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Abstract

Some Results in Extremal Combinatorics

Tanbir Ahmed, Ph.D.

Concordia University, 2013

Extremal Combinatorics is one of the central and heavily contributed areas in discrete math-

ematics, and has seen an outstanding growth during the last few decades. In general, it deals

with problems regarding determination and/or estimation of the maximum or the minimum size

of a combinatorial structure that satisfies a certain combinatorial property. Problems in Extremal

Combinatorics are often related to theoretical computer science, number theory, geometry, and in-

formation theory. In this thesis, we work on some well-known problems (and on their variants) in

Extremal Combinatorics concerning the set of integers as the combinatorial structure.

The van der Waerden number w(k; t0, t1, . . . , tk−1) is the smallest positive integer n such that

every k-colouring of 1, 2, . . . , n contains a monochromatic arithmetic progression of length tj for

some colour j ∈ {0, 1, . . . , k − 1}. We have determined five new exact values with k = 2 and conjec-

tured several van der Waerden numbers of the form w(2; s, t), based on which we have formulated

a polynomial upper-bound-conjecture of w(2; s, t) with fixed s. We have provided an efficient SAT

encoding for van der Waerden numbers with k > 3 and computed three new van der Waerden num-

bers using that encoding. We have also devised an efficient problem-specific backtracking algorithm

and computed twenty-five new van der Waerden numbers with k > 3 using that algorithm.

We have proven some counting properties of arithmetic progressions and some unimodality prop-

erties of sequences regarding arithmetic progressions. We have generalized Szekeres’ conjecture on

the size of the largest sub-sequence of 1, 2, . . . , n without an arithmetic progression of length k for

specific k and n; and provided a construction for the lower bound corresponding to the generalized

conjecture.

A Strict Schur number S(h, k) is the smallest positive integer n such that every 2-colouring of

1, 2, . . . , n has either a blue solution to x1 +x2 + · · ·+xh−1 = xh where x1 < x2 < · · · < xh, or a red

solution to x1 + x2 + · · ·+ xk−1 = xk where x1 < x2 < · · · < xk. We have proven the exact formula

for S(3, k).
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Chapter 1

Introduction

Extremal Combinatorics is one of the central and heavily contributed areas in discrete mathemat-

ics, and has seen an outstanding growth during the last few decades. In general, it deals with

problems regarding the determination and/or estimation of the maximum or the minimum size of

a combinatorial structure that satisfies a certain combinatorial property. Problems in Extremal

Combinatorics are often related to theoretical computer science, number theory, geometry, and in-

formation theory. In this thesis, we work on some well-known problems (and on their variants) in

extremal combinatorics concerning the set of integers as the combinatorial structure.

1.1 Some basic definitions and notations

An arithmetic progression of length t, or a t-AP is a sequence of integers of the form a, a+d, . . . , a+

(t − 1)d, where a ∈ Z and d ∈ Z
+. For example, 3, 7, 11, 15 is a 4-AP with a = 3 and d = 4. Let

ap(t, n) denote the set of t-APs in 1, 2, . . . , n.

A group G is a set together with a binary operation + (addition) with the following properties:

(1) G is closed under +,

(2) + is associative,

(3) there exists an indentity element in G, and an inverse for each a ∈ G.

For A,B subsets of an additive group Z, the sumset A + B is defined as {a + b : a ∈ A, b ∈ B}.
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For a single-element set {b}, the set {b}+A is called a translate of A. The set {ka : a ∈ A} is called

a dilate of A. It can be observed that a t-AP remains a t-AP after translations and dilations.

A subset A of an additive group is called sum-free if A ∩ (A + A) = ∅. For example, the set

{1, 3, 5} is sum-free, but the set {1, 2} is not.

Given positive integers k, t0, t1, . . . , tk−1, the van der Waerden number w(k; t0, t1, . . . , tk−1) is

the smallest positive integer n such that every k-colouring of 1, 2, . . . , n contains a monochromatic

arithmetic progression of length tj for some colour j ∈ {0, 1, . . . , k − 1}. If t0 = t1 = · · · = tk−1 = t,

then the number is denoted by w(k, t) and is generally regarded as a Classical van der Waerden

number.

Given positive integer k, the Schur number S(k) is the smallest positive integer n such that every

k-colouring of 1, 2, . . . , n contains a monochromatic solution to x + y = z.

1.2 Some Classical problems in Extremal Combinatorics

Now, we list a few classical questions in Extremal Combinatorics. Details including references or

results on the problems relevant to this thesis will be discussed in Chapter 2.

⋄ Dense progression-free integer sets: given a large positive integer N , what is the largest size

of a subset in the interval [1, N ] free of t-APs?

⋄ Large sum-free subsets of integer sets: what is the size of the largest sum-free subset of a given

set?

⋄ What is the order of growth of the van der Waerden numbers w(k, t)?

⋄ Arithmetic progressions in sets with diverging reciprocals: Suppose that A ⊂ N has the property

that the sum of the reciprocals of the elements of A diverges. Does A contain an arbitrarily

long arithmetic progression?

2



1.3 Outline of the thesis and our contributions

In Chapter 2, we discuss some results on sum-free integer sets, dense progression-free integer sets,

and van der Waerden numbers. In each of those cases, small proofs are included as part of the brief

survey.

In Chapter 3, we have reported five previously unknown van der Waerden numbers of the form

w(2; t0, t1), that have been computed using a distributed application of an efficient implementation

of the DPLL algorithm [22, 5]. We have used local-search based algorithms to establish lower bounds

of several other two-colour van der Waerden numbers. Based on the experimental results, we have

formulated polynomial upper-bound conjectures for two-colour van der Waerden numbers. We have

used a new encoding as well as a problem-specific backtrack algorithm to compute a total of twenty-

eight previously unknown van der Waerden numbers of the form w(k; t0, t1, . . . , tk−1) with k > 3.

We have also listed the new van der Waerden numbers as they appear in the On-line Encyclopædia

of Integer Sequences (OEIS) [86].

In Chapter 4, we have proven some counting properties of arithmetic progressions and some

unimodality properties of the sequence c(k, n; i) for i = 1, 2, . . . , n, where c(k, n; i) is the number

of k-APs in 1, 2, . . . , n, each containing i as an element. Based on experimental data, we have

generalized Szekeres’ conjecture on the size of the largest k-AP free sub-sequence of 1, 2, . . . , n for

specific k and n, and provided a construction for the lower bound corresponding to the generalized

conjecture.

Finally, in Chapter 5, we have proven the exact formula for S(3, k), which is the smallest positive

integer n such that every (blue,red)-colouring of 1, 2, . . . , n either contains a blue solution to x1+x2 =

x3 where x1 < x2 < x3, or a red solution to x1 +x2 + · · · , xk−1 = xk where x1 < x2 < · · · < xk−1 <

xk.
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Chapter 2

Background

2.1 Sum-free integer sets

Schur’s theorem on sum-free sets is considered as the earliest result in Ramsey theory.

2.1.1 Schur’s theorem

Theorem 2.1.1 (Schur [72], 1916). Given a positive integer k, there exists a positive integer n such

that every k-colouring of 1, 2, . . . , n contains a monochromatic solution to x + y = z.

To prove Theorem 2.1.1, we need a special case of the following result from Ramsey theory.

Theorem 2.1.2 (Ramsey [66], 1930). Given positive integers k and t, there exists a positive integer n

such that every k-colouring of the edges of a complete graph Kn contains a monochromatic complete

subgraph Kt.

The Ramsey number R(k, t) is the smallest positive integer satisfying Ramsey’s theorem. The

only known exact values of R(k, t) are R(2, 3) = 6, R(2, 4) = 18, and R(3, 3) = 17, all three of which

are discovered by Greenwood and Gleason [41] in 1955. Given positive integer k and positive integers

t0, t1, . . . , tk−1, the generalized Ramsey number R(k; t0, t1, . . . , tk−1) is the smallest integer n such

that every k-colouring of the edges of Kn contains a monochromatic complete subgraph Kj with tj

vertices for some j ∈ {0, 1, . . . , k − 1}. In this notation, R(2, 3) = R(2; 3, 3). Some known values are

4



R(2; 3, 4) = 9, R(2; 3, 5) = 14, R(2; 3, 6) = 18, R(2; 3, 7) = 23, R(2; 3, 8) = 28, R(2; 3, 9) = 36, and

R(2; 4, 5) = 25. For a survey on the values and bounds of Ramsey numbers, see Radziszowski [65].

Lemma 2.1.3. Given positive integers k, there exists a positive integer n such that every k-colouring

of the edges of a complete graph Kn contains a monochromatic triangle. (This is a special case of

Theorem 2.1.2 with t = 3)

Proof. We do induction on k. For k = 2, it can be easily verified that for n2 > 6, there is a

monochromatic triangle in every 2-colouring of the complete graph with n2 vertices. Suppose there

exists a positive integer nk−1 such that every (k − 1)-colouring of the edges of the complete graph

with nk−1 vertices contains a monochromatic triangle. Consider a k-colouring of the complete graph

with nk = k(nk−1−1)+2 vertices and choose an arbitrary vertex v. Divide the other k(nk−1−1)+1

vertices connected to v, according to the colour of the edges that connect them to v. One of these k

colour-classes, say colour-class Cj for some colour j, will contain nk−1 or more vertices. Then colour

j cannot be used between the vertices in Cj , or else we have a triangle. So the set Cj is internally

coloured with k − 1 colours and must contain a monochromatic triangle.

Proof of Theorem 2.1.1. Consider the edges of the complete graph Kn with vertices 1, 2, . . . , n be

coloured with colours 1, 2, . . . , k. Define a colouring such that edge (i, j) belongs to the colour-class

|i − j|. Choose n = R(k, 3), which implies Kn contains a monochromatic triangle. If i < j < k

be the vertices of this triangle, listed in increasing order, then writing x = j − i, y = k − j, and

z = k − i, we get a monochromatic solution to x + y = z.

The smallest positive integer for a given positive integer k, satisfying Schur’s theorem is known as

the Schur number S(k). Only four exact values of Schur numbers are S(1) = 2, S(2) = 5, S(3) = 14,

and S(4) = 45. The first three values are easy to verify and S(4) is given by Baumert [11]. Exoo

[30] gave the lower bound of S(5) > 161. The lower limits S(6) > 537 and S(7) > 1681 are due to

Fredricksen and Sweet [33].

Theorem 2.1.1 has been generalized by Rado [64] and Sanders [70], though it is named after

Folkman by Graham, Rothschild and Spencer [39].
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Theorem 2.1.4 (Folkman’s theorem). Given positive integers k and t, there exists a positive integer

n such that every k-colouring of 1, 2, . . . , n contains a monochromatic solution to x1+x2+· · ·+xt−1 =

xt.

2.2 Dense progression-free integer sets

A subsequence of 1, 2, . . . , N is called k-AP free if it does not contain any k-term arithmetic pro-

gression. Let r(k,N) denote the length of the longest k-AP free subsequences in 1, 2, . . . , N . The

study of the function r(3, N) was initiated by Erdős and Turán [29]. They determined the values of

r(3, N) for N 6 23 and N = 41. They proved that for N > 8

r(3, 2N) 6 N

and they conjectured that

lim
n→∞

r(3, N)/N = 0.

This conjecture was proved in 1975 by Szemerédi [80]. Erdős and Turán also conjectured that

r(3, N) < N1−c, which was shown to be false by Salem and Spencer [69], who proved

r(3, N) > N1−c/ log log N .

This result was further improved by Behrend [13] to

r(3, N) > N1−c/
√

log N .

Recently, Elkin [25] has further improved this lower bound by a factor of Θ(
√

log N). The first

non-trivial upper bound was due to Roth [67] who proved that

r(3, N) < CN/ log log N.
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This result has been improved by Bourgain [16] to

r(3, N) < cN
√

log log N/ log N.

Sharma [74] showed that Erdős and Turán gave the wrong value of r(3, 20) and determined the

values of r(3, N) for n 6 27 and 41 6 N 6 43. Recently, Dybizbański [24] has computed the exact

values of r(3, N) for all N 6 123 and proved that r(3, 3N) 6 N for N > 16.

In Chapter 4, we generalize a conjecture of Szekeres on r(k,N) based on experiemntal data.

2.2.1 Behrend’s construction of 3-AP free subsets

In this section, we describe Behrend’s construction for r(3, N).

Theorem 2.2.1 (Behrend [13], 1946). There is a set A in 1, 2, . . . , N which is 3-AP free and satisfies

|A| ≫ N exp (−c
√

log N),

where c is an absolute positive constant.

Proof. Consider the point x = (x1, x2, . . . , xn) ∈ {1, 2, . . . ,M}n
. There are Mn such points and for

each of the Mn points, we have

r2 = x2
1 + x2

2 + · · · + x2
n,

which is an integer in the interval [n, nM2]. By pigeonhole principle, there must exist a sphere

Sn(M) with radius r containing at least

|Sn(M)| >

⌈ Mn

nM2 − n + 1

⌉

>
Mn

n(M2 − 1)
>

Mn−2

n

points. Let P : Z
n → Z for mapping Sn(M) to integers be defined by

P (x) =
1

2M

n∑

i=1

xi(2M)i,
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which is integer-valued and for each x ∈ {1, 2, . . . ,M}n

1 6 P (x) 6 (2M)n.

It can also be observed that P (x) is linear. Take x, y ∈ Z
n and a, b ∈ Z. We have

P (ax + by) =
1

2M

n∑

i=1

(axi + byi)(2M)i

= a

(

1

2M

n∑

i=1

xi(2M)i

)

+ b

(

1

2M

n∑

i=1

yi(2M)i

)

= aP (x) + bP (y).

Now, we show that P is one-to-one in the domain {1, 2, . . . ,M}n
. Let P (x) = P (y) for

x, y ∈ {1, 2, . . . ,M}n
. By the linearity of P , we have P (x)−P (y) = P (x−y). By the assumption that

P (x) = P (y), we have P (x−y) = 0. It remains to show that for w ∈ {−2M,−2M + 1, . . . , 2M − 1, 2M}n
,

P (w) = 0 if and only if w = 0. If w = 0, then P (w) = 0 by definition. Let P (w) = 0 and w 6= 0,

then there is a least coordinate j such that wj 6= 0. Then we have

P (w) =
1

2M

n∑

i=1

wi(2M)i =
1

2M

n∑

i=j

wi(2M)i = 0.

which implies

|wj | =

n∑

i=j+1

wi(2M)i−j = 2M

n−(j+1)
∑

i=0

wi+(j+1)(2M)i = 2M · k,

where k is an integer. Since we are assuming that 1 < |wj | < 2M , we need 0 < k < 1 which is

impossible. Hence w = 0. Therefore, P (x − y) = 0 implies x − y = 0, that is, x = y.

Take n =
⌈√

log N
⌉

and M =
⌊

N1/n/2
⌋

. Define A = {P (x) : x ∈ Sn(M)}. Since P is integer-

valued and 1 6 P (x) 6 (2M)n for each x ∈ {1, 2, . . . ,M}n
, we have A ⊆ [1, (2M)n] ⊆ {1, 2, . . . , N}.

Since P is one-to-one, we have |A| = |Sn(M)|. Finally, we show that A does not contain a 3-AP.

We can observe that for x, y, z ∈ {1, 2, . . . ,M}n
, if P (z)− P (y) = P (y)− P (x), then z − y = y − x.

By assumption, P (z) − 2P (y) − P (x) = 0, and by linearity of P , we have P (z − 2y + x) = 0. Since

(z − 2y + x) ∈ {−2M,−2M + 1, . . . , 2M − 1, 2M}n
, we have z − 2y + x = 0, that is, z − y = y − x.
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So any non-trivial 3-AP in A corresponds to a non-trivial 3-AP in Sn(M), which is impossible since

a line can intersect at most two points in an Euclidean sphere.

Therefore,

|A| = |Sn(M)| >
Mn−2

n
=
⌊

N1/n/2
⌋n−2

/n >

⌊

N1/n/e
⌋n−2

/n = N · exp(2 − n) · N−2/n · 1/n

= N · exp(2 − ⌈
√

log N⌉) · N (−2/⌈
√

log N⌉) · 1/⌈
√

log N⌉

> N · exp(2 − (
√

log N − 1)) · exp(−2 log N/
√

log N) · 1/(
√

log N + 1)

> N · exp(2 − (
√

log N − 1)) · exp(−2 log N/
√

log N) · exp(−1 −
√

log N)

= N · exp(−4
√

log N).

2.3 Van der Waerden numbers

The following theorem, widely known as one of the “Three Pearls of Number Theory”, provides a

basic result on arithmetic progressions. Since this thesis presents results on the values and bounds

of van der Waerden numbers (Chapter 3), we provide a brief history of results starting from van der

Waerden’s theorem in 1927.

Theorem 2.3.1 (Van der Waerden [83], 1927). Given positive integers k and t, there is an integer

n such that every k-colouring of the set {1, 2, . . . , n} has a monochromatic t-AP.

The smallest integer w(k, t) satisfying van der Waerden’s theorem is known as the van der

Waerden number. Given positive integers k, t, and n, a good k-colouring of 1, 2, . . . , n contains no

monochromatic t-AP. We call such a good k-colouring a certificate of the lower bound w(k, t) > n.

We write a certificate as a sequence c1c2 . . . cn where each ci in {0, 1, . . . , k − 1} represents the colour

assigned to the integer i. For example, 00110011 or 02120212 for short, is a certificate of w(2, 3) > 8.

Every 2-colouring of 1, 2, . . . , n with n > 9 leaves a monochromatic 3-AP, and so w(2, 3) = 9.
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2.3.1 Lower bounds of van der Waerden numbers

In this section, we discuss known results on the lower bounds. For each result, necessary background

materials are also provided to make the literature-review self-contained. Much effort has been made

to obtain theoretical lower bounds of w(k, t), and more specifically of w(2, t). We present several

probabilistic lower bounds that ensure the existence of a good-colouring of 1, 2, . . . , n (which can be

derandomized to construct certificates of lower bound), and an algebraic lower bound that explicitly

constructs a good-colouring of 1, 2, . . . , n.

2.3.1.1 Probabilistic lower bounds

The earliest lower bound, which is due to Erdős and Rado, is probabilistic and requires the following

lemma:

Observation 2.3.2. The number of t-APs in ap(t, n) containing integer x on the i-th position is

ci(t, n;x) =







⌊

(n − x)/(t − 1)
⌋

if i = 1,
⌊

(x − 1)/(t − 1)
⌋

if i = t,

min
{⌊

(n − x)/(t − i)
⌋

,
⌊

(x − 1)/(i − 1)
⌋}

otherwise.

Lemma 2.3.3. Let the total number of t-APs in ap(t, n) be denoted by c(t, n). Then c(t, n) < n2/t.

Proof. By definition of c(t, n) and c1(t, n;x), we have,

c(t, n) =
n−t+1∑

x=1

c1(t, n;x) 6

n−t+1∑

x=1

(
n − x

t − 1

)

<
n−1∑

x=1

(
n − x

t − 1

)

=
n(n − 1)

2(t − 1)
<

n2

t
.

where the leftmost inequality is due to Observation 2.3.2.

Theorem 2.3.4 (Erdős and Rado [27], 1952). Given positive integers k and t,

w(k, t) >
√

tk(t−1)/2.

Proof. Let w(k, t) = n. Then every k-colouring of 1, 2, . . . , n contains a monochromatic t-AP,

that is, P (A monochromatic t-AP exists) = 1. Randomly k-colour 1, 2, . . . , n, where each i picks a
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colour with probability 1/k. Let AS be the event that a given t-AP, say S, is monochromatic. So

P (AS) = k (1/kt) = k1−t and therefore using Lemma 2.3.3,

1 = P (A monochromatic t-AP exists) 6
∑

S∈ap(t,n)

P (AS) < (n2/t) · k1−t,

which gives n >
√

tk(t−1)/2, and hence the desired bound.

A constructive proof of w(2, t) >
√

t2(t−1)/2. An algorithm (Erdős and Selfridge [28]) for construct-

ing a certificate to prove the lower bound w(2, t) >
√

t2(t−1)/2 is as follows: Let n 6
√

t2(t−1)/2, that

is, (n2/t)21−t 6 1, and there exists a good 2-colouring of 1, 2, . . . , n. Let f : R
n → R be defined by

f(x1, x2, . . . , xn) =
∑

s∈ap(t,n)

[
∏

i∈s

xi +
∏

i∈s

(1 − xi)

]

,

where in a 2-colouring of 1, 2, . . . , n, we have xi ∈ {0, 1} if integer i has been assigned a colour,

and xi = 1/2 otherwise. Then f(x1, x2, . . . , xn) represents the number of monochromatic t-APs

in a 2-colouring of 1, 2, . . . , n using colours 0 and 1. So, a 2-colouring is not good if and only if

f(x1, x2, . . . , xn) > 1. We have to colour 1, 2, . . . , n so that f(x1, x2, . . . , xn) < 1. Initially, when no

integer i ∈ {1, 2, . . . , n} is assigned a colour, we have

f(1/2, 1/2, . . . , 1/2) =
∑

s∈ap(t,n)

[
(1/2t) + (1/2t)

]
< (n2/t)21−t

6 1,

Suppose we have already coloured integers 1, 2, . . . , i−1 with colours c1, c2, . . . , ci−1, respectively,

such that cj ∈ {0, 1} for 1 6 j 6 i − 1. Inductively, f(c1, c2, . . . , ci−1, 1/2, . . . , 1/2) < 1.

We observe that

1

2
[f(c1, c2, . . . , ci−1, 0, 1/2, . . . , 1/2) + f(c1, c2, . . . , ci−1, 1, 1/2, . . . , 1/2)]

= f(c1, c2, . . . , ci−1, 1/2, . . . , 1/2).

So we set ci = 0 if f(c1, c2, . . . , ci−1, 0, 1/2, . . . , 1/2) 6 f(c1, c2, . . . , ci−1, 1, 1/2, . . . , 1/2) and

ci = 1 otherwise. The final vector (x1, x2, . . . , xn) will be a good 2-colouring, that is, a certificate of
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the lower bound w(2, t) >
√

t2(t−1)/2.

The Lovász Local Lemma [26] gives the following lower bound:

Theorem 2.3.5 (Lovász [26], 1973). w(k, t) > kt/ekt.

In particular, Theorem 2.3.5 gives w(2, t) > 2t/(2et). The following theorem improves this

bound, which is the best known bound, again using Lovász Local Lemma.

Theorem 2.3.6 (Szabó [78], 1990). w(2, t) > 2t/tǫ for ǫ > 0 and for sufficiently large t.

2.3.1.2 Berlekamp’s construction

Berlekamp provided the only known general constructive lower bound using field theory. A field is a

set F with two binary operations + (addition) and · (multiplication) with the following properties:

(1) F is closed under · and +,

(2) · and + are associative and commutative,

(3) · is distributive over +,

(4) there exist additive and multiplicative identity, and an additive inverse for each a ∈ F ; and

(5) there exists a multiplicative inverse for each a ∈ F \ {0}.

A Galois field is a field with exactly pt elements, denoted by GF (pt), where p is prime and t is a

positive integer. For each q = pt, there exists a unique (up to isomorphism) field of order q. Integers

0, 1, 2, . . . , p − 1 form a Galois field GF (p), with arithmetics taken modulo p, namely Zp. GF (pt)

can be seen as a vector-space of dimension t over Zp, that is, there is a basis {b1, b2, . . . , bt} such

that every element e ∈ GF (pt) can be written uniquely as e = e1b1 + · · ·+etbt where e1, . . . , et ∈ Zp.

A Galois field GF (pt) may be represented by the set of all polynomials of degree at most t − 1,

with coefficients in Zp, that is,

GF (pt) =
{
at−1x

t−1 + at−2x
t−2 + · · · + a1x + a0|ai ∈ Zp

}
.

Note that (1, x, x2, . . . , xt−1) is a basis for GF (pt) over Zp. A non-zero element α ∈ GF (q) is called

a primitive element if α, α2, . . . , αq−1 are precisely the non-zero elements of GF (q). It can be shown

that every GF (pt) has a primitive element. So GF (pt) can be written as
{

0, α, α2, . . . , αpt−2, 1
}

. Let
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ip(x) be a t-degree irreducible polynomial with coefficients in Zp. The set GF (pt) can be constructed

with addition over Zp and multiplication modulo ip(x).

For example, the elements of GF (23) modulo x3 + x + 1 (which is irreducible over Z2) are

{
0, x1, x2, x3, x4, x5, x6, 1

}
=
{
0, x, x2, x + 1, x2 + x, x2 + x + 1, x2 + 1, 1

}
.

Theorem 2.3.7 (Berlekamp [14], 1968). If t is a prime, then w(2, t + 1) > t(2t − 1).

Proof. Let α be a primitive element of GF (2t), that is, GF (2t) − {0} =
{

1, α, α2, . . . , α2t−2
}

. Let

a basis of GF (2t) over Z2 be (b1, b2, . . . , bt). Now, consider

S =
{

1, α, α2, . . . , α2t−2, α2t−1, . . . , αt(2t−1)−1
}

(which contains repeated elements), and express the elements in terms of the basis and ai,j ∈ Z2

such that

αj =

t∑

i=1

ai,jbi.

Let the colour classes be S0 and S1. For 0 6 j < t(2t − 1), set j ∈ Sǫ if and only if a1,j = ǫ. Also

define set of non-zero field elements Tǫ such that αj ∈ Tǫ for each j ∈ Sǫ. We need to show that this is

a good 2-colouring. If not, then there is a monochromatic (t+1)-AP, say {c, c + d, . . . , c + td} ⊂ Sǫ.

Here, c + td < t(2t − 1) and d < (2t − 1), that is, αd 6= 1. Since αd ∈ GF (2t) and αd 6∈ {0, 1}, the

minimal polynomial over Z2 of which αd is a root has degree t.

Now, we have the following cases:

1. ǫ = 0: We have {c, c + d, . . . , c + td} ⊂ S0 and
{
αc, αc+d, . . . , αc+td

}
⊂ T0. Since T0 is a

(t − 1)-dimensional subspace spanned by (b2, b3, . . . , bt) over Z2, any t distinct elements in T0

are linearly dependent, that is, there exists β0, β1, . . . , βt−1 ∈ Z2, not all zero, such that

t−1∑

i=0

αc+diβi = 0 implying
t−1∑

i=0

βi(α
d)i = 0,

that is, αd is a root of the polynomial of degree at most t − 1 with coefficients in Z2, which is

not possible.
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2. ǫ = 1: {c, c + d, . . . , c + td} ⊂ S1 and
{
αc, αc+d, . . . , αc+td

}
⊂ T1. All the t+1 elements, when

expressed in the basis (b1, b2, . . . , bt), have coefficient 1 for b1.

Now each of the t elements in
{
αc(αd − 1), . . . , αc

(
(αd)t − 1

)}
, when expressed in the basis,

has a coefficient zero for b1, that is, the t elements are in (t − 1)-dimensional space and are

linearly dependent. So there exists β0, β1, . . . , βt−1 ∈ Z2, not all zero, such that

t−1∑

i=0

αc
[
(αd)i − 1

]
βi = 0 implying

t−1∑

i=0

βi

[
(αd)i − 1

]
= 0,

that is, αd is a root of the polynomial of degree at most t − 1 with coefficients in Z2, which is

not possible.

The above construction will work for any choice of basis. Let k = 2, t = 3, and n = 21. Consider

the polynomial a(x) = x3 + x + 1, which is irreducible over GF (2) and let α be a root of a(x). Take

the basis b1 = 1, b2 = α, and b3 = α2. For each j = 0, 1, . . . , 20 find (a1,j , a2,j , a3,j) ∈ {0, 1}3
such

that a1,jb1 + a2,jb2 + a3,jb3 = αj . We get ai,j for 1 6 i 6 3 and 0 6 j 6 20:

1001011 1001011 1001011

0101110 0101110 0101110

0010111 0010111 0010111

Putting j ∈ Sǫ for ǫ ∈ {0, 1} if and only if 0 6 j 6 n − 1 and a1,j = ǫ, we get

S1 = {0, 3, 5, 6, 7, 10, 12, 13, 14, 17, 19, 20} ;S0 = {1, 2, 4, 8, 9, 11, 15, 16, 18} .

The above bound can be extended to include t additional consecutive integers with a choice of a

specific basis as follows:

b1 = 1, b2 = 1 + α, . . . , b(t−1)/2 = 1 + α(t−1)/2;

b(t+3)/2 = 1 + α−1, b(t+5)/2 = 1 + α−2, . . . , bt = 1 + α−(t−1)/2.
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Theorem 2.3.8 (Berlekamp [14], 1968). If t is a prime, then w(2, t + 1) > t · 2t.

Proof. Use the construction in Theorem 2.3.7 with the above basis, to partition {0, 1, . . . , n − 1}

into disjoint sets S0 and S1 where no block contains a (t + 1)-AP and with the property that

{0, 1, . . . , (t − 1)/2} ∪ {n − 1, n − 2, . . . , n − (t − 1)/2} ⊂ S1.

Set S+
0 = S0 ∪ A ∪ B, where A = {−(t − 1)/2, . . . ,−2,−1} and B = {n, n + 1, . . . , n + (t − 1)/2}.

It remains to show that S+
0 contains no (t + 1)-AP. We have the following cases:

1. S+
0 = S0 ∪ {x} ∪ {y} where x ∈ A and y ∈ B: not possible as y − x is not a multiple of t for

any choice of x and y.

2. S+
0 = S0 ∪ T where T ⊆ A (or T ⊆ B) and |T | > 2: If T ⊆ A, then a there is no (t + 1)-AP in

S+
0 because {0, 1, . . . , (t − 1)/2} ∩ S0 = ∅. Similarly, if T ⊆ B, then there is no (t + 1)-AP in

S+
0 because {n − 1, n − 2, . . . , n − (t − 1)/2} ∩ S0 = ∅.

3. S+
0 = S0 ∪ {x} where x ∈ A (or x ∈ B) and S0 has a t-AP: By construction a t-AP in S0

has common-difference at least 2t − 1. A (t + 1)-AP will have a span at least t(2t − 1) which

contradicts the maximum span of S+
0 .

Therefore, in the partition {−(t − 1)/2,−(t − 1)/2 + 1, . . . , n + (t − 1)/2} = S+
0 ∪ S1, no block con-

tains a (t+1)-AP. The partition can be translated to a partition of integers {1, 2, . . . , t2t} by adding

(t + 1)/2 to each element of S+
0 and S1.

Let k = 2, t = 3, and n = 21. Consider the polynomial a(x) = x3+x+1, which is irreducible over

GF (2) and let α be a root of a(x). Take the basis b1 = 1, b2 = 1 + α = α3, and b3 = 1 + α−1 = α2.

For each j = 0, 1, . . . , 20 find (a1,j , a2,j , a3,j) ∈ {0, 1}3
such that a1,jb1 + a2,jb2 + a3,jb3 = αj . We

get ai,j for 1 6 i 6 3 and 0 6 j 6 20:

1100101 1100101 1100101

0101110 0101110 0101110

0010111 0010111 0010111
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Putting j ∈ Sǫ for ǫ ∈ {0, 1} if and only if 0 6 j 6 n − 1 and a1,j = ǫ, we get

S1 = {0, 1, 4, 6, 7, 8, 11, 13, 14, 15, 18, 20} ;S0 = {2, 3, 5, 9, 10, 12, 16, 17, 19} ;S+
0 = S0 ∪ {−1, 21, 22} .

2.3.1.3 Folkman’s construction

We discuss a constructive method by Folkman for computing lower bounds of w(k, t), which is not

general, but gives the best known lower bounds of certain van der Waerden numbers.

Find a prime p of the form kℓ+1 for some integer ℓ. Find a primitive element ρ of GF (p). Then

ρt for t = 1, 2, . . . , (p − 1) cover all non-zero values modulo p.

Partition {1, 2, . . . , p} for i = 0, 1, . . . , k − 1, as follows

Ci =
{(

ρi+qk (mod p)
)

+ 1 : q = 0, 1, . . . , ℓ − 1
}

, and

C0 = C0 ∪ {1} .

The partition gives a potential certificate for w(k, t) > p, which has to be validated. For example,

w(2, 4) > 11 can be shown by constructing the partition {1, 2, 4, 5, 6, 10} ∪ {3, 7, 8, 9, 11} using the

primitive root modulo 11, ρ = 2. The corresponding certificate is 00100011101. A certificate for

w(k, t) > n is cyclic if it is still a certificate under the transformation j = j +m (mod n) for each m

with j ∈ {1, 2, . . . , n}. Rabung [62] showed that if a certificate of length p is cyclic, then repeating

the certificate (t−1) times and adding one additional number to Ck−1, we can construct a certificate

of length (t − 1)p + 1 to show that w(k, t) > (t − 1)p + 1. For example, 00100011101 is cyclic and

hence we get a new certificate

0010001110100100011101001000111011

giving w(2, 4) > 34, which is the best possible bound as we know that w(2, 4) = 35 [18].

16



2.3.2 Upper bounds of van der Waerden numbers

All known upper bounds of w(k, t) are enormous. In this section, we provide an overview on the

upper bounds in chronological order.

2.3.2.1 Upper bound from van der Waerden’s proof

The original combinatorial proof of van der Waerden bounded w(2, t) from above by Ack(t), an

Ackermann function in t. Given a natural number n, fn : N → N is recursively defined by

fn(t) =







2 · t if n = 1,

fk(fk(· · · fk
︸ ︷︷ ︸

t

(1) · · · )) if n = k + 1 > 1.

Thus f2(t) = 2t, and f3(t) = 22
. . .

2

. The right hand side of the latter is a stack of 2’s of height t,

which is known as the tower function tower(t). The tower function can be defined as

tower(t) =







2 if t = 1,

2tower(t−1) if t > 1.

Now the Ackermann function Ack(t) is defined as ft(t). To observe how enormously this function

grows, we can check f4(4), which is

f3(f3(f3(f3(1)))) = f3(f3(f3(tower(1)))) = f3(f3(tower(2))) = f3(tower(4)) = f3(65536),

or a tower of 65536 2’s. Since it was known that w(2, 4) = 35, there were significant reasons to

believe that improved upper bounds were possible. For many years, Graham’s question “w(2, t) 6

tower(t)?” was open. The function Ack(t) grows much faster than primitive recursive functions1.

The following section briefly describes how a primitive recursive upper bound for w(k, t) is obtained

(though it does not settle Graham’s question).

1A primitive recursive function can be computed using only for-loops, which have a fixed iteration limit.
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2.3.2.2 Improved upper bound from Hales-Jewett’s theorem

Hales and Jewett proved the following theorem, which derives van der Waerden’s theorem as a

corollary. Let A be an alphabet with t symbols namely {0, 1, . . . , t − 1}. Let ⋆ 6∈ A be a new symbol.

Define roots as points in {A ∪ {⋆}}m
with at least one ⋆ as a coordinate. For a root τ , and a symbol

a ∈ A, we write τ(a) ∈ Am for the point obtained replacing each ⋆ in τ by a. A combinatorial line

rooted at τ is the set of t points Lτ = {τ(0), τ(1), . . . , τ(t − 1)}. For example, if τ = (0, 1, ⋆, 2, ⋆, 1) is

a root in A = {0, 1, 2} (with t = 3), then Lτ is the set {(0, 1, 0, 2, 0, 1), (0, 1, 1, 2, 1, 1), (0, 1, 2, 2, 2, 1)}.

Theorem 2.3.9 (Hales-Jewett [44], 1963). Given A = {0, 1, . . . , t − 1}, there is a dimension m ∈

N such that for every k-colouring of the m-dimensional cube Am, there exists a monochromatic

combinatorial line.

Let the least m satisfying Hales-Jewett theorem be denoted by HJ(k, t). Clearly, HJ(k, 1) = 1

for all k.

Lemma 2.3.10. HJ(k, 2) = k.

Proof. Here, we have A = {0, 1}. Take m = k. It can be observed that two of the k+1 points formed

by a (possibly void) sequence of ones followed by a (possibly void) sequence of zeros (for example,

for k = 4, the points are (0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 1, 1), and (1, 1, 1, 1)) must have

the same colour and any two of these points form a monochromatic combinatorial line. Therefore,

HJ(k, 2) 6 k.

To show that HJ(k, 2) > k, we construct a k-colouring of {0, 1}k−1
without a monochromatic

combinatorial line. In the set of 2k−1 binary strings of length k− 1, assign a different colour to each

element of the subset of strings containing an equal number of ones. Since any such subset does

not contain a combinatorial line, there is no monochromatic combinatorial line in {0, 1}k−1
. (For

example, if k = 4, then {0, 1}3
can be be partitioned into the following colour classes: {(0, 0, 0)},

{(0, 0, 1), (0, 1, 0), (1, 0, 0)}, {(0, 1, 1), (1, 0, 1), (1, 1, 0)}, and (1, 1, 1).)

The original proof (1963) of Hales-Jewett theorem used double induction, which was avoided in

an alternate combinatorial proof given by Shelah in 1986.
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Proof of van der Waerden’s theorem using Hales-Jewett Theorem. Set n = m(t− 1) + 1 where m =

HJ(k, t). Consider k-colouring {1, 2, . . . , n}. Set A = {0, 1, . . . , t − 1} and for x = (x1, x2, . . . , xm) ∈

Am, define the mapping f : Am → {1, . . . , n} as f(x) = x1+x2+ . . .+xm +1. Therefore, f induces a

colouring of Am. Every combinatorial line Lτ = {τ(0), τ(1), . . . , τ(t − 1)} is mapped to an arithmetic

progression of length t with a = f(τ(0)) + 1, and common difference d being the number of ⋆’s in

τ .

So, we have w(k, t) 6 (t − 1)HJ(k, t) + 1. Since w(2, 3) = 9, we have HJ(2, 3) > 4.

2.3.2.3 Erdős-Turán conjecture, Szemerédi’s theorem, and the consequences

With the aim of strengthening the upper bound for van der Waerden numbers, Erdős and Turán

realized that one should be able to find t-APs in any sufficiently dense set of integers, and came up

with the following conjecture:

Conjecture 2.3.11 (Erdős and Turán [29], 1936). Let δ > 0 and t be a positive integer. There is

a number N = N0(δ, t) such that any set A ⊂ {1, 2, . . . , N} with |A| > δN contains a non-trivial

t-AP.

Very first result on the above conjecture was given by Roth (using Fourier analysis), showing its

validity for 3-APs.

Theorem 2.3.12 (Roth [67], 1953). There is a positive constant C such that if A ⊂ {1, 2, . . . , N}

with |A| > CN/ log log N , then A has a non-trivial 3-AP. In other words, for given 0 < δ 6 1,

N0(δ, 3) 6 exp (exp(C/δ)) .

Szemerédi [79] showed in 1969 that the Erdős-Turán conjecture holds for t = 4 and settled the

conjecture in 1975 for arithmetic progressions of arbitrary length. It can be observed that Szemerédi’s

theorem strengthens van der Waerden’s theorem and that w(k, t) can be chosen to be N0(1/k, t).

Szemerédi’s combinatorial proof [80] used van der Waerden’s theorem and hence provided no

improvement in the upper-bound of w(k, t). Furstenberg [34] gave another proof of Szemerédi’s

theorem in 1977 using ergodic theory, which again gave no improved bound, but the techniques
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became useful in dealing with other previously inaccessible problems in the area. Gowers made

a major breakthrough by giving another proof of Szemerédi’s theorem (using ’quadratic theory of

Fourier analysis’) by generalizing Roth’s argument, and providing a significant improvement in the

upper bound of van der Waerden numbers.

Theorem 2.3.13 (Gowers [38], 2001). There exists a positive constant ct such that any subset

A of {1, 2, . . . , N} with |A| ≫ N/(log log N)ct contains a non-trivial t-AP. More specifically, given

0 < δ 6 1/2, a positive integer t, N > 22(δ−1)2
2(t+9)

, and a subset A ⊆ {1, 2, . . . , N} of size at least

δN ; the set A contains a t-AP.

Gowers’ result gives the current best upper bound w(k, t) 6 22k22
(t+9)

for van der Waerden

numbers. The ideas used by Gowers have been proved useful in many marvelous results, most

notably the work of Green and Tao on the existence of arithmetic progressions on primes.

For several hundred years, mathematicians have investigated patterns in primes, one of the

simplest of which is that the set of primes contain arbitrarily long arithmetic progressions. The

earliest non-trivial result in this direction came from van der Corput:

Theorem 2.3.14 (van der Corput [20], 1939). There are infinitely many arithmetic progressions

consisting of three primes.

There are numerous related conjectures about the existence of arithmetic progressions, the most

famous of which is the following:

Conjecture 2.3.15 (Erdős, 1973). If
∑

n∈A

1

n
= ∞,

then A contains arbitrarily long arithmetic progressions.

A corollary of the above would be that primes contain arbitrarily long arithmetic progressions

since
∑

p 1/p diverges. After more than four decades of Corput’s result, the following partial result

for 4-AP was shown by Heath-Brown:

Theorem 2.3.16 (Heath-Brown [45], 1981). There are infinitely many arithmetic progressions con-

sisting of three primes and a number with only two prime-factors, counted with multiplicity.
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In a slightly different direction, Balog [9, 10] shows that for any positive integer k, there exists

infinitely many k-tuples of distinct primes p1 < p2 < · · · < pk such that (pi + pj)/2 is a prime for

all i, j ∈ {1, 2, . . . , k}. Theorem 2.3.14 is a special case (k = 2) of Balog’s result. Finally, Green and

Tao settles the problem which remained open for centuries.

Theorem 2.3.17 (Green and Tao [40], 2008). The set of primes in {1, 2, . . . , N} contains a t-AP if

N is large enough.

According to the prime number theorem, the number of primes less than or equal to x is ap-

proximately x/ log x, which implies that primes have density zero, and hence Szemerédi’s theorem

cannot be applied directly to prove the Green-Tao Theorem.

An outline of the proof of Green-Tao Theorem is as follows:

• There is a pseudorandom set X ⊆ {1, 2, . . . , N} such that primes have positive density in X.

• If A is a subset of a pseudorandom set X such that |A| > δ|X| where δ > 0, then there is a

set M ⊆ {1, 2, . . . , N} indistinguishable from A, such that |M | > δN .

• By Szemerédi’s theorem, M must contain a t-AP and so does A.

2.3.3 Computational aspects of van der Waerden numbers

Due to the huge gap between the lower and upper bounds, computing exact values of w(k, t) remains

extremely difficult. Only seven values, namely, w(2, 3) = 9 [18], w(2, 4) = 35 [18], w(2, 5) = 178

[77], w(2, 6) = 1132 [56]2, w(3, 3) = 27 [18], w(3, 4) = 293 [57], and w(4, 3) = 76 [12] are known,

all of which were computed using computers (though the first one can be computed using pen and

paper). All but w(2, 6) and w(3, 4) were computed using primitive computer search algorithms.

Dransfield et al. [23] introduced advanced techniques like encoding the van der Waerden problem

as an instance of the Satisfiability Problem (or SAT for short), and using SAT-solvers to compute

certificates for the lower bounds of w(k, t). Herwig et al. [46] improved the lower bounds of w(k, t)

by considering a certain symmetry in certificates and using SAT-solvers for computation. Table 2.1

shows the current state of the known values and bounds of w(k, t). These van der Waerden numbers

are known as diagonal or classical van der Waerden numbers in the literature.

2The claim remains to be verified by others.
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Table 2.1: Diagonal van der Waerden numbers
k\t 3 4 5 6 7 8 9
2 9 35 178 1132 > 3703 > 11495 > 41265
3 27 293 > 2173 > 11191 > 48811 > 238400
4 76 > 1048 > 17705 > 91331 > 420217
5 > 170 > 2254 > 98740 > 540025
6 > 223 > 9778 > 98748 > 816981

2.3.3.1 Using SAT solvers to determine van der Waerden numbers

We formulate an instance F of the satisfiability problem (described in the following paragraph) with

n variables for the van der Waerden number w(k; t0, . . . , tk−1) such that F is satisfiable if and only

if n < w(k; t0, . . . , tk−1).

To describe the satisfiability problem, we require a few other definitions. A truth assignment is

a mapping f that assigns each variable in {x1, x2, . . . , xn} a value in {0, 1}. The complement x̄i of

each variable xi is defined by f(x̄i) = 1 − f(xi) for all truth assignments f . Both xi and x̄i are

called literals. A clause is a set of (distinct) literals and a formula is a family of (not necessarily

distinct) clauses. A truth assignment satisfies a clause if it maps at least one of its literals to 1.

The assignment satisfies a formula if and only if it satisfies each of its clauses. A formula is called

satisfiable if it is satisfied by at least one truth assignment; otherwise, it is called unsatisfiable. The

problem of recognizing satisfiable formulas is known as the satisfiability problem, or SAT for short.

These definitions are taken from Chvátal and Reed [19].

To check the satisfiability of the generated instance, we need to use an algorithm that either

solves the instance providing a satisfying assignment, or says that the formula is unsatisfiable. We

have, at our disposal, two kinds of algorithms: complete and incomplete. A complete algorithm

like DPLL (see [22, 21]; Algorithm 1 is a slightly modified version of the one given in [2]) finds a

satisfying assignment if one exists; otherwise, correctly says that no satisfying assignment exists and

the formula is unsatisfiable. SAT solving has progressed much beyond this simple algorithm (see the

handbook [15] for general information), however on this special problem class this basic algorithm

together with a basic heuristic is very competitive.
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Algorithm 1 DPLL algorithm

1: function DPLL(F )
2: while True do
3: if {u} ∈ F and {ū} ∈ F then return Unsatisfiable
4: else if there is a clause {v} then F = F |v
5: else break
6: end while
7: if F = ∅ then return Satisfiable
8: Choose an unassigned literal u using a branching rule
9: if DPLL(F |u) = Satisfiable then return Satisfiable

10: if DPLL(F |u) = Satisfiable then return Satisfiable
11: return Unsatisfiable
12: end function

Given a formula F and a literal u in F , we let F |u denote the residual formula arising from F

when u is set to true: explicitly, this formula is obtained from F by (i) removing all the clauses

that contain u, (ii) deleting ū from all the clauses that contain ū, (iii) removing both u and ū from

the list of literals. Each recursive call of DPLL may involve a choice of a literal u. Algorithms for

making these choices are referred to as branching rules. It is customary to represent each call of

DPLL(F ) by a node of a binary tree. By branching on a literal u, we mean calling DPLL(F |u).

If this call leads to a contradiction, then we call DPLL(F |ū). Every node that is not a leaf has at

least one child and may not have both children. We refer to this tree as the DPLL-tree of F . For

an efficient implementation of the DPLL Algorithm, see [5].

Local-search based incomplete algorithms (see Ubcsat-suite [82]) are generally faster (as they

try to find a satisfying assignment as fast as possible when we can control the heuristic, number of

iterations, runs, and several other parameters) than a DPLL-like algorithm, but may fail to deliver

a satisfying assignment when there exists one. A good partition is a proof of a lower bound for

a certain van der Waerden number irrespective of its means of achievement. In addition, certain

symmetry in the certificates allows us to obtain them even faster. Incomplete algorithms are handy

for obtaining good partitions and improving lower bounds of van der Waerden numbers. When they

fail to improve the lower bound any further, we may turn to a complete algorithm.
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2.3.3.2 Parallelization and distribution of SAT problems

For computationally hard problems like determining van der Waerden numbers, a single processor,

even when run for a long time, is by far not adequate. Hence some form of parallelisation or

distribution of the work is needed. Four levels of parallelisation have been considered for SAT

solving (in a variety of schemes):

Processor-level parallelisation works only for very special algorithms, and can only achieve some

relatively small speed-up. See [47] for an example which exploits parallel bit-operations. It seems

to play no role for the problems we are considering.

Currently a standard single computer may contain up to, say, 16 relatively independent processing

units, working on shared memory. So threads (or processes) can run in parallel, using one (or more)

of the following general forms of collaboration:

(a) Partitioning the work via partitioning the instance (see below); [84, 55] are “classical” exam-

ples.

(b) Using the same algorithm running in various nodes on the same problem, exploiting random-

ization and/or sharing of learned results; see [51, 43] for recent examples.

(c) Using some portfolio approach, running different algorithms on the same problem, exploiting

that various algorithms can behave very differently and unpredictably; see [42] for the first

example.

Often these approaches are combined in various ways; see [71, 37, 52, 53] for recent examples.

Approaches (b) and (c) do not seem to be of much use for the well-specified problem domain of hard

instances from Ramsey theory. Only (a) is relevant, but in a more extreme form (see below).

On a cluster of computers, hundreds of computers may be considered with restricted commu-

nication (though typically still non-trivial). In this case, partitioning the work via partitioning

the instance becomes more dominant. For hard problems, this form of computation is a common

approach.

Internet computation with completely independent computers and only very basic communication

between the centre and the machines, can be used to solve problems with massive search space.
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In principle, the number of computers is unbounded. There is no practical example for a SAT

computation at this level.

We remark that the classical area of “high performance computing” seems to be of no relevance

for SAT solving, since the basic SAT algorithms like unit-clause propagation are (unlike the typical

forms of numerical computation) inherently sequential.
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Chapter 3

On the Computation of van der

Waerden Numbers

As discussed in Chapter 2, there is a huge gap between the lower and upper bounds of van der

Waerden numbers. The lower bound is exponential and the upper bound is enormous, yet the

known exact values are not even close to the theoretical upper bound. Having another data point,

that is, computing a new van der Waerden number, which would be useful to better understand the

actual pattern of growth of the van der Waerden numbers, is extremely difficult due to its immense

search space.

In this chapter, we report exact values of five previously unknown van der Waerden numbers of

the form w(2; t0, t1), some lower bounds (which we conjecture to be exact), polynomial upper-bound

conjecture for w(2; s, t), an efficient SAT-encoding, and a problem-specific backtracking algorithm

for computing certain van der Waerden numbers. Most of the results described in this chapter can

be found in Ahmed [1, 2, 3, 4] and Ahmed, Kullmann, and Snevily [8]. We have added and extended

respective entries in the Online Encyclopædia of Integer Sequences (OEIS) using the results reported

in this chapter.

As explored in Dransfield et al.[23], Herwig et al. [46], Kouril [56], and Ahmed [1, 2], we can

generate an instance F of the satisfiability problem (for definition, see any of the above references)
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corresponding to w(k; t0, t1, . . . , tk−1) and integer n, such that F is satisfiable if and only if n <

w(k; t0, t1, . . . , tk−1). In particular, an instance corresponding to w(2; t0, t1) with n variables can be

generated with the following clauses:

(a) {xa, xa+d, · · · , xa+d(t0−1)} with a > 1, d > 1, a + d(t0 − 1) 6 n and

(b) {x̄a, x̄a+d, · · · , x̄a+d(t1−1)} with a > 1, d > 1, a + d(t1 − 1) 6 n,

where xi = ε encodes the assignment of colour ε ∈ {0, 1} to integer i (if xi is not assigned a colour

but the formula is satisfied, then i can be arbitrarily assigned). Clauses (a) prohibit the existence of

a monochromatic t0-AP of colour 0 and clauses (b) prohibit the existence of a monochromatic t1-AP

of colour 1.

3.1 New exact values of some w(2; t0, t1)

Discovering a new van der Waerden number has always been a challenge as it requires exploring the

search space completely, which has a size exponential in the number of variables in the correspond-

ing satisfiability instance. To prove that an instance with n variables is unsatisfiable, the DPLL

algorithm implicitly enumerates all the 2n solutions, that is, systematically evaluates all possible

cases without explicitly evaluating all of them. To finish the search-space corresponding to the cur-

rent lower bound of a certain van der Waerden number would require years of CPU-time, perhaps

trillions of years for the bigger lower bounds.

Dividing the computation of a search into parts that have no inter-process communication among

themselves is straightforward. DPLL has this desirable property like many backtrack algorithms. We

may pick a level, say ℓ, of the DPLL-tree and distribute the subtrees rooted at that level among the

processors. The appropriate value of ℓ may depend on many factors like the number of computers

available, and should be decided on a case-by-case basis. Distributing the tasks evenly will not

guarantee the reduction of computation time by a factor close to the number of CPUs, as some of

the subtrees may be considerably larger than others, or that a computer involved may be relatively

slow. Advanced splitting techniques for problem-specific DPLL-tree would help to predict which

branch would require to be splitted recursively.
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The size of the DPLL-tree greatly varies with the choice of the branching rule (or heuristic).

It is hard to find a branching rule that works well on every SAT instance. Given a formula F ,

define w(u) =
∑

k 2−kdk(u), where dk(u) denotes the number of clauses of length k containing u.

First we find a variable x that maximizes w(x) + w(x̄), and then we choose x if w(x) > w(x̄),

and x̄ otherwise. This branching rule is known as Two-sided Jeroslaw-Wang (2sJW), (by Hooker

and Vinay [50]) in the literature. Our DPLL implementation reads branching suggestions, if there

are any, up to a prescribed level, and then explores the search space corresponding to the residual

formula after those branches. It also periodically stores the current state of the search as a sequence

of pairs (u, t), where u ∈ {x1, x̄1, x2, x̄2, . . . , xn, x̄n} and t ∈ {0, 1}. A pair (u, 0) indicates that ū

has to be explored, and (u, 1) indicates that ū has been explored already. A generator version of

the solver generates the branching suggestions up to a prescribed level, and then the solver runs

on different suggestions corresponding to the respective branches of the DPLL-tree. This involves a

slight modification in Algorithm 1, which can easily be done.

We extend the following table of known values of w(2; s, t):

s/t 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 9 18 22 32 46 58 77 97 114 135 160 186 218 238
4 35 55 73 109 146
5 178 206
6 1132

Table 3.1: Known values of w(2; s, t) (excluding the numbers discovered by us)

In Sections 3.1.1 through 3.1.5, we report some new exact values of van der Waerden numbers.

In each case, we provide a certificate of the lower bound corresponding to w(2; s, t)− 1. To compute

the exactness of each of the values w(2; 3, 17), w(2; 3, 18), w(2; 3, 19),w(2; 4, 9), and w(2; 5, 7), we

have used a distributed application of our SAT-solver.

3.1.1 w(2; 3, 17) = 279:

We have computed the exact value of w(2; 3, 17) (Ahmed [2]), using 2.2 GHz 64 bit AMD Opteron

processors (64 of them) from cirrus cluster at Concordia taking a total of 301 days of CPU-time

(5 days of run-time).
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3.1.2 w(2; 3, 18) = 312:

We have computed the exact value of w(2; 3, 18) (Ahmed [2]), using 2.2 GHz 64 bit AMD Opteron

processors (80 of them) from cirrus cluster at Concordia taking a total of 13.6 years of CPU-time

(70 days of run-time).
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Observe that both the certificates corresponding to w(2; 3, 17) and w(2; 3, 18) are palindromic

(reads the same backward or forward).

3.1.3 w(2; 3, 19) = 349:

We have computed the exact value of w(2; 3, 19) (Ahmed, Kullmann, and Snevily [8]), using 2.2 GHz

64 bit AMD Opteron processors (200 of them) from cirrus cluster at Concordia taking a total of

196 years of CPU-time (300 days of run-time).
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3.1.4 w(2; 4, 9) = 309:

We have computed the exact value of w(2; 4, 9) (Ahmed [3]), using 2.2 GHz 64 bit AMD Opteron

processors (200 of them) from cirrus cluster at Concordia for part of the computation, and 2.8

GHz Intel Xeon E5462 processors (256 of them) at Université de Sherbrooke (under Quebec High

Performance Computing Network, RQCHP) for the remaining part, taking a total of 176 years of

CPU-time (330 days of run-time).
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Observe that the certificate corresponding to w(2; 4, 9) is palindromic.

3.1.5 w(2; 5, 7) = 260:

We have computed the exact value of w(2; 5, 7) (Ahmed [4]), using 2.2 GHz 64 bit AMD Opteron

processors (200 of them) from cirrus cluster at Concordia and 2.8 GHz Intel Xeon E5462 processors

(256 of them) at Université de Sherbrooke (under Quebec High Performance Computing Network,

RQCHP), taking a total of 266 years of CPU-time (220 days of run-time).
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3.2 All known values of w(2; s, t)

We have extended the following table of known values of w(2; s, t):

We have extended the following entries in the OEIS based on the above results:

1. A171081: w(2; 3, t) for t > 3.

9, 18, 22, 32, 46, 58, 77, 97, 114, 135, 160, 186, 218, 238,279,312,349.

2. A171082: w(2; 4, t) for t > 4.

35, 55, 73, 109, 146,309.

3. A217037: w(2; 5, t) for t > 5.

178, 206,260.
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t/s 3 4 5 6
3 9
4 18 35
5 22 55 178
6 32 73 206 1132
7 46 109 260
8 58 146
9 77 309

10 97
11 114
12 135
13 160
14 186
15 218
16 238
17 279
18 312
19 349

Table 3.2: Known values of w(2; s, t) (the bold ones are discovered by us)

3.3 Conjectured values of some w(2; t0, t1)

In this section, we provide conjectured values of w(2; 3, t) for t = 20, 21, . . . , 30. We have used

the Ubcsat suite [82] of local-search based satisfiability algorithms for generating the corresponding

certificates. Since local search based algorithms are incomplete (they may fail to deliver a satisfying

assignment, and hence a good partition when there exists one), it remains to prove exactness of

these numbers using a complete satisfiability solver or some complete colouring algorithm.

w(2; 3, 20) > 389:
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w(2; 3, 21) > 416:
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w(2; 3, 22) > 464:
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w(2; 3, 23) > 516:
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w(2; 3, 24) > 593:
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w(2; 3, 25) > 656:
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w(2; 3, 26) > 727:

1
10

01
23

01
10

0101
20

01
4
01

11
01

6
01

11
0
2
1
2
01

5
01

6
01

5
01

23
01

4
0101

7
01

17
01

16
0101

11
0
2
1
2
0101

3
01

4
01

2
01

18

01
3
01

5
01

14
01

12
01

16
01

4
01

19
01

8
010

2
1
4
01

13
01

14
0101

20
01

4
01

18
01

11
0
2
1
2
01

5
01

6
01

5
01

23
01

4
0101

7
01

15
0101

16

0101
11

0
2
1
2
0101

3
01

4
01

2
01

18
01

9
01

14
01

12
01

16
01

4
01

19
01

8
01

2
01

18
01

3
01

25

w(2; 3, 27) > 770:
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w(2; 3, 28) > 827:
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w(2; 3, 29) > 868:
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w(2; 3, 30) > 903:
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w(2; 5, 8) > 331:
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w(2; 5, 9) > 473:
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3.4 Upper bound conjectures for w(2; s, t) when s is fixed

We observe that for t = 24, 25, . . . , 30 we have w(2; 3, t) > t2, which refutes the assumption that

w(2; 3, t) 6 t2, as suggested in Brown, Landman, and Robertson [17], based on the exact values for

5 6 t 6 16 known by then. But, still a polynomial upper bound of w(2; s, t) seems possible when s

is fixed.

33



Conjecture 3.4.1 (Ahmed, Kullmann, and Snevily [8]). For t > 3 and fixed s > 3, there exists

c > 1 such that

w(2; s, t) 6 cts−1.

Define

dmax(s) = max {w(2; s, j) − w(2; s, j − 1) : j > s + 1} ,

a lower bound of which can be obtained from all known values and bounds of w(2; s, t).

Example 3.4.2. Based on the known values as given in Section 3.1 and lower bounds as given in

Section 3.3 for w(2; 3, t), we obtain the following recursion

w(2; 3, t) 6 w(2; 3, t − 1) + dmax(3) · (t − 1)

for t > 3 with w(2; 3, 3) = 9. From our data, considering the largest gap between consecutive

values or bounds, we observe dmax(3) > (593 − 516)/23 ≈ 3.35. Solving the recurrence, we get the

following specific conjecture with s = 3:

w(2; 3, t) 6 w(2; 3, t − 1) + dmax(3) · (t − 1) < 1.675t2.

Similarly, for known values corresponding to s = 4 and s = 5, we conjecture w(2; 4, t) < 2t3 and

w(2; 5, t) < t4, respectively.

3.5 On w(k; t0, t1, . . . , tk−1) for k > 3

In this section, we discuss an efficient SAT encoding of van der Waerden numbers w(k; t0, t1, . . . , tk−1)

with k > 3. Using that encoding, we have computed three new numbers. Then we discuss an idea to

reduce the backtrack search space of some specific van der Waerden numbers considering symmetry,

and compute several new values using that idea. The results reported in this section are published

in Ahmed [3, 4].
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3.5.1 An efficient encoding

For any partition P0 ∪ P1 ∪ · · · ∪ Pk−1 of the set {1, 2, . . . , n}, we want to prohibit the existence of

arithmetic progressions of length tj in block Pj (0 6 j 6 k−1). Here, we present a simple but useful

idea of binary-encoding of the blocks of partition for SAT-encoding of van der Waerden numbers.

The idea of using binary variables to represent the bits of a binary representation of a nonnegative

integer is not new. This formulation is well-known in integer linear programming (see Garfinkel

and Nemhauser [35]), but the idea was never used in the present context until we used it in 2009.

Recently, Kullmann [58] has used a more generalized idea of binary encoding to compute Green-Tao

numbers.

Instead of taking nk variables xi,j with 1 6 i 6 n and 0 6 j 6 k − 1 (as described in [1]), we

take nr variables xp,q with 1 6 p 6 n and 0 6 q 6 r − 1, where r = ⌈log2(k)⌉.

To prove that an instance with v variables is unsatisfiable; the DPLL algorithm implicitly enu-

merates all the 2v possible cases, that is, systematically evaluates all possible cases without explicitly

evaluating all of them. As we have fewer variables in the proposed encoding, we have less number

of cases to enumerate.

Let a block Pj for 0 6 j 6 k − 1 be represented in binary such that j =
∑r−1

q=0 bj,q2
q, where bj,q

is the q-th bit in the r-bit binary representation of j.

An integer i in {1, 2, . . . , n} belongs to a block Pj if and only if j equals
∑r−1

q=0 xi,q2
q, that is,

xi,q has the same truth-value as bj,q. To prohibit the existence of arithmetic progressions a, a +

d, . . . , a + d(tj − 1), with a > 1, d > 1, a + d(tj − 1) 6 n in block Pj , we add the following clauses:

{
ua,r−1, . . . , ua,0, ua+d,r−1, . . . , ua+d,0, . . . , ua+d(tj−1),r−1 . . . , ua+d(tj−1),0

}
,

where literal ui,q (for i ∈ {a, a + d, . . . , a + d(tj − 1)}) is defined as follows:

ui,q =







x̄i,q if bj,q = 1,

xi,q otherwise.

The above clauses are added for each j in {0, 1, . . . , k − 1}. The clauses are long, but can be handled

efficiently as described in Section 3 of [2].
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To ensure that an integer i is not placed in a block Pj with k 6 j 6 2r − 1 (since there is no

such block in the partition of {1, 2, . . . , n}), we add the following clauses:

{vi,r−1, vi,r−2, . . . , vi,1, vi,0} (i = 1, 2, . . . , n),

where literal vi,q is defined as follows:

vi,q =







x̄i,q if bj,q = 1,

xi,q otherwise.

The double-subscript variables xp,q with 1 6 p 6 n and 0 6 q 6 r−1 can be converted to single-

subcript variables y(p−1)r+q+1. In the following example, we write j and −j to mean the literals yj

and ȳj respectively. An instance corresponding to w(3; 2, 3, 3) for n = 5 can be constructed with 10

variables 1, 2, . . . , 10 and the following 23 clauses:

(i) {1,2,3,4}, {1,2,5,6}, {1,2,7,8}, {1,2,9,10}, {3,4,5,6}, {3,4,7,8}, {3,4,9,10},

{5,6,7,8}, {5,6,9,10}, {7,8,9,10},

(ii) {1,-2,3,-4,5,-6}, {1,-2,5,-6,9,-10}, {3,-4,5,-6,7,-8}, {5,-6,7,-8,9,-10},

(iii) {-1,2,-3,4,-5,6}, {-1,2,-5,6,-9,10}, {-3,4,-5,6,-7,8}, {-5,6,-7,8,-9,10},

(iv) {-1,-2}, {-3,-4}, {-5,-6}, {-7,-8}, {-9,-10}.

Clauses (i), (ii), and (iii) prohibit the existence of arithmetic progressions of lengths 2 (in block

P0), 3 (in block P1), and 3 (in block P2) respectively. Clauses (iv) prohibit the placement of any

integer in block P3.

3.5.2 A new number: w(3; 3, 3, 6) = 107

It took 992 days of CPU-time (roughly 17 days of run-time) using 2.2 GHz AMD Opteron 64 bit pro-

cessors (64 of them) from the cirrus cluster at Concordia to prove that the instance corresponding

to 107 is unsatisfiable, that is, there is no good partition of the set {1, 2, . . . , 107}. A good partition

of the set {1, 2, . . . , 106} corresponding to w(3; 3, 3, 6) is as follows:

22122112 22212222 00220021 22102021 22200220 22220202 11221222

22110122 02022002 20222122 12202210 11022220 22022221 22.
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3.5.3 Some new lower bounds of w(3; t0, t1, t2)

In this section, we provide the following new lower bounds of w(3; t0, t1, t2), which were published

in Ahmed [3].

w(3; 2, 4, 8) > 155, w(3; 3, 3, 7) > 149, w(3; 3, 3, 8) > 185,

w(3; 3, 3, 9) > 221, w(3; 3, 3, 10) > 265, w(3; 3, 4, 5) > 163, and

w(3; 3, 5, 5) > 243.

Recently, Kouril [57] proved that w(3; 2, 4, 8) = 157.

3.5.4 An observation

We observe that the more blocks in the partition, the better the performance of the encoding. Here,

we present the following two previously unknown van der Waerden numbers

w(7; 2, 2, 2, 2, 2, 3, 5) = 55 (taking 21 days) and

w(8; 2, 2, 2, 2, 2, 2, 3, 4) = 40 (taking 16 days).

For both these numbers, the encoding in [1, 23] takes more than a couple of months to prove the

corresponding instances unsatisfiable.

3.5.5 Backtracking considering symmetry

In this section, we propose a problem-specific backtracking algorithm for computing van der Waerden

numbers w(k; t0, t1, . . . , tk−1) with t0 = t1 = · · · = tj−1 = 2, where k > j + 2 and ti > 3 for i > j.

We report some previously unknown numbers using this method.

3.5.5.1 On w(k; 2, 2, . . . , 2, tj , tj+1 . . . , tk−1)

Suppose in w(k; t0, . . . , tj−1, tj , . . . , tk−1) where k − j > 2, we have t0 = t1 = · · · = tj−1 = 2, and

ti > 3 for i = j, j + 1, . . . , k − 1. Any certificate of a lower bound of this van der Waerden number

will contain each of 0, 1, . . . , j − 1 exactly once. Hence the certificate will still remain valid after
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any in-place permutation of 0, 1, . . . , j − 1. For example, 898998879898031546989829988989 is a

certificate of lower bound of

w(10; 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) > 30,

which uses 10 colours. Keeping 8 and 9 in place, there are 8! certificates that prove the same lower

bound.

In such a case, any certificate containing k colours can be transformed into an equivalent certifi-

cate replacing each of 0, 1, . . . , j−1 with a symbol x, and keeping the remaining k−j colours. When

we extend a certificate, we prohibit any ti-term arithmetic progressions for i = j, j +1, . . . , k−1 and

check that the number of x does not exceed j. This observation greatly reduces the search space

(the backtrack search-tree becomes (k− j + 1)-ary instead of k-ary) of a trivial backtrack algorithm

and makes way for computing new van der Waerden numbers.

From the above discussion, an equivalent certificate in our example is

8989988x9898xxxxxx9898x9988989,

which uses only two colours and a symbol x. For computational convenience, we can write this

certificate as

121221102121000000212102211212,

with symbol x being replaced by integer colour 0 and colour c being replaced by integer colour

c − j + 1.

3.5.5.2 On w(k; 2, 2, . . . , 2, t, t . . . , t) with t > 3

Let t0 = t1 = · · · = tj−1 = 2 and ti = t > 3 for i = j, j + 1, . . . , k − 1. We can further minimize

the backtrack search-space by extending only one certificate from the set of isomorphic certificates

under symmetry. Consider the forty-eight certificates of the lower bound w(3; 3, 3, 3) > 26 with the

colours named 1, 2, and 3.
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1: 11221123233131121223133232 2: 11223113132233223131132211

3: 11232113132233223131123211 4: 11323112123322332121132311

5: 11331132322121131332122323 6: 11332112123322332121123311

7: 12112123322332121123311313 8: 12122113223231133113232231

9: 12122113223231133113232232 10: 12122321131332322121331133

11: 12332321122112323321133131 12: 13113132233223131132211212

13: 13133112332321122112323321 14: 13133112332321122112323323

15: 13133231121223233131221122 16: 13223231133113232231122121

17: 21211223113132233223131131 18: 21211223113132233223131132

19: 21211312232331311212332233 20: 21221213311331212213322323

21: 21331312211221313312233232 22: 22112213133232212113233131

23: 22113223231133113232231122 24: 22131223231133113232213122

25: 22313221213311331212231322 26: 22331221213311331212213322

27: 22332231311212232331211313 28: 23113132233223131132211212

29: 23223231133113232231122121 30: 23233132212113133232112211

31: 23233221331312211221313312 32: 23233221331312211221313313

33: 31221213311331212213322323 34: 31311213323221211313223322

35: 31311332112123322332121121 36: 31311332112123322332121123

37: 31331312211221313312233232 38: 32112123322332121123311313

39: 32322123313112122323113311 40: 32322331221213311331212212

41: 32322331221213311331212213 42: 32332321122112323321133131

43: 33112332321122112323321133 44: 33113312122323313112322121

45: 33121332321122112323312133 46: 33212331312211221313321233

47: 33221331312211221313312233 48: 33223321211313323221311212

Table 3.3: All certificates of w(3; 3, 3, 3) > 26

Let a permutation π of 1, 2, . . . , k be a sequence π(1), π(2), . . . , π(k). Let S(k) denote the set of
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all permutations of 1, 2, . . . , k. We write the permutations in S(k) in parenthesized notation with

respect to the indices 1, 2, . . . , k. For example,

S(3) = {(1)(2)(3), (1)(2, 3), (1, 2)(3), (1, 2, 3), (1, 3, 2), (1, 3)(2)} .

Let a certificate of the lower bound w(k; t, t, . . . , t) > n be denoted by C = c1c2 · · · cn. Let Tπ(C)

and TS(k)(C) be defined by π(c1)π(c2) . . . π(cn) and {Tπ(C) : π ∈ S(k)}, respectively.

For example, TS(3)(11221123233131121223133232) equals the set with the following elements

11221123233131121223133232, 11331132322121131332122323,

22112213133232212113233131, 22332231311212232331211313,

33113312122323313112322121, 33223321211313323221311212.

Similarly, all 48 certificates can be generated from the following 8 certificates:

1: 11221123233131121223133232 2: 11223113132233223131132211

3: 11232113132233223131123211 7: 12112123322332121123311313

8: 12122113223231133113232231 9: 12122113223231133113232232

10: 12122321131332322121331133 11: 12332321122112323321133131

Table 3.4: Representative certificates of w(3; 3, 3, 3) > 26

Thus instead of generating and extending all certificates, we can consider only one from the 3!

equivalent certificates. To do so, we can observe that, in a certificate c1c2 · · · cn of w(k; t, t, . . . , t) > n,

if ci is greater than cℓ for 1 6 ℓ 6 i − 1, then we can ignore branching on ci + 1, ci + 2, . . . , k at

position i.

3.5.5.3 The algorithm

We have the following algorithm for computing w(k; t0, t1, . . . , tk−1), where t0 = t1 = · · · = tj−1 = 2

and k > j + 2 that combines the ideas in Sections 3.5.5.1 and 3.5.5.2.

40



Algorithm 2 Recursive algorithm Run(k, j, index, x)

1: function Run(k, j, index, x)
2: if zeroCount > j then return end if
3: if index > 0 and x > 0 then
4: if the indices of tx+j−1 x’s in c1c2 · · · cindex form an AP then
5: return
6: end if
7: end if
8: if index > max then max = index end if
9: for i = 0 to k − j do

10: if i = 0 then zeroCount = zeroCount + 1 end if
11: cindex+1 = i
12: Run(k, j, index + 1, i)
13: if i = 0 then zeroCount = zeroCount − 1 end if
14: if i > 0 and tj = tj+1 = · · · = tk−1 = t then
15: if index 6 j + (i − 1)(t − 1) + 1 then
16: if cindex+1 > cℓ for 1 6 ℓ 6 index then
17: break
18: end if
19: end if
20: end if
21: end for
22: end function

We can observe that function Run in Algorithm 2 returns with

max + 1 = w(k; 2, 2, . . . , 2, tj , tj+1, . . . , tk−1)

when called as Run(k,j,0,0) with zeroCount and max initialized to zero.

3.5.5.4 Experiments with some known values

In Table 3.5, we report test-results of Algorithm 2 with parameters corresponding to some known

van der Waerden numbers. We do so to verify the correctness of the algorithm. We consider only

numbers that are relevant to the algorithm and take less than half an hour of run-time.
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(tj , tj+1, . . . , tk−1) max + 1 time(s)

Run(2, 0, 0, 0) (3,3) 9 = w(2; 3, 3) 0.00

Run(2, 0, 0, 0) (4,4) 35 = w(2; 4, 4) 0.00

Run(3, 1, 0, 0) (3,3) 14 = w(3; 2, 3, 3) 0.00

Run(3, 1, 0, 0) (4,4) 40 = w(3; 2, 4, 4) 0.38

Run(3, 0, 0, 0) (3,3,3) 27 = w(3; 3, 3, 3) 0.12

Run(4, 2, 0, 0) (3,3) 17 = w(4; 2, 2, 3, 3) 0.00

Run(4, 2, 0, 0) (3,4) 25 = w(4; 2, 2, 3, 4) 0.07

Run(4, 2, 0, 0) (3,5) 43 = w(4; 2, 2, 3, 5) 2.20

Run(4, 2, 0, 0) (3,6) 48 = w(4; 2, 2, 3, 6) 42.93

Run(4, 2, 0, 0) (4,4) 53 = w(4; 2, 2, 4, 4) 10.25

Run(4, 1, 0, 0) (3,3,3) 40 = w(4; 2, 3, 3, 3) 4.97

Run(5, 3, 0, 0) (3,3) 20 = w(5; 2, 2, 2, 3, 3) 0.00

Run(5, 3, 0, 0) (3,4) 29 = w(5; 2, 2, 2, 3, 4) 0.84

Run(5, 3, 0, 0) (3,5) 44 = w(5; 2, 2, 2, 3, 5) 38.11

Run(5, 3, 0, 0) (4,4) 54 = w(5; 2, 2, 2, 4, 4) 208.74

Run(5, 2, 0, 0) (3,3,3) 41 = w(5; 2, 2, 3, 3, 3) 102.71

Run(6, 4, 0, 0) (3,3) 21 = w(6; 2, 2, 2, 2, 3, 3) 0.05

Run(6, 4, 0, 0) (3,4) 33 = w(6; 2, 2, 2, 2, 3, 4) 7.66

Run(6, 4, 0, 0) (3,5) 50 = w(6; 2, 2, 2, 2, 3, 5) 522.64

Run(6, 3, 0, 0) (3,3,3) 42 = w(6; 2, 2, 2, 3, 3, 3) 1615.73

Run(7, 5, 0, 0) (3,3) 24 = w(7; 2, 2, 2, 2, 2, 3, 3) 0.31

Run(7, 5, 0, 0) (3,4) 36 = w(7; 2, 2, 2, 2, 2, 3, 4) 59.64

Run(8, 6, 0, 0) (3,3) 25 = w(8; 2, 2, 2, 2, 2, 2, 3, 3) 1.38

Run(8, 6, 0, 0) (3,4) 40 = w(8; 2, 2, 2, 2, 2, 2, 3, 4) 434.12

Run(9, 7, 0, 0) (3,3) 28 = w(9; 2, 2, 2, 2, 2, 2, 2, 3, 3) 5.58

Table 3.5: Experiment on some known values
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3.5.5.5 New values of w(k; t0, t1, . . . , tk−1)

We have computed the following new values of w(k; t0, t1, . . . , tk−1) using Algorithm 2.

w(k; t0, t1, . . . , tk−1)

w(7; 2, 2, 2, 2, 2, 3, 6) = 65

w(7; 2, 2, 2, 2, 2, 4, 4) = 66

w(7; 2, 2, 2, 2, 3, 3, 3) = 45

w(8; 2, 2, 2, 2, 2, 2, 3, 5) = 61

w(8; 2, 2, 2, 2, 2, 2, 3, 6) = 71

w(8; 2, 2, 2, 2, 2, 2, 4, 4) = 67

w(8; 2, 2, 2, 2, 2, 3, 3, 3) = 49

w(9; 2, 2, 2, 2, 2, 2, 2, 3, 4) = 42

w(9; 2, 2, 2, 2, 2, 2, 2, 3, 5) = 65

w(9; 2, 2, 2, 2, 2, 2, 3, 3, 3) = 52

w(10; 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) = 31

w(10; 2, 2, 2, 2, 2, 2, 2, 2, 3, 4) = 45

w(11; 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) = 33

w(11; 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4) = 48

w(12; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) = 35

w(12; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4) = 52

w(13; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) = 37

w(13; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4) = 55

w(14; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) = 39

w(15; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) = 42

w(16; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) = 44

w(17; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) = 46

w(18; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) = 48

w(19; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) = 50
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w(20; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) = 51

Table 3.6: New values of w(k; t0, t1, . . . , tk−1)

Based on the results in Table 3.6, we have added and extended (as shown in bold fonts) the

following entries in the OEIS:

1. A217005: w(j + 2; t0, t1, . . . , tj−1, 3, 3) for j > 0 with ti = 2, 0 6 i 6 j − 1.

9, 14, 17, 20, 21, 24, 25, 28,31,33,35,37,39,42,44,46,48,50,51.

2. A217058: w(j + 2; t0, t1, . . . , tj−1, 3, 4) for j > 0 with ti = 2, 0 6 i 6 j − 1.

18, 21, 25, 29, 33, 36, 40,42,45,48,52,55.

3. A217059: w(j + 2; t0, t1, . . . , tj−1, 3, 5) for j > 0 with ti = 2, 0 6 i 6 j − 1.

22, 32, 43, 44, 50, 55,61,65.

4. A217060: w(j + 2; t0, t1, . . . , tj−1, 3, 6) for j > 0 with ti = 2, 0 6 i 6 j − 1.

32, 40, 48, 56, 60,65,71.

5. A217007: w(j + 2; t0, t1, . . . , tj−1, 4, 4) for j > 0 with ti = 2, 0 6 i 6 j − 1.

35, 40, 53, 54, 56,66,67.

6. A217008: w(j + 3; t0, t1, . . . , tj−1, 3, 3, 3) for j > 0 with ti = 2, 0 6 i 6 j − 1.

27, 40, 41, 42,45,49,52.
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Chapter 4

Some Properties of Arithmetic

Progressions

In this chapter, we prove some basic counting lemmas on arithmetic progressions, and generalize a

conjecture of Szekeres based on experimental data. The content of this chapter is based on joint

work with Hunter Snevily and Janusz Dybizbański [6].

4.1 Notation

Recall the definitions: Let c(k, n) denote the size of the set ap(k, n); let ap(k, n;x) denote the set of

k-APs each containing x and c(k, n;x) denote the size of ap(k, n;x); let ci(k, n;x) be the number of k-

APs in ap(k, n;x) each of which contains x as the i-th element. Clearly, c(k, n;x) =
∑k

j=1 cj(k, n;x).

Also let cmax(k, n) denote the maximum of c(k, n;x) over x = 1, 2, . . . , n.

Example 4.1.1. Consider k = 4 and n = 17. Then we have
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j/x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 5 5 4 4 4 3 3 3 2 2 2 1 1 1 0 0 0

2 0 1 2 3 4 5 5 4 4 3 3 2 2 1 1 0 0

3 0 0 1 1 2 2 3 3 4 4 5 5 4 3 2 1 0

4 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5

c(4, 17;x) 5 6 7 9 11 11 13 12 12 12 13 11 11 9 7 6 5

Here c(4, 17;x) = c1(4, 17;x)+ c2(4, 17;x)+ c3(4, 17;x)+ c4(4, 17;x). For example, c(4, 17; 13) =

1 + 2 + 4 + 4 due to the following 4-APs in ap(4, 17) that contain 13, namely ap(4, 17; 13):

{13, 14, 15, 16} , {12, 13, 14, 15} , {11, 13, 15, 17} , {5, 9, 13, 17} ,

{7, 10, 13, 16} , {9, 11, 13, 15} , {11, 12, 13, 14} , {1, 5, 9, 13} ,

{4, 7, 10, 13} , {7, 9, 11, 13} , {10, 11, 12, 13} .

Observation 4.1.2. For x = 1, 2, . . . , ⌊n/2⌋, c(k, n;x) = c(k, n;n − x + 1).

Proof. From Observation 2.3.2, c1(n, k;x) = ck(n, k;n − x + 1).

For other values of j, if ⌊(n − x)/(k − j)⌋ 6 ⌊(x − 1)/(j − 1)⌋, then taking x′ = n − x + 1 and

j′ = k − j + 1,

cj(k, n;x) =
⌊ (n − x)

(k − j)

⌋

=
⌊ (n − x + 1) − 1

(k − j + 1) − 1

⌋

=
⌊ (x′ − 1)

(j′ − 1)

⌋

= cj′(k, n;x′).

The last equality follows from the fact that

⌊ (x′ − 1)

(j′ − 1)

⌋

6

⌊ (x − 1)

(j − 1)

⌋

=
⌊ (n − x′)

(k − j′)

⌋

.

Similarly, if ⌊(n − x)/(k − j)⌋ > ⌊(x − 1)/(j − 1)⌋, then

cj(k, n;x) = ck−j+1(k, n;n − x + 1).

Therefore, c(k, n; i) with i = 1, 2, . . . , n is symmetric.

Lemma 4.1.3. Given positive integers k and n, let 2 6 j 6 k−1, n = m(k−1)+r with 0 6 r 6 k−2.

Then cj(k, n;x) equals
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(a) ⌊(x − 1)/(j − 1)⌋ if x = 1, 2, . . . ,m(j − 1),

(b) ⌊(n − x)/(k − j)⌋ if x = n − m(k − j) + 1, n − m(k − j) + 2, . . . , n,

(c) m otherwise, that is, for x = m(j − 1) + 1, . . . , n − m(k − j).

Proof. (a) Take y 6 m(j − 1) and assume ⌊(n − y)/(k − j)⌋ < ⌊(y − 1)/(j − 1)⌋. Now we have,

⌊(y − 1)/(j − 1)⌋ 6 m − 1, and

y 6 m(j − 1) ⇒ n − y > n − m(j − 1) = m(k − j) + r,

⇒
⌊n − y

k − j

⌋

> m,

which is a contradiction.

(b) Take y > n−m(k− j)+1 and assume ⌊(n− y)/(k− j)⌋ > ⌊(y− 1)/(j − 1)⌋. Similar reasoning

as (a) leads to a contradiction.

(c) Here, n − m(k − j) can be written as m(j − 1) + r and m(j − 1) + 1 can be written as

n−m(k − j)− (r − 1). There are exactly r elements in m(j − 1) + 1, . . . , n−m(k − j) and for

any x in this range,

cj(k, n, x) = ⌊(x − 1)/(j − 1)⌋ = ⌊(n − x)/(k − j)⌋ = m.

Lemma 4.1.4. Given positive integers k and n, let n = m(k − 1) + r with 0 6 r 6 k − 2. Denote a

sequence a, a, . . . , a with a repeated b times as ab and consider a0 to be an empty sequence. Then

for 1 6 j 6 k, the sequence cj(k, n;x) with 1 6 x 6 n has the form

0j−11j−1 · · · (m − 1)j−1mr(m − 1)k−j(m − 2)k−j · · · 0k−j .

Proof. From Observation 2.3.2,

c1(k, n;x) =
⌊n − x

k − 1

⌋

=
⌊

m +
r − x

k − 1

⌋

= m +
⌊r − x

k − 1

⌋

.
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Now, we have

c1(k, n;x) =







m for x = 1, 2, . . . , r,

(m − 1) for x = r + 1, r + 2, . . . , r + (k − 1),

(m − 2) for x = r + (k − 1) + 1, r + (k − 1) + 2, . . . , r + 2(k − 1),

... ,

1 for x = r + (m − 2)(k − 1) + 1, . . . , n − (k − 1),

0 for x = r + (m − 1)(k − 1) + 1, . . . , n.

Hence, the sequence c1(k, n;x) with x = 1, 2, . . . , n is

mr(m − 1)k−1(m − 2)k−1 · · · 1k−10k−1.

Similarly, the sequence ck(k, n;x) with x = 1, 2, . . . , n is

0k−11k−1 · · · (m − 2)k−1(m − 1)k−1mr.

For 2 6 j 6 k − 1, we have (by Lemma 4.1.3):

x cj(k, n;x)

1, 2, . . . , j − 1 ⌊(x − 1)/(j − 1)⌋ = 0

(j − 1) + 1, (j − 1) + 2, . . . , 2(j − 1) ⌊(x − 1)/(j − 1)⌋ = 1

...
...

(m − 2)(j − 1) + 1, (m − 2)(j − 1) + 2, . . . , (m − 1)(j − 1) ⌊(x − 1)/(j − 1)⌋ = m − 2

(m − 1)(j − 1) + 1, (m − 1)(j − 1) + 2, . . . ,m(j − 1) ⌊(x − 1)/(j − 1)⌋ = m − 1

m(j − 1) + 1,m(j − 1) + 2, . . . , n − m(k − j) m

n − m(k − j) + 1, . . . , n − (m − 1)(k − j) ⌊(n − x)/(k − j)⌋ = m − 1

n − (m − 1)(k − j) + 1, . . . , n − (m − 2)(k − j) ⌊(n − x)/(k − j)⌋ = m − 2

...
...

n − 2(k − j) + 1, n − 2(k − j) + 2, . . . , n − (k − j) ⌊(n − x)/(k − j)⌋ = 1

n − (k − j) + 1, n − (k − j) + 2, . . . , n ⌊(n − x)/(k − j)⌋ = 0
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Hence, we get the sequence cj(k, n;x) for x = 1, 2, . . . , n as

0j−11j−1 · · · (m − 1)j−1mr(m − 1)k−j(m − 2)k−j · · · 0k−j .

Corollary 4.1.5. Given positive integers k and n, let m = ⌊n/(k− 1)⌋ and n = m(k− 1)+ r. Then

c(k, n) =

(
m

2

)

(k − 1) + mr.

Proof. From the definition of c1(k, n;x) for 1 6 x 6 n, we have (by Lemma 4.1.4),

c(k, n) =
n−k+1∑

x=1

c1(k, n;x),

= mr + [(m − 1) + (m − 2) + · · · + 2 + 1 + 0](k − 1),

=

(
m

2

)

(k − 1) + mr.

Corollary 4.1.6. Given positive integers k and n, let n = m(k − 1) + r with r < k − 1. Then for

1 6 j 6 k and x = 1, 2, . . . , n,

cj(k, n;x) 6 m.

Proof. Follows from Lemmas 4.1.3 and 4.1.4.

Corollary 4.1.7. Given positive integers k and n, let n = m(k − 1) + r with r < k − 1. Then

cmax(k, n) 6 m(k − 1).

Proof. For any x ∈ {1, 2, . . . , n}, we have the following values of c1(k, n;x)+ck(k, n;x) using Lemma

4.1.4.
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x c1(k, n;x) + ck(k, n;x)

1, 2, . . . , r m + 0 = m

r + 0(k − 1) + 1, r + 0(k − 1) + 2, . . . , k − 1 (m − 1) + 0 = m − 1

1 + (k − 1), 2 + (k − 1), . . . , r + 1(k − 1) (m − 1) + 1 = m

r + 1(k − 1) + 1, r + 1(k − 1) + 2, . . . , 2(k − 1) (m − 2) + 1 = m − 1

1 + 2(k − 1), 2 + 2(k − 1), . . . , r + 2(k − 1) (m − 2) + 2 = m

...
...

r + (m − 2)(k − 1) + 1, r + (m − 2)(k − 1) + 2, . . . , (m − 1)(k − 1) 1 + (m − 2) = m − 1

1 + (m − 1)(k − 1), 2 + (m − 1)(k − 1), . . . , r + (m − 1)(k − 1) 1 + (m − 1) = m

r + (m − 1)(k − 1) + 1, r + (m − 1)(k − 1) + 2, . . . ,m(k − 1) 0 + (m − 1) = m − 1

1 + m(k − 1), 2 + m(k − 1), . . . , r + m(k − 1), 0 + m = m

Hence, using Corollary 4.1.6, we have

c(k, n;x) = c1(k, n;x) + ck(k, n;x) +

k−1∑

j=2

cj(k, n;x)

6 m + m(k − 2) = m(k − 1).

Therefore, cmax(k, n) 6 m(k − 1).

It can be observed that the upper bound in Corollary 4.1.7 is the best possible for cmax(k, n).

Recall from Chapter 2 that r(k, n) denotes the length of the longest k-AP free subsequences in

1, 2, · · · , n. The following theorem gives an upper bound of r(k, n), which is very close to actual

values (as suggested by experimental results).

Theorem 4.1.8. Given positive integers k and n, let m = ⌊n/(k − 1)⌋ and n = m(k − 1) + r where

r < k − 1. Then

r(k, n) 6 n − ⌊m/2⌋.
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Proof. Using Corollaries 4.1.6 and 4.1.7, we have

r(k, n) 6 n −
⌈ c(k, n)

cmax(k, n)

⌉

6 n −
⌈m(m − 1)(k − 1)/2 + mr

m(k − 1)

⌉

= n −
⌈m − 1

2
+

r

k − 1

⌉

= n − f(m, k, r), (say)

It can be observed that

f(m, k, r) =







y + 1 if m = 2y + 1,

y if m = 2y and 2r 6 k − 1,

y + 1 if m = 2y and 2r > k − 1.

Hence,

r(k, n) 6 n − ⌊m/2⌋.

4.2 Unimodality Lemmas

A sequence is called unimodal if it is first increasing and then decreasing.

Lemma 4.2.1. Given positive integers k and n, take 2 6 j 6 k − 1. Then the sequence cj(k, n;x)

for x = 1, 2, . . . , n is unimodal.

Proof. Follows directly from Lemma 4.1.4.

Lemma 4.2.2. The sequence c(3, n; i) with i = 1, 2, . . . , n is unimodal.
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Proof. From Observation 2.3.2,

cj(3, n;x) =







⌊(n − x)/2⌋ if j = 1

x − 1 if j = 2 and x 6 ⌊n/2⌋

n − x if j = 2 and x > ⌊n/2⌋

⌊(x − 1)/2⌋ if j = 3

By Observation 4.1.2, c(3, n; i) equals c(3, n;n − i + 1) for i = 1, 2, . . . , ⌊n/2⌋.

Now, we consider the following two cases:

1. (n = 2m). For i = 1, 2, . . . ,m − 1, we have

c2(3, n; i + 1) = c2(3, n; i) + 1,

and for i = 1, 2, . . . ,m,

c1(3, n; i) + c3(3, n; i) =
⌊2m − i

2

⌋

+
⌊ i − 1

2

⌋

=
⌊

m − i

2

⌋

+
⌊ i

2
− 1

2

⌋

.

If i = 2j (j > 1), then

c1(3, n; i) + c3(3, n; i) = (m − j) +
⌊

j − 1

2

⌋

= (m − j) + (j − 1) = m − 1.

If i = 2j + 1 (j > 0), then

c1(3, n; i) + c3(3, n; i) =
⌊

m − j − 1

2

⌋

+
⌊ (2j + 1) − 1

2

⌋

= (m − j − 1) + j = m − 1.

Therefore, for i = 1, 2, . . . ,m − 1,

c(3, n; i + 1) = (m − 1) + c2(3, n; i) + 1 = c(3, n; i) + 1.
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2. (n = 2m + 1). For i = 1, 2, . . . ,m, we have

c2(3, n; i + 1) = c2(3, n; i) + 1,

and

c1(3, n; i) + c3(3, n; i) =
⌊2m + 1 − i

2

⌋

+
⌊ i − 1

2

⌋

=
⌊

m +
1

2
− i

2

⌋

+
⌊ i

2
− 1

2

⌋

.

If i = 2j (j > 1), then

c1(3, n; i) + c3(3, n; i) =
⌊

m +
1

2
− j
⌋

+
⌊

j − 1

2

⌋

= (m − j) + (j − 1) = m − 1.

If i = 2j + 1 (j > 0), then

c1(3, n; i) + c3(3, n; i) =
⌊

m +
1

2
− j − 1

2

⌋

+
⌊ (2j + 1) − 1

2

⌋

= (m − j) + j = m.

Therefore, for i = 1, 2, . . . ,m,

• If i is odd, then

c(3, n; i + 1) = c1(3, n; i + 1) + c2(3, n; i + 1) + c3(3, n; i + 1)

= c2(3, n; i) + 1 + (m − 1) = c2(3, n; i) + m

= c2(3, n; i) + c1(3, n; i) + c3(3, n; i) = c(3, n; i).

• If i is even, then

c(3, n; i + 1) = c1(3, n; i + 1) + c2(3, n; i + 1) + c3(3, n; i + 1)

= c2(3, n; i) + 1 + m = c2(3, n; i) + (m − 1) + 2

= c2(3, n; i) + c1(3, n; i) + c3(3, n; i) + 2 = c(3, n; i) + 2.
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Hence, c(3, n; i) with i = 1, 2, . . . , n is unimodal.

Lemma 4.2.3. For k > 4, there are infinitely many n such that the sequence c(k, n; i) with i =

1, 2, . . . , n is unimodal.

Proof. We show that c(k, n; i) for 1 6 i 6 n with n = lcm {1, 2, . . . , k − 1} · m (where m > 1) is

unimodal. Since n is even, n/2 is an integer. By Observation 4.1.2, the sequence c(k, n; i) with

1 6 i 6 n is symmetric. So assume i 6 n/2. Let lcm {1, 2, . . . , k − 1} be equal to hr · r with

2 6 r 6 k − 1, and i ≡ s (mod k − 1) with t = ⌊i/(k − 1)⌋. Now,

c1(k, n; i) =
⌊ (n − i)

(k − 1)

⌋

=
⌊

mhk−1 −
i

(k − 1)

⌋

=
⌊

mhk−1 − t − s

k − 1

⌋

c1(k, n; i + 1) =
⌊ (n − i − 1)

(k − 1)

⌋

=
⌊

mhk−1 −
i + 1

(k − 1)

⌋

=
⌊

mhk−1 − t − s + 1

k − 1

⌋

Therefore,

c1(k, n; i + 1) =







c1(k, n; i) − 1 if s = 0,

c1(k, n; i) otherwise.

Similarly,

ck(k, n; i + 1) =







ck(k, n; i) + 1 if s = 0,

ck(k, n; i) otherwise.

Hence, c1(k, n; i) + ck(k, n; i) remains constant for 1 6 i 6 n.

Again, for 1 6 i 6 n/2, and we have

i − 1 6 n − i.

For 2 6 j 6 k − 1, we want to show

cj(k, n; i + 1) + ck−j+1(k, n; i + 1) > cj(k, n; i) + ck−j+1(k, n; i).
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Assume j > ⌊k/2⌋. This implies k − j 6 j − 1. Since i − 1 6 n − i, we have

⌊ (i − 1)

(j − 1)

⌋

6

⌊ (n − i)

(k − j)

⌋

.

So for 1 6 i 6 n/2 − 1, and considering i ≡ s (mod j − 1) and t = ⌊i/(j − 1)⌋, we have,

cj(k, n; i + 1) =
⌊ i

j − 1

⌋

= t

cj(k, n; i) =
⌊ i − 1

j − 1

⌋

=
⌊

t +
s − 1

j − 1

⌋

=







t − 1 if s = 0,

t if s > 1.

Take j′ = k − j + 1, and then j′ − 1 6 k − j′. If ⌊(i − 1)/(j′ − 1)⌋ 6 ⌊(n − i)/(k − j′)⌋, then

0 6 cj′(k, n; i + 1) − cj′(k, n; i) 6 1,

else

cj′(k, n; i) =
⌊ n − i

k − j′

⌋

=
⌊n − i

j − 1

⌋

=
⌊

mhj−1 − t − s

j − 1

⌋

=







(mhj−1 − t) if s = 0,

(mhj−1 − t − 1) otherwise.

cj′(k, n; i + 1) =
⌊n − i − 1

k − j′

⌋

=
⌊

mhj−1 − t − s + 1

j − 1

⌋

= (mhj−1 − t − 1)

Therefore,

cj(k, n; i + 1) + cj′(k, n; i + 1) > cj(k, n; i) + cj′(k, n; i).

So the sequence c(k, n;x) with 1 6 x 6 n/2 is non-decreasing and hence the sequence c(k, n;x)

with 1 6 x 6 n is unimodal for infinitely many n.
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4.3 Uniqueness conjectures

Let b(k, n) denote the number of k-AP free subsequences of length r(k, n) in 1, 2, · · · , n. Szekeres’

conjectures exact value of r(k, n) for certain values of n.

4.3.1 Szekeres’ conjecture

Erdős and Turán [29] noted that there is no 3-term arithmetic progression in the sequence of all

numbers n, 0 6 n 6
1
2 (3t − 1), which do not contain the digit 2 in the ternary scale. Hence for every

t > 1,

r
(
3, (3t + 1)/2

)
> 2t

as we obtain the 3-AP-free sequence of length 2t in
〈
(3t +1)/2

〉
by adding 1 to each of those numbers

that does not contain digit 2 in the ternary scale. Szekeres conjectured that for every t > 1,

r
(
3, (3t + 1)/2

)
= 2t,

and more generally, for any t and any prime p,

r

(

p,
(p − 2)pt + 1

p − 1

)

= (p − 1)t.

4.3.2 Generalization of Szekeres’ conjecture

Define

J(k, L) = {(n,m) : n 6 L, r(k, n) = m and b(k, n) = 1} .

We have the following experimental data, based on which we formulate Conjectures 4.3.1 and
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4.3.2:

J(3, 123) = {(2, 2), (5, 4), (14, 8), (30, 12), (41, 16), (74, 22), (84, 24), (104, 28),

(114, 30), (122, 32)},
J(5, 105) = {(2, 2), (3, 3), (4, 4), (9, 8), (14, 12), (19, 16), (44, 32), (69, 48), (94, 64)} ,

J(7, 139) = {(2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (13, 12), (20, 18), (27, 24), (34, 30),

(41, 36), (90, 72), (139, 108)},
J(11, 117) = {(2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9), (10, 10), (21, 20),

(32, 30), (43, 40), (54, 50), (65, 60), (76, 70), (87, 80), (98, 90), (109, 100)},
J(13, 161) = {(2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9), (10, 10), (11, 11),

(12, 12), (25, 24), (38, 36), (51, 48), (64, 60), (77, 72), (90, 84), (103, 96),

(116, 108), (129, 120), (142, 132), (155, 144)}.

Conjecture 4.3.1 (The Uniqueness Conjecture). Consider a prime p > 3 and an integer t > 1.

Then for 1 6 i 6 p − 1,

r

(

p,
(ip − i − 1)pt + 1

(p − 1)

)

= i · (p − 1)t,

and b (p, x) = 1, where 1 6 x 6 p − 2 or else

x =
(ip − i − 1)pt + 1

(p − 1)
.

It can be observed that Szekeres’ conjecture is a special case of Conjecture 4.3.1 with i = 1.

Conjecture 4.3.2 (Strong Uniqueness Conjecture). Consider a prime p > 3 and an integer t > 1.

Then b(p, x) = 1 if and only if 1 6 x 6 p − 2 or else

x =
(ip − i − 1)pt + 1

(p − 1)

with 1 6 i 6 p − 1.
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4.3.3 Construction for the lower-bound of Conjecture 4.3.1

For a prime p > 3 and 1 6 i 6 p − 1, take

n =
(ip − i − 1)pt + 1

p − 1
= ipt − pt−1 − pt−2 − · · · − p − 1.

We can construct a p-AP free subset of {1, 2, . . . , n} of size i · (p − 1)t as follows:

T0 = {1, 2, . . . , n} ,

T1 = T0 − {j : j ≡ 0 (mod p)} = T0 − S0,

T2 = T1 −
{
j1p

2 − p + j2 : 1 6 j1 6 ⌊n/p2⌋, 1 6 j2 6 p − 1
}

= T1 − S1,

T3 = T2 −
{
j1p

3 − p2 + j2p − j3 : 1 6 j1 6 ⌊n/p3⌋, 1 6 j2, j3 6 p − 1
}

= T2 − S2,

T4 = T3 −
{
j1p

4 − p3 + j2p
2 − j3p + j4 : 1 6 j1 6 ⌊n/p4⌋, 1 6 j2, j3, j4 6 p − 1

}
= T3 − S3,

... ,

Tt = Tt−1 −
{

j1p
t − pt−1 +

t∑

ℓ=2

pt−ℓjℓ(−1)ℓ : 1 6 j1 6 ⌊n/pt⌋, 1 6 j2, j3, . . . , jt 6 p − 1

}

= Tt−1 − St−1.

It can be observed that

|S0| = ⌊n/p⌋ = ipt−1 − pt−2 − · · · − p − 2,

|S1| = (p − 1)⌊n/p2⌋ = (p − 1)
(
ipt−2 − pt−3 − · · · − p − 2

)
,

|S2| = (p − 1)2⌊n/p3⌋ = (p − 1)2
(
ipt−3 − pt−4 − · · · − p − 2

)
,

... ,

|St−1| = (p − 1)t−1⌊n/pt⌋ = (p − 1)t−1(i − 1).

Lemma 4.3.3. The Sℓ’s for 0 6 ℓ 6 t − 1 are disjoint.

Proof. Each element in S0 is divisible by p, and no element in any other Sℓ is divisible by p. So S0
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is disjoint from every other Sℓ. For 2 6 ℓ 6 t − 1,

Sℓ =
{
(xp + (−1)ℓ−1jℓ+1) ∈ T0 : x ∈ Sℓ−1, 1 6 jℓ+1 6 p − 1

}
,

and hence Sℓ ∩ Su = ∅ for 1 6 u 6 ℓ − 1.

Lemma 4.3.4. For a prime p > 3 and 1 6 i 6 p − 1,

|Tt| = i · (p − 1)t.

Proof. We can write the summation
∑t−1

j=0 |Sj | as follows:

t−1∑

j=0

|Sj | = ipt−1

(
t−1∑

a=0

(
a

0

))

+ · · · + (−1)ℓ−1ipt−ℓ

(
t−1∑

a=ℓ−1

(
a

ℓ − 1

))

+ · · · − i −
t−1∑

ℓ=0

pℓ,

= ipt−1

(
t

1

)

+ · · · + (−1)ℓ−1ipt−ℓ

(
t

ℓ

)

+ · · · − i −
t−1∑

ℓ=0

pℓ,

= i

t∑

ℓ=1

(
t

ℓ

)

pt−ℓ(−1)ℓ−1 −
t−1∑

ℓ=0

pℓ.

The fact
t−1∑

a=ℓ−1

(
a

ℓ − 1

)

=

(
t

ℓ

)

can be easily proven using induction on t and using the fact that

(
t

ℓ

)

+

(
t

ℓ − 1

)

=

(
t + 1

ℓ

)

.

Now, we have

|Tt| = n −
t−1∑

j=0

|Sj |,

= ipt −
t−1∑

ℓ=0

pℓ −
(

i
t∑

ℓ=1

(
t

ℓ

)

pt−ℓ(−1)ℓ−1 −
t−1∑

ℓ=0

pℓ

)

,

= ipt − i

t∑

ℓ=1

(
t

ℓ

)

pt−ℓ(−1)ℓ−1 = i · (p − 1)t.
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Lemma 4.3.5. Given a prime p > 3, n = ipt −∑t−1
ℓ=0 pℓ with 1 6 i 6 p − 1, and the set T =

{1, 2, . . . , n}; the set T1 contains no p-AP with

d ∈ {1 6 d1 6 ⌊(n − 1)/(p − 1)⌋ : d1 6≡ 0 (mod p)} .

Proof. Assume T1 contains a p-AP a, a + d, . . . , a + (p − 1)d. Here a 6≡ 0 (mod p). Suppose a ≡ j

(mod p) for some 1 6 j 6 p− 1. Then a+d(p− z) ≡ 0 (mod p) for some 1 6 z 6 p− 1 when dz ≡ j

(mod p).

For each d ∈ {1 6 d1 6 ⌊(n − 1)/(p − 1)⌋ : d1 6≡ 0 (mod p)},

p−1
⋃

z=1

{dz (mod p)} = {1, 2, . . . , p − 1}

and so there exists 1 6 z 6 p − 1 for any 1 6 j 6 p − 1 such that dz ≡ j (mod p). But, this is a

contradiction since there is no number in T1 which is divisible by p. Hence, T1 contains no p-AP

with d ∈ {1 6 d1 6 ⌊(n − 1)/(p − 1)⌋ : d1 6≡ 0 (mod p)}.

Lemma 4.3.6. The set Tt is p-AP free.

Proof. By contruction, Tt contains no p-AP with d ∈
{
1, p, p2, . . . , pt

}
. By Lemma 4.3.5, Tt does

not contain a p-AP with any other d. Hence, Tt is p-AP free.

4.3.4 A construction algorithm for r(k, n)

In this section, we propose a greedy algorithm for construction of k-AP free subsequence of 1, 2, . . . , n.

We call this algorithm Bi-symmetric Greedy Algorithm (BGA) as it builds a fully symmetric subse-

quence that is k-AP free.

1. Take T = {1, n}.

2. Choose the smallest j ∈ {1, 2, . . . , n} − T such that T ∪ {j, n − j + 1} is k-AP free. Set

T = T ∪ {j, n − j + 1}.
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3. Repeat step 2 until no such j can be found.

4. Output T .

Clearly,

r(k, n) > |BGA(k, n)|.

From experimental data, we have the following observation:

Observation 4.3.7. Consider a prime p > 3. Then |BGA(p, x)| = x if 1 6 x 6 p − 2, or else for

1 6 i 6 p − 1 and t > 1,

∣
∣
∣
∣
BGA

(

p,
(ip − i − 1)pt + 1

(p − 1)

)∣
∣
∣
∣
= i · (p − 1)t.
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Chapter 5

Strict Schur Numbers

In this chapter, we describe a variant of Schur numbers, namely, Strict Schur numbers. The content

of this chapter is based on the joint work with Michael G. Eldredge, Jonathan J. Marler, and Hunter

Snevily [7].

Let N denote the set of positive integers and [a, b] = {n ∈ N : a 6 n 6 b}. A mapping χ : [a, b] →

[1, t] is called a t-colouring of [a, b]. Let Lm denote the system of inequalities given by

x1 + x2 + . . . , xm−1 = xm

x1 < x2 < . . . < xm.

A solution n1, n2, . . . , nm to Lm is monochromatic if χ(ni) = χ(nj) for 1 6 i, j 6 m. Henceforth, we

assume a two-colouring (t = 2) of the interval and denote each colour by red and blue. Furthermore,

a monochromatic solution to Lm such that χ(n1) = χ(n2) = . . . = χ(nm) = red will be called a “red

solution”, and likewise for a “blue solution”. Lastly, we define S(h, k) to be the least positive integer

such that every colouring of the interval [1, S(h, k)] by the colours red and blue contains either a

red solution to Lk or a blue solution to Lh.
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In the following proofs, we show that S(3, 3) = 9, S(3, 4) = 16, and for all k > 5,

S(3, k) =







3k2/2 − 7k/2 + 3 if k ≡ 0, 1 (mod 4),

3k2/2 − 7k/2 + 4 if k ≡ 2, 3 (mod 4).

For simplicity, we write

Nk =







3k2/2 − 7k/2 + 3 if k ≡ 0, 1 (mod 4),

3k2/2 − 7k/2 + 4 if k ≡ 2, 3 (mod 4).

5.1 The Lower Bound

Lemma 5.1.1 (Lower Bound). For k > 3,

S(3, k) > Nk =







3k2/2 − 7k/2 + 3 if k ≡ 0, 1 (mod 4),

3k2/2 − 7k/2 + 4 if k ≡ 2, 3 (mod 4).

Proof. Consider a colouring of χ : [1, Nk − 1] → {blue, red} defined as follows. For n ∈ [1, Nk − 1],

let

χ(n) =







blue if n ≡ 1 (mod 2) and n 6 k(k − 1)/2,

blue if n ≡ 0 (mod 2) and n > k(k − 1),

red otherwise.

We claim this colouring has no blue solution to L3 and no red solution to Lk.

Suppose n1 + n2 = n3, where n1 < n2 < n3, is a blue solution to L3 on the interval [1, Nk − 1].

Suppose n2 ≡ 1 (mod 2). Then n1 < n2 6 k(k − 1)/2, which implies n1 ≡ 1 (mod 2) and n3 <

k(k − 1). Since n3 = n1 + n2 ≡ (1 + 1) (mod 2) ≡ 0 (mod 2), we must have n3 > k(k − 1), which is

a contradiction. Therefore, n2 ≡ 0 (mod 2).

Hence, n3 > n2 > k(k − 1), which implies n3 ≡ 0 (mod 2), which then implies n1 ≡ 0 (mod 2).

Therefore, n2 > n1 > k(k − 1), which implies n3 = n1 + n2 > k(k − 1) + [k(k − 1) + 2] > Nk − 1,

another contradiction implying no such blue solution to L3 exists.

Next, suppose n1 + n2 + · · · + nk−1 = nk, where n1 < n2 < · · · < nk, is a red solution to
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Lk on the interval [1, Nk − 1]. Let q denote the minimal sum of k − 2 red numbers. Clearly,

q =
∑k−2

i=1 2i = k2 − 3k + 2.

If nk−1 6 k(k− 1)/2, then ni ≡ 0 (mod 2) for i ∈ [1, k− 1]. This implies nk ≡ 0 (mod 2), which

then implies nk < k(k− 1), but this is a contradiction since k(k− 1) > nk > q +2(k− 1) = k(k− 1).

Therefore, nk−1 > k(k − 1)/2.

If k ≡ 0, 1 (mod 4), then nk > q + k(k− 1)/2 = 3k2/2− 7k/2 + 2 = Nk − 1, a contradiction that

implies k ≡ 2, 3 (mod 4).

If nk−1 = k(k−1)/2+1, then ni ≡ 0 (mod 2) for all i ∈ [1, k−1], which implies nk ≡ 0 (mod 2).

Since nk is red, nk < k(k − 1), which is a contradiction since nk > q + k(k − 1)/2 + 1. Therefore,

nk−1 > k(k − 1)/2 + 1, which implies nk > q + k(k − 1)/2 + 2 = 3k2/2 − 7k/2 + 4 = Nk.

5.2 The Upper Bound

Throughout this section, let pk denote the sum of the first k red numbers and let ri and bi denote

the ith red and blue numbers, respectively. Then, ri < rj and bi < bj , for all i < j.

Lemma 5.2.1. For n > 3, if at least n + 1 numbers in the interval [1, 2n] are coloured blue, then

the only colouring that avoids a blue solution to L3 is given by

χ(x) =







red if x ∈ [1, n − 1],

blue if x ∈ [n, 2n].

Proof. Since the case n = 3 is trivial, assume n > 3.

Case 1: χ(2n) = red (By induction). For some n > 3, assume the claim holds for n−1. To avoid

a blue solution on the interval [1, 2(n − 1)], we must have χ(x) = blue for all x ∈ [(n − 1), 2(n − 1)]

and χ(x) = red for all x ∈ [1, n − 2]. Since we need another blue in the interval [1, 2n], the number

(2n − 1) must be blue, but then (n − 1) + n = (2n − 1) is a blue solution to L3.

Case 2: χ(2n) = blue. By the Pigeonhole principle, χ(n) = blue, since otherwise one of the

pairs {x, 2n − x} with 1 6 x < n would be all blue giving us the blue solution (x) + (2n − x) = 2n.

Now suppose χ(1) = blue, which implies the pair {n − 1, n + 1} is all red. Hence, some other pair

{x, 2n − x} with 1 6 x < n − 1 is all blue and we get a contradiction. Therefore, χ(1) = red; hence
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χ(2n−1) = blue, otherwise some other pair {x, 2n − x} with 2 6 x 6 n−2 would be all blue, giving

us a contradiction as before. But then we must have χ(n − 1) = red since (n − 1) + n = (2n − 1);

hence χ(n + 1) = blue. But then we must have χ(n − 2) = red since (n − 2) + (n + 1) = (2n − 1);

hence χ(n + 2) = blue. Continuing in this manner, we get the desired colouring.

Corollary 5.2.2. To avoid a blue solution to L3, ri 6 2i + 1 for all i.

Proof. The claim is easily proven for r1 and r2. Suppose ri > 2i + 1 for some i > 3. This would

imply at least i + 1 numbers are coloured blue in the interval [1, 2i]. Applying Lemma 5.2.1 gives

us that χ(i) = χ(i + 1) = blue. Since there are 2i + 1 − (i − 1) = i + 2 blue integers in [1, 2i + 1],

χ(2i + 1) = blue as well, but this yields the blue solution i + (i + 1) = 2i + 1.

Corollary 5.2.3. Let i > b1 and i > 3. To avoid a blue solution to L3, ri 6 2i.

Proof. Suppose ri > 2i. Then Corollary 5.2.2 implies ri = 2i + 1. Therefore, the interval [1, 2i + 1]

must contain exactly i+1 blue numbers. Since i > 3, Lemma 5.2.1 implies that the interval [1, i−1]

is all red, but this contradicts the hypothesis b1 < i.

Lemma 5.2.4 (P Lemma). (i) If b1 = 1, then pk 6 k2 + k − 12 + r1 + r2 + r3,

(ii) If 1 < b1 6 k, then pk 6 k2 + k + 1 − b1(b1 − 1)/2,

(iii) If b1 > k, then pk = k(k + 1)/2.

Proof. (i) If b1 = 1, then by using Corollary 5.2.3, we have

pk = r1 + r2 + r3 +

k∑

i=4

ri 6 r1 + r2 + r3 +

k∑

i=4

2i

= k2 + k − 12 + r1 + r2 + r3.
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(ii) If 1 < b1 6 k, then by using Corollaries 5.2.2 and 5.2.3, we have

pk =

b1−1∑

i=1

ri + rb1 +

k∑

i=b1+1

ri 6

b1−1∑

i=1

i + (2b1 + 1) +

k∑

i=b1+1

ri

6

b1−1∑

i=1

i + (2b1 + 1) +
k∑

i=b1+1

2i

= k2 + k + 1 − b1(b1 − 1)/2

(iii) If b1 > k, then pk =
∑k

i=1 ri =
∑k

i=1 i = k(k + 1)/2.

Given a valid colouring, the upper bound of pk can be improved by modifying Lemma 5.2.4. For

example, for k > 6, if r1 = 1, b1 = 2, r2 = 3, and r3 = 4, then

pk 6 k2 + k + 1 − b1(b1 − 1)/2 − (5 − r2) − (6 − r3) = k2 + k − 4.

Fact 5.2.5. If k > 6, then k2 + k − 5 6 Nk.

Corollary 5.2.6. If pk−rj 6 Nk for some j ∈ [1, k], then to avoid a red solution to Lk, χ(pk−ri) =

blue for all i ∈ [j, k].

Proof. If χ(pk − ri) = red for some i ∈ [j, k], then we get the red solution to Lk

r1 + r2 + . . . + ri−1 + ri+1 + ri+2 + . . . + rk = pk − ri,

where pk − ri 6 pk − rj 6 Nk (by hypothesis).

Hence, χ(pk − ri) = blue for all i ∈ [j, k].

Note that Corollary 5.2.6 shows that pk exists, that is, that are at least k numbers coloured red.

Corollary 5.2.7. If k > 6 and b1 > 1, then pk − ri 6 Nk for all ri.

Proof. We have pk − ri 6 pk − 1. In view of Fact 5.2.5, if pk 6 k2 + k − 4, then pk − ri 6 Nk for all

ri. If b1 = 2, then modifying Lemma 5.2.4, we get the following cases:
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# 1 2 3 4 5 6 7 8 9 10 11 12 n s.t. pk 6 n

1. r1 b1 b2 b3 r2 r3 r4 b4 b5 r5 r6 r7 k2 + k − 4

2. r1 b1 b2 b3 r2 r3 r4 b4 r5 r6 k2 + k − 4

3. r1 b1 b2 b3 r2 r3 r4 r5 b4 b5 r6 k2 + k − 4

4. r1 b1 b2 b3 r2 r3 r4 r5 b4 r6 k2 + k − 5

5. r1 b1 b2 b3 r2 r3 r4 r5 r6 k2 + k − 6

6. r1 b1 b2 r2 r3 b3 b4 r4 r5 r6 k2 + k − 5

7. r1 b1 b2 r2 r3 b3 r4 r5 k2 + k − 5

8. r1 b1 b2 r2 r3 r4 k2 + k − 4

9. r1 b1 r2 b2 b3 r3 r4 b4 r5 k2 + k − 4

10. r1 b1 r2 b2 b3 r3 r4 r5 k2 + k − 5

11. r1 b1 r2 b2 r3 r4 k2 + k − 5

12. r1 b1 r2 r3 k2 + k − 4

Similarly, if b1 = 3 then modifying Lemma 5.2.4, we get the following cases:

# 1 2 3 4 5 6 7 8 9 10 n s.t. pk 6 n

1. r1 r2 b1 b2 b3 b4 r3 r4 r5 r6 k2 + k − 5

2. r1 r2 b1 b2 b3 r3 r4 k2 + k − 4

3. r1 r2 b1 b2 r3 k2 + k − 4

4. r1 r2 b1 r3 k2 + k − 5

For 4 6 b1 6 k, we have, by using Lemma 5.2.4,

pk 6 k2 + k − 5.

For b1 > k, pk = k(k + 1)/2 by Lemma 5.2.4(iii).

For k > 6 and b1 > 1, we have pk 6 k2 + k − 4, and hence by using Fact 5.2.5,

pk − ri 6 pk − 1 6 (k2 + k − 4) − 1 = k2 + k − 5 6 Nk

for all ri with i ∈ [1, k].
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Remark 5.2.8. Combining Corollaries 5.2.6 and 5.2.7, we see that, for k > 6 and b1 > 1, χ(pk−rj) =

blue for all j ∈ [1, k].

Lemma 5.2.9 (Upper Bound). For k > 6,

S(3, k) 6 Nk =







3k2/2 − 7k/2 + 3 if k ≡ 0, 1 mod 4,

3k2/2 − 7k/2 + 4 if k ≡ 2, 3 mod 4.

Proof. Suppose to the contrary that Nk is not an upper bound for k > 6. This occurs if and only if

there exists a colouring of [1, Nk] without a blue solution to L3 and a red solution to Lk. Consider

the following two cases:

(1) χ(1) = blue (with k > 6). Suppose χ(2) = blue. Then r1 = 3 and r2 6 5 (by Corollary 5.2.2)

to avoid blue solutions 1 + 2 = 3 and 1 + 4 = 5, respectively. Therefore, by using Lemma 5.2.4

and Corollary 5.2.3, we have

pk 6 k2 + k − 4 + r3 6 k2 + k + 2,

which implies (by Fact 5.2.5) pk − ri 6 k2 + k − 5 6 Nk for ri > 7.

If χ(x) = blue for some x ∈ [6, 7], then this implies χ(x + 1) = χ(x + 2) = red to avoid

the blue solutions 1 + x = x + 1 and 2 + x = x + 2. Corollary 5.2.6 implies χ(pk − x − 1) =

χ(pk − x − 2) = blue, and then 1 + (pk − x − 2) = pk − x − 1 is a blue solution since

pk − x − 2 > k(k + 1)/2 − 9 > 12 > 1. Therefore χ(6) = χ(7) = red, in which case Corollary

5.2.6 gives χ(pk − 6) = χ(pk − 7) = blue. Thus 1 + (pk − 7) = pk − 6 is a blue solution in view

of pk − 8 > k(k + 1)/2 − 8 > 13 > 1. So we conclude that χ(2) = red.

If b2 > 5, then r2 = 3, r3 = 4, and by using Lemma 5.2.4 and Fact 5.2.5, we have

pk − r1 6 k2 + k − 12 + r2 + r3 = k2 + k − 5 6 Nk,

which leads to a contradiction since Corollary 5.2.6 gives us the blue solution 1 + (pk − 4) =

pk − 3.
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If b2 = 4, then r2 = 3 and r3 = 5, and by Lemma 5.2.4 and Fact 5.2.5, we have

pk − r2 6 k2 + k − 12 + r1 + r3 = k2 + k − 5 6 Nk.

By Corollary 5.2.6, χ(pk−3) = χ(pk−5) = blue. To avoid a blue solution 1+(pk−6) = pk−5,

we need χ(pk − 6) = red, but by Corollary 5.2.6, this implies χ(6) = blue. In that case, to

avoid the blue solution 1 + 6 = 7, we need χ(7) = red, but that yields the blue solution

4 + (pk − 7) = pk − 3.

Now, suppose b3 > r3.

If b2 = 3, then r2 = 4, r3 = 5 (since b3 > r3), and by using Lemma 5.2.4 and Fact 5.2.5,

we have

pk − r2 6 k2 + k − 5 6 Nk,

but that yields the blue solution 1 + (pk − 5) = pk − 4 (by Corollary 5.2.6).

Therefore, b3 < r3, which implies the interval [3, 5] has two blue numbers. Since these

blue numbers cannot be adjacent, the only valid colouring is χ(3) = χ(5) = blue and χ(4) =

χ(6) = red. With this colouring, Corollary 5.2.2, Lemma 5.2.4, and Fact 5.2.5 conclude that

χ(pk − ri) = blue, for i ∈ [3, k].

To avoid the blue solution 1 + (pk − ri+1) = pk − ri, we must have ri+1 > ri + 1, that is,

χ(ri + 1) = blue, for all i ∈ [3, k − 1]. Thus χ(7) = blue. Also, to avoid the blue solution

1 + bi = bi+1, we must have χ(bi + 1) = red, for all i > 1. Thus χ(8) = red, which implies

χ(9) = blue, which then implies χ(10) = red, and continuing in this manner, we get for all

x ∈ [1, 2k],

χ(x) =







red if x ≡ 0 mod 2,

blue if x ≡ 1 mod 2.

Furthermore, for all x ∈ [1, 2k − 3] with χ(x) = blue, we must have χ(x + (2k − 1)) = red,

otherwise we get the blue solution x + (2k − 1) = x + 2k − 1. This implies χ(y) = red for all

y ∈ [2k, 4k − 4] with y ≡ 0 (mod 2).

Using the block of even red numbers, we can extend the blue interval. Clearly, the sum of
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any k − 1 red numbers which is less than Nk must be blue. The maximal sum of k − 1 red

numbers from the block is
∑k−2

i=0 ((4k−4)−2i) = 3k2−5k+2, which is clearly greater than Nk.

Furthermore, the minimal sum of k−1 red numbers from the block is
∑k−1

i=1 2i = k2−k. Since

we can always replace a red number in the minimal sum by an adjacent even number which is

also red, and the maximal sum is greater than Nk, we get that all even numbers greater than

or equal to k2 − k must be blue. This yields the extended colouring

χ(x) =







red if x ≡ 0 (mod 2) and x ∈ [2, 4k − 4],

blue if x ≡ 1 (mod 2) and x ∈ [1, 2k − 1],

blue if x ≡ 0 (mod 2) and x ∈ [k2 − k,Nk].

It can easily be shown that Nk ≡ 1 (mod 2), implying χ(Nk − 1) = blue. Since χ(1) =

χ(3) = blue, we must have χ(Nk) = χ(Nk − 2) = χ(Nk − 4) = red. Let q be the sum of first

k − 2 red numbers. Then q = k2 − 3k + 2. To avoid a red solution to Lk, we must have

χ(Nk − q) = χ(Nk − 2 − q) = χ(Nk − 4 − q) = blue,

since Nk − 4 − q > rk−2 = 2(k − 2).

If k ≡ 0, 1 (mod 4), then we get the blue solution

(Nk − q) + (Nk − 2 − q) = 2(3k2/2 − 7k/2 + 3) − 2(k2 − 3k + 2) − 2 = k2 − k.

Likewise, if k ≡ 2, 3 (mod 4), then we get the blue solution

(Nk − q) + (Nk − 4 − q) = 2(3k2/2 − 7k/2 + 4) − 2(k2 − 3k + 2) − 4 = k2 − k.

Therefore, χ(1) 6= blue.

(2) χ(1) = red (with k > 6). Since k > 6 and b1 > 1, χ(pk − ri) = blue for all i ∈ [1, k]. Let a be

the minimum red number such that χ(a − 1) = blue.

If a < rk, then χ(pk−a) = blue, which gives us a potential blue solution (a−1)+(pk−a) =
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pk − 1. In order for it to be a valid solution, we must have a − 1 6= pk − a. However, since

a = ri for some i ∈ [1, k], this has already been proven in Corollary 5.2.6 (pk − ri > rk for all

i ∈ [1, k]).

If a = rk, then χ(pk − rk) = χ(
∑k−1

i=1 i) = blue to avoid a red solution to Lk. But

k +(k +1) = 2k +1 is a blue solution since 2k +1 <
∑k−1

i=1 i for k > 6. Therefore, a > rk, that

is, the first k numbers must be red giving us b1 > k + 1.

Suppose b1 6 3k/2. To avoid the blue solution, b1 + (b1 + 1) = 2b1 + 1, either b1 + 1 or

2b1 + 1 must be red, which implies a 6 2b1 + 1 6 3k + 1. Now consider,

(pk − rk) − 1 + a =
k−1∑

i=1

i + (a − 1) = k(k − 1)/2 + (a − 1)

6 k(k − 1)/2 + (3k + 1) − 1 = (k2 + 5k)/2 6 Nk.

Since χ(a) = red, to avoid the red solution a +
∑k−1

i=2 i = (pk − rk) − 1 + a, we have χ(pk −

rk + a − 1) = blue, which yields the potential blue solution

(pk − rk) + (a − 1) = (pk − rk) − 1 + a.

To be a valid solution, we must have a− 1 6= pk − rk. If a− 1 = pk − rk, then pk − rk + 1 = a,

which implies χ(pk − rk + 1) = red. However, this is a contradiction since χ(pk − rk−1) = blue

and rk−1 = rk − 1.

Therefore, b1 > 3k/2, which implies χ(x) = red for all x ∈ [1, 3k/2]. Using this red interval,

we can create another blue interval. The minimum sum of k − 1 red numbers in this interval

is k(k − 1)/2, and the maximal sum is k2 − 1. Since every integer in this new interval can be

represented by a sum of k − 1 red numbers, the interval [k(k − 1)/2, k2 − 1] must be coloured

blue to avoid a red solution. Since k2 − k + 1 is in the blue interval, we have the blue solution

k(k − 1)/2 + [k(k − 1)/2 + 1] = k2 − k + 1.

Hence, for k > 6, every colouring of [1, Nk] has a blue solution to L3 or a red solution to Lk.
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5.3 The Cases 3 6 k 6 5

In this section, we formally prove the exact values of S(3, 3) and S(3, 4), and provide the computer

proof for the exact values of S(3, 5).

5.3.1 S(3, 3) = 9

Lemma 5.3.1. S(3, 3) = 9.

Proof. Let χ(1) = χ(2) = χ(4) = χ(8) = red and χ(3) = χ(5) = χ(6) = χ(7) = blue. This colouring

has no red or blue solution to L3. Therefore, S(3, 3) > 8.

Suppose to the contrary that S(3, 3) > 9. Without loss of generality, let blue be the colour used

5 or more times from 1 to 9. If χ(9) = red, then Lemma 5.2.1 gives us the red solution 1 + 2 = 3.

Therefore, χ(9) = blue. We are left with two cases.

Case 1: χ(8) = blue. To avoid the blue solution 1 + 8 = 9, we have χ(1) = red. If χ(5) = blue,

then we must have χ(3) = red (to avoid the blue solution 3 + 5 = 8) and χ(4) = red (to avoid the

blue solution 4 + 5 = 9). But then we have the red solution 1 + 3 = 4. Therefore, χ(5) = red. To

avoid the red solutions 1 + 4 = 5 and 1 + 5 = 6, we must have χ(4) = χ(6) = blue. Then χ(2) = red

(to avoid the blue solution 2+4 = 6), which implies χ(3) = blue (to avoid the red solution 1+2 = 3),

which gives the blue solution 3 + 6 = 9.

Case 2: χ(8) = red. If χ(7) = red, then Lemma 5.2.1 gives us the red solution 1 + 7 = 8.

Therefore, χ(7) = blue, which leads to a contradiction after a chain of implications:

χ(2) = red (to avoid the blue solution 2 + 7 = 9),

χ(6) = blue (to avoid the red solution 2 + 6 = 8),

χ(1) = red (to avoid the blue solution 1 + 6 = 7),

χ(3) = blue (to avoid the red solution 1 + 2 = 3),

and hence the blue solution 3 + 6 = 9.

5.3.2 S(3, 4) = 16

Lemma 5.3.2. S(3, 4) = 16.
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Proof. For all x ∈ [1, 15], let x ∈ [6, 12] be blue and x be red otherwise. This colouring has no blue

solution to L3 and no red solution to L4. Therefore, S(3, 4) > 15.

Suppose to the contrary that S(3, 4) > 16. Then suppose χ(1) = blue. Corollary 5.2.3 implies

ri 6 2i, for all i > 3.

Since r1 + r2 + r4 6 3 + 5 + 8 = 16, we have χ(r1 + r2 + r3) = χ(r1 + r2 + r4) = blue.

If r4 > r3 + 2, we get the blue solution 1 + (r3 + 1) = r3 + 2, and if r4 = r3 + 1, we get the

blue solution 1 + (r1 + r2 + r3) = r1 + r2 + r4. Hence, r4 = r3 + 2. To avoid the blue solution

2 + (r1 + r2 + r3) = r1 + r2 + r4, we must have χ(2) = red, that is, r1 = 2, which implies

r1 + r3 + r4 6 2 + 6 + 8 = 16. Thus χ(r1 + r3 + r4) = blue.

Applying the same reasoning to r3 as we did to r4, we get that r3 = r2 + 2. Then to avoid

the blue solution 4 + (r1 + r2 + r3) = r1 + r3 + r4, we must have χ(4) = red. If χ(3) = red, then

r2 = 3, and so r3 = 4. But r3 6= r2 + 1. Therefore, χ(3) = blue, which implies r2 = 4, and so r3 = 6

and r4 = 8. Then we must have χ(5) = χ(7) = χ(12) = blue, but then we get the blue solution

5 + 7 = 12. Therefore, χ(1) = red.

Corollary 5.2.2 gives us that r2 = 2, 3, 4, or 5. We handle these four cases separately.

Case 1: r2 = 5. This implies χ(2) = χ(3) = χ(4) = blue. Therefore, χ(6) = red and χ(7) = red

to avoid the blue solutions 2+4 = 6 and 3+4 = 7, respectively. Hence χ(12) = blue and χ(14) = blue

to avoid the red solutions 1 + 5 + 6 = 12 and 1 + 6 + 7 = 14, respectively. But, then we get the blue

solution 2 + 12 = 14.

Case 2: r2 = 4. This implies χ(2) = χ(3) = blue. Therefore, χ(5) = red (to avoid the blue

solution 2+3 = 5), which implies χ(10) = blue (to avoid the red solution 1+4+5 = 10). Therefore,

χ(7) = red and χ(12) = red to avoid the blue solutions 3 + 7 = 10 and 2 + 10 = 12, respectively.

But then we get the red solution 1 + 4 + 7 = 12.

Case 3: r2 = 3. This implies χ(2) = blue. If r4 = 9, then Lemma 5.2.1 implies χ(2) = red. Thus

r4 6 8.

If r3 > 6, then χ(4) = χ(5) = blue, which implies r3 = 6 (to avoid the blue solution 2 + 4 = 6).

Therefore, χ(7) = red (to avoid the blue solution 2 + 5 = 7), which implies χ(14) = blue (to avoid

the red solution 1 + 6 + 7 = 14) and χ(16) = blue (to avoid the red solution 3 + 6 + 7 = 16). But

then we get the blue solution 2 + 14 = 16. Therefore, r3 6 5.
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This implies 3 + r3 + r4 6 16, which gives us that χ(1 + r3 + r4) = χ(3 + r3 + r4) = blue, but

then we get the blue solution 2 + (1 + r3 + r4) = 3 + r3 + r4.

Case 4: r2 = 2. Suppose χ(7) = red. Then χ(4) = blue (to avoid the red solution 1 + 2 + 4 = 7)

and χ(10) = blue (to avoid the red solution 1+2+7 = 10). This implies χ(6) = red and χ(14) = red

to avoid the blue solutions 4+6 = 10 and 4+10 = 14, respectively. But then we get the red solution

1 + 6 + 7 = 14. Therefore, χ(7) = blue.

Suppose χ(3) = blue. Then χ(4) = red and χ(10) = red to avoid the blue solutions 3 + 4 = 7

and 3 + 7 = 10, respectively. This implies χ(13) = blue and χ(16) = blue to avoid the red solutions

1+2+10 = 13 and 2+4+10 = 16, respectively. Therefore, χ(3) = red, which leads to a contradiction

after a chain of implications:

χ(6) = blue (to avoid the red solution 1 + 2 + 3 = 6),

χ(13) = red (to avoid the blue solution 6 + 7 = 13),

χ(9) = blue (to avoid the red solution 1 + 3 + 9 = 13),

χ(16) = red (to avoid the blue solution 7 + 9 = 16),

and hence the red solution 1 + 2 + 13 = 16.

5.3.3 S(3, 5) = 23 (Computer assisted proof)

Let us write a colouring of [1, n] as a bit-string of length n where the i-th bit is zero if χ(i) = blue,

and one if χ(i) = red.

By Lemma 5.1.1, the lower bound is S(3, 5) > 22. We consider all of the ten colourings of [1, 22]

(obtained by computer search) without a blue solution to L3 and a red solution to L5.

1. For each of the following four colourings

0010110111111111111110,

0010110111111011111110,

0010110111111011011110, and

0010110111101111011110,

if χ(23) = blue, then we have a blue solution 1 + 22 = 23 to L3; and

if χ(23) = red, then we have a red solution 3 + 5 + 6 + 9 = 23 to L5.
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2. For each of the following four colourings

0010111011111111111101,

0010111011111110111101,

0010111011111101111101, and

0010111011111011111101,

if χ(23) = blue, then we have a blue solution 2 + 21 = 23 to L3; and

if χ(23) = red, then we have a red solution 3 + 5 + 6 + 9 = 23 to L5.

3. For each of the following two colourings

0101010101111111101010, and

0101010101111111111010,

if χ(23) = blue, then we have a blue solution 1 + 22 = 23 to L3; and

if χ(23) = red, then we have a red solution 2 + 4 + 6 + 11 = 23 to L5.

Therefore, S(3, 5) = 23.
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Chapter 6

Conclusion

6.1 Summary of contributions

• Determination of five van der Waerden numbers of the form w(2; t0, t1),

• Computed conjectures of several van der Waerden numbers of the form w(2; t0, t1),

• Upper bound conjectures for w(2; s, t) when s is fixed,

• An efficient encoding for w(k; t0, t1, . . . , tk−1) and determination of three numbers using that

encoding,

• A problem-specific efficient backtracking algorithm and determination of twenty-five values of

w(k; t0, t1, . . . , tk−1) using that algorithm,

• Some counting properties of arithmetic progressions,

• Some unimodality properties of sequences regarding arithmetic progressions,

• Generalization of Szekeres’ conjecture on the size of the largest p-AP free sub-sequence of

1, 2, . . . , n, with a construction of the lower bound, and

• Characterization of Strict Schur numbers.
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6.2 Ongoing work

6.2.1 Snevily numbers

Define

ν(X, d) = | {(x, y) : x, y ∈ X, y > x, y − x = d} |,

(a1, a2, . . . , at−1; d) = a collection X s.t. ν(X, d · i) > ai

for 1 6 i 6 t − 1.

The t-AP {x, x + d, . . . , x + (t − 1)d} (say T ) has ν(T, d · i) = t − i for 1 6 i 6 t − 1. On the

other hand, a set (t − 1, t − 2, . . . , 1; d) (say Y ) has ν(Y, d · i) > t − i for 1 6 i 6 t − 1, but not

necessarily contains a t-AP.

We define a weaker version of van der Waerden numbers based on the concept of distance pairs,

and call them Snevily numbers. A Snevily number ww(k, t) is the smallest integer n such that every

k-colouring of 1, 2, . . . , n contains a monochromatic set (t − 1, t − 2, . . . , 1; d) for some d > 0. Here,

(t − 1, t − 2, . . . , 1; d) is a t-AP distance-set of size at least t. The existence of Snevily numbers is

guaranteed by van der Waerden’s theorem. The following Lemma is trivially true:

Lemma 6.2.1. ww(k, t) 6 w(k, t).

Note that a certificate of lower bound is not required to avoid a monochromatic arithmetic

progression. For example, while looking for a certificate of lower bound of ww(2, 4), if the set

X = {1, 2, 3, 5, 9, 10} (which does not contain a 4-AP) is monochromatic, then the colouring is

“bad” as ν(X, 1) = 3, ν(X, 2) = 2, and ν(X, 3) = 1.

We are working on characterizing Snevily numbers.

6.2.2 A constructive proof of w(2, t) > 2t

Recall that w(2, t) is the smallest positive integer n such that every 2-colouring of 1, 2, . . . , n contains

a monochromatic t-AP. The known computed values and bounds are w(2, 3) = 9, w(2, 4) = 35,

w(2, 5) = 178, w(2, 6) = 1132, w(2, 7) > 3703, w(2, 8) > 11495, and w(2, 9) > 41265. These values
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comply with Erdős conjecture that w(2, t) > 2t, but as of yet, no constructive proof for all values of

t is known. We are working towards such an algorithm.

6.2.3 Engineering fast computation of van der Waerden numbers

The search space corresponding to the theoretical upper bounds of van der Waerden numbers is

still beyond the reach of our computers. Since the exact values appear to be far, far less than those

upper bounds, there is scope for algorithmic and data-structural developments (to compute unknown

numbers), which would make an indirect contribution to computer science and engineering.
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