
ASSEMBLY CODE CLONE DETECTION FOR MALWARE

BINARIES

Mohammad Reza Farhadi

A thesis

in

Concordia Institute for Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Information Systems Security

Concordia University

Montréal, Québec, Canada

April 2013

c© Mohammad Reza Farhadi, 2013

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Mohammad Reza Farhadi

Entitled: Assembly Code Clone Detection for Malware Binaries

and submitted in partial fulfillment of the requirements for the degree of

Master of Information Systems Security

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Chair

Dr. Yong Zeng

Examiner

Dr. Joey Paquet

Examiner

Dr. Roch Glitho

Supervisor

Dr. Mourad Debbabi

Supervisor

Dr. Benjamin C.M. Fung

Approved
Chair of Department or Graduate Program Director

20

Dr. Robin A. L. Drew, Dean

Faculty of Engineering and Computer Science

Abstract

Assembly Code Clone Detection for Malware Binaries

Mohammad Reza Farhadi

Malware, such as a virus or trojan horse, refers to software designed specifically

to gain unauthorized access to a computer system and perform malicious activities.

To analyze a piece of malware, one may employ a reverse engineering approach to

perform an in-depth analysis on the assembly code of a malware. Yet, the reverse

engineering process is tedious and time consuming. One way to speed up the analysis

process is to compare the disassembled malware with some previously analyzed mal-

ware, identify the similar functions in the assembly code, and transfer the comments

from the previously analyzed software to the new malware. The challenge is how to

efficiently identify the similar code fragments (i.e., clones) from a large repository of

assembly code.

In this thesis, an assembly code clone detection system is presented. Its per-

formance is evaluated in terms of accuracy, efficiency, scalability, and feasibility of

finding clones on assembly code decompiled from real-life malware binary files and

some DLL files from an Operating System. Experimental results suggest that the

proposed clone detection algorithm is effective. This system can be used as the basis

of future development of assembly code clone detection.

iii

Acknowledgments

There are a number of people without whom this thesis might not have been written

and fulfill the long road.

I would like to express my deepest gratitude to my advisors, Drs. Mourad Debbabi

and Benjamin C. M. Fung, for their patience, enthusiasm, confidence on me to explore

new research directions. I could not have imagined having better advisors for my

Master’s study.

My sincere thanks also go to my friends and staff at Concordia University and

Computer Security Lab. I am grateful for the chance to be a member of the lab.

And last, but not least, I would like to express my heartfelt appreciation to my

kind and warm family, who share my passions. My deepest appreciation goes to my

parents for their persistent encouragement and unconditional love. I am also grateful

to my siblings for their love and encouragements, specially my sister Leila, who is

always nearby with supportive and inspiration thoughts.

iv

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

2 Related Work and Background Knowledge 4

2.1 Matching Source Code Fragment . 5

2.2 Matching Assembly Code Fragments 22

3 Problem Definition 36

4 The Clone Detection System 39

4.1 Pre-Processing . 39

4.1.1 Disassembler . 39

4.1.2 Token Indexer . 40

4.1.3 Normalizer . 41

4.2 Clone Detector / Searcher . 44

4.2.1 Regionizer . 44

4.2.2 Exact Clone Detector . 45

4.2.3 Inexact Clone Detector . 45

4.2.4 Clone Searcher . 51

4.3 Post-Processing . 51

4.3.1 Duplicate Clone Merger . 51

4.3.2 Maximal Clone Merger . 51

4.4 XML Output . 53

4.5 Visualizer . 57

v

5 Experimental Results 60

5.1 Accuracy . 61

5.2 Efficiency . 63

5.3 Scalability . 63

6 Conclusion and Future Work 65

Bibliography 67

vi

List of Figures

1 Annotated Parse Tree (Baxter et al. [13]) 11

2 IRL Representation of the Sample code (Mayrand et al. [47]) 17

3 Overview of MeCC (Kim et al., [38]) 18

4 Example of Abstract Memory State (Kim et al. [38]) 18

5 Example of Abstract Memory State Comparison (Kim et al. [38]) . . 18

6 “abcdabe$”’s Suffix Tree (Tairas et al. [56]) 19

7 Arrays of Source Lines, Comment Lines, and Unique Identifiers (Zeid-

man [61]) . 21

8 Shredding a Byte Sequence with n = 5 (Jang and Brumley, [29]) . . . 22

9 System Architecture (Dullien et al. [24]) 29

10 Directed Graph and Adjacency Matrix (Briones and Gomez, [15]) . . 30

11 Procedure sub 76641161 . 37

12 Procedure sub 7664133B . 38

13 System Architecture . 40

14 Search Capability (Search for String “RpcTransServerFreeBuffer”) . . 41

15 Normalization Hierarchy for Registers 42

16 Register Normalization Example . 42

17 Normalized sub 76641161 . 43

18 Normalized sub 7664133B . 43

19 Regionization for w = 15 and s = 1 44

20 Step 3 - Sliding Window Inexact Detection Method with SBSize = 5 47

21 Step 3 - Two-Combination Inexact Detection Method 49

22 Duplicate Clone Merger with w = 10, s = 4, and an Overlapped Size

of 0.6 . 51

23 Maximal Clone Merger with w = 5 and s = 1 53

24 Sample XML File . 53

vii

25 Sample XML File (parameters) . 54

26 Sample XML File (assembly files) . 55

27 Sample XML File (clone files) . 56

28 Sample XML File (token references) 57

29 Clone Detection (Input Parameters) 58

30 Clone Search . 58

31 GUI (Clone File Pairs Found) . 59

32 GUI (Code Fragment of Clone Pair) 59

33 Accuracy (DLL files) with s = 1 and maxOperands = 40 62

34 Runtime vs. Window Size (Malware Assortment) 63

35 Scalability (with Sliding Window) . 64

36 Scalability (with Two-Combination) 64

viii

List of Tables

1 Metrics (Bruschi et al [17]) . 27

2 Malware Specifications . 60

3 Number of Clones (Malware Assortment) 62

ix

Chapter 1

Introduction

Malware is any kind of software installed in computer systems without the owner’s

adequate consent that performs malicious activities. Malware includes, among oth-

ers, computer viruses, worms, trojan horses, spyware and adware. Their malicious

activities range from simple email spamming to sophisticated distributed denial of

service attacks. New methodologies are used every day to create malware software

that can be hidden from the lens of computer systems protective software.

Reverse engineering, although a time-consuming process, is often the primary

step taken to gain an in-depth understanding of a piece of malware. To achieve a

more efficient analysis, the analyst can manually compare the assembly code with a

repository of previously analyzed assembly code and identify identical or similar code

fragments. By identifying the matched code fragments and transferring the comments

from the previous study to the new assembly code, the analyst can minimize her

redundant effort and put more attention on the new part of the malware. Yet, the

comparison process itself is also time-consuming, and successfully identifying similar

code fragments often depends on the experience and knowledge of the analyst. In

this thesis, an assembly code clone detection system based on the framework proposed

by Sæbjørnsen et. al [50] is presented, and the performance of the system in terms

of accuracy, efficiency, scalability, and feasibility of finding clones on assembly code

decompiled from real-life binary and malware files is evaluated.

The problem of assembly code clone detection is informally described as follows:

Given a large collection of previously analyzed assembly files and a specific target

assembly file or a piece of target assembly code fragment, a user would like to identify

1

all code fragments in the previously analyzed assembly files that are syntactically or

semantically similar to the target assembly file or the piece of target assembly code

fragment. The challenges of the problem can be summarized as follows:

Simple keyword matching won’t solve the problem: A simple method to

identify the assembly code clone is to identify some keywords, such as constants,

strings, and imports, in a code fragment, and then attempt to match them in other

code fragments. Another alternative method is to perform a keyword search in RE-

Google [1]. The keyword search capability is essential, yet insufficient, for assembly

code clone detection because many code fragments do not contain any keywords or

unique strings.

Large volume of data: The size of an assembly file can range from a couple of

kilobytes to over dozens of megabytes of textual data. Depending on the user-specified

parameters, each assembly file can be further decomposed into an array of regions

with size proportional to the number of lines of an assembly file. The efficiency of

a clone detection method refers to the period of time required for identifying all the

clones. The scalability of a clone detection method refers to its capability of handling

large collection of assembly code.

Syntactic and semantic clones: Two code fragments that are syntactically

similar to each other are considered to be a syntactic clone. Two code fragments that

perform the same computation but having different instructions are considered to be

a semantic clone. Ideally, a clone detection algorithm should able to identify both

types of clones. Yet, semantic clones are difficult to detect, especially in the context

of assembly code.

The objectives of this thesis are (1) to introduce a formal framework for design and

implementation of an assembly code clone detection, (2) to evaluate the feasibility of

detecting exact clones with different levels of normalization, (3) to propose an accurate

inexact clone detection, (4) to implement an efficient search capability on constants,

strings, imports and code fragments, which are known to be valuable features for

gaining insight into the binary files. Finally,

Contributions: The contributions of this thesis are summarized as follows. An

assembly code clone detection framework based on Sæbjørnsen et al.’s work [50] is

developed and significant extensions on its normalization and inexact clone detection

method are made. The new normalization process improves the clone detection tool

2

by finding type I and type II clones. Sæbjørnsen et al. [50] presented an inexact clone

detection method to identify clone pairs that are not exactly identical. The general

approach is to first extract a set of features from each region and create a feature vector

for each of them. Sæbjørnsen et al. used locality-sensitive hashing (LSH) to find the

nearest neighbor vectors of a given query vector. Although this approach shows some

encouraging results to identify clone pairs that were not exactly identical, it has an

inappropriate assumption on the uniform distribution of vectors and the requirement

of specifying precise probabilistic models. As the number of features increase (i.e.,

dimensions), the assumption on the uniform distribution of vectors may not hold.

As a result, their approach may miss the vectors (clones) that are not uniformly

distributed; therefore, increasing the chance of having false negatives. A new approach

to address the issue of false negatives is presented and implemented in this thesis.

This new approach can find Type III clones by an efficient feature extraction and

filtering process algorithm. Finally, the framework is improved by storing the clone

results in an XML file and visualizing the clones. Experimental results on real-life

malware binaries obtained from the National Cyber-Forensics and Training Alliance

(NCFTA) Canada suggest that our proposed clone detection algorithm is effective.

The thesis is organized as follows: Chapter 2 provides a literature review and

background knowledge on source and assembly code clone detection. Chapter 3 for-

mally defines the problem of assembly code clone detection. Chapter 4 discusses the

implementation details and proposed algorithms used in the implemented assembly

code clone detection tool. Chapter 5 presents the experimental results to illustrate

the performance of the implemented assembly code clone detection system. Chap-

ter 6 concludes the thesis and also suggests the potential extensions that can further

improve the currently implemented system.

3

Chapter 2

Related Work and Background

Knowledge

In this chapter, first, the state-of-art techniques for source code fragment matching

are summarized to analyze the feasibility of applying the techniques to assembly

code fragment matching. These techniques are categorized into eight groups. For

each category, the most promising techniques are identified based on the analysis and

experimental results obtained from different literature reviews, survey papers, and

case study papers.

Then, the state-of-art techniques for assembly code fragment matching are sum-

marized and categorized into six groups. The most promising techniques are also

identified and briefly described.

The procedure of clone detection consists of two phases, transformation and com-

parison. The general idea is to transform the code into an intermediate format that

facilitates more effective and efficient comparison.

Before describing the categorized techniques, the definition of code clone types

with respect to textual and functional similarities is presented.

Clone Definition

Any two given similar code fragments can be similar in two different ways: textual

and functional similarity. The following definitions of code clone types are widely

used in the literature of clone detection and plagiarism (Roy et al. [48], [49]).

Textual Similarity :

• Type I: Identical code fragments except for variations in whitespace (perhaps

4

also variations in layout) and comments.

• Type II: Structurally/syntactically identical fragments except for variations in

identifiers, literals, types, layout, and comments.

• Type III: Copied fragments with further modifications. Statements can be

changed, added, or removed in addition to variations in identifiers, literals,

types, layout, and comments.

Functional Similarity :

• Type IV: Two or more code fragments that perform the same computation that

is implemented through different syntactic variants. This type of clone is also

called a semantic clone.

2.1 Matching Source Code Fragment

Text-Based Approach

Text-based clone detectors consider the target source program as a sequence of

lines or strings, and compare every pair of code fragments to find identical sequences

of strings. Since the match is based purely on the text of the lexical approach, the

identified clones often do not correspond to any structural elements of the language.

Most text-based techniques do not transform the source code into some intermedi-

ate or normalized format, except for comments removal, whitespace removal, and

some very basic preprocessing steps [23]. Text-based methods are robust to format

alteration, but fragile to identifier renaming.

Johnson ([32], [33]) presented a pioneer work of a pure text-based approach that

finds redundancy of code using fingerprints on a substring of the source code. The

general idea of the method is to first calculate the signature of each line and then

identify the matched substrings. First, a text-to-text transformation is performed

on the source file for discarding uninteresting characters. Then, the file is divided

into a set of substrings so that every character of the text appears in at least one

substring. To compute the fingerprints of all length n substrings of a text, Johnson

employed the Karp-Rabin fingerprinting algorithm [36] . A sliding-window technique

in combination with an incremental hash function is used to identify sequences of lines

having the same hash value as clones. For finding near-miss clones, his algorithm finds

5

a normalized/transformed text by removing all whitespace characters except for line

separators and by replacing each maximal sequence of alphanumeric characters with

a single letter, such as “a”.

For example, a line

for(k = 1; k ≤ n; k ++)

is transformed to

a(a = a; a ≤ a; a++)

and another line

#define ABCD 123

is transformed to

#aaa

Marcus and Maletic [46] searched for similarities of high-level concepts extracted

from comments and source code elements. They employed latent semantic indexing

[25] for finding similar code fragments in the source code. This information retrieval

approach limits the comparison within comments and identifiers. Their results show

that high-level, semantic clones can be detected with low computational cost. They

also illustrated that their approach can be combined with other existing clone detec-

tion approaches. One major drawback is that this approach alone cannot detect two

functions with similar structure and functionality if comments do not exist and the

identifiers’ names are different.

Ji et al. [31] introduced an adaptive local alignment method that considers the

frequencies of keywords in the clone detection scoring function. The basic idea of

adaptive local alignment is that the matching score of keywords should reflect the

frequencies of keywords. Specifically, their method assigns a high score for a keyword

with low frequency, and a low score for a keyword with a high frequency. The rationale

is that it is rare to see keywords of low frequency being used by two fragments at

the same time. Therefore, two programs using the same keywords of low frequency

should be considered similar.

Token-Based Approach

A token-based clone detector parses and transforms source code to a sequence of

tokens using compiler style lexical analysis. All the whitespaces, including line breaks,

tabs, and comments between tokens are removed from the token sequence. A sequence

is then scanned for duplicated subsequences of tokens, and finally, the original code

6

portions representing the duplicated subsequences are returned as clones. Compared

with text-based approaches, a token-based approach is usually more robust against

code changes such as formatting and spacing. Since variables of the same type are

mapped into the same token, a token-based approach is usually more robust against

identifier renaming. However, this approach is generally fragile to statement reorder-

ing and code insertion because it relies on sequential analysis. A reordered or inserted

statement can break a token sequence that may otherwise be regarded as duplicate

to another sequence. Token-based methods are also fragile to control replacement

because, for example, for and while loops render different token sequences [44]

Kamiya et al. [34] proposed a multi-language token-based clone detection method

called CCFinder, which extracts code clones in C, C++, Java, COBOL, and other

source files. First, each line of source files is parsed into tokens by a lexer and the

tokens of all source files are then concatenated into a single token sequence. The

token sequence is then transformed based on the transformation rules of the language

of interest, aiming at regularization of identifiers and identification of structures. For

example,

void print lines(const set 〈string〉&s) {
int c = 0;

set 〈string〉::const iterator i

= s.begin();

for (; i != s.end(); ++i) {
cout << c << ”, ”

<< *i << endl;

++c;

}
}

is transformed to the following by some transformation rules.

void print lines (const set & s) {
int c = 0;

const iterator i

= s . begin ();

for (; i != s . end () ; ++ i) {
cout << c << ”, ”

7

<< * i << endl;

++ c;

}
}

Then, all identifiers of types, variables, and constants are replaced with a special

token, e.g., $p. This identifier replacement makes code fragments with different vari-

able names be clone pairs. For example, the above code will become the following

after the replacements of identifiers:

$p $p ($p $p & $p) {
$p $p = $p ;

$p $p

= $p . $p () ;

$p (; $p != $p . $p () ; ++ $p) {
$p << $p << $p

<< * $p << $p ;

++ $p ;

}
}

Burd and Bailey [18] conducted an independent experiment on CCFinder and

found that CCFinder has a precision of 72% and recall of 72%, with a medium system

of 16 KLOC. The recall rate of CCFinder is the best among all the tested methods

in Burd and Bailey’s experiments. Experimental results suggest that CCFinder is

promising for Type I and Type II clone detections for source code.

Baker ([10], [9]) proposed another token-based method calledDup. As in CCFinder,

Baker also used a lexer to tokenize the source code, then compared the tokens of each

line using a suffix-tree based algorithm. Transformation rules on the token sequence

were not applied in the work, and the notion of parametrized matching was introduced

by a consistent renaming of the identifiers. Dup requires a lot of user interactions to

determine whether tokens are identical. For example, the user may specify the same

token ID to different data types, such as int, short, long, float, and double, depending

on requirements.

The token-based techniques discussed above (Kamiya et al. [34]; Baker [9], [10])

make use of a suffix tree to detect similarities in the token string. Recently, researchers

8

have shown that an alternative data called suffix arrays (Manber and Myers [45]) can

provide the same efficiency for string matching with much reduced space requirements

(Abouelhoda et al. [6]). Another limitation of these token-based techniques is the

separation of parameter and non-parameter tokens, which can potentially cause false

negatives in clone detection.

To address the above shortcomings in a token-based approach, Basit et al. [12]

proposed a method called Repeated Tokens Finder (RTF). They made two contri-

butions to the token-based approach: (1) RTF implements a flexible tokenization

mechanism. (2) They consider the problem of clone detection as finding repeating

substrings within the combined token string, and making the comparisons feasible by

utilizing suffix arrays.

• Flexible tokenization mechanism: First, the language-specific tokenizer assigns

a unique numeric ID to each token class of the source language, e.g., keywords,

operators, comment markers, etc. Then, a single large token string is generated

from all the source files. Identical segments of this token string are reported as

clones that can be either exact clones (Type I) or parameterized clones (Type

II) owing to the normalization of certain tokens according to the proposed

tokenization. Next, RTF allows a user to suppress some insignificant token

classes that may be considered noise in clone detection. For example, access

modifiers, such as private, protected, and public, are not important for clone

detection, and therefore should be suppressed. Furthermore, RTF allows a user

to equate different token classes. For example, int, short, long, float, and double

can be merged into the same ID, so that code fragments that differ only in data

types become a clone pair.

• Finding repeating substrings : RTF treats clone detection as finding repeating

substrings within a large combined token string. In fact, RTF finds the non-

extendable repeating substrings because any non-empty subsequence of a clone

is also a clone. Specifically, RTF applies (the method of Abouelhoda et al. [6])

to the problem of source code clone detection.

Most works on clone detection assume that the source database is static and the

clone detection operation is performed in a batch mode. When the source database

9

is updated, the entire detection operation has to be performed again. Most liter-

ature in the field implicitly makes such an assumption, regardless of the program

representation they operate on or the search algorithm they employ.

Recently, Hummel et al. [28] proposed a scalable token-based tool called ConQAT

for detecting clones in the environment of an incrementally updated source database.

ConQAT is open source. Its token-based clone detection method is more or less similar

to the previously discussed methods, such as CCFinder and Dup, and ConQAT can

detect Type I and Type II clones. The major contribution of ConQAT is its capability

to efficiently identify the clones when updates are performed on the source database,

by maintaining a data structure called clone index. It allows the lookup of all clones

for a single file (and thus for the entire system), and can be updated efficiently when

files are added, removed, or modified. For example, adding a new file may introduce

new clones to any of the previously examined files and thus a comparison to all files

is required if no additional data structure is used. The general idea of the clone index

is similar to that of the inverted index used in document-retrieval systems in which

a mapping is maintained between each word and all its occurrences. Similarly, the

clone index maintains a mapping from sequences of normalized statements to their

occurrences.

Tree-Based Approach

In the tree-based approach, the source code is first converted into an abstract

syntax tree (AST) or a parse tree using a language-specific parser. Tree-matching

techniques are then used to find similar subtrees, and the corresponding code seg-

ments are returned as clone pairs or clone classes. Variable names and literal values

in the source may be abstracted in the tree representation, allowing for more flexible

detection of clones. In general, tree-based approaches can detect Type I clones. For

Type II clones, the token-based approach is more effective. Since this approach dis-

regards the information about variables (in order to make code differing on variables’

names appear the same on ASTs), it ignores data flow and is consequently fragile to

statement reordering and to control replacement (Liu et al. [44]).

Baxter et al. [13] presented an AST-based clone detection method called CloneDr.

First, a language-specific parser generates an annotated parse tree. See Figure 1 for

an example

10

Figure 1: Annotated Parse Tree (Baxter et al. [13])

The next step is to find the subtree clones by comparing every subtree to other

subtrees for equality. Subtrees are compared using characterization metrics based on

a hash function and tree matching. This approach works for detecting Type I clones.

When locating Type II clones, hashing on complete subtrees fails precisely because a

good hashing function includes all elements of the tree and, therefore, considers trees

with minor differences to be mismatched. Baxter et al. [13] solved the problem by

choosing an artificially “bad” hash function. This function must be characterized in

such a way that the main properties one wants to find on Type II clones are preserved.

Type II clones are usually created by copying and pasting code fragments, followed

by making small modifications. These modifications usually generate small changes to

the shape of the tree associated with the copied piece of code. Therefore, they argue

that this kind of Type II clone often has only some different small subtrees. Based

on this observation, a hash function that ignores small subtrees is a good choice.

They used a hash function in their experiments that ignores only the identifier names

(leaves in the tree). Thus, their hashing function puts trees that have similar modulo

identifiers into the same hash bins for comparison. They further proposed some

threshold-based similarity measures to measure the similarity of two subtrees.

11

Wahler et al. [58] proposed a method to find Type I and Type II clones at a more

abstract level than an AST. A program AST is converted to an XML representation

and a frequent itemset technique is applied to the XML representation of to find

clones. They modified the frequent itemset technique to fit it to the problem of code

clone detection.

Evans and Fraser [26] proposed a further abstraction, known as structural abstrac-

tion, of a program’s AST for finding both Type I and Type II clones with gaps. While

ASTs are built from a lexical abstraction of a program by parameterizing only AST

leaves (abstracting identifiers and literal values), structural abstraction is obtained

by further parameterizing the arbitrary subtrees of ASTs. For example, x = a[?] lexi-

cally matches x = a[i] because it includes only a leaf and a unary node that identifies

the type of the leaf. x = a[?] also structurally matches x = a[i+1] because it includes

a binary AST node.

Similarity Distance-Based Approach

Brixtel et al. [16] presented a comprehensive similarity distance-based plagiarism

detection framework. In this section, the only elaborated steps are the ones that are

relevant to the problem of code fragments matching, namely normalization, segmen-

tation, and similarity measure. Brixtel et al. do not present a predefined method for

segmentation. A code segment can be a line or a block of code. The distance of two

segments, s1 and s2, is measured by a distance function Dist(s1, s2).

The distance function can be the edit distance, e.g., Hamming or Levenshtein

(Levenshtein [43]), by counting the number of operations (insertions, deletions, and

replacements) required to transform s1 to s2. Another possible distance function is

the information distance, which can be approximated using data compression, e.g.,

gzip. Let c(s) be the compressed version of a segment, and let |c(s)| be the size of

the compressed version. The distance between two segments (or two strings) is:

Dist(s1, s2) = 1 - |c(s1)|+|c(s2)|−|c(s1,s2)|
max(|c(s1)|,|c(s2)|)

where |c(s1, s2)| denotes the compressed size of the concatenation of s1 and s2.

Refer to (Cilibrasi and Vitanyi [20]) for the details of this formula.

Program Dependency Graph (PDG)-Based Approach

Program Dependency Graph (PDG)-based approaches attempt to identify a higher

abstraction of a source code than the previously discussed approaches by considering

the semantic information of the source code. PDG-based approaches use nodes to

12

represent expressions and statements, while the edges represent control and data de-

pendencies. This representation abstracts from the lexical order in which expressions

and statements occur to the extent that they are semantically independent. Intu-

itively, PDGs encode the program logic and in turn reflect developers’ thinking when

code is written. The search for clones is then turned into the problem of finding

isomorphic subgraphs (Roy and Cordy [48]).

Krinke [41] proposed a clone detection method based on fine-grained program de-

pendence graphs. His method, commonly known as Duplix (Roy and Cordy [48]),

considers both the syntactic structure and data flow of a software program. The first

step is to transform code fragments into fine-grained PDGs, and the second step is to

identify similar subgraph structures from the PDGs. The vertices of the fine-gained

PDG represent components of expressions. There are three types of edges between

the vertices. Immediate control dependence edges are between the components of an

expression, which are evaluated before the source code is evaluated. Value depen-

dence edges represent the data flow between the expression components. Reference

dependence edges represent the assignment of values to variables.

Komondoor and Horwitz [39] proposed a PDG-based clone detection method

called PDG-DUP. The general idea is to first partition all PDG nodes based on

the syntactic structure of the statement/predicate that the node represents. For each

pair of matching nodes (r1, r2), PDG-DUP identifies the isomorphic subgraphs of the

PDG that contains r1 and r2 using backward and forward slicing. The identified

isomorphic subgraphs are clones.

Liu et al. [44] developed an efficient PDG-based plagiarism detection algorithm

called GPLAG. They employed a relaxed subgraph isomorphism comparison by in-

troducing a relaxation threshold γ . Two subgraphs g and g’ are γ-isomorphic if their

difference is within the threshold γ. Although subgraph isomorphism comparison is

in general NP-complete, they developed GPLAG based on three observations, mak-

ing GPLAG a feasible real-life application. First, PDGs cannot be arbitrarily large

as procedures are designed to be of reasonable size for developers to manage. Sec-

ond, PDGs are not general graphs and their peculiarity, like varieties of vertex types,

makes backtrack-based isomorphism algorithm efficient. Finally, unlike traditional

isomorphism comparison, a user usually is satisfied as long as one, rather than all,

isomorphism between g and g’ is found. A user can look into the details once a pair

13

of matched procedures has been identified. These three factors make isomorphism

comparison efficient in GPLAG.

Liu et al. identified five categories of source code alterations and considered their

effect on the PDG.

1. Format alteration

2. Identifier renaming

3. Statement reordering

4. Control replacement

5. Code insertion

The first and second alteration remove blanks, insert comments, or rename the

identifiers in the source code. Hence, these alterations do not alter the PDG because

they do not affect the dependencies of the graph. Statement reordering changes

the location of statements without causing error. This type of alteration also does

not alter the PDG because the statements can be reordered if they do not have

dependencies. Control replacement changes the control flow of the source code. For

example, a for loop can be equivalently replaced by a while loop. This alteration

can add a new program vertex to the subgraphs but does not affect the dependencies

of subgraphs. The last alteration is code insertion, which inserts immaterial code

into the program so that the original program logic does not change. These types

of alterations can introduce new dependencies into the program but they are not

supposed to interfere with existing dependencies.

Let n be the number of procedures in the first source code file andm be the number

of procedures in the second source code file. To identify the clone pairs, Liu et al.

observed that it is not necessary to perform a full isomorphism comparison for n ∗m
pairs for PDGs. Most PDG pairs can in fact be excluded from detailed isomorphism

testing because they are dissimilar, even with a high-level examination. Therefore,

they proposed a lossy filter to prune these dissimilar PDG pairs. Unlike conventional

similarity measurement, usually based on a certain distance metric, this filter follows

a similar reasoning to hypothesis testing: A PDG pair (g, g′) is preserved until

enough evidence is collected against the similarity between g and g′. In comparison

14

with distance-based methods, this approach avoids the difficulty of proper parameter

setting and also provides a statistical estimation of the false negative rate. Their

experiment shows that GPLAG can efficiently prune 90% of the original search space.

Metrics-Based Approach

Most of the previously discussed approaches identify clones by directly comparing

code. In contrast, metrics-based approaches gather different metrics for code frag-

ments and compare the metrics vectors. There are several clone detection techniques

that use various software metrics for detecting similar code. First, a set of software

metrics called fingerprinting functions are calculated for a class, a function, a method

or even a statement, and then the metrics values are compared to find clones over

these syntactic units. In most cases, the source code is parsed to its AST/PDG

representation for calculating such metrics.

Kontogiannis et al. [40] proposed two approaches to detect clones. The first

approach is named direct comparison of metrics values that classifies a code fragment

in the granularity of begin-end blocks. Two code fragments are considered similar if

their corresponding metrics values are close. The second approach uses a dynamic

programming technique for comparing begin-end blocks at the statement level.

Program features relevant for clone detection focus on data and control flow prop-

erties. Kontogiannis et al. used the following metrics:

1. The number of functions called (fanout).

2. The ratio of input/output variables to the fanout.

3. McCabe cyclomatic complexity.

4. Modified Albrecht’s function point metric. And,

5. Modified Henry-Kafura’s information flow quality metric.

Let s be a code fragment.

McCabe(s) = e - n + 2,

where e is the number of edges in the control flow graph, and n is the number of

nodes in the graph.

15

Albrecht(s) = p1 ∗ VARS USED AND SET(s)+

p2 ∗ GLOBAL VARS SET(s)+

p3 ∗ USER INPUT(s)+

p4 ∗ FILE INPUT(s)

where p1, p2, p3 and p4 are weight factors.

Karfura(s) = (Kafura in(s) ∗ Kafura out(s))2,

where Karfura in(s) is the sum of local and global incoming dataflow to the code

fragment s, and Karfura out(s) is the sum of local and global outgoing dataflow to

the code fragment s.

Mayrand et al. [47] proposed a method called CLAN that calculates 21 functional

metrics, e.g., number of lines of source, number of function calls contained, and

number of CFG edges, for each function unit of a program. Units with the similar

metrics values are identified as code clones. Partly-similar units are not detected. It

uses a representation of the source code called Intermediate Representation Language

(IRL) to characterize each function in the source code. For example, Figure 2 depicts

the IRL representation of the following function:

int fct (int param) {
int ret = 0;

if (param != 0) {
fct2();

ret = 1;

}
else {

fct3();

ret = 2;

}
}

Metrics are calculated from names, layouts, expressions, and control flows of func-

tions. A clone is defined only as a pair of whole function bodies that have similar

metric values. This approach does not detect clones at other granularity levels such as

segment-based clones, which occur more frequently than function-based clones. Very

similar kinds of method-level metrics, such as the number of calls from a method,

number of statements, McCabe’s cyclomatic complexity, number of use-definition of

16

non-local variables, and number of local variables, are features for identifying similar

methods.

Figure 2: IRL Representation of the Sample code (Mayrand et al. [47])

Shawky and Ali [55] performed experiments on other metrics values: (1) the num-

ber of inputs a function uses (2) the number of outputs (3) the number of declarative

and executable statements (4) the average number of lines containing source for all

nested functions (5) the number of edges, nodes, and connected components, and (6)

the maximum nesting level of control constructs in a function.

Memory-Based Approach

Memory-based clone detection is a recently proposed approach by Kim et al. [38].

Unlike most of the previously described approaches that are based on textual or struc-

tural similarity, the proposed Memory Comparison-based Clone Dectector (MeCC)

identifies clones by comparing programs’ abstract memory states, which are computed

by a semantic-based static analyzer. The primary objective is to detect gapped clones

(Type III) and semantic clones (Type IV). The clone detection ability of MeCC is

independent of the syntactic similarity of clone candidates. MeCC has two phases:

(1)its uses a path-sensitive semantic-based static analyzer to estimate the memory

states at each procedure’s exit point, and (2) compares the memory states to identify

clones. Figure 3 shows an overview of MeCC.

17

Figure 3: Overview of MeCC (Kim et al., [38])

Figure 4: Example of Abstract Memory State (Kim et al. [38])

Figure 4 shows the abstract memory states of the sample programs foo and bar.

The joined memory state at the return point of foo (line 6) is shown as the table in

Figure 4.

Figure 5: Example of Abstract Memory State Comparison (Kim et al. [38])

Figure 5 shows another procedure called foo2, which is a semantic clone of proce-

dure foo in Figure 4. Ignoring the names of variables, symbols, field variables, and

variable types, MeCC can determine that β ≤ 5 ∨ γ ≤ 0 and β ≤ 5 ∨ (β > 5 ∧
γ ≤ 0) are in fact equivalent and therefore, the two fragments are clones.

Hybrid Approach

Different approaches have different strengths and weaknesses. The idea of the hy-

brid approach is to use different approaches with the goal of combining their strengths

18

and avoiding their weaknesses. In this section, some papers that combine token-based

or text-based approaches with tree-based or PDG-based approaches are reviewed to

get the beneficial aspects of multiple approaches. This work can lead to analyzing

large scale source codes and software with better precision. Also, it can increase the

portability of syntactic and semantic approaches to assembly code clone detection.

Balazinska et al. [11] proposed a hybrid approach of characterization metrics

and DPM (Dynamic Pattern Matching). Their paper discusses only the detection of

whole methods, although the approach may also be applied to detect partial code

fragments. Characteristic metrics valued are computed for each of the method bodies

and compared to find clusters of similar methods. The token sequences for each pair

of similar methods are then compared by the Dynamic Pattern Matching Algorithm

of Kontogiannis et al., in order to identify cloned methods. Finally, the found cloned

methods are classified into 18 categories.

Tairas et al. [56] developed a plug-in for the Microsoft Phoenix framework for

automatic clone detection. They used AST nodes to generate a suffix tree, allowing

analysis on the nodes. A path is made from the root to a leaf for each suffix of a

string. This is done by evaluating each character in the suffix and generating new

edges when there are no existing edges that represent the character in the suffix tree.

A suffix tree is useful in string matching because duplicate patterns in the suffixes

will be represented by a single edge in the tree.

Figure 6: “abcdabe$”’s Suffix Tree (Tairas et al. [56])

Figure 6 depicts the suffix tree for the string “abcdabe$”. The non-empty suffixes

sorted by alphabetical order are:

abe$

abcdabe$

bcdabe$

be$

vcdabe$

19

dabe$

e$

$

The pattern ab is represented by a single edge. Two suffixes abcdabe$ and abe$

pass through this edge. The split at the end of this edge continues the two suffixes

where the next character differs between them. By looking at the suffixes passing

through the edge that represents the pattern ab, the location of this string pattern

can be determined. Using the method for searching for certain edges in the suffix

tree, duplicated functions can be determined.

Zeidman ([61], [62]) published two similar patents for detecting plagiarism in

source code at the file level. His invention fully compares the features of each pair of

source code. Each source file is represented by three arrays: an array of source lines,

an array of comment lines, and an array of identifiers. His methodology employs

five measures to identify clones: source line matching, comment line matching, word

matching, partial word matching, and semantic sequence matching. Figure 7 illus-

trates the array of source lines, the array of comment lines, and the array of unique

identifiers of the function named fdiv. Zeidman provided an equation for each of the

five measures and the similarity of two source files is the weighted sum of the five

measures.

20

Figure 7: Arrays of Source Lines, Comment Lines, and Unique Identifiers (Zeidman

[61])

Davis and Godfrey [22] proposed a novel technique to detect clones by analyzing

the assembly-version of source code. Their work complements token- and text-based

techniques for source code clone detection. First, the source code is normalized and is

reduced to a sequence of simple operations. Then, it is compiled into assembly code.

The comparison is performed on assembly instructions in functions. A search-based

approach is used to find maximal pairings of distinct matched assembly code instruc-

tions from two distinct assembly subsequences that occur in the same sequence. The

search-based algorithm examines each instruction by walking through each function

and each array of instructions within a function. Given two sequences of comparable

instructions P and Q, the comparison process compares every pair of instructions

in P and Q, assigns a positive weight to each matched pair, and assigns a negative

weight for each unmatched pair. Consequently, the subsequences with high sum of

weights are considered to be clones.

Keivanloo et al. [37] proposed a hybrid approach to improve the scalability of the

current existing clone detection tools. They devise a divide-and-conquer algorithm

21

that splits a given data set into n random subsets and extracts clones from each

subset independently. The drawback is that the algorithm will miss the clone pairs

that span across two different subsets. Their algorithm provides a trade-off between

recall and scalability.

2.2 Matching Assembly Code Fragments

Text-Based Approach

A text-based approach in binary clone detection considers the executable portion

of a binary as a sequence of bytes or lines of assembly code and compares every pair

of code segments to find identical sequences.

Jang et al. ([29], [30]) proposed a fingerprinting algorithm called BitShred based

on bloom filters to cluster malware samples. In addition, they stated that BitShred

can be used to detect software bugs resulting from copied code. However, they did

not have any success in their experiments.

BitShred consists of three phases: shredding a file, creating a fingerprint, and

comparing fingerprints. In the shredding phase, BitShred divides all executable code

sections into fragments called shreds (i.e., n-grams). Figure 8 shows an example of

shredding a byte sequence with n= 5.

Figure 8: Shredding a Byte Sequence with n = 5 (Jang and Brumley, [29])

Next, to improve storage efficiency and scalability, BitShred uses a Bloom filter

(Bloom, [14]) created from all shreds of a given file to represent the fingerprint of

the file. Then, BitShred calculates similarity between two fingerprints by using the

Jaccard index, which is defined as the size of the intersection divided by the size of the

union of the sample sets. In the case of comparing two Bloom filters, this is reduced

to the ratio

JR(A,B) = S(BFA∧BFB)
S(BFA∨BFB)

22

where S(BF) is the total bits set in the Bloom filter BF.

Finally, files having a similarity score higher than a threshold t can be clustered

together. Clustering is performed in two steps: first, malware samples with similarity

equal to 1 are clustered. Similarity between every pair of the remaining samples is

then calculated.

Token-Based Approach

Token-based binary clone detectors disassemble executable code segments and

partition lines of assembly into opcodes and operands. Opcode and operand types

may be generalized or filtered and the resulting sequence is scanned to find duplicates.

Schulman ([52], [53], [54]) whitelists “boilerplate” code in binaries to be analyzed

for litigation purposes. To address this, he designed a system to create a database of

previously analyzed binaries to recognize duplicate functions. This appears to be the

first work on detecting code clones at the functional level. In addition, this work was

designed to handle a large volume of assembly code.

The basic idea of the system is to create a hash of each function in the binary being

analyzed and to store it in the database. Identical hash values that occur in more

than one binary indicate a code clone. This approach will detect some functions

whose source code is identical, but will miss many others. Compiling source code

does not always produce an identical assembly each time. Stack memory addresses

may change, depending on the functions position in the binary. In addition, the

binary may be compiled as Unicode versus ASCII, resulting in different assembly

instructions. The source code may also have modifications such as different hard

coded values in its variables, even though prior to this modifications the source was

identical. To address these changes in the resulting assembly, the author normalizes

the instructions in the following manner:

1. Only the opcode, not the operands, are used in the hash.

2. Opcodes are converted to their mnemonics. For example opcodes 51 and 52

are instructions for push ecx and push edx. The hash is now performed on the

resulting generic opstring push instead of their numeric counterparts.

3. Location labels are added to the opstring as loc to add structure information

for a more accurate hash.

23

4. Windows API calls are included in a normalized format (again, wide vs. ASCII

formats are ignored).

5. Commonly occurring mnemonics such as mov, pop and push are ignored to

further handle minor code changes.

An example of the resulting opstring for a function is:

loc,[MessageBox],cmp,jnz,ret

This string is hashed and stored in the database.

Karim et al. [35] addressed the problem of classifying new malware into existing

malware families whose individual entries share common code. Their goal has been

to create phylogeny models of malware based on features of their binary code, such as

biologists create phylogeny models based on nucleotide, protein, and gene sequences

of organisms. They built the models to handle program evolution through code

rearrangements (instruction or block reordering). They experimented with an n-gram

comparison approach as well as its permutations, which they refer to as n-perms. They

argueed that permutations could include instruction, block, or subroutine reordering.

In such situations, the reordering can make sequence-sensitive techniques, such as

n-gram, produce undesirable results if they report similarity scores that are too low

for reordered variants or descendants. Experiments were performed on artificially

constructed permutations of worms as well as unrelated samples. This work evaluates

the use of n-grams versus n-perms for clustering malware samples into their respective

families.

The first step is to use the tokenizer to transform an input program into a sequence

of opcodes. Next, n-grams and n-perms are extracted from this sequence. An n-perm

would simply be an ordered n-gram. Subsequently, they create a feature occurrence

matrix with entries i, j that refer to the number of times a feature (i.e., a specific

n-gram or n-perm) occurs in program j. Then, they create a symmetric similarity

matrix where each i, j entry is the calculated similarity between programs i and j.

Similarity is calculated by using the tf ∗ idf weighting (van Rijsbergen, [57]) and

cosine similarity measure (Zobel and Moffat, [63]). This method makes features that

are common among many programs weighted lower and those features common within

a program weighted higher.

tokenizer → feature occurrence matrix extractor → similarity metric calculator

24

Walenstein et al. [59] presented a mechanism called Vilo to search a database

of previously analyzed malware binaries using a new malware sample as the search

string. They adapted techniques from their previous work (Karim et al., [35]) to

perform the similarity matching for the search.

In the Vilo method, whole programs are compared using “n-grams” and “n-perms”

extracted from disassembled binaries that have been unpacked and unencrypted.

They used a vector model for comparison. These extracted features are counted,

weighted, and converted into vectors that are then compared using their cosine simi-

larity measure (Zobel and Moffat, [63]). To perform a search using the Vilo method,

a new sample is compared to each existing feature vector in the database.

Metrics-Based Approach

Sæbjørnsen et al. [50] presented a general clone detection framework that operates

on binaries. It utilizes an existing tree similarity framework, models the assembly

instruction sequences as vectors, and groups similar vectors together using existing

“nearest neighbor” algorithms.

They first disassemble the input binaries by using a disassembler, such as IDA

Pro [2], and then create intermediate representations of the assembly code. Then,

a binary is partitioned into overlapping code segments that consist of a block of

contiguous assembly extracted from within a function. These regions are created

using a sliding window. Their method then creates a normalized instruction sequence,

abstracting the information of memory location and registers. Next, it performs

clone detection on the normalized structure sequence. They define two methods for

creating clone clusters. The first method is an exact match that uses a hash for each

code region, and a clone exists if there are any repeated hash values. The second

method is an inexact match, which extracts a set of features from a code region and

looks for other code regions with the same feature set. They count the number of

occurrences of each feature to create a feature vector for each region. Next, they use

locality-sensitive hashing (LSH) (Andoni and Indyk, [7]) on each region and perform

a distance calculation for clustering based on features for inexact matching.

Sæbjørnsen et al. utilized IDA Pro for disassembling the code. However, the rest

of the implementation has no reliance on it. After the disassembly, the instructions

are put into the ROSE intermediate representation (Schordan and Quinlan, [51]).

The normalized code regions and feature vectors are then extracted and stored in a

25

SQLite database. Finally, both the exact or inexact match detectors run on top of

the database.

Bruschi et al. [17] presented a technique to normalize assembly code to detect

polymorphic and metamorphic malware. The main objective of this work is based on

using a normalization technique to ease the comparison between malware samples.

The authors developed a prototype implementation on top of Boomerang, an open

source decompiler. The normalization is the process of transforming a piece of code

into a canonical form. Bruschi et al. used the following normalization techniques:

• Instruction meta-representation: This is a high-level representation of machine

instructions that mimics the semantics of assembly language (opcode, registers,

memory address, and flags).

• Propagation: It is used to propagate forward values assigned or computed by

intermediate instruction. Once an instruction defines a value, this variable is

used by subsequent instructions without being redefined. The purpose is to

generate high level expressions and to eliminate all temporary variables. The

following list illustrates a propagation of values in high-level representation of

assembly code:

• Dead code elimination: This technique consists of removing instructions that

are never used.

• Algebraic simplification: It simplifies arithmetical and logical operations.

• Control flow graph compression: A control flow can be heavily modified by

inserting fake conditional and unconditional jumps. As a result, its compression

is necessary to ease browsing and analysis.

Bruschi et al. stated that it is not possible to compare samples by matching byte

by byte in their formalized form. They adopted a method to measure the similarity

26

Metrics
m1: number of nodes in the control flow graph.
m2: number of edges in the control flow graph.
m3: number of direct calls.
m4: number of indirect calls.
m5: number of direct jumps.
m6: number of indirect jumps.
m7: number of conditional jumps.

Table 1: Metrics (Bruschi et al [17])

between different pieces of code. The method was introduced by (Kontogiannis et al.

[40]). A code is characterized by a vector of metrics’ values and a measure of distance

between different code fragments. Table 1 shows the metrics employed by Bruschi et

al.

These metrics identify the fingerprint of a code fragment as a 7-tuple (m1, m2,

m3, m4, m5, m6, m7). The fingerprint is used for code fragments comparison. For the

code fragments “a” and “b”, the comparison is represented by the Euclidean distance:√∑
(mi,a −mi,b)2 for i = 0 . . . 7, where mi,a and mi,b are the i

th metrics calculated on

code fragments “a” and “b”.

Structural-Based Approach

In software engineering, a program is considered as a set of components or code

blocks that are built to achieve computational tasks within computers and calculators.

A program consists of a set of instructions written in high- or low-level languages and

structured within blocks. The structural analysis of software is a process that is used

to characterize the execution schema of a program. Furthermore, it allows retrieval of

code information by browsing different parts of the code. The structural analysis can

be used to detect bugs within programs and to make comparisons between programs.

In this thesis, the second issue is of primary interest. Different structural analysis

techniques for code similarity detection will be discussed in this section, as well as

some works that are related to the detection based on structural analysis approach.

Dullien et al. [24] presented the results of research on executable code compar-

ison for attacker correlation. They implemented a system that can identify code

similarities in executable files. Dullien et al. based their approach on the struc-

tural comparison of executable files. The goal of the system is twofold: querying

for a particular feature within malicious code and recognizing similarities between

27

different malicious pieces of code. In order to query a large set of data, the authors

implemented a function that hashes different control flow graphs. Specifically, they

converted the set of edges in a control flow graph into a set of n-tuples of integers.

A suitable encoding of each set is then constructed as follows: Let M be the set of

all control flow graphs and Eg be the set of edges of a particular G belonging to M .

The graph is represented with the following function:

This function outputs a set of integers that represents a given graph in a simple

manner. Next, in order to encode the set of integers, the authors chose a Q5 vector⌊
1,
√
2,
√
3,
√
5,
√
7
]
to convert integer tuples into a real number:

emb (z) → z0 + z1
√
2 + z2

√
3 + z3

√
5 + z4

√
7

The hash, called MD-index, is computed by the following function:

Has(g) =
∑ 1√

emb(t)

where t ∈ tup(g)

Dullien et al. developed a matching algorithm based on the approximation to

maximum sub-graph isomorphism problem. The algorithm attempts to map between

nodes and edges by observing a list of characteristics:

• Byte hash: a traditional hash over the bytes of the function or a basic block

• MD-index of a particular function

• MD-index of source and destination of call-graph edges

• MD-index of graph neighborhood of a node/edge (a sub-graph that is originated

from a given node or edge)

• Small prime product: a simple way to compute a hash of mnemonics sequence.

This method ignores compiler-induced reordering of instructions.

28

Figure 9: System Architecture (Dullien et al. [24])

Figure 9 shows the architecture of the system, where different components fetch

data to perform desired computations. The system consists of four components:

• Unpacker is an unpacking component that removes encryption and obfuscation.

The system monitors the statistical properties of the memory. Once the memory

pages drops, the components assume that encryption/compression was removed.

It writes memory dumps into the database.

• Disassembly extracts the control flow graphs and call-graphs.

• Scheduler performs a rough comparison based on MD-indices of functions in dis-

assembly. It reduces the number of functions and blocks, which are susceptible

to be compared with analyzed chunks of a given binary.

• Comparison component performs the comparison algorithm by querying the

database. It writes the result of comparison back to the database.

Carrera and Erdlyi [19] addressed the challenge of having a large number of mal-

ware samples. They developed a system based on graph theory to rapidly and au-

tomatically analyze and classify malware based on its underlying code structure.

This work is the predecessor to (Briones and Gomez, [15])’s and shares much in

common with its underlying theory and implementation. After IDA Pro is used to

disassemble a binary, their tool exports a subset of the information into the Re-

verse Engineering Markup Language (REML). Carrera has continued with his work

29

on this tool and produced http://dkbza.org/idb2reml.html. Using this tool, they use

http://dkbza.org/pyreml.html to create a pythonic representation of the data that can

be queried during the comparison.

They used operating system and library calls in creating their adjacency matrices.

Here their work differs from (Briones and Gomez, [15]) who also used functions that

had similar CFG features. However, after their algorithm exhausts matches, they do

apply CFG signatures similar to the other paper.

Briones and Gomez, [15] designed an automated classification system for binaries

with a similar internal structure. They used graph theory to identify similar functions

that are used to classify malware samples. Their objective is to classify new samples

to previously analyzed malware families, thus reducing reverse engineering efforts.

Although their objective is different from the problem of matching code fragment

studied in this thesis, the way they identify similar functions is relevant.

The input for their comparison algorithm is an unpacked binary disassembled

with IDA Pro. The next step is to model binaries into adjacency matrices. For

example, in Figure 10, each directed edge represents one function calling another and

can be modeled as the following adjacency matrix. The rows represent the calling

functions and the columns the called functions. To build these adjacency matrices,

the algorithm identifies fixed points that consist of known API calls, function hashes,

and function call graphs (CFGs).

Figure 10: Directed Graph and Adjacency Matrix (Briones and Gomez, [15])

To compare two binaries, their method creates an adjacency matrix for each binary

using identified fixed points as the columns and unidentified functions as the rows.

These initial adjacency matrices have identical columns. They determine known API

calls as those identified by IDA Pro that are shared between the binaries. The function

hashes are unique CRC32 hashes shared between the binaries. Finally, the functions

CFGs are those that have a unique tuple with a minimum Euclidean distance. A tuple

for a CFG consists of a number of basic blocks, a number of edges, and a number of

subcalls.

30

The comparison algorithm, from each matrix, searches for the functions that have

identical column entries and are unique in their respective matrices. These identical

functions are removed from their matrices and are added as a column to both matrices.

This process continues until no more matches are found. The remaining rows are

unidentified functions with no match or functions that do not have a unique match.

Their method can potentially match more functions by adding further fixed points

that initially were not unique and by starting the match process over again. They

defined similarity as a ratio of matched functions to total functions, where 0 indicates

no matches and 1 indicates a complete match.

Implementation: Graph comparison on binaries is a computationally intensive pro-

cess. In their implementation, they suggested some techniques to improve efficiency.

First, they did not rely on IDA Pro for disassembly for efficiency reasons. Second,

when comparing rows they first split the row into blocks of 32 bits for comparison.

They applied filtering when analyzing new samples to reduce the number of com-

parisons. They filtered on file size, compiler type, number of API functions, number

of custom functions, and entropy and checksum.

Flake [27] presented a method that constructs an isomorphism between the groups

of functions that are used into two different versions of the same binary. He defined

a graph centric analysis. This technique consists of representing an executable as a

graph of graphs. The global structure is represented with a call graph, where each

function represents a node. An edge exists between two function nodes fi and fj

if and only if fi calls fj. Every function is represented with a Control Flow Graph

(CFG). The CFG must have the following properties: a unique entry point and one

or many nodes as an exit point (nodes that do not link to other nodes). In this work,

the notion of structural matching is defined. It lies in matching the functions in two

executable files by using the information generated from the call graph and different

control flow graphs. In order to achieve the matching between two versions of the

same executable, namely A and B, Flake considered a formal representation for each

version. A program is formalized as follows:

A = {{a1, a2 . . . an}, {ae1, ae2 . . . aem}}
B = {{b1, b2 . . . bl}, {be1, be2 . . . bek}}

The program is represented by the nodes and their edges (aei and bei are 2-tuple

containing two nodes that are directly connected). Flake based his work on finding

31

iterative mappings between node sets. The iterative mapping is used due to the fact

that the cardinality of the two sets is likely different. Each mapping considers two

different subsets with the same cardinality. An initial mapping is created. It maps

elements of a subset A1{a1, a2 . . . an} to B1{b1, b2 . . . bl}. This mapping is used to

create iteratively a sequence of mappings.

In order to compare the control flow graphs, Flake considered a heuristic matching

method. The initial step consists of finding isomorphism between two graphs. Once

that is done, a 3-tuple (αi, βi, γi) is associated with each node: αi represents the

number of basic control blocks, βi is the number of edges within a node, and γi is the

number of edges originating from the node. The mapping is denoted by a function

that maps a call graph to 3-tuple. The function is represented as follows:

s : C → N3

The inverse function is as follows:

s−1 : N3 → ϕ({c1, . . . , co})
This function retrieves the set of functions that map to a 3-tuple. The initial map-

ping is constructed by examining all 3-tuples that are generated from both program

versions A and B. The functions ai from A and bj from B are mapped to each other

if and only if they map the same 3-tuple and no other element in {a1, a2, . . . , an} or

{b1, b2, . . . , bl}. The mapping is formalized as follows:

p1(ai) = bj ⇔ |s−1(s(ai))| = 1 = |s−1(s(bj))| ∧ s(ai) = s(bj)

If the cardinalities of s−1(s(ai)) and s−1(s(bj)) are equal to one and ai and bj have

the same tuple, p1 maps ai and bj. Once the initial mapping is retrieved, improved

mappings pi are built iteratively by creating small subsets. The algorithm to generate

mappings is as follows:

• Take the ith element ai from Ai−1 and retrieve pi−1(ai)

• Let A′i be the set of all functions ak that have edges originating from ai leading

to ak in ϕ and B′i be the set of all functions bo that have edges originating from

pi−1(ai) leading to bo in ϕ.

• Construct p′i : A
′
i → B′i in the same way p1 was constructed

• pi(aj) := pi−1(aj) if aj ∈ Ai−1. If aj /∈ Ai−1 and the construction of p′i yielded

a match, pi(aj) := p′i(aj). If the construction of p′i did not yield a match and

aj /∈ Ai−1 then pi(aj) is undefined.

32

• Ai and Bi are the domain and image of pi. The iteration carries on until all the

nodes are browsed.

An implementation of the described method was developed as a plug-in for IDA

Pro. A corroborated investigation has shown that the author is involved in the

creation of the BinDiff tool.

BinDiff [3] is a tool that can compare binary files. It helps researchers find dif-

ferences and similarities in disassembled code. It can also port symbols, comments,

functions, and local names between disassembled code. BinDiff can be used to gather

evidences for code theft or patent infringement. The following figure shows a screen-

shot of BinDiff. It shows the changed functions.

Based on the idea of BinDiff, VxClass [4] can also be used to compare disassembly

code. VxClass can ignore byte-level changes such as instruction reordering or string

obfuscation so that it can discover small changes in the code. The user can upload a

sample of malware in a specific database. First, VxClass filters the sample malware

by sorting out items the user already analyzed. Then, it finds out if that security

incident under investigation is related to any previously analyzed item(s). Next,

33

it automatically removes the executable crypters from the code. Finally, VxClass

compares the uploaded executable to the database of stored malware, and informs

the user whether or not the binary is related to a piece of known malware.

Kruegel et al. [42] proposed a novel structural analysis technique to compare worm

structures. This technique is based on comparison of colored graphs to characterize a

worm’s structure. The contributions of the paper are twofold: (1) The description of

a fingerprinting technique based on CFG to detect similarities between variations of

worms. (2) The fingerprinting technique is improved by a coloring scheme. The au-

thors evaluated their prototype system to detect polymorphic worms. In this system,

the authors claim that their technique can be adapted to network intrusion systems.

Anju et al. [8] proposed a method for malware detection based on control flow

graph optimization. They claim that malware identification lies in syntactic as well as

semantic features in binaries. They defined architecture for detecting malicious pat-

terns in executable files. The architecture is broken into two components: Database

Management and Program Analysis. Both components are based on disassembling

executable binaries, optimizing assembly code, extracting the control flow graph, and

optimizing the control flow graph.

Behavioral-Based Approach

Comparetti et al. [21] developed a system called REANIMATOR that allows the

identification of dormant functionalities in malware. They exploit the fact that a dy-

namic malware analysis captures malware execution and reports its behavior. Their

basic idea is to run a large set of malware in a sandbox environment and identify

dynamically different malware functionalities. Once they are identified, the function-

alities can be detected within new malware. The REANIMATOR system consists

of three phases. The first two phases are responsible for generating a functionality-

aware model for different behaviors. The last phase uses constructed models to check

dormant behaviors.

Hybrid Approach

Wang et al. [60] presented a tool called BMAT that creates mappings between old

and new versions of binaries. This tool is used to generate profile information for real-

world applications and to illustrate how to propagate stale profiles from an old version

34

to a new version. In this work, the authors describe a binary matching algorithm of

stale profile propagation.

35

Chapter 3

Problem Definition

First, an informal description of the assembly code clone detection problem is pro-

vided. Then, a formal problem description and an example are followed.

The problem of assembly code clone detection is informally described as follows:

Given a large collection of previously analyzed assembly files and a specific target as-

sembly file or a piece of target assembly code fragment, a user would like to identify all

code fragments in the previously assembly files that are syntactically or semantically

similar to the target assembly file or the piece of target assembly code fragment.

Let A = {A1, . . . , An} be a collection of previously analyzed assembly files, where

each assembly file Af consists of m lines of assembly code, denoted by f [1 : m]. In

the rest of this section, the assembly code has been assumed to be normalized, and

the normalization process will be given in Section 4.1.3. A code fragment f [a : b] in

an assembly file Ai refers to a subsequence of assembly code from line a to line b in

Ai inclusively, where 1 ≤ a ≤ b ≤ m. Let |f [a : b]| denote the number of lines of

assembly code in f [a : b].

Two notions of clones are defined as follows. Intuitively, two code fragments are

an exact clone pair if they have the same number of lines of assembly code and the

same sequence of assembly code. Two code fragments that share similar instructions

with respect to the mnemonics and operands are considered as an inexact clone pair.

Definition 3.0.1 (Exact clone) Let f [a : b] and f [c : d] be two arbitrary non-

empty code fragments in A. f [a : b] and f [c : d] are an exact clone pair if |f [a :

b]| = |f [c : d]| and f [a] = f [c], . . . , f [b] = f [d]. The relation = denotes that two code

fragments are identical with respect to the sequence of mnemonics and operands

36

appeared in the line of assembly code instruction.

Definition 3.0.2 (Inexact clone) Let f [a : b] and f [c : d] be two arbitrary non-

empty code fragments in A. Let sim(f [a : b], f [c : d]) be a function that measures the

similarity between two code fragments f [a : b] and f [c : d]. f [a : b] and f [c : d] are

an inexact clone pair if sim(f [a : b], f [c : d]) ≥ minS, where minS is a user-specified

minimum similarity threshold 0 ≤ minS ≤ 1.

Note that an exact clone pair has sim(f [a : b], f [c : d]) = 1. In other words,

an exact clone pair is also an inexact clone pair with similarity equal to 1. Given a

similarity threshold minS, the inexact clone detection process will also identify all

exact clones. Thus, at first glance, the two notions of clones can be merged into one,

and it seems to be unnecessary to develop two different clone detection processes for

identifying exact and inexact clones separately. However, in real-life malware analysis,

a reverse engineer sometimes wants to efficiently identify only the exact clones. The

problem of assembly code clone detection is to identify all exact and inexact clones in

a given collection of assembly code files A.

Figure 11: Procedure sub 76641161

37

Figure 12: Procedure sub 7664133B

Example 1 Suppose the collection of assembly code A contains only two procedures

as shown in Figures 11 and 12. The code fragment f [25, 31] in sub 76641161 and

the code fragment f [51, 57] in sub 7664133B are an exact clone pair. Also, the code

fragment f [30, 36] in sub 76641161 and the code fragment f [56, 62] in sub 7664133B

are an inexact clone pair.

38

Chapter 4

The Clone Detection System

The proposed clone detection system consists of five major components, namely pre-

processor, clone region detector, clone merger, clone database, and clone visualizer.

Figure 13 provides an overview of the implemented components. The pre-processor

first disassembles a collection of binary files into assembly files. The clone region

detector parses procedures in the assembly files, partitions each function into a se-

quence of regions, and identifies the clones among the regions. The output of the

clone region detector is a collection of clone regions. Clone merger then merges the

smaller clone regions into larger size clones. Then, the resulting clones are stored into

a database, which is an XML file in our current implementation. Finally, the clone

visualizer takes the XML file as input and interactively shows the clones to the user.

A detailed description of each component is given below.

4.1 Pre-Processing

The pre-processor involves disassembling the binary code into assembly code, index-

ing the tokens from assembly code, and normalizing the assembly code for clone

comparison.

4.1.1 Disassembler

This step disassembles the input binary files into assembly files A by using a disas-

sembler, such as IDA Pro [2]. Each assembly file Af ∈ A contains a set of functions.

39

Pre Processing

Binary Files/
Malware

Disassembler
(IDA Pro)

Visualizer

Clone Detection
Results

Clone Search
Results

Post Processing

Duplicate Clone
Merger

Maximal Clone
Merger

Clone Detector/ Searcher

Exact Clone
Detector

Inexact Clone
Detector

Clone
Searcher

XML Report

XML Generator

Assembly Files

Token Indexer Regionizer

Normalizer

XML FIle

Regionizer

Figure 13: System Architecture

Each function contains a sequence of assembly instructions and each assembly in-

struction consists of a mnemonic and a sequence of operands. Mnemonics are used to

represent the low-level machine operations. The operands can be classified into three

categories, namely memory reference, register reference and constant values.

4.1.2 Token Indexer

In malware analysis, in addition to the ordinary clone detection process, a reverse

engineer often wants to search for a specific token, such as a specific constant value.

The objective of the token indexer is to parse the raw assembly files and create indexes

for constants, strings, and imports, with the goal of facilitating direct access to the

tokens. Specifically, the token indexer references tokens by their filenames and line

numbers. These indexes are then stored into a user-specified XML file. See the XML

file in Section 4.4 as an example. Figure 14 shows the search results on a string token

“RpcTransServerFreeBuffer”.

40

Figure 14: Search Capability (Search for String “RpcTransServerFreeBuffer”)

4.1.3 Normalizer

Two code fragments may be considered as an exact clone even if some of their operands

are different. For example, two instructions can be identical even if one uses the

register eax and the other, ebx. Thus, it is essential that the assembly code is

normalized before the comparison.

The objective of the normalizer is to generalize the memory references, registers,

and constant values to an appropriate level chosen by the user. For constant values,

the user has the flexibility to generalize them to V ALx, where x is an index number, or

to V AL, which simply ignores the exact constant value. . For memory references, the

user has the flexibility to generalize them to MEMx, where x is an index number,

or MEM , which simply ignores the specific memory reference. For registers, the

user has the flexibility to generalize them according to the normalization hierarchy

depicted in Figure 15. The top-most level REG generalizes all registers disregarding

their type. The next level differentiates between General Registers (e.g., EAX, EBX),

Segment Registers (e.g., CS, DS), as well as Index and Pointer Registers (e.g., ESI,

EDI). The third level breaks down the General Registers into 3 groups by size, namely

32-, 16-, and 8-bit registers. Finally, the bottom REGx level appends a unique index

to each distinct register based on their order of appearance in the code.

41

REG

REGIdxPtrREGGenREGSeg

REGGen32REGGen16REGGen8

REGx

Figure 15: Normalization Hierarchy for Registers

Figure 16 illustrates the normalized tokens for different registers based on the

hierarchy.

Figure 16: Register Normalization Example

Figures 17 and 18 show the normalized versions of sub 76641161 and sub 7664133B.

42

Figure 17: Normalized sub 76641161

Figure 18: Normalized sub 7664133B

43

4.2 Clone Detector / Searcher

The clone detector / searcher consists of four steps. The first step is to partition each

function into an array of regions. The second and third steps are to identify the exact

and inexact clones, respectively, among the regions created in the first step. Finally,

the fourth step is to search a specific target code fragment through a repository of

assembly files.

4.2.1 Regionizer

Each function is partitioned into an array of overlapping regions using a sliding win-

dow with a size of at most w statements and a step size s, where w and s are

user-specified thresholds. Figure 19 shows the extracted regions of the normalized

procedure sub 76641161 in Figure 17 with w = 15 and s = 1. Setting s = 1 ensures

that no regions will be skipped, i.e., no clones will be missed.

Figure 19: Regionization for w = 15 and s = 1

44

4.2.2 Exact Clone Detector

As mentioned in Definitions 3.0.1 and 3.0.2. A clone pair is defined as an unordered

pair of code regions that have similar normalized statements. A clone cluster is a

group of clone pairs. This step identifies the exact clone pairs among the regions by

comparing their assembly code instructions. Two regions are considered as an exact

clone pair if all the normalized statements in the two regions are identical. A naive

approach to identify the exact clone pairs is to compare every pair of regions. Yet,

this approach is too computationally expensive with complexity of O(n2), where n is

the total number of regions. Thus, a hashing approach was employed. Specifically,

two regions are considered as an exact clone pair if they share the same hash value.

As this approach uses a hash algorithm to map each region to an integer value, all

identical regions are mapped to the same bucket without false positives and false

negatives. The process requires only one scan on the identified regions.

Algorithm 1 provides the details of the method. First, an empty hash table H is

initialized. Each entry in the hash table contains a hash value v with a corresponding

array of regions having such a hash value. In Lines 4-6, the method iterates through

each region r, creates a hash value v, and adds the region r to the corresponding

array H(v). Each entry H(v) contains an exact clone cluster. In Lines 7-9, the

method iterates through each clone cluster and constructs an array of exact clone

pairs denoted by EC.

4.2.3 Inexact Clone Detector

The objective of the inexact clone detector is to identify the inexact clone pairs from a

given collection of regions. The detector first extracts some features from each region,

constructs a feature vector, and then groups the feature vectors by similarity. Two

regions are considered as an inexact clone pair if the similarity between their feature

vectors is within a user-specified minimum similarity threshold.

The feature vectors are constructed based on five groups of features from the

assembly instructions [50]. The first group of features includes all mnemonics. In

other words, each distinct mnemonic forms a feature. The second group covers all

operand types. The third group includes all combinations of mnemonics and the

type of the first operand. The fourth group includes all combinations of the first two

operands. Finally, the last group includes maxOperands number of distinct operands

45

Algorithm 1: Exact Clone Detector

input : set of regions R
output: set of exact clone pairs EC

begin
H ← ∅;
EC ← ∅;
foreach region r ∈ R do

v ← hash(r);
H(v) ← H(v) ∪ {r};

foreach H(v) ∈ H do
for i = 0 → |H(v)| do

for j = i+ 1 → |H(v)| do
EC ← EC ∪ {(ri, rj)};

return EC;

found in the code, where maxOperands ≥ 0 is a user-specified threshold.

In this section, two inexact clone detection methods that iteratively improve the

accuracy of clone detection are proposed in five steps.

Sliding Window Inexact Detection

Algorithm 2 provides an overview of the sliding window inexact detection method.

1. Compute medians: This step computes the median of each feature. The

medians serve as a point of division for grouping the feature vectors in the

subsequent steps. The feature values, however, may have a very large range.

Therefore, the medians are computed to avoid the negative impact of outliers.

2. Filter out features: This step filters out the features that have their median

equal to 0. The rationale is that some features may appear only once or a

few times in all extracted regions, implying that they are unimportant for the

purpose of region comparison. Thus, removing the features with a median of

zero can improve the accuracy and efficiency of the inexact clone detection

method.

3. Generate binary vectors: This step constructs a binary vector for each region

by comparing the feature vector of the region with the median vector. If a

feature value is larger than the corresponding median, then 1 is inserted into

46

the entry of the binary vector. Otherwise, 0 is inserted.

4. Partition into sub-vectors: The fourth step is to partition each binary vector

into a sequence of sub-vectors using a sliding window of size SBSize.

5. Hash sub-vectors: Given that the size of each sub-vector is SBSize, there

are 2SBSize possible combinations of binary values. For each sub-vector, a hash

with 2SBSize number of buckets is created to store the regions having the same

sub-vector values. The regions are hashed by computing the decimal number

of the sub-vector values. The inexact clone pairs are identified in this step

by keeping track of the frequency of region co-occurrences in all inexact hash

tables’ buckets. The region pairs with the number of co-occurrences above or

equal to the similarity threshold minS are considered as inexact clone pairs.

Example 2 Figure 20 shows a collection of features generated from a dataset after

the filtering process. For simplicity, just a small set of features are shown here. The

dashed rectangles show the sub-vectors of the feature vector with a user-defined sub-

vector of size 5. There are n − 5 + 1 sub-vectors for n extracted features after the

filtering process and 25 = 32 possible hash values (decimal numbers) for each sub-

vector that makes the size of each associated inexact hash table 32. Step 5 maps

the regions into these hash tables by computing the decimal number of their binary

vectors.

Figure 20: Step 3 - Sliding Window Inexact Detection Method with SBSize = 5

Two-Combination Inexact Detection

This method follows the same general steps, but the detailed process in step 3 is differ-

ent. Instead of creating sub-vectors with the user-defined length sliding windows, all

possible two-combination of the remaining features after the filtering process are con-

structed. Each two-combination vector acts as a sub-vector. Then, each feature vector

47

Algorithm 2: Inexact Clone Detector: Sliding Window Method

input : set of regions R
set of features F
similarity threshold minS

output: set of inexact clone pairs IC

begin
SBSize ← sub− vectors′size; Binary ← ∅;
Hk ← ∅;
M ← ComputeMedians(F); /* Step1 */

foreach m ∈ M do /* Step2 */

if m = 0 then
M ← M −m;

foreach r ∈ R do /* Step3 */

for k = 0 → length(M) do
if F [k] ≥ M [k] then

Binary[k] ← 1;

else
Binary[k] ← 0;

foreach r ∈ R do /* Step4 */

for i = 0 → length(Binary)− SBSize+ 1 do
for j = 0 → SBSize do

sub− vectori[j] ← Binary[i+ j];

foreach r ∈ R do /* Step5 */

foreach k = 0 → Numberofsub− vectors do
Hk ← Compute the decimal number;
R′ ← find other regions with the same hash value

foreach r′ ∈ R′ do
if r and r′ occurred more than the minS threshold then

IC ← IC ∪ {(r, r′)};

return IC;

48

is mapped into its sub-vectors. Sub-vectors have the same size as two-combination

which is equal to 2. In this case, the user does not have the flexibility to choose the

size of sub-vectors.

Example 3 Figure 21 shows all possible two-combinations of the features in Fig-

ure 20, each of which is a sub-vector. Let n be the number of features after the

filtering process. There are C(n, 2) = n×(n−1)
2

sub-vectors. Given that each sub-

vector is a binary vector of size 2, there are 22 = 4 possible hash values, implying

that each inexact hash table contains 4 entries. This method maps the regions into

sub-vectors based on their binary vectors generated from Step 3.

mov push

mov REGREG

mov REGMEM

mov movREG

mov MEM

mov VAL

mov REG

mov jnb

mov call

push REGREG

push REGMEM

push movREG

push MEM

push VAL

push REG

push jnb

push call

call REGREG

call REGMEM

call movREG

call MEM

call VAL

call REG

call jnb

jnb REGREG

jnb REGMEM

jnb movREG

jnb MEM

jnb VAL

jnb REG

REG REGREG

REG REGMEM

REG movREG

REG MEM

REG VAL

VAL REGREG

VAL REGMEM

VAL movREG

VAL MEM

MEM REGREG

MEM REGMEM

MEM movREG

movREG REGREG

movREG REGMEM

REGMEM REGREG

Figure 21: Step 3 - Two-Combination Inexact Detection Method

The two proposed inexact detection methods generate different numbers of sub-

vectors and different sub-vector sizes. These characteristics affect the efficiency and

scalability of the program.

The sliding window method considers only the sub-vectors with consecutive fea-

tures, while the two-combination method considers all possible two combinations.

Therefore, the set of sub-vectors generated by the sliding window method is a subset

49

of the sub-vectors generated by the two-combination method. As a result, the slid-

ing window method performs better than the two-combination method in terms of

scalability, but the two-combination method performs better in terms of recall rate.

Experimental results also support this observation.

Comparing with LSH Approach

Sæbjørnsen et al. [50] presented an inexact clone detection method to identify inexact

clone pairs by using the locality-sensitive hashing (LSH) to find the nearest neighbor

vectors of a given query vector. Their assumption on uniform distribution of vectors

in LSH method affects the number of false-negative errors, i.e., the recall rate. LSH

consists of m hash functions. Each hash function hi maps a vector v to a binary

vector by computing the dot product of v and a base vector bi. If the computed

result is negative, the vector will be mapped to 0. Otherwise, it will map to 1. The

base vector and vector v must share the same size. Using these parameters, the LSH

value lsh(v) of a vector v is defined as the following equation:

lsh(v) = (h1(v), h2(v), . . . , hm(v)) (1)

In brief, the LSH method splits a vector space into 2m sub-spaces by m base vectors.

These base vectors are chosen randomly and the distribution of vectors are not con-

sidered. If the distribution of vectors is lopsided, then LSH cannot split the vector

space efficiently, resulting in incorrect subspace assignment for some vectors. The

accuracy of finding the nearest neighbor problem using LSH depends on parameters

selection which is challenging in large dimension feature vectors. Also, due to the em-

ployment of randomization, the clone results produced by LSH are non-deterministic.

Some malware analysts clearly indicate that this non-deterministic behaviour is un-

acceptable, as it will be very difficult for the reverse engineers to produce a consistent

analysis on malware. To avoid the non-deterministic behaviour as in LSH, the pro-

posed methods employ fixed parameters derived from the data. The first one is the

number of subspaces which is the number of sub-vectors and the second parameter is

the sub-spaces dimensions.

50

4.2.4 Clone Searcher

Given a target code fragment, the Clone Searcher module uses the previously de-

scribed detection methods to search for the exact and inexact matching clones in a

collection of previously analyzed assembly files.

4.3 Post-Processing

4.3.1 Duplicate Clone Merger

The inexact clone detector may misclassify two consecutive regions to be a clone.

This step is to remove the clones that are highly overlapping consecutive regions.

This happens when the stride s is smaller than the windows size w. A user-specified

maximum overlapping thresholdmaxO is defined that indicates the fraction of allowed

overlapped instructions of two consecutive regions which can still be considered as a

clone pair.

Example 4 Figure 22 provides an example for this step. It shows two consecutive

regions with a window of size 10 and an overlapping ratio of 0.6. SupposemaxO = 0.5.

Since the overlapping ratio is above maxO, the clone pair is discarded.

Figure 22: Duplicate Clone Merger with w = 10, s = 4, and an Overlapped Size of

0.6

4.3.2 Maximal Clone Merger

Since the clone detection processes operate on regions, the size of the identified clones

is bounded by the window size w. As a result, a natural large clone fragment may

51

be broken down into small, consecutive cloned regions, making the analysis difficult.

The objective of this step is to merge the smaller consecutive clone regions into a

larger clone. All identified clone fragments are then stored in the user-specified XML

file.

Algorithm 3 provides the maximal clone merger design where CP is the set of

identified clone pairs and MC is the set of maximal merged clone pairs after the

merging process. The overlap function finds the overlapped clones in lines 4-5. Sup-

pose clone pairs c and c′ are a pair of regions {A,B} and {A′, B′} respectively. Two

clones are overlapped if each of their regions shares some instructions. Hence, c and

c′ are overlapped cloned pairs if {A,A′} and {B,B′} have overlapped instructions.

Algorithm 3: Maximal Clone Merger

input : set of clone pairs CP
output: set of maximal merged clone pairs MC

begin
MC ← ∅;
foreach clone pair c and c′ ∈ CP do

if overlap(region A ∈ c, region A′ ∈ c′) & overlap(region B
∈ c, region B′ ∈ c′) then

CP ← merge(c, c′);
MC ← CP ;
return MC;

Example 5 Figure 23 provides an example on the maximal clone merge. With win-

dow size w = 5, every region in lines 50 - 60 on the left corresponds to a region in

lines 105 - 115 on the right, represented by 6 clone pairs. Since all 6 clone pairs are

consecutive, they are merged into one clone pair as indicated by the dashed rectan-

gles.

52

Figure 23: Maximal Clone Merger with w = 5 and s = 1

4.4 XML Output

The clone detection results are stored in an XML file. The XML file contains four

nodes, namely parameters, assembly files, clone files, and token references. Refer to

Figure 24 as an example.

Figure 24: Sample XML File

• The parameters node stores the user-specified parameters, such as the window

size w, step size s, minimal similarity threshold minS, maximal overlapping

thresholdmaxO, normalization level and maximum number of distinct operands

maxOperands.

53

Figure 25: Sample XML File (parameters)

• The assembly files node stores a list of assembly files. The primary objective is

to assign a unique fileID to each assembly file for subsequent references. Some

basic statistics, such as the number of functions and the number of regions

found, are also stored in the corresponding node. Refer to Figure 26 as an

example.

54

Figure 26: Sample XML File (assembly files)

• The clone files node stores the clone search results. Specifically, the clones files

node stores a list of clone files, in which each clone file stores a list of clone pairs.

Each clone pair stores the location references for the clone pair. For example,

Figure 27 contains 8 pairs of clone files. File with fileID = 5 and File with

fileID = 1 share 4 clone pairs. The first entry, for example, indicates that lines

3-7 in fileID = 5 is a clone of lines 600-604 in fileID = 1.

55

Figure 27: Sample XML File (clone files)

• The token references node stores the token search results. Specifically, the

token references node stores three lists of tokens, namely constants, strings,

and imports. For example, Figure 28 contains 97 tokens. Specifically, the string

token PackedCatalogItem appears twice in line 388 and line 504 in file with

fileID = 4.

56

Figure 28: Sample XML File (token references)

4.5 Visualizer

A graphical user interface (GUI) has been implemented to allow the user to input the

required parameters, read the user-specified target code fragment or target tokens,

and interactively identify the matched clone fragments or tokens from the assembly

files. First, the user has to specify the set of parameters as shown in Figure 29

and Figure 30. This set consists of assembly folder path, XML report destination

path, window size, step size, maximal overlapping thresholdmaxO, minimal similarity

minS, maxOperands, register normalization level, choice of inexact detection method,

and sub-vector size, if the inexact detection is checked as sliding window method.

57

Figure 29: Clone Detection (Input Parameters)

Figure 30: Clone Search

In this particular example, the program parses the assembly files form Assembly

folder path and stores the clone results in clonepairs04.xml, which shows all the clone

files in Figure 31.

58

Figure 31: GUI (Clone File Pairs Found)

Next, the user clicks on a pair of clone files, say the second one with rpclts3.asm

and sccbase.asm. Then, a list of clone pairs in these two files is shown in Figure 32.

The cloned fragments in the two files are then highlighted in red.

Figure 32: GUI (Code Fragment of Clone Pair)

59

Chapter 5

Experimental Results

The objective of the empirical study is to evaluate the proposed assembly code clone

detection method in terms of accuracy, efficiency, and scalability. All experiments

were performed on an Intel Xeon X5460 3.16 GHz Quad-Core processor-based server

with 48GB of RAM running Windows Server 2003.

The experiments were conducted on three sets of binary files. The first dataset

is an assortment of DLL files from an Operating System converted into 18 assembly

files by IDA Pro [2]. The second dataset contains two well-known malware, Zeus

and Blaster. Zeus is a trojan horse that extracts banking information using man-in-

the-browser keystroke logging and form grabbing. Blaster is a computer worm that

spreads by exploiting a buffer overflow on computers running Microsoft Windows

simply by spamming itself to large numbers of random IP addresses. Table 2 shows

some basic information on the two malware disassembled by IDA Pro [2]. The third

dataset is an assortment of 70 malware obtained from the NNational Cyber-Forensics

and Training Alliance (NCFTA) Canada [5]. The files were disassembled using IDA

Pro [2]. The total size of these file these are more than 10 MB.

Name Type Size # of Functions # of LOC
Zeus Trojan Horse 9 MB 45954 594153
Blaster Worm 70 KB 13 2642

Table 2: Malware Specifications

60

5.1 Accuracy

To evaluate the accuracy of the proposed clone detection methods, some code frag-

ments were first selected from the 18 assembly files. Then, clones of the code frag-

ments were manually identified in the assembly files. Finally, the detection results of

the proposed system were compared with the manually identified clones in order to

compute the following three objective measures:

Precision(Solution,Result) =
nij

|Result| (2)

Recall(Solution,Result) =
nij

|Solution| (3)

F (Solution,Result) =
2×Recall × Precision

Recall + Precision
(4)

where Solution is the set of manually identified clone fragments, Result is the set of

code fragments in a clone detection result, and nij is the number of code fragments in

both Solution and Result. Intuitively, F(Solution, Result) measures the quality of the

clone detection Result with respect to the Solution by the harmonic mean of Recall

and Precision. As the goal is to evaluate the quality of the results with respect to a

manually identified solution, it is infeasible to perform the evaluation in this manner

on an extremely large collection of assembly files.

For the assortment of DLL files, Figure 33 shows the precision, recall, and F-score

for step size s = 1, maximum number of distinct features maxOperands = 40, min-

imum similarity threshold minS = 0.5 and minS = 0.8. The value of s is chosen to

be one to consider all possible regions in the datasets. Both the sliding window and

the two-combination inexact detection methods are evaluated. Experimental results

show a better precision for sliding window inexact detection when compared with the

two-combination method. By considering the fact that sliding window inexact detec-

tion has less number of sub-vectors, Figure 33 implies that a higher number of inexact

sub-vectors increases the number of false positives. In contrast, the two-combination

method yields a higher recall rate due to the reason explained in Section 4.2.3. The

precision and F-score are consistently above 75% for both inexact detection methods.

The recall is above 80% for the sliding window and 100% for the two-combination

method, suggesting that the clone detection methods are effective.

61

Figure 33: Accuracy (DLL files) with s = 1 and maxOperands = 40

To evaluate the precision of the second dataset (Zeus and Blaster), the first 10

regions were selected from each of the malware. For each selected region, the proposed

clone detection methods were used to search for its clones in the rest of the code.

Then, each of the identified clone in the result was manually examined in order to

compute the precision. With step size s = 1, maximum number of distinct features

maxOperands = 40, minimum similarity threshold minS = 0.8, and window size w

ranging from 20 to 80, the precision consistently stayed above 90%, suggesting that

the proposed methods are effective in identifying clones in malware.

Window Size: 20 40 60 80
of Exact Clones 18010 17225 17162 16971
of Inexact Clones (SW) 266335 272008 274346 759953
of Inexact Clones (TC) 285132 441575 736396 1053801

Table 3: Number of Clones (Malware Assortment)

The number of exact and inexact clones identified by the proposed methods in

the third dataset (malware collection) was also evaluated for different window sizes

for both the sliding window and two-combination inexact detection methods. Table 3

shows that there is a large number of exact and inexact clones in malware. The result

suggests that malware programmers share many codes at both regional and functional

levels. Also, the experimental results suggest that the two-combination method (TC)

can identify more clones than the sliding window method.

62

5.2 Efficiency

Figure 34 depicts the runtime for both exact and inexact clone detection methods

for a window size ranging from 20 to 80 for the malware assortment dataset. The

process took 26 to 30 seconds in total when the sliding window inexact clone detection

method is used and 41 to 68 seconds in total for the two-combination inexact clone

detection. In general, the runtime decreases as the window size increases, because

fewer number of regions results in fewer number of clones.

Figure 34: Runtime vs. Window Size (Malware Assortment)

5.3 Scalability

Figure 36 illustrates the runtime, in seconds, of each step for 10 to 70 malware files

with window size w = 40, step size s = 1, maximum number of distinct features

maxOperands = 40, and minimum similarity threshold minS = 0.8, for the two-

combination inexact detection method. The total processing time for the sample

malware assortment ranges from 35 to 980 seconds. Figure 35 shows the runtime

using the same dataset and settings for the sliding window inexact detection method.

In this case, the total processing time ranges from 8 to 258 seconds. As mentioned in

Section 4.2.3, the sliding window inexact clone detection method performs better in

terms of scalability, as it has fewer number of inexact sub-vectors.

63

Figure 35: Scalability (with Sliding Window)

Figure 36: Scalability (with Two-Combination)

64

Chapter 6

Conclusion and Future Work

In this thesis, we reviewed the source code clone detection techniques as well as

the feasibility of applying them to assembly code clone detection. Then, a metric-

based assembly code clone detection system was presented with novel ideas capable

of finding both exact and inexact clones. To evaluate the system, a comprehensive

experiment was conducted on real-life binary files obtained from an Operating System

and malware obtained from NCFTA Canada [5]. Experimental results suggest that

the implemented system can effectively identify exact and inexact clones in assembly

code.

The contributions of this thesis are summarized as follows. First, two efficient

and effective inexact clone detection method capable of finding type III clones are

proposed. Experimental results suggest that the two-combination inexact detection

method can eliminate all false negatives. Second, unlike the LSH approach employed

in Sæbjørnsen et al.’s work [50], our proposed clone detection methods are determin-

istic, which is an important property for malware analysis as specified by analysts.

Third, a flexible normalization scheme is implemented to normalize assembly instruc-

tion so that clone detection can be performed at different levels depending on the

purpose of clone detection to find type I and type II clones. Fourth, the capability

of searching code fragments through a code repository is added. Finally, a graphical

user interface is implemented to let users browse the identified clones.

The current implementation is a prototype system that evaluates the feasibility of

assembly code clone detection. The system can be further improved in the following

two directions.

65

1. Inexact clone detection: Though the currently implemented inexact clone detec-

tion produces reasonably high-quality results, the quality of the clone detection

process is sensitive to the user-specified parameters. One potential improvement

is to replace the hash-based approach by a cluster-based data mining approach.

2. Scalable implementation: In the current implementation, all computations are

performed in memory. To build a real-life clone detection system, the one must

develop a disk-resident version of the algorithm that stores the feature vectors

into a database, instead of regenerating the feature vectors every time.

Most of the works in the literature, including the method implemented in this

thesis, focus on identifying syntactic clones. Yet, a real research challenge is to iden-

tify the semantic clones that are syntactically different. This remains a challenging

research problem in the area of source code and assembly code clone detection.

66

Bibliography

[1] Re-Google. http://regoogle.carnivore.it.

[2] IDA Pro. http://www.hex-rays.com/products/ida.

[3] BinDiff. http://www.zynamics.com/bindiff.html.

[4] VxClass. http://www.zynamics.com/vxclass.html.

[5] National Cyber-Forensics and Training Alliance CANADA (NCFTA).

http://www.ncfta.ca.

[6] M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees with en-

hanced suffix arrays. Journal of Discrete Algorithms, 2(1):53–86, 2004.

[7] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate near-

est neighbor in high dimensions. In Foundations of Computer Science, 2006.

FOCS’06. 47th Annual IEEE Symposium on, pages 459–468. IEEE, 2006.

[8] S.S. Anju, P. Harmya, N. Jagadeesh, and R. Darsana. Malware detection using

assembly code and control flow graph optimization. In Proceedings of the 1st

Amrita ACM-W Celebration on Women in Computing in India, page 65. ACM,

2010.

[9] B.S. Baker. A program for identifying duplicated code. Computing Science and

Statistics, pages 49–49, 1993.

[10] B.S. Baker. On finding duplication and near-duplication in large software sys-

tems. In Reverse Engineering, 1995., Proceedings of 2nd Working Conference

on, pages 86–95. IEEE, 1995.

67

[11] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis. Mea-

suring clone based reengineering opportunities. In Software Metrics Symposium,

1999. Proceedings. Sixth International, pages 292–303. IEEE, 1999.

[12] H.A. Basit and S. Jarzabek. Efficient token based clone detection with flexible

tokenization. In Proceedings of the the 6th joint meeting of the European software

engineering conference and the ACM SIGSOFT symposium on The foundations

of software engineering, pages 513–516. ACM, 2007.

[13] I.D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detec-

tion using abstract syntax trees. In Software Maintenance, 1998. Proceedings.

International Conference on, pages 368–377. IEEE, 1998.

[14] B.H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-

munications of the ACM, 13(7):422–426, 1970.

[15] I. Briones and A. Gomez. Graphs, entropy and grid computing: Automatic

comparison of malware. Virus Bulletin, 2008.

[16] R. Brixtel, M. Fontaine, B. Lesner, C. Bazin, and R. Robbes. Language-

independent clone detection applied to plagiarism detection. In Source Code

Analysis and Manipulation (SCAM), 2010 10th IEEE Working Conference on,

pages 77–86. IEEE, 2010.

[17] D. Bruschi, L. Martignoni, and M. Monga. Code normalization for self-mutating

malware. Security & Privacy, IEEE, 5(2):46–54, 2007.

[18] E. Burd and J. Bailey. Evaluating clone detection tools for use during preventa-

tive maintenance. In Source Code Analysis and Manipulation, 2002. Proceedings.

Second IEEE International Workshop on, pages 36–43. IEEE, 2002.

[19] E. Carrera and G. Erdélyi. Digital genome mapping–advanced binary malware

analysis. In Virus Bulletin Conference, pages 187–197, 2004.

[20] R. Cilibrasi and P.M.B. Vitányi. Clustering by compression. Information Theory,

IEEE Transactions on, 51(4):1523–1545, 2005.

68

[21] P.M. Comparetti, G. Salvaneschi, E. Kirda, C. Kolbitsch, C. Kruegel, and

S. Zanero. Identifying dormant functionality in malware programs. In Secu-

rity and Privacy (SP), 2010 IEEE Symposium on, pages 61–76. IEEE, 2010.

[22] I.J. Davis and M.W. Godfrey. Clone detection by exploiting assembler. In

Proceedings of the 4th International Workshop on Software Clones, pages 77–

78. ACM, 2010.

[23] S. Ducasse, O. Nierstrasz, and M. Rieger. On the effectiveness of clone detection

by string matching. Journal of Software Maintenance and Evolution: Research

and Practice, 18(1):37–58, 2006.

[24] T. Dullien, E. Carrera, S.M. Eppler, and S. Porst. Automated attacker correla-

tion for malicious code. Technical report, DTIC Document, 2010.

[25] S. Dumais et al. Latent semantic indexing (lsi) and trec-2. NIST SPECIAL

PUBLICATION SP, pages 105–105, 1994.

[26] W.S. Evans, C.W. Fraser, and F. Ma. Clone detection via structural abstraction.

Software Quality Journal, 17(4):309–330, 2009.

[27] H. Flake. Structural comparison of executable objects. In Proc. of the Inter-

national GI Workshop on Detection of Intrusions and Malware & Vulnerability

Assessment, number P-46 in Lecture Notes in Informatics, pages 161–174, 2004.

[28] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt. Index-based code

clone detection: incremental, distributed, scalable. In Software Maintenance

(ICSM), 2010 IEEE International Conference on, pages 1–9. IEEE, 2010.

[29] J. Jang and D. Brumley. Bitshred: Fast, scalable code reuse detection in binary

code (cmu-cylab-10-006). CyLab, page 28, 2009.

[30] J. Jang, D. Brumley, and S. Venkataraman. Bitshred: Fast, scalable malware

triage. Cylab, Carnegie Mellon University, Pittsburgh, PA, Technical Report

CMU-Cylab-10-022, 2010.

69

[31] J.H. Ji, S.H. Park, G. Woo, and H.G. Cho. Source code similarity detection

using adaptive local alignment of keywords. In Parallel and Distributed Com-

puting, Applications and Technologies, 2007. PDCAT’07. Eighth International

Conference on, pages 179–180. IEEE, 2007.

[32] J.H. Johnson. Identifying redundancy in source code using fingerprints. In Pro-

ceedings of the 1993 conference of the Centre for Advanced Studies on Collabora-

tive research: software engineering-Volume 1, pages 171–183. IBM Press, 1993.

[33] J.H. Johnson. Visualizing textual redundancy in legacy source. In Proceedings of

the 1994 conference of the Centre for Advanced Studies on Collaborative research,

page 32. IBM Press, 1994.

[34] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a multilinguistic token-based

code clone detection system for large scale source code. Software Engineering,

IEEE Transactions on, 28(7):654–670, 2002.

[35] M.E. Karim, A. Walenstein, A. Lakhotia, and L. Parida. Malware phylogeny

generation using permutations of code. Journal in Computer Virology, 1(1):13–

23, 2005.

[36] R.M. Karp. Combinatorics, complexity, and randomness. Communications of

the ACM, 29(2):98–109, 1986.

[37] I. Keivanloo, C. K. Roy, J. Rilling, and P. Charland. Shuffling and randomization

for scalable source code clone detection. In Software Clones (IWSC), 2012 6th

International Workshop on, pages 82–83. IEEE, 2012.

[38] H. Kim, Y. Jung, S. Kim, and K. Yi. Mecc: memory comparison-based clone

detector. In Software Engineering (ICSE), 2011 33rd International Conference

on, pages 301–310. IEEE, 2011.

[39] R. Komondoor and S. Horwitz. Using slicing to identify duplication in source

code. Static Analysis, pages 40–56, 2001.

[40] K.A. Kontogiannis, R. DeMori, E. Merlo, M. Galler, and M. Bernstein. Pattern

matching for clone and concept detection. Automated Software Engineering,

3(1):77–108, 1996.

70

[41] J. Krinke. Identifying similar code with program dependence graphs. In Reverse

Engineering, 2001. Proceedings. Eighth Working Conference on, pages 301–309.

IEEE, 2001.

[42] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Polymorphic

worm detection using structural information of executables. In Recent Advances

in Intrusion Detection, pages 207–226. Springer, 2006.

[43] V.I. Levenshtein. Binary codes capable of correcting deletions, insertions. Tech-

nical report, and reversals. Technical Report 8, 1966.

[44] C. Liu, C. Chen, J. Han, and P.S. Yu. Gplag: detection of software plagiarism by

program dependence graph analysis. In Proceedings of the 12th ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 872–

881. ACM, 2006.

[45] U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.

siam Journal on Computing, 22(5):935–948, 1993.

[46] A. Marcus and J.I. Maletic. Identification of high-level concept clones in source

code. In Automated Software Engineering, 2001.(ASE 2001). Proceedings. 16th

Annual International Conference on, pages 107–114. IEEE, 2001.

[47] J. Mayrand, C. Leblanc, and E.M. Merlo. Experiment on the automatic detection

of function clones in a software system using metrics. In Software Maintenance

1996, Proceedings., International Conference on, pages 244–253. IEEE, 1996.

[48] C.K. Roy and J.R. Cordy. A survey on software clone detection research. Queens

School of Computing TR, 541:115, 2007.

[49] C.K. Roy, J.R. Cordy, and R. Koschke. Comparison and evaluation of code clone

detection techniques and tools: A qualitative approach. Science of Computer

Programming, 74(7):470–495, 2009.

[50] A. Sæbjørnsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su. Detecting code

clones in binary executables. In Proceedings of the eighteenth international sym-

posium on Software testing and analysis, pages 117–128. ACM, 2009.

71

[51] M. Schordan and D. Quinlan. A source-to-source architecture for user-defined

optimizations. Modular Programming Languages, pages 214–223, 2003.

[52] A. Schulman. Finding binary clones with opstrings & function digests: Part 1-

reverse engineering is an invaluable engineering tool. Dr Dobb’s Journal-Software

Tools for the Professional Programmer, pages 69–73, 2005.

[53] A. Schulman. Finding binary clones with opstrings & function digests: Part ii.

Dr. Dobb’s Journal, 30(8):56, 2005.

[54] A. Schulman. Finding binary clones with opstrings function digests: Part iii. Dr.

Dobb’s Journal, 30(9):64, 2005.

[55] D.M. Shawky and A.F. Ali. An approach for assessing similarity metrics used in

metric-based clone detection techniques. In Computer Science and Information

Technology (ICCSIT), 2010 3rd IEEE International Conference on, volume 1,

pages 580–584. IEEE, 2010.

[56] R. Tairas and J. Gray. Phoenix-based clone detection using suffix trees. In

Proceedings of the 44th annual Southeast regional conference, pages 679–684.

ACM, 2006.

[57] C. J. van Rijsbergen. Information Retrieval. University of Glasgow, 1979.

[58] V. Wahler, D. Seipel, J. Wolff, and G. Fischer. Clone detection in source code by

frequent itemset techniques. In Source Code Analysis and Manipulation, 2004.

Fourth IEEE International Workshop on, pages 128–135. IEEE, 2004.

[59] A. Walenstein, M. Venable, M. Hayes, C. Thompson, and A. Lakhotia. Exploiting

similarity between variants to defeat malware. In Proc. BlackHat DC Conf, 2007.

[60] Z. Wang, K. Pierce, and S. McFarling. Bmat: a binary matching tool for stale

profile propagation. The Journal of Instruction-Level Parallelism, 2:1–20, 2000.

[61] R.M. Zeidman. Patent no. 2008/0270991a1. us., 2008.

[62] R.M. Zeidman. Patent no. 7823127b2. us., 2010.

[63] J. Zobel and A. Moffat. Exploring the similarity space. In ACM SIGIR Forum,

volume 32, pages 18–34. ACM, 1998.

72

