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On Exponential Stability of Linear Networked Control Systems
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SUMMARY

This paper addresses exponential stability of linear networked control systems (NCS). More specifically,
the paper considers a continuous-time linear plant in feedback with a linear sampled-data controller with an
unknown time varying sampling rate, the possibility of data packet dropout, and an uncertain time varying
delay. The main contribution of this paper is the derivation of new sufficient stability conditions for linear
NCS taking into account all of these factors. The stability conditions are based on a modified Lyapunov-
Krasovskii functional (LKF). The stability results are also applied to the case where limited information
on the delay bounds is available. The case of linear sampled-data systems is studied as a corollary of the
networked control case. Furthermore, the paper also formulates the problem of finding a lower bound on the
maximum network-induced delay that preserves exponential stability as a convex optimization program in
terms of linear matrix inequalities (LMIs). This problem can be solved efficiently from both a practical and
theoretical point of view. Finally, as a comparison, we show that the stability conditions proposed in this
paper compare favorably with the ones available in the open literature for different benchmark problems.
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1. INTRODUCTION

In an NCS, sensory information and feedback signals are exchanged among different components
of the system (i.e. sensors, actuators, and controllers) through a communication network. In a
modern long-range aircraft for instance, there exist about 170 (Km) of signal wiring which account
for almost 700 (Kg) of the weight of the aircraft [1]. Other than weight, the main drawbacks of
wired communication links include connector/pin failures, cracked insulation issues, arc faults, and
maintenance/upgrade difficulties [2]. The inherent benefits of wireless communication systems and
the recent advancements in this field have led to a growing interest in wireless flight control systems
(i.e. fly-by-wireless) [3]. However, the effects of non-ideal communication networks on stability
and performance of the system become more prominent in the case of wireless communication
networks [4] and motivate a thorough study of NCSs. We refer the reader to [5, 6, 7] for applications
of NCSs in document printing control systems, air vehicle systems and satellites, and an inverted
pendulum, respectively.

In an NCS (as well as a sampled-data system and a time-delay system, as special cases of NCSs),
the vector field is defined as a function of the current and the past values of the state vector. Retarded
functional differential equations [8] are widely used as a framework for modeling, stability analysis,
and controller synthesis of deterministic and stochastic NCSs (see [8, 9, 10] and the references
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therein). The main approaches for studying NCSs include the lifting approach [11, 12, 13, 14], the
impulsive model approach [15, 5, 16, 17], and the input delay approach [18, 19, 20, 21, 22].

In the lifting approach, the retarded system is modeled as a finite dimensional discrete-time
system. Lifting is used in studying sampled-data systems with constant or uncertain sampling
rates [23]. However, the lifting approach is not applicable to systems with uncertain parameters.
In the impulsive model approach, the retarded system is modeled as an impulsive system which
exhibits continuous state evolutions (described by ordinary differential equations) and instantaneous
state jumps. In the input delay approach, the retarded system is modeled as a continuous-time
system with a delayed control input. Both the impulsive model and input delay approaches use
Razumikhin-type [9] or Krasovskii-type [24] theorems to prove stability of the retarded system.
While the Razumikhin-type theorems are based on classical Lyapunov functions, Krasovskii-type
theorems use Lyapunov functionals and are known to be less conservative [9, 18, 25]. The evolution
of LKFs over the past decade has yielded less conservative stability conditions. These conditions
are usually cast in terms of LMIs which can efficiently be solved using software packages such as
SeDuMi [26] and YALMIP [27].

In an NCS, a continuous-time plant is in feedback with a discrete-time emulation of a controller.
The control signal is computed using state measurements that are sampled in intervals that are
not necessarily uniform [16, 20, 7]. These signals go through a quantization process [28], and
experience uncertain and time varying delays [29, 30], data packet dropouts, and congestion over
the communication network. Most of the works in the literature focus on only one aspect of NCSs.
There are papers, however, that study two or more features of an NCS at the same time. Reference [6]
studies H∞ control of a class of uncertain stochastic NCSs with both network-induced delays
and packet dropouts. Sufficient conditions are proposed to ensure exponential stability in mean
square of the closed-loop system subject to a performance measure. The robust filtering problem
is addressed in [31] for a class of discrete-time uncertain nonlinear networked systems with both
multiple stochastic time-varying communication delays and multiple packet dropouts. A method
for designing linear full-order filter is proposed such that the estimation error converges to zero
exponentially in the mean square while the disturbance rejection attenuation is constrained to a
given level. Reference [32] studies the distributed finite- horizon filtering problem for a class of
time-varying systems over lossy sensor networks with quantization errors and successive packet
dropouts. Through available output measurements from a sensor and its neighbors (according to a
given topology), a sufficient condition is established for the desired distributed finite-horizon filter
to ensure that the prescribed average filtering performance constraint is satisfied.

The NCS considered in [33] comprises a linear sampled-data controller and an uncertain, time
varying delay. Two drawbacks of that model are that the sampling intervals are assumed to be
constant and the delay is assumed to be upper bounded by the sampling period. A more general
model of NCSs is studied in [17, 22], where a linear sampled-data controller with uncertain
sampling rates, the possibility of data packet dropouts, and an unknown, time varying delay are
considered. While the stability theorems in [22] are less conservative than the corresponding
theorems in [17], they are more computationally expensive as they involve solving two times as
many LMIs. Moreover, due to the complexity of the LKF in [22], the number of LMIs increases
even more if additional information on the time varying delay (e.g. a lower bound) is available.

Similar to [17, 22], in this paper we focus on linear NCSs. In particular, we study a continuous-
time linear plant in feedback with a linear sampled-data controller with an unknown, time varying
sampling rate, the possibility of data packet dropout, and an uncertain, time varying delay.
In contrast to [22], our paper improves the stability conditions of [17] without increasing the
computational cost of the resulting optimization program. We first consider the general case where
information on the lower and upper bounds of the time-delay are available, and then study the case
with limited information on the time-delay. In all those scenarios, our goal is to find a lower bound
on the maximum network-induced delay that preserves exponential stability of the system.

The main contribution of this paper is the derivation of new sufficient stability conditions for
linear NCS taking into account all of the factors mentioned before. The stability conditions are based
on a modified LKF. The stability results are also applied to the case where limited information on
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Figure 1. A linear networked control system

the delay bounds is available. The case of linear sampled-data systems is studied as a corollary
of the networked control case. Furthermore, the paper also formulates the problem of finding
a lower bound on the maximum network-induced delay that preserves exponential stability as a
convex optimization program in terms of LMIs. This problem can be solved efficiently from both a
practical and theoretical point of view. Finally, as a comparison, we show that the stability conditions
proposed in this paper compare favorably with the ones available in the open literature for different
benchmark problems.

The paper is organized as follows. Section 2 presents the linear NCS model. Section 3 starts
by introducing a modified LKF. Next, we present theorems that provide sufficient conditions for
exponential stability of linear NCSs. Furthermore, the problem of finding a lower bound on the
maximum network-induced delay that preserves exponential stability as an optimization program is
formulated in terms of LMIs. Finally, the new approach is applied to different examples in Section 4.

Notation. The zero matrix and the identity matrix of the appropriate size are represented by 0
and I , respectively. The notation Z1 > Z2 (or Z1 < Z2), where Z1 and Z2 are symmetric matrices,
denotes that Z1 − Z2 is positive (or negative) definite. The transpose of a matrix Y is shown by Y T .
The scalar λmax(.) represents the maximum eigenvalue of a matrix. A diagonal matrix with diagonal
entries d1, . . . , dm is denoted by diag

(
d1, . . . , dm

)
. Where there is no confusion, a vector x(t) is

written as x. The notation |.| denotes the norm of a vector.

2. PRELIMINARIES

Consider the linear system
ẋ(t) = Ax(t) +Bu(t), (1)

where x ∈ Rnx denotes the state vector, A ∈ Rnx×nx , B ∈ Rnx×nu , and u ∈ Rnu is the control
input. Let a continuous-time linear controller for (1) be defined by

u(t) = Kx(t), (2)

where K ∈ Rnu×nx . In this paper, we study the stability of system (1) where controller (2) is
implemented through a network. The network comprises a time driven sampler and an event driven
zero order hold (see Figure 1). The possibility of data packet dropout and communication delays
are also considered in the network’s model. The networked controller is characterized through
Assumptions 1-4.

Assumption 1
The state vector is measured at the sampling instants sk, k ∈ N. Each sampled state vector is sent
over the network in one data packet.
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Since the controller is static and time-invariant, without loss of generality [5, 34, 35], the delay
between the sensor (sampler) and the controller, the delay between the controller and the actuator,
and the computation delay in the controller are modeled as one single delay.

Assumption 2
The state vector sampled at sk, k ∈ N, experiences an uncertain, time varying delay ηk as it is
transmitted through the network. The delay ηk is bounded, i.e., 0 ≤ ηmin ≤ ηk ≤ ηmax.

Note that our model allows the delay ηk to grow larger than the sampling interval [sk, sk+1] as
opposed to the model in [33]. The possibility of data packet dropout is modeled via a switch in
Figure 1. When the switch is closed, the data is transmitted through the network. When the switch is
open, however, the data is assumed to be dropped. The actuator is updated with new control signals
at the instants tk,

tk = sk + ηk, k ∈ N. (3)

An event driven zero order hold keeps the control signal constant through the interval [tk, tk+1), i.e.
until the arrival of new data at tk+1.

Assumption 3
The control signals arrive at the actuator in the same order that their corresponding state vectors are
sampled, i.e. si < sj =⇒ ti < tj , ∀ i, j ∈ N. If a sampled state vector arrives after a more recent
sampled vector has arrived, the older sampled vector is dropped (cf. sd and s2 in Figure 2).

Without loss of generality, by the index k, k ∈ N, we denote only the instants sk and tk for which
a data packet is not dropped. In the interval between two actuator update instants tk and tk+1,
the network-induced delay represented by ρs is defined as the time elapsed since the last available
sampling instant sk (see Figure 2), i.e.

ρs(t) = t− sk = t− tk + ηk, t ∈ [tk, tk+1), (4)

where equation (3) is used in the second equality. Based on Assumption 2, the network-induced
delay is greater than or equal to ηmin. We denote the largest network-induced delay by τ , i.e.

τ = sup (ρs(t)) = sup
k∈N

(tk+1 − sk).

Therefore,
ηmin ≤ ρs(t) ≤ τ. (5)

Furthermore, the time elapsed since the last actuator update instant tk is denoted by ρt, i.e.

ρt(t) = t− tk = t− sk − ηk = ρs(t)− ηk, t ∈ [tk, tk+1). (6)

Equation (5), equation (6), and Assumption 2 yield

0 ≤ ρt(t) ≤ τ − ηmin. (7)

The following assumption models the fact that two actuator updates cannot occur simultaneously
in practice. It is used in Section 3 to rule out the occurrence of the Zeno phenomenon and also plays
an essential role in proving the convergence of the closed-loop vector field to the origin.

Assumption 4
There exists ε > 0 such that tk+1 − tk > ε for any k ∈ N.

The control signal (2) is now redefined in the NCS framework as the piecewise constant function

u(t) = Kx(sk), t ∈ [tk, tk+1), (8)

with jumps at the actuator update instants tk, k ∈ N. Given a controller gain K that exponentially
stabilizes the continuous-time system (1)-(2), our objective is to find a lower bound on the maximum
network-induced delay that preserves exponential stability for the NCS defined by (1) and (8). To
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Figure 2. Network-induced delay

this end, we use the input delay approach to draw an analogy between NCSs and time-delay systems.
Considering (4), we can rewrite (8) as

u(t) = Kx(t− ρs), t ∈ [tk, tk+1). (9)

The linear NCS (1) with control input (9) can be viewed as a linear system with a discontinuous
time varying input delay d(t) = ρs. In the literature of time-delay systems, LKFs are widely used
to devise stability conditions (see [10, 29, 30, 36] and the references therein). Different LKFs are
used for NCSs in [17, 22, 33] and sampled-data systems in [16, 18, 20, 21]. The subject of LKFs
and stability of linear NCSs will be addressed in the next section where we present the main results
of the paper.

3. MAIN RESULTS

We start this section by an observation that motivates our modified LKF. Next, we present the
modified LKF and use it to provide new conditions for stability of linear NCSs. The case of linear
sampled-data systems is also studied as a corollary. Finally, the problem of finding a lower bound on
the maximum network-induced delay that preserves exponential stability is cast as an optimization
program in terms of LMIs.

3.1. Motivation

The LKFs proposed in the literature for the analysis of linear time-delay systems contain integrals
of quadratic functions of the state vector. For instance, when the derivative of the delay d(t) is less
than 1, i.e. ḋ(t) < 1, the following functional is widely used in the literature on linear time-delay
systems as an LKF component [29, 30, 36]

Vdelay = Vdelay1 + Vdelay2 ,

with

Vdelay1 =

∫ t

t−d(t)
xT (s)W1x(s) ds,

Vdelay2 =

∫ t

t−ηmax

xT (s)W2x(s) ds,

(10)

where W1 > 0 and W2 > 0 are matrices in Rnx×nx . The two parts of Vdelay contain information
about the evolution of the states through the intervals [t− d(t), t] and [t− ηmax, t], respectively.
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Moreover, given ḋ(t) < 1, Vdelay1 makes the LKF less conservative by using the available
information about the time derivative of the delay. In NCSs however, the time derivative of the
network-induced delay is equal to 1, i.e. ḋ(t) = ρ̇s = 1, for t ∈ [tk, tk+1). Evidently, V̇delay1 =
xTW1x > 0, for t ∈ [tk, tk+1). Therefore, adding the functional Vdelay1 to the LKF is not beneficial
for NCSs because it adds a positive term to its time derivative. To the best of our knowledge, no
LKF in the literature of NCSs (or sampled-data systems) contains an integral similar to Vdelay1 . As a
result, the information about the time derivative of the network-induced delay is not fully exploited.
In this paper, we add a new functional to the LKF to address that issue.

3.2. Lyapunov-Krasovskii functional

Let C([−τ, 0],Rnx) be the space of absolutely continuous functions with square integrable first-order
derivatives, mapping the interval [−τ, 0] to Rnx . The function xt ∈ C is defined as

xt(α) = x(t+ α), − τ ≤ α ≤ 0, (11)

and similar to [20, 22], its norm is defined by

||xt||C = max
α∈[−τ,0]

|xt(α)|+
[∫ 0

−τ
|ẋt(α)|2 dα

] 1
2

. (12)

We define our LKF as

V (t, xt) =

8∑
j=0

Vj , t ∈ [tk, tk+1), (13)

where

V0 =xT (t)Px(t), (14)

V1 =(τ − ρs)
∫ t

t−ρt
[ẋ(r)−Bu(r)]TR1[ẋ(r)−Bu(r)] dr, (15)

V2 =(τ − ρs)
∫ t

t−ρt
ẋT (r)R2ẋ(r) dr, (16)

V3 =

∫ t

t−ηmin

(ηmin − t+ r)ẋT (r)R3ẋ(r) dr, (17)

V4 =

∫ t−ηmin

t−ρs
(τ − t+ r)ẋT (r)R4ẋ(r) dr + (τ − ηmin)

∫ t

t−ηmin

ẋT (r)R4ẋ(r) dr, (18)

V5 =

∫ t

t−ρs
(τ − t+ r)ẋT (r)R5ẋ(r) dr, (19)

V6 =

∫ t

t−ρs
(τ − t+ r)ẋT (r)R6ẋ(r) dr, (20)

V7 =

∫ t

t−ηmin

xT (r)Zx(r) dr, (21)

V8 =(τ − ρs)
[
xT (t) xT (tk)

]
X
[
xT (t) xT (tk)

]T
, (22)

ρs and ρt are defined in (4) and (6), respectively, and

X =

[
X1 −X2

−XT
2 X2 +XT

2 −X1

]
, (23)

where P > 0,Ri > 0, i ∈ {1, . . . , 6}, Z > 0,X1 = XT
1 , andX2 are matrices in Rnx×nx . The reason

for defining two similar functionals V5 and V6 becomes clear in the next subsection where we use V5
to provide stability conditions that are independent of ηmax and use V6 to devise stability conditions
for the case when ηmax is known (see equations (49) and (50)).
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Table I. Comparison of the LKF in (13) with the LKFs proposed in [17] and [20]. The sign 3 (respectively, 7)
denotes that a functional exists (respectively, does not exist) in the corresponding LKF.

LKF in (13) V0 V1 V2 V3 V4 V5 V6 V7 V8
LKF in [17] 3 7 7 3 3 7 3 3 7

LKF in [20] 3 7 3 7 7 7 7 7 3

Remark 1
To the best of our knowledge, no other LKF in the literature of NCSs (or sampled-data systems)
contains a term similar to V1. The new functional V1 is defined similar to V2 (cf. equations (15)
and (16)). However in V1, the open-loop dynamics of the linear system are used as opposed to
the closed-loop dynamics. Note that based on (1), V1 can be rewritten as an integral in terms of a
quadratic function of the state vector, i.e.

V1 = (τ − ρs)
∫ t

t−ρt
xT (r)Wx(r) dr, (24)

where W = ATR1A. Observe that the definition of V1 in the form of (24) is similar to the definition
of Vdelay1 in (10). The new term V1 contains information about the evolution of the states through
the interval [t− ρt, t] and also exploits the available information about the time derivative of the
network-induced delay, ρ̇s = ρ̇t = 1.

Table I compares the LKF in equation (13) with the LKFs in[17, 20]. Using the new functional
V1 and the proper use of the functional V5, enables one to achieve less conservative stability criteria
as will be shown in the next subsection.

3.3. Stability results

In this subsection, we present our stability theorems for linear NCSs. First, consider the definition
of exponential stability in the context of retarded functional differential equations.

Definition [17] The linear NCS defined in (1) and (8) is said to be globally uniformly exponentially
stable, if there exists a function β(a, b) = ce−λba, for some c > 0 and λ > 0, such that for any initial
condition x0 ∈ C the solution is globally defined and satisfies |x(t)| ≤ β(||x0||C , t), for all t > 0.

The following theorem provides a set of sufficient conditions for which the trajectories of the
linear NCS are globally uniformly exponentially stable to the origin.

Theorem 1
Consider the linear NCS defined in (1) and (8) with Assumptions 1-4. Given the controller gain
K and the scalars τ , ηmin, and ηmax, the NCS is globally uniformly exponentially stable if there
exist symmetric positive definite matrices P , Ri, i ∈ {1, . . . , 6}, and Z, a symmetric matrix X1, and
matrices X2, Nj , j ∈ {1, . . . , 5}, N6a , and N6b , with appropriate dimensions, satisfying[

P 0

0 0

]
+ (τ − ηmin)X > 0 (25)

Ψ + τM1 + (τ − ηmin)(M2 +M4) + ηminM3 ηminN3 ηminN5 ηmaxN6a

ηminN
T
3 −ηminR3 0 0

ηminN
T
5 0 −ηminR5 0

ηmaxN
T
6a

0 0 −ηmaxR6

 < 0 (26)

[
Ψ + τM1 + (τ − ηmin)(M4 +M5) + ηminM3 N

N
T

D

]
< 0 (27)
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where X is defined in (23) and

Ψ =
[
A 0 BK 0

]T [
P 0 0 0

]
+
[
P 0 0 0

]T [
A 0 BK 0

]
−
[
I −I 0 0

]T
(NT

1 +NT
2 +NT

6b
)− (N1 +N2 +N6b)

[
I −I 0 0

]
−
[
I 0 0 −I

]T
NT

3 −N3

[
I 0 0 −I

]
−
[
0 0 −I I

]T
NT

4 −N4

[
0 0 −I I

]
−
[
I 0 −I 0

]T
NT

5 −N5

[
I 0 −I 0

]
−
[
0 I −I 0

]T
NT

6a −N6a

[
0 I −I 0

]
+
[
I 0 0 0

]T
Z
[
I 0 0 0

]
−
[
0 0 0 I

]T
Z
[
0 0 0 I

]
−
[
X 0

0 0

]
,

M1 =
[
A 0 BK 0

]T
(R5 +R6)

[
A 0 BK 0

]
,

M2 =
[
A 0 0 0

]T
R1

[
A 0 0 0

]
+
[
A 0 BK 0

]T
R2

[
A 0 BK 0

]
+

[
A 0 BK 0

0 0 0 0

]T [
X 0

]
+

[
X

0

] [
A 0 BK 0

0 0 0 0

]
,

M3 =
[
A 0 BK 0

]T
R3

[
A 0 BK 0

]
,

M4 =
[
A 0 BK 0

]T
R4

[
A 0 BK 0

]
,

M5 =
[
0 0 BK 0

]T
NT

1 +N1

[
0 0 BK 0

]
,

N =
[
(τ − ηmin)N1 (τ − ηmin)N2 ηminN3 (τ − ηmin)N4 τN5 ηmaxN6a (τ − ηmin)N6b

]
,

D =diag
(
(ηmin − τ)R1, (ηmin − τ)R2, − ηminR3, (ηmin − τ)R4, − τR5, − ηmaxR6, (ηmin − τ)R6

)
.

Proof
First we show that P > 0, Ri > 0, i ∈ {1, . . . , 6}, Z > 0, and LMI (25) are sufficient conditions for
the LKF (13) to satisfy

c1|xt(0)|2 ≤ V (t, xt) ≤ c2||xt||2C , (28)

for some c1 > 0 and c2 > 0. Adding V0 and V8 yields

V0 + V8 =

[
x(t)

x(tk)

]T ([
P 0

0 0

]
+ (τ − ρs)X

)[
x(t)

x(tk)

]
, (29)

for t ∈ [tk, tk+1). Based on (5), ρs varies between ηmin and τ . Since (29) is affine in ρs, LMI (25)
and P > 0 are sufficient conditions for the existence of a sufficiently small c1 > 0 such that[

c1I 0

0 0

]
≤
[
P 0

0 0

]
+ (τ − ρs)X,

for any ρs ∈ [ηmin, τ). Therefore, based on (11) and (29) we can write

c1|x(t)|2 = c1|xt(0)|2 ≤ V0 + V8.

Moreover, note that the constraints Ri > 0, i ∈ {1, . . . , 6}, and Z > 0 are sufficient conditions
for Vj , j ∈ {1, . . . , 7}, to be non-negative at any time. Therefore, the lower bound on V in
inequality (28) is computed as

c1|xt(0)|2 ≤ V0 + V8 ≤ V.
Considering (5) and (12), observe that at any time t and for all α ∈ [−ρs, 0], |xt(α)| ≤ ||xt||C .
Equivalently,

|x(r)| ≤ ||xt||C , ∀ r ∈ [t− ρs, t]. (30)

Therefore,
∣∣∣[xT (t) xT (tk)

]T ∣∣∣ < √2||xt||C . Based on (29),

V0 + V8 ≤ 2 max
ρs∈[ηmin,τ ]

{
λmax

([
P 0

0 0

]
+ (τ − ρs)X

)}
||xt||2C . (31)
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Note that
[ẋ(r)−Bu(r)]TR1[ẋ(r)−Bu(r)] ≤ λmax(R1)|ẋ(r)−Bu(r)|2.

Moreover, according to the parallelogram law [37], |v1 − v2|2 + |v1 + v2|2 = 2|v1|2 + 2|v2|2, where
v1 and v2 are vectors in Rm. Therefore, |v1 − v2|2 ≤ 2|v1|2 + 2|v2|2. Thus, using (5),

V1 ≤ (τ − ηmin)λmax(R1)

(∫ t

t−ρt
2|ẋ(r)|2 dr +

∫ t

t−ρt
2|Bu(r)|2 dr

)
. (32)

With a change of variables, considering (7), and using the definition of norm in (12), we can write∫ t

t−ρt
2|ẋ(r)|2 dr = 2

∫ 0

−ρt
|ẋ(t+ α)|2 dα = 2

∫ 0

−ρt
|ẋt(α)|2 dα ≤ 2||xt||2C . (33)

Based on (8), note that u(r) = Kx(sk) is constant for r ∈ [t− ρt, t] = [tk, t], t ∈ [tk, tk+1).
According to (30), |x(sk)| ≤ ||xt||C . Therefore, considering (7),∫ t

t−ρt
2|Bu(r)|2 dr = 2

∫ t

t−ρt
|BKx(sk)|2 dr ≤ 2(τ − ηmin)λmax(KTBTBK)||xt||2C . (34)

From (32)-(34),

V1 ≤ 2(τ − ηmin)λmax(R1)
(
1 + (τ − ηmin)λmax(KTBTBK)

)
||xt||2C . (35)

Similarly, it can be shown that

V2 ≤ (τ − ηmin)λmax(R2)||xt||2C , (36)

V3 ≤ ηminλmax(R3)||xt||2C , (37)

V4 ≤ 2(τ − ηmin)λmax(R4)||xt||2C , (38)

V5 ≤ τλmax(R5)||xt||2C , (39)

V6 ≤ τλmax(R6)||xt||2C . (40)

Based on (5), [−ηmin, 0] ⊂ [−ρs, 0], i.e. [t− ηmin, t] ⊂ [t− ρs, t]. Therefore, using (30),

V7 ≤ ηminλmax(Z)||xt||2C . (41)

Adding inequalities (31) and (35)-(41) leads to the upper bound on V in (28), i.e.

c2 =2 max
ρs∈[ηmin,τ ]

{
λmax

([
P 0

0 0

]
+ (τ − ρs)X

)}
+ (τ − ηmin)(λmax(R2) + 2λmax(R4))

+ 2(τ − ηmin)λmax(R1)
(
1 + (τ − ηmin)λmax(KTBTBK)

)
+ τ(λmax(R5) + λmax(R6))

+ ηmin(λmax(R3) + λmax(Z)).

So far, it was shown that the LKF is positive definite and decrescent. Following Lyapunov
theorem, to prove stability, it suffices to show that the LKF is decreasing. Since the LKF is
discontinuous at actuator update instants tk, we first show that the LKF is non-increasing at t = tk,
k ∈ N. Next, computing the time derivative of V for t ∈ (tk, tk+1), k ∈ N, it is proved that LMIs (26)
and (27) are sufficient conditions for the LKF to be decreasing in the interval between two actuator
update instants. To this end, note that Vj , j ∈ {1, . . . , 7}, and V0 + V8 are always non-negative. Also
observe that V0, V3, and V7 are continuous functions. The functionals V1 and V2 vanish at the actuator
update instants since ρt = 0 at t = tk. The first integral in the functional V4 is non-increasing at the
actuator update instants t = tk because the integrand is non-negative and based on Assumption 3
the lower limit of the integral changes from sk−1 to sk (see Figure 2). Note that the second part of
V4 is a continuous function. Using the same reasoning, the functionals V5 and V6 are non-increasing
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at the actuator update instants t = tk because the integrands are non-negative and the lower limit
of the integrals change from sk−1 to sk. The last component of the LKF, i.e. V8, vanishes at the
actuator update instants because x(t) = x(tk) at t = tk and the sum of the entries of X is equal
to zero. Therefore, the LKF is non-increasing at instants tk, k ∈ N. The LKF is differentiable in
the interval between two actuator update instants. For t ∈ (tk, tk+1), V̇ is composed of nine terms
computed as follows. The time derivative of V0 is

V̇0 = ẋTPx+ xTPẋ. (42)

From (4) and (6), we have ρ̇s = ρ̇t = 1. Hence, applying the Leibniz integral rule to V1 yields

V̇1 =−
∫ t

t−ρt
[ẋ(r)−Bu(r)]TR1[ẋ(r)−Bu(r)] dr + (τ − ρs) [ẋ−Bu]

T
R1 [ẋ−Bu] . (43)

Since R1 is positive definite, for any arbitrary time varying vector h1(t) ∈ Rnx we can write[
ẋ(r)−Bu(r)

h1

]T [
R1 −I
−I R−11

] [
ẋ(r)−Bu(r)

h1

]
≥ 0.

Therefore,

−[ẋ(r)−Bu(r)]TR1[ẋ(r)−Bu(r)] ≤ hT1 R−11 h1 − [ẋ(r)−Bu(r)]Th1 − hT1 [ẋ(r)−Bu(r)].

Note that u(r) = Kx(sk) is constant for r ∈ (tk, tk+1), and x(r) = xr(0) ∈ C is absolutely
continuous. Therefore, integrating both sides from t− ρt to t, with respect to r, we have

−
∫ t

t−ρt
[ẋ(r)−Bu(r)]TR1[ẋ(r)−Bu(r)] dr ≤ρthT1 R−11 h1 − [x− x(tk)− ρtBu]Th1

− hT1 [x− x(tk)− ρtBu]. (44)

Replacing (44) in (43), yields

V̇1 ≤ρthT1 R−11 h1 − [x− x(tk)− ρtBu]
T
h1 − hT1 [x− x(tk)− ρtBu]

+ (τ − ρs) [ẋ−Bu]
T
R1 [ẋ−Bu] . (45)

Similarly, we can write the following equations

V̇2 ≤ρthT2 R−12 h2 − [x− x(tk)]
T
h2 − hT2 [x− x(tk)] + (τ − ρs)ẋTR2ẋ, (46)

V̇3 =−
∫ t

t−ηmin

ẋT (r)R3ẋ(r) dr + ηminẋ
TR3ẋ

≤ηminh
T
3 R
−1
3 h3 − [x− x(t− ηmin)]

T
h3 − hT3 [x− x(t− ηmin)] + ηminẋ

TR3ẋ, (47)

V̇4 =(τ − ηmin)ẋT (t− ηmin)R4ẋ(t− ηmin)−
∫ t−ηmin

t−ρs
ẋT (r)R4ẋ(r) dr + (τ − ηmin)ẋTR4ẋ

− (τ − ηmin)ẋT (t− ηmin)R4ẋ(t− ηmin)

≤(ρs − ηmin)hT4 R
−1
4 h4 − [x(t− ηmin)− x(sk)]

T
h4 − hT4 [x(t− ηmin)− x(sk)]

+ (τ − ηmin)ẋTR4ẋ, (48)

V̇5 =−
∫ t

t−ρs
ẋT (r)R5ẋ(r) dr + τ ẋTR5ẋ

≤ρshT5 R−15 h5 − [x− x(sk)]
T
h5 − hT5 [x− x(sk)] + τ ẋTR5ẋ, (49)

V̇6 =−
∫ t−ρt

t−ρs
ẋT (r)R6ẋ(r) dr −

∫ t

t−ρt
ẋT (r)R6ẋ(r) dr + τ ẋTR6ẋ
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≤ηkhT6aR
−1
6 h6a − [x(tk)− x(sk)]

T
h6a − hT6a [x(tk)− x(sk)] + ρth

T
6b
R−16 h6b

− [x− x(tk)]
T
h6b − hT6b [x− x(tk)] + τ ẋTR6ẋ, (50)

V̇7 =xTZx− xT (t− ηmin)Zx(t− ηmin), (51)

V̇8 =−
[
xT (t) xT (tk)

]
X
[
xT (t) xT (tk)

]T
+ (τ − ρs)

[
ẋT (t) 0

]
X
[
xT (t) xT (tk)

]T
+ (τ − ρs)

[
xT (t) xT (tk)

]
X
[
ẋT (t) 0

]T
, (52)

where hj(t), j ∈ {2, . . . , 5}, h6a(t), and h6b(t) are arbitrary time varying vectors in Rnx . Although
the functionals V5 and V6 were defined similarly in equations (19) and (20), their time derivatives
were approximated differently in equations (49) and (50). V̇6 is approximated by a delay dependant
functional and is used to devise stability conditions for the case when ηmax is known. Since
V̇ =

∑8
i=0 V̇i, adding (42) and (45)-(52) yields

V̇ ≤ẋTPx+ xTPẋ+ ρth
T
1 R
−1
1 h1 − [x− x(tk)− ρtBu]

T
h1 − hT1 [x− x(tk)− ρtBu]

+ (τ − ρs) [ẋ−Bu]
T
R1 [ẋ−Bu] + ρth

T
2 R
−1
2 h2 − [x− x(tk)]

T
h2 − hT2 [x− x(tk)]

+ (τ − ρs)ẋTR2ẋ+ ηminh
T
3 R
−1
3 h3 − [x− x(t− ηmin)]

T
h3 − hT3 [x− x(t− ηmin)]

+ ηminẋ
TR3ẋ+ (ρs − ηmin)hT4 R

−1
4 h4 − [x(t− ηmin)− x(sk)]

T
h4 − hT4 [x(t− ηmin)− x(sk)]

+ (τ − ηmin)ẋTR4ẋ+ ρsh
T
5 R
−1
5 h5 − [x− x(sk)]

T
h5 − hT5 [x− x(sk)] + τ ẋTR5ẋ

+ ηkh
T
6aR

−1
6 h6a − [x(tk)− x(sk)]

T
h6a − hT6a [x(tk)− x(sk)] + ρth

T
6b
R−16 h6b

− [x− x(tk)]
T
h6b − hT6b [x− x(tk)] + τ ẋTR6ẋ+ xTZx− xT (t− ηmin)Zx(t− ηmin)

−
[
xT (t) xT (tk)

]
X
[
xT (t) xT (tk)

]T
+ (τ − ρs)

[
ẋT (t) 0

]
X
[
xT (t) xT (tk)

]T
+ (τ − ρs)

[
xT (t) xT (tk)

]
X
[
ẋT (t) 0

]T
. (53)

Recalling (1) and (8), we can write

ẋ(t) =
[
A 0 BK 0

]
ζ(t), and ẋ(t)−Bu(t) =

[
A 0 0 0

]
ζ(t), (54)

where ζ(t) =
[
xT (t) xT (tk) xT (sk) xT (t− ηmin)

]T
, t ∈ (tk, tk+1). Replacing (8) and (54)

in (53), setting hj(t) = NT
j ζ(t), j ∈ {1, . . . , 5}, h6a(t) = NT

6a
ζ(t), and h6b(t) = NT

6b
ζ(t), where

Nj , j ∈ {1, . . . , 5}, N6a , and N6b are matrices in R4nx×nx , and replacing ρt and ηk with ρs − ηmin
and ηmax, respectively, yields

V̇ ≤ ζT
([

A 0 BK 0
]T
P
[
I 0 0 0

]
+
[
I 0 0 0

]T
P
[
A 0 BK 0

]
+ (ρs − ηmin)N1R

−1
1 NT

1 −
[
I −I −(ρs − ηmin)BK 0

]T
NT

1

−N1

[
I −I −(ρs − ηmin)BK 0

]
+ (τ − ρs)

[
A 0 0 0

]T
R1

[
A 0 0 0

]
+ (ρs − ηmin)N2R

−1
2 NT

2 −
[
I −I 0 0

]T
NT

2 −N2

[
I −I 0 0

]
+ (τ − ρs)

[
A 0 BK 0

]T
R2

[
A 0 BK 0

]
+ ηminN3R

−1
3 NT

3

−
[
I 0 0 −I

]T
NT

3 −N3

[
I 0 0 −I

]
+ ηmin

[
A 0 BK 0

]T
R3

[
A 0 BK 0

]
+ (ρs − ηmin)N4R

−1
4 NT

4

−
[
0 0 −I I

]T
NT

4 −N4

[
0 0 −I I

]
+ (τ − ηmin)

[
A 0 BK 0

]T
R4

[
A 0 BK 0

]
+ ρsN5R

−1
5 NT

5 −
[
I 0 −I 0

]T
NT

5 −N5

[
I 0 −I 0

]
+ τ

[
A 0 BK 0

]T
R5

[
A 0 BK 0

]
+ ηmaxN6aR

−1
6 NT

6a −
[
0 I −I 0

]T
NT

6a
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−N6a

[
0 I −I 0

]
+ (ρs − ηmin)N6bR

−1
6 NT

6b
−
[
I −I 0 0

]T
NT

6b

−N6b

[
I −I 0 0

]
+ τ

[
A 0 BK 0

]T
R6

[
A 0 BK 0

]
+
[
I 0 0 0

]T
Z
[
I 0 0 0

]
−
[
0 0 0 I

]T
Z
[
0 0 0 I

]
−
[
X 0

0 0

]
+ (τ − ρs)

[
A 0 BK 0

0 0 0 0

]T [
X 0

]
+ (τ − ρs)

[
X

0

] [
A 0 BK 0

0 0 0 0

])
ζ. (55)

Based on (5), ρs varies between ηmin and τ . Considering (55) and using Schur complement [38],
for ρs = ηmin, LMI (26) implies V̇ < 0. Similarly, LMI (27) implies V̇ < 0 for ρs = τ . Since (55)
is affine in ρs, LMIs (26) and (27) are sufficient conditions for V̇ < 0 to hold for any ρs ∈ [ηmin, τ ],
i.e. ∀(tk, tk+1), k ∈ N. Note that there exists a sufficiently small scalar c3 > 0 such that V̇ (t, xt) <
−c3||xt||2C , for all t 6= tk, k ∈ N. Hence, inequality (28) yields

V̇ (t, xt) < −
c3
c2
V (t, xt), ∀t 6= tk, k ∈ N. (56)

Therefore, for any k ∈ N,

V (t−k , xt−k
) ≤ e−

c3
c2

(tk−tk−1)V (tk−1, xtk−1
) ≤ V (tk−1, xtk−1

),

where V (t−k , xt−k
) = limt↗tk V (t, xt). The second inequality is strict when the length of the interval

(tk−1, tk) is nonzero. Note that according to Assumption 4, any interval (tk−1, tk), k ∈ N, has a
length greater than or equal to ε > 0. Furthermore, it was shown at the beginning of the proof that
V is non-increasing at the actuator update instants, i.e.

V (tk, xtk) ≤ V (t−k , xt−k
), k ∈ N.

Therefore, for any t ∈ [tk, tk+1), k ∈ N,

V (t, xt) ≤ e−
c3
c2

(t−tk)V (tk, xtk) ≤ e−
c3
c2

(t−tk)V (t−k , xt−k
)

≤ e−
c3
c2

(t−tk−1)V (tk−1, xtk−1
) ≤ e−

c3
c2

(t−tk−1)V (t−k−1, xt−k−1
)

...

≤ e−
c3
c2
tV (0, x0). (57)

A similar conclusion could be drawn from Comparison Lemma [39]. Now, inequalities (28) and (57)
yield

|x(t)| ≤
(
V (t, xt)

c1

) 1
2

≤

(
e−

c3
c2
tV (0, x0)

c1

) 1
2

≤
(
c2
c1

) 1
2

e−
c3
2c2

t||x0||C .

Hence, the NCS is globally uniformly exponentially stable. Note that the Zeno phenomenon does not
occur since, by Assumption 4, there exists ε > 0 such that tk+1 − tk > ε. This finishes the proof.

The following proposition compares the conservatism of the results of Theorem 2 in [17]
and Theorem 1 in this paper. For the sake of completeness, the stability conditions in [17] are
summarized in the Appendix.

Proposition 1
If there is a solution to the stability conditions in [17] then there is also a solution to the stability
conditions of Theorem 1.
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Proof
Suppose that there exist matrices P , Ri, i ∈ {2, 3, 4, 6}, Z, and X , Nj , j ∈ {2, 3, 4}, and N6a

satisfying the stability conditions in [17] (please refer to the appendix). Let N1 = N5 = N6b = 0
and X1 = X2 = X . Then there exist matrices R1 = R5 = σI , with a sufficiently small σ > 0, that
satisfy the LMIs (25)-(27). The proof is complete since for any set of matrix variables satisfying the
conditions of [17], there exist a set of matrix variables satisfying the conditions of Theorem 1.

In Theorem 1, given the value of the network-induced delay τ and the lower and upper bounds
on the delay, i.e. ηmin and ηmax, we presented sufficient conditions for exponential stability of
linear NCSs. In some practical problems, however, such information about the delay might not
be available. Here, we present sufficient conditions for exponential stability of linear NCSs under
limited information about the delay. The following corollary addresses the case where the upper
bound on the delay ηmax is unknown. To the best of our knowledge, this scenario was not studied in
the literature before.

Corollary 1
Consider the linear NCS defined in (1) and (8) with Assumptions 1-4. Given the controller gain
K and the scalars τ and ηmin, the NCS is globally uniformly exponentially stable if there exist
symmetric positive definite matrices P , Ri, i ∈ {1, . . . , 5}, and Z, a symmetric matrix X1, and
matrices X2, Nj , j ∈ {1, . . . , 5}, with appropriate dimensions, satisfying[
P 0

0 0

]
+ (τ − ηmin)X > 0Ψ + τM1 + (τ − ηmin)(M2 +M4) + ηminM3 ηminN3 ηminN5

ηminN
T
3 −ηminR3 0

ηminN
T
5 0 −ηminR5

 < 0



(
Ψ + τM1 + ηminM3+

(τ − ηmin)(M4 +M5)

)
(τ − ηmin)N1 (τ − ηmin)N2 ηminN3 (τ − ηmin)N4 τN5

(τ − ηmin)NT
1 (ηmin − τ)R1 0 0 0 0

(τ − ηmin)NT
2 0 (ηmin − τ)R2 0 0 0

ηminN
T
3 0 0 −ηminR3 0 0

(τ − ηmin)NT
4 0 0 0 (ηmin − τ)R4 0

τNT
5 0 0 0 0 −τR5


< 0

where Ψ, Mj , j ∈ {1, . . . , 5}, are defined in Theorem 1 with R6 = 0 and N6a = N6b = 0.

Proof
Let an LKF be defined as

∑
m Vm, m ∈ {0, . . . , 5, 7, 8}. Here, we omit the functional V6 because

its derivative is approximated by a functional that depends on ηk (see inequality (50)). In turn, ηk is
replaced in (55) by the upper bound ηmax. In this corollary, however, ηmax is assumed to be unknown.
Using the modified LKF, the rest of the proof is similar to the proof of Theorem 1.

If the lower bound on the delay ηmin is unknown, based on Assumption 2, we set ηmin = 0. The
next corollary provides sufficient conditions for exponential stability of linear NCSs where ηmin is
unknown or similarly where ηmin = 0.

Corollary 2
Consider the linear NCS defined in (1) and (8) with Assumptions 1-4. Given the controller gain
K and the scalars τ and ηmax, the NCS is globally uniformly exponentially stable if there exist
symmetric positive definite matrices P , R1, R2, R5, and R6, a symmetric matrix X1, and matrices
X2, N1, N2, N5, N6a , and N6b , with appropriate dimensions, satisfying[

P 0

0 0

]
+ τX > 0
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[
Ψ + τ(M1 +M2) ηmaxN6a

ηmaxN
T
6a

−ηmaxR6

]
< 0

Ψ + τ(M1 +M5) τN1 τN2 τN5 ηmaxN6a τN6b

τNT
1 −τR1 0 0 0 0

τNT
2 0 −τR2 0 0 0

τNT
5 0 0 −τR5 0

ηmaxN
T
6a

0 0 0 −ηmaxR6 0

τNT
6b

0 0 0 0 −τR6


< 0

where Ψ, M1, M2, and M5 are defined in Theorem 1 with R3 = R4 = Z = 0 and N3 = N4 = 0,
and all the zero rows and columns (corresponding to x(t− ηmin)) are omitted.

Proof
Let an LKF be defined as

∑
m Vm,m ∈ {0, 1, 2, 5, 6, 8}. Here, the functionals V3, V7, and the second

term in V4 are omitted because they vanish when ηmin = 0. Also note that when ηmin = 0, the first
part of V4 becomes identical to the functionals V5 and V6. Therefore, the first part of V4 is dispensable
in this case. Using the modified LKF, the rest of the proof is similar to the proof of Theorem 1.

If ηk = 0, for all k ∈ N, i.e. the case where the transmission and computation delays are
negligible, the NCS is classified as a sampled-data system. The following corollary presents
sufficient conditions for exponential stability of linear sampled-data systems.

Corollary 3
Consider the system defined in (1) and (8) with Assumptions 1-4 and assume that the delay is
negligible. Given the controller gain K and the scalar τ , the resulting linear sampled-data system
is globally uniformly exponentially stable if there exist symmetric positive definite matrices P ,
R1, and R2, a symmetric matrix X1, and matrices X2, N1, and N2, with appropriate dimensions,
satisfying [

P 0

0 0

]
+ τX > 0

Ψ + τM1 < 0Ψ + τM2 τN1 τN2

τNT
1 −τR1 0

τNT
2 0 −τR2

 < 0

where

Ψ =

[
AT

KTBT

] [
P 0

]
+

[
P

0

] [
A BK

]
−
[
I

−I

]
(NT

1 +NT
2 )− (N1 +N2)

[
I −I

]
−X,

M1 =

[
AT

0

]
R1

[
A 0

]
+

[
AT

KTBT

]
R2

[
A BK

]
+

[
AT 0

KTBT 0

]
X +X

[
A BK

0 0

]
,

M2 =

[
0

KTBT

]
NT

1 +N1

[
0 BK

]
.

Proof
When the transmission and computation delays are negligible, i.e. ηk = 0, k ∈ N, we have ηmin = 0
and, according to (6), ρs = ρt. Let an LKF be defined as Vsd = V0 + V1 + V2 + V8. Here, with
ηmin = 0, the functionals V3, V4, and V7 are omitted for the same reasons as explained in Corollary 2.
Note that with ρs = ρt, the functionals V5 and V6 become similar to the functional V2. It is known
in the literature [20, 21], however, that the functionals V5 and V6 lead to more conservative results
compared to the functional V2. Using the modified LKF Vsd, the rest of the proof is similar to the
proof of Theorem 1.
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The following proposition presents sufficient conditions for exponential stability of linear NCSs
with uncertain parameters.

Proposition 2
Suppose that the pair of system matrices Ω =

[
A B

]
in (1) is unknown but satisfies the following

condition

Ω ∈

{
p∑
j=1

αjΩj , 0 ≤ αj ≤ 1,

p∑
j=1

αj = 1

}
,

where Ωj =
[
Aj Bj

]
, j ∈ {1, ..., p}, denote the vertices of a convex polytope. If the LMIs in

Theorem 1 (or Corollary 1-3) hold for each Ωj , j ∈ {1, ..., p}, with the same matrix variables P , Ri,
i ∈ {1, . . . , 6}, Z, X1, and X2, then the uncertain linear NCS is globally uniformly exponentially
stable.

Proof
Given that the LMIs in Theorem 1 (or Corollary 1-3) hold for each Ωj , j ∈ {1, ..., p}, with the same
matrix variables P , Ri, i ∈ {1, . . . , 6}, Z, X1, and X2, it is guaranteed that the LMIs in Theorem 1
(or Corollary 1-3) also hold for any matrix parameter lying in the convex hull of Ωj , j ∈ {1, ..., p}.
Therefore, the uncertain linear NCS is globally uniformly exponentially stable.

The LMIs in Theorem 1 are affine in τ , ηmin, and ηmax. Therefore, keeping two of these variables
constant, we can use a line search approach to optimize for the other variable. For instance, given
the lower and upper bounds on the delay, the problem of finding a lower bound on the maximum
network-induced delay that preserves exponential stability is formulated as

Problem 1

maximize τ

subject to P > 0, Ri > 0, i ∈ {1, . . . , 6}, Z > 0, X1 = XT
1 , (25)− (27).

We denote the computed lower bound on the maximum network-induced delay that preserves
exponential stability by τmax. Similarly, the LMIs in Corollary 1-3 can be used to write suitable
optimization programs.

4. NUMERICAL EXAMPLES

In this section, we apply our stability theorems to three benchmark problems in the literature.

Example 1
[16, 17, 20, 22] Consider the linear NCS defined in (1) and (8) with the following parameters

A =

[
0 1

0 −0.1

]
, B =

[
0

0.1

]
, K = −

[
3.75 11.5

]
.

Here, we assume that ηmax = 0.8 (s) and solve Problem 1 to find a lower bound on the maximum
network-induced delay that preserves exponential stability for different values of ηmin. Table II
shows the computed τmax by Theorem 1 and the Theorems in [17, 22, 40]. According to Table II,
the stability criteria of Theorem 1 are less conservative (i.e. provide larger lower bounds on the
maximum network-induced delay) for this benchmark problem than the previously existing results.

Now, consider the linear system with the same parameters in a sampled-data scenario. In other
words, we let the transmission and computation delays to be negligible, i.e. ηk = 0, ∀k ∈ N.
However, the sampling intervals are assumed to be unknown and non-uniform. Our goal is to find
a lower bound on the largest sampling interval that preserves exponential stability. The second row
of Table III compares the results of Corollary 3 and the Theorems in [16, 20, 23, 40]. Based on
Table III, the stability conditions of Corollary 3 are less conservative (i.e. provide larger lower
bounds on the largest sampling interval) for this benchmark problem than the other results in the
literature.
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Table II. Comparison of the computed lower bound on the maximum network-induced delay τmax (s) for
ηmax = 0.8 (s) and different values of ηmin in Example 1.

ηmin (s) 0 0.2 0.4 0.6 0.75
[40] 1.04 - - - -
[17] 0.87 0.89 0.92 0.97 1.02
([17] plus V5) ≡ (Theorem 1 with V1 = 0) 0.87 0.89 0.93 0.98 1.03
([17] plus V1) ≡ (Theorem 1 with V5 = 0) 1.06 1.02 1.00 1.01 1.03
[22] 1.10 - - - -
Theorem 1 1.14 1.09 1.06 1.05 1.07

Table III. Comparison of the computed lower bound on the largest sampling interval (s) that preserves
exponential stability in Example 1 and Example 2 with ηk = 0, ∀k ∈ N.

[40] [23] [16] [20] ≡ (Corollary 3 with V1 = 0) Corollary 3
Example 1 1.04 1.36 1.113 1.698 1.717
Example 2 1.06 0.87 0.732 1.641 2.015

Example 2
[20] Consider a linear sampled-data system with the following parameters

A =

[
0 1

−1 −2

]
, B =

[
0

1

]
, K =

[
−1 1

]
.

In the sampled-data scenario we assume that the transmission and computation delays are negligible,
i.e. ηk = 0, ∀k ∈ N. However, the sampling intervals are considered as unknown and non-uniform.
Our goal is to find a lower bound on the largest sampling interval that preserves exponential stability.
The third row of Table III compares the results of Corollary 3 and the Theorems in [16, 20, 23, 40].
Based on Table III, the stability conditions of Corollary 3 are less conservative (i.e. provide larger
lower bounds on the largest sampling interval) for this benchmark problem than the other results in
the literature.

Example 3
[16, 18] Consider the following linear sampled-data system (i.e. ηk = 0, ∀k ∈ N) with polytopic
uncertainty in matrix parameters

A =

[
1 0.5

g1 −1

]
, B =

[
1 + g2

−1

]
, K = −

[
2.6884 0.6649

]
,

where |g1| ≤ 0.1 and |g2| ≤ 0.3. Our objective is to find a lower bound on the largest sampling
interval that preserves exponential stability. Here, based on Proposition 2, we simultaneously check
the stability criteria in Corollary 3 for each combination of Ai and Bj , i, j ∈ {1, 2}, defined by

A1 =

[
1 0.5

−0.1 −1

]
, A2 =

[
1 0.5

0.1 −1

]
, B1 =

[
0.7

−1

]
, B2 =

[
1.3

−1

]
.

Table IV compares the computed lower bound on the largest sampling interval that preserves
exponential stability using Corollary 3 and the theorems in [18, 16, 20]. According to Table IV,
the results of this paper compare favorably with the previously existing results for this benchmark
problem.
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Table IV. Comparison of the computed lower bound on the largest sampling interval (s) that preserves
exponential stability in Example 3 with ηk = 0, ∀k ∈ N.

[18] [16] [20] ≡ (Corollary 3 with V1 = 0) Corollary 3
0.35 0.447 0.591 0.699

5. CONCLUSION

In this paper, we addressed exponential stability of linear NCSs. We introduced a modified LKF that
contains a functional in terms of the open-loop vector field of the linear system. Next, based on the
modified LKF, new sufficient stability conditions were derived for linear NCSs. The paper studied
the case of linear sampled-data systems as a corollary. Furthermore, the problem of finding a lower
bound on the maximum network-induced delay that preserves exponential stability was formulated
as a convex optimization program in terms of LMIs. The stability conditions of this paper were
shown to be less conservative than previously existing results when applied to different benchmark
problems.

APPENDIX

Here, the stability conditions in [17] are summarized for the sake of completeness. Note that the
matrix variables in [17] are renamed in accordance with the notation of this paper.

Theorem [17] Consider the linear NCS defined in (1) and (8) with Assumptions 1-4. Given the
controller gain K and the scalars τ , ηmin, and ηmax, the NCS is globally uniformly exponentially
stable if there exist symmetric positive definite matrices P , Ri, i ∈ {2, 3, 4, 6}, Z, and X , and
matrices Nj , j ∈ {2, 3, 4}, and N6a , with appropriate dimensions, satisfyingΨ + τM1 + (τ − ηmin)(M2 +M4) + ηminM3 ηminN3 ηmaxN6a

ηminN
T
3 −ηminR3 0

ηmaxN
T
6a 0 −ηmaxR6

 < 0



(
Ψ + τM1 + ηminM3

+(τ − ηmin)M4

)
(τ − ηmin)N2 ηminN3 (τ − ηmin)N4 ηmaxN6a

(τ − ηmin)NT
2 −(τ − ηmin)R2 0 0 0

ηminN
T
3 0 −ηminR3 0 0

(τ − ηmin)NT
4 0 0 −(τ − ηmin)R4 0

ηmaxN
T
6a 0 0 0 −ηmaxR6


< 0

where

Ψ =
[
A 0 BK 0

]T [
P 0 0 0

]
+
[
P 0 0 0

]T [
A 0 BK 0

]
−
[
I −I 0 0

]T
NT

2 −N2

[
I −I 0 0

]
−
[
I 0 0 −I

]T
NT

3

−N3

[
I 0 0 −I

]
−
[
0 0 −I I

]T
NT

4 −N4

[
0 0 −I I

]
−
[
0 I −I 0

]T
NT

6a −N6a

[
0 I −I 0

]
+
[
I 0 0 0

]T
Z
[
I 0 0 0

]
−
[
0 0 0 I

]T
Z
[
0 0 0 I

]
−
[
I −I 0 0

]T
X
[
I −I 0 0

]
,

M1 =
[
A 0 BK 0

]T
R6

[
A 0 BK 0

]
,

M2 =
[
A 0 BK 0

]T
R2

[
A 0 BK 0

]
+
[
I −I 0 0

]T
X
[
A 0 BK 0

]
+
[
A 0 BK 0

]T
X
[
I −I 0 0

]
,
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M3 =
[
A 0 BK 0

]T
R3

[
A 0 BK 0

]
,

M4 =
[
A 0 BK 0

]T
R4

[
A 0 BK 0

]
.
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