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ABSTRACT 

 

Stocking exotic trout species in high mountain lakes was a common practice in Rocky 

Mountain Lakes in the 20
th

 century. Currently, restoration action to remove trout 

populations favours the conservation of native food webs. Meanwhile, little is known 

about the self-sustaining trout populations, particularly in our study area. We assessed 

impacts of stocking trout on naturally fishless foodwebs of mountain lakes. Results were 

applied to management goals in Waterton Lakes National Park. A comparison of mean 

abundances of zooplankton in fish and fishless lakes revealed differences in less than half 

the taxa encountered. Principle component analysis did not show an association between 

zooplankton community structure and fish presence. Paleolimnological analyses 

suggested an increase in relative abundance of large-bodied cladocerans, but statistical 

power was low. The results show the importance of identifying explicit restoration 

objectives because impacts may not be compelling. If restoration by trout eradication is 

pursued, demographic characteristics can aid in selecting which populations are more 

easily depleted by gillnetting. We used generalized linear models to examine four 

population characteristics associated with population decline: 1) catch per unit effort 

(CPUE), 2) proportion of females, 3) proportion of mature individuals and 4) length of 

mature individuals. There were significant differences between populations in CPUE and 

length at maturity, but not on the proportion of females or mature individuals. We thus 

incorporated the former characteristics into a basic assessment system and ranked the 11 

salmonid populations by their susceptibility to eradication. We presented a simple yet 

meaningful step in facilitating management actions commonly constrained by a lack of 

biological knowledge. 
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GENERAL INTRODUCTION 

 

Ecological restoration, aimed at repairing losses of native ecosystems due to 

anthropogenic disturbances, is an important component of current conservation efforts. 

Restoration differs from other conservation practices in that it requires the selection of a 

reference ecosystem as a target outcome. Yet, scientific attention directed towards at-risk 

species is not evenly distributed; listed aquatic invertebrates are ~1% as well studied as 

typical vertebrates (Strayer, 1996). This study explores the formation of restoration 

decisions in invertebrate-dominated aquatic ecosystems. 

 

High mountain lakes in western North America were commonly fishless, with faunal 

assemblages consisting of various invertebrate phyla. However, thorough and intense 

stocking with trout species has potentially left few examples of intact original food webs 

(Donald 1987; Bahls 1992). Though stocking has ceased in most regions, many fish 

populations have persisted (Armstrong et al., 2003). Hence, the restoration of mountain 

lakes to reverse past management practices has emerged as a current theme in aquatic 

conservation. Fish removal projects are or have been conducted in national parks in 

California, Montana, Wyoming and Alberta. Nevertheless, specific science-based goals 

that define the future state of the ecosystem are difficult to quantify in remote, aquatic 

ecosystems that lack an apex predator.  
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Waterton Lakes National Park (WLNP) (Alberta, Canada) provides an ideal landscape to 

determine ecosystem impacts of introduced trout. All 22 high mountain lakes were 

stocked in the 20
th

 century, but fish populations remain in only 13 lakes, allowing 

comparisons of food webs with and without exotic trout. These trout populations have not 

been monitored since 1975 (Anderson & Donald 1976), and zooplankton data have not 

been analyzed since that time.  

 

Comparisons of zooplankton communities have frequently been used to study the impacts 

of introduced trout, resulting in the prevailing dogma that these planktivorous fish shift 

zooplankton communities towards smaller-bodied taxa (Schindler & Parker, 2002; Eby et 

al., 2006). Yet the direct application of such findings to restoration decisions requiring 

the removal of introduced trout populations has rarely been discussed in the literature.  

 

If impact studies implicate restoration, the question of which populations to remove 

should be addressed by integrating physical lake characteristics, lake accessibility, 

management goals and fish population demographic characteristics. The latter can be 

hard to measure thereby limiting management action. Certain demographic 

characteristics, such as population size, age at maturity, and the proportion of 

reproducing individuals have been applied by conservation theory to predict a 

population’s extinction risk. In the case of exotic populations, these characteristics can be 

applied to identify which populations may be more easily eradicated, if they vary across 

populations. Knowledge of demographic characteristics of introduced trout populations is 

hence important in selecting populations for eradication. 
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In the first chapter, I will assess the impact of introduced trout populations on 

zooplankton communities in WLNP, using spatial and temporal comparisons of fish and 

fishless conditions. The second chapter will address the next logical step in the 

restoration of invaded systems, i.e. selecting the most suitable exotic populations to 

eradicate. Together, the chapters are intended to provide necessary biological information 

to advance management of invaded systems, using WLNP as a model. 
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ABSTRACT 

 

Restoration of high mountain lakes following decades of stocking with exotic trout 

species is a current practice in conservation biology. Several studies had previously 

reported a shift towards smaller zooplankton species following trout introductions. We 

assessed the potential impacts of stocking in mountain lakes in Waterton Lakes National 

Park (WLNP), Canada, by a spatial comparison of zooplankton in 10 fish and 9 fishless 

lakes, and a temporal comparison of cladoceran subfossil remains in pre and post-

stocking sediments in 6 lakes. No environmental variables, nor the taxonomic 

composition of zooplankton within lakes, were associated with fish versus fishless lakes. 

Although mean abundances of six out of 17 zooplankton taxa were statistically greater in 

lakes with fish, there was no difference in key taxonomic groups Daphnia and calanoid 

copepods. Lakes with fish also had greater overall mean zooplankton abundances and 

greater richness. Based on paleolimnological analyses, the introduction of fish explained 

only a modest, albeit significant (19%) amount of variation in zooplankton composition 

(inferred from cladoceran microfossils). However the dissimilarity of post-stocking to 

pre-stocking assemblages was not significantly different across fish and fishless lake 

classes. Results were applied to restoration goals identified by the Canadian government, 

with implications that: 1) the presence of a common exotic species does not imply that 

impacts are equal among affected systems, and 2) explicit restoration objectives should 

be specified, especially when results are not wholly supportive of restoration action. 
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INTRODUCTION 

The overarching goal of ecosystem restoration for Parks Canada, the governmental 

agency responsible for managing Canadian national parks, is to conserve ecological 

integrity, a term applied to the condition of a natural and undisturbed system. This goal 

can be assessed by quantifying: 1) changes in species richness, 2) the number and extent 

of exotics, and, 3) changes in trophic structure, such as faunal size class distribution and 

predation levels (Parks Canada and the Canadian Parks Council, 2008). Restoration 

efforts were preceded by studies that outlined the trophic interactions within high 

mountain lakes while giving evidence of impacts of trout generally supportive of theory 

(Schindler & Parker, 2002; Eby et al., 2006; Appendix 1). These studies posited that 

planktivorous trout, which are visual foragers, reduce or eliminate large zooplankton 

species through direct predation (Brooks & Dodson, 1965), resulting in a positive indirect 

effect on small zooplankton and phytoplankton. This alternation of responses on 

subsequent trophic levels follows classic trophic cascade theory (Carpenter et al., 1985), 

which has been extensively tested experimentally (Brett & Goldman, 1996). Yet the 

application of trophic cascade theory to natural lake ecosystems has not been 

demonstrated unequivocally (Drenner et al., 2002). Furthermore, introduced trout species 

vary in their degree of planktivory (Anderson et al., 1980; Dawidowicz & Gliwicz, 1983; 

Elser et al., 1995) and this might dampen or amplify such cascades in mountain lakes. 

 

Evidence of food web changes following trout introductions in natural lakes exists from 

spatial and temporal comparisons, including paleolimnological approaches. First, studies 
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comparing zooplankton across fish and fishless lakes consistently report lower 

abundances of large, conspicuous taxa, such as calanoid copepods, when fish are present, 

and higher abundances of small, inconspicuous taxa, such as rotifers and small 

crustaceans (Bradford et al., 1998; Knapp & Sarnelle, 2001; Donald et al., 2001; Ellis et 

al., 2002; Drouin & Sirois, 2009). Species assemblages were found to differ in 

composition in lakes with and without fish (Donald et al., 2001; Drouin & Sirois, 2009). 

Second, temporal comparisons in alpine lakes corroborated spatial analyses: abundances 

of large crustacean species (Hesperodiaptomus arcticus, Daphnia pulex) decreased 

following trout introductions while smaller taxa such as rotifers increased (McNaught et 

al. 1999; Schindler & Parker, 2002). The species composition shifted as large species 

were sequentially replaced by increasingly smaller species. Recovery of altered 

zooplankton communities following trout introductions is known to take 10 to 20 years 

following the disappearance of trout populations in mountain lakes (Donald et al., 2001; 

Knapp & Sarnelle, 2008). Finally, temporal comparisons through paleolimnological 

analyses of lake sediments before and after fish introductions, though less common, 

presented similar patterns. In oligotrophic lakes, smaller genera such as Bosmina, 

Leydigii, Alona and Chydorus were more abundant following establishment of fish 

populations (Brancelj et al., 2000, Liu et al., 2009).  

 

Given the clear trends in existing publications, we hypothesized that trout affect the 

structure and composition of mountain lake ecosystems through size-specific predation of 

pelagic zooplankton taxa. Further predictions were: 1) abundances of large zooplankton 

taxa would decrease after fish introductions, 2) abundances of small zooplankton taxa 
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would increase, 3) taxonomic richness would decrease due to the elimination of large-

bodied species, 4) body size would decrease through size-specific predation, and 5) an 

overall shift in community composition would occur.  

 

This chapter tests these predictions in the high mountain lakes in Waterton Lakes 

National Park (WLNP), Alberta, Canada. Spatial comparisons of zooplankton 

characteristics across 10 trout-present and 9 trout-absent (hereafter referred to as “fish” or 

“fishless”) lakes were supplemented by temporal analyses through a comparison of 

cladoceran crustacean microfossil abundances in pre- and post-stocking sediments. We 

then related our results to ecosystem integrity measures used to guide ecosystem 

restoration decisions. Thus, this study is an additional contribution to the literature on 

introduced predator impacts in aquatic ecosystems, but is distinguished by providing a 

direct link from theory to conservation practice, through multi-metric tests of changes in 

natural systems.  
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METHODS 

Study Site and Design 

WLNP (49.0458°N, 113.9153°W) protects 505 km
2
 of the southern Canadian Rockies. 

The weather is characteristic of mountain environments; the average snowfall is 481.5cm 

per year and an average of 192 days per year have a minimum temperature above 0°C. 

WLNP contains 22 high elevation lakes that range from 1524m to 2195m asl, of which 

19 were contrasted in this study. Physical characteristics of the lakes are shown in Table 

1.1. The lakes are representative of Rocky Mountain lakes in general, except WLNP 

lakes are on average deeper (Figure 1.1). The period of trout stocking began in the 1920s 

and ended in the 1980s, during which Salvelinus fontinalis, Oncorhynchus clarki, and 

Oncorhynchus mykiss, were introduced. Currently, trout populations are self-sustaining in 

12 lakes, 7 of which contain only O. clarki, 3 contain only S. fontinalis, 1 contains both 

O. mykiss and S. fontinalis, and 1 contains only O. mykiss. The remaining 9 are devoid of 

fish species. Study lakes were divided into two classes: fish and fish-less. Two fish lakes 

(BE, AL) were excluded from further analyses because their depth or area was notably 

greater than the rest of the lakes (Table 1.1) and their inclusion would render the classes 

less comparable.  

 

Data Collection 

Due to the lack of historical ecosystem data, impacts of fish were assessed through two 

means: (i) a spatial comparison of contemporary zooplankton composition across the two 
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lake classes, and (ii) a temporal comparison of cladoceran remains extracted from the 

tops and bottoms of sediment cores.  

 

Lake physical characteristics and hydrochemistry – We first compared physical and 

chemical lake attributes between lake classes currently with and without fish to verify 

that classes were generally similar, so that meaningful comparisons of trout impacts 

could be drawn. Water chemistry measurements were taken in 2011 and 2012 using a 

YSI multi-meter. Lakes were visited twice each year during the ice-free season to 

measure temperature, specific conductivity (SC), Total Dissolved Solids (TDS), 

Dissolved Oxygen (DO) and pH of surface waters. At each visit in 2011, surface water 

samples were taken for nutrient analysis of total phosphorus (TP), total nitrogen (TN), 

dissolved organic carbon (DOC) and total dissolved solids (TDS). Morpho-edaphic index 

(MEI) was calculated as TDS divided by the maximum depth. Samples were kept cold 

until they could be refrigerated and sent to the Biogeochemical Analysis Service 

Laboratory at the University of Alberta (Edmonton, AB, Canada).  

 

Contemporary Zooplankton – We compared zooplankton density, taxon richness and 

body lengths between fish and fishless lakes using the data from Barnes & Goater (2003, 

unpubl. data). Zooplankton were collected in the summer of 2003 by casting a standard 

zooplankton net (aperture size 165μm) into the lake and towing it horizontally towards 

shore. Up to four hauls were made in each lake, from north, south, east and west 

orientations. In the lab, 2mL subsamples were taken from each sample and the number of 

individuals of crustacean zooplankton and rotifera were counted and identified to the 
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finest resolution possible. Size information for copepod and cladoceran taxa, was 

collected by measuring the body length of a subset of the sample. Where possible, 50 

individuals were counted for each lake, but smaller subsets were counted for less 

abundant taxa. 

 

Historical Zooplankton – We compared relative abundances of cladoceran microfossils 

from two temporal periods using a paleolimnological approach. Surface sediment cores 

were successfully extracted from 12 study lakes in 2011 using a KB gravity corer with a 

tube diameter of 6.5cm. Cores were taken from the deepest basin of the lakes and 

extruded and sectioned in the field. The top 1cm of sediment represents the past c. 12 

years, and was sectioned into four 25mm intervals, which was repeated every 5cm 

downcore. The bottom-most 1cm interval was used to represent the pre-stocking species 

assemblages. Chronology for one lake (LO) was obtained from 
210

Pb isotope decay of 

freeze-dried sediments (Stewart, 2012, unpubl. data), measured with a Canberra Well-

Detector Gamma-ray Spectrometer (Canberra, Meriden, CT, U.S.A.) and the constant 

rate of supply model (Appleby, 2001). In LO, sediments formed at a mean rate of 

0.85mm per year, consistent with published sedimentation rates for high elevation lakes. 

The comparison of cladoceran microfossils was based on the assumption that the bottom 

sediments were formed previous to the initial introduction of trout. Sedimentation rates 

reported for Rocky Mountain lakes in several regions ranged from 0.5 to 2.5mm per year 

(Lamontagne & Schindler, 1994, Leavitt et al., 1994, Knapp & Sarnelle, 2008, Wolfe et 

al., 2001). We thus estimated that a sediment sample deeper than 10cm in a profundal 
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core was more than 100 years ago. Stocking commenced in the 1920s, so we extracted 

cores at least 10cm in depth. 

 

Cladocera exoskeletons preserve in the sedimentary record and can be utilized in 

paleolimnological analyses (Korhola & Rautio, 2001). Microfossil remains were 

extracted from the top and bottom sediment samples following standard methods 

(Korhola & Rautio, 2001; Velghe et al., 2012). First, 0.1 g of freeze-dried sediment was 

mixed with 50mL of 10% KOH and heated to 70°C for 30 minutes. Next, 5mL of HCL 

was added to neutralize the solution and the suspension was washed through a 38m 

sieve then transferred to a 15mL centrifuge. Two 0.05mL drops of the slurry were then 

pipetted onto opposite ends of a slide and set using a safranin-glycerine jelly. We 

concentrated sediment samples by heating slides to reduce water content, and then added 

more slurry. Cladocera body parts (headshields, carapaces and post-abdomens) were 

identified using standard references (Frey 1959, 1960, 1962, 1980; Goulden & Frey, 

1963; Chengalath & Hann, 1981; Sweetman & Smol, 2006; and Szeroczyn´ ska & 

Sarmaja-Korjonen, 2007). Slides were prepared and counted until a minimum of 40 

individuals was obtained for each interval.  Although generally larger count sizes are 

recommended (i.e. greater than 70 individuals), smaller counts of individuals are 

acceptable for low diversity samples (Kurek et al., 2010). 

 

Statistical Analyses 

Contemporary Zooplankton - Zooplankton characters selected for analyses were: density 

by taxonomic group, average taxonomic length, and taxonomic richness by lake. These 
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measures were averaged for fish and fishless lakes, then compared by Welch’s Two-

Sample T-Tests or Wilcoxon Rank Sum Tests, depending on whether or not normality of 

distributions was fulfilled. As a supplementary analysis, Principal Component Analyses 

(PCA) were used to show associations between lakes, fish or fishless lake class, 

zooplankton taxonomic composition, and environmental characteristics.  

 

Historical Zooplankton - Counts from the tops and bottoms of sediment cores were 

converted to relative abundances then Hellinger-transformed to reduce the importance of 

large abundances (Legendre & Gallagher, 2001). Initially, a PCA was run on the 

transformed abundances. The results justified subsequent analyses using constrained 

methods to isolate the affect of fish. Significance was tested using a randomization 

procedure that permutes all possible values of the test statistic (pseudo-F) under 

rearranged labels for the observations.
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RESULTS 

Lake Physio-chemistry 

Mann-Whitney tests showed that fish lakes did not differ significantly from fishless lakes 

in terms of maximum depth and elevation (W=21.5, p=0.060; t(16.78)=0.90, p=0.38) but 

were larger in area (W(11.4)=16.5, p=0.02, Figure 1.2). Lake classes were found to be 

similar in all chemical characteristics by t-tests and Mann-Whitney tests (Figure 1.2). 

Similar distributions of fish and fishless lakes around environmental gradients were 

observed in the PCA ordination (Figure 1.3a). Thus, overall, further comparisons of 

biological data across fish and fishless lake classes were deemed suitable. 

 

Contemporary Zooplankton 

The overall mean density of zooplankton was higher in the fishless lake class 

(W(219.1)=10749, p=0.0013), although few differences were found among the 17 

taxonomic groups encountered (Figure 1.4). Fish lakes had significantly higher mean 

densities of copepod nauplii larvae, and the rotifer Kellicottia (W(9.8)=12.5, p=0.0073 

and W(9)=6.5, p=0.0016, respectively). As well, two cladoceran taxa were exclusively 

present in fish lakes: Harpaticoida and Macrothricidae (Figure 1.4). Fishless lakes were 

not found to contain any taxonomic group in higher abundance than fish lakes, although 

one species of rotifer, Keratella hiemalis was unique to this class. Zooplankton richness 

was higher in fish lakes (t(18)=-2.69, p=0.016), however Shannon diversity did not differ 

(t(16.2)=-1.69, p=0.11), meaning that the evenness of individuals across taxa was similar 

between the two classes.  Body lengths of calanoid copepods were on average smaller in 
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fish lakes, while cyclopoid copepods and Daphnia were larger in fish lakes, although no 

statistical significance was detected.  

 

PCA revealed that communities were dominated either by calanoida, cyclopoida or 

rotifera (Figure 1.3b). The first PC axis (PC1) explained 44% of the variance in the 

dataset and is negatively associated with cyclopoid copepods; PC2 explained 31% of the 

variance and distinguished calanoid copepod dominance from rotifer dominance. The 

remaining taxonomic groups had little weight in the overall composition. Considering the 

distribution of samples scores from fish and fishless lakes, no obvious community 

patterns were evident from the PCA.  

 

Historical Zooplankton   

Cladoceran microfossils were counted and identified for four lakes with fish (LO, AK, 

CL, CR) and two fish-less lakes (RU and RL). Sufficient counts could not be made for 

the remainder of the cores due to extremely low microfossil concentrations. A total of 22 

littoral and pelagic cladoceran taxa, including species groups, were identified in the top 

and bottom sediments (Figure 1.5).   

 

Overall, the subfossil assemblage analyses show that fish and fishless lakes differed in 

zooplankton composition prior to the introduction of fish (Figure 1.5), but that fish lakes 

experienced greater, albeit statistically non-significant changes (M= 0.720, SD=0.269) 

than the fishless lakes (M=0.457, SD=0.273; t(2.04)=1.11, p=0.38), based on Bray-Curtis 

distances (Figure 1.6). Changes in cladoceran assemblages due to fish were inferred from 
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the PCA on microfossil abundance data (Appendix 2). The first two PCs explained 40% 

and 21% of the variation in the microfossil dataset, respectively. Species with high 

loadings on the first component were Alona rectangula (0.76), B. longispina (-0.42), and 

Bosmina spp (-0.30). The second component was associated with Daphnia pulex (0.48) 

and Chydorus cf sphaericus (-0.32). Thus, both components represented gradients from 

pelagic types (Bosmina and Daphnia) to littoral chydoridae species (Chydorus and 

Alona).  

 

PC1 divided currently fishless lakes from fish lakes while PC2 was associated with 

temporal changes in the fish lakes. The two fishless lakes RL and RU were closely 

associated and A. rectangula was the dominant taxon throughout all intervals. In contrast, 

pelagic taxa were present but varied in relative abundances across the lakes with fish 

present (Figure 1.7). Additionally, fishless lakes appeared to be less homogenous in their 

distribution in ordinal space, but when mean Bray-Curtis distances were tested across 

lake type, the larger distance observed in fish lakes was not significant (p=0.38, Figure 

1.6).   

 

The proximity of RL and RU top and bottom sediments suggested recovery of native 

faunal assemblages after the disappearance of fish populations (Figure 1.7). Changes in 

assemblages in fish lakes were evident on PC2. Two fish lakes, CR and LO shifted 

upward on PC2, towards higher importance of Daphnia species and lesser importance of 

Chydorus species. These two lakes showed little horizontal change along PC1, suggesting 

that Alona and Bosmina species were not affected by trout. AK did show a small 
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horizontal shift towards Bosmina species, as well as a minor shift towards Daphnia 

species. CL had a bottom assemblage characteristic of the currently fishless lakes (Alona-

dominated), but the top assemblage was more characteristic of lakes containing fish 

(Bosmina and Chydorus-dominated). 

 

Overall, no true change from the original composition was detected by paired sign tests 

on site scores (Table 1.2), though statistical power was low due to a small sample size. 

Three of the four fish lakes shifted upwards on PC2 from Chydorus species inhabiting the 

littoral zone towards a pelagic species, Daphnia. All lakes shifted slightly along the PC1. 

A power test on the PC1 scores showed that a sample size of 13 paired samples (top and 

bottom sediments) would have been needed to obtain t-test results at a significance level 

of 0.05. 

 

The effect of fish presence was tested as a constrained variable in a RDA (Figure 1.7), in 

which all bottom sediments, as well as top sediments of fishless lakes were assigned a 

fishless designation. Fish presence was a significant factor in the variance in cladoceran 

assemblages (p=0.03), explaining 19.4% of the total variance. Fish and fishless lakes 

were divided along a gradient of Bosmina-dominance to A. rectangula-dominance. One 

key exception to this trend is the surface sediment from Lone Lake (LO-T), which 

appeared to be associated with Daphnia.  However, our stratigraphic analysis (Figure 1.5) 

clearly shows that although both Daphnia taxa are present in the bottom sediments, their 

relative abundances are only a fraction of what they were in the modern sediments.   
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DISCUSSION 

Our results do not show marked differences between current and target ecosystems that 

typically drive restoration. According to Parks Canada, the target ecosystem is one that 

maintains ecosystem integrity, which is assessed by species richness, the presence of 

exotics and changes in trophic structure (Parks Canada and the Canadian Parks Council, 

2008). Overall, we have found that natural variability across mountain lakes in WLNP 

has probably maintained the ecological integrity on the landscape scale by varying the 

impacts of introduced trout.  

 

The predictions regarding fish impacts on zooplankton were only moderately supported. 

The linked predictions that larger taxa of zooplankton would be more abundant in the 

fishless state and that smaller taxa would be more abundant in the fish state were partially 

confirmed, but not across all measures. Abundances of nauplii and one rotifer, both 

smaller taxa, followed predictions of the trophic cascade theory, but cladocerans such as 

Daphnia, copepods and other taxa did not. Richness was enhanced in the presence of fish, 

but body size was not. Overall composition of zooplankton communities was not 

different in the spatial analyses, but appeared to change over time.  

 

An unexpected finding was the degree to which lakes vary, independent of the presence 

of introduced trout. Variation was evident in lake morphology and chemistry (Figure 1.3a 

and Table 1.1), contemporary zooplankton (Figure 1.3b), historical zooplankton (Figure 

1.7) and benthic macroinvertebrates. Considering widely variable food web composition, 

the impact of trout is likely dependent on the specific structure of each lake (Winder et 
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al., 2003). Hence, different impacts on native taxa across multiple lakes are expected to 

be antagonistic and result in muted overall impacts. Variation within a small geographical 

region indicates that temporal analyses may be more appropriate to identify 

anthropogenic impacts than a spatial comparison (Velghe et al., 2012).  

 

In mountain lakes, trout are generalists that prey on benthic invertebrates such as 

chaoborids and Gammarus, as well as large zooplankton such as daphnia and copepods 

(Schindler et al., 2002;Vander Zanden & Vadeboncoeur, 2002). We found evidence that 

trout diet in WLNP mountain lakes consists largely of adult and larval stages of terrestrial 

and aquatic insect species, through an analysis of stomach contents (Appendix 3). The 

analysis showed that trout fed intensively on a food type when it was available, but was 

not restricted to any one prey item. Carpenter et al. (1985) reported that, if other prey is 

unavailable, trout will exert stronger pressure on zooplankton, but otherwise, lake-

dwelling trout are not known to be effective planktivores when compared to invertebrates 

such as Gammarus. Therefore, the higher abundances of smaller zooplankton we 

observed, may have been due to trout predation on native zooplanktivores, such as 

calanoid copepods. The resulting shift to smaller-bodied zooplankton taxa is a common 

finding in the literature (Bradford et al., 1998; Knapp & Sarnelle, 2001; Donald et al. 

2001; Ellis et al., 2002). 

 

However, in lakes not dominated by calanoid copepods, trout likely reduced a more 

effective, native planktivore through predation or competition for resources. In our study 

lakes as well as other lakes (Carpenter et al., 1985), Gammarus lacustris, an amphipod, 
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was found to be an important structural component to mountain lake ecosystems. 

Weidman et al. (2011) showed that trout reduce predation by Gammarus on benthic 

invertebrates and integrate pelagic and benthic zones. Likewise, lower Gammarus 

densities could also relieve predation on large herbivores such as Daphnia (Schindler & 

Parker, 2002), which is consistent with the shift towards this species inferred from our 

paleolimnological analyses. The alleviation of predation is also consistent with the 

suggestion that trout increased the richness of small taxa (rotifera), possibly due to 

increased phytoplankton availability when larger-bodied Daphnia are reduced by 

Gammarus. A similar increase in richness has been reported by Donald et al (2001) in 

other Canadian mountain parks.  

 

Fish can also affect oligotrophic lakes by bottom-up processes, namely nutrient 

enrichment, rather than top-down predation (Simon & Townsend, 2003). Yet, the effect is 

debatable, as some research suggests that benthic invertebrates such as Gammarus, not 

fish, increase nutrient levels, resulting in higher concentrations in lakes without fish 

(Willhelm et al., 1999; Weidman et al., 2011). Whether the mechanism is top down, 

bottom up, or both, fish can cause taxonomic size shifts in zooplankton communities by 

replacing native planktivorous predators. However, the direction of the resulting shift is 

dependent on food web structure, and variation therein has likely masked the resulting 

changes on the landscape scale. 

 

Alternatively, the weak support for impacts induced by trout stocking in WLNP could 

simply be attributed to a lack of significant predation or competition on native food web 
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components. That is, the difference in predation pressure between natural, non-fish 

predators and introduced trout may be negligible. As previously discussed, trout have 

been shown to feed across many taxa as well as across trophic levels, resulting in a muted 

impact on any particular prey item. In addition, their utilization of renewable, 

allochthonous pathways minimizes impacts on aquatic, and certainly pelagic prey. This is 

consistent with Winder et al. (2003), who found that Daphnia galeata was not affected 

by trout due to the dominance of adult trout that feed mainly on benthic prey, not pelagic. 

We have found that mature trout in WLNP mountain lakes comprise the majority of 

individuals within populations, and that natural recruitment of juveniles is likely much 

lower than artificial recruitment during the period of stocking. Therefore, zooplankton 

species that were able to survive this period probably do not continue to experience 

intense levels of trout predation. Calanoid copepods may also have been able to survive 

the period of fish stocking by dormancy. Resting eggs are produced under suboptimal 

conditions such as high predation and cannibalism (Santer, 1998), when environmental 

conditions become favourable again they are able to re-colonize the lake. We also found 

that trout density (CPUE) varied up to five-fold across the fish lakes (Figure 2.1a), 

indicating that the intensity of predation by trout in the lower density lakes may have 

been insignificant.  

 

The intensity of trout predation can also be dissipated by predator evasion. For example, 

morphological adaptations to predation stress were observed in Daphnia, such as 

variation in body shape, size and caudal spine length (Ranta et al., 1993; Lampert, 1993). 

Behavioural predator evasion was seen in Hesperodiaptomus species that migrated along 
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vertical gradients to avoid diurnal periods of intense feeding by trout (Drenner & 

Hambright, 2002). Predator evasion can be further facilitated through habitat complexity, 

which offers refuge to prey species (Diehl, 1992; Warfe & Barmuta, 2004). Top-down 

predation was accordingly found to be more important in shallow lakes than deep lakes 

(Jeppesen et al., 1997). These mechanisms of predator evasion could explain reduced 

predation levels in WLNP lakes.  

 

A final explanation for the lack of impacts by trout is environmental control of food 

webs. Oligotrophic systems can be limited by nutrient availability, rather than top-down 

predation, blocking the potential trophic cascade by invaders (Simon & Townsend, 

2003). As well, lakes in WLNP may have been buffered from the effects of trout by their 

low water temperature and productivity. Recent work by Messner et al. (2013) revealed 

that cold and clear Rocky Mountain lakes were relatively unaffected by S. fontinalis; 

trout only stimulated increases in zooplankton richness and biomass in warmer lakes 

(>10C mean summer temperature). Furthermore, zooplankton species turnover and thus 

community composition, was also primarily driven by DOC and warmer lake 

temperatures.  

 

Caveats and Study Limitations 

We feel that two limitations of our research are notable to consider. First, the data used 

for the comparative analyses represent “snap shots” of dynamic ecosystems. Zooplankton 

abundances are known to fluctuate seasonally and annually, though we tried to 

compensate by using sediments that represent an accumulation of multiple years. Second, 
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a low number of cores was used in the paleolimnological analysis, which limited the 

statistical power of the results. However, extremely low cladoceran remains may not be 

unique to this study (Drake & Naiman, 2002). We were unable to reach the recommended 

number of samples (i.e. three times the number of species represented in the data) to 

properly use eigenvalue tests to detect patterns in PCA’s of assemblage structure data 

(Grossman et al., 1991). We determined that twice as many lakes would need to be cored 

in order to obtain a sample size capable of yielding significant results. 

 

Implications 

Our results have notable implications for the restoration of mountain lake ecosystems. 

We saw opposing assessments of ecological integrity depending on the criteria measured, 

that is: 1) species richness was enhanced following fish introductions, 2) introduced trout 

were the only exotic species encountered, and 3) no changes in trophic structure were 

seen, although the composition of species was marginally changed. If reduced taxonomic 

richness or changes in trophic structure and function are the more important criteria, 

restoration by trout removal is not recommended. On the other hand, if ecosystem 

impairment is assessed by the mere presence of an exotic species or slight shifts in native 

composition, then restoration of stocked mountain lakes is in order. WLNP managers 

should weigh the conservation benefits of removing exotics from ecosystems that are 

otherwise functionally intact with the costs of intensive restoration efforts. This study 

demonstrates the importance of stating clear restoration goals based on in-depth 

knowledge of the specific ecosystem, prior to forming decisions to restore. 
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Figure 1.1: Boxplots of physical and chemical lake characteristics of Rocky Mountain 

Lakes (R) and WLNP Lakes (W), showing median, 25% and 75% quantiles, maximums 

and minimums; data from Anderson, 1975. Depth was significantly greater in WLNP 

lakes (p=0.01). 
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Figure 1.2: Boxplots of physical and chemical lake characteristics for fish (Y) and 

fishless (N) lakes, showing median, 25% and 75% quantiles, maximums and minimums. 

Area was significantly greater in fish lakes (p=0.02). 
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Figure 1.3: Biplots of first two principle components extracted from a) physical and 

chemical lake characteristics, and b) zooplankton taxa, of 19 study lakes. Lake codes as 

per table1; circled text denotes lakes with fish.  
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Figure 1.4:  Mean densities ( standard errors, SE) of zooplankton taxa in mountain 

lakes of WLNP (after log transformation of densities plus one). Black bars are fishless 

lakes, grey bars are lakes with fish. Numbers after each taxon name represent the number 

of fishless lakes and fish lakes represented, respectively. Dotted lines separate broader 

taxonomic groups; *p<0.05 and **p<0.005.
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Figure 1.5: Stratigraph showing relative abundances of cladoceran microfossil remains in bottom (black bar) and top (white bar) 

sediments for six lakes for a) Alona spp, b) Chydorus – type species and c) the pelagic species Bosmina and Daphnia. 
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Figure 1.6: Bray-Curtis distances of cladoceran zooplankton communities extracted from 

top and bottom sediments of the four lakes with fish (light grey), the two lakes without 

fish (dark grey), and the means ( standard errors, SE) of the two lake types (black). 
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Figure 1.7: Biplot based on the redundancy analysis of the cladoceran microfossil dataset 

constrained by the presence of fish. Sites that currently contain fish are circled.
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Table 1.1: Physical characteristics of study lakes in WLNP, data from Anderson 1975. Horizontal line separates lake classes. 

Watershed acronyms are as follows: CL=Cameron Lake, CC=Cameron Creek, UWL=Upper Waterton Lake, BB=Blakiston Brook, 

BC=Bauerman Creek WBC = West Boundary Creek. Sampling codes describe types of sampling undertaken at each lake: F=fish, HC 

= hydrochemistry, C = Coring, Cl = cladocera count. 

Lake Code Lattitude  Longitude 
Elevation 

(m asl) 
Mean 

Depth (m) 
Max 

Depth (m) 
Area 
(ha) Watershed Fish Sampling 

Crypt Pond CP 49° 00' 85" N 113° 84' 70" W 1713 - 2 2.7 UWL N HC, C 
Upper Carthew CU 49° 02' 00" N 113° 59' 00" W 2195 5.9 13 4.35 CC N HC 
Lineham South LS 49° 05' 00" N  114° 04' 00" W 2165 8.2 17 5.78 CC N HC 

Lost LT 49° 09' 00" N  114° 09' 00" W 1875 3.9 12 1.57 BB N HC 
Ruby RB 49° 06' 00" N  114° 01' 00" W 2064 2.1 4.2 2.35 BB N HC, C 

Lower Rowe RL 49° 03' 00" N 114° 03' 00" W 1957 2.3 8 1.97 CC N HC, C 
Middle Rowe RM 49° 03' 00" N  114° 03' 00" W 2162 - 12 2.21 CC N HC 
Upper Rowe RU 49° 03' 00" N 114° 03' 00" W 2168 - 3 7.2 CC N HC, C 

Summit SU 49° 00' 00" N  114° 01' 00" W 1931 - 2 2.03 WBC N HC, C 

Akamina AK 49° 01' 00" N  114° 02' 00" W 1655 - 5 4.65 CL Y F, HC, C, Cl 
Alderson* AL 49° 02' 00" N  113° 59' 00" W 1811 21.5 60 10.19 CC Y F, HC 
Bertha* BE 49° 02' 00" N  113° 57' 00" W 1774 18.1 50.3 30.2 UWL Y F, HC 

Lower Carthew CL 49° 02' 00" N 113° 59' 00" W 2159 4.8 11 7.33 CC Y F, HC, C, Cl 
Crandell CR 49° 05' 00" N  113° 58' 00" W 1524 7.9 15.5 4.53 BB Y F, HC, C, Cl 

Crypt CT 49° 00' 00" N 113° 50’ 00" W 1963 16.9 44 13.44 UWL Y F, HC 
Goat GO 49° 10' 00" N 114° 05’ 00" W 1982 3.4 9.3 2.35 BC Y F, HC, C 

Lineham Hourglass LH 49° 05' 00" N  114° 04' 00" W 2111 10.4 23 12.64 CC Y F, HC 
Lineham North LN 49° 05' 00" N 114° 04’ 00" W 2170 11.6 29 18.96 CC Y F, HC, C 

Lone LO 49° 05' 00" N 114° 07’ 00" W 2027 5.4 13 2.53 BB Y F, HC, C, Cl 
Lower Twin TL 49° 08' 00" N 114° 09' 00" W 1927 3.6 8 2.72 BB Y F, HC, C 
Upper Twin TU 49° 08' 00" N 114° 09' 00" W 1963 5.1 13 6.44 BB Y F, HC, C 
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Table 1.2: Site scores for each lake on PC1 and PC2. The horizontal line separates fish 

lakes from fishless lakes. Only fish lakes were included in sign tests and no statistically 

significant results were obtained.

 

Lake	 PC1	fish	 PC1	no	fish	 ΔPC1	 PC2	fish	 PC2	no	fish	 ΔPC2	

LO	 -0.24920	 -0.23720	 -0.01200	 1.19777	 0.33283	 0.86494	
AK	 -0.48430	 -0.21500	 -0.26930	 -0.53287	 -0.64127	 0.10840	

CR	 -0.55000	 -0.54640	 -0.00360	 0.30194	 -0.03420	 0.33614	
CL	 -0.38780	 0.61860	 -1.00640	 -0.47708	 0.03543	 -0.51251	

RL	 0.51290	 0.39500	 0.11790	 0.10677	 -0.17576	 0.28253	
RU	 0.52210	 0.62140	 -0.09930	 -0.07226	 -0.04129	 -0.03097	
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CHAPTER 2:  

DEMOGRAPHIC CHARACTERISTICS IDENTIFY SUSCEPTIBILITY OF 

INTRODUCED TROUT POPULATIONS TO DEPLETION BY GILLNET FOR 
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ABSTRACT 

The introduction of fish to mountain lakes has created challenges for native invertebrate 

assemblages and resource managers who are faced with decisions on how to deal with 

disturbed aquatic ecosystems. While extensive research has illuminated the physical 

habitats and complex food webs of mountain lake ecosystems, little is known about the 

self-sustaining fish populations, particularly in our study area, Waterton Lakes National 

Park (WLNP), Canada. We used generalized linear mixed models to examine four 

population characteristics associated with the vulnerability of populations to depletion by 

gillnetting: 1) catch per unit effort (CPUE), 2) proportion of females, 3) proportion of 

mature individuals and 4) length of mature trout, as a proxy for age at maturity. There 

were significant differences between populations in CPUE and length of mature trout, but 

not in the proportion of females or mature individuals. We thus incorporated the former 

characteristics into a basic assessment system and ranked 11 salmonid populations by 

their susceptibility to eradication. The application of demographic characteristics to select 

introduced populations for eradication is a simple yet meaningful step in restoration 

commonly constrained by a lack of biological knowledge. 
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INTRODUCTION 

The stocking of salmonid fishes into historically fishless mountain lakes of western North 

America was so widespread in the twentieth century that it created a landscape in which 

almost all lakes have been affected (Bahls, 1992). In waters where introduced fish 

populations have become self-sustaining, native, fishless ecosystems have been replaced 

with novel systems dominated by large planktivores. If ensuing impacts are severe, 

resource managers may decide to restore the native ecosystems by removing introduced 

salmonid populations. Here, we investigate variability in demographic characteristics 

across introduced salmonid populations in Waterton Lakes National Park (WLNP), AB, 

Canada, and apply our results to restoration decisions. The goal is to rank the lakes 

according to their suitability for restoration based on demographic characteristics that 

may render them more susceptible to depletion and ultimately extinction. 

 

Gillnetting is a viable method of eradicating trout populations in mountain lakes, though 

success requires multiple years of netting, substantial resources and is constrained by lake 

morphology (Knapp & Matthews, 1998). Gillnets function by lethally entangling fish at 

the gills as they attempt to swim through the undetectable mesh. The successful removal 

of S. fontinalis from a small Sierra Nevada lake required 3679 net days over three years 

(Knapp & Matthews, 1998). Five additional lakes in Sierra Nevada were restored by 

gillnet from 1996 to 2003 (Vredenburg, 2004). The removal of the same species from 

Bighorn Lake in Banff required over 10,000 net nights over three years (Parker et al. 

2001). Other trout-removal projects occurred in the Devon Lakes system in Banff 
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National Park and an additional six lakes in Sierra Nevada, (Pacas, 2010, pers. comm.; 

Knapp et al., 2007); both spanned multiple years. Gillnets have also been used effectively 

to suppress trout population density in several mountain lakes under intense netting 

regimes (Gresswell, 2009; Rosenthal et al., 2012). Despite the sheer effort required, 

gillnetting is typically preferred over the application of piscicides such as rotenone, 

which have lethal affects on invertebrates and can prolong time to recovery (Anderson, 

1970). Gillnetting, in contrast, has little to no impact on non-target species.  

 

Given the substantial effort required to reduce fish populations and the number of 

mountain lakes affected by trout introductions, a simple method of prioritizing lakes for 

management would facilitate restoration decisions. Indeed, ranking systems are widely 

used for invasive non-native plants for which numerous infestations of the same species 

exist, rendering management priorities, exacerbated by limited resources, difficult to 

assign (e.g. Pheloung et al., 1999; Skurka Darin et al., 2011). Knapp and Matthews 

reported that success of gillnetting in mountain lakes is dependent on lake depth, surface 

area, outlet width and area of stream spawning habitat (1998). Though the biota of 

mountain lakes remains relatively unstudied, physical morphometric characteristics are 

usually known. Hence, we are interested in quantifying trout biology characteristics that 

influence the susceptibility of populations to over-exploitation by gill net. 

 

Conservation theory suggests that certain demographic characteristics increase a 

population’s extinction risk, specifically population size, proportion of breeding females, 

age-at-maturity, and body size at maturity. These characteristics can be reversed to 
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identify exotic populations vulnerable to depletion. First, as the effect of demographic 

stochasticity is stronger on smaller populations (Lande, 1988), population size is also 

negatively associated with extinction risk. Second, the proportion of females in a 

population has a similar association, particularly in sexually-reproducing organisms 

where females limit reproduction rates, such as in some salmonids (Blanchfield & 

Ridgway, 1997). Third, age-at-maturity has been used to predict extinction risk across 

multiple taxa (Hutchings et al., 2012), and is positively correlated with extinction risk in 

freshwater fishes (Anderson et al., 2011). Marschall and Crowder (1996) found that 

average size and age-at-maturity affected brook trout population viability; populations 

reacted most negatively to factors that decreased the survival of large juveniles and small 

adults, and removing large mature individuals was not necessarily detrimental to the 

persistence of the population because brook trout can reproduce at a small size (1996). 

Finally, body size is also a factor in the efficiency of gillnets, since catchability generally 

increases with fish size (Jensen, 1995; Finstad et al. 2010; Borgstrøm et al., 2012). 

Individuals that mature at a large body size are thus easier to remove than individuals that 

mature at a smaller body size.  

 

We therefore examined variation in population density (in lieu of population estimates), 

the proportion of females and mature individuals in the population, and the length of 

mature individuals, as a proxy for age-at-maturity, across 11 previously stocked lakes in 

WLNP. We assumed that trout populations that are characterized by low density, few 

females, few mature individuals, and a large body size at maturation, would be more 

amenable to eradication by gillnet. 



 

 

39 

 

MATERIALS AND METHODS 

Study Site 

WNLP is home to 22 high elevation lakes that were stocked with salmonid species at 

different frequencies and intensities from the 1920s to the 1980s. Presently, 11 lakes 

retain trout populations that have become self-reproducing. Refer to Materials and 

Methods in Chapter 1 for further information on the study site (Table 1.1). 

 

Data Collection 

Trout populations - Trout populations in twelve mountain lakes were sampled, but two 

lakes were confirmed fishless. All lakes were sampled twice in the ice-free season, 

between July and September, 2011, except for Crypt lake (CT), which was sampled in 

July and August, 2012. Spring sampling occurred between June and July, summer 

sampling occurred in July and August. Multiple visits were made to quantify seasonal 

variation.  

 

Between one and five monofilament gillnets were set in each lake depending on lake size 

(manufactured by Lundgrens Fiskredskapsfabrik AB, Stockholm, Sweden). The 

overnight bottom sets optimized periods of high trout activity and we aimed for a 

consistent net duration of 14 hours. Nets were 30m long, with five 6m panels of different 

mesh gauge (18.5mm, 25.0mm, 38.0mm, 43.0mm and 55.0mm), arranged sequentially. 

The nets were set perpendicular to the shoreline, with one end secured to a fixed feature 

on shore and the deep end anchored to the substrate. The orientation of the smallest mesh 
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was alternated equally between lake-end and shore-end to reduce bias towards fish size. 

Nets were spaced evenly around the perimeter of the lake and all shoreline types were 

covered as best as possible. Locations were marked using GPS. 

 

In the morning, nets were collected from an inflatable raft. Fish were measured to the 

nearest millimetre, weighed to the nearest gram, identified to species, and assessed for 

sex and maturity. Sex and maturity were determined by dissecting each fish and 

observing gonads. Each fish was assigned a unique number; the corresponding mesh size 

and net was recorded. A subsample of the catch representing the range of sizes caught 

was sampled for stomach contents and age determination.  

 

Statistical Analyses 

We used generalized linear models (GLMs) to assess variation in the four demographic 

characteristics (density, length of mature individuals, proportion of females and 

proportion of mature individuals) across populations. The characteristics were calculated 

for each net, so each lake was represented by multiple datapoints. Catch per unit effort 

(CPUE) was used as a proxy for density and calculated as a ratio of number of 

individuals caught to duration of net set. Fork length of mature trout, a proxy for age-at-

maturity, was the mean fork length of only the mature fish in the catch. Proportions were 

calculated as the number of female individuals and mature individuals divided by the 

total catch per net. CPUE and length data were normally distributed hence were modeled 

with a Gaussian distribution. Data for the proportion metrics were not normally 

distributed, so a binomial distribution was applied, weighted with the number of fish 
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caught. Explanatory variables other than population included in the model were fish 

species, sampling period, and their interaction. The Akaike Information Criterion (AIC; 

Akaike, 1973) was used to select among the ten models for each demographic 

characteristic; the lowest AIC value represents the most parsimonious model and models 

within 2 ΔAIC were ordered by the number of variables (Burnham & Anderson, 2002). 

All statistical analyses were performed in R Statistical Software (R Development Core 

Team, 2012).  

 

Ranking Lakes for Trout Eradication 

We used the above analysis of demographic characteristics to indicate suitable factors on 

which to rank populations for removal. Lakes were ranked from one to eleven for each 

characteristic applied, where one represents the condition of the population that is most 

amenable to eradication. Scores for each characteristic were summed for each lake, 

yielding a final ranking of lakes by their suitability for restoration.  

RESULTS 

Fifty nets were set in 12 lakes in 2011, plus an additional eight nets in the remaining lake 

(CT) in 2012. A total of 1369 trout were caught in ten of the lakes sampled. Two lakes 

yielded no fish. Three species were represented: Oncorhynchus clarki (Cutthroat trout), 

Salvelinus fontinalis (Brook trout), and O. mykiss (Rainbow trout). All lakes contained 

exclusively either O. clarkii or S. fontinalis, except Little Akamina Lake, in which a 

small number of O. mykiss were caught. No further analysis was done on this species. A 

combined total of 706 S. fontinalis were caught in CR, TU, TL and AK, while 649 O. 
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clarki were caught in LN, LH, CL, AL, GO, LO and CT (lake acronyms defined in Table 

1.1). Gillnetting confirmed an absence of fish in LS and CU.  

 

Demographic Characteristics of Trout Populations 

We found that population was the most important variable explaining the variation in two 

demographic characteristics: CPUE and fork length of mature fish. For the GLMs based 

on CPUE data, the best-fit model included population and season and explained 83% of 

the variability in the dataset (Table 2.1; r
2
=0.83, F(11,46), p<0.001). Removing the 

season variable revealed that the variation across populations was far more important 

than that across seasons (r
2
=0.77, F(10,47)=15.43, p<0.005). CPUE was consistently 

higher in the spring than in the summer (Figure 2.1a).  When averaged over season, 

CPUE ranged from 0.63 (LH) to 1.71 (CL), except in two lakes where CPUE was much 

higher (TU=2.49, TL=2.59; Figure 2.1a). Correlation analysis showed that CPUE was not 

affected by variable set durations (r(52)=0.060, t=0.45, p=0.7). 

 

The model that best explained fork length of mature trout included only population as an 

explanatory variable (Table 2.1; r
2=

0.81, F(10,47), p<0.001). Average values were 

distributed evenly across a range of 195.2mm (TU) to 292.2 (LN), but mature trout were 

far larger in CT (327.4mm; Figure 2.1b). 

 

Variation across population was not evident in the remaining two demographic 

characteristics: the proportion of females and the proportion of mature trout (Table 2.1 

and Figures 2.1c and d). GLMs revealed that the best model for both characteristics was 
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the null model, indicating that variation was also not evident across season or species 

(Table 2.1). 

 

 

Ranking Lakes for Trout Eradication 

Our ranking system identified two lakes, Lineham Hourglass (LH) and North Lineham 

(LN), as the most suitable for trout eradication by gillnet (Table 2.2). The evaluation 

employed CPUE and length of mature individuals at equal weights, as our GLMs 

suggested that population had a similarly strong influence on both. We excluded the 

proportion of females and mature individuals from the assessment because we found no 

evidence of significant variation across populations (Table 2.1). AL, LO, CT, CR and AK 

were the next highest-ranked lakes, followed by CL and GO. TU and TL were by far, the 

least appropriate lake for restoration by trout removal (Table 2.2). 

DISCUSSION 

Demographic Characteristics of Trout Populations 

Our results indicated that variation in two demographic characteristics (CPUE and fork 

length of mature individuals) of WLNP trout populations was explained by population-

level differences. These characteristics are therefore pertinent to the selection of 

introduced populations for removal in the event of lake restoration.  

 

The finding that CPUE and fork length at maturity varied across populations was not 

unexpected given the substantial variation in lake morphometry (Table 1.1), chemistry 

(Figure 1.3b), and food web composition (zooplankton communities, Figure 1.3a) 
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(Chapter 1). Stocking histories and fishing use also differed from lake to lake and are 

further sources of variation. Similar ranges in density (<0.1-6.8 fish hr
-1

 per 30.5m net) 

and mean lengths (11-56cm) were reported for S. fontinalis in 183 Rocky Mountain lakes 

in Wyoming, USA (Chamberlain & Hubert, 1996). Lacustrine populations in the eastern, 

native range also demonstrated impressive variation in CPUE and mean length (Lachance 

& Magnon, 1990; Quinn et al., 1994; Magnan et al., 2005).   

 

The reported variation in these stocked populations was generally attributed to lake 

morphometrics (size and elevation of lake) and the density of other fishes (Chamberlain 

& Hubert, 1996), while fishing intensity, the density of competitors and community 

complexity explained variation in density in the native range (Lachance & Magnon, 

1990; Quinn et al., 1994; Magnan et al., 2005). Growth rate of Alberta populations was 

related to amphipod abundance, productivity, water temperature and negatively related to 

elevation (Donald et al. 1980). Variation in the eastern distribution was explained by 

competitor biomass, community complexity, salmonid diversity and fishing intensity 

(Lachance & Magnon, 1990; Quinn et al., 1994; Magnan et al., 2005). 

 

O. clarki populations display similar variation in CPUE and body length, but perhaps for 

different reasons. In the Bighorn Mountains of Wyoming, mean total length ranged from 

220-425mm and density from 0.4-2.4 fish net
-1

 hour
-1

, across 19 lakes (Bailey & Hubert, 

2003). Unlike S. fontinalis, O. clarki mean length was not associated with environmental 

factors but with density and lake accessibility (Bailey & Hubert, 2003). Meanwhile, 

accessibility was the only factor associated with CPUE. In the absence of further studies 
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on lake populations, spatial variability in size at maturity was observed O. clarki in 

Montana streams (110mm to 180mm, Downs et al., 1997). Overall, the demographic 

characteristics of density and length, of both S. fontinalis (in novel and native habitats) 

and O. clarki, are spatially variable due to physical and chemical lake attributes, food 

web composition, fishing intensity and the density of other fishes. 

 

Though population explained most of the variation in WLNP trout density, season also 

had an effect. Densities were consistently lower in the summer, which could be due to 

decreased activity in the littoral zone during the later sampling period. During the period 

of summer stratification, O. clarki reportedly avoid near-surface waters but are nearer to 

the surface when lakes are mixed (spring and fall) (Nowak and Quinn, 2002; Baldwin et 

al., 2002). A similar trend in WNLP’s dimictic lakes could be expected to reduce the 

efficiency of shoreline gillnet sets in the summer. Densities could also have been reduced 

by efficient gillnetting in the spring sampling period, leaving reduced numbers of trout 

vulnerable to gillnets in the summer.  

 

The proportion of females or of mature individuals did not vary across populations. 

Rather, our results suggested a high amount of variability within each lake, particularly 

for the proportion of females (Figure 2.1c). Though the mean values for both species 

were comparable to reports by Downs et al. (1997) and Meyer et al. (2003), they do not 

describe the variation within each lake. Despite literature support for these factors 

weighing heavily on extinction risk due to female-limited reproductive strategies 

(Blanchfield & Ridgway, 1997), we did not find the proportion of females or of mature 



 

 

46 

individuals to be useful in predicting population decline. These factors were thus omitted 

from our ranking of populations for depletion.  

 

Management Implications 

For aforementioned reasons, only trout density and fork length of mature trout were used 

in a ranking system to distinguish populations with higher susceptibility to population 

depletion by gillnet. Similar assessment tools have been principally developed for 

invasive land plants, where ecological gains can be optimized by prioritizing populations 

for management action (e.g. Pheloung et al., 1999; Skurka Darin et al., 2011). The 

management of freshwater fishes has also recently benefited from modifications of such 

tools to aquatic invaders. For example, Copp et al. (2009) developed the Fish 

Invasiveness Scoring Kit (FISK) to distinguish potentially invasive and non-invasive 

species, which was used as a pre-assessment for the more instructive modular assessment 

tool by Britton et al. (2011). The latter incorporates species prioritization, population-

level risk to receiving waters, management action impacts and costs of management 

actions, to assess introduced fish populations for management priority. Such systems are 

effective because they can be molded to fit the values of a particular region while 

retaining the structure needed to maintain transparent decision-making in governmental 

organizations. Even within the umbrella of national mandates, regions may value 

resources differently (e.g. angling value) and managers can assign higher weight to the 

criteria that have greater importance in their particular jurisdiction. A downfall to the 

majority of ranking systems is that they are impact-based, which is impractical in 

situations where impacts are equal across the landscape, such as WLNP. Fine-tuning 
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existing assessment tools to hone in on demographic differences that affect management 

action success will improve their practicality in these landscapes. 

 

We were able to identify demographic characteristics that varied across introduced trout 

populations in WLNP, and to apply them to indicate populations that are most susceptible 

to eradication. Our cursory ranking system specifically identified Lineham Hourglass 

Lake (LH) and North Lineham Lake (LN) as top candidates for trout depletion, based on 

demographic characteristics that had not previously been measured in WLNP. These 

lakes have a similar combination high density and low size of mature trout. They also 

represent similar points on environmental gradients including elevation, lake depth, lake 

area (Figure 1.1, Table 1.1), and accessibility. Though these lakes may contain the best 

populations to deplete base on biological characteristics, they are remote and difficult to 

access by foot and helicopter. The safest route to access LH and LN is via an 8km trail 

over a ridge, followed by a few kilometres of steep off-trail terrain. Unsurprisingly, these 

lakes receive low visitor use and fishing pressure, but are highly valued as representations 

of undisturbed ecosystems. Thus, further manipulation of the Lineham Lakes basin may 

be opposed by conservationists and backcountry users. Nevertheless, the results suggest 

that human and physical considerations could supersede biological factors when selecting 

lakes for restoration. The responsibility of resource managers to uphold regional values 

when making management decisions is facilitated by ranking systems such as that 

presented in this study, and by the provision of hard-to-measure biological data. 
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Ironically, this study concurrently instructs trout eradication and conservation. That is, we 

have found support of intraspecific diversity in exotic populations, which can be 

considered as biodiversity (Fraser & Bernatchez, 2001), particularly in western North 

American freshwater habitats depauperate of native fish fauna (Keeley et al. 2005). If 

restoration is not pursued, the population characteristics investigated in this study are still 

valuable for the management and continued monitoring of high mountain lakes. 
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Table 2.1. Results of two factor generalized linear models (GLMs) to assess the 

importance of population, season, species and the interaction of season and species on 

the variability of four demographic characteristics (CPUE, fork length of mature 

individuals, proportion of females and proportion of immature individuals). 
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Variable Rank Population Season Species Interaction AIC

CPUE 1 x x 43.25

2 x x x 43.25

3 x x x x 44.87

4 x x 58.59

5 x 58.59

6 x x 109.17

7 x x x 110.81

8 x 110.89

9 x 121.82

10 122.95

1 x 533.19

2 x x 533.19

3 x x 535.13

4 x x x 535.13

5 x x x x 536.45

6 x 590.21

7 x x 592.02

8 x x x 593.6

9 608.27

10 x 610.18

1 77.04

2 x 77.56

3 x 77.99

4 x x 78.55

5 x x x 80.71

6 x x 88.41

7 x 88.41

8 x x 89.24

9 x x x 89.24

10 x x x x 91.4

1 19.17

2 x 21.19

3 x 21.22

4 x x 23.23

5 x x x 25.37

6 x x 39.83

7 x 39.83

8 x x 41.93

9 x x x 41.93

10 x x x x 44.14

Fork	Length	

at	Maturity

Proportion	

Female

Proportion	

Mature
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Table 2.2. Ranking of 11 previously stocked WLNP lakes by susceptibility, based on 

demographic characteristics CPUE and fork length of mature trout (FLM). Lake codes 

as per Table 1.1. 

Code CPUE FLM Total Rank

AK 5 8 13 6

AL 4 3 7 2

CL 9 7 16 7

CR 6 5 11 5

CT 8 1 9 4

GO 7 9 16 7

LH 1 4 5 1

LN 3 2 5 1

LO 2 6 8 3

TL 11 10 21 8

TU 10 11 21 8
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Figure 2.1. Mean values ( standard error, SE) of four demographic characteristics for 

eleven trout populations in WLNP. Lake codes as per Table 1.1. Dark grey bars 

represent spring data, light grey bars represent summer data. Dashed line divides S. 

fontinalis (left) from O. clarki (right). Only one net was cast in the spring in LN, so 

standard error could not be calculated.  
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GENERAL CONCLUSIONS 

 

 

The management of mountain lakes with introduced trout populations is not clear-cut in 

the current era of ecological restoration. The impacts of trout are not easily understood 

because of the variability of mountain lake food webs, which can diminish their net 

effects on the landscape scale. Using spatial comparisons to identify differences between 

impacted and reference conditions may not be as informative as using temporal 

comparisons that detect changes in a particular system. However, long-term data of 

remote aquatic ecosystems is rare and paleolimnological techniques are not always 

applicable in mountain lakes. Cladoceran micro-fossil remains can be used effectively, 

but not consistently. To add further ambiguity, measures of community change may be 

contradictory; the presence of introduced species may implicate restoration while species 

richness or changes in trophic structure may implicate the maintenance of the current 

condition.  

 

Further study on the role that introduced trout play in the novel ecosystem will further 

assist managers to decide their fate. Though trout may reduce densities of certain 

taxonomic groups of zooplankton, they can be a link in a food web connecting species 

that have higher conservation value, such as bears, birds of prey, piscivorous ducks, and 

otters. They may also be vectors of pathogens such as parasitic acanthocephalons. 

Exploration of reliable paleolimnological techniques for mountain lakes could also 

provide answers to questions regarding precise community shifts within a specific lake.  
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When managers decide that substantial change has occurred that requires restoration 

action, deciding where to direct limited resources becomes the next logical step, 

especially when restoration means extinguishing a population. Though many factors 

come into play relating to physical, environmental and human variables, the limiting 

factor is often the lack of biological information. Identifying demographic characteristics 

that are variable across the landscape allows managers to select and rank populations 

according to their suitability for depletion based on those characteristics. Future work to 

modify decision-making tools for the particular management of mountain lakes will 

enable managers to integrate science with other factors.  

 

In conclusion, the systems we studied have endured a complete shift in ecosystem 

conservation paradigm. Though the period of stocking mountain lakes has undoubtedly 

left an impact, the formation of new concepts in conservation biology allows ecologists to 

appreciate the formation of novel ecosystems.  Even though present conservation 

principles generally advocate restoration action, we suggest a laissez-faire approach over 

the removal of innocuous introduced trout populations. 
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Appendix 1: Alpine lake food webs, reproduced with permission from Schindler & 

Parker (2002) for a) fishless lake and b) lake with planktivorous fish. 

a)

b)
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Appendix 2: Biplot of the first two principle components extracted from cladoceran 

microfossil data of top (T) and bottom (B) sediments from six lakes. Lake codes as per 

Table1.1; circled text denotes lakes with fish.  



 69 

 

Appendix 3: Percentage of trout stomachs sampled in 2011 containing each taxonomic 

group of prey item. Adapted from Berman, 2012.  
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