
Myphrase: Passwords from Your Own Words

Adam Skillen and Mohammad Mannan

{a skil, mmannan}@ciise.concordia.ca

Concordia Institute for Information Systems Engineering
Concordia University, Montreal, Canada

January 24, 2013

c© Adam Skillen and Mohammad Mannan 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/211516269?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

To improve manageability and strength of user-chosen passwords, we propose a multi-word
password scheme called Myphrase. Contrary to the often-repeated but failed policy of ban-
ning common words as passwords, we encourage users to use words that are more personal
to them—irrespective of the words being too common or esoteric. In Myphrase, a small
dictionary is created from user-authored content such as sent emails and blogs. A master
passphrase is constructed by randomly selecting words from the dictionary. We propose two
variants as a trade-off between security and memorability; in random sequence, words are
chosen uniformly across the dictionary, and in connected discourse, words are tagged using
a part-of-speech engine and inserted appropriately into sentence templates. Words in the
passphrase are expected to be easily recognizable to users and can be efficiently entered by
leveraging the auto-suggest feature. Myphrase is designed to be compatible with both desk-
top and mobile platforms—a growing requirement for current authentication schemes. We
create website-specific passwords from the master passphrase by salting the phrase with the
site’s domain. To restrict offline attacks on the master passphrase from exposed site pass-
words, we require the passphrase to be of sufficient length (e.g., 6 words from a 1024-word
dictionary, resulting in 60 bits of entropy in the random sequence variant). Entropy calcu-
lation for the connected discourse variant is less straightforward. We analyze Myphrase dic-
tionaries and expected entropy of generated passphrases with two datasets: the Enron email
corpus, and several popular books from Project Gutenberg. We also evaluate Myphrase using
a recently proposed, slightly modified, framework of usability-deployability-security ratings,
and seek feedback on our proof-of-concept prototypes available for both desktop and mobile
platforms.

1 Introduction and Motivation

To the dismay of security proponents and website administrators, many regular and expert
users consistently choose weak passwords, such as, 123456, iloveyou, ieee2012, and princess
(see e.g., leaked passwords from IEEE.org [11] and Rockyou.com [18]). Currently, common
dictionary words and their predictable variants are heavily used as passwords. For users, this
is apparently the most sensible choice for password creation and long-term management [15].
To exploit this behavior, offline and online password guessing attacks use common passwords
as their starting point. To restrict these attacks, some websites forbid certain obvious pass-
words; see e.g., Twitter [39]. On the other hand, to facilitate user choice, Schechter et al. [34]
suggested to place a threshold in the use of popular passwords; users are free to choose any
password as long as that password has not been chosen by too many other users of the
website. This may reduce the total number of compromised accounts on a given site, but
does not protect the individuals that choose weak passwords.

Password entry from constrained input interfaces of mobile devices may further influence
users to choose dictionary words as passwords (cf. [20]). Recently, multi-word password
schemes have been revisited as an alternative to regular passwords by leveraging auto-correct
and auto-suggest features in mobile devices [10, 19]. However, as long as users are free to
choose words in a multi-word phrase, no significant improvement is apparent in password
strength (see e.g., [23, 8, 43, 35]).

With Myphrase, we explore a different approach, which is apparently more in-line with
user desire and can support both desktop and mobile platforms. Instead of discouraging users
from choosing what they are comfortable with, we leverage users’ own personal vocabulary
to generate strong passwords; i.e., any words can be used irrespective of being considered
too obvious or taboo. A Myphrase passphrase consists of multiple randomly chosen words
from a user-created/selected dictionary. The dictionary is user-specific, e.g., generated from
user-created text content, such as emails; users may also choose a pre-generated dictionary
aligned with their interests e.g., lexicon from a favorite poet. Users can even use a list of
common passwords as their dictionary, e.g., the 3546-word John the Ripper most common
password list.1 Dictionaries need not be private.

We examine two variations for passphrase construction. The first variant, called Random
Sequence (RS), randomly selects words without regard for syntax. For an expected level of
entropy, the required number of words in an RS-passphrase can be easily set; e.g., for 60
bits of entropy, six words must be chosen from a 1024-word dictionary. Memorability of RS-
phrases is expected to be benefited from the user’s familiarity of the words (i.e., frequency of
occurrence/use; cf. [33, 17, 13]). The second variant, called Connected Discourse (CD), con-
structs proper sentences using rudimentary natural language processing. Dictionary words
are tagged using a part-of-speech (POS) engine, and inserted into pre-created sentence tem-
plates (cf. Mad Libs [30]). Calculating entropy for this variant is not as straightforward as

1http://www.openwall.com/passwords/wordlists/password-2011.lst

1

http://www.openwall.com/passwords/wordlists/password-2011.lst

the RS variant; entropy depends on the selected sentence template and the breakdown of
words in each POS category from the dictionary. Memorability of CD-phrases is expected to
be benefited from high-order syntactic and semantic structures (cf. [25, 24]), in addition to
word familiarity. To reduce memory load, we expect users to memorize only one Myphrase
master passphrase, and use it across multiple websites. A site password is generated by salt-
ing the phrase with the site’s URL domain; the salted password is also hashed and converted
into a server-compatible password (e.g., consisting of alphanumeric characters only).

We test Myphrase by creating dictionaries for users in the Enron email corpus and authors
from Project Gutenberg. We find that our frequency ranked dictionaries have similar POS
break-down, as compared to text parsed from a large collection of prose. We also compare
the similarity between user’s dictionaries to determine how personal or unique they are. We
used these findings to identify sentence templates that maximize a passphrase’s complexity.

In summary, Myphrase offers the following benefits.

1. Passphrase from user-specific words: Myphrase introduces a middle-ground
between conflicting choices for text passwords: machine-generated (strong but memory-
unfriendly), and user-chosen (memory-friendly but weak). Myphrase phrases are ma-
chine generated but consist of a user’s personally-meaningful words; these passphrases
are expected to be both memory-friendly and strong.

2. Stronger passwords: To restrict offline attacks, Myphrase passwords offer a signif-
icant entropy gain; e.g., 60 bits in Myphrase’s default setting (cf. an estimated 10-20
bits of entropy in current passwords [6]). Passwords are also further strengthened using
the PBKDF2 key-stretching function by a factor of 215. The exact entropy of Myphrase
passwords can easily be determined for the RS variant and closely approximated for
the CD variant. Entropy of user-chosen passwords can at best be roughly estimated
(see e.g., [9, 44]).

3. Scalable and resilient to site-password leaks: Users need to memorize only
one Myphrase master passphrase and can use it for all web logins—irrespective of
varying levels of site security. If a site-password is leaked from the server-side, the
user can update only that password, while maintaining their master passphrase and
all other site-passwords.

4. Cross-platform/device compatibility: Auto-suggesting words after typing (or
tapping) a couple of characters may reduce the input time of the passphrase; such a
feature makes Myphrase suitable for mobile devices with a constrained/touch-based
keyboard. We have implemented proof-of-concept prototypes for both desktop and
mobile platforms.

Additionally, Myphrase passwords are resilient to phishing attacks. Attackers get a
password specific to their phishing domain, instead of the target domain; they also do not
receive the master passphrase. These benefits of Myphrase and limitations are explained
further in Section 5.

2

2 Myphrase Description

Below we describe Myphrase, including our assumptions and user steps.

Operational and threat model assumptions. The custom dictionary can be generated
from different types of user content, such as: (a) user-authored content, e.g., sent emails,
tweeted messages, blog posts, comments at social networking sites, academic papers, and
other such documents; and (b) user-liked content, e.g., favorite ebooks, song lyrics, and
emails from certain contacts. Alternatively, users may select a pre-generated dictionary
according to their interests or familiarity such as: an urban dictionary, medical or technology
dictionary. For the connected discourse (CD) variant of Myphrase, the dictionary must
contain the following POS categories: nouns, verbs, adjectives and adverbs. However, the
random sequence (RS) variant has no such constraints (e.g., the dictionary may be comprised
entirely of nouns, as in names of cities or film actors). The dictionary itself and sources of the
dictionary words are not security-sensitive, and can be made public. However, the dictionary
may be privacy-sensitive, if users do not want to reveal that certain words appear in their
dictionary.

We assume that words in the created/selected personal dictionary are familiar enough
to users that they can memorize a relatively long sequence (e.g., six) of these words as
their master passphrase; see Appendix B for a discussion on memorability. To make use of
auto-suggest, for minimal typing and easy recognition, Myphrase requires the dictionary be
available in all user devices (e.g., via manual copy, email attachment, browser sync mecha-
nisms or web hosting). The dictionary can be re-created from previously selected sources.
Similar to regular passwords, the Myphrase master passphrase is vulnerable to host malware
and shoulder-surfing attacks; such attacks are out-of-scope.

extract

words

move seem hence wish cave fool

Passphrase

 Custom

dictionary
random

sequence

they traced again and loudly radiant
connected

discourse

Figure 1: Myphrase basic mechanism with RS and CD variants

Myphrase design. When constructing the user’s dictionary, we rank words by occurrence
and keep only the most frequently used words. During this operation, we omit 215 common
conjunctions, articles, prepositions, and pronouns (e.g., ‘at’, ‘and’, ‘she’) from the frequency
ranking, and append them to the dictionary before passphrase generation. These words
are necessary parts-of-speech, and must be present regardless of their observed frequencies

3

(for the CD variant). Conversely, these parts-of-speech tend to be over-represented in a
user’s dictionary, as compared to the POS breakdown observed in a large collection of prose.
Removing these words from the frequency ranking should allow us to capture more personally
meaningful, and hopefully memorable, words from the input. This also allows us to more
accurately estimate the entropy for a given CD passphrase; see Section 5.1. We experimented
with different lists of common words ranging from 100 to 1000. We found that 215 was the
optimal size to ensure enough variation was available for the CD sentence templates, and
balance dictionary POS break-down and passphrase entropy.

In Myphrase, passphrases are generated by randomly selecting words from the user’s
vocabulary in the following ways. (i) Random sequence: n words are randomly selected
from the user’s dictionary. (ii) Connected discourse: words are classified based on their
POS tag (e.g., verb, noun); an n word-long sentence template is randomly selected from a
pool of pre-created templates; dictionary words are then randomly chosen for each position
in the template, based on their POS class.2 The value of n depends on the dictionary
size and expected level of entropy. Currently, we recommend that the passphrase offer
at least 60 bits of entropy to restrict offline dictionary attacks; e.g., n = 6 for a 1024-word
dictionary for the RS variant. The entropy for a CD passphrase cannot be directly calculated.
Through experimentation we found that the complexity of a CD-phrase is roughly 65% of an
equivalent length RS-phrase, so n = 8 words from a 4096-word dictionary is recommended;
see Section 5.1 for details.

Specific words in the generated passphrase can be indicated for replacement, andMyphrase
will offer another random word. However, entropy of the phrase may suffer, depending on
the dictionary size and the number of iterations used for a specific word. We limit the loss
of entropy by restricting the number of times a user may selectively regenerate words in the
phrase to n, e.g., 8 times for an 8 word passphrase; see Appendix A.

The master passphrase is used to generate unique site-specific passwords as follows:
pwd = Hash2Text(hi(passphrase||domain||updatecount)); h is a cryptographic hash/key-
stretching function, e.g., SHA-1 or PBKDF2; i is the number of hash iterations e.g., i =
32768; and updatecount is the number of updates made to a specific site’s password (by
default updatecount = 0, see also “Updating site passwords” below). A higher value of i will
make brute-force attacks on the passphrase more computationally intensive, but values that
are too high may slow down password generation. To increase the cost of offline cracking
attacks, we use PBKDF2 in our implementation, which is more complex than SHA-1 alone,
when implemented in a custom circuit. Recently proposed computational and memory-wise
expensive functions can also be used (e.g., [22, 28]). The Hash2Text function encodes the bi-
nary hash result into a server-compatible password, e.g., passwords with only alphanumeric
characters; cf. PwdHash [32].

2This variant resembles the popular word game Mad Libs [30], in which players in turn choose words of
particular types to fill-in the blanks of a given sentence template. However, there are no fixed words in our
templates, and all words are chosen randomly from a user’s vocabulary.

4

User steps: dictionary and master passphrase generation. The following steps are
required to generate the master passphrase; see Fig. 1. (a) Users first select word sources
for their custom word dictionary, e.g., emails, and ebooks. (b) The Myphrase tool extracts
words from these sources, ranks the words by frequency, and selects a pre-specified number
(e.g., 2048) of the most frequent words as the dictionary. After creation, users may choose to
manually update the words in their dictionary. (c) The tool creates a multi-word passphrase
from the dictionary created in the previous step (or a pre-selected dictionary) using the RS
or CD variant. (d) Users can continue generating new phrases until they are satisfied.
When the user is satisfied with a passphrase, she is expected to memorize the word sequence
verbatim, or to write it down in a secure place, (cf. [48, 16]). The exact spelling of words
need not be memorized due to the auto-suggest feature of Myphrase. However, users must
not rearrange the words in a phrase, as such modifications may reduce effective entropy.

User steps: site-specific password generation. (a) Users enter their passphrase; as-
suming the dictionary is available as a browser add-on or with the Myphrase application,
users need to type only the first couple of characters for each word and then select the cor-
rect word from the auto-suggestion list. (b) The site-specific password is created using the
formula shown above. The site password is sent to the authenticating site.

Updating site passwords. Users may want to update their Myphrase site passwords for
various reasons, including a periodic password update policy, and passwords compromised
at server-side (e.g., LinkedIn’s 6.5M password leak [3]). We allow password update without
requiring the master passphrase to be changed, by increasing the value of updatecount (see
the above site-password generation formula). This value is site-specific and starts from
zero; when a site’s password needs to be updated, updatecount is incremented by one, and
the updated value is used only for the target site (i.e., other site passwords will still be
generated with updatecount = 0, if not already changed). This solution is similar to the
index mechanism as proposed by Halderman et al. [14]. Site URLs with updated count
values must be stored and synced across devices; e.g., via Firefox Sync.

3 Implementation

We implemented Myphrase for PCs as a Firefox addon, and for Android devices as a custom
soft-keyboard. The desktop version provides an interface to build dictionaries, generate
passphrases, and insert site passwords. The mobile version currently makes use of dictionaries
and passphrases generated in the desktop version to insert passwords into websites. A web
interface is also created to facilitate password generation when other tools are unavailable
(e.g., a temporary device). We currently handle only English words; internationalization
would require POS taggers for additional languages. Details are discussed below.

5

Preferences. The Firefox addon offers a few user customizable settings. We provide some
pre-built dictionaries, but encourage users to create personalized ones. To help guide the
user experience, we provide the following default options: (a) type of master passphrase:
connected discourse; (b) dictionary: lexicon from the works of H. G. Wells; (c) length of
master passphrase: eight words; (d) size of custom dictionary: 4096 words; and (e) maximum
word length: 14 characters. The addon also has site-specific settings for each generated site
password. These allow Myphrase to conform to provider specific constraints, and store each
site’s password update count. The defaults are as follows: (a) length of site passwords: 12;
(b) special characters: disabled; and (c) password update count: 0.

Dictionary construction. The Firefox addon can build a personal dictionary from the
user’s outbound emails, and plain-text, HTML and XML files. Our text and HTML/XML
parsers can be used to build dictionaries from PDF and other document formats after saving
as text, ebooks (e.g., ePub, a compressed XML format), and web content saved as HTML.
For email parsing, we choose to collect messages from the Simple Mail Firefox addon [40],
which enables managing several email accounts, including POP/IMAP exposed webmails.
It aggregates emails across accounts in a single folder structure (i.e., emails sent from all
accounts are stored in one “Sent” folder). This allows us to gather words that may originate
from disparate vocabularies (e.g., work emails with professional terms vs. personal emails
with slang or informal words). Sent messages are collected by querying an SQLite database.
The message text is parsed to extract the user’s original text; i.e., we eliminate quoted text
from forwarded or replied emails.

Using a series of regular expressions, we decode HTML/XML entities and eliminate mark-
up, punctuation, digits, and other non-word strings. By default, we capture strings that are
14 characters or less. Note that short words do not compromise the security of Myphrase;
however, longer words may require more typing if the user’s dictionary is not available for
auto-suggest completion.

We retain the top 4096 words in the user’s dictionary by default. All characters are
reduced to lower-case before the word frequency analysis. The dictionary is saved as a text
file, which the user may further customize (manually). Users may also choose to use a pre-
built dictionary; we provide a few default dictionaries created using top free ebooks from
Project Gutenberg.

Master passphrase generation. After selecting a dictionary, users can generate a passphrase
in the Firefox addon. To select random words from the dictionary, we use Mozilla’s PRNG,
nsIRandomGenerator (assumed to be cryptographically secure; uses mouse movement events
within the Firefox window). For the RS variant, a passphrase is generated simply by select-
ing n random words from the dictionary. For the CD variant, we first randomly choose a
pre-built sentence template for the given passphrase length (n = 4 to 12 words). A number
of templates were created by parsing top free ebooks from Project Gutenberg, and selecting
a few which appear to yield high entropy passphrases (discussed more in Section 5.1). We

6

Figure 2: Myphrase Mobile Keyboard

then use a Javascript POS tagger [42] to classify the dictionary words. A passphrase is
generated by filling the template with randomly selected words from the classes that appear
in the template. For both variants, users can regenerate new phrases until they are satisfied;
a limited number of selective regeneration of words in a selected phrase is also allowed. The
master passphrase is not stored within our software, and cannot be regenerated; users are
expected to memorize it.

Site password generation. We anticipate that users will build personal dictionaries and
generate passphrases only occasionally. The day-to-day use of Myphrase will largely consist
of deriving site passwords. When faced with a login page, the user right-clicks on the
password field and selects the Myphrase insert option from the browser context menu. On
a mobile device, the user can pull down the notification bar, to switch from their default
keyboard to the Myphrase keyboard; see Fig. 2.

The user is then prompted to enter her master passphrase. The prompt allows the user
to view the passphrase text, or have it shadowed in the case she is in a public place. An
auto-complete suggestion list is populated with words from the user’s dictionary to speed up
this task. This feature is especially useful on mobile devices where typing tends to be slower.
Passphrases are constructed in such a way that the user will not require any modifiers (e.g.,
shift) or changing keyboard views (e.g., numbers, special characters) which should greatly
increase entry time for mobile devices. At this stage, the user can also set site-specific
constraints (e.g., password length) and increment the update counter. The update count
and constraints for each domain are saved as site specific preference within Firefox and
Android, so will only need to be set by the user once.

We then iterate the PBKDF2 HMAC SHA-1 function 32768 times, using the passphrase
as the HMAC secret, and the site’s domain and update count as the salt. The choice of our
iteration count is explained in Appendix A. The result is then encoded into a compatible
password and inserted in the password field. Note that, both the addon and Android soft-

7

keyboard make only the site-password available to the authenticating domain, which could
be a legitimate or phishing site. The master passphrase remains inaccessible to all websites.

Myphrase mobile. We implemented Myphrase for Android devices as a custom soft-
keyboard. This would enable Myphrase authentication for any password field on the device
including websites, apps and even device unlock; the current in-progress implementation
supports only website login. Users can quickly switch to the Myphrase keyboard from the
Android notification bar to enter a password. The user’s text is displayed while they are
typing, but not entered into the password field until they press Enter. As with the desktop
software, auto-complete dictionary suggestions are displayed to speed up passphrase entry.

4 Related Work

Multi-word passwords and several-related variants including first-letter mnemonics have been
proposed decades ago (see e.g., [2, 29, 23]). Similar schemes have been recently revived to
increase password entropy,3 and to make password input more user-friendly in devices with
touch-screen keypads [10, 19]. The use of readily available auto-correct and auto-suggest
features can significantly reduce input issues in these devices (e.g., compared to inputting a
password with mixed case letters and special characters). Generally, there are two types of
multi-word passwords: words and their sequence chosen by a user (e.g., [29, 19]), and words
selected randomly from a fixed, system-chosen dictionary (e.g., Cheswick [10]). Cheswick’s
proposal uses a 1020-word dictionary of iPhone-friendly English words. Diceware [31] is an-
other random passphrase generator using one or more dice as the random number generator.
Each word in the phrase is chosen from a five digit number generated by five rolls of a die.
Any list of 7776 (65) unique words can be used; word lists are currently available in several
languages.

Smith proposed a word association authentication scheme [38] that requires users to
register a list of (cue, response) pairs consisting of personally-meaningful words; obvious pairs
such as (black, white) are disallowed. During login, users must provide correct responses
to cues chosen randomly by the system. As cues and responses are user-selected and likely
to vary significantly from user to user, Smith argues that this scheme would offer adequate
benefits in terms of user-acceptance, memorability and security.

The use of natural language processing techniques to create multi-word passwords has
also been explored. Atallah et al. [1] generate a meaningful/humorous phrase and associated
mnemonic for authentication. Another technique [21] creates sentences for a given random
password. News headlines are used as templates by substituting similar words; several
variants of the same sentence are generated using a POS tagger and WordNet [27]. To
generate multiple passwords from a master mnemonic sentence, Topkara et al. [41] propose

3For example, see the popular XKCD cartoon at http://xkcd.com/936/.

8

http://xkcd.com/936/

to split a password into two parts: a memorized mnemonic sentence and another part written
down on paper.

User-chosen phrases or word sequences are almost as memorable as regular passwords [46];
it has long been known that memorability of a sequence of items such as words or phonemes is
dependent on familiarity of those items [26, 17, 13]. However, such phrases do not offer much
improvement in terms of entropy as users generally choose common phrases; see e.g., Kuo
et al. [23]. Another recent analysis of over 100, 000 possible user-selected passphrases from
the Amazon PayPhrase system also reported similar results [8]. Generic attack techniques
against multi-word passwords have also been proposed; see e.g., Weir [43], Schmitz [35]. In
contrast, random words from a system-chosen dictionary offer better entropy, but may not
be ideal in terms of memorability. We allow users to reuse the same passphrase safely for all
web logins, reducing their memory load and combating the multiple password interference
problem.

5 Comparison and Evaluation

In this section, we discuss entropy of passphrases for both RS- and CD-Myphrase variants,
memorability of the passphrases and limitations of the scheme. We also use a slightly mod-
ified version of the recently-proposed UDS (usability, deployability, security) framework [7]
for an analytical evaluation of Myphrase.

5.1 Myphrase Entropy Estimation

Equal-length CD-phrases will provide a lower entropy count than RS-phrases, as each tem-
plate element is being chosen from a subset of the dictionary words. Experimental entropy
estimation of CD-phrases is discussed below. We also allow selective regeneration of words
in a phrase. By keeping the regeneration count small, we can limit the loss of entropy.
We provide an analysis of selective regeneration and estimated efforts required to launch
brute-force guessing attacks against Myphrase passwords in Appendix A.

By default, we expect users to choose six words from a 1024-word dictionary for the RS
variant (providing 60 bits of entropy), and eight words from a 4096-word dictionary for the
CD variant (providing 60 bits of entropy on average). For easy memorization, users may want
to reduce the word count, especially for the RS variant (e.g., three words). This may still
provide higher entropy than current passwords (cf. 10-20 bits of entropy as found in a large-
scale password study [6]). However, such a three-word master password can be practically
retrieved from a leaked site password; this may mandate changing all site passwords. If the
adversary has the user dictionary, he can attempt all 3 word combinations until he finds
a match with the leaked site password. On average, this will require 229 attempts. As
high-impact password leaks happen not so rarely (e.g., [11, 3, 37]), we suggest users to invest

9

Composition %
Gutenberg authors Enron authors
Avg Stdev Avg Stdev

Nouns 50.29 1.94 63.31 2.84
Verbs 29.27 1.77 22.68 1.70
Adjectives 14.19 0.98 9.16 0.85
Adverbs 6.06 0.60 4.44 0.45
Others 0.19 0.12 0.41 0.08

Table 1: Frequency adjusted POS classification for 4096-word popular Project Gutenberg author
dictionaries (N=10) and Enron dictionaries (N=15)

in a longer master passphrase. Creating a larger dictionary will also increase the effective
complexity of the passphrase.

Experimental entropy estimation of the CD-Myphrase variant. We obtain real
world entropy estimates of CD-phrases by examining the POS breakdown for two datasets:
Enron emails (from www.cs.cmu.edu/∼enron/) and Project Gutenberg ebooks. We also test
similarity between user dictionaries.

To generate sentence templates, we parse the 25 most popular ebooks from Project
Gutenberg between the period of Aug. 29–Sept. 28, 2012. We identify 60, 921 unique strings.
The POS class breakdown is as follows: nouns (71%), verbs (18%), adjectives (7%), adverbs
(3%), and others (1%). We then select sentence templates from the parsed text, capitalizing
on sentences that contained more of the highly populated POS classes. We originally chose
ten templates for each possible passphrase length (4 to 12 words) that we believed would
yield high entropy phrases; after evaluation, we retain the 7 highest performing templates.

When constructing a user’s dictionary we rank words by frequency and select only the
most common words in the user’s vocabulary. This could skew the user’s POS breakdown
in such a way that our selected templates would not produce ideal passphrases (e.g., if
the frequency ranked dictionaries contain more verbs than nouns). We chose to analyze the
Myphrase dictionaries for selected ebook authors and Enron employee emails. For ebooks, we
choose 7–10 well-known works from ten authors. The Enron email corpus contains 150 unique
user accounts. We isolate each user’s personal vocabulary by parsing only sent emails after
eliminating quoted text, signature blocks, etc. There were only 15 users with dictionaries
of at least 4096 words (we also discarded 2 dictionaries containing several anomalies, e.g.,
mid-word line-breaks). We found both the Enron employees and ebook authors had similar
POS breakdowns in their frequency adjusted dictionaries, validating our template selections;
see Table 1. We also noticed earlier that some parts-of-speech (e.g., conjunctions, pronouns)
were over-represented; consequently, we remove the 215 common words from those classes
before frequency ranking the list.

We then used the created Myphrase dictionaries to calculate expected entropy from each
template. Entropy for RS passphrases can be directly calculated, e.g., six words from a

10

www.cs.cmu.edu/~enron/

Entropy count in bits
Gutenberg authors Enron authors

Length Min Max Avg Stdev Min Max Avg Stdev
6 words 41.5 57.5 47.8 5.4 41.2 57.0 47.0 5.4
7 words 47.7 62.6 54.9 4.7 46.5 61.5 53.7 4.4
8 words 58.1 71.0 63.9 3.9 57.2 71.2 63.1 4.4

Table 2: Observed entropy for phrases from 4096-word Gutenberg and Enron dictionaries. Large
deviation is a result of different templates. Each template has little variability as seen in Table 3.

1024-word dictionary will result in: log2(1024
6) = 60 bits. The entropy of a CD passphrase

depends on the template and POS breakdown of the user’s dictionary. For example, assume
the chosen template is: “noun verb adverb determiner noun verb preposition noun” with
POS class sizes (noun, 1975), (verb, 1209), (adverb, 86), (determiner, 21), (preposition, 86).
A randomly generated passphrase from this template will provide an entropy of log2(1975×
1209 × 86 × 21 × 1975 × 1209 × 86 × 1975) = 70.57. We performed the calculations on 6,
7, and 8 word phrases–see Table 2; on average, these CD phrases retain about 65% of the
entropy compared to RS-phrases of respective lengths. The large deviations are a result of
the different templates within a given phrase length. The templates provided similar results
regardless of the dictionary used. This would suggest that we can further narrow the entropy
estimate for a given phrase length by adjusting the templates rather than the dictionary. For
example, template five for eight word phrases performed the worst, and could be eliminated.
The results of 8-word templates are shown in Table 3.

Template Avg Stdev % of RS
1 71 0.17 72
2 66 0.32 68
3 66 0.12 68
4 61 0.83 63
5 58 0.44 60
6 63 0.64 66
7 60 0.94 62

Table 3: Observed entropy for 8-word templates; combined results from both Enron and Gutenberg
authors (N=25).

Dictionary uniqueness. We also compared the similarity between the dictionaries to mea-
sure how unique they were to each user. For every pair of user dictionaries in both Gutenberg
and Enron datasets, we calculated the Jaccard index (i.e., the size of the intersection between
two dictionaries divided by the size of their union); see Table 4. The results show that each
user dictionary is relatively personal (the average similarity is between 31-43%).

11

Jaccard index %
Min Max Avg Stdev

Gutenberg 34.84 49.59 42.58 3.62
Enron 23.38 41.82 30.52 3.48

Table 4: Similarity of user dictionaries (measured as Jaccard index of pairs of users from both
Gutenberg and Enron datasets)

5.2 UDS Evaluation of Myphrase

We now provide an analytical evaluation of Myphrase using the recently-proposed UDS
(usability, deployability, security) framework [7]. We modified the ratings slightly, from the
original three point scale, to include a fourth partial-benefit rating. The partial-benefit rating
exists between the original no-benefit and quasi-benefit ratings, and indicates that a given
benefit is weakly, or only partially, met. The quasi-benefit rating still indicates that a given
benefit is almost fully met. For context, we also include regular user-chosen passwords in the
UDS evaluation. Due to space limitation, we refer readers to the UDS paper [7] for details
of the framework and feature definitions. We have not conducted any formal user-testing
yet; to help better design such tests, we would like to get expert feedback and comments on
our publicly available prototype. Thus we would like to emphasize that our usability ratings
for Myphrase within the UDS framework are only best guesses, given the lack of empirical
data on regular users at this point. See Table 5 for the summary of our evaluation. We also
provide a brief discussion of our ratings.

Myphrase UDS Ratings Explanation.
We use Quasi to refer to “almost full benefit” and Partially to indicate “partial ben-

efit only.” We rate Myphrase as Partially-Memorywise-Effortless/U1: users must remem-
ber at least one secret; Scalable-for-Users/U2: site-specific passwords are generated from
the master passphrase; Quasi-Nothing-to-Carry/U3: having the dictionary aids usability
(less typing and less error in typing), but passwords can be generated from memorized
passphrases; we do not grant Physically-Effortless/U4 since, if the dictionary is unavail-
able, the user is likely to type more characters (for most passphrases) than a regular pass-
word; Myphrase is Partially-Efficient-to-Use/U6: typing the same passphrase should be-
come easier with repeated use, however, unlike a traditional password manager, the master
passphrase must be entered for each authentication; Quasi-Infrequent-Errors/U7: use of the
same passphrase and auto-fill words from a drop-down menu may result in less typing errors;
Partially-Easy-Recovery-from-Loss/U8: losing the master secret requires re-setting all site
passwords, although the user can browse their dictionary in an attempt to jog their mem-
ory; Partially-Browser-Compatible/D4: the web interface can be used when software tools
are unavailable; Non-Proprietary/D6: no known patents as we are aware of. Myphrase is
not Resilient-to-Physical-Observation/S1: all password input techniques are vulnerable to

12

Usability Deployability Security

U
1
:
M
em

o
ry
w
is
e-
E
ff
o
rt
le
ss

U
2
:
S
ca
la
b
le
-f
o
r-
U
se
rs

U
3
:
N
o
th
in
g
-t
o
-C

a
rr
y

U
4
:
P
h
y
si
ca
ll
y
-E

ff
o
rt
le
ss

U
5
:
E
a
sy
-t
o
-L
ea
rn

U
6
:
E
ffi
ci
en
t-
to
-U

se

U
7
:
In
fr
eq
u
en
t-
E
rr
o
rs

U
8
:
E
a
sy
-R

ec
ov
er
y
-f
ro
m
-L
o
ss

D
1
:
A
cc
es
si
b
le

D
2
:
N
eg
li
g
ib
le
-C

o
st
-p
er
-U

se
r

D
3
:
S
er
v
er
-C

o
m
p
a
ti
b
le

D
4
:
B
ro
w
se
r-
C
o
m
p
a
ti
b
le

D
5
:
M
a
tu
re

D
6
:
N
o
n
-P

ro
p
ri
et
a
ry

S
1
:
R
es
il
ie
n
t-
to
-P

h
y
si
ca
l-
O
b
se
rv
a
ti
o
n

S
2
:
R
es
il
ie
n
t-
to
-T
a
rg
et
ed
-I
m
p
er
so
n
a
ti
o
n

S
3
:
R
es
il
ie
n
t-
to
-T

h
ro
tt
le
d
-G

u
es
si
n
g

S
4
:
R
es
il
ie
n
t-
to
-U

n
th
ro
tt
le
d
-G

u
es
si
n
g

S
5
:
R
es
il
ie
n
t-
to
-I
n
te
rn
a
l-
O
b
se
rv
a
ti
o
n

S
6
:
R
es
il
ie
n
t-
to
-L
ea
k
s-
fr
o
m
-O

th
er
-V
er
ifi
er
s

S
7
:
R
es
il
ie
n
t-
to
-P

h
is
h
in
g

S
8
:
R
es
il
ie
n
t-
to
-T

h
ef
t

S
9
:
N
o
-T
ru
st
ed
-T

h
ir
d
-P
a
rt
y

S
1
0
:
R
eq
u
ir
in
g
-E

x
p
li
ci
t-
C
o
n
se
n
t

S
1
1
:
U
n
li
n
ka
b
le

Text passwords G# G#

Myphrase # G# # G# # # G#

Fastwords [19] # G# # G#

Cheswick [10] G# # G# #

Table 5: UDS evaluation of Myphrase. Key: (offers the benefit); G# (almost offers the benefit);
(offers partial benefit); blank (benefit not offered).

physical observation, and inspecting the user’s auto-complete selections may allow an ad-
versary to learn the master secret more easily; is Resilient-to-Targeted-Impersonation/S2:
words in the passphrase are chosen randomly—so having access to a user’s preference to
certain words or even the user dictionary will not help in targeted guessing; Resilient-to-
Throttled-Guessing/S3 and Quasi-Resilient-to-Unthrottled-Guessing/S4: assuming at least
60 bits of entropy, the generated site-specific password is resilient against online guessing
and to some extent, against offline attacks; Resilient-to-Leaks-from-Other-Verifiers/S6 and
Resilient-to-Phishing/S7: each password is site-specific (i.e., salted by the site’s domain) and
retrieving the master passphrase from a compromised password requires non-trivial compu-
tation power (on average, 259 password trials in the default setting; additionally each trial
needs 215 iterations of a hash function). This feature also restricts malicious sites from re-
playing a user’s password to get access to another web account of the user (perhaps to a
more valuable account).

Differences with Fastwords and Cheswick’s scheme. We include Fastwords [19] as
an example of multi-word passwords where words are user-chosen. In contrast, Cheswick’s
scheme [10] generates a passphrase by randomly selecting words from a fixed dictionary. We
rate both not offering U1 and U2: they require users to remember several phrases (similar
to regular passwords). Fastwords are independent of any particular dictionary (except the

13

widely-available built-in English dictionary in current mobile platforms); we rate it to offer
U3. Cheswick’s scheme [10] is rated Quasi -U3: similar to Myphrase, the fixed dictionary
helps easy recall and typing. We rate both offering Quasi -D3: they may require server-side
changes as many websites currently disallow the space character in a password. Fastwords
do not offer D6: as mentioned at fastword.me, the technology is patent-pending. Fastwords’
security features are rated similar to text passwords; we believe it is unlikely to achieve
significant improvement in this area, as long as user-choice is involved (cf. [8]).

5.3 Memorability and Limitations

We believe the memorability of a Myphrase passphrase is enhanced by the following facto-
ries. (See also Appendix B for a discussion on few studies from psychology.) (a) Frequent
repetition: repeated use reduces the user’s working memory load from potentially dozens of
site passwords to one. (b) Semantic and syntactic structures: words are apparently more
memorable than random character strings, and sentences more memorable than random
sequences of words. (c) Personally meaningful words: familiarity with the passphrase com-
ponents should make recall easier. (d) Recognition of words: the auto-complete suggestions
allow the user to recognize their passphrase words from a list.

Major limitations include: (a) Myphrase’s approach of using a master secret is similar to
several existing techniques—expecting that users will remember one strong secret and derive
all other site passwords from it. However, users most likely would not change all their existing
passwords to Myphrase at the outset (cf. [4]). Therefore, the Myphrase passphrase would
be “one more secret” to remember and will benefit users only in the long-run. However,
users can gradually migrate their accounts under a Myphrase password, and keep using
regular text passwords along with Myphrase. (b) A forgotten or compromised (e.g., via PC
malware) Myphrase master passphrase will incur selecting a new passphrase and resetting
all site passwords—a major inconvenience for users. Users may write down the passphrase
and store it in a place not accessible to others (cf. [48, 16]). Users may browse the dictionary
to attempt to recognize the forgotten words in the passphrase. (c) The dictionary may be
lost or unavailable to users (e.g., when using a new device). In such cases, typing errors
may increase as users must recall the exact words in the phrase without any cue. Posting
the dictionary to a public or semi-public website (e.g., Facebook) may enable access-from-
anywhere. The dictionary may also be re-created from the original sources used. (d) The
Myphrase tool is required to convert the master passphrase to a site password. When the tool
is unavailable (e.g., in a friend’s device), a website for this conversion is available at: http://
users.encs.concordia.ca/∼a skil/myphrase/myp-web/. The web tool uses locally-executed
JavaScript, and does not interface with any 3rd party web services. The user may even
download the script and execute it locally (offline or even in a virtual machine sandbox).
The user enters their passphrase and the URL of the site they wish to log into. The site
password is then generated, and the user can copy–paste the site password into the login field

14

fastword.me
http://users.encs.concordia.ca/~a_skil/myphrase/myp-web/
http://users.encs.concordia.ca/~a_skil/myphrase/myp-web/

of the web service. (e) We anticipate the use of Myphrase may increase the login time (e.g.,
we observed the time to be close to 20 seconds for a 8-word phrase from our own experience
on a PC–a formal user study will result in a more accurate estimation). We expect that the
repeated use of the same passphrase may reduce the login time in the long-run.

6 Concluding Remarks

Myphrase takes advantage of the already existing tendency towards choosing familiar words
as passwords. Users are generally frowned upon by security advocates for making such
choices, as these words can easily be subjected to dictionary attacks. In contrast, Myphrase
allows users to generate stronger passwords from a dictionary of words they are familiar with
or use in their daily communications. To restrict online-only attacks, Florêncio et al. [12]
argue that a low-entropy (e.g., 20 bits) password should be enough. However, we believe that
in addition to obvious use-cases (e.g., high-value accounts and data encryption), stronger site-
specific passwords as generated in Myphrase, are still essential to address problems related
to password leakage from websites. Currently, users must change a leaked password for the
original site from where it leaked and any other sites that the password is reused; users
may not properly keep track of such reuse and may even remain unaware of the compromise
unless they follow security news. Note that, storing hashed passwords at the server-side
may not always prevent password exposure (e.g., [11, 3]). We believe that risks from leaked
passwords are significant due to password reuse, and changing several site passwords as a
consequence of one site being compromised is a major inconvenience for users (assuming
they would actually update those passwords). We argue that site password leakage should
be seriously considered in designing new password schemes, as such incidents are becoming
more commonplace.

As discussed, Myphrase has several potential limitations, e.g., longer login times, and
memorizing a sequence of several words as the master passphrase. However, the use of
personal words may help user-acceptance4 — a major obstacle for any new password scheme.
The auto-suggest feature reduces typing, which may also make Myphrase more suitable for
mobile devices than regular passwords. However, we would like to emphasize that no formal
user-testing has been conducted yet. We introduce Myphrase here to promote discussion
on authentication schemes that can sustain site-password leakage and are suitable for both
desktop and mobile platforms. Our prototype implementation is available at:
http://users.encs.concordia.ca/∼a skil/myphrase/.

4See e.g., the user study [5] of object-based password: users browse their personal images/music files as
part of the login mechanism; some users reportedly enjoyed interacting with such objects.

15

http://users.encs.concordia.ca/~a_skil/myphrase/

References

[1] Mikhail J. Atallah, Craig J. McDonough, Victor Raskin, and Sergei Nirenburg. Natural language
processing for information assurance and security: an overview and implementations. In NSPW’00,
Ballycotton, County Cork, Ireland, 2000.

[2] Ben F. Barton and Marthalee S. Barton. User-friendly password methods for computer-mediated in-
formation systems. Computers and Security, 3(3):186–195, August 1984.

[3] BBC News. LinkedIn passwords leaked by hackers. News article (June 7, 2012). http://www.bbc.co.
uk/news/technology-18338956.

[4] Kemal Bicakci, Nart Bedin Atalay, Mustafa Yuceel, and Paul C. van Oorschot. Exploration and field
study of a browser-based password manager using icon-based passwords. In Workshop on Real-Life
Cryptographic Protocols and Standardization, March 2011.

[5] R. Biddle, M. Mannan, P.C. van Oorschot, and T. Whalen. User study, analysis, and usable security
of passwords based on digital objects. IEEE TIFS, 6(3):970–979, September 2011.

[6] Joseph Bonneau. The science of guessing: analyzing an anonymized corpus of 70 million passwords. In
IEEE Symp. on Security and Privacy, May 2012.

[7] Joseph Bonneau, Cormac Herley, Paul C. van Oorschot, and Frank Stajano. The quest to replace
passwords: A framework for comparative evaluation of web authentication schemes. In IEEE Symp. on
Security and Privacy, May 2012.

[8] Joseph Bonneau and Ekaterina Shutova. Linguistic properties of multi-word passphrases. In Workshop
on Usable Security (USEC’12), Bonaire, Netherlands, March 2012.

[9] William Burr, Donna Dodson, and W. Polk. Electronic authentication guidelines (NIST SP 800-63),
April 2006.

[10] William Cheswick. Rethinking passwords. Invited talk at USENIX LISA 2010. http://www.usenix.org/
event/lisa10/tech/slides/cheswick.pdf. See summary in ;login: The USENIX Magazine, 36(2):68-69,
Apr. 2011.

[11] Radu Dragusin. Data breach at IEEE.org: 100k plaintext passwords. Online article (Sept. 18, 2012).
http://ieeelog.com/.

[12] Dinei Florêncio, Cormac Herley, and Baris Coskun. Do strong web passwords accomplish anything? In
USENIX Workshop on Hot Topics in Security (HotSec’07), Boston, MA, USA, August 2007.

[13] Vernon H. Gregg. Recall and Recognition, chapter Word Frequency, Recognition, and Recall. John
Wiley & Sons, Inc., 1976.

[14] J. Alex Halderman, Brent Waters, and Edward W. Felten. A convenient method for securely managing
passwords. In Conference on World Wide Web (WWW’05), May 2005.

[15] Cormac Herley. So long, and no thanks for the externalities: The rational rejection of security advice
by users. In NSPW’09, Oxford, UK, September 2009.

[16] Cormac Herley and Paul C. van Oorschot. A research agenda acknowledging the persistence of pass-
words. IEEE Security & Privacy, 10(1):28–36, 2012.

[17] Charles Hulme, Sarah Maughan, and Gordon D.A Brown. Memory for familiar and unfamiliar words:
Evidence for a long-term memory contribution to short-term memory span. Journal of Memory and
Language, 30(6):685–701, 1991.

16

http://www.bbc.co.uk/news/technology-18338956
http://www.bbc.co.uk/news/technology-18338956
http://www.usenix.org/event/lisa10/tech/slides/cheswick.pdf
http://www.usenix.org/event/lisa10/tech/slides/cheswick.pdf
http://ieeelog.com/

[18] Imperva.com. Consumer password worst practices. Imperva white paper on Rockyou.com’s 32 mil-
lion leaked passwords (Jan. 2010). http://www.imperva.com/docs/WP Consumer Password Worst
Practices.pdf.

[19] Markus Jakobsson and Ruj Akavipat. Rethinking passwords to adapt to constrained keyboards. In
Mobile Security Technologies (MoST) Workshop, May 2012.

[20] Markus Jakobsson, Elaine Shi, Philippe Golle, and Richard Chow. Implicit authentication for mobile
devices. In USENIX HotSec’09, Montreal, Canada, August 2009.

[21] S. Jeyaraman and U. Topkara. Have the cake and eat it too - infusing usability into text-password
based authentication systems. In ACSAC’05, 2005.

[22] Hugo Krawczyk. Cryptographic extraction and key derivation: the HKDF scheme. In Crypto’10, Santa
Barbara, CA, USA, 2010. Also published as RFC 5869.

[23] Cynthia Kuo, Sasha Romanosky, and Lorrie Faith Cranor. Human selection of mnemonic phrase-based
passwords. In SOUPS’06, Pittsburgh, PA, USA, July 2006.

[24] Linda Lombardi and Mary C Potter. The regeneration of syntax in short term memory. Journal of
Memory and Language, 31(6):713 – 733, 1992.

[25] G. Miller. Human memory and the storage of information. Information Theory, IRE Transactions on,
2(3):129 –137, September 1956.

[26] George A. Miller. The magical number seven, plus or minus two: Some limits on our capacity for
processing information. Psychological Review, 63(2):81–97, March 1956.

[27] George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and Katherine Miller. WordNet:
An on-line lexical database. International Journal of Lexicography, 3:235–244, 1990.

[28] Colin Percival. Stronger key derivation via sequential memory-hard functions. In BSD Conference
(BSDCan’09), Ottawa, Canada, 2009.

[29] Sigmund N. Porter. A password extension for improved human factors. Computers and Security,
1(1):54–56, January 1982.

[30] Roger Price and Leonard Stern. The Original Mad Libs 1. Price Stern Sloan, February 1974.

[31] Arnold Reinhold. Diceware passphrase. http://world.std.com/∼reinhold/diceware.html.

[32] Blake Ross, Collin Jackson, Nicholas Miyake, Dan Boneh, and John C. Mitchell. Stronger password
authentication using browser extensions. In USENIX Security Symposium, 2005.

[33] Andrew J. Saykin, Sterling C. Johnson, Laura A. Flashman, Thomas W. McAllister, Molly Sparling,
Terrance M. Darcey, Chad H. Moritz, Stephen J. Guerin, John Weaver, and Alexander Mamourian.
Functional differentiation of medial temporal and frontal regions involved in processing novel and fa-
miliar words: an fMRI study. Brain, 122(10):1963–1971, 1999.

[34] Stuart Schechter, Cormac Herley, and Michael Mitzenmacher. Popularity is everything: A new approach
to protecting passwords from statistical-guessing attacks. In HotSec’10.

[35] Norbert Schmitz. Improved guessing of composite passwords. Master’s thesis, Ruhr University Bochum,
March 2012.

[36] Richard Shay, Patrick Gage Kelley, Saranga Komanduri, Michelle L. Mazurek, Blase Ur, Timothy
Vidas, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor. Correct horse battery staple: exploring
the usability of system-assigned passphrases. In SOUPS’12, Washington, DC, USA, 2012.

17

http://www.imperva.com/docs/WP_Consumer_Password_Worst_Practices.pdf
http://world.std.com/~reinhold/diceware.html

[37] SkullSecurity. Leaked passwords (database). http://www.skullsecurity.org/wiki/index.php/Passwords.

[38] Sidney L. Smith. Authenticating users by word association. Computers and Security, 6(6):464–470,
1987.

[39] Techcrunch. 370 passwords you shouldn’t (and can’t) use on Twitter. Dec. 27, 2009. http://techcrunch.
com/2009/12/27/twitter-banned-passwords/.

[40] telega and TechnalXS. Simple Mail: Mail client (POP3/IMAP/SMTP) for Firefox. https://addons.
mozilla.org/en-us/firefox/addon/simple-mail/.

[41] Umut Topkara, Mikhail J. Atallah, and Mercan Topkara. Passwords decay, words endure: secure and
re-usable multiple password mnemonics. In ACM Symposium on Applied computing (SAC’07), Seoul,
Korea, 2007.

[42] Percy Wegmann. jspos - Javascript part of speech tagger. Javascript port of Mark Watson’s FastTag.
https://code.google.com/p/jspos/.

[43] Charles Matthew Weir. Using probabilistic techniques to aid in password cracking attacks. PhD thesis,
Florida State University, Tallahassee, FL, USA, March 2010.

[44] Matt Weir, Sudhir Aggarwal, Michael Collins, and Henry Stern. Testing metrics for password creation
policies by attacking large sets of revealed passwords. In ACM CCS’10.

[45] Nicholas Wright, Andrew S. Patrick, and Robert Biddle. Do you see your password? applying recogni-
tion to textual passwords. In SOUPS’12, Washington, DC, USA, 2012.

[46] Jeff Yan, Alan Blackwell, Ross Anderson, and Alasdair Grant. Password memorability and security:
Empirical results. IEEE Security & Privacy, 2(5), 2004.

[47] Bennet Yee, David Sehr, Greg Dardyk, Brad Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka, Neha
Narula, and Nicholas Fullagar. Native client: A sandbox for portable, untrusted x86 native code. In
IEEE Symposium on Security and Privacy, May 2009.

[48] ZDNet. Microsoft: Write down your passwords. News article (May 23, 2005). http://www.zdnet.com/
microsoft-write-down-your-passwords-1139193117/.

A Selective Regeneration and Brute-force Attacks

Selective regeneration of words. The user is allowed to selectively regenerate individual
words in the passphrase. Each time the user discards a word they reduce the available choices
and weaken the passphrase. We restrict the number of re-selections to the number of words
in the phrase (e.g., the user can regenerate 6 words when constructing an 6 word passphrase)
in order to ensure the user does not introduce too much predictability. For example, if a
RS passphrase consists of six words from a 1024-word dictionary then the entropy will be:
log2(1024

6) = 60. If the user selectively regenerates six words, the entropy is reduced to:
log2(1018

6) = 59.95. Since only a few iterations are allowed, the entropy will not suffer
significantly.

The selective regeneration feature will probably be more useful for the CD variant. Some
selected words will not create coherent sentences. A user is more likely to reject these words,

18

http://www.skullsecurity.org/wiki/index.php/Passwords
http://techcrunch.com/2009/12/27/twitter-banned-passwords/
http://techcrunch.com/2009/12/27/twitter-banned-passwords/
https://addons.mozilla.org/en-us/firefox/addon/simple-mail/
https://addons.mozilla.org/en-us/firefox/addon/simple-mail/
https://code.google.com/p/jspos/
http://www.zdnet.com/microsoft-write-down-your-passwords-1139193117/
http://www.zdnet.com/microsoft-write-down-your-passwords-1139193117/

which decreases the available combinations for that template. For example, assume the cho-
sen template is: “noun verb adverb determiner noun verb preposition noun” with POS class
sizes (noun, 1975), (verb, 1209), (adverb, 86), (determiner, 21), (preposition, 86). A ran-
domly generated passphrase from this template, e.g., “discomfort rang down the sunlight wait
of freedom” will provide an entropy of log2(1975×1209×86×21×1975×1209×86×1975) =
70.57 bits. Assume the user regenerates the following words: (discomfort→clamor), (the→a),
(sunlight→heap→yelp→spirit) and (wait→answering→alter→contrived). Now the sentence
becomes: “clamor rang down a spirit contrived of freedom” and the modified entropy is:
log2(1971 × 1206 × 86 × 20 × 1971 × 1206 × 86 × 1971) = 70.48 bits. As appears from
this example, after a few iterations, the sentence may converge to something acceptable to
the user, without losing much entropy. However, if an attacker uses sophisticated natural
language processing, they may be able to determine which words are more likely to be re-
jected, thereby narrowing their search space. A larger dictionary can help offset this loss of
complexity.

Iteration count and brute-forcing Myphrase passwords. We experimented with dif-
ferent hash iteration counts, and found that 32768 caused an acceptable delay for our PC
(Firefox addon) and smartphone (Android app) implementations. Running on a 2.5GHz Intel
i7-2860 CPU, it required 2.84± 0.02 seconds to complete for the addon. On a 1.2GHz ARM
Cortex-A8 HTC smartphone it required 3.23± 0.06 seconds. With assembler and hardware
crypto accelerated instructions (e.g., OpenSSL) the time to iterate PBKDF2 reduced to 0.3
seconds on average. Note that, the extension adds almost 10 times more inefficiency in the
PBKDF2 calculation, which benefits the attacker. Native code execution within the browser,
e.g., Google Native Client [47], can be used to reduce this inefficiency. An attacker can also
parallelize the computations to brute-force the dictionary. With a 60-bit passphrase, the
attacker will need to perform 259 calculations on average. On a 4-core PC this will require:

259×0.3

60×60×24×365.25×4
= 1370020420 years to search this space. If the attacker has access to a grid

of 1 million such 4-core CPUs (e.g., a million-node botnet), it will still require 1370 years;
without the hash iteration, the required time is only about 15 days (on average). For a
40-bit passphrase, the required times on the million-node grid are about 12 hours (with hash
iteration) and 1.25 seconds (without hash iteration) on average. An attacker may be able to
reduce the time using custom hardware (e.g., FPGAs). On the other hand, the attacker’s
workload to brute-force a target password will increase significantly if the server-side stores
only a one-way mapping of the password obtained through the use of iterated hash/PBKDF2
functions with unique salt values per account.

B Memorability of Myphrase passphrases

Our hypothesis is that Myphrase passphrases may retain security advantages of random
phrases without being too difficult to remember. We would like to test this hypothesis

19

through a user study in the future. Below we discuss some related work supporting the idea
that personally meaningful words could be more memorable.

An fMRI study performed by Saykin et al. [33] shows that brain activity is much greater,
and takes place in more regions, when a subject is shown a familiar word as compared to
an unaccustomed word. Gregg [13] also suggests that recall of common words is higher
than uncommon words. (Note that frequency ranked words in Myphrase are by definition
“common” to the user.) Hulme et al. [17] performed two experiments: in the first, non-word
sequences were found to be less memorable than words. The second experiment compared
memorability of Italian and English words on English-speaking participants. Users remem-
bered English words better, but memory span for Italian words increased after learning the
English translations. This also supports the idea that a user will better remember words for
which their semantics are well known.

The auto-suggest feature of Myphrase reduces typing and may also jog the user’s memory
(i.e., the task of recall is partially reduced to recognition). However, it is unclear to what
extent this will help for overall memorization of the user’s passphrase, including sequence.
Early research by Gregg [13] suggests that recognition of words is actually higher for un-
common words. In a recent recognition study [45], in the context of text based passwords,
it was found that recognition of words was no better than free-recall.

The connected discourse variant also leverages the semantic and syntactic structure of a
sentence. Previous research (e.g., [25, 24]) suggests that such high-order patterns are more
memorable than random sequences of words. A recent study on the memorability of random
passphrases performed by Shay et al. [36] contradicts this notion, and indicates that there is
little difference between recollection of random passwords versus passphrases. However, in
this study (also in [45]) personally meaningful words were not used. Furthermore, users were
not provided any recognition cues, and did not benefit from the repeated use of the phrase
(one Myphrase passphrase is expected to be used repeatedly for all or most web logins).

20

	Introduction and Motivation
	Myphrase Description
	Implementation
	Related Work
	Comparison and Evaluation
	Myphrase Entropy Estimation
	UDS Evaluation of Myphrase
	Memorability and Limitations

	Concluding Remarks
	Selective Regeneration and Brute-force Attacks
	Memorability of Myphrase passphrases

