1. • Platform: HTC Incredible S

• Operation System: Google’s Android Operating System version 2.3.4

• Hardware:

– Processor: 1GHz

– Memory: 768MB

– Screen Size: 480 × 800 pixels, 4.0 inches

– microSD: 8GB

– GPS: A-GPS support

2. • Platform: HTC Wildfire S

• Operation System: Google’s Android Operating System version 2.3.3

• Hardware:

– Processor: 600 MHz

60

– Memory(RAM): 512 MB

– Screen Size: 320 × 480 pixels, 3.2 inches

– microSD: 2GB

– GPS: A-GPS support

6.3 System Architecture

Figure 12: System Architecture Diagram

As shown in Figure 12, the system follows the three-tier architectural style and is

organized into three layers: the interface layer, the application layer and the storage

layer. The interface layer is the graphical user interface that allows the users to

interact with the system. The application layer contains two functionalities: Web

service discovery mashup and composition. It mashups and composes Web services,

and parses and stores data. It contains the logic and rules for storing data in the

database layer and also retrieving it in accordance with the user’s needs. This is the

layer that contains the data file parsers and allows controlled access to the data files

61

in the mashup phase. Finally, the storage layer stores the JSON formatted metadata

required for the system.

The three-tier architecture style is used because it not only separates the user

interface and the metadata, but also provides an application logic layer. The appli-

cation layer provides a middle layer that allows the data files and the UI components

to be loosely coupled. The application layer has to be modified if there are any

changes to the format of the data files and the interface layer will need little or no

modification. This makes it easy for clients of this application to modify the data file

format and attributes for further research purposes if they wish to do so. This layer

makes the system more maintainable and reusable and also hides the complexity of

processing data from the users.

Figure 13: System Sequence Diagram

Smart phone users interact with the entertainment system through a visible UI on

the smart phone. Users click the system icon to start the application. As the system

sequence diagram shown in Figure 13, when the entertainment planner is launched,

62

the user is presented with the Input UI for him to input his query. Once a query

from the client is acquired, the system directly returns the cached data to the user if

such data exists. Otherwise, the interface layer invokes the database layer to check

if there exists stored data, it returns the stored data if it exists. If there does not

exist cached data or stored data, the application layer invokes the mashup engine.

It invokes three different types of services, i.e. HTML services, SOAP services and

RESTful services to generate all data as the required uniform format and store them

into the storage layer. Then, the step of service mashup parses the data stored as the

input of service composition step. After parsing is done, the planner generates plans

using AI planning based service composition algorithm. Once the result is ready,

the entertainment planner displays a summary list of the most ideal top 10 plans for

the user in the Result List UI. The user is able to see the details of any plan in the

summary list by clicking the the plan item, which is displayed in the Detailed Result

UI.

In accordance to the system functionality, we split our entertainment planner

system as three functional modules: User Interface and Functions, Service Discovery

Mashup Implementation, and Service Composition Implementation. We present them

in detailed in the following sections.

6.4 User Interface and Functions

6.4.1 Design constraints

The design of the interfaces for the entertainment planner is simple and intuitive so

that the user can easily identify what options they currently have to progress. Each

of UIs responds quickly to users input through the buttons on the screen. When any

operation needs more time to response, the progress bar is shown to avoid frustrate

the user or lead to believe that the application is frozen.

6.4.2 System Icon

Figure 14 shows available application page displayed on the smart phone. Our en-

tertainment planner application is represented by a red frame icon. A smart phone

can start the application by clicking on the icon. Screen shots are show using HTC

63

Figure 14: System icon Figure 15: Input UI Figure 16: Setting time

Wildfire S.

6.4.3 Input UI

We design an input UI as shown in Figure 15. For example, a user is on a business

trip in Montreal. In order to ease the step of filling in users’ queries, the default setup

is displayed in the initial UI which are automatically entered. The default start time

and end time are 19:00 and 23:00 respectively. The start place and the end place

are detected by our application as where the user currently is, so that users do not

need to give the exact address of their current location. By default the budget for all

entertainments is no more than 50 dollars. If the user wants to make his own plan,

he can edit all the fields in the Input UI as shown in Figure 15. Suppose the user

follow the default setup as shown in Figure 15, he plans to watch movies and have

dinner somewhere within 20 kilometers during the time, and expect our entertainment

application provide them with 10 ideal plans.

When the user inputs the start time or the end time, the application will pop up

a dialog as shown in Figure 16 for the user to select the time.

64

Figure 17: Progress Figure 18: Result List UI Figure 19: Detailed Result UI

6.4.4 Result List UI and Detailed Result UI

When the user query is submitted, the service mashup and composition are executed.

Since the execution of service mashup and composition needs some time, a progress

bar shows to the user (see Figure 17). One the data is ready, the plans are returned

and the result list UI is displayed to the user with the summary list. As shown in

Figure 18, the entertainment planner generate top 10 plans for the user to spend 4

hours doing entertainment activities after 7:00 p.m. The user clicks any plan in the

list to see the details of the plan. For example, a good plan for a user as in Figure 19

is presented in the Table 13.

Table 13: A good plan

Seq Activity Place Time

1 Driving from H3K2S5 to 2501 Notre Dame, Montreal, 5 minutes
QC, H3J1N6

2 Dining in the restaurant “Liverpool House” 30 minutes
at 2501 Notre Dame, Montreal, QC, H3J1N6

3 Driving from 2501 Notre Dame, Montreal, QC, H3J1N6 6 minutes
to 2313 St. Catherine St. West Suite 101, Montreal,
QC, Canada

4 Watching Movie in the theater “Your Sister’s Sister” AMC Forum 22 90 minutes
at 2313 St. Catherine St. West Suite 101, Montreal,
QC, Canada from 19:50

65

6.5 Service Discovery Mashup Implementation

Since Google Android SDK is Java based language, we would like to take its benefits

by modeling mashup problem in an object-oriented way. As Figure 20 shows, we

model service discovery mashup (see Section 4.6) using the following objects.

• ServiceParser(services) At the top, there is an interface named ServicePa-

rser in the Java package services, which defines an abstract method named

generateActivityFiles that can be implemented by other classes to return

an activity list, and at the meantime generate JSON files to store those activ-

ities for caching. MovieParser, DiningParser and DrivingParser implement

ServiceParser, generate the files in the JSON format, and return a List result

containing a kind of relative Activity.

• Activity(algorithm) is an abstract class in the Java package algorithm de-

fined in the Definition 4 in Chapter 3.

• Movie, Dining, and Driving extend Activity class and represent a specific

kind of activity respectively.

• MovieParser invokes an HTML service and parses the result into a Movie ac-

tivity list.

• DiningParser invokes a SOAP service and parses the result into a Dining

activity list.

• DrivingParser invokes a RESTful service and parses the result into a Driving

activity list.

6.5.1 Ontology Data Mapping

In order to make use of the ontology defined in Chapter 3, we map the ontology in

Table 2 to class Ontology, which is Enum type, by taking advantage of the object-

oriented method. By constructing an instance of class Ontology, all the concepts de-

fined in Table 2 become available in our program. During the procedure of mashup,

all the tag values in the JSON files can be obtained from class Ontology. The fol-

lowing code segments representing activities show how Ontology is applied in our

programming.

66

Figure 20: Service Mashup Class Diagram

• Movie Activity

The attributes of each movie activity include ActivityName, StartLocation, Des-

tination, Cost, Duration,MovieName, StartTimePoint andMovieTheater. Start-

Location and Destination are the same location because a movie show starts

and ends at the same place. The attribute MovieName is to avoid watching the

same movie in one plan during composition procedure.

{

"type":{"id":"52","ActivityName":"Movie"},

"StartLocation":"350 Rue Emery, Montreal, QC, Canada,",

"Destination":"350 Rue Emery, Montreal, QC, Canada,",

"Cost":"13.0",

"Duration":"88",

"MovieName":"Attack the Block",

67

"StartTimePoint":"19:35",

"MovieTheater":"Cinema Banque Scotia Montreal"

},

• Dining Activity

The attributes of each dining activity include ActivityName, StartLocation, Des-

tination, Cost, Duration, Category, Restaurant and Phone. StartLocation and

Destination are the same location because a dining activity starts and ends at

the same Restaurant.

{

"type":{"id":"262","ActivityName":"Dining"},

"StartLocation":"2501 Notre Dame, Montreal, QC, CA, H3J1N6",

"Destination":"2501 Notre Dame, Montreal, QC, CA, H3J1N6",

"Cost":"25.0",

"Duration":"120",

"Restaurant":"Liverpool House",

"Phone":"(514) 313-6049",

},

• Driving Activity

The attributes of each driving activity include ActivityName, StartLocation,

Destination, Cost, Duration and Distance. Normally, StartLocation and Desti-

nation are different locations. Because a driving activity always drives a person

from one place to another place except if the person returned to his StartLoca-

tion. No matter if StartLocation and Destination are the same or not, a distance

always exists if a driving activity is applied.

{

"type":{"id":"275","ActivityName":"Driving"},

"StartLocation":"H3K1Z8",

"Destination":"3575 Avenue du Parc, Montreal, QC, Canada,",

"Cost":"19.0",

"Duration":"14",

"Distance":"5055",

},

68

6.5.2 HTML Service

For the HTML service, we use the Google Show Time website (see Section 4.5) http:

//www.google.com/movies?near=Location, where Location is a postal code, a city

name or a detailed address. For example, we get the following HTML page, as shown

in Figure 21 for the url http://www.google.com/movies?near=H3K1Z8. There are

many information about movies presented in the HTML page in Figure 21.

For example, “Cinema du Parc”is the name of the movie theater, under which the

address and the telephone number of the movie theater are also displayed. A list of

detailed movie information is presented after the information of the movie theater.

The detailed information about movie includes the name, duration and start time

of a movie. As can be seen from Figure 21, the movie called “Manhattan”starts at

“9:15”and the duration is “1hr36min”. It is possible that one movie will be shown

several times a day. For example, the movie called “Savages”starts at 2:00, 4:15,

6:45 and 9:20. In our implementation, we transform movies into movie activities and

consider movies, even if with the same name, but with different show time or shown

in different theater as different movie activities.

Figure 21: Showtimes Screen shot

We use jsoup library to invoke and parse HTML into the JSON document (JSON

segment can be seen in Section 6.5.1) to store the movie activity list. Jsoup is a Java

69

based light-weight API for working with HTML. It provides very convenient methods

for extracting and manipulating data, using the best of DOM, CSS, and jquery-like

methods [Hed12].

With the specified HTML, e.g. the HTML from Google Show Time as shown in

Section 6.5.2, to locate <div id="movie_results"> we use the following code:

doc.select("div[id=movie_results]"), where doc is a instance of Document

in jsoup library.

Similarly, we can get the theater name “IMAX TELUS Montreal Science Centre”

in HTML shown in Section 6.5.2 by the following code:

doc.select("div[class=theater] > h2[class=name]"), where doc is the same

as above.

6.5.3 SOAP Service

Invoke
SOAP Stub

Input:
Service URL
Location

JSONAnalysis &
AssignmentSOAP Stub

Parameters
Assignment

Figure 22: Soap Service

In order to be able to invoke Bing Maps SOAP Service (see Section 4.3), we first

need to create a Bing Maps account to get a Bing Maps key. The key is set up in

SearchRequest.Credentials to identify the requester. We also need to set up the

properties of the request, e.g. ListingType=Business, Filters.Category=11168

and etc. The procedure to invoke Bing Maps SOAP service is shown in Figure 22.

Bing Maps SOAP service has four services as described in section 4.3. We utilize

search service of them. Bing Maps SOAP service is from Microsoft and written by

.Net, which is very unfriendly to Java based Android library. In order to use it, we

have to remove all .Net policies from its WSDL file and wrap it with our own Java

SOAP service. Then, we deploy our SOAP service onto the Amazon Elastic Compute

Cloud (Amazon EC2) [ama12] such that our SOAP service can be invoked publicly.

TheWSDL can be found at http://ec2-107-21-247-191.compute-1.amazonaws.c-

om:8080/bingsearch/BingMapSearchPort?wsdl. In our implementation, we use 3rd

party library ksoap2-android [mos11] to invoke the wrapped SOAP service since An-

droid does not come with SOAP library.

70

The process of “Analysis and Assignment”in Figure 22 is necessary. Because we

are not able to obtain all the information about the restaurant from the SOAP service,

i.e. cost and duration. We have to specify the cost and duration for each restaurant

by iterating the result list and assign some ideal values for them in according to the

category of restaurants as shown in Table 14. A dining activity in final JSON format

can be seen in Section 6.5.1.

Table 14: Cost and Duration for Restaurants

Category of restaurants cost duration

Restaurants $25 120 minutes

Pizza $15 20 minutes

Bars $30 180 minutes

Grocery & Food Stores $10 10 minutes

Others $15 15 minutes

6.5.4 RESTful Service

We use the Google map RESTful service (see Section 4.4) to get direction between

two locations. The procedure to invoke the RESTful service is shown in Figure 23.

Suppose we have m restaurants and n movies. We need to invoke RESTful service

m × n times to get the driving direction among the user’s place, restaurants and

movie theaters. Since we only own free license, there is a limitation to invoke it

per day (2,500) [Goo12b]. In our algorithm, we have to get all directions between

any two different types of locations, e.g. the direction between a movie theatre and

a restaurant, it means the locations cannot be more than 50. Actually, in order to

improve the performance over smart phone, we only get the nearest 10 movie theaters

and 10 restaurants around the user’s current location. A driving activity in JSON

format can be seen in Section 6.5.1.

Figure 23: RESTful Service

71

6.6 Service Composition Implementation

6.6.1 Building Models

To implement service composition, we model service composition using nine objects,

as shown in Figure 24. Web service composition problem can be mapped into an AI

planning problem and beam search is used as our planning algorithm in our work.

Taking advantage of the object-oriented method, we define the following objects in

the implementation of the beam search algorithm using Java language.

Figure 24: Class Digram for Models

• ConstraintType

ConstraintType is an object of enumerate type, which makes a constraint on

the property name of class Constraint. In other words, the value of the property

name of Constraint comes from the instances of ConstraintType, i.e. Time,

72

Location, and Cost. In our algorithm, to improve the performance we finally

do not use this class instead using corresponds string directly.

• Constraint

To take advantage of object-oriented language, we seperate the constraints on

real value variable and on proposition symbols to two classes. Here, Constraint

object represents a constraint on real value. For example, our planner is required

to find an entertainment plan to spend three hours nearby according to a user’s

inputs. Then, an instance of Constraint class is generated. The name is the

string “Time” with the maximum value of 180 minutes and the minimum value

of 0 minute.

• Proposition

In our work, class Proposition represents the constraint on proposition sym-

bols, it has two properties, i.e. name and value. The value of the property

value can be true or false, which represents a status of the system. For ex-

ample, Movie=true or Movie=false can be explained as whether the activity

“Movie”has been done or not. In our program, Proposition is always defined

as an element of a List, which is a property of another object to show its multiple

statuses on different activities.

• State

As described in Definition 7, a State object is a context, i.e. a set of constraints

over real value variables and proposition symbols. The property propositions

represents a List of Proposition objects, and property constraints represents

a List of Constraint objects.

• ActivityType

ActivityType is an abstract object of data type Enum, which is to restrict the

property ActivityName of class Activity. It contains three instances: Dining,

Moving and Direction. We do not use this class either for the same reason as

ConstraintType.

• Activity

73

In according to the Definition 4, we define an Activity object that has the

following properties, in which activityName, startLocation, destination,

cost, and duration correspond the attributes of an activity.

– activityName

Property activityName denotes the current type of Activity, whose value

is one of the following strings, i.e. “Dining”, “Movie” or “Driving”.

– startLocation and destination

Properties startLocation and destination are the starting place and

destination of the current activity respectively. For the activities Movie

and Dining, startLocation and destination are the same locations. But

for Driving activity, startLocation and destination are two different

locations.

– cost

Property cost is the cost of the current activity.

– duration

Property duration calculated by minutes is the time spent on the current

activity.

– prePropositions

We use property prePropositions to represent a series constraints over

proposition symbols, i.e. a List of Propostion objects. For example, an

element of the preConditions of a Dining activity is Dining=false.

– positiveEffects and negativeEffects

Properties positiveEffects and negativeEffects are the positive ef-

fects and negative effects respectively added to a state after an activity

is applied. For example, the positive effect and the negative effect of

Movie Activity is Movie=true and Movie=false. After Movie Activity

applies to a state, a new state is generated by removing Movie=false from

the old state’s propositions and then adding Movie=true. Therefore, the

new state contains the proposition Movie=true and excludes Movie=false.

• Movie, Dining, and Driving

74

Movie, Dining, and Driving are sub-classes of class Activity to represent each

specific type of Activity.

• Query

As described in Definition 8, Query object is to describe a query sent by a user on

the client side. Property s0 and sg are initial state and goal state respectively.

Property constraints is the requirement of the user, such as the total time

the user want to spend, the distance range, and etc. Property beamWidth is the

number of ideal plans that the user wants to get from the planner.

• Solution

Solution object represents a plan returned by the planner as in Definition 11 ,

which encapsulates an instance of LinkedList data type, in which every element

is an instance of Activity.

• SearchTreeNode

Beam search algorithm builds the search tree in the way of breadth-first search.

For each node in a search tree, we define a SearchTreeNode, which contains

a variable of SearchTreeNode object to refer to its parent node. One in-

stance of SearchTreeNode corresponds to one instance of State. Actually,

a SearchTreeNode object encapsulates an object of State data type. Property

activity is an activity can be applied to a state. Property heuristic is the

value returned by heuristic function, i.e. heuristic cost. The higher the heuris-

tic, the better the node is. By comparing the value of heuristic, we store

nodes with higher heuristics in our search tree and excludes the rest. Property

visited is to denote whether the node has been visited during the construction

of the search tree.

6.6.2 Service composition Implementation

We implemented beam search algorithm (Algorithm 1) shown in Chapter 5. Here

we utilize the Algorithm 1 as an example to illustrate our algorithm implementation.

Suppose a user’s inputs are as in Figure 15, the user expects to spend four hours from

7:00 p.m. near where he is. Currently, the user located in the area, identified as the

postcode H3K2S5. The user does not want to go somewhere beyond 20 kilometers

75

and will return to the current place. During the four hours, the user would like to

spend no more than 50 dollars in watching movies and having dinner.

Since the beam search algorithm is AI planning based algorithm, we actually build

a search tree with the implementation of the algorithm. When building the search

tree, constraints play an important role to guide the building process. Constraint

model is defined as context representation in our work. In fact, the search tree

starting from the initial context is assumed to go to a series of current context and

finally reach the goal context. In the following, we present how to build the search

tree as well as the context change during the tree-building phase.

1. According to the inputs in the UI, we have the initial context and the goal

context in Table 15. The initial context corresponds to state s0. Starting

algorithm from the initial state s0. s0 is inserted into the queue Q and marked

as visited, where the values of attributes are from Table 15, i.e. s0 = {mv0 =

false, dn0 = false, dr0 = false, t0 = 19 : 00, l0 = “H3K2S5”,m0 = 100}.

2. While Q is not empty and the obtained solutions are less than k where k = 10,

continue the loop:

3. Q Pops out a state from the head of the queue and names the state as the

current state s, since now only s0 in the queue, s0 becomes the current state s.

The search tree is as shown in Figure 25. And the initial context is the current

context.

sLevel 0

Figure 25: Search Tree Level 0

sLevel 0

a

sLevel 1

Figure 26: Search Tree Level 1.1

76

Table 15: Initial and goal context

variable Name data type ontology type
approximation
operators

value constraints

init-context

l0 string start location “H3K2S5” l0 = “H3K2S5”

m0 real possessed money 100 m0 = 100

t0 date start time 19:00 t0 = 19 : 00

mv0 boolean movie false mv0 = false

dn0 boolean dining false dn0 = false

dr0 boolean driving false dr0 = false

goal-context

lg string destination “H3K2S5” lg = “H3K2S5”

mg real possessed money greater than 0 mg ≥ 0

tg date end time near 19:00,4 tg − 19 : 00 ≤ 4

mvg boolean movie true mvg = true

dng boolean dining true dng = true

drg boolean driving any of true, false drg = true ∨ drg = false

4. If the goal state is satisfied at current state s, here we loop to compare if every

proposition of goal all belongs to current state’s propositions to make sure the

check returns true.

5. A solution is retrieved from the tree. Because every node in the search tree

stores its own parent node, we can get all its ancestral nodes, and all those

nodes compose a path in a search tree, which is the solution we want to get.

6. For any activity a is applicable to s and constraint C is satisfied after applying

a, in which we use a function named isApplicable to check if it’s applicable or

not. The function follows the steps:

(a) First we check if the location of the state s is equal to the start location

of the activity a, if so, do the next check, otherwise the activity a is not

applicable to the state s;

(b) Then we check if the preconditions over proposition symbols of activity a

are included in the propositions of the state s;

(c) We use s′ here to express after applying a, and for checking if constraint C

is satisfied s′, we have to check the cost, the time, and the location range

according to user’s input.

77

7. In order to check those conditions in the steps 6, we look for an activity from

the activity list that can be applied to the current state s0. For example, we

have a movie activity a0 and the description of the movie activity in the JSON

file is as the piece of code describing the movie activity shown in Section 6.5.1.

The address of the movie theater is “350 Rue Emery, Montreal, QC, Canada”.

The movie starts at 19:35 and the duration is 88 minutes. The ticket is 13

dollars. We describe the context for this movie activity as shown in Table 16.

Since the start location of activity a0 is different from the location in state s0,

which does not match the first check in the List 6, a0 is not applicable to state

s0 and a0 is not allowed to add to the search tree.

Table 16: A movie activity a0 - pre and post context

variable name data type ontology type constraints

pre-context

l string start location l =“350 Rue Emery, Montreal, QC, Canada”

t date start time point t = 19 : 35

d real duration d = 88

m real possessed money m = 100

mv boolean movie mv = false

post-context

l string destination l =“350 Rue Emery, Montreal, QC, Canada”

t string end time point t = 88 + 19 : 35

d real duration d = 88

m real possessed money m = 100− 13

mv boolean movie mv = true

8. We continue to traverse the activity list. Suppose activity a1 is a driving activity

whose context description is shown in Table 17. According to the pre-context,

a1 is applicable to s0.

For the Driving Activity and Movie Activity more checking steps are required.

• We have to constrain that the two driving activities cannot be executed

one by one directly, which means we can only use this type of activity to

connect other type of activities, but not suggest this type of activity to

users.

• And we program the planner to not let user to see one movie twice.

78

Table 17: A driving activity a1 - pre and post context

variable name data type ontology type constraints

pre-context

l string start location l =“H3K2S5”

t string end time point t = 19 : 00

d real duration d = 10

m real possessed money m = 100

dr boolean driving dr = true ∨ dr = false

post-context

l string destination l =“350 Rue Emery, Montreal, QC, Canada”

t string end time point t = 19 : 00 + 10

d real duration d = 10

m real possessed money m = 100− 10

dr boolean driving dr = true

9. After applying a1 to s0, a new state s1 is added to the search tree, as shown in

Figure 26, where the values of attributes are from Table 18, i.e. s1 = {mv1 =

false, dn1 = false, dr1 = true, t1 = 19 : 10, l1 =“350 Rue Emery, Montreal,

QC, Canada”,m1 = 90}.
Table 18: Context for state s1

variable name data type ontology type value constraints

l1 string start location
“350 Rue Emery,
Montreal, QC,
Canada”

l1 =“350 Rue
Emery, Montreal,
QC, Canada”

m1 real possessed money 90 m1 = 90
t1 date start time 19:10 t1 = 19 : 10
mv1 boolean movie false mv1 = false
dn1 boolean dining false dn1 = false
dr1 boolean driving true dr1 = true

10. And then check if s1 is not visited, if so, record s0 as the parent of s1 and insert

s1 into Qtemp. If s1 is visited, the whole branch rooted at s1 is pruned from

the tree.

11. We expend the next children of s0 in the same way as we generate s1 from s0.

Then, we can get one more state s2 added to the search tree in Figure 27 and

add the newly generated state into Qtemp. Similarly, we keep looking for all

activities that are applicable to the initial state s0 to generate new states and

79

add these states to the search tree as the children of s0. After all applicable ac-

tivities are applied to s0, we get the search tree with level0 and level1 completed

in Figure 28.

sLevel 0

a ax

sLevel 1 s2

Figure 27: Search Tree Level 1.2

sLevel 0

a anax

s sn

n

Level 1 s2

Figure 28: Search Tree Level 1.3

12. Now Q is empty, we sort the nodes in Qtemp according to the heuristic cost

and keep only top k nodes. The higher the heuristic value is, the better the

node is. For example, in our implementation, k is 10 and the heuristic cost of

the top 10 nodes in the first level are listed as shown in Table 19.

Table 19: The Heuristic costs of the top 10 nodes in the first level

order origin sequence heuristic cost

0 7 0.8134

1 8 0.8115

2 9 0.7669

3 10 0.7487

4 16 0.6693

5 15 0.6680

6 14 0.6649

7 13 0.6635

8 12 0.6631

9 11 0.6624

13. Move all the elements from Qtemp to Q. Continue the next turn in while loop.

80

14. In the next turn, state s1 becomes the current context. The program looks

for all activities from the activity list that can be applicable to s1. This time,

activity a0 (see Table 16 for the pre-context and post-context of a0) is applicable

to s1 (see Table 18 for the context of s1) because the location of s1 is the same

with the start location of a0. After a0 is applied to s1, state s11 is added to the

search tree, as shown in Figure 29, and the context of s11 is shown in Table 20.

And so on, finally we’ll get the search tree in Figure 30.

sLevel 0

a anax

s sn

n

Level 1 s2

a0

s

0

Level 2

Figure 29: Search Tree Level 2.1 Figure 30: Search Tree Level N

Table 20: Context for state s11

variable name data type ontology type value constraints

l11 string start location
“350 Rue Emery,
Montreal, QC,
Canada”

l11 =“350 Rue
Emery, Montreal,
QC, Canada”

m11 real possessed money 77 m11 = 77
t11 date start time 21:03 t11 = 21 : 03
mv11 boolean movie true mv11 = true
dn11 boolean dining false dn11 = false
dr11 boolean driving true dr11 = true

15. Every path in the search tree backward from leaf nodes to the root node is one

of the solution. And all activities applied to the states in one path are what we

suggest the user to do during the time.

81

6.7 System Optimization

Comparing to servers and desktop computers, the CPU power of smart phones is

lower, the memory and the storage capacities of smart phones are smaller, and there

are constraints on computing power and battery life on smart phones. However, the

condition of mobile computing has much improved in recent years [Oh06], that’s one

of the key points we can run our application on a smart phone, unlike in common

mobile applications, smart phones only act as client sides and are responsible for

getting data from server sides and showing UI to users. In that kind of model, all

real work is actually running on the server sides.

In order to run our application smoothly on a smart phone, we take the following

steps to optimize the system performance in the ways as below:

• In the database layer, we choose JSON as the format to store data since JSON

libraries have been embedded on Android and optimized to fit mobile applica-

tions, which allows to work fast with JSON files in the application layer of our

system.

• In service mashup, we use jsoup [Hed12], a handy little library, to manipulate

HTML files from Google showtime. When the Google map RESTful service is

invoked, we require JSON as returned format rather than XML. Furthermore,

we reasonably cut down the number of returned movie activities and restaurant

activities.

• In service composition, we appropriately cut down the using of object-orientation

technology in our algorithm, e.g. using int and / or String type in plenty of

cyclical equal or unequal checking instead of properties of objects.

• We use cache mechanism in the system. In the UI layer, we store the previous

user inputs and outputs in the cache. Once a user submits a request, if the

current inputs match with the previous inputs, we return the previous outputs

directly. In the database layer, we store all the activities generated from mashup

phase. If the specified input, i.e. location, has been used as an input before, we

compute the result list from the stored data such that mashup phase is skipped.

Taking the advantage of the cache mechanism, we reduce repeating computing

and improve the performance.

82

6.8 Testing Issues

We conduct tests on each individual module within the entertainment planner system

as separate entities over HTC Incredible S and HTC Wildfire S. Once each individual

module is tested thoroughly, the package is built together and tested as a whole. All

known valid input is tested as well as known invalid input.

6.8.1 Unit Testing

The unit testing has been done with JUnit for Android. All results as shown in the

following figures are tested on HTC Incredible S.

Service Mashup Testing

1. HTML Service Testing

We conduct the test cases for the Google Show Time service as below. The

result of test cases can be found in Figure 31, we can see that it takes about 15

seconds to get the values back, each test case invokes the service once.

(a) Invoking the service with a postcode “H3K1Z8”. The test case executes

successfully if there is no exception caught, otherwise the test case fails.

(b) Invoking the service with an address “977 rue Sainte Catherine O., Mon-

treal, QC, Canada”. The test case executes successfully if there is no

exception caught, otherwise the test case fails.

(c) Invoking the service with an address identified by its postcode “H3K1Z8”.

The test case is successful if the size of movieList is greater than 0 after

the service is invoked, since we can not specify how many movie activities

are returned, otherwise the test case fails.

(d) Invoking the service with an address identified by its postcode “H3K1Z8”.

The test case is successful if the size of addressList is 10 after the service is

invoked, since we only request 10 movie theaters around, i.e. 10 addresses,

otherwise the test case fails.

2. SOAP Service Testing

83

Figure 31: The result of HTML service testing Figure 32: The result of SOAP service testing

We conduct the test cases for the Bing SOAP search service as below. The

result of test cases can be found in Figure 32, we can see that it takes about 1

second to get the values back, each test case invokes the service once.

(a) Invoking the service with a postcode “H3K1Z8”. The test case executes

successfully if there is no exception caught, otherwise the test case fails.

(b) Invoking the service with an address “977 rue Sainte Catherine O., Mon-

treal, QC, Canada”. The test case executes successfully if there is no

exception caught, otherwise the test case fails.

(c) Invoking the service with an address identified by its postcode “H3K1Z8”.

The test case executes successfully if the size of restaurantList is 10 af-

ter the service is invoked, since we only request 10 restaurants around,

otherwise the test case fails.

(d) Invoking the service with an address identified by its postcode “H3K1Z8”.

The test case executes successfully if the size of addressList is 10 after the

service is invoked, since we only request 10 restaurants around, i.e. 10

addresses, otherwise the test case fails.

3. RESTful Service Testing

We conduct the test cases for the Google Maps RESTful service as below. The

results can be found in Figure 33. The duration of running depends on how

many invocations, since we have to wait between two invocations. For a specific

invocation, the duration of running can be omitted.

84

Figure 33: The result of RESTful service testing

(a) Invoking the service by passing two location2 l1 and l2. The test case

executes successfully if the returned driving activity a is not Null and

a.getLocation1().equals(l1) and a.getLocation2().equals(l2), otherwise the

test case fails.

(b) Invoking the service by passing an address list containing 6 different ad-

dresses, 1200 milliseconds between two invocations. The test case executes

successfully if the size of the returned driving activity list is 30 since the

direction matters, i.e. from location l1 to location l2 is different from l2

to l1, otherwise the test case fails.

(c) Invoking the service by passing an address list containing 6 different ad-

dresses without any interval. The test case executes successfully if the size

of the returned driving activity list is 30, otherwise the test case fails. This

test case fails because of Google’s limitation on invocation frequency.

Service Composition Testing

We conduct the test cases for the service composition as below. The result of test

cases can be found in Figure 34, we can see that it takes about 30 seconds to have

the successful result.

1. Invoking the service composition with the location identified by “H3K1Z8”,

location range 20 km, start time point 19:00, duration 180 minutes, and the

money 50 dollars. The test should be successful if the size of result is 10,

otherwise the test case fails.

85

Figure 34: The result of RESTful service testing

2. Invoking the service composition with the parameters as the test case above,

except the money is not sufficient i.e. 10 dollars. The test should be successful

if there is no plan returned, otherwise the test case fails.

3. Invoking the service composition with the parameters as the first test case,

except the range is not large enough i.e. 1 km. The test should be successful if

there is no plan returned, otherwise the test case fails.

4. Invoking the service composition with the parameters as the test case above, ex-

cept the duration is not sufficient i.e. 60 minutes. The test should be successful

if there is no plan returned, otherwise the test case fails.

6.8.2 Compatibility Testing

We use two different models of Android phones, HTC Incredible S with the 4.0 inches

screen on OS version 2.3.4 and HTC Wildfire S with 3.2 inches screen on OS ver-

sion 2.3.3 (see Section 6.2.2), to test our application. All views of our application

are scrollable, and the layout is designed in percentage. Comparing Figure 35 and

Figure 36, we can see our application is compatible with different screen sizes even

with the Keyboard shown. Moreover, it can be run on the different versions of OS.

6.8.3 Performance Testing

We use Traceview, a performance analysis tool comes with Android SDK, to analyze

the performance of our application. Traceview depends on plenty of “debug data”

recorded onto a smart phone’s SD card to generate a graphic performance analysis

86

Figure 35: HTC Incredible S Figure 36: HTC Wildfire S

report, which largely slows down the application, so the CPU Time in the Figure

is far from accuracy. However, we can consult the “CPU Time %” to acquire the

percentage CPU time of each method in our application. As shown in Figure 37

beamSearch function uses 82.8% CPU Time of the application.

Figure 37: Traceview Time Line

Supposing we have 10 movie theaters, 10 restaurants, the number of the driving

activities between them is 2× 10× 10, since the driving activity dr1 (from a1 to a2)

is different from dr2 (from a2 to a1). The average execution time for each module of

87

the application are listed in the Table 21. Please note, the times shown in the figures

in Section 6.8.1 are little bit longer than in the real devices.

Table 21: Test Results

Module
Average Execution Time
(second) on Wildfire S

Average Execution Time
(second) on Incredible S

Mashup 1.2× 2× 10× 10 + 25 1.2× 2× 10× 10 + 14
Composition 65–80 22–26
UI < 3 < 2

6.9 Appendices

6.9.1 Packaging and installation issues

The Software is packaged and distributed as an applications installation package. It

is to be installed to the mobile devices running the Android Operating System version

2.3.3 and above.

6.9.2 Legal Considerations

We will be using the Android Software Development Kit (SDK) in accordance to the

Android SDK License Agreement distributed by Google (Copyright holder of the An-

droid SDK). This agreement grants us as developers “limited, worldwide, royalty-free,

non-assignable and non-exclusive license to use the SDK solely to develop applications

to run on the Android platform” [And12].

88

Chapter 7

Conclusion

This thesis begins with problem and motivation. Nowadays, smart phones become

the most common type of mobile computing device. The ubiquity of sensing and com-

puting power make smart phones have the advantages over normal cell phones. Web

service discovery and composition are studied intensively nowadays. In this thesis,

we want to investigate the possibilities to do Web service discovery and composition

over smart phones. The Web service discovery and composition can be highly context

based that it gives us different solutions based the the location, time, and user profile.

Therefore, it has a lot advantages, if its computation power allows us to do that kind

of complicated tasks.

Different from any desktop applications, the smart phone applications could be

highly adaptive to contexts, e.g. location, identity, and time. In order to model

the context information, we propose a constraint model for context representation

(Chapter 3). We use constraint sets to represent the context of the mobile application,

where a constraint gives a value or a range to entities in mobile applications that can

either be automatically detected by the mobile system or provided by the user. Our

constraint-based context model having the power to express the context for the mobile

application paves the way for the mashup procedure.

Smart phones can discover different types of services over the Internet. In order

to be able to compose different types of services, we use the mashup mechanism to

uniform the format of the data coming from different types of data services (Sec-

tion 4.6). We are able to mashup services using three different protocols, i.e. SOAP

services, RESTful services, and HTML services.

89

Based on the context models and service mashup, we propose an AI-planning

based service composition approach to develop an entertainment planner (Chapter 5)

since service composition can be modeled as an AI planning problem [YZ08, ZY08].

Our work is a feasibility study for AI techniques on reduced environment. We use a

beam search algorithm to solve service composition problem (Section 5.2). As far as

we know, beam search is a first implementation of service composition on the smart

phone environment. Beam search uses breadth-first search to build its search tree. At

each level of the tree, it only stores a predetermined number of states (called beam

width) in increasing order of heuristic cost. Therefore, the beam search algorithm

optimizes the choice of states when constructing a search tree. Also, the beam width

bounds the memory required to perform the search which suits the computation power

of mobile phones easily.

Taking advantage of service composition approach, we design an entertainment

planner for smart phones with the Google Android operating system (Chapter 6). The

entertainment planner implements context modeling, service discovery mashup and

service composition over smart phones. In order to optimize the system performance,

the entertainment planner is capable of storing the results for the beam search. This

is an exploratory work illustrating that the capacity of a smart phone is sufficient for

mashup calculations, even for the three different protocols, and that it is possible to

store the results on the limited phone storage without disabling regular functionality.

The system follows the three-tier architectural style and is organized into three layers:

the interface layer, the application layer and the storage layer(Section 6.3). The three-

tier architecture style is used because it not only separates the user interface and the

meta data, but also provides an application logic layer. The application layer provides

a middle layer that allows the data files and the UI components to be loosely coupled,

and that also makes the system more maintainable and reusable. It is possible to port

the architecture to other tasks easily.

The current limitation to our approach is the chain of mashuped services is gen-

erated manually as it is not possible to fully automatically interpret the data format

of RESTful services and HTML services.

90

Appendix A

Planner Beam Search Algorithm

package ca.concordia.encs.algorithm;

import java.util.ArrayList;

import java.util.Collections;

import java.util.Comparator;

import java.util.LinkedList;

import java.util.List;

import java.util.Queue;

import android.content.Context;

import ca.concordia.encs.models.Activity;

import ca.concordia.encs.models.Address;

import ca.concordia.encs.models.Constraint;

import ca.concordia.encs.models.Global;

import ca.concordia.encs.models.Proposition;

import ca.concordia.encs.models.SearchTreeNode;

import ca.concordia.encs.models.Solution;

import ca.concordia.encs.models.State;

import ca.concordia.encs.services.DirectionParser;

import ca.concordia.encs.services.MovieParser;

import ca.concordia.encs.services.RestaurantParser;

import ca.concordia.encs.util.AlgorithmUtil;

import ca.concordia.encs.util.JSONHandler;

import ca.concordia.encs.util.NonRepeatList;

/**

* @author Jia Ning Wang(Apple)

91

*/

public class PlannerAlgorithm {

private List <Activity > movieList =

new ArrayList <Activity >();

private List <Activity > restaurantList =

new ArrayList <Activity >();

private List <Activity > directionList =

new ArrayList <Activity >();

private List <Activity > activities =

new ArrayList <Activity >();

private List <Address > addressList =

new NonRepeatList <Address >();

private JSONHandler jsonHandler;

private int beamWidth = 10;

private State s0 = new State ();

private List <Proposition > goalProposition =

new ArrayList <Proposition >();

private List <Constraint > constraints =

new ArrayList <Constraint >();

public PlannerAlgorithm(Context context) {

jsonHandler = new JSONHandler(context);

}

/**

* The method is invoked by ResultListActivity

* to get the plans

*/

public List <Solution > invokeService(String add ,

String money , String distance , String maxTime ,

String time , boolean mv , boolean dn) {

double maxMoney = Double.parseDouble(money);

double maxDistance = Double.parseDouble(distance);

double dmaxTime = Double.parseDouble(maxTime) ;

92

setS0(add , maxMoney , time);

setConstraints(maxMoney , maxDistance , dmaxTime);

setGoalProposition(mv,dn);

return this.beamSearch ();

}

/**

* set goal proposition

*/

private void setGoalProposition(boolean mv , boolean dn) {

Proposition p1 = new Proposition("Movie", mv);

Proposition p2 = new Proposition("Dining", dn);

goalProposition.add(p1);

goalProposition.add(p2);

}

/**

* set constraints according to the input

*/

private void setConstraints(double maxMoney ,

double maxDistance , double maxTime) {

if (maxTime > 0) {

Constraint conDuration = new Constraint("Time",

maxTime , 0);

constraints.add(conDuration);

}

if (maxDistance > 0) {

Constraint conDistance = new Constraint(

"Location", maxDistance * 1000, 0);

constraints.add(conDistance);

}

if (maxMoney > 0) {

Constraint conCost = new Constraint("Cost",

maxMoney , 0);

constraints.add(conCost);

}

}

93

/**

* set initial state

*/

public void setS0(String add , double maxMoney ,

String startTime) {

Address address = new Address ();

address.setPostCode(add);

s0.setLocation(address);

s0.setCurrentTime(AlgorithmUtil.getDate(startTime));

s0.setMoney(maxMoney);

Proposition p01 = new Proposition("Movie", false);

Proposition p02 = new Proposition("Dining", false);

s0.getPropositions (). add(p01);

s0.getPropositions (). add(p02);

}

/**

* beam search algorithm

*/

private List <Solution > beamSearch () {

this.getActivities ();

List <Solution > results = new ArrayList <Solution >();

List <SearchTreeNode > searchTree =

new ArrayList <SearchTreeNode >();

SearchTreeNode root = new SearchTreeNode ();

root.setSequence (0);

root.setState(s0);

searchTree.add(root);

Queue <SearchTreeNode > beamQueue =

new LinkedList <SearchTreeNode >();

Queue <SearchTreeNode > leveledQueue =

94

new LinkedList <SearchTreeNode >();

root.setVisited(true);

beamQueue.offer(root);

while (! beamQueue.isEmpty ()) {

SearchTreeNode currentNode = beamQueue.poll ();

if (currentNode == null) {

continue;

}

if (this.propositionsIncluded(goalProposition ,

currentNode.getState ())) {

Solution solution = this

.retrieveSolution(currentNode);

results.add(solution);

System.out.println("Results�number:"

+ results.size ());

if (results.size() >= beamWidth) {

break;

}

}

for (Activity a : this.activities) {

if (this.applicable(currentNode.getState(),

a)

&& this.specialActivityApplicable(

currentNode , a)) {

State s1 = this.transit(

currentNode.getState(), a);

if (this.satisfyConstraint(s1)) {

SearchTreeNode tmpNode = new SearchTreeNode ();

tmpNode.setActivity(a);

tmpNode.setParent(currentNode);

tmpNode.setState(s1);

tmpNode.setSequence(searchTree

.size ());

95

SearchTreeNode visitedNode = this

.getVisitedNode(searchTree ,

tmpNode);

if (visitedNode == null) {

tmpNode.setVisited(true);

searchTree.add(tmpNode);

leveledQueue.offer(tmpNode);

} else {

this.pruneBranch(searchTree ,

visitedNode);

}

}

}

}

System.out.println("before�beamQueue="

+ beamQueue.size() + ",�leveledQueue="

+ leveledQueue.size ());

this.resetQueues(beamQueue , leveledQueue);

System.out.println("after�queue.size="

+ beamQueue.size() + ",�leveledQueue="

+ leveledQueue.size() + "\n");

}

return results;

}

/**

* get the needed activities of the algorithm

*/

private void getActivities () {

this.addressList = jsonHandler

.readAddressesFromFile ();

96

/*

* check if the location in the database already

*/

if (addressList.contains(s0.getLocation ())) {

/*

* get movie activities from json formatted database

*/

this.movieList = jsonHandler

.readActivitiesFromFile(Global.MOVIE_FILE_NAME);

/*

* get dining activities from json formatted database

*/

this.restaurantList = jsonHandler

.readActivitiesFromFile(Global.RESTAURANT_FILE_NAME);

/*

* get driving activities from json formatted database

*/

this.directionList = jsonHandler

.readActivitiesFromFile(Global.DIRECTION_FILE_NAME);

if (movieList.size() != 0

&& restaurantList.size() != 0

&& directionList.size() != 0) {

activities.addAll(movieList);

activities.addAll(restaurantList);

activities.addAll(directionList);

return;

}

}

getMovieActivitiesFromWS ();

getRestaurantActivitiesFromWS ();

getDirectionActivitiesFromWS ();

activities.addAll(movieList);

activities.addAll(restaurantList);

97

activities.addAll(directionList);

List <Address > jsonList = new NonRepeatList <Address >(

addressList);

for (Address a : addressList) {

if (jsonList.contains(a)) {

jsonList.remove(a);

}

}

jsonHandler.createOrUpdateAddressFile(jsonList);

}

/**

* invoke the Google Show Time HTML service to

* get movie activities

*/

private void getMovieActivitiesFromWS () {

MovieParser mParser = new MovieParser(

s0.getLocation (), addressList);

try {

movieList = mParser.generateActivityFiles ();

} catch (Exception e) {

e.printStackTrace ();

}

}

/**

* invoke the Bing Map SOAP service to

* get dining activities

*/

private void getRestaurantActivitiesFromWS () {

RestaurantParser rParser = new RestaurantParser(

s0.getLocation (), addressList);

try {

restaurantList = rParser

.generateActivityFiles ();

} catch (Exception e) {

e.printStackTrace ();

98

}

}

/**

* invoke the Google Maps RESTful service to

* get driving activities

*/

private void getDirectionActivitiesFromWS () {

addressList.add(s0.getLocation ());

Address downtown = new Address ();

downtown.setPostCode(Global.DOWNTOWN_POSTCODE);

if (! addressList.contains(downtown)) {

addressList.add(downtown);

}

DirectionParser dParser = new DirectionParser(

addressList);

try {

directionList = dParser.generateActivityFiles ();

} catch (Exception e) {

e.printStackTrace ();

}

}

/**

* get a solution from the search tree node

* backward to the root

*/

private Solution retrieveSolution(SearchTreeNode node) {

Solution solution = new Solution ();

SearchTreeNode n = new SearchTreeNode ();

n.setActivity(node.getActivity ());

n.setParent(node.getParent ());

n.setSequence(node.getSequence ());

n.setState(node.getState ());

n.setVisited(node.isVisited ());

99

for (Activity a : this.activities) {

if (a.getType () == 3 // Direction

&& a.getLocation1 (). equals(

node.getState (). getLocation ())

&& a.getLocation2 (). equals(

s0.getLocation ())) {

solution.add(a);

break;

}

}

while (n.getParent () != null) {

solution.add(n.getActivity ());

SearchTreeNode nod = new SearchTreeNode ();

nod.setActivity(n.getParent (). getActivity ());

nod.setParent(n.getParent (). getParent ());

nod.setSequence(n.getParent (). getSequence ());

nod.setState(n.getParent (). getState ());

nod.setVisited(n.getParent (). isVisited ());

n = nod;

}

return solution;

}

/**

* apply an activity to a state to get new state

*/

private State transit(State s, Activity a) {

State s1 = new State ();

s1.setMoney(s.getMoney () - a.getCost ());

s1.setLocation(a.getLocation2 ());

if (a.getType () == 2) {

s1.setCurrentTime(AlgorithmUtil.addMinutes(

a.getStartTime (), s.getCurrentTime (),

a.getDuration ()));

} else {

100

s1.setCurrentTime(AlgorithmUtil.addMinutes(

s.getCurrentTime (), a.getDuration ()));

}

s1.setPropositions(getState1Propositions(s, a));

s1.setDistance(getDistanceBetween(s0.getLocation (),

s1.getLocation ()));

return s1;

}

/**

* get the visited search tree node

*/

private SearchTreeNode getVisitedNode(

List <SearchTreeNode > searchTree ,

SearchTreeNode node) {

for (SearchTreeNode s : searchTree) {

if (s.getParent () == null

|| node.getParent () == null) {

if (s.getParent () == null

&& node.getParent () == null) {

if (s.getActivity (). equals(

node.getActivity ())) {

return node;

}

}

} else {

if (s.getParent (). getSequence () == node

.getParent (). getSequence ()

&& s.getActivity (). equals(

node.getActivity ())) {

return node;

}

}

}

return null;

}

/**

101

* prune a branch from the search tree

*/

private void pruneBranch(

List <SearchTreeNode > searchTree ,

SearchTreeNode node) {

for (SearchTreeNode s : searchTree) {

if (s.getSequence () == node.getSequence ()) {

deleteSon(searchTree , s);

break;

}

}

}

/**

* delete the son of the specified node of the search tree

*/

private void deleteSon(List <SearchTreeNode > searchTree ,

SearchTreeNode node) {

for (SearchTreeNode s : searchTree) {

if (s.getParent () != null) {

if (s.getParent (). getSequence () == node

.getSequence ()) {

deleteSon(searchTree , s);

}

}

}

searchTree.remove(node);

}

/**

* check if a state satisfy the constraints

*/

private boolean satisfyConstraint(State s) {

int i = 0;

for (Constraint c : this.constraints) {

if (c.getName (). equals("Cost")) {

if (c.satisfy(c.getName(), s.getMoney ())) {

i++;

}

102

} else if (c.getName (). equals("Location")) {

int distance = this.getDistanceBetween(

s.getLocation (), s0.getLocation ());

if (distance != -1) {

if (c.satisfy(c.getName(), distance)) {

i++;

}

}

} else if (c.getName (). equals("Time")) {

if (c.satisfy(

c.getName(),

AlgorithmUtil.getMinuteDiff(

s.getCurrentTime (),

s0.getCurrentTime ()))) {

i++;

}

}

}

if (i == constraints.size ()) {

return true;

}

return false;

}

/**

* check if an activity is applicable to a state

*/

private boolean applicable(State s, Activity a) {

if (!s.getLocation (). equals(a.getLocation1 ())) {

return false;

}

if (propositionsIncluded(a.getPreConditions (), s)) {

return true;

}

return false;

}

103

private boolean specialActivityApplicable(

SearchTreeNode currentNode , Activity a) {

if (currentNode.getActivity () == null) {

return true;

}

if (a.getType () == 3) {// Direction

if (currentNode.getActivity (). getType () == 3) {

return false;

} else {

return true;

}

}

if (a.getType () == 2) {

if (AlgorithmUtil

.timeBefore(a.getStartTime (),

currentNode.getState ()

.getCurrentTime ())) {

return false;

}

Solution solution = retrieveSolution(currentNode);

for (int i = 0; i < solution.size (); i++) {

if (solution.get(i). getType () == 2) {

Activity mv = solution.get(i);

if (mv.getMovieName (). equals(

a.getMovieName ())) {

return false;

}

}

}

}

return true;

}

/**

* reset the queue according to the beam width

*/

private void resetQueues(

104

Queue <SearchTreeNode > beamQueue ,

Queue <SearchTreeNode > leveledQueue) {

if (beamQueue.isEmpty ()) {

while (! leveledQueue.isEmpty ()) {

beamQueue.offer(leveledQueue.poll ());

}

setQueueAsBeamWidth(beamQueue);

}

}

private void setQueueAsBeamWidth(

Queue <SearchTreeNode > queue) {

ArrayList <SearchTreeNode > list =

new ArrayList <SearchTreeNode >();

while (! queue.isEmpty ()) {

SearchTreeNode n = queue.poll ();

int i = 0;

for (Activity a : this.activities) {

if (applicable(n.getState(), a)

&& specialActivityApplicable(n, a)) {

State s1 = transit(n.getState(), a);

if (satisfyConstraint(s1)) {

i++;

}

}

}

n.getState (). setNextActivities(i);

list.add(n);

}

sortOnHuristic(list);

int i = 0;

for (SearchTreeNode node : list) {

if (++i > beamWidth) {

break;

105

}

queue.offer(node);

}

}

/**

* sort the search tree according to heuristic cost

*/

private void sortOnHuristic(

ArrayList <SearchTreeNode > list) {

if (list == null || list.size() == 0) {

return;

}

State state0 = list.get (0). getState ();

double mmin = state0.getMoney ();

double mmax = state0.getMoney ();

double dmin = state0.getDistance ();

double dmax = state0.getDistance ();

double nmin = state0.getNextActivities ();

double nmax = state0.getNextActivities ();

double md , dd , nd;

for (int i = 1; i < list.size (); i++) {

State state = list.get(i). getState ();

if (state.getMoney () > mmax) {

mmax = state.getMoney ();

}

if (state.getMoney () < mmin) {

mmin = state.getMoney ();

}

if (state.getDistance () > dmax) {

dmax = state.getDistance ();

}

if (state.getDistance () < dmin) {

dmin = state.getDistance ();

}

if (state.getNextActivities () > nmax) {

nmax = state.getNextActivities ();

106

}

if (state.getNextActivities () < nmin) {

nmin = state.getNextActivities ();

}

}

for (int i = 0; i < list.size (); i++) {

State state = list.get(i). getState ();

if (mmax != mmin) {

md = (state.getMoney () - mmin)

/ (mmax - mmin);

} else {

md = 1;

}

if (dmax != dmin) {

dd = (dmax - state.getDistance ())

/ (dmax - dmin);

} else {

dd = 1;

}

if (nmax != nmin) {

nd = (state.getNextActivities () - nmin)

/ (nmax - nmin);

} else {

nd = 1;

}

list.get(i). setHeuristic(

md * 0.6 + dd * 0.2 + nd * 0.2);

}

Collections.sort(list ,

new Comparator <SearchTreeNode >() {

public int compare(SearchTreeNode i,

SearchTreeNode j) {

return (int) ((j.getHeuristic () - i

.getHeuristic ()) * 10000);

107

}

});

}

/**

* check if the state ’s propostions are included

* in goal propositions

*/

private boolean propositionsIncluded(

List <Proposition > goalpros , State s) {

List <Proposition > statepros = s.getPropositions ();

int i = 0;

for (Proposition goal : goalpros) {

if (statepros.contains(goal)) {

i++;

}

}

if (i == goalpros.size ()) {

return true;

}

return false;

}

private List <Proposition > getState1Propositions(

State s, Activity a) {

List <Proposition > newPros = new ArrayList <Proposition >();

newPros.addAll(s.getPropositions ());

for (Proposition add : a.getPositiveEffects ()) {

if (! newPros.contains(add)) {

newPros.add(add);

}

}

for (Proposition sub : a.getNegativeEffects ()) {

if (newPros.contains(sub)) {

newPros.remove(sub);

108

}

}

return newPros;

}

private int getDistanceBetween(Address add1 ,

Address add2) {

for (Activity activity : this.directionList) {

Activity direction = activity;

if (direction.getLocation1 (). equals(add1)

&& direction.getLocation2 ()

.equals(add2)) {

return direction.getDistance ();

}

}

return -1;

}

}

109

Bibliography

[AGS+93] Norman Adams, Rich Gold, Bill N. Schilit, Michael Tso, and Roy Want.

An infrared network for mobile computers. In In Proceedings USENIX

Symposium on Mobile & Location-independent Computing, pages 41–52,

1993.

[ama12] amazon.com. Amazon elastic compute cloud (amazon ec2). http://aws.

amazon.com/ec2/. Retrieved June 19, 2012, 2012.

[And12] Android.com. Google android developer. http://developer.android.

com/develop/index.html. Retrieved June 19, 2012, 2012.

[BBC97] Peter J. Brown, John D. Bovey, and Xian Chen. Context-aware applica-

tions: from the laboratory to the marketplace. IEEE Personal Commu-

nications, 4(5):58–64, October 1997.

[BBH+10] Claudio Bettini, Oliver Brdiczka, Karen Henricksen, Jadwiga Indulska,

Daniela Nicklas, Anand Ranganathan, and Daniele Riboni. A survey of

context modeling and reasoning techniques. Pervasive and Mobile Com-

puting, 6(2):161–180, 2010.

[BKH11] Sergey Balandin, Yevgeni Koucheryavy, and Honglin Hu, editors. Smart

spaces and next generation wired/wireless networking 11th international

conference 11th International Conference, NEW2AN 2011, and 4th Con-

ference on Smart Spaces, ruSMART 2011 St. Petersburg, Russia, August

22-25, 2011: Proceedings, Heidelberg, 2011. Springer.

[CFJ03] Harry Chen, Tim Finin, and Anupam Joshi. Using OWL in a pervasive

computing broker. In Proceedings of Workshop on Ontologies in Open

Agent Systems (AAMAS 2003), 2003.

110

[CK00] Guanling Chen and David Kotz. A survey of context-aware mobile com-

puting research. Technical Report TR2000-381, Dartmouth, November

2000.

[CMD99] Keith Cheverst, Keith Mitchell, and Nigel Davies. Design of an object

model for a context sensitive tourist guide. Computers and Graphics,

23(6):883–891, 1999.

[CW10] Peter J. Curwen and Jason Whalley. Mobile telecommunications in a high

speed world industry structure, strategic behaviour and socio-economic im-

pact. Gower Publishing Ltd, Farnham, 2010.

[Dan10] Guo Dan. New ideas for web service discovery-ontology-based prototype

system of service search engine. In 2nd International Conference on Soft-

ware Technology and Engineering, volume 2, pages 407–409, 2010.

[Del12] Delicous.com. Delicious APIs. http://www.delicious.com/developers

Retrieved June 19, 2012, 2012.

[Dey01] Anind K. Dey. Understanding and using context. Personal and Ubiq-

uitous Computing, Special issue on Situated Interaction and Ubiquitous

Computing, 5(1), 2001.

[DHM+04] Xin Dong, Alon Halevy, Jayant Madhavan, Ema Nemes, and Jun Zhang.

Similarity search for web services. In Proceedings of the Thirtieth interna-

tional conference on Very large data bases - Volume 30, VLDB ’04, pages

372–383. VLDB Endowment, 2004.

[Fie00] Roy Thomas Fielding. Architectural styles and the design of network-based

software architectures. PhD thesis, 2000.

[Gol11] Paul Golding. Connected services: a guide to the Internet technologies

shaping the future of mobile services and operators. John Wiley & Sons,

Chichester, West Sussex, 2011.

[Goo12a] Google. Google. http://www.google.com. Retrieved June 19, 2012, 2012.

[Goo12b] Google. Google maps API family. https://developers.google.com/

maps/. Retrieved June 19, 2012, 2012.

111

[Hal01] Terry Halpin. Information Modeling and Relational Databases: From

Conceptual Analysis to Logical Design. Morgan Kaufman Publishers, San

Francisco, 2001.

[Hed12] Jonathan Hedley. jsoup. http://jsoup.org/. Retrieved June 19, 2012,

2012.

[HIR02] Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy. Modeling

context information in pervasive computing systems. In Proceedings of the

First International Conference on Pervasive Computing, Pervasive ’02,

pages 167–180, London, UK, UK, 2002. Springer-Verlag.

[HIR03] Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy. Gener-

ating context management infrastructure from high-level context models.

In Industrial Track Proceedings of the 4th International Conference on

Mobile Data Management (MDM2003), pages 1–6, Melbourne/Australia,

January 2003.

[IBM08] IBM. Restful web services. http://www.ibm.com/developerworks/

webservices/library/ws-restful/. Retrieved June 19, 2012, 2008.

[IRRH03] Jadwiga Indulska, Ricky Robinson, Andry Rakotonirainy, and Karen Hen-

ricksen. Experiences in using cc/pp in context-aware systems. In In Proc.

of the Intl. Conf. on Mobile Data Management (MDM, pages 247–261.

Springer, 2003.

[iSUG12] iPhone 4S User Guide. idownloadblog. http://www.apple.com/iphone/

features/siri.html. Retrieved June 19, 2012, 2012.

[MB97] John McCarthy and Saša Buvač. Formalizing context(expanded notes).

In Working Papers of the AAAI Fall Symposium on Context in Knowl-

edge Representation and Natural Language, pages 99–135, Menlo Park,

California, December 1997.

[McC93] John McCarthy. Notes on formalizing context. In Proceedings of the

13th international joint conference on Artifical intelligence - Volume 1,

IJCAI’93, pages 555–560, San Francisco, CA, USA, 1993. Morgan Kauf-

mann Publishers Inc.

112

[Mic12a] Microsoft. Bing. http://www.bing.com. Retrieved June 19, 2012, 2012.

[Mic12b] Microsoft. Bing services 2.0. http://msdn.microsoft.com/en-us/

library/dd877956.aspx. Retrieved June 19, 2012, 2012.

[Mon12] Tourisme Montréal. Events. http://www.tourisme-montreal.org/

What-To-Do/Events. Retrieved June 19, 2012, 2012.

[mos11] mosabua@gmail.com. ksoap2-android. http://code.google.com/p/

ksoap2-android/. Retrieved June 19, 2012, 2011.

[MSXZ10] Chao Ma, Meina Song, Ke Xu, and Xiaoqi Zhang. Web service discovery

research and implementation based on semantic search engine. In 2nd

Symposium on Web Society, pages 672–677, Beijing, China, 2010.

[ODW11] Mohammad S. Obaidat, Mieso Denko, and Isaac Woungang, editors. Per-

vasive computing and networking. JohnWiley & Sons, Hoboken, NJ, 2011.

[Oh06] Sangyoon Oh. Web Service Architecture For Mobile Computing. Phd

dissertation, University of Indiana, 2006.

[Ora06] Oracle. Restful web services. http://www.oracle.com/technetwork/

articles/javase/index-137171.html. Retrieved June 19, 2012, 2006.

[Pas98] Jason Pascoe. Adding generic contextual capabilities to wearable com-

puters. In 2nd International Symposium on Wearable Computers (ISWC

1998), pages 92–99, 1998.

[Per10] Technically Personal. Use permissions to secure your private

data from android apps. http://techpp.com/2010/07/30/

android-apps-permissions-secure-private-data/. Retrieved June

19, 2012, 2010.

[Pie11] Samuel Pierre. Next Generation Mobile Networks and Ubiquitous Com-

puting. Information Science Publishing, Hershey, 2011.

[Rya99] Nick Ryan. ConteXtML: Exchanging contextual information between a

mobile client and the fieldnote server. 1999.

113

[SAG+93] Bill N. Schilit, Norman Adams, Rich Gold, Michael M. Tso, and Roy

Want. The ParcTab mobile computing system, 1993.

[SAW94] Bill N. Schilit, Norman Adams, and Roy Want. Context-aware comput-

ing applications. In IEEE Workshop on Mobile Computing Systems and

Applications, pages 85–90, Santa Cruz, CA, US, 1994.

[SBG99] Albrecht Schmidt, Michael Beigl, and Hans-W. Gellersen. There is more

to context than location. Computers and Graphics, 23(6):893–901, 1999.

[Sch95] William Noah Schilit. A System Architecture for Context-Aware Mobile

Computing. PhD thesis, Columbia University, 1995.

[See12] Seekda! Web services search engine. http://webservices.seekda.com.

Retrieved June 19, 2012, 2012.

[SLP04] Thomas Strang and Claudia Linnhoff-Popien. A context modeling survey.

In In: Workshop on Advanced Context Modelling, Reasoning and Manage-

ment, UbiComp 2004 - The Sixth International Conference on Ubiquitous

Computing, Nottingham/England, 2004.

[SLPF03] Thomas Strang, Claudia Linnhoff-Popien, and Korbinian Frank. Cool: A

context ontology language to enable contextual interoperability. In J.-B.

Stefani, I. Demeure, and D. Hagimont, editors, LNCS 2893: Proceedings

of 4th IFIP WG 6.1 International Conference on Distributed Applications

and Interoperable Systems (DAIS2003), volume 2893 of Lecture Notes in

Computer Science (LNCS), pages 236–247, Paris/France, November 2003.

Springer Verlag.

[SMLP01] Michael Samulowitz, Florian Michahelles, and Claudia Linnhoff-Popien.

CAPEUS: An architecture for context-aware selection and execution of

services. In Proceedings of the IFIP TC6 / WG6.1 Third International

Working Conference on New Developments in Distributed Applications

and Interoperable Systems, pages 23–40, Deventer, The Netherlands, The

Netherlands, 2001. Kluwer, B.V.

[Sob10] Tarek Sobh, editor. Innovations and advances in computer sciences and

engineering, Dordrecht, 2010. Springer.

114

[Str03] Thomas Strang. Service Interoperability in Ubiquitous Computing Envi-

ronments. PhD thesis, Ludwig-Maximilians-UniversityMunich, October

2003.

[TAY10] Asoke K. Talukder, Hasan Ahmed, and Roopa R. Yavagal. Mobile com-

puting: technology, applications, and service creation (2nd ed.). Tata

McGraw Hill, New Delhi, 2010.

[W3C04a] W3C. Owl-s: Semantic markup for web services. http://www.w3.org/

Submission/OWL-S/. Retrieved June 19, 2012, 2004.

[W3C04b] W3C. Web services architecture. http://www.w3.org/TR/ws-arch/. Re-

trieved June 19, 2012, 2004.

[W3C07a] W3C. Semantic annotations for wsdl and xml schema (sawsdl). http:

//www.w3.org/TR/sawsdl/. Retrieved June 19, 2012, 2007.

[W3C07b] W3C. Web services description language (wsdl) version 2.0. http://www.

w3.org/TR/wsdl20/. Retrieved June 19, 2012, 2007.

[Wik12a] Wikipedia. Android (operating system). http://en.wikipedia.org/

wiki/Android_(operating_system). Retrieved June 19, 2012, 2012.

[Wik12b] Wikipedia. Wdsl. http://en.wikipedia.org/wiki/Web_Services_

Description_Language. Retrieved June 19, 2012, 2012.

[Wik12c] Wikipedia. Web service. http://en.wikipedia.org/wiki/Web_

service. Retrieved June 19, 2012, 2012.

[WZGP04] Xiao Hang Wang, Da Qing Zhang, Tao Gu, and Hung Keng Pung. Ontol-

ogy based context modeling and reasoning using OWL. In Proceedings of

the Second IEEE Annual Conference on Pervasive Computing and Com-

munications Workshops, PERCOMW ’04, pages 18–22, Washington, DC,

USA, 2004.

[Yah12] Yahoo. Yahoo! http://search.yahoo.com. Retrieved June 19, 2012,

2012.

115

[YZ08] Yuhong Yan and Xianrong Zheng. A planning graph based algorithm for

semantic web service composition. In CEC/EEE, pages 339–342, Wash-

ington, DC, 2008.

[zA97] Pinar Öztürk and Agnar Aamodt. Towards a model of context for case-

based diagnostic problem solving. In Context-97; Proceedings of the in-

terdisciplinary conference on modeling and using context, pages 198–208,

Rio de Janeiro, February 1997.

[Zel10] Marvin Zelkowitz, editor. Advances in Computers, Volume 78: Improving

the Web. Academic Press, Amsterdam, 2010.

[ZY08] Xianrong Zheng and Yuhong Yan. An efficient syntactic web service com-

position algorithm based on the planning graph model. In ICWS, pages

691–699, 2008. IEEE Computer Society.

[ZZL10] Yilei Zhang, Zibin Zheng, and M.R. Lyu. A QoS-aware search engine

for web services. In International Conference on Web Services (ICWS),

pages 91–98, 2010.

116

