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Abstract

Feature Combination for Measuring Sentence Similarity

Ehsan Shareghi Nojehdeh

Sentence similarity is one of the core elements of Natural Language Processing (NLP) tasks such

as Recognizing Textual Entailment, and Paraphrase Recognition. Over the years, different systems

have been proposed to measure similarity between fragments of texts. In this research, we propose

a new two phase supervised learning method which uses a combination of lexical features to train

a model for predicting similarity between sentences. Each of these features, covers an aspect of the

text on implicit or explicit level. The two phase method uses all combinations of the features in

the feature space and trains separate models based on each combination. Then it creates a meta-

feature space and trains a final model based on that. The thesis contrasts existing approaches that

use feature selection, because it does not aim to find the best subset of the possible features. We

show that this two step process significantly improves the results achieved by single-layer standard

learning methodology, and achieves the level of performance that is comparable to the existing

state-of-the-art methods.
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Chapter 1

Introduction

“an ancient pond / a frog jumps in / the

splash of water”

Matsuo Bashō

Sentence similarity is one of the core elements of Natural Language Processing (NLP) tasks such

as Recognizing Textual Entailment (RTE)1 [Dagan et al., 2006], and Paraphrase Recognition2 [Dolan

et al., 2004]. Given two sentences, the task of measuring sentence similarity is defined as determining

how similar the meaning of two sentences is. The higher the score, the more similar the meaning

of the two sentences. An effective similarity measure should be able to determine whether the

sentences are semantically equivalent or not, or how close they are, considering the variations of

natural language expressions.

In addition to RTE and paraphrase recognition, an effective method to compute the similar-

ity has many applications in a wide diversity of NLP tasks, such as Machine Translation Eval-

uation [Papineni et al., 2002; Snover et al., 2009], Text Reuse Detection [Clough et al., 2002;

Bendersky and Croft, 2009], Summarization [Salton et al., 1997; Lin and Hovy, 2003], Question

Answering [Lin and Pantel, 2001; Wang et al., 2007], Information Retrieval and Extraction [Salton
1RTE is defined as a directional relationship between two text fragments, text (T) and hypothesis (H), and T

entails H if, typically, a human reading T would infer that H is most likely true.
2Paraphrase Recognition is defined as identifying whether two sentences are restatement of each other with different

syntax or words.
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and Buckley, 1988; Baeza-Yates et al., 1999], Word Sense Disambiguation [Lesk, 1986; Schütze,

1998], and Short Answer grading [Leacock and Chodorow, 2003; Pulman and Sukkarieh, 2005;

Mohler and Mihalcea, 2009]. Therefore, finding an effective method for measuring the similarity

between two fragments of texts is of great interest.

In 2012, with an attempt to define a framework for comparing different approaches and pipelines,

the Semantic Textual Similarity (STS) shared task was proposed by [Agirre et al., 2012] during the

Semantic Evaluation (SemEval)-2012 workshop. The participants were asked to develop pipelines for

measuring the similarity for given pairs of sentences drawn from different sources. As an example,

here is a pair of sentences from the STS-2012 shared task training set:

(1.1) (a) A person is picking a komodo dragon and putting it in a box.

(b) A person is placing a baby komodo dragon into a container.

STS has two characteristics which differentiate it from the other mentioned tasks:

• First, instead of the binary yes/no decision in RTE or Paraphrase Recognition tasks, STS

defines the notion of graded similarity within the interval of [0,5]. While 0 represents “on

different topics” as in the pair:

(1.2) (a) A man is straining pasta.

(b) A man plays a wooden flute.

and 5 represents “completely equivalent” as in the pair:

(1.3) (a) The bird is bathing in the sink.

(b) Birdie is washing itself in the water basin.

• Second, in entailment the relation between each H-T (Hypothesis-Text) pair is unidirectional,

e.g. an apple is a fruit, but a fruit is not necessarily an apple, while in STS all the relations

between pair of sentences are symmetric.

In this research, I will mainly use the dataset provided by the STS shared task-2012 organizers,

in order to use their labeled data. In addition, 88 state-of-the-art systems were submitted to the task

2



which offers a good base for comparing the quality of the proposed system. Also, I just participated

in STS shared task-2013, where 34 teams with 89 submissions were participated. Therefore, along

with the 2012 datasets and its results, I will also discuss, albeit briefly, this recent shared task and

the performance of my method.

1.1 Approach

Over the years different systems were proposed to measure similarity between fragments of texts.

However, most of the proposed systems were based on only a single metric or resource.

Recently, more systems started to approach the similarity measurement from a new angle by

combining different resources and metrics. However these new approaches, which mostly use machine

learning, have their own challenges. First, finding a set of features which cover different aspect of

data is a crucial step. Following Tom Mitchell’s definition of machine learning3, a feature is an

individual measurable property of a experience which heuristically addresses one aspect of that

experience which is relevant to the data/task we are trying to model/formulate. Second, pruning

this feature space to exclude poor features, or finding the best subset of this space is a laborious

task, called Feature Selection. In fact, feature selection is one of the fundamental steps in machine

learning because sometimes the target model/function is identified by a subset of input features and

not the complete feature space. In fact, poor features result in greater computational cost and may

increase the chance of overfitting [Ng, 1998].

In order to answer to the first challenge, which is highly dependent on the task and the data, in

this research a lexical feature space is proposed for measuring sentence similarity.

In order to address the second challenge and contrary to standard learning which builds a single

model based on a single feature combination, we propose a two phase supervised learning method. It

uses a combinations of lexical features and the core idea is to use all combinations of the features in

the feature space during the training process, rather than just looking at one possibility for feature
3“A computer program is said to learn from experience E with respect to some class of tasks T and performance

measure P, if its performance at tasks in T, as measured by P, improves with experience E.” [Mitchell, 1997]
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combination. Then, a separate model is trained based on each combination and finally a second-level

model will be built on top of the first-level models’ predicted scores.

It is worth noting that in this research I do not apply any feature selection techniques such as

Exhaustive Search, or Forward Feature Selection [Guyon and Elisseeff, 2003]. Exhaustive Search tries

all different possibilities of feature subsets and selects the one that provides the best performance

on training set. While the Forward Feature Selection begins by evaluating all feature subsets of size

one, then it finds the best subsets of two features from the subsets containing fi, the best single

feature selected in the previous step, and all the remaining features, and so on.

The intuition to avoid using feature selection was to offer the full space of possibilities, as opposed

to finding the best subset of the feature space through feature selection methods. This is beneficial

because a single model, trained on one possibility of features combination, might consistently make

the correct predictions for a particular class and incorrect predictions for the other classes.

The proposed approach was tested on the STS shared task-2012 and showed that it significantly

improves the result that were obtained by a single-layer supervised learning approach. The proposed

method performed reliably across each individual test sets (with no adjustments) and on average

outperformed all 88 submitted systems. Also, I recently participated in STS-2013 shared task and

ranked 4th among 34 teams and 89 submissions. This shows that the proposed method and the

feature space performs reliably across different datasets of two years STS shared tasks.

1.2 Contributions

As the main contribution of the thesis, a new methodology for using features is proposed. The

proposed method contrasts existing approaches in the sense that it does not aim to find the best

subset of possible features. This method is beneficial specially when we are dealing with datasets

that are gathered from different sources and therefore have different characteristics.

I also propose a set of lexical features for measuring sentence similarity. Each of these features

covers a partial aspect of text with a possibility of overlap in the coverage. Furthermore, I propose

4



a schema for further analysis of the cases that the system failed to predict correctly. This schema

assists us in catching linguistic phenomena which tend to occur frequently within this particular

dataset. In other words, I show which aspects of language in STS are not possible to address with

our lexical-oriented system.

I show that the proposed method performes reliably on the STS task and datasets (which was

gathered from 5 different sources) and outperforms the single-layer standard learning methodology

including the existing state-of-the-art methods. I believe that this method which lead to improve-

ments is a very interesting methodology for further exploration on different tasks with different

evaluation metrics when feasible.

1.3 Thesis Outline

The thesis is organized as follows: Chapter 2 provides background definitions that I will be using

throughout this research. Furthermore, it provides a survey of related work in measuring sentence

similarity in general, and in particular, covers the methodology of some of the submitted systems to

STS shared task-2012. Chapter 3 presents STS training and test datasets and investigates the source

of each set within these datasets. Moreover, it introduces the feature space I propose and examine in

this research, and describes the learning algorithm that I selected to use in training step. Chapter 4

presents the proposed approach in details and demonstrates how this new method works and how

it is generated. Chapter 5 introduces the evaluation metric which I used, describes the experiments

I conducted and their results, and finally it compares the results of different experiments using two

different statistical significance tests. Chapter 6 introduces the proposed error schema, and later

characterizes the frequent error cases which the existing features have failed to predict. Chapter 7

presents points learned within the course of this research and proposes some future work for further

research on the proposed method.
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Chapter 2

Sentence Similarity

In the literature, at least two different terms are used by different authors or sometimes interchange-

ably by the same authors to address the same concept: semantic relatedness and semantic similarity.

[Resnik, 1995] attempts to demonstrate the distinction between these two by way of an example.

cars-gasoline, he writes, “would seem to be more closely related than, say, cars and bicycles, but the

latter pair are certainly more similar.”

It is important to note that semantic relatedness is a more general concept than similarity. Hirst

[Budanitsky and Hirst, 2006] explains that, similar entities are semantically related through their

similarity (bank-trust company), but dissimilar entities may also be semantically related by lexical

relationships such as holonymy (wheel is-part-of car) and antonymy (hot-cold), or just by any kind

of functional relationship or frequent association (pencil-paper, penguin-Antarctica, rain-flood). In

this case the two entities are not similar, but are related by some relationship. Sometimes, this

relationship may be one of the classical relationships such as holonymy, or a non-classical one as

in glass-water, tree-shade and gym-weights. Thus, two entities are semantically related if they are

semantically similar (close together in the is-a hierarchy) or share any other classical or non-classical

relationships.

Within the course of this research, by “similarity” I mean “relatedness”, however, in order to be

6



consistent with cited works and use more common terminology I use the term “similarity”.

The measures that have been used to measure sentence similarity fall into two categories: syn-

tactical and lexical. Syntactical approaches to semantic similarity detection mostly use syntactic

dependency relations to construct a more comprehensive picture of the meaning of the compared

texts, identifying whether a noun is considered the subject or the object of a verb. An example

of a parse tree generated by Stanford Parser [De Marneffe et al., 2006], representing the syntactic

structure of the sentence “The bird is bathing in the sink.”, and its dependencies are demonstrated

in Figure 1 (a) and (b), respectively1. The following abbreviations are used in the following parse

tree:

S for sentence

NP for noun phrase

VP for verb phrase

VBZ for verb, 3rd person singular present

DT for determiner

NN for noun, singular or mass

IN for preposition or subordinating conjunction

PP for prepositional phrase

And the following dependencies are used in Figure 1 (b):

nsubj stands for the nominal subject relation between the verb bathing and the noun bird.

det stands for the determiner relation between the heads of NP ‘‘The bird’’ and NP ‘‘the sink’’

which are ‘‘bird’’, and ‘‘sink’’ respectively, and their determiner ‘‘the’’.

cop stands for the copula relation between the copular verb is , that links the subject of a

clause to its complement bathing.

prep_in stands for the prepositional relation through preposition in between bathing

and sink.

1Note that validating the parse tree and the dependencies generated by Stanford Parser is beyond the scope of
this thesis.
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ROOT

The Bird is

bathing in

the sink

.

S

NP VP
.

DT

NN VBZ

PP

IN

DT NP

NP

NP

NN

NN

(a) Stanford Parse Tree

The bird is bathing in the sink.
nsubj prep_in 

det det cop 

(b) Stanford Collapsed Dependencies

Figure 1: Stanford Parse Tree and Dependencies

The labeled grammatical relations generated by dependencies are extensively used in different NLP

tasks. For example, Inkpen in [Inkpen et al., 2006], uses num (relation of type number between

a numeric modifier and a noun, like num(sheep, 3) in sentence “Sam eats 3 sheep.”) and number

(an element of compound number, like number($, billion) in sentence “I lost $ 3.2 billion.”), and

neg (a relation between a negation word and the word it modifies, like neg(drive, n’t) in sentence

“Bill doesn’t drive.”) for doing the RTE task in order to cover cases where the same word appears

in different grammatical relations. Also, [Banea et al., 2012] does the dependency graph alignment

between two sentences for measuring the closeness of two sentences.

In addition to dependency relations, predicate argument structure (PAS) [Krestel et al., 2010],

which is built on top of the dependency relations, has also obtained much attention, where the

verb is considered as the predicate and the subject and the object, if available, are considered as

the arguments of that predicate. For example loves(tyrannosaurus,sparrow) is a predicate for the

sentence “The tyrannosaurus loves the sparrow.” [Šaric et al., 2012] and [AbdelRahman and Blake,

2012] perform predicate argument alignment to catch the syntactic similarity between two sentences.

These two systems will be discussed in more details in Section 2.2.

This research focuses on lexical level similarity, because they are very easy to extract and, as we

will see in Section 2.2, are shown to be more effective in similarity measurement task. I will cover

8



different approaches for measuring lexical similarity, in detail, in the following section. Although the

syntactic methods are beyond the scope of this research, some of the systems which use predicate

argument structure or dependency relations will be discussed in Section 2.2.

2.1 Lexical Similarity

Two main levels for lexical features have been established: explicit level (EL), and implicit level

(IL).

2.1.1 Explicit Level (EL)

Sentence similarity at the EL is based solely on the input text and measures the similarity between

two sentences either by using an n-gram model or by reverting to string similarity.

1. N-gram Models: An n-gram is a sequence of n tokens. N-gram models are used for word

prediction and also have been proposed to automatically evaluate machine translations where

the task is to measure the closeness of the machine and human generated translations. The

widely used n-gram models are unigrams (n = 1) and bigrams (n = 2). Another variant, the

Skip-grams [Guthrie et al., 2006], allows gaps of specified lengths inside n-grams. For example

a 1-skip bigram model of “I saw him”, generates (I/saw), (saw/him), and (I/him).

BLEU, a widely cited and used measure proposed by [Papineni et al., 2002] uses a weighted

average to combine the calculated precisions for different length n-gram (n = 1, 2, 3, 4) matches

between system translations and a set of human reference translations. A closely related

method called NIST score [Doddington, 2002], was also used in machine translation evaluations

sponsored by NIST over the past years, where BLEU calculates n-gram precision by considering

equal weight for each n-gram unit, NIST takes into account the informativeness of a particular

n-gram, which means, more weight will be put on the rarer matched n-gram. For example,

using NIST, lower weight is assigned to a match based on bigram “on the” compared to the

the correct matching of bigram “global warming” since the latter one is less likely to occur.

9



Another package which has been widely used for evaluating summaries generated by machines

compared to human generated summaries is ROUGE [Lin, 2004], which offers different n-gram

models such as ROUGE-1 (unigram), ROUGE-2 (bigram), and ROUGE-S (skip bigram).

In addition to machine translations and summaries evaluation, n-grams have also been used

in detecting similar short passages in large documents [Lyon et al., 2001] and identifying the

resemblance and containment of documents [Broder, 1997], where given two documents the

notions of roughly the same and roughly contained can be captured. As mentioned earlier in

Chapter 1, these two tasks can be subsumed by the notion of textual similarity.

2. String Similarity: String Similarity considers input as a sequence of characters. One of

the simplest string similarity measures is Levenshtein’s [Levenshtein, 1966], which defines the

distance between two strings as the minimum number of edits needed to transform one string

into the other one by allowing insertion, deletion, and/or substitution of characters. In order

to measure the similarity between larger lexical units e.g. phrases or code snippets, new

approaches were also investigated by researchers in other domains like Plagiarism Detection

or Text Reuse Detection.

[Gusfield, 1997] proposed longest common substring which calculates the distance between two

inputs by comparing the length of the longest consecutive sequence of characters. For example

the longest common substring of two strings “ACBEFM” and “BEFTMAC” is “BEF” of length

3 (normalized: 3
length of the shorter string = 0.5).

[Allison and Dix, 1986] uses a very similar technique to that of Gutsfield, called longest common

subsequence, except he drops the consecutiveness constraint in order to detect similarity in

cases of insertions or deletions. It compares the length of the longest common sequence of

characters, not necessarily consecutive ones, in order to detect similarities. For example,

the longest common subsequence of the previous strings is “BEFM” of length 4 (normalized:

4
length of the shorter string = 0.66).

[Jaro, 1989] proposed an algorithm that identifies spelling variation between two inputs based
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on the occurrence of common characters between two text segments at a certain distance. The

distance between two inputs is calculated as follows:

d =

⎧⎪⎪⎨
⎪⎪⎩

0 if m = 0

1
3 ( m

|S1| + m
|S2| + m−t

m ) if x < 0

where S1 and S2 are the inputs, m is the number of matching characters, t is half of the number

of matching characters. Jaro considers two characters as matching characters only if they are

same and not farther than from �max(|S1|,|S2|)
2 � − 1. For example, the number of matching

characters in previous examples is 4: ’B’, ’E’, ’F’, ’M’ and therefore the Jaro distance between

them is 1
3 ( 4

6 + 4
7 + 2

4 ) = 0.58.

A year later [Winkler, 1990], a variant of Jaro, was proposed for name comparison and considers

the exact match between the initial characters of the two inputs and is calculated as follows:

djaro−winkler = djaro + (� × P × (1 − djaro))

where djaro is the Jaro distance between two inputs, � is the length of the common initial prefix

(maximum of 4 initial characters), and P is the constant scaling factor, which in Winkler’s

original work was set to 0.1. For example, the number of common initial prefixes in previous

example is 0 and therefore Jaro-Winkler distance of the previous example is 0.58 + (0× 0.1×

(1 − 0.58)) = 0.58. As you might have noticed, the reason that Jaro and Jaro-Winkler are

equal, in this particular example, lies under the fact that there is no consecutive match between

the initial characters of the input texts.

A few years later [Monge and Elkan, 1997] proposed a hybrid method Monge-Elkan, which

tokenizes two inputs and finds word pairs with the highest string similarity score and then
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sums up and normalizes the score and assigns it as the distance between the inputs. Monge-

Elkan similarity is calculated as follows:

SimMonge−Elkan(S1, S2) =
1

|S1|
|S1|∑
i=1

max(
|S2|∑
j=1

1 − edit distance(ai, bj))

where ai, and bj are inputs’ tokens, |S1| is the number of tokens in input S1 and editdistance(ai, bj)

is the Levenshtein distance between two tokens. For example, the Monge-Elkan similarity be-

tween input texts “Lenovo inc.” and “Lenovo corp.” is:

SimMonge−Elkan(S1, S2) =

1
2 (max(1 − edit distance(a1, b1), 1 − edit distance(a1, b2))

+ max(1 − edit distance(a2, b1), 1 − edit distance(a2, b2)))

= 1
2 (max(1 − edit distance(Lenovo, Lenovo), 1 − edit distance(Lenovo, corp.))

+ max(1 − edit distance(inc., Lenovo), 1 − edit distance(inc., corp.)))

= 1
2 (max(1 − 0, 1 − 5

6 ) + max(1 − 5
6 , 1 − 4

4 )) = 1
2 (1 + 1

6 ) = 0.58

ROUGE-W[Lin, 2004], a weighted version of longest common subsequence, takes into account

the number of the consecutive characters in each match, giving higher score for those matches

that have larger number of consecutive characters in common. This metric was meant to mea-

sure the similarity between machine generated summaries and human generated summaries.

For example, consider these strings: “A B C D E F G”, “A B C D H I K”, and “A H B K C I

D”. As it is marked with underlines, the three strings have four characters in common. Ther-

fore, the original Longest Common Subsequence metric would assign equal scores to both pairs

(“ABCDEFG”,“ABCDHIK”), (“ABCDEFG”,“AHBKCID”). However, using ROUGE-W, the

scores for the first and second pair are 0.571, and 0.286, respectively. As I have explained

earlier the fact that the length of the common consecutive characters in first pair is higher

than the second one is reflected in the assigned score by ROUGE-W.
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2.1.2 Implicit Level (IL)

Sentence similarity at the IL uses external resources to make up for the lexical gaps that go otherwise

undetected at the EL. The synonymy : (bag − suitcase) is an example of an implicit similarity. This

type of implicit similarity can be detected via knowledge resources, such as WordNet and Roget’s

Thesaurus. For the more semantically challenging relations, for example (sanction − Iran), which

the aforementioned knowledge resources do not provide any relations/links, co-occurrence-based

measures that can be calculated based on any corpus of text such as Wikipedia, or newspaper

articles are more robust.

1. Knowledge-based Measures: Before going any further, I want to clarify one point. The

term knowledge is often used to refer to broader range of resources rather than dictionaries.

For example, one may use knowledge base to refer to Wikipedia, a Database of geographical-

information, etc. However in this research I only consider lexical resources, WordNet and

Roget’s Thesaurus, as the knowledge base.

WordNet : WordNet is a lexical database of more than 150000 English words. The base block

of WordNet is synset, which is a set of synonyms representing the same concept. These

synsets are grouped into nouns, verbs, adjectives and adverbs, with links within these

groups and not between them. Most of the synsets are connected through a number of

semantic relations such as hyponymy (dolphin is-a mammal) and its inverse, hypernymy,

holonymy (car-door is-part-of car) and its inverse, meronymy for nouns, hypernymy,

troponymy(to lisp is a troponym of to talk), entailment (to sleep is entailed by to snore),

and cause to for verbs, related nouns and similar to for adjectives, and root adjectives

for adverbs. Both nouns and verbs are organized into hierarchies, defined by hypernym

relations. Each hierarchy in WordNet can be visualized as tree with general concepts

associated with a root and more specific concepts associated with leaves. An example of

WordNet entry, representing this hierarchy, for the word “Choice” is shown in below:

Choice (Sense 1)
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=> choice, pick, selection

=> decision making, deciding

=> higher cognitive process

=> process, cognitive process, ..., cognitive operation

=> cognition, knowledge, noesis

=> psychological feature

=> abstraction, abstract entity

=> entity

Based on this hierarchical structure of WordNet, six similarity measures have been pro-

posed [Pedersen et al., 2004]. However due to the constraint that, hypernymy/hyponymy

relations in WordNet do not cross part of speech boundaries, these measures are lim-

ited to judgments within noun and verb pairs. The reason that most of the measures

based on WordNet do not support adjective and adverbs lies under the fact that the

taxonomy of adjectives and adverbs is not as rich as the taxonomy of verbs and nouns.

This is because adjectives and adverbs do not have the hierarchical structure (similar to

hypernymy/hyponymy) that verbs and nouns do.

Among these similarity measures, three of them are based on the information content of

the least common subsumer concept 2 that subsumes both of the compared concepts. As

an example, according to the hierarchy presented in Figure 2, the lcs of words apple and

cucumber is green goods, and the lcs of apple and pasteurized milk is food.
2[Pedersen et al., 2004] uses least common subsumer(lcs), [Budanitsky and Hirst, 2006] uses most specific common

subsumer and [Wu and Palmer, 1994] uses lowest super-ordinate(lso) to refer to the same concept. Within the course
of this research I will use the term least common subsumer(lcs).
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food

apple

edible fruit

green goods beverage

milk

pasteurized milk

vegetable

cucumber

Figure 2: An example of the hypernymy/hyponymy hierarchy in WordNet.

[Resnik, 1995] calculates the information content (IC) of concepts by using frequencies

gathered from Brown Corpus of American English. Where the information content of a

concept c1 is calculated as

IC(lcs(c1)) = −logP (lcs(c1))

where P (lcs(c1)) is the probability of encountering concept c1. Using information content,

he defines the similarity of two concepts as the value of information content of their least

common subsumer (lcs):

sim(c1, c2) = − log p(lcs(c1, c2)) = IC(lcs(c1, c2))

[Jiang and Conrath, 1997] define the distance between two concepts to be the sum of the

difference between the information content of each of the two given concepts and their

least common subsumer:

dist(c1, c2) = IC(c1) + IC(c2) − 2 × IC(lcs(c1, c2))

where the similarity of two concepts is equal to 1
dist(c1,c2)

.

[Lin, 1998b] defines a measure of similarity that uses Resnik’s measure but scales it using
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the sum of the information content of the compared concepts:

sim(c1, c2) =
2 × IC(lcs(c1, c2))
IC(c1) + IC(c2)

The other three measures (including the shortest path measure) are based on path lengths.

[Wu and Palmer, 1994] find the depth of the least common subsumer, and then normalize

that by the sum of the depths of the two compared concepts in order to compare what

they called conceptual similarity :

sim(c1, c2) =
2 × depth(lcs(c1, c2))

len(c1, lcs(c1, c2)) + len(c2, lcs(c1, c2)) + 2 × depth(lcs(c1, c2))

where len(c1, lcs(c1, c2)) is the number of nodes on the path from c1 to lcs(c1, c2) and

depth(lcs(c1, c2)) is the number of nodes on the path from lcs(c1, c2) to root.

[Leacock and Chodorow, 1998], find the shortest path between two concepts and normal-

izes that by the maximum depth of the hierarchy in which these two concepts occur:

sim(c1, c2) = − log
len(c1, c2)

2 × max depth(c)

Pedersen [Pedersen et al., 2004] categorizes the rest of the existing measures,[Hirst and St-

Onge, 1998], [Banerjee and Pedersen, 2003], and [Patwardhan, 2003], as more general ones

in that they can go beyond the part of speech boundaries, and they are not only limited to

is-a relations. [Hirst and St-Onge, 1998] introduces a measure that considers many other

relations. It classifies all WordNet relations as horizontal, upward, or downward. Upward

relations connect more specific concepts to more general ones, while downward relations

links more general concepts to more specific ones. Horizontal relations keep the same

level of specificity. For example is-a is an upward relation while antonymy is a horizontal

relation. Using these notions of direction they measure the relatedness between a pair
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of concepts by finding a path that is not long and does not have too often changes in

direction. Assigning 16 as the indicator of strong relation between two concepts, they

define the weight of the relation between two concepts as follows:

path weight = 16 − path length − number of changes in direction

Incorporating WordNet glosses (brief definitions for each concept or sense in WordNet),

[Banerjee and Pedersen, 2003](lesk) and [Patwardhan, 2003](vector) measures use the

text of each gloss as a representation for the corresponding concept. lesk measures the

relatedness of two concepts by calculating the number of overlaps between the glosses

of the two concepts, as well as concepts that are directly linked to them in WordNet

hierarchy. vector measure creates a cooccurrence matrix from a corpus (collection of doc-

uments) made up of the WordNet glosses. In this co-occurrence matrix, rows correspond

to terms and columns represent documents and each cell contains a tf ∗ idf weight of the

corresponding word in the corresponding gloss.

tf ∗ idf [Salton et al., 1975] is a numerical statistic which reflects how important a word

is to a document in a collection of documents. tf for term wi in document dj is equal to

its frequency in dj , and idf stands for inverse document frequency calculated by idf =

log( N
ni

), where N is the number of documents in the corpus and ni is the number of

documents in which the term wi occurred. Having these tf and idf values, the tf ∗ idf

weight of the word wi in document j is calculated as (1+ log tfij × log N
ni

) if the term has

occurred in document j, and otherwise the tf ∗ idf weight is zero.

In the case of vector, each gloss represents a document and a corpus of WordNet glosses

represents a corpus of documents. In this generated co-occurrence matrix each word

(ignoring stop words, such as is, the, all) used in a WordNet gloss has an associated

context vector. Each gloss is represented by a gloss vector that is the average of all the

context vectors of the words found in that gloss. Relatedness between concepts is then
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measured by calculating the cosine similarity between a pair of gloss vectors. Where

the cosine similarity is calculated as the inner product of two vectors (after transforming

them into unit vectors) and measures the cosine of the angle between them, and can vary

between 1 and −1, where 1 means two vectors are pointing to the same direction and

therefore the corresponding words are similar, while −1 means they point to the opposite

directions and are dissimilar.

WordNet has been widely used in different NLP related tasks. [Inkpen et al., 2006] uses

WordNet to generate features for recognizing textual entailment by considering overlaps

between synsets of words and the antonymy relation. More systems that made use of

WordNet for measuring sentence similarity will be discussed in Section 2.2.

Roget’s Thesaurus Roget’s Thesaurus is another lexical resource and its electronic version

was created by [Jarmasz and Szpakowicz, 2003]. It is based on well-crafted concept

classification and was created by professional lexicographers. Its taxonomy has eight

Classes, while the first three, Abstract Relations, Space and Matter, cover the external

world and the rest, Formation of ideas, Communication of ideas, Individual volition,

Social volition, Emotion, Religion and Morality cover the internal world of human beings.

Roget’s Thesaurus has a nine-level ontology. These levels, from top to the bottom are,

9 classes, 39 sections, 79 sub-sections, 596 head groups, and 990 heads, parts of speech,

paragraphs, semicolon groups, and words. The main concepts in this ontology are con-

sidered to be represented by heads. An example Roget’s entry for the word “Choice”

is shown in below, where the first 6 lines represent class (WORDS RELATING TO

THE VOLUNTARY POWERS), section (INDIVIDUAL VOLITION), subsection (VO-

LITION IN GENERAL), head group (ACTS OF VOLITION), head (ChOICE), part of

speech (NOUNS), and each fragment ending with a semicolon is a semicolon group, and

each fragment ending with dot represents a paragraph:

WORDS RELATING TO THE VOLUNTARY POWERS
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INDIVIDUAL VOLITION

VOLITION IN GENERAL

ACTS OF VOLITION

ChOICE

NOUNS

choice, option; discretion (volition); preoption;

alternative; dilemma, embarras de choix; adoption,

cooptation; novation; decision (judgment).

election, poll, ballot, vote, voice, suffrage,

plumper, cumulative vote; plebiscitum, plebiscite,

vox populi; electioneering; voting; elective franchise;

straight ticket [U.S.].

selection, excerption, gleaning, eclecticism; excerpta,

gleanings, cuttings, scissors and paste, cut and paste;

pick (best).

preference, prelation; predilection (desire).

[Jarmasz and Szpakowicz, 2003] define the following schema as the representative for

semantic distance in Roget’s Theasurus. According to their schema, the distance between

two terms decreases as the the common head that subsumes them moves from top to

bottom and becomes more specific:

distance 0 : in the same Semicolon Group. Example: choice - option

distance 2 : in the same Paragraph. Example: choice - alternative
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distance 4 : under the same Part of Speech. Example: choice - election

distance 6 : under the same Head. Example3: choice (Noun) - embrace (Verb)

distance 8 : under the same Head Group. Example4: choice - necessity

distance 10 : under the same Sub-section. Example5: choice - motive

distance 12 : under the same Section. Example6: choice - intention

distance 14 : under the same Class. Example7: choice - freedom

distance 16 : in the Thesaurus. Example: choice - accounts

Roget’s does not have one of the WordNet’s major drawbacks, which is the lack of links

between parts of speech. Therefore, Roget’s Thesaurus can link a noun (e.g. bank)

to a verb (e.g. invest) by finding a common Head (e.g. 784 Lending). Following this

last point, I believe that Roget’s-based relatedness measure can augment the similarity

measures that are based on WordNet. I will examine this during my experiments.

The thesaurus was used by [Morris and Hirst, 1991] for recognizing semantic relationships

between words, and by [Jarmasz and Szpakowicz, 2003] for measuring semantic similarity

of words.

2. Co-occurrence-based Measures: Co-occurrence-based measures, offer a larger coverage

than the previously mentioned lexical resources; named entities (e.g. Microsoft, Google), tech-

nical terms, slang-language, as well as other explicit relations that may exist between words

are detected based on the co-occurrence of words in the same context. It is worth noting that

co-occurrence-based measures also introduce noise. There are two categories of co-occurrence-

based measures: semantic analysis models and vector-based models. The semantic analysis

models acquire abstract concepts from a large corpus and link words to these concepts/latent-

topics, ultimately going beyond raw documents, which is the draw-back of the vector-based

model [Hassan and Mihalcea, 2011]. In this section, I will briefly review the tf ∗idf vector-based
3Under the head “Choice”
4Under the head group “Acts of Volition”
5Under the subsection “VOLITION IN GENERAL”
6Under the section “INDIVIDUAL VOLITION”
7Under the class “WORDS RELATING TO THE VOLUNTARY POWERS”
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model and will discuss some semantic analysis models such as latent semantic analysis (LSA),

explicit semantic analysis (ESA), and a LSA variant, Probabilistic LSA (PLSA) in more details.

TF-IDF Model: In vector-space based models [Salton and McGill, 1986], which are widely

used in Information Retrieval [Baeza-Yates et al., 1999] and Natural Language Process-

ing [Manning and Schütze, 1999; Jurafsky et al., 2000], documents are represented as a

binary or tf ∗ idf word vectors and the similarity between words/sentences/documents

is measured by calculating similarity metrics like cosine similarity between their vectors.

For example assume that we are a given the count matrix in below, where each row corre-

sponds to a word and each column corresponds to a magazine labeled with their domain,

and the numbers represent the frequency of the corresponding words in each magazine:

General Science Sport
cancer 10 23 0
champion 2 0 57
gossip 24 0 6
storm 112 37 0

Table 1: Term-Document count matrix

and by transforming this count matrix into a tf ∗ idf weight matrix and normalizing

the vectors using their length (so that each vector is a unit vector), we get the following

matrix:

General Science Sport
cancer 0.6 0.8 0
champion 0.25 0 0.96
gossip 0.89 0 0.52
storm 0.8 0.6 0

Table 2: Term-Document tf ∗ idf weight matrix

Using these normalized vectors (rows in table) one can calculate the cosine similarity of

two terms (rows) in this table. For example the following calculation shows that the

similarity between “cancer” and “storm” is higher than the similarity of “cancer” and
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“gossip”:

sim(cancer, storm) = 0.6 × 0.8 + 0.8 × 0.6 + 0 × 0 = 0.96

sim(cancer, gossip) = 0.6 × 0.89 + 0.8 × 0 + 0 × 0 = 0.53

Latent Semantic Analysis (LSA): LSA [Landauer et al., 1998]8 generates a latent topic-

model based on the term-document matrix by reducing its rank. As a result, in the

new space, the similarity between the vectors of two terms will be higher if they tend to

frequently co-occur in the same context (latent topics) and not necessarily in the same

documents. It takes the term-document matrix, whose rows correspond to terms and

whose columns represent documents. Each cell in this sparse matrix contains the tf ∗ idf

weight of the corresponding term. Then, the linear algebraic method called Singular

Value Decomposition (SVD) is applied to this matrix to reduce its rank while preserving

the similarity structure among rows. Skipping the mathematical description, the idea of

LSA is to build term-latent concept matrix (term-latent semantic space) out of the term-

document matrix (term-document space). While the explanation from the linguistic point

of view is not very clear, from a mathematical point of view, the SVD algorithm maps

vectors from higher dimension to a lower dimension while satisfying the condition that

independent vectors will remain independent in the new space. This reduction generates

an abstraction of meaning by collapsing similar terms and discarding noisy and irrelevant

ones. As an example, assume that we are given the following sentences:

(2.1) i. All Romans are either loyal to Caesar or hate Caesar.

ii. Marcus is a man.

iii. All Pompeians are Romans.

iv. Marcus is a Pompeian.

we first generate the normalized tf∗idf matrix, assuming that each sentence is a document
8I used Lucene for the indexing and calculating tf ∗ id and Colt library for applying singular value decomposition

in my Implementation for LSA.
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(ignoring stop words):

i ii iii iv
caesar 1 0 0 0
hate 1 0 0 0
loyal 1 0 0 0
man 0 1 0 0
marcus 0 0.7 0 0.7
pompeian 0 0 0 1
pompeians 0 0 1 0
romans 0.7 0 0.7 0

If we decompose this matrix and reduce its ranks and compose it again, we will get the

following matrix:

i ii iii iv
caesar 0.949 0 0.2 0
hate 0.949 0 0.2 0
loyal 0.949 0 0.2 0
man 0 0.501 0 0.501
marcus 0 0.701 0 0.701
pompeian 0 0.501 0 0.501
pompeians 0.22 0 0.051 0
romans 0.819 0 0.19 0

the dimension reduction step has collapsed the component matrices in such a way that

words that occurred in some contexts now appear with greater or lesser estimated weights,

and some that did not appear originally now do appear, at least fractionally. For example

if we look at the vector of “pompeians” and “caesar” in the original matrix and compare

it with their corresponding vectors in the new space, we see that in the new space the

similarity of these two terms, using cosine similarity, is not zero anymore (in the following

computation, the vectors in the new space are normalized):

simoriginal(pompeians, caesar) = 0 × 1 + 0 × 0 + 1 × 0 + 0 × 0 = 0

simnew(pompeians, caesar) = 0.96 × 0.98 + 0 × 0 + 0.22 × 0.21 + 0 × 0 = 0.98

As it can be seen in the new space the two mentioned terms’ corresponding vectors are
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very close to each other. Since we have a very small number of sentences we can actually

look at these sentences and notice the fact that “pompeians” and “caesar” do not co-occur

with each other, but the word “Romans” co-occurs with both of them. The same thing

can be said about the two other terms “man” and “pompeian”, while they don’t co-occur

with each other, the term “Marcus” co-occurs with both of them. As I mentioned earlier,

although SVD is mathematically robust, the way that the rank reduction changes the

original weights does not have any linguistic interpretation.

Probabilistic Latent Semantic Analysis (PLSA): A year later, Hofmann [Hofmann,

1999a] proposed an approach called Probabilistic Latent Semantic Analysis (PLSA) which

provides a sound statistical foundation for LSA. While both methods start from term-

document co-occurance matrix and decompose it into a multiplication of three matrices,

the way of building these matrices and the justification beyond it is very different.

Skipping the mathematical details, Hofmann’s method is an iterative algorithm, which

given the original matrix, in the first iteration by assuming uniform distribution over

topics randomly picks k documents (as a representative for k topics), then it calculates

the conditional probability of having each term, given each of the selected topics. This

produces a term-topic matrix. Next, it uses the calculated conditional probabilities to

compute the probability of having each of the selected topics in each of the original

documents. This builds a topic-doc matrix. In his method he also considers weight vectors

to automatically adjust the importance of each topic. In the end of the first iteration,

it updates the weight vectors and finds new centroids and set them as the topics for the

second iteration and so on. This procedure halts when the difference between old and new

topics are less than a predefined value. In simple words, his theory is, when an author

wants to write a document, he thinks about topics that he wants to cover in his article

and then for each topic he thinks about words that he needs to select for writing that

topic. While his similar method for indexing called Probabilistic latent semantic indexing
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[Hofmann, 1999b] has been proven to be very useful in information retrieval due to its

lack of clarity in terms of linguistic interpretation, little attention has been paid to PLSA

in the semantic similarity researches.

Explicit Semantic Analysis (ESA): ESA [Gabrilovich and Markovitch, 2007] uses en-

cyclopedic knowledge to generate a semantic interpretation of words. It maps the input

text into a weighted sequence of Wikipedia articles ordered by their relevance to the input

text. ESA uses predefined concepts represented by Wikipedia articles’ titles.

First9, it represents each Wikipedia concept as a vector of length N (size of the Wikipedia’s

vocabulary) whose entries are tf ∗ idf values of the corresponding term. Next, it builds

an inverted index, which maps each individual word in Wikipedia to a list of concepts

in which it appears. Then for each term, by considering its tf ∗ idf score in each of the

listed concepts, it sorts the list. This procedure is called building semantic interpreter.

Finally, given an input text, it transforms it into tf-idf vector representation and iterates

over its words and for each word it iterates over the top ten concepts in the sorted list in

order to generate the final weighted list of the concepts for the input. This procedure is

called using semantic interpreter. See Figure10 3.

For example, Let �V = [v1, v2, ..., vN ] be the tf-idf vector for the input text, where vi is

the tf-idf weight of word wi (if it exists in the input text, otherwise vi = 0) and N is the

vocabulary size of the Wikipedia. Let �Ki = [ki1, ki2, ..., kiM ] be the vector of inverted

index for term wi, where M is the number of concepts in Wikipedia (in ESA only the top

ten concepts are used) and kij represents the strength of the association of word wi with

the concept cj , which equals to the tf-idf value of the term wi in the Wikipedia article

representing concept cj . Having these vectors, the weighted vector of the concepts for a

given input text of size n is generated as
∑n

i=1 vi. �Ki.

9I used Lucene for indexing and creating the inverted index and MySQL for Storing Wikipedia’s articles in my
implementation for ESA. Also, because of the resource limitation, I used Wikipedia’s XML dumps from 2004.

10The figure was taken from the paper introduced ESA [Gabrilovich and Markovitch, 2007].
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Figure 3: Explicit Semantic Analyzer

Having this weighted vector of concepts for each input, the semantic relatedness between

these inputs can be calculated by applying the cosine metric. For example Table 3 demon-

strates the top ten concepts that ESA returns for the pair 723 of MSRpar dataset from

the STS-2012 shared task’s training set:

Schroeder cancelled his Italian holiday
after Stefani refused to apologise for the
slurs, which came after Berlusconi com-
pared a German politician to a Nazi
concentration camp guard.

Stefani’s remarks further stoked ten-
sion after Italian Prime Minister Sil-
vio Berlusconi last week compared a
German member of the European Par-
liament to a Nazi concentration camp
guard.

1 Patricia Schroeder Forza Italia
2 Stefanie Powers Silvio Berlusconi
3 USS Schroeder (DD-501) Stefanie Powers
4 Forza Italia Socialist Party New PSI
5 Nazi concentration camps Lamberto Dini
6 Schroeder (Peanuts) Martin Schulz
7 Silvio Berlusconi Stokes County, North Carolina
8 Gerald Schroeder Vic Schroeder
9 Vic Schroeder Nazi concentration camps
10 Gwen Stefani Silvio O. Conte

Table 3: Top ten concepts returned by ESA for the sample pair of sentences.
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Others: Lin proposed a Dependency-based Distributional Thesaurus [Lin, 1998a], which uses

distributional patterns of word dependencies in a large corpus to measure the similarity

between pairs of words. In Lin’s distributional similarity measure, given a word, the

proposed thesaurus lists up to 200 most similar words and their similarity scores.

Another distributional measure is Pointwise Mutual Information (PMI) [Turney and oth-

ers, 2001], which simply calculates the similarity between two words by the probability of

seeing them together within a window of size N in a corpus divided by the probability of

having them separately. Given the fact that PMI only works well in very large corpora

[Inkpen, 2007], to obtain these probabilities they used AND query through AltaVista

advanced search query and used the number of return hits.

To address the aforementioned drawback of PMI, the second-order co-occurrences PMI

(SOC-PMI) was proposed by [Islam and Inkpen, 2006]. SOC-PMI looks at the words

that co-occur with the two target words and sorts them in two lists corresponding to each

individual target word. Then for words that are common in both lists it aggregates the

PMI values from the opposite list to calculate the similarity of the target words.

2.2 Related Work

So far, I have introduced methods that have been used separately to measure semantic relatedness.

As I demonstrated in previous sections, each of these methods address a partial aspect of text

meaning. Therefore, building a hybrid system, which makes use of a combination of methods to use

best of each of these methods sounds promising. In this section to the end of this chapter, I briefly

discuss some of the state-of-the-art systems.

Recent work by [Bär et al., 2012] (UKP) uses machine learning techniques using a variety of

features produced by n-grams and string matching, ESA-based vector comparison, and WordNet

similarity measures. In addition to the mentioned features, they made use of BIUTEE textual
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entailment system11 [Stern and Dagan, 2011] to use the entailment result as a feature, which wasn’t

successful and the feature wasn’t selected for the final features set. Also, in order to populate the

training set, they used Moses [Koehn et al., 2007], a statistical machine translation system that

allows one to automatically train translation models for any language pair, to translate each of the

sentences from English to Dutch, German, Spanish and then translate it back to English. Their

intuition was, by doing this transformation additional lexemes will be introduced which may make

the relatedness clearer.

Similarly [Šaric et al., 2012] (TakeLab) uses a support vector regressor as the learning algorithm,

LSA and two of the WordNet-based measures with a combination of features covering n-gram over-

laps. For the purpose of considering words’ importance, they also incorporate information content

of each word in calculating the cosine similarity. They also consider predicates of type subject-

verb-object, and tried to align corresponding arguments between two sentences. Additionally, they

compare dependencies argument for cases that there is a match between the dependency types. They

claim that their system’s performance, raised by including named-entity and number matching as

separate features in the feature space.

[Banea et al., 2012] propose a system based on WordNet similarity measures, semantic models

(such as LSA, and ESA), and dependency graph alignment. In an attempt to compute dependency

graph alignment scores they used the method based on [Mohler and Mihalcea, 2009], which computes

the score in two steps. First, it assigns similarity scores for each node in the dependency graphs of

the two sentences. Then, it finds the optimal alignment between dependency nodes in two graphs.

This optimality is determined by a learning algorithm which computes the similarity score between

pair of nodes and their corresponding subgraphs.

A rule-based system was proposed by [AbdelRahman and Blake, 2012]. The Sbdlrhmn system

branches from the above in its nature. It is a rule-based system that tags head-nouns, main-verbs,

and named-entities as important information in each sentence. These preferred words are assigned a
11Given a T-H pair, the BIUTEE system recognizes whether the hypothesis (H) can be inferred from the text (T).

It applies a sequence of knowledge-based transformations, by which the text is transformed into the hypothesis. The
system decides whether the text entails the hypothesis by observing the quality of this sequence.
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score if they co-occur inter-sentences. Then, as in TakeLab, the system extracts predicate structures

of type subject-verb-object for every verb in both sentences and sets about aligning them. If predicates

align based on word overlap, they are given a score. Otherwise, WordNet (lesk metric) is used to

measure the similarity of (and assign a score to) the particular unaligned predicate pairs. Finally, a

series of if-then rules based on the combinations of scores decides the level of semantic relatedness

between two input sentences.

In [Souza et al., 2012] the authors explore two classes of measures, word similarity metrics and

machine translation metrics. They use the YAGO212[Hoffart et al., 2011] semantic knowledge base

which was constructed from Wikipedia, WordNet and Geonames13. For each entry, YAGO2 gives a

set of relations between the input entry and the entries in its knowledge base. They also use LSA

and n-gram models, and incorporate machine translation error measures such as TER (translation

error rate), and WER (word error rate). TER measures the number of edits required to change a

system output into one of the references. WER is based on the Levenstein distance but, as opposed

to Levenstein distance that works on character level, works on word level and calculates the number

of words that differ between a machine generated translation and a human translation. They also

extract syntactical features based on dependency parsing, POS tags, and phrase chunks. However,

according to their result, their best performance was achieved by using only LSA and features based

on n-grams and edit distance metrics.

[Islam and Inkpen, 2009] propose a system that can measure similarity between sentences or

paragraphs. They introduce a modified version of longest common subsequence, which relaxes it, by

letting the subsequence starts either at first character or any character of words. On corpus level,

they also use Second Order Co-occurrence PMI (SOCPMI) that I’ve discussed earlier in “Others”

Section. Having these similarity scores on word-to-word level, they use a method for propagating

it to sentence-to-sentence similarity level that finds the most similar match for each word and then

sum up these maximum similarity scores.

12http://www.mpi-inf.mpg.de/yago-naga/yago/
13http://www.geonames.org
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Chapter 3

Experimental Setup

3.1 Datasets

I used STS-2012 dataset’s training and test sets as the main dataset in this work. Also, as mentioned

earlier, I participated in STS-2013 shared task and therefore I will talk about the 2013 dataset and

its characteristics as well.

3.1.1 STS-2012 Datasets

The STS-2012 dataset’s training and test sets composed of three and five datasets, see Table 4.

Each set contains pairs of sentences and the goal is to measure the similarity between sentences in

each pair. This measurement’s output can vary within an interval [0,5], in which 5 means the two

sentences are completely equivalent, and 0 means they are on different topics. The gold standard

was assembled using mechanical turks, gathering 5 scores per sentence pair. Amazon mechanical

turks are workers to complete tasks that computers are currently unable to do. The gold standard

is the average of these 5 scores.
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Training Datasets

MSR-Paraphrase, Microsoft Research Paraphrase Corpus 750 pairs
MSR-Video, Microsoft Research Video Description Corpus 750 pairs
SMTeuroparl: WMT2008 develoment dataset (Europarl section) 734 pairs

Test Datasets

MSR-Paraphrase, Microsoft Research Paraphrase Corpus 750 pairs
MSR-Video, Microsoft Research Video Description Corpus 750 pairs
SMTeuroparl: WMT2008 development dataset (Europarl section) 459 pairs
SMTnews: news conversation sentence pairs from WMT 399 pairs
OnWN: the first sentence comes from Ontonotes and the second from WordNet 750 pairs

Table 4: SemEval-2012 Semantic Textual Similarity (STS) shared task’s training and test datasets

The training set consists of 3 different datasets of text which were gathered from Microsoft Para-

phrase corpus (MSR-Paraphrase), Microsoft Video Description Corpus (MSR-Video), and European

Parliaments corpus (SMTeuroparl).

# of VP # of NP Avg. Length
MSR-Video 2833 3478 8
MSR-Paraphrase 4931 11807 22
SMTeuroparl 7769 15499 30

Table 5: Statistical facts - SemEval-2012 STS sharedTask’s training set

Regarding the statistical characteristics of each of these datasets we collected some facts that

are presented in Table 5. Microsoft Video Description (MSR-Video) dataset contains shorter and

simpler (according to the statistical facts) sentences. In fact, the creation process of the MSR-Video

dataset supports these numerical facts. Because the corpus was collected by showing a segment of a

YouTube video to mechanical turks and asking them to give a one-sentence description of the main

event in the video. An example of a pair of sentences from MSR-Video set in the STS-2012 training

set:

(3.1) (a) A big turtle is walking.

(b) The tortoise is walking.

The original corpus of Microsoft Paraphrase dataset (MSR-Paraphrase) was collected over a

period of 18 months from online news sources. Then each pair was shown to 2 human judges to give

a binary judgment wether the two sentences in the pair are semantically equivalent. Disagreements

were resolved by a 3rd judge. Note that pairs with a word-based Levenshtein distance less than 0.8 are
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already excluded from the MSR-Paraphrase dataset. Also, in comparison with MSR-Video, MSR-

Paraphrase contains longer sentences which naturally carry more verb phrases and noun phrases as

well. In contrast with MSR-Video dataset, which was artificially created, MSR-Paraphrase contains

sentences which are more real in terms of lexical and syntactic complexity. An example of a pair of

sentences from MSR-Paraphrase set in the STS-2012 trainig set:

(3.2) (a) Semiconductor giant Intel Corp. said yesterday that its second-quarter profits doubled

from a year ago as stronger-than-expected demand for computer microprocessors offset

the weakness of its communications chip business.

(b) Intel Corp.’s second-quarter profits doubled and revenues grew 8 percent from a year

ago as the chip-making giant reported stronger-than-expected demand for personal

computer microprocessors..

The last dataset in the training sets, SMTeuroparl, was collected from the development dataset

of “Automatic Evaluation of Machine Translation” shared task. This shared task was part of the

“Workshop of Machine Translation” 2008 (WMT2008) [Callison-Burch et al., 2008]. The participants

were asked to develop an evaluation metric for measuring the quality of the translations submitted to

the other shared tasks of the same workshop, called “Machine Translation for European Languages”.

As Table 5 shows it has the highest number of verb phrases, and noun phrases and the longest

sentences among the other datasets. An example of a pair of sentences from SMTeuroparl set in the

STS-2012 trainig set:

(3.3) (a) While withdrawing the resolution, however, I express the conviction that this Par-

liament would have made its voice heard better if, in anticipation of the Council of

Nice, it had devoted a specific and separate resolution to these important and difficult

topics of the Intergovernmental Conference, instead of dealing with them in a single

resolution that also embraces all the other points on the Council agenda.

(b) By withdrawing our resolution, I express however the conviction that our Parliament
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would have better done to hear its voice while devoting, for Conseil of Nice, a reso-

lution specific and distinct with the so important and so difficult topics to the inter-

governmental Conference, rather than to treat them within the framework of one only

resolution also including all the other points of about an agenda of the Council.

The STS-2013 test set contains 5 datasets of text, three of which were collected from the same

resources as the training sets. The other two test sets, OnWN and SMTnews, are given as surprise

sets to examine the reliability of proposed systems in dealing with unforeseen data. The OnWN

dataset comprises 750 pairs of glosses from OntoNotes1 and WordNet senses. Half of these pairs

were collected from senses that were recognized to be equivalent and the remaining from disparate

senses. An example of a pair of sentences from OnWN set in the STS-2012 test set:

(3.4) (a) The release of pressure built up during a stop consonant.

(b) the terminal forced release of pressure built up during the occlusive phase of a stop

consonant.

SMTnews dataset contains 399 sentence pairs from translation systems submitted to WMT2007

and ranked by human. An example of a pair of sentences from SMTnews set in the STS-2012 test

set:

(3.5) (a) Only a month ago, Mubarak dismissed demands for constitutional reform as ”futile.”

(b) Only a month before, muybarak refused the demands of constitutional reform by taxing

them with ”futile.

We did not participate in the STS shared task-2012 but we wanted to simulate the same proce-

dures the participants followed, we only used the test sets for the testing purpose and analysis after

the experiments. During the training phase, the only data that was considered was the training sets

of the shared task.
1“The OntoNotes project focuses on a domain independent representation of literal meaning that includes predicate

structure, word sense, ontology linking, and coreference” [Hovy et al., 2006].
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3.1.2 STS-2013 Datasets

In addition to STS-2012 datasets, I participated in STS-2013 shared task and therefore used this

recent dataset for the evaluation purpose. As it is demonstrated in Table 6, the STS-2013 task

uses all the training and test data from STS-2012 as the training sets and introduces 4 test sets, 2

(FNWN, and headlines) of which are surprise sets.

Training Datasets

MSR-Paraphrase, Microsoft Research Paraphrase Corpus 1500 pairs
MSR-Video, Microsoft Research Video Description Corpus 1500 pairs
SMTeuroparl: WMT2008 develoment dataset 1193 pairs
SMTnews: news conversation sentence pairs from WMT 399 pairs
OnWN: definitions from Ontonotes and WordNet 750 pairs

Test Datasets

OnWN: definitions from Ontonotes and WordNet 561 pairs
FNWN: sense definitions from WordNet and FrameNet 189 pairs
SMT: SMT dataset comes from DARPA GALE HTER and HyTER 750 pairs
headlines: headlines mined by European Media Monitor 750 pairs

Table 6: Semantic Textual Similarity (STS) 2013 shared task’s training and test datasets

The sentences in FNWN test set are sense definitions from WordNet and FrameNet. An inter-

esting consideration here is the fact that some FrameNet definitions involve more than one sentence.

An example of a pair of sentences from FNWN set in the STS-2013 test set:

(3.6) (a) this frame has to do with scientific taxonomy. the lexical units in this frame include the

seven major classifications in which organisms are grouped based on common biological

characteristics. these classifications are labeled rank in this frame. the members or

subtype of the rank is often expressed with the use of the target-denoting noun.

(b) (biology) taxonomic group containing one or more families

The SMT dataset of the 2013 shared task, was selected from DARPA GALE HTER and HyTER

datasets, where one sentence is a MT output and the other is a reference translation where a

reference is generated based on human post editing (provided by LDC) or an original human reference

(provided by LDC) or a human generated reference based on FSM as described in (Dreyer and Marcu,

NAACL 2012). The reference comes from post edited translations. An example of a pair of sentences

from SMT set in the STS-2013 test set:
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(3.7) (a) Neither the studies you chose please you, nor the profession you practiced pleases you,

... nor the wife you loved has made you happy, and nor the dreams you hanged on to

have materialized?

(b) neither the study you chose was liked by you , or you are satisfied with the business

which you pursued , nor you are happy with the partner you cherish , nor were the

ambitions you held on to accomplished .

The headlines test set are gathered using headlines mined from several news sources by European

Media Monitor using the RSS feed2. An example of a pair of sentences from headlines set in the

STS-2013 test set:

(3.8) (a) Drug lord captured by marines in Mexico

(b) Suspected drug lord known as El Taliban held in Mexico

I will talk about the results and analysis of the results of STS-2013 shared task in Sections 5, and 6.

However, during the rest of this chapter the data that is used is the data from STS-2012 shared

task.

3.2 Features

Before extracting the features the following preprocessing steps are required:

tokenizing annotating input texts’ tokens

lemmatizing identifying lemma for each tokens. Lemma is the canonical form of a set of words.

For example, “write”, “writes”, “wrote” and “writing” are forms of the same lexeme, with

“write” as the lemma.

sentence splitting annotating input texts’ sentences

part of speech (POS) tagging adding POS tags to every tokens of the input texts.

2http://emm.newsexplorer.eu/NewsExplorer/home/en/latest.html
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for preprocessing steps General Architecture for Text Engineering (GATE)3 [Cunningham et al.,

2011], an open source software for developing resources that process text, was mostly used. Also, I

performed stop word removal only for calculating ESA and WordNet-based measures. For the rest

of the features, stop words are not discarded.

After the preprocessing steps, I extract five categories of lexical features: string similarity [Cohen

et al., 2003], n-grams [Lin and Och, 2004], WordNet distance [Budanitsky and Hirst, 2006], Roget’s

Thesaurus [Jarmasz and Szpakowicz, 2003], and ESA [Gabrilovich and Markovitch, 2007]. My

intuition was based on the literature study, that shows that these methods and resources provide

a robust and stable performance in any similarity-related experiments. I also wanted to examine

Roget’s Thesaurus, since it was rarely used by the researchers for measuring similarity (we will

see that in fact Roget’s is almost as powerful as WordNet and yet it has way lower word coverage

compared to WordNet.)

The following sections discuss the individual features used in each category. To assess their

usefulness, single-feature models are trained using cross-validation on the training data, it is these

results that are reported in the tables presented throughout Section 3.2. All performance tables

also include a model where all features are trained together (marked with a star) and the results for

testing on all the different datasets together (last row, captioned ALL).

3.2.1 String Similarity Metrics

In order to calculate similarity for a given pair, 5 common similarity/distance measures were used:

Longest Common Substring, Longest Common Subsequence, Jaro, Jaro-Winkler, Monge-Elkan, and

ROUGE-W (denoted by RO-W). We also added a feature that counts normalized lemma overlap

here, even though it is not strictly a string-based technique.
3http://gate.ac.uk

36



lemma jar jarWk lcsubsq lcsubst monElk RO-W str*
MSR-Video 0.36 0.19 -0.07 0.48 0.33 0.14 0.75 0.79
MSR-Paraphrase 0.39 0.33 0.17 0.18 0.20 0.54 0.52 0.64
SMTeuroparl 0.55 0.54 0.41 0.30 0.25 0.38 0.53 0.74
ALL 0.41 0.28 0.18 0.22 0.13 0.38 0.62 0.76

Table 7: Performance of string-based features, “str*” represents all of the string-based measures
being used together.

Table 7 shows that interestingly, the model based on ROUGE-W showed a strong, on average

(weighted average), correlation factor of 0.6, which is the highest performing feature in this group.

The negative value mean that there is a negative correlation between the scores predicted by the

system trained with “jarWk” as the only feature and the gold standard values.

3.2.2 N-grams Models

I used the ROUGE package, originally developed for automated evaluation of summaries [Lin and

Och, 2004], to extract n-gram models. As reported in [Lin, 2004], the most effective n-gram models

for measuring the similarity between small text fragments are:

• ROUGE-1, based on Unigrams

• ROUGE-2, based on Bigrams

• ROUGE-SU4, based on 4-Skip bigrams (including Unigrams)

ROUGE-1 ROUGE-2 ROUGE-SU4 ROUGE*
MSR-Video 0.78 0.62 0.67 0.81
MSR-Paraphrase 0.63 0.41 0.56 0.63
SMTeuroparl 0.58 0.39 0.46 0.58
ALL 0.71 0.60 0.61 0.75

Table 8: Performance of ROUGE-based features. “ROUGE*” represents ROUGE-1, 2, SU4 being
used together.

As expected, n-grams are effective in calculating the similarity of shorter fragment of texts, while

their performance decreases on measuring similarity of longer texts.
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3.2.3 WordNet-based Measures

To address the implicit similarity between sentences in each pair, two WordNet-based metrics,

Lin [Lin, 1998b] and Jiang-Conrath [Jiang and Conrath, 1997] are used. A evaluation study of

WordNet-based measures, conducted by Hirst [Budanitsky and Hirst, 2006], shows that Lin and

Jiang-Conrath metrics are the most reliable measures for similarity measurement across different

tests. In fact, both of these measures shown the highest correlation, on average, with the human

ratings of similarity in Miler and Charles [Miller and Charles, 1991], and Rubenstein and Goode-

nough [Rubenstein and Goodenough, 1965] word pairs. The WordNet::Similarity package [Pedersen

et al., 2004] was used for extracting these two scores.

Also, in order to scale the word-to-word similarity produced by these metrics to sentence-to-

sentence level, the method previously introduced by Mihalcea [Mihalcea et al., 2006] was applied.

This method, for a given similarity metric, for each word w in sentence S1 finds the word from

sentence S2 which gives the maximum similarity score, maxSim(w, S2). Then for each calculated

score it weights the score by incorporating the idf weight of its corresponding word. In order to get

these idf weights, I provided a word list by extracting all words from WordNet, then used the Sketch

Engine4 [Kilgarriff et al., 2004] (a corpus query system that provides different types of summaries of

words behavior.) and the British National Corpus as the resource for calculating idf . Having these

idf weights and the raw maximum score for each word in S1, I sum up these scores and normalize

them. The same procedure is applied to S2 and the final score is calculated by taking the average:

sim(S1, S2) =
1
2
(

∑
w∈{S1}(maxSim(w, S2) ∗ idf(w))∑

w∈{S1} idf(w)

+

∑
w∈{S2}(maxSim(w, S1) ∗ idf(w))∑

w∈{S2} idf(w)
)

For example, consider the following pair:

(3.9) (a) The woman is playing the violin.

4http://www.sketchengine.co.uk/
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(b) The young lady enjoys listening to the guitar.

Starting with each of the two sentences (ignoring stop words), I determine the most similar word

in the other text segment, according to the Jiang-Conrath(jcn) similarity measure. Next, using

Mihalcea’s method I combine the word similarities and their corresponding idf , and determine the

semantic similarity of the two sentences (the left side of the table starts from sentence a, while the

right side starts from sentence b):

Sentence a Sentence b maxSimjcn idf Sentence b Sentence a maxSimjcn idf

woman lady 0.35 0.31 young - 0 0.17
playing enjoys 0.09 0.32 lady woman 0.35 0.50
violin guitar 0.25 1.33 enjoys playing 0.09 0.94

listening playing 0.077 0.50
guitar violin 0.25 1.26

Table 9: WordNet similarity scores based on jcn and idf

Note that the word “young” is an adjective and because the first sentence does not have any

adjective the corresponding entry in Table 9 is left empty. By plugging in the numbers in Table 9

into Mihalcea’s method, the similarity between these two sentences is 0.21.

3.2.4 Roget’s Thesaurus-based Measure

Roget’s Thesaurus provides more links between different word types than WordNet, for example a

noun “bank” is connected to a verb “invest” by determining the common head “Lending”. As it

was mentioned earlier, the distance of two terms decreases within the interval of [0,16], as the the

common head that subsumes them moves from top to the bottom and becomes more specific. The

electronic version of Roget’s Thesaurus [Jarmasz and Szpakowicz, 2003] is used for extracting this

score.

jcn lin Roget’s KB* ESA
MSR-Video 0.75 0.71 0.72 0.78 0.83
MSR-Paraphrase 0.26 0.24 0.20 0.27 0.33
SMTeuroparl 0.21 0.21 0.21 0.50 0.45
ALL 0.58 0.58 0.68 0.71 0.73

Table 10: Performance of features based on WordNet, Roget’s, and ESA. “KB*” represents jcn, lin,
Roget’s being used together. ESA see below.
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The results in Table 10 indicate that, Jiang-Conrath (denoted by jcn) performs reliably across

different datasets. Surprisingly, despite the small size of Roget’s coverage compared to WordNet,

in the ablation test it demonstrated a strong contribution to the systems performance. Roget’s has

correlation scores identical or very close to Lin (denoted by lin), and in the SMTeuroparl training

subset it achieves the same performance as Jiang-Conrath. When we combined all the training

subsets, Roget’s outperformed both Lin and Jiang-Conrath by a margin of 10% with a correlation

factor of 0.68.

3.2.5 Explicit Semantic Model

In order to have broader coverage on word types not represented in lexical resources, specifically for

named entities, we add ESA generated features to our feature space. The results are shown in the

last column of Table 10. As the table showed, the average correlation factor achieved by ESA across

the training sets was 0.53, which is 2% above the performance reported on other knowledge-based

metrics.

3.2.6 Ablation Assessment

The single feature models we compared led to exclude Jaro-Winkler, longest common substring, and

Monge Elkan from the feature space and we consider the remaining features to be effective. Because

the correlation between the scores predicted by the models trained with these single features and

the gold standard values (on training set) were negative or did not show stability across different

datasets in the training set. Therefore, the corresponding features were identified as poor and hence

got excluded from the feature space.

3.3 Apparatus

Since the output of the system should be distributed within the interval [0,5] and regression pro-

vides this continuity, we tested linear regression, logistic regression and support vector regression
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(SVR) [Smola and Schölkopf, 2004] using the training set and based on their performance on the

training set chose SVR as the learning algorithm. The Java API of Weka [Hall et al., 2009] and its im-

plementation of Support Vector Regressor (SVR) algorithm called Sequential Minimal Optimization

regressor (SMOreg) was used for this purpose.

The goal of the SVM regressor, similar to SVM, is to estimate a function f(x) that is as close

as possible to the target value di for every xi in the training set and at the same time, does not

care about errors as long as they are less than ε, but does not accept any deviation (between the

predicted and the target values) larger than this ε value [Shevade et al., 2000]. In fact, SVM ignores

training instances that lie beyond the margin. This results in the main difference between Support

Vector Regressor and other types of regressor, which is the fact that Support Vector Regressor builds

models based on a subset (called support vectors) of the the training set and not the full training

set which makes it very fast and efficient in training step.

In this chapter I introduced the datasets, the pruned feature space, and the learning algorithm

that I used in my experiments. In the following chapter, I go a step further and explain the two

phase supervised learning method that I proposed for combining these features.
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Chapter 4

Two Phase Supervised Learning

4.1 Methodology

We propose a two phase supervised learning method for the STS shared task. As Figure 4 demon-

strates, to train the two phase model we first generate all combinations of the features extracted

(jaro, Lemma, lcs, ROUGE-W, ROUGE-1, ROUGE-2, ROUGE-SU4, roget, lin, jcn, ESA) via our

pipeline (Basic Features). In Preprocessing step for a feature space of size N we generate 2N − 1

non-empty combinations. Since we have 11 features, the preprocessing step generates 2047 combi-

nations. Then in Two Phase Model Training step, for each combination as is shown in the figure,

a separate Support Vector Regressor (SVR), called Phase One Model is trained. Each Phase One

Model for instances from the training set, predicts a score shown by psi, where i stands for the

index of the corresponding Phase One Model. Therefore for each instance in the training set we get

2N − 1 predicted scores. These 2N − 1 predicted scores form a new feature vector called Phase Two

Features. So for each instance in the training set a feature vector of size 2N − 1 will be created.

Finally a second level SVR, called Phase Two Model is trained using the training set and this new

feature space.

Once the training step is done, we have two types of trained SVRs: 2N − 1 Phase One Models
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which, as we explained, are directly based on Basic Features, and a Phase Two Model, which is

trained on Phase Two Features.
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Figure 4: Two phase supervised learning method’s architecture

Then for any sentence pair in the test set we proceed as follow: First we send it as an input to

the Phase One Models and get 2047 predicted scores. Using these scores from Phase One Models,

Phase Two Features are created. This new feature vector then feeds into a Phase Two Model and

it predicts the final score.

4.2 Implementation

In this section I present the pseudocodes for the required procedures and modules I implemented.
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The abstract overview of the flow of the proposed system is as follows:

/*OVER TRAINING SETS*/

Run Pipeline /*extracts Basic Features*/

Generate Subsets /*generates non-empty subsets of Basic Features*/

Train Phase One Models /*trains a phase one model based on each subset*/

Build Phase Two Feature Space /*creates the phase two feature space*/

Train Phase Two Model /*creates the final model*/

In below, I demonstrate the way that Run Pipeline functions:

/*Modules are wrapped in GATE environment.*/

/*Modules used from GATE plug ins are marked with @G sign.*/

Convert To XML /*converts raw data to XML*/

ANNIE Tokenizer @G /*tokenizes the text*/

Sentence Splitter /*annotates Sentences*/

POS Tagger @G /*adds POS tags*/

Morphological Analyzer @G /*adds lemma of each token*/

String Similarity /*calculates string similarity scores*/

ROUGE /*calculates ROUGE-based scores*/

Explicit Semantic Analyzer /*calculates ESA-based scores*/

WordNet Similarity /*calculates WordNet-based scores*/

Roget’s Similarity /*calculates Roget’s-based scores */

Export To Arff /*exports generated scores to .arff format*/

After these steps, all of the input pairs of sentences are represented by these extracted scores.

Therefore, sentences are converted to vectors of numbers. I refer to each of these vectors as feature

vector. For example for the pair:

(4.1) (a) A woman and man are dancing in the rain.

(b) A man and woman are dancing in rain.
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this is the systems output in XML format for the above example:

1 <?xml version="1.0" encoding="UTF-8"?>

2 <pair p_id="2" gs="5.0" task="STS" esa="1.0" lin="1.0" jcn="1.0" roget="0.9"

lemma="0.94" jaro="0.92" lcs="0.94" ROUGE-1="1.0" ROUGE-2="0.33" ROUGE-W="0.58"

ROUGE-SU4="0.88">

3 <text t_id="1">A woman and man are dancing in the rain.</text>

4 <text t_id="2">A man and woman are dancing in rain.</text>

5 </pair>

and its corresponding arff data ready to use with Weka is:

@ RELATION “Semantic Textual Similarity”

@ ATTRIBUTE esa REAL

@ ATTRIBUTE lin REAL

@ ATTRIBUTE jcn REAL

@ ATTRIBUTE roget REAL

@ ATTRIBUTE lemma REAL

@ ATTRIBUTE jaro REAL

@ ATTRIBUTE lcs REAL

@ ATTRIBUTE ROUGE-1 REAL

@ ATTRIBUTE ROUGE-2 REAL

@ ATTRIBUTE ROUGE-W REAL

@ ATTRIBUTE ROUGE-SU4 REAL

@ ATTRIBUTE gs REAL

@ DATA

1.0 1.0 1.0 0.9 0.94 0.92 0.94 1.0 0.33 0.58 0.88 5.0

Features are defined with “@ATTRIBUTE”, their name, and their type, and feature vectors are

placed under the“@DATA”, each row presenting a feature vector.

Generate Subsets produces all possible non-empty subsets. Each subset contains a number(s)
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standing for the id of the feature it is representing. For example in subsetsk = {1, 7, 9}, 1 stands for

esa feature, 7 stands for lcs feature, and 9 stands for the feature calculated by ROUGE-2 metric.

Algorithm 1 demonstrates the followed procedures for building Phase One Models.

Algorithm 1 Train Phase One Models
1: for all trainingSet ∈ trainingSets do
2: for all subset ∈ subsets do
3: filteredtrainingSet ← filter(subset, trainingSet)
4: PhaseOneModel ← train(filteredtrainingSet, SV R)
5: store(PhaseOneModel)
6: end for
7: end for

Note that in line 3, the filter function, takes a subset of the features and a training set, keeps

all the features that are specified by the subset and excludes all the remaining features and returns

a new training set called filteredtrainingSet. In line 4, this new training set is used to train a SVR

(Phase One Model).

Algorithm 2 shows the flow of commands that should be executed to build the new feature space

called Build Phase Two Feature Space.

Algorithm 2 Build Phase Two Feature Space
1: for all trainingSet ∈ trainingSets do
2: for all pair ∈ trainingSet do
3: for all POModel ∈ PhaseOneModels do
4: phaseTwoFeatureSpacepair id,POModel id ← predict(pair, POModel)
5: end for
6: end for
7: overwrite(trainingSet, phaseTwoFeatureSpace)
8: end for

In line 4, the trained model POModel predicts a score for the specified input pair. At each

iteration of the for-loop (lines 3 to 5), a cell at index pair id of the new feature vector shown by

phaseTwoFeatureSpacepair id,POModel id is being filled. Once this for-loop is finished, we have a

new feature vector for the pair with the id p id.

Within the body of the for-loop (lines 2 to 6) a new feature vector is being created for every pair

in the training set. In line 7, the generated phaseTwoFeatureSpace overwrites the Basic Feature

Space in the specified trainingSet. Therefore, by the end of Algorithm 2 training sets are represented
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in the new feature space called Phase Two Feature Space.

Finally in Algorithm 3, using the Phase Two Feature Space the final model called Phase Two

Model is being trained.

Algorithm 3 Train Phase Two Model
1: for all trainingSet ∈ trainingSets do
2: PTModel ← train(trainingSet, SV R)
3: end for

Once the training step is finished, the trained models are ready for the test phase and I proceed

as follows:

/*OVER TEST SETS*/

Run Pipeline /*extracts Basic Features*/

Build Phase Two Feature Space /*creates a new feature space*/

Test Phase Two Model /*predicts the final output of the system*/

The Run Pipeline and the Build Phase Two Feature Space are the same as I explained before. The

only difference is that during the test, instead of training sets, test sets are being used. Algorithm 4

demonstrates the procedures of the testing step.

Algorithm 4 Test Phase Two Model
1: for all testSet ∈ tesSets do
2: for all pair ∈ tesSet do
3: predictedScorepair ← predict(pair, PTModel)
4: end for
5: end for

In line 3 the trained phase two model, represented by PTModel, predicts a score for the specified

pair. This predicted score is the final output of our system.

4.3 Discussion

In general, I suggest the use of the proposed method when there is no obvious generic solution for

a task. This means that if we are already aware of the existence of a feature set which will provide
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the best performance, there is no need to use our proposed method. Unfortunately, in almost all

cases, this is not the situation. Also, we are dealing with datasets that were gathered from different

resources each of which having their own characteristics. Therefore, using a single subset of the

feature set, or a single possibility of combining features (i.e. by using all of the features together)

for training a classifier might not work across all of these different datasets. In this section I will try

to address some of the discussions that may raise regarding the proposed method.

Time and Resources : On a machine with “2 Intel(R) Xeon(R) CPU E5645”, 96 GB of RAM,

and with multi-threading (thread pool of size 200, a training process was assigned to each

thread) it roughly took 5.5 hours to train 2047 Phase One Models using 2234 pairs in the

training sets and another 7.5 hours to build Phase Two Feature Space for the training data.

Building the Phase Two Feature Space for the test sets took roughly 10 hours for 3108 pairs in

the test sets. Evidently, our method is more resource intensive compared to single-run learning

methods. However in Chapter 5, I show that this computational complexity is traded off for

achieving better results compared to the model trained using standard single-run learning.

Comparison to Traditional Feature Selection Our intuition for not applying any feature se-

lection methods, was to not remove features based on the training set data. For sure, removing

irrelevant features is a crucial step and we did the ablation assessment. In fact, the Phase Two

Model of our proposed approach, learns the relationship between each Phase One Model’s

prediction and the gold standard. This is beneficial because a Phase One Model might con-

sistently make the correct predictions for a particular class, while another model may perform

poorly on that class. Besides, the feature selection is based on training set which increases the

risk of overfitting, while performing the Selection process is also a computationally expensive

process (still less than our method’s computational expense).

Since our method differs from the other methods, especially those that use feature selection tech-

niques, in terms of its approach in dealing with features, in Chapter 5, I conduct a separate exper-

iment in order to compare our method, on STS task, with a single-run learning method that uses
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the feature space selected by two of the well-known feature selection algorithms: Exhaustive Search,

and Forward Feature Selection.

The Exhaustive Search feature selection tries all different possibilities of feature subsets and

selects the one that provides the best performance on training set. While the Forward Feature

Selection, begins by evaluating all feature subsets of size one, then it finds the best subsets of two

features from the subsets containing fi, the best single feature selected in the previous step, and all

the remaining features, and so on. The greediness of this method is also problematic: For example

if f1 is the best single feature, it does not guarantee that either {X1,X2} or {X1,X3} would perform

better than {X2,X3} [Guyon and Elisseeff, 2003].

In this chapter, I introduced the proposed method with some technical details. In the next

chapter, I will explain the experiments that I conducted and their results. I will compare the results

and show that the best performance is achieved by the proposed method.
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Chapter 5

Experiments

In order to assess our proposed method and features, three types of experiments were conducted

using: Standard Learning, Standard Learning with Feature Selection, and Two Phase Learning :

• Standard Learning The regressor was trained on the training set with all 11 Basic Features

and tested on the test sets.

• Standard Learning with Feature Selection feature selection is applied before performing

the standard learning. I used two of the well-known algorithms, Exhaustive Search, and For-

ward Feature Selection. Both Feature Selection methods resulted in the same feature subset

which consists of 3 features : esa, lin, ROUGE-1. The regressor was trained on the training

set with these three features and tested on the test sets.

• Two Phase Learning First, all combinations of the Basic Features were generated, which

are 2047 combinations. Then using these feature combinations, 2047 Phase One Models were

trained. Further, each instance in the training set was used as an input and a score was

predicted by each of these Phase One Models. This results in having 2047 predicted scores

per instance in the training set. These predicted scores form Phase Two Features. Finally, the

Phase Two Model is trained using the training set on this new feature space.
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5.1 Definition of Evaluation Metric

Following the definition of task and for the purpose of evaluating the performance, Pearson Cor-

relation Coefficient (also called correlation factor/coefficient) is used. It measures the correlation

(linear dependence) between two variables. For example the correlation between variables x and y

is calculated as follow:

r =
n

∑
xiyi −

∑
xi

∑
yi√

[n
∑

x2
i − (

∑
xi)2][n

∑
y2

i − (
∑

yi)2]

where n is the size of the sample.

In case of the STS shared task-2012 the correlation is calculated between the gold standard values

and the predicted values. This correlation score varies within the interval of [-1,1], while -1 implies

that all data points lie on a line for which one variable decreases as the other one increases and 1

implies that a linear equation describes the relationship between the two variables perfectly.

5.2 Preliminary Evaluation

Because of the continuity of the output space, the participants in the STS shared task-2012 were

asked to use correlation coefficient as their evaluation metric. Therefore, I used the same metric

for evaluating my system. The result of my experiments are provided in Table 11. Compared to

the Standard Learning and Standard Learning with Feature Selection, in all cases the Two Phase

Learning achieved better results with the margin of 2% to 7%. The last row shows the result achieved

by the baseline system, using the cosine similarity between the token vectors of sentences in each

pair, provided by the shared task organizers [Agirre et al., 2012].

51



MSR-Paraphrase MSR-Video SMTeuroparl SMTnews OnWN
Standard 0.65 0.87 0.51 0.36 0.66
Feature Selection 0.59 0.87 0.52 0.40 0.67
Two Phase 0.67 0.89 0.56 0.43 0.72
UKP-run2 (best) 0.68 0.87 0.52 0.49 0.66
STS-2012 baseline 0.43 0.29 0.45 0.39 0.58

Table 11: Correlation Coefficients for the Standard Learning, Standard Learning with Feature Se-
lection and the Two Phase Learning method experiments

In order to put our results into perspective, the reported results of the submitted systems to the

STS shared task-2012 were taken into consideration. In comparison with the UKP-run2 system, our

system ranked 1st in MSR-Video and SMT-europarl, OnWN test sets. In MSR-Paraphrase with

less than 1% margin, our system was beaten by UKP-run2 and in the last test set, STMnews, our

system had a poor performance and was beaten by the margin of 5%. Overall our system on average

outperformed all the 89 submitted systems (including the baseline) to the task and achieved the

average correlation coefficient of 0.69 which is 2% higher than the best performing system.

Also, as it can be seen the Standard Learning with Feature Selection performs almost equally

or better and in one case (on MSR-Paraphrase test set) worse than Standard Learning method.

However, as it can be seen, its results are still below the ones achieved by our proposed method.

5.3 Statistical Significance

Finding if something is a chance event or not is one of the classical problems of statistics which is

referred to as Hypothesis Testing [Manning and Schütze, 1999]. Given an event, a test of statistical

significance first formulates a null hypothesis H0 that the event is a chance event and then it computes

the probability p that the event would occur if H0 was true. It rejects the null hypothesis if p is

too low, for example below a predefined significance level of 0.05. In simple words, a statistical

significance test looks at the statistical facts and at the same time considers the number of samples

that we have seen. Therefore, even if we have found an interesting pattern, it will reject it if we

have not seen enough data.
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In this work, a statistical significance test can be applied for two purposes: First, to see if the

calculated correlation between the gold standard and the generated outputs is statistically significant.

Second, to see if the improvements I obtained by using the Two Phase Learning, compared to the

other methods, are statistically significant.

In order to conduct a statistical significance test, one must have access to the output of the two

compared systems. Even though I was willing to conduct this test on the output of our system

and the output of the best performed system of the STS shared task-2012, their outputs were not

available [Agirre et al., 2012].

5.3.1 Correlations Significance

Once I have calculated correlation coefficients, I can perform the statistical significance test to see

whether the achieved correlation occurred by chance or not (is a real correlation or not). In this case,

I am testing against the null hypothesis that r = 0 (r stands for correlation coefficient), which means

there is no correlation, neither positive nor negative, between the gold standard and the predicted

outputs.

I used the common significance level of α = 0.05 and also need to use the corresponding degrees

of freedom, df , which is equal to N − 2, where N is the number of samples. The number of degrees

of freedom is the number of independent pieces of data being used to make a calculation. It can

be viewed as the number of independent parameters available to fit a model to data. Since I had

no strong prior theory to suggest whether the relationship between predicted scores and the gold

standards would be positive or negative, I used two-tailed test. Having these parameters set, I can

now test the significance of the correlation I found.

MSR-Paraphrase MSR-Video SMTeuroparl SMTnews OnWN
Test Set’s Size - N 750 750 459 399 750
Significance Values 0.088 0.088 0.098 0.113 0.088

Table 12: Significance values of r, with α = 0.05.

Table 12 presents the critical values for each test set. For example on first row, for the test set
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MSR-Paraphrase the significant value is 0.088 which means that if the correlation is greater 0.088 or

less than −0.088 (this is a two-tailed test) I can conclude that the probability that the correlations

on Table 11 for this test set are by chance is less than 0.05. Since the achieved correlations by

Standard Learning, Standard Learning with Feature Selection, and Two Phase Learning are 0.65,

0.59, and 0.67, I can reject the null hypothesis. So, I conclude that these correlation coefficients are

not a chance finding and in fact are statistically significant. The same explanation shows that all

correlation coefficients presented in Table 11 are statistically significant.

5.3.2 Significance Tests on Correlations

One of the traditional tests for significance has been t-test. However, Steiger [Steiger, 1980] in

his work on comparing correlated correlation coefficients introduces some of the potentially serious

problems with t-test. But apparently, even after Steiger’s warning, the t-test is still the standard

test for comparing two correlated correlation coefficients. Even Hotelling, who proposed t-test, in

his paper [Hotelling, 1940] declares such a warning “The advantages of exactness and of freedom

from the somewhat special trivariate normal assumption are attained at the expense of sacrificing

the precise applicability of the results to other sets of the predictors”. This means that although

the t-test has been proved to be effective in measuring statistical significance of a difference between

correlation scores calculated on different samples, it is not a reasonable choice for comparing the

significance of a difference between correlation scores of different predictors [Meng et al., 1992].

This is the case when three variables, x, y, and z, are given and we want to compare the rxy with

the rzy. It comes up when you want to know which of two variables: x, and z are more related

to a third variable y (the dependent variable) on the same sample data, and is called “overlapping

correlations”.

Therefore, in this work I use two other measures for the sake of statistical significance test. First,

I will compare the Confidence Interval (CI) of the correlation coefficients achieved by each of the

methods, using Fisher’s z transformation [Dunn and Clark, 1969]. Second, I will go a step further
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and conduct a statistical significance test on the difference between correlation coefficients achieved

by Standard Learning, Standard Learning with Feature Selection and the Two Phase Learning. For

this latter purpose I apply the method proposed by Zou [Zou, 2007] which is based on Fisher’s z

transformation with some adaptations.

Fisher

In [Dunn and Clark, 1969] a test for comparing two correlated correlation coefficients using Fisher’s

z transformation was proposed. In the proposed method, using Fisher’s z transformation each

correlation coefficient (shown by r) gets transformed into z scale, where z is normally distributed

with the mean of:

zr =
1
2

ln
1 + r

1 − r

and has the standard error (standard deviation) of:

SE =

√
1

N − 3

where N is the size of the sample. The confidence interval on z scale is defined by:

CIz−scale = zr ± 1.96 × SE

Note that the 1.96 is because 95% of the area under a normal curve lies within roughly 1.96

standard deviations of the mean, and due to the central limit theorem, this number is therefore used

in the construction of approximate 95% confidence intervals.

The calculated CI is now in z-scale which needs to be transformed back into r-scale using the
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following formula:

CIr−scale =
e2z − 1
e2z + 1

By following this procedure, CIs were calculated and presented in Table 13. For example compar-

ing the confidence interval for the Standard Learning method, presented by Standard-CI on OnWN,

with the confidence interval for the Two Phase Learning, shown by Two Phase-CI, demonstrates

that although there is overlap between the intervals, the Two Phase Learning has an interval of

greater possible correlation coefficients: (0.62, 0.70) V.S. (0.68, 0.75). Also as it is demonstrated, the

CIs of the Standard Learning, and Standard Learning with Feature Selection methods on 4 out of 5

test sets are almost the same as the confidence intervals of the 2012 best system UKP-run2.

MSR-Paraphrase MSR-Video SMTeuroparl SMTnews OnWN

Test Set’s Size - N 750 750 459 399 750

Standard Correl. 0.65 0.87 0.51 0.36 0.66
Standard CI (r scale) (0.60,0.69) (0.85,0.88) (0.44,0.57) (0.26,0.44) (0.62,0.70)

Feature Selection Correl. 0.59 0.87 0.52 0.40 0.67
Feature Selection CI (r scale) (0.53,0.62) (0.85,0.88) (0.45,0.58) (0.30,0.47) (0.62,0.70)

Two Phase Correl. 0.67 0.89 0.56 0.43 0.72
Two Phase CI (r scale) (0.63,0.71) (0.87,0.90) (0.49,0.62) (0.34,0.50) (0.68,0.75)

UKP-run2 (best) Correl. 0.68 0.87 0.52 0.49 0.66
UKP-run2 (best) CI (r scale) (0.63,0.71) (0.85,0.88) (0.45,0.58) (0.40,0.59) (0.62,0.70)

STS-2012 baseline Correl. 0.43 0.29 0.45 0.39 0.58
STS-2012 baseline CI (r scale) (0.36,0.48) (0.23,0.35) (0.37,0.51) (0.30,0.47) (0.53,0.62)

Table 13: Confidence Intervals for correlation coefficients presented in Table 11

As it was shown, conducting this test only requires the correlation coefficients and the size of

the datasets. Therefore I could calculate the CI for each system’s correlation coefficients. The same

method was used in the STS shared task-2012 [Agirre et al., 2012] as the statistical significance

test to compare systems’ output. They report that according to the CIs of the first and the second

best systems of 2012 shared task, the first system did not have any statistical advantage over the

second system. As can be seen, according to these CIs, the Two Phase Learning in 2 of the test sets

(MSR-Paraphrase, and MSR-Video) performs equal to the UKP-run2 system, in 1 of the surprise

test sets (SMTnews) performs worse, and in the remaining 2 (SMTeuroparl, OnWN) statistically

outperfroms the UKP-run2 system.
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Zou

Confidence intervals are widely accepted as a preferred way to present study results. They encompass

significance tests and provide an estimate of the magnitude of the effect. However, comparisons of

correlations still relies on significance testing.

As I explained earlier, the confidence interval for a single correlation r is often obtained using

Fisher’s r to z transformation. Zou [Zou, 2007] explains that using the same idea for measuring

the difference between two correlation (r1 − r2) will fail because the limits for zr1 − zr2 cannot be

back-transformed to obtain the interval for r1 − r2.

Zou presents a general approach for constructing confidence intervals for a difference between cor-

relations. The proposed method presents a general approach to constructing approximate confidence

intervals for differences between 2 overlapping correlations. This approach requires the availability

of confidence limits for the separate correlations and, for correlated correlations, a method for taking

into account the dependency between correlations. Since calculating correlation between correlations

requires the access to each systems’ output, I could only conduct this test on Standard Learning,

Standard Learning with Feature Selection and our proposed method.

Zou defines the correlation between two correlations r1 and r2 as:

ĉorr(r1, r2) =
(r12 − 0.5r1r2)(1 − r2

1 − r2
2 − r2

12) + r3
12

(1 − r2
1)(1 − r2

2)

Then using the CIs calculated by Fisher’s transformation, the lower bound of the confidence interval

for r1 − r2 is defined by:

L = r1 − r2 −
√

(r1 − l1)2 + (u2 − r2)2 − 2ĉorr(r1, r2)(r1 − l1)(u2 − r2)
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and the upper bound is defined by:

U = r1 − r2 +
√

(u1 − r1)2 + (r2 − l2)2 − 2ĉorr(r1, r2)(u1 − r1)(r2 − l2)

By plugging the numbers presented in Table 13 and the ĉorr(S, T ), ĉorr(FS, T ) rows of the

Table 14 into the above formulas, CIs of the differences between Standard Learning (S) and Two

Phase Learning (T), and Standard Learning with Feature Selection (FS) and Two Phase Learning

(T) on each test set are calculated and presented in Table 14. Note that these CIs are calculated

for rStandard − rTwoPhase, and rStandardwithFeatureSelection − rTwoPhase.

MSR-Paraphrase MSR-Video SMTeuroparl SMTnews OnWN

S Correl. 0.65 0.87 0.51 0.36 0.66
S CI (r scale) (0.60,0.69) (0.85,0.88) (0.44,0.57) (0.26,0.44) (0.62,0.70)

FS Correl. 0.59 0.87 0.52 0.40 0.67
FS CI (r scale) (0.53,0.62) (0.85,0.88) (0.45,0.58) (0.30,0.47) (0.62,0.70)

T Correl. 0.67 0.89 0.56 0.43 0.72
T CI (r scale) (0.63,0.71) (0.87,0.90) (0.49,0.62) (0.34,0.50) (0.68,0.75)

Correl. (T&S) 0.025 0.04 0.006 -0.064 0.037
dcorr(S, T ) -0.077 3.78 -0.11 -0.06 -0.009
(rS − rT ) CI (-0.09,0.04) (-0.052,0.012) (-0.15,0.05) (-0.19,0.05) (-0.11,-0.003)

Correl. (T&FS) 0.034 0.024 -0.0004 -0.092 0.057
dcorr(FS, T ) -0.091 3.94 -0.12 -0.169 -0.019
(rFS − rT ) CI (-0.155,-0.028) (-0.052,0.012) (-0.137,0.057) (-0.161,0.093) (-0.109,0.0004)

Table 14: Confidence Intervals of differences between Standard Learning (S) and Two Phase Learning
(T) correlation coefficients (rS − rT ), and Standard Learning with Feature Selection (FS) and Two
Phase Learning (T) correlation coefficients (rFS − rT ).

These results indicate that Two Phase Learning, compared to Standard Learning, may be more

predictive although the difference in correlations in 4 of the test sets, MSR-Paraphrase, MSR-Video,

SMTeuroparl, and SMTnews, did not reach statistical significance, because the confidence intervals

contain 0. Which means that on 4 of the test sets the performance of these two methods are close

to each other. However, on one of the test sets, OnWN test set, the confidence intervals reach

statistical significance. Also, as it can be seen on the test set MSR-Paraphrase, Two Phase Learning

statistically outperforms the Standard Learning with Feature Selection method. However, in the

remaining 4 test sets, the results achieved by our method are not statistically better than those of

Standard Learning with Feature Selection.
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5.4 STS-2013 Experiments

Our submissions for STS-2013 contained two main types of setups: Standard Learning (RUN-1), and

Two Phase Learning (RUN-2, RUN-3). For the Standard Learning setup, one regressor was trained

on the training set with all 11 features and tested on the test sets. While for the remaining runs

the Two Phase Learning method was used. In all the submissions I use the same Basic Features.

Also, the only difference between the RUN-2, and RUN-3 is that in the the last submission, I

wanted to examine if I could reduce the training time by reducing the number of support vectors

and allowing larger training errors. This was intuitively done by decreasing the value of γ (in RBF

kernel) from 0.01 to 0.0001, and decreasing the value of C (error weight) from 1 to 0.01. Having

set these parameters for RUN-3, it resulted in smoother and simpler decision surface but negatively

affected the performance as shown in Table 15.

5.4.1 STS-2013 Results

The results of our experiments are presented in Table 15.

headlines OnWN FNWN SMT
RUN-1 0.6774 0.7667 0.3793 0.3068
RUN-2 0.6921 0.7367 0.3793 0.3375
RUN-3 0.5276 0.6495 0.4158 0.3082

Table 15: Results of CLaC submissions in STS-2013 shared task

The results indicate that the proposed method, RUN-2, was successful in improving the results

achieved by the RUN-1 ever so slightly (the confidence invervals at 5% differ to .016 at the upper

end) and far exceeds the reduced computation version of RUN-3.

5.4.2 Difference between STS 2013 and STS 2012 Experiments

In 2013 submissions I combined all training sets and formed one single training set. This is the

training set that I used in all of our submissions for the 2013 task. However, in the experiment on

2012 datasets, for any test set that I were given a training set drawn from the same source, I only
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used that particular training set. For the remaining test sets (surprise sets), I used the combination

of all training sets as the training data.

5.5 Discussion

We compared our proposed method with the best performing system of the STS-2012 shared task,

UKP-run2 [Bär et al., 2012], and showed that by going beyond a single-layer standard learning

approach we could achieve improvements. Our proposed method outperformed this best system on

average, while according to Fisher’s CIs, on 2 of the test sets the improvements that we achieved

are statistically significant.

Besides, on 2012 datasets, we conducted two other experiments: Standard Learning and Standard

Learning with Feature Selection, and compared our proposed method with other possible solution-

s/methods for training a model. The results of Zou significance test indicated that the proposed

method statistically outperforms the Standard Learning on OnWN, and the Standard Learning with

Feature Selection on MSR-Paraphrase test sets. In fact, the proposed method may be still more

predictive on the remaining test sets. Because, the ratio of the magnitude of the positive side of the

CIs to the magnitude of the negative side is very low (For example, for the CI (−0.109, 0.0004) this

ratio is 0.003). Since we calculated the intervals based on (rS − rT ) and (rFS − rT ), the positive

side of the interval corresponds to the situation that the other methods, could beat our proposed

method. We also emphasized the importance of using a proper statistical significance test and going

beyond the blind usage of well-known tests, such as t-test, by understanding the differences between

the nature of tasks.

Finally, we participated in STS-2013 shared task and ranked 4th among 34 teams. This final

result and our results from STS-2012 experiments indicates that the proposed system achieves the

level of performance that is comparable to the state-of-the-art systems. In the next chapter, we will

discuss some of the outcomes of the 2013 shared task along with the error analysis of the results

from 2012 experiments.
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Chapter 6

Analysis

In this section I want to go a step further and talk briefly about the data and some the outcomes of

my experiments. In this regard, I will first talk about error cases that this feature space and method

failed to predict correctly. The 2012 experiments are used for this purpose. Then in the end of this

chapter, I will briefly talk about some of the findings of the STS-2013 experiments.

6.1 Error Analysis

It is important to mention that the purpose of the error analysis section is not to explain why the

system failed on some cases, but it is to recognize which aspects of the language, frequently occurring

in these datasets, were difficult to address using a lexical-oriented system. So, the section is about

identifying those aspects and not about the reason of incorrect prediction. Nonetheless, I believe

that by identifying those linguistic phenomena it would be clear why the proposed feature space

failed in some cases.

Therefore, I need to define/answer two things: First and foremost, “what should be considered

as an error?”. Second, “how many times a pair should be caught as an error, to be considered as a

frequent error case?”. I will try to answer these questions in Sections 6.1.1, and 6.1.2.

I use the training data for the error analysis, because the purpose of error analysis is to actually
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characterize the error cases without concern for the limitations of machine learning methods, which

is the possibility of failure in dealing with unforeseen data.

In other words, if an error occurs in the surprise sets, two of the test sets, it can be because of

the lack of the training set for that particular type of data, or the failure of the feature space in

addressing that instance. Since it is impossible to distinguish the reason of the failure, by focusing

on the training sets I could eliminate the first possibility. Therefore, I trained 11 SVRs using each of

the 11 Basic Features, 3 SVRs using the 3 combined features (string*, ROUGE*, kb*), and 1 SVRs

using all 11 Basic Features together.

6.1.1 Definition of Error

An error is defined as a difference between the desired and the actual output. If I only deal with

categorical outputs, like discrete numeric values or class labels, catching error cases is a clear task.

Also, if I only care about the amount of error that the system made, I can calculate and sum the

difference between all actual values and their corresponding predicted values.

However, in this work, I deal with continuous predictions and therefore, the task of catching

error cases becomes a troublesome task. Given that in a continuous space it is not possible for the

system to output exactly the same value as the desired value, if I make the judgment based on this

naive approach that any value that does not exactly match the desired value is an error I will catch

almost all the instances as errors.

In order to overcome this issue, I propose an approach for catching errors which originates from

the instruction that was provided by the task organizers. Have in mind that the output interval for

the STS task should be [0-5]. Before going any further, let’s study what they haves proposed as the

basis for their grading schema:

score: 5 The two sentences are completely equivalent, as they mean the same thing.

The bird is bathing in the sink.

Birdie is washing itself in the water basin.

score: 4 The two sentences are mostly equivalent, but some unimportant details differ.
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In May 2010, the troops attempted to invade Kabul.

The US army invaded Kabul on May 7th last year, 2010.

score: 3 The two sentences are roughly equivalent, but some important information differs/missing.

John said he is considered a witness but not a suspect.

”He is not a suspect anymore.” John said.

score: 2 The two sentences are not equivalent, but share some details.

They flew out of the nest in groups.

They flew into the nest together.

score: 1 The two sentences are not equivalent, but are on the same topic.

The woman is playing the violin.

The young lady enjoys listening to the guitar.

score: 0 The two sentences are on different topics.

John went horse back riding at dawn with a whole group of friends.

Sunrise at dawn is a magnificent view to take in if you wake up early enough for it.

If I look at the example for score 4, I realize that the temporal information May 7th, and

the named entity US are considered as unimportant details. Let’s assume that this is a correct

assumption and try to judge between the pair of sentences in below:

(6.1) (a) In 2011, people voted NDP.

(b) In 2009, people voted NDP.

If I only take the main event Vote, the agent people, and the theme NDP as important information I

will consider both sentences as mostly equivalent and the corresponding score would be 4. However

one can recognize that even though the main event, the agent, and the theme of both sentences

are the same, their times of occurrence are completely different, which distinguishes them as two

different events. In this regard, I can see that even making decision about the importance of one

aspect of language is a very difficult and deep task.

Going back to the starting point of this small argument, where I wanted to propose an approach

for identifying errors. I decided to use a sort of abstract interpretation on top of the grading schema
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that was provided by the task organizers. This abstraction splits the grading schema into two

separate parts. One part is representative for pairs that are identified as relatively equivalent and

covers the pairs with the the scores in range of [3-5]. The other part is representative for pairs that

are not equivalent and covers those that lie in the range of [0-2]. I left the range of [2-3] as a gray

area that I can not say that much about, in the error analysis step.
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Figure 5: A mapping from the grading schema to the proposed error schema.

According to this approach I define an error case to be the case that was expected to be mapped

to one part, according to the gold standard, but the systems predicted as a member of the other

part. A visualization of the proposed error schema is provided in Figure 5.

In Figure 5, the top left “Error” square represents cases for which the gold standard score is in

the range of [0-2] while the predicted score is in the range of [3-5]. The bottom right “Error” square

represents those cases where the gold standard score is in the range of [3-5] while the system’s output

is in the range of [0-2]. The boxes which are lined up along the bisector line ps=gs are ideal areas
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were the predicted score and the gold standard scores are very close to each other. The so-called

“Safe Area” is the area where the difference between the gold standard and the predicted scores

are less than 1. The error cases that I am going to put under my microscope are those that are

represented by “Error” boxes.

6.1.2 Error Cases

Now that I provided the definition of an error case and the error schema, I can take a look at

the dataset and each experiment to see which error cases have occurred more frequently across

different experiments. I also want to identify the frequently occurring linguistic phenomena that the

lexical-oriented system fails to address.

Moreover, I need to set a threshold on the number of times a pair has to occur as an error during

different experiments in order to be caught as a frequent error. Then I look at each error case

and the features that were used in those experiments that resulted in incorrect prediction for that

particular error case.

Threshold

As mentioned earlier, using the proposed error schema, I also need to specify a threshold value which

corresponds to the number of times a pair was captured as an error case. The maximum number

of error occurrence is 15, which equals the number of experiments that I did on each training set,

while the minimum is 0. For example, if I use the threshold of 8 it means that I am considering

those pairs that have been captured as an error in at least 8 out of 15 experiments. This basically

means that if I set a threshold of 8, I am considering those error cases that at least occurred in half

of the experiments.

I tried different thresholds just to get a reasonable accumulative number of error cases that I

can manually investigate. For the thresholds of 7, 10, and 15 I obtained 288, 160, and 26 errors

respectively. Since the number of errors for the threshold of 15 is a reasonable number I selected

these error cases as the main resource of evaluation. It also has a nice interpretation, it means that
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I am taking into consideration those cases that are always in error. In another words, these cases

are the ones that our system, no matter what lexical features are being used, always fails to predict

correctly.

Error Categories

In this section, I study some of these error cases and try to group them into some categories based

on their common characteristics.

NUMBERS In 10 of the error cases the numbers were the main or one of the main reasons of the

failure. For example in the following pair, despite the word overlaps, numbers and the predicate

differentiate the meaning of the two sentences:

(6.2) pair id:689 from MSR-Paraphrase gs:1.75

(a) The jury awarded TVT about $23 million in compensatory damages and roughly $108

million in punitive damages.

(b) TVT Records sought $360 million in punitive damages and $30 million in compen-

satory damages, officials said.

NAMED-ENTITY In 3 of the error cases named-entities were the main or one of the main

reasons of the failed prediction. For example in the following pair, the person’s name and locations

distinguish the contents of the two sentences:

(6.3) pair id:459 MSR-Paraphrase gs:1.8

(a) Russ Britt is the Los Angeles Bureau Chief for CBS.MarketWatch.com.

(b) Emily Church is London bureau chief of CBS.MarketWatch.com.

Or in the following pair the mismatched named-entities and temporal constraints separate the mean-

ing of the two sentences:

(6.4) pair id:237 MSR-Paraphrase gs:1.75

(a) Board Chancellor Robert Bennett declined to comment on personnel matters Tuesday.
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(b) Mr. Mills declined to comment yesterday, saying that he never discussed personnel

matters.

QUOTATION In 3 of the error cases quotations were the main reasons of the failed prediction. For

example in the following pair, quotations do not match while the rest of the arguments are identical:

(6.5) pair id:275 MSR-Paraphrase gs:1.75

(a) “Is it in the food supply?” says David Ropeik, director of risk communication at the

Harvard Center for Risk Analysis.

(b) “It’s not zero,” said David Ropeik, director of risk communication at the Harvard

Center for Risk Analysis.

The same thing applies to the this pair:

(6.6) pair id:595 MSR-Paraphrase gs:1.8

(a) About 100 firefighters are in the bosque today, Albuquerque Fire Chief Robert Ortega

said.

(b) “We were seconds away from having that happen,” Albuquerque Fire Chief Robert Or-

tega said.

PREPOSITIONAL PHRASE In 2 of the error cases prepositional phrases were involved.

For example in the following pair despite the similarity in the topic and the predicates of the two

sentences the difference in the prepositional phrase causes the incorrect prediction:

(6.7) pair id:462 MSR-Video gs:3

(a) The man is throwing knives at a tree.

(b) A man is throwing blades into a close target outside.

Also in the following pair, the presence of the prepositional phrase in one sentence and its absence

in the other sentence, while two sentences are very close in meaning, effects the similarity of the

sentences and results in failed prediction:

(6.8) pair id:733 MSR-Video gs:3.5
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(a) A monkey is karate kicking at someone’s gloved hand.

(b) A monkey practices martial arts.

6.1.3 Discussion

The error cases are good examples to show how easy it could be to fool a lexical-oriented system

despite its robustness in providing a reliable and consistent performance on large-scale data. In fact,

while two sentences are almost identical in terms of their lexical units, a slight difference in numbers,

temporal constraints, quotations’ content, etc, can change the meaning of a text.

Despite this disadvantage, improving the results achieved by a lexical-oriented system by incor-

porating deeper semantic features is a very difficult task. Because, in addition to annotating these

deeper phenomena, one also needs to find a way to compare them. For example considering two

phrases “2034 pairs” and “more than 2000 pairs”, finding a reliable interpretation/representation

that catches these two as similar is a very difficult task. For example, assume the simple heuris-

tics which replaces “more than 2000” with “X > 2000”. It can successfully identify the similarity

between these two phrases. Now assume that we are given the third phrase “1500000 pairs”, the

previous heuristics incorrectly identifies the second and third phrases as equivalent while they are

semantically very different.

Also, finding a way to incorporate these phenomena into a statistical/machine learning method

is very challenging. Although having a system that annotates the aforementioned phenomena has

many merits in some specific tasks (engineered for a particular purpose), in general domains these

phenomena do not occur as often as simple lexical units. Therefore, even by using a very comprehen-

sive approach for annotating and comparing them, we may not achieve any noticeable improvement

or due to their sparsity, may even see decrease in the performance previously achieved by a purely

lexical-based system.
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6.2 Analysis of STS-2013

Since I have trained separate models based on each subset of features, for further analysis I could use

the predicted scores generated by each of these models and calculate their correlations. This way I

could see that actually which of the feature combinations were more effective in making prediction

on which test set. In Table 16, I list the best and worst feature combination that gives the highest

and the lowest performance on each test set.

headlines
Best Worst

Combination [esa lem ROUGE-1 ROUGE-SU4] [jcn lem lcsq]
Correlation 0.7329 0.3375

OnWN
Best Worst

Combination [esa lin jcn roget lem lcsq ROUGE-1 ROUGE-W ROUGE-SU4] [jaro]
Correlation 0.7768 0.1425

FNWN
Best Worst

Combination [roget ROUGE-1 ROUGE-SU4] [ROUGE-2 lem lcsq]
Correlation 0.4464 -0.0386

SMT
Best Worst

Combination [lin jcn roget ROUGE-1] [esa lcsq]
Correlation 0.3648 0.2305

Table 16: Best and Worst combination for each test set

As you may notice, these results indicate that ROUGE-1 (denoted by RO-1), which is the feature

based on unigram, in all of the 4 best performing subsets exists. Also, the features ROUGE-SU4,

and Roget’s in three of the best subsets exist, while esa, lin, jcn are part of the two of the best

subsets. Also, the “worst” column indicates that lcsq was not an effective feature.

In Table 17 I list all the features and, instead of looking at the best combination, take the top

three best combinations for each test and see how many times each feature has occurred in top 12

combinations (first column). Further I divide the test sets into short (OnWN,headlines) and long

(FNWN,SMT), and see features behavior in each of these two categories (denoted by short and

long). The last column reports the number of time a feature has occurred in the best combinations

(out of 4).

69



Features out of 12 out of 6(short) out of 6(long) out of 4
esa 6 6 0 2
lin 6 3 3 2
jcn 4 1 3 2
roget 9 3 6 3
lem 6 6 0 2
jaro 0 0 0 0
lcsq 3 3 0 1
ROUGE-W 7 4 3 1
ROUGE-1 10 6 4 4
ROUGE-2 3 1 2 0
ROUGE-SU4 10 5 5 3

Table 17: Feature combination analysis

A quick observation, shows that ROUGE-1,ROUGE-SU4, and roget are in fact effective features

across different test sets. Also it demonstrates that the feature esa, lem are very reliable when

we deal with short text fragments, while they do appear in the best combinations for longer text

fragments. Further, features lin, jcn, and ROUGE-W show on-and-off behavior on large and short

text fragments. Therefore, if we are only limited to pick 5 features from these lexical features,

ROUGE-1, ROUGE-SU4, roget should be definitely tried. And if we know that the data contains

only short text fragments, esa, lem are safe choices, while if we have no intuition about the type of

the data, lin, jcn, ROUGE-W are good candidates to provide reasonable performance.
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Chapter 7

Conclusion

Sentence similarity is one of the core elements of Natural Language Processing (NLP) tasks such

as Recognizing Textual Entailment, and Paraphrase Recognition. Over the years, different systems

have been proposed to measure similarity between fragments of texts. In this research, we propose

a new two phase supervised learning method which uses a combination of lexical features to train

a model for predicting similarity between sentences. Each of these features, covers an aspect of the

text on implicit or explicit level. The two phase method uses all combinations of the features in the

feature space and trains separate models based on each combination. Then it creates a meta-feature

space and trains a final model based on that. The proposed method contrasts existing approaches

that use feature selection, in the sense that it does not aim to find the best subset of the possible

features. In fact, the Phase Two Model of our proposed approach, learns the relationship between

each Phase One Model’s prediction and the gold standard, instead of learning the relation between

one single possibility of the features and the gold standard values. This is beneficial because a Phase

One Model might consistently make the correct predictions for a particular class, while another

model may perform poorly on that class.

I compared our proposed method with state-of-the-art systems and showed that by going beyond

a single-layer standard learning approach we could achieve improvements. I also discussed some of
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the issues with a lexical-oriented system in Chapter 6. I showed how easy it is to fool a lexical-oriented

system despite its robustness in providing a reliable and consistent performance on large-scale data.

In fact, while two sentences are almost identical in terms of their lexical units a slight difference

in numbers, temporal constraints, quotations’ content, etc, can considerably shift the meaning of

a text. Despite this disadvantage, improving the results achieved by a lexical-oriented system by

incorporating deeper semantic features is a very difficult task. Because, in addition to identifying

these deeper phenomena, one also needs to find a way to compare them. Also, finding a way to

incorporate these phenomena into a statistical/machine learning method is very challenging. In

fact, although having a system that annotates the aforementioned phenomena has many merits in

some specific tasks (engineered for a particular purpose), in general domains these phenomena do

not occur as often as simple lexical units. Therefore, even by using a very comprehensive approach

to handle them, we may not achieve any noticeable improvement or may even see decrease in the

performance previously achieved by a purely lexical-based system.

Furthermore, we showed that the two-phase exhaustive model, while resource intensive, is not

at all prohibitive. If the knowledge to pick appropriate features is not available and if not enough

training data exists to perform feature selection, the exhaustive method can produce results that

are comparable to the state-of-the-art systems. But more importantly, this method allows us to

forensically analyze feature combination behavior. I was able to establish that unigrams and 4-skip

bigrams are most versatile features, but surprisingly that Rogets Thesaurus outperforms the two

leading WordNet-based distance measures. In addition, ROUGE-W, a weighted longest common

subsequence algorithm that to our knowledge has not previously been used for similarity mea-

surements shows to be a fairly reliable measure for all data sets, in contrast to longest common

subsequence, which is among the lowest performers. I feel that the insight I gained well justified the

expense of our approach.

The proposed method is presented here as an interesting methodology for exploration. In fact,

the current method and the developed pipeline, gives us the possibility of examining the effect of
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incorporating deeper semantics into a lexical-oriented system. Also, in order to test the robustness

and reliability of the proposed method, using the Two Phase Learning for different similar tasks

such as paraphrase recognition are possible extensions to this work.
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