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Abstract

SNOW 3G is a stream cipher chosen by the 3rd Generation Partnership Project (3GPP) as a crypto-primitive
to substitute KASUMI in case its security is compromised. SNOW 2.0 is one of the stream ciphers chosen for the
ISO/IEC standard IS 18033-4. In this paper, we show that the initialization procedure of the two ciphers admits
a sliding property, resulting in several sets of related-key pairs. In case of SNOW 3G, a set of 232 related key
pairs is presented, whereas in case of SNOW 2.0, several such sets are found, out of which the largest are of size
264 and 2192 for the 128-bit and 256-bit variant of the cipher, respectively. In addition to allowing related-key key
recovery attacks against SNOW 2.0 with 256-bit keys, the presented properties reveal non-random behavior which
yields related-key distinguishers and also questions the validity of the security proofs of protocols that are based
on the assumption that SNOW 3G and SNOW 2.0 behave like perfect random functions of the key-IV.
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I. INTRODUCTION

In response to concerns about the security of the 3GPP encryption primitive KASUMI [1], [2] (see also
[3]), the Security Algorithms Group of Experts (SAGE) proposed a possible replacement for KASUMI
which is currently used in 3G systems as a component of the UEA1 confidentiality algorithm. The core
primitive of the new confidentiality algorithm, UEA2, is the SNOW 3G stream cipher [4]. The design of
SNOW 3G is based on SNOW 2.0 [5], a stream cipher which is chosen for the ISO/IEC standard IS 18033-
4 along with Decim [6], MUGI [7] and Rabbit [8]. SNOW 3G passed extensive internal cryptanalytic
efforts, surveyed in [9], but the full evaluation has not been released to public. Externally, SNOW 3G was
analyzed in [10].

Biham et al. [2] showed that KASUMI does not behave randomly when examined in the related-key
model. As stated in [2], this renders the previous security proofs based on the assumption that KASUMI
behaves like a perfect random function [11] as invalid and puts into question the security of the whole
3GPP system. In [12], [13] the sliding properties of stream ciphers were used to find sets of related keys
where it was shown that a stream cipher may be slidable, in the sense that there exist key-IV values such
that the inner state of the cipher at some time t > 0 corresponds to another key-IV value. Such key-IV
pairs produce equal keystreams up to a slide by some number of positions and represent related keys.

In this paper, we show that a similar strategy is also applicable to SNOW 3G and SNOW 2.0 due to
the way the key and the IV are written to the inner state before the first initialization step. More precisely,
we show that it is possible to find key-IV pairs such that after iterating the cipher for several initialization
steps, the inner state represents a starting inner state for some other key-IV value. Due to the nature of
the of the initialization processes of SNOW 3G and SNOW 2.0, such related keys do not generate slid
keystreams, but only keystreams that have several equal words. However, this still allows distinguishing
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Fig. 1. The SNOW 3G stream cipher

the produced keystream from random keystreams. Table I shows the number of related key pairs, when
IV is fixed, for different SNOW variants.

A feature of the related keys presented in this paper is that, given a key for which a corresponding key
pair exists, it is straightforward to derive this related key, as opposed to related keys from [13] where
the relation was non-obvious and the keys corresponded to a solution of a complex system of equations.
Furthermore, we show that in the case of SNOW 2.0 with 256-bit key, the presented properties allow
related-key attacks with complexity smaller than the exhaustive search. Finally, by using a property of the
related keys by which given a (K, IV ) value, the related key K ′ depends on the value of IV , we present
a simple time-memory trade-off for the case where the attackers position is weakened with respect to
the assumptions on the two related keys. The rest of the paper is organized as follows. In Section II, we
briefly review the specifications of SNOW 3G and SNOW 2.0. The sets of related-keys are specified in
Sections III and IV. The attacks against SNOW 2.0 with 256-bit key are examined in Section V and the
conclusion is given in Section VI.

Snow Variant Source Related key pairs set size # of slide steps Key recovery attack
SNOW 3G Th. 1 232 3 -

SNOW 2.0 (128-bit key) Th. 2 232 2 -
SNOW 2.0 (128-bit key) Th. 3 264 3 -
SNOW 2.0 (256-bit key) Th. 4 2160 2

√
SNOW 2.0 (256-bit key) Th. 5 2192 3

√
SNOW 2.0 (256-bit key) Th. 6 2192 4

√

TABLE I
SUMMARY OF RESULTS
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II. SPECIFICATIONS OF SNOW 3G AND SNOW 2.0
Both SNOW 3G and SNOW 2.0 contain two main components: a Linear Feedback Shift Register

(LFSR) and a Finite State Machine (FSM). The inner state of SNOW 3G (see Fig. 1) can be represented
by (st

0, . . . s
t
15, R

t
1, R

t
2, R

t
3), where the s values represent 32-bit LFSR registers, the R values represent the

32-bit FSM registers and t denotes the number of iterations that have been executed so far. In SNOW 2.0,
the FSM contains only two 32-bit registers and the inner state can be represented by (st

0, . . . s
t
15, R

t
1, R

t
2).

Unlike SNOW 3G which supports only 128-bit keys, SNOW 2.0 can be used with 128-bit and 256-bit
keys. The size of the IV in both ciphers is 128 bits. In what follows, we briefly review the FSM and the
LFSR update steps for the two ciphers.
SNOW 3G: The FSM update step is given by

Rt+1
3 = S2(R

t
2), Rt+1

2 = S1(R
t
1)

Rt+1
1 = Rt

2 ¢ (Rt
3 ⊕ st

5)
(1)

where S1 and S2 are two different 32 × 32 S-boxes, made of four parallel 8-bit S-boxes followed by a
multiplication by a 4× 4 matrix over GF(28) and ¢ denotes addition modulo 232.

The LFSR update is given by

st+1
15 =

{
α−1 · st

11 ⊕ st
2 ⊕ α · st

0 ⊕ F t, t < 32
α−1 · st

11 ⊕ st
2 ⊕ α · st

0 t ≥ 32
(2)

where α is a root of the GF (28)[x] polynomial x4 + β23x3 + β245x2 + β48x + β239, β is a root of the
GF (2)[x] polynomial x8 + x7 + x5 + x3 + 1, α−1 is the multiplicative inverse of α and Ft is the FSM
output which is given by

F t = (st
15 ¢ Rt

1)⊕Rt
2.

Let 1 denote the all-one 32-bit word. The cipher operates as follows: the secret inner state is populated
by K = (K0, . . . K4) and IV = (IV0, . . . IV4) according to

s0
15 = K3 ⊕ IV0, s0

14 = K2, s0
13 = K1, s0

12 = K0 ⊕ IV1

s0
11 = K3 ⊕ 1, s0

10 = K2 ⊕ 1⊕ IV2,

s0
9 = K1 ⊕ 1⊕ IV3, s0

8 = K0 ⊕ 1 (3)
s0
7 = K3, s0

6 = K2, s0
5 = K1, s0

4 = K0

s0
3 = K3 ⊕ 1, s0

2 = K2 ⊕ 1, s0
1 = K1 ⊕ 1, s0

0 = K0 ⊕ 1

and the FSM registers are reset to zero, i.e., R0
1 = R0

2 = R0
3 = 0. The cipher is then iterated by executing

(1) and (2) for 33 times without generating any output. Note that for t < 32, according to (2), the
FSM output Ft participates in the LFSR update, contrary to step t = 32. Finally, the keystream words
(z0, z1, . . .) are produced by

zt−33 = st
0 ⊕ F t, t ≥ 33. (4)

In each such step, after generating the keystream word, the FSM and subsequently the LFSR are updated
by (1) and (2).
SNOW 2.0: The FSM update function is defined by

Rt+1
1 = s5 ¢ Rt

2, Rt+1
2 = S(Rt

1) (5)

where S is a permutation of Z232 based on the round function of Rijndael [15]. The LFSR update function,
and the FSM output Ft are defined in the same way as for SNOW 3G.
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Fig. 2. (K, IV ) and (K′, IV ′) LFSR at times 3 and 0, respectively. For example, row 4 contains K3 ⊕ 1 = s3
0 and K′

0 ⊕ 1 = s
′0
0

For the 128-bit version of SNOW 2.0 with K = (K3, K2, K1, K0) and IV = (IV3, IV2, IV1, IV0), the
starting inner state is populated according to (3). For SNOW 2.0 with 256-bit key, K = (K7, . . . K0), the
LFSR is populated by

s15 = K7 ⊕ IV0, s14 = K6, s13 = K5, s12 = K4 ⊕ IV1

s11 = K3, s10 = K2 ⊕ IV2, s9 = K1 ⊕ IV3, s8 = K0 (6)
s7 = K7 ⊕ 1, s6 = K6 ⊕ 1, . . . , s0 = K0 ⊕ 1

The initialization process and the keystream generation are done the same way as in SNOW 3G.
The following notation will be used throughout the rest of the paper. For both SNOW 3G and SNOW

2.0, two instances of the cipher will be considered: one is initialized by (K, IV ) and the other one is
initialized by (K ′, IV ′). Adding “′” as a suffix to the word will distinguish whether it relates to the
(K, IV ) or the (K ′, IV ′) instance of the cipher. For example, z′i, s

′t
j , R

′t
k denote the keystream and the

inner state of the (K ′, IV ′) instance of the cipher. Let ISt denote the complete inner state of the (K, IV )
instance of cipher at time t ≥ 0. For example IS ′0 represents the inner state of the cipher initialized by
(K ′, IV ′), after applying equations (3) and before executing any initialization steps.

The inner state at t = 0, i.e., the state right after applying (3) or (6) will be referred to as the starting
inner state. The iteration in which the cipher goes from time t to time t + 1 is denoted by step t. Step t
will be referred to as an initialization step if 0 ≤ t ≤ 31. If t ≥ 32, the step will be called a keystream
generation step. The operators ¢ and ¯ denote addition and subtraction modulo 232, respectively.
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III. RELATED-KEY PAIRS FOR SNOW 3G
In this section, we show that it is possible to initialize SNOW 3G by (K, IV ) so that its inner state

at time t = 3 represents a valid starting inner state corresponding to another (K ′, IV ′). More precisely,
we show that there exists a set of 232 (K, IV ) values such that for each such value, a unique (K ′, IV ′)
exists so that IS3 = IS ′0.

The initial equality IS3 = IS ′0 is preserved until step 32, i.e., ISt = IS ′t−3, 3 ≤ t ≤ 32. At that point,
a difference occurs due to the fact that in the (K, IV ) instance an initialization step is applied to update
the inner state whereas in the (K ′, IV ′) instance, a keystream generation step is applied according to (2).
Nevertheless, due to the high degree of similarity among the corresponding inner states at the point where
the keystream words are produced, several such words will be equal, contrary to how a perfect stream
cipher should behave.

Define C1 = S−1
1 (S−1

2 (0)), C2 = (S−1
1 (0)¯S1(0))⊕S2(0) and C3 = (¯S1(S

−1
1 (S−1

2 (0))))⊕S2(S1(0))
and let a0, b0, b1, b′0 be 32-bit words. The following theorem specifies a set of 232 related key pairs for
SNOW 3G.

Theorem 1: Let K = (a0, C1, C2, C3) and K ′ = (C3, a0 ⊕ 1, C1 ⊕ 1, C2 ⊕ 1). Then, there exist unique
IV = (b0, b1, 0, 0) and IV ′ = (b′0, b0, 0, b1) such that ISt = IS ′t−3, 3 ≤ t ≤ 32 and

z3 = z′0, z4 = z′1, z8 = z′5, z9 = z′6. (7)

Proof: First, we show that there exist unique IV and IV ′ of the form above so that K and K ′ satisfy
IS3 = IS ′0, i.e.,

(s3
0, . . . s

3
15, R

3
1, R

3
2, R

3
3) = (s

′0
0 , . . . s

′0
15, R

′0
1 , R

′0
2 , R

′0
3 ) (8)

Unfolding the FSM registers at t = 3 yields

R3
1 = s0

7 ⊕ S2(S1(0)) ¢ S1(s
0
5),

R3
2 = S1(s

0
6 ⊕ S2(0) ¢ S1(0)) , R3

3 = S2(S1(s
0
5)).

Substituting the values s0
5, s0

6 and s0
7 according to s0

5 = K1 = C1, s0
6 = K2 = C2 and s0

7 = K3 = C3 (which
follows by (2) and by the theorem formulation) shows that R3

1 = 0, R3
2 = 0 and R3

3 = 0. Since R
′0
1 = 0,

R
′0
2 = 0 and R

′0
3 = 0 by the SNOW 3G specification, the equality of the FSM words is established.

As for the LFSR values of equality (8), the problem is depicted in Fig. 2. It suffices to equate the
expressions shown inside the rows using the keys specified by the theorem, skipping the first 3 rows.
For example, row 4 corresponds to s3

0 = s
′0
0 . This is trivially satisfied by the K and K ′ specified by

the theorem by setting K3 ⊕ 1 = C3 ⊕ 1 = K ′
0 ⊕ 1, without imposing any constraint on IV , IV ′. It is

straightforward to verify that the same holds for rows 5, 6, 7, 8, 9, 12, 15. However, equating rows 10,
11, 13, 14 and 16 yields

IV3 = IV2 = 0, IV1 = IV ′
3 , IV ′

2 = 0, IV0 = IV ′
1 (9)

Finally, equating rows 17, 18, 19 and substituting values for s1
15, s2

15, s3
15 we have

α(K0 ⊕ 1)⊕K2 ⊕ 1⊕ α−1(K3 ⊕ 1)⊕K3 ⊕ IV0 = K0 ⊕ 1 (10)

α(K1 ⊕ 1)⊕K3 ⊕ 1⊕ α−1(K0 ⊕ IV1)⊕
((K0 ⊕ 1) ¢ K1)⊕ S1(0) = K1 ⊕ 1

(11)

α(K2 ⊕ 1)⊕K0 ⊕ α−1(K1)⊕
((K1 ⊕ 1) ¢ (K2 ⊕ S2(0) ¢ S1(0))⊕ (12)
S1(K1) = K2 ⊕ 1⊕ IV ′

0 .

It is clear that equations (10)-(12) can be solved explicitly in IV0, IV1 and IV ′
0 . In other words, by letting

K = (a0, C1, C2, C3) and K ′ = (C3, a0 ⊕ 1, C1 ⊕ 1, C2 ⊕ 1) as specified by the theorem and fixing a0,
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these three equations yield a unique IV0, IV1 and IV ′
0 , which take the place of b0, b1 and b′0, respectively,

showing that for K, K ′, there exist unique IV , IV ′ of the form specified by the theorem, satisfying (8).
To complete the proof it suffices to show that (8) implies (7). From (8), using (2), it follows that

ISt = IS ′t−3 for 3 < t ≤ 32. Again, according to (2), it follows that the difference in times t = 33, 34, 35
is present in registers {s15}, {s15, s14}, {s15, s14, s13}, respectively. As for times t = 36, 37, the difference
in the inner states stays only in {s14, s13, s12}, {s13, s12, s11}, respectively. Then, using (4), it follows that
z3 = z′0, z4 = z′1. By following the difference propagation, it is straightforward to see that at t = 41, 42
the active registers are {s14, s13, s12, s9, s8, s7} and {s13, s12, s11, s8, s7, s6}, respectively, which, using (4),
completes the proof of (7).
In the previous Theorem, related keys due to the slide of 3 steps are described. An attempt to change the
number of sliding steps is unlikely to yield new interesting sets of related keys for SNOW 3G. Namely,
slide pairs on the distance of 2 steps do not exist due to the fact that R2

3 = S2(S1(0)) is a constant different
than zero, which means that the inner state after 2 initialization steps cannot represent a starting inner
state of another slided instance of the cipher. As for the slide by 4 steps, the FSM constraint restricts the
key K to 232 possible values. Then, the K candidates are restricted by an additional 64-bit filter due to
the LFSR constraint, i.e., by equations s4

13 = s
′0
13 and s4

14 = s
′0
14. The two constraints together render the

related-keys highly unlikely to exist. Finally, an eventual slide by more than 4 steps does not produce
related keys since the difference between the initialization and the keystream generation steps for longer
than 4 steps destroys the equivalence between the inner states which is needed to have some equal words
in the corresponding output sequences.

IV. RELATED-KEY PAIRS FOR SNOW 2.0
In this section, we show that the strategy from Section III is also applicable against SNOW 2.0. In

particular, for SNOW 2.0 with 128-bit keys, we show that two different related key sets exist due to the
slide by 2 and by 3 steps. As for the 256-bit key version of SNOW 2.0, each of the slides by 2, 3 and 4
steps yield related key sets.

A. SNOW 2.0 with 128-bit keys
The following theorem reveals a set of 232 related key pairs for the 128-bit version of SNOW 2.0, due

to the slide by 2 steps. Let C1 = S−1(0) and C2 = ¯S(0) and let a0, a3, b1 and b′0 be 32-bit words. Note
that, according to the SNOW 2.0 specification, K and IV are are indexed in reverse order.

Theorem 2: Let a0 and a3 satisfy

α(a0 ⊕ 1)⊕ C2 ⊕ α−1(a3 ⊕ 1)⊕ a3 = a0 (13)

Let K = (a3, C2, C1, a0) and K ′ = (C1⊕ 1, a0⊕ 1, a3, C2). Then, for any IV = (0, 0, b1, 0), there exists a
unique IV ′ = (0, b1, 0, b

′
0) so that for SNOW 2.0 with 128-bit key, we have ISt = IS ′t−2 for 2 ≤ t ≤ 32

and
z2 = z′0, z3 = z′1, z4 = z′2
z7 = z′5, z8 = z′6, z9 = z′7

(14)

Proof: Similar to the proof of Theorem 1, it will be shown that the K, K ′, IV and IV ′ values obeying
the conditions of the theorem imply IS2 = IS ′0. Since R2

1 = s6 ¢ S(0) = K2 ¢ S(0) = ¯S(0) ¢ S(0) =
0 = R

′0
1 and R2

2 = S(s5) = S(K1) = S(S−1(0)) = 0 = R
′0
2 , the equality of the FSM registers is

established. The LFSR constraint amounts to showing that

s2
i = s

′0
i , 0 ≤ i ≤ 15 (15)
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By substituting s2
i = s0

i+2 for i ≤ 13 and substituting s0
i+2 and s

′0
i according to (3), it easy to verify that

for i ∈ {0, 1, 2, 3, 4, 5, 6, 11}, (15) is satisfied without imposing any constraints on IV and IV ′. On the
other hand, using the same substitutions, due to (15) for i ∈ {7, 8, 9, 10, 12, 13}, it follows that

IV3 = 0, IV2 = 0, IV ′
3 = 0,

IV1 = IV ′
2 , IV ′

1 = 0, IV0 = 0
(16)

which leaves both IV1 = IV ′
2 and IV ′

0 unspecified. As for (15) for i = 14, it is satisfied due to (13). From
(15), for i = 15, it follows that for any IV1 = b1, IV ′

0 = b′0 is uniquely determined.
From IS2 = IS ′0, by (2), it follows that ISt = IS ′t−2 for 2 < t ≤ 32. In times t = 33, 34, the

difference is present in {s15}, {s15, s14} registers, respectively. In times t = 35, 36, 37 the difference in
the inner states is present only in {s14, s13}, {s13, s12}, {s12, s11}, respectively. Following the propagation
further reveals that in times t = 40, 41, 42, the difference is only in {s14, s13, s9, s8}, {s13, s12, s8, s7} and
{s12, s11, s7, s6}, respectively. Taking into account (4), (14) follows.
The number of K values for which related K ′ exist is equal to the number of possible a0, a3 that satisfy
the linear equation (13), i.e. 232 values.

The next theorem reveals a larger set of 264 related key pairs for 128-bit keyed SNOW 2.0, due to
the slide by 3 steps. Let a0, a1 be arbitrary 32-bit words and let A3 = ¯S(a1). Define the constant
C1 = S−1(0) ¯ S(0).

Theorem 3: Let K = (A3, C1, a1, a0) and K ′ = (C1 ⊕ 1, a1 ⊕ 1, a0 ⊕ 1, A3). Then, there exist unique
IV = (0, 0, b1, b0) and IV ′ = (b1, 0, b0, b

′
0), for SNOW 2.0 with 128-bit key, such that ISt = IS ′t−3 for

3 ≤ t ≤ 32 and that
z3 = z′0, z4 = z′1, z8 = z′5, z9 = z′6

As for the sliding by 4 steps, the FSM constraint imposes a 64-bit constraint on the key K and the
equations s4

13 = s
′0
13 and s4

14 = s
′0
14 provide another 64-bit constraint. Since the expected number of such

related key pairs is 1, they are less relevant and their treatment is omitted. As for sliding by more than 4
steps, the difference between the initialization and the keystream generation steps for longer than 4 steps
destroys the equivalence between the inner states which consequently prevents having equal words in the
corresponding output sequences.

B. SNOW 2.0 with 256-bit keys
The theorem that follows uses sliding by 2 steps to describe sets of 2160 related key pairs of SNOW

2.0 with 256-bit keys. Define the constants C1 = S−1(0) ⊕ 1, C2 = (¯S(0)) ⊕ 1 and let a0, a1, a2, a3,
a4, a7, b1, b3 and b′0 be 32-bit words.

Theorem 4: Assume that
α(a0 ⊕ 1)⊕ a2 ⊕ α−1(a3)⊕ a7 = a0 (17)

Let K = (a7, C2, C1, a4, a3, a2, a1, a0) and K ′ = (a1 ⊕ b3 ⊕ 1, a0 ⊕ 1, a7, C2, C1, a4, a3, a2). If IV =
(b3, 0, b1, 0), there exists a unique IV ′ = (0, b1, 0, b

′
0) such that for SNOW 2.0 with a 256-bit key, we have

ISt = IS ′t−2 for 2 ≤ t ≤ 32 and

z2 = z′0, z3 = z′1, z4 = z′2
z7 = z′5, z8 = z′6, z9 = z′7

(18)

Due to (17), the number of K values for which related K ′ exist is 2160.
Next, sets of 2192 related-key pairs are derived by using a slide by 3 steps. Let a0, a1, a2, a3, a4, a5, b2 and

b3 be arbitrary 32-bit words. Let A7 = (¯S(a5⊕1))⊕1 and define the constant C1 = (S−1(0)¯S(0))⊕1.
Theorem 5: Let K = (A7, C1, a5, a4, a3, a2, a1, a0) and K ′ = (a2⊕b2⊕1, a1⊕b3⊕1, a0⊕1, A7, C1, a5, a4, a3).

Then, there exist unique b1, b0 and b′0 such that with IV = (b3, b2, b1, b0) and IV ′ = (b1, 0, b0, b
′
0), for

SNOW 2.0 with a 256-key, we have ISt = IS ′t−3 for 3 ≤ t ≤ 32 and

z3 = z′0, z4 = z′1, z8 = z′5, z9 = z′6 (19)
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Finally, sets of 2192 related-key pairs are described by using a slide of 4 steps for SNOW 2.0 with 256-
bit keys. Let a1, a2, a3, a4, a5 and a6 be arbitrary 32-bit values. Define A7 = (S−1(0) ¯ S(a5 ⊕ 1))⊕ 1
and A0 = ¯S((a6 ⊕ 1) ¢ S(0)).

Theorem 6: Let K = (A7, a6, a5, a4, a3, a2, a1, A0). Then, there exist unique b3, b2, b′1 and b′0 such that
for K ′ = (a3⊕1, a2⊕ b2⊕1, a1⊕ b3⊕1, A0⊕1, A7, a6, a5, a4), IV = (b3, b2, 0, 0) and IV ′ = (0, 0, b′1, b

′
0)

for SNOW 2.0 with 256-bit key, we have ISt = IS ′t−4 for 4 ≤ t ≤ 32 and

z4 = z′0, z9 = z′5

As in the case of SNOW 2.0 with 128-bit keys, attempts to slide by more than 4 steps do not yield
related key pair sets since the equivalence between the inner states is destroyed due to the difference in
the initialization and keystream generation steps.

V. RELATED-KEY ATTACKS

Slide properties of stream ciphers may allow key-recovery attacks, as demonstrated in [12], [13], [14].
In [12], a slide property of Grain was exploited, by which for a fraction of 2−2n key-IV values, there
exists a related key-IV which produces identical but n-bit shifted keystream. Due to the simplicity of
the relation between slided key-IV pairs and also due to the large number of such pairs, an attack in
a single-key model was possible. As a result, a reduction of the Grain key space by a factor of 2 was
achieved. In [13], a related-key attack against Salsa20 using a slide property of the cipher was given,
where it was shown that the inner state can be recovered given keystream words of two instances of the
cipher initialized by certain type of pairs of key-nonce-counter values. Finally, in [14], the LEX stream
cipher was shown to be susceptible to a slide key-recovery attack requiring around 20000 keystream bytes
produced under around 260.8 random IVs.

In this section, we provide key-recovery attacks against SNOW 2.0 with 256-bit keys using the slide
properties specified above. Firstly, we state a generic attack strategy that is straightforward and naturally
follows from these properties. Then, we exploit the fact that in some of the related key-IV pairs specified
by the Theorems above, the key K ′ depends on the IV value corresponding to its related key K. In
particular, we show that the latter property gives the attacker some more freedom, without a comparable
increase in the attack complexity. On the other hand, the sets of related keys for SNOW 3G and SNOW
2.0 with 128-bit keys appear to be too small to yield meaningful key-recovery attacks.

As for generic attacks against SNOW 2.0 with 256-bit key due to slide properties above, consider
Theorems 4, 5 and 6 above. Given the two instances of the cipher initialized by unknown K and K ′ as
specified by the corresponding theorem, the attacker queries the two instances until the IV and IV ′ that
give slide pairs are found. The fact that the slide has been detected ensures that the starting inner states
of the two instances are slided for the given IVs. Writing down the equation that equates corresponding
registers of the two starting LFSRs and plugging the found IV and IV ′ in the equations gives a simple
relation in the key bits and consequently restricts the key space.

As for the variation of the generic attack above, observe that in Theorems 4, 5 and 6, K ′ depends on
the IV , the initialization vector of key K. It follows that, by varying IV in (K, IV ), the key K is related
to different related keys K ′, which in turn indicates that, given a cipher instance initialized by K, it is
not necessary for the attacker to have access to a single K ′ cipher instance, but rather to a set of possible
K ′ values. Consider for instance the relation between the two keys specified by Theorem 6:

K = (A7, a6, a5, a4, a3, a2, a1, A0),

K ′ = (a3 ⊕ 1, a2 ⊕ b2 ⊕ 1, a1 ⊕ b3 ⊕ 1, A0 ⊕ 1, A7, a6, a5, a4)

The difference K[0] ⊕ K ′[4] in the two keys is restricted to 1. Such a scenario between the two key
portions is common for the usual related key model. On the other hand, if K ′[j] depends on IV value of
its related key, as in the case of K[1] and K ′[5] in the two keys above, more attack scenarios are possible.
The attack may work for any difference between the two key words, where the attacker may not be even
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required to know the difference between these two words. As shown below, due to the possibility of
applying time-memory tradeoffs, such extended attack scenarios do not necessarily lead to a proportional
increase in the attack complexities.

In general, given the portions of the key and its related key, in this case subwords K[i] and K ′[j], we
distinguish the following scenarios:
(a) K[i]⊕K ′[j] is an arbitrary value known to the attacker
(b) K[i]⊕K ′[j] is an arbitrary value unknown to the attacker
Clearly, scenario (b) is less favorable for the attacker than the scenario (a). In what follow, we examine
possible attacks when scenarios (a) and (b) are assumed for the key subwords in question. It should be
noted that the number of unknown key bits in the two related keys can be taken to be the smaller of the
numbers of unknown bits in the two keys. Since, in what follows, every two related keys have the same
number of unknown bits, the number of bits in the key is equal to the number of unknown bits in one
(any) of the two keys.

Let the attacker have access to two instances of the cipher initialized by unknown keys, but related as
specified by Theorem 4. Along with the IVs, the initialization that results in a slide is specified by

K = (a7, C2, C1, a4, a3, a2, a1, a0), IV = (b3, 0, b1, 0)

K ′ = (a1 ⊕ b3 ⊕ 1, a0 ⊕ 1, a7, C2, C1, a4, a3, a2), IV ′ = (0, b1, 0, b
′
0)

where b′0 is unique once b3 and b1 are fixed. Let K[1] and K ′[7] be related by scenario (a). In other
words, any K[1]⊕K ′[7] value is valid for the attack to succeed. Since due to the assumed scenario (a) the
difference in question is known, so is the value b3, i.e., the IV subword for which the slide can happen.
Now, to find the IV and IV ′ such that (K, IV ) and (K ′, IV ′) yield a slide pair, the attacker lets b1 = 0,
queries the K instance with IV = (b3, 0, 0, 0) once and the K ′ instance around 232 times by varying b′0 in
IV ′ = (0, 0, 0, b′0), i.e., until (18) is satisfied. Then, due to (15) for i = 15, after simplifying the equation
and substituting s1

15 = a0 ⊕ 1, we have

α(a1)⊕ a1 ⊕ a3 ⊕ α−1(a4)⊕ ((a0 ⊕ 1) ¢ C1)⊕ S(0)⊕ α(1) = α−1(b1)⊕ b3 ⊕ b′0 (20)

Since b1 = 0, b3 and b′0 are known, the equation above introduces a 32-bit constraint on key bits, reducing
the unknown key bits number from 160 to 128. Consider now how the attack changes when instead of
(a), scenario (b) is assumed between K[1] and K ′[7]. Now the attacker has access to two instances of
the cipher instantiated by keys in Theorem 4, but the relation between K[1] and K ′[7] is unknown and
arbitrary. Then, the following process can be applied:

- For each b3, query the K instance of the cipher using IV = (b3, 0, 0, 0). Save each (z2, z3, z4, z7, z8, z9)
as a row of table T .

- Sort table T
- For each b′0, query the K ′ instance of the cipher using IV ′ = (0, 0, 0, b′0) and search for (z′0, z

′
1, z

′
2, z

′
5, z

′
6, z

′
7)

value in table T . If found, return the corresponding (b3, b
′
0)

The advantage of the latter attack is that it does not assume any relation between K[1] and K ′[7]. It
requires 232 chosen-IV queries to each of the two oracles, storage of size 232 and the computational effort
dominated by a key search over the space of 2128 keys.

As for the attack based on Theorem 5, the key-IV pair that results in a slide pair is

K = (A7, C1, a5, a4, a3, a2, a1, a0), IV = (b3, b2, b1, b0)

K ′ = (a2 ⊕ b2 ⊕ 1, a1 ⊕ b3 ⊕ 1, a0 ⊕ 1, A7, C1, a5, a4, a3), IV ′ = (b1, 0, b0, b
′
0)

where b1, b0 and b′0 are uniquely determined once b3 and b2 are fixed, i.e. once K and K ′ are fixed. Assume
a relation of type (a) between K[1] and K ′[6] and also between K[2] and K ′[7]. It follows that the values
b3 and b2 that can yield slid instances are known. Given that the IV values are of form IV = (b3, b2, b1, b0)
and IV ′ = (b1, 0, b0, b

′
0), it suffices to try all possible guesses for b1, b0 and b′0 and find the IV , IV ′ pair
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that corresponds to the slided inner states. Again, relation (19) is used as a criterion to determine whether
the slide happened or not. The cost of such a procedure is 264 queries to the K instance of the cipher and
296 queries to the K ′ oracle. Out of 296 (b1, b0, b

′
0) values, only the triplet that produces slide inner states

is expected to pass, since (19) represents a 128-bit constraint. Once the b1, b0 and b′0 have been found,
equations s3

13 = s
′0
13, s3

14 = s
′0
14 and s3

15 = s
′0
15 that hold for slide pairs can be expanded. After simplifying

the equations and substituting s1
15 = a0 ⊕ 1 and s2

15 = a1 ⊕ b3 ⊕ 1, we have

α(a0)⊕ a2 ⊕ α−1(a3)⊕ (¯S(a5 ⊕ 1))⊕ a0 ⊕ α(1)⊕ 1 = b0 (21)
α(a1)⊕ a3 ⊕ α−1(a4)⊕ ((a0 ⊕ 1) ¢ (a5 ⊕ 1))⊕ a1 ⊕ α(1)⊕ S(0) = α−1(b1)⊕ b3 (22)
α(a2)⊕ a4 ⊕ α−1(a5)⊕ ((a1 ⊕ b3 ⊕ 1) ¢ (C1 ⊕ 1) ¢ S(0))⊕

⊕ S(a5 ⊕ 1)⊕ a2 ⊕ α(1) = b′0 ⊕ b2

(23)

By guessing a0, a1 and a5 the system is linearized in GF (232) and can be rewritten as

a2 ⊕ α−1(a3) = L1, a3 ⊕ α−1(a4) = L2, (α⊕ 1)(a2)⊕ a4 = L3

where L1, L2 and L3 are known constants. These three equations above are independent and easy to solve
in a2, a3, a4. Consequently, the number of unknown key bits is reduced from 192 to 96. To summarize,
to attack 192 bits of the secret key in the related key scenario, we require 264 chosen-IV queries to the
first instance and 296 chosen-IV queries to the second instance of the cipher and finally a brute force
over 296 values to find the two secret keys. Note that given the key of form K, it is sufficient for the
attacker to have access to any of the 264 possible keys related to K ′, as long as the difference between
K[1] and K ′[6] and also between K[2] and K ′[7] is known, i.e. scenario (a) is assumed for both pairs for
key subwords. If instead of (a), scenario (b) is assumed for one of the two key subword pairs in question,
say for K[1] and K ′[6], the attack proceeds as follows:

- For each b1, b0

- Create a table T with rows containing (z3, z4, z8, z9) generated by (K, IV ) where b3 is varying
in IV = (b3, b2, b1, b0) and b2 is known and fixed

- Sort table T
- For each b′0 search (z′0, z

′
1, z

′
5, z

′
6) generated using K ′ and IV ′ = (b1, 0, b0, b

′
0) in T . If found,

return values for b3, b1, b0 and b′1
- Otherwise: delete table T

On average one incorrect candidate for b3, b1, b0 and b′1 will be returned by the procedure above since (19)
is a 128-bit constraint. The procedure requires sorting 264 tables, each table containing 232 rows, storage
size of 232, 296 chosen-IV queries to both instances of the cipher and finally, an exhaustive search over
296 possible key values. If both of the key subwords pairs in question are assumed to follow relation (b),
around 232 false candidates for b3, b2, b1, b0 and b′1 out of possible 232×5 values are expected to pass the
128-bit constraint (19), which augments the computational effort of exhaustive search to 296 × 232. Since
for each b3, b2 the value for (z3, z4, z8, z9) is stored, there is an additional cost of sorting 264 tables, each
table containing 264 rows and a storage requirement of 264. The number of the chosen IV queries is 2128

and 296 to the K and K ′ instances of the cipher, respectively.
Compared to Theorems 4 and 5, Theorem 6 is less favorable for attacks. Consider the key-IV pair

configuration specified by the theorem:

K = (A7, a6, a5, a4, a3, a2, a1, A0), IV = (b3, b2, 0, 0)

K ′ = (a3 ⊕ 1, a2 ⊕ b2 ⊕ 1, a1 ⊕ b3 ⊕ 1, A0 ⊕ 1, A7, a6, a5, a4), IV ′ = (0, 0, b′1, b
′
0)

where, once key K is fixed, b3, b2, b′1 and b′0 are uniquely determined. Observe that the b3 and b2 words
participate in the expressions for the key subwords K ′[5] and K ′[6], respectively. Therefore, given an
instance with a key K, there exists no simple transformation to obtain a valid K ′. In other words, given
an instance with an unknown key K, the attacker does not know which transformation has to be applied
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on K to obtain K ′. Instead of assuming that, nevertheless, the attacker has access to two instances with
related K and K ′, we present the attack in the following more relevant scenario. Let the attacker know
the left-hand side values in equations s4

13 = s
′0
13 and s4

14 = s
′0
14 that determine the correct b3 and b2:

α(a1)⊕ a3 ⊕ α−1(a4)⊕ (((¯S((a6 ⊕ 1) ¢ S(0)))⊕ 1⊕ b′1) ¢ (a5 ⊕ 1))⊕ S(0)⊕ a1 ⊕ α(1) = b3

α(a2)⊕ a4 ⊕ α−1(a5)⊕ ((a1 ⊕ 1⊕ b3) ¢ (a6 ⊕ 1) ¢ S(0))⊕ S(a5 ⊕ 1)⊕ a2 ⊕ α(1) = b2

The assumption lowers the number of starting unknown key bits from 192 to 128. For a perfect stream
cipher, recovering 128 unknown bits of the keys should not be possible in less than 2128 operations. By
having the knowledge about the key, the attacker also has the values of correct b2 and b3. Now the b′1 and
b′0 values that produce a slide pair are found by applying 264 queries to the K ′ oracle and comparing with
the corresponding output with the output of the K instance of the cipher, used with the IV = (b3, b2, 0, 0).
After the correct b′1 and b′0 have been found, the equations s4

12 = s
′0
12 and s4

15 = s
′0
15 can be used to restrict

the key space:

α(¯S((a6 ⊕ 1) ¢ S(0)))⊕ a2 ⊕ α−1(a3)⊕ (S−1(0) ¯ S(a5 ⊕ 1))⊕
⊕(¯S((a6 ⊕ 1) ¢ S(0)))⊕ 1⊕ α(1) = b′1

α(a3)⊕ a5 ⊕ α−1(a6)⊕ (a2 ⊕ b2 ⊕ 1 ¢ (S−1(0) ¯ S(a5 ⊕ 1)) ¢ S(a5 ⊕ 1))⊕
⊕S((a6 ⊕ 1) ¢ S(0))⊕ a3 ⊕ α(1) = b′0

The key space is reduced to 128 − 64 = 64 bits. Since it is expected that one false b′0 and b′1 will pass
the test, the exhaustive search over 265 keys and 264 queries to the second oracle suffice to attack 128
unknown key.

In the case of related key sets due to Theorem 1 and 2 for SNOW 3G and SNOW 2.0 with 128-bits,
the attacks are irrelevant since the number of initial unknown key bits is only 232. The attack against keys
specified by Theorem 3 is also less relevant since the exhaustive search over the initial unknown 64 bits
is more effective than the attack, since it would require around 296 chosen-IV queries.

Finally, it should be noted that equations that reduce the key space considered in this section contain
operations tat are not linear in GF (232). For example, (20) contains operation ¢ and (21) contains an
S-box S application. So, in the attack based on Theorem 5, another key K ′′ equal to K ′ on all subwords
except on a5 would allow another equation of the form (21), with a′5 instead of a5, which would in
turn reveal (¯S(a5 ⊕ 1))⊕ (¯S(a′5 ⊕ 1)). However, in each case above, exploiting the non-linearity for
obtaining more key bit information requires introducing more related keys. For example, changing b3 in
(23) requires new related key K ′, since K ′ depends on b3. Moreover, introducing more related keys does
not lower the number of required chosen-IV queries. Since in this section the focus has been on extending
the flexibility of the related key attack, adding more related keys without improving the practicality of
the related key attack scenarios has been omitted.

VI. DISCUSSION AND CONCLUSIONS

We presented related key pair sets for SNOW 3G and SNOW 2.0 cipher by using a sliding technique.
For several of the presented related key sets, the transformation from the key K to its related key K ′ is
simple and amounts to rotation and bit inversion.

Using the derived related key sets, related-key key recovery attacks against SNOW 2.0 with 256-bit in
complexity smaller than the exhaustive search can be mounted. Moreover, the fact that the K ′ depends
on the IV of its related key was used to mount attacks under different assumptions on the related
keys. Furthermore, the existence of the related keys exhibits non-random behavior of the ciphers, which
questions the validity of the security proofs of protocols (such as the ones used in the 3GPP networks
[11]) that are based on the assumption that SNOW 3G and SNOW 2.0 behave like ideal random functions
when regarded as functions of the key-IV. For a more detailed discussion on related-key and known-key
distinguishers, attacks, their security models and notions, the reader is referred to [16], [17].
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It should be noted that an attack against the initialization procedure of ZUC [18] was announced in
the rump session of Asiacrypt 2010 by Wu et al. [19]. This attack has some similarities with our work.
Namely, it has been shown that for different IV values, identical inner states can be achieved only after 1
initialization step which results in identical keystream. By varying the IV value, the attacker finds the two
identical keystreams and forms the simple equation required for the equal inner states to happen which
significantly reduces the entropy of the secret key.
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