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Abstract 

On Investigation of Contact Models in DEM Simulation of Rockfalls 

Houshin Nejati 

Simulation of rockfall allows us to protect infrastructures and forests along 

rock slopes against the impacts of rockfall. In this thesis, a computer program based 

on 3D Discrete Element Method (DEM) is developed by the author for rockfall 

simulation and fundamental investigation of physics of a rockfall event. Each rock is 

modeled as a sphere and impact surfaces are generated by numbers of 3D triangles. 

Contacts in DEM between objects are modeled using a mass-damper model. 

Different contact models of DEM produce different contact stiffnesses for springs and 

therefore different contact forces. Since contact forces have essential effect on 

dynamic behaviour of particles; hence a comparative study is performed to 

investigate the effect of each contact model on dynamic of rocks contacts. The five 

chosen contact models are: linear model, Hertz-Mindlin, Ng model, elastic-inelastic 

power function model and combination of Hertz model and Ng model (Hertz-Ng 

model). 

Energy in linear, Hertz-Mindlin, Hertz-Ng and Ng model is dissipated using 

linear normal and shear dashpots. Also, the coefficient of restitution is a concept that 

defines the energy level of a rock after contact with a surface. To relate the concept of 

coefficient of restitution and damping ratio for each contact model, the correlations of 

damping ratio and coefficient of restitution are determined for contact of a spherical 

rock and horizontal wall as well as the correlation of coefficient of restitution and 

damping ratio for sloped walls for linear contact model. 

An has developed a 2D elastic-inelastic power function for modeling of 

normal contact of rocks and surfaces. In this research, 3D modeling of this contact 

model is produced, and the effects of the input parameters on dynamic behaviours of 

a rock are studied and the correlation between transition force and coefficient of 

restitution is determined. 

Finally, for a 3D slope, a sensitivity analysis is performed and the effect of 

seven input parameters on horizontal travel distance of a rock is investigated. 
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1. Introduction and Outline 

A rockfall is a sudden freefall or down slope bounce (sliding/rolling) of detached 

blocks of rocks from bedding planes or joints in rock slopes. Rockfall can cause loss of 

life and economic impact. Rockfalls are a major hazard for infrastructures in 

mountainous area [1,2]. "In the 20th century, disasters caused by massive rockslope 

failure have killed 50'000 people" [1]. Several people lost their lives during rockfalls in 

Canada such as the rockfall of 1889 in Quebec, which killed 50 people, and the rock 

avalanche in 1903 in Alberta that killed 75 people and buried the CP railway [3]. In 1980, 

8 miners were killed because of the triggering flow of lacustrine sediments from a roof in 

Belmoral Mine, Val D'Or, Quebec [3]. In January 1995 after contact of a 125 feet rock 

cliff and a freight train, the locomotive engineer and a trainman were drowned in 

Kootonay Lake at British Colombia [4]. Based on the Transportation Safety Board of 

Canada (TSB) report, three locomotives and first two cares behind of the locomotive of 

freight train derailed and plunged in Lake [4]. Some other examples of economic impacts 

of rockfalls are traffic disruptions, delays in roads or stoppage of production in mines like 

the shortfall in gold production after some rockfalls in La Ronde gold mine in Quebec in 

2003 [5]. According to Transportation Development Centre (TDC) report, 12 percents of 

the direct costs are spent for ground hazards such as rockfall in Canada while these 

accidents contain only 2 percents of train-related accidents [6]. 

In respond to safety issues, a considerable amount of money is spent every year 

for maintenance and protection of infrastructures from rockfall in many countries [7]. 

Since the preventive maintenances can decrease the long term maintenance cost by 
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decreasing the rehabilitation cost, by evaluating the rock slope stability and potential 

hazards further decisions for monitoring or stabilization of rock slope can be made [8]. 

Rockfall simulation is one of the existing methods for assess the rockfall hazards. 

Rockfall simulation is performed in order to predict the rockfall hazards, prepare rockfall 

hazard mapping in mountainous area specially along roads [9,10] and design appropriate 

remedial measures such as ditches, cable nets, rockfall shelters, rock fences [8,11,12,13] 

and design safe or functional excavated slopes [14]. It also contributes to ensuring the 

stability of tunnels during construction, and providing safety in open pit mines by 

stabilizing the mine's slopes during exploration, construction, maintenance or normal 

production blasting or during earthquakes [14]. Also, rockfall simulation can decreases 

the maintenances costs by decreases the rehabilitations costs. 

This thesis is concerned with fundamental investigation of physics and not 

practical application of rockfall simulation. 

1.1. Natural Factors for Occurrence of a Rockfall Event 

In addition to critical slope gradient reasons for instability of slopes, there are 

other natural reasons for occurrence of rockfall. Table 1-1 demonstrates some of the 

natural reasons for the occurrence of rockfalls in rock slopes [15]. 

Table 1 -1: Classification of the widespread rockfall causes (and, more generally slope movement causes) [15]. 
Predisposition factors Preparatory factors Trigger fracture 

Mechanical 

Hydrological and 
meteorological 

Thermal 

Geo-chemical 

Steep-sided valley 

Well -developed fracture 
network 

Neotectonics stresses 

Climate with precipitation rate 

Climate with a sharp 
temperature contrast 

Mineralogical content of the 
rocks prone to weathering 

Rise in slope steepness to 
valley incision 

Regular seismic activity 

Damage process fatigue 
Regular rainfall regime 

Daily a seasonal surface 
temperature oscillations 

Progressive weathering 

High-magnitude 
earthquake 

Freezing and thawing of 
water in fractures 

Heavy rainfall episode 

Rapid snowmelt 
9 

9 
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1.2. Numerical Analysis of Rockfall 

Numerical analysis is widely used for the study of stability of slopes, including 

analysis of rockfall. Generally, numerical methods for rock slope simulation can use three 

different types of models: continuum models, discontinuum models, and hybrid models 

(which is a combination of continuum and discontinuum). Table 1-2 describes different 

numerical approaches for analysis of stability of slopes [14,16]. 

Currently, discontinuum modeling of geomaterial (such as soil and rock) 

increases because of their discontinuum nature and the simplicity and significance of 

micromechanics of soil and rock's particles on overall behaviour of the system. Discrete 

Element Method (DEM) is one of the widely used discontinuum methods for the dynamic 

simulation of macroscopic and microscopic behaviours of soil and rocks. In this thesis, 

the DEM is utilized for simulation of rockfall in order to avoid the complexities within 

the nature of continuum models and also to take advantage of emergent properties of 

macroscopic systems that come automatically from discontinuum model i.e., transition 

from brittle to ductile behaviour, hysteresis and nonlinear mechanism in deformation 

[17]. In addition to the advantages that come from discontinnum methods, for the 

following reasons Discrete Element Method is potentially appropriate for modeling 

rockfall and studying contacts in rockfall simulation: 

1. Rocks can be modeled with more details of their material properties, sizes and 

shapes. 

2. The effect of contact of between of rocks on each other is considered as well as effect 

of contacts between rocks and sloped surfaces. 
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3. Microscopic behaviours of rocks can be tracked, as well as macroscopic behaviours. 

4. Since a surface can be defined with several triangles (mesh) and each triangle has its 

own material properties and stiffness, surfaces can be modeled very closely to real 

field conditions. 

It can be seen that the Discrete Element Method may be very appropriate for 

rockfall simulation; however the run time for complex model can be very long. 

Table 1-2: Numerical methods of analysis [14,16] 
Analysis method 

Continuum Modeling 
(e.g. Finite Element, 

Finite Difference) 

Discontinuum 
Modeling (e.g. 

Distinct Element 
Method, Discrete 
Element Method) 

Hybrid/ Coupled 
Modeling 

Critical input parameters 

Representative slope geometry, 
constitutive criteria (e.g. elastic, 

elasto-plastic, creep, etc.), 
ground water characteristics; 

shear strength of surfaces; in situ 
stress state. 

Representative slope and 
discontinuity geometry; intact 

constitutive criteria; 
discontinuity stiffness and shear 

strength; ground water 
characteristic; in situ stress state. 

Combination of input parameters 
listed above for stand-alone 

models 

Advantages 

Allows for material deformation 
and failure. Can model complex 

behaviour and mechanisms. 
Capability of 3D modeling. Can 

model effects of groundwater and 
pore pressures. Able to assess 

effects of parameter variations on 
instability. Recent advantages in 

computing hardware allow 
complex models to be solved on 
PC's with reasonable run times. 

Can incorporate creep deformation. 
Can incorporate dynamic analysis. 

Allows for bed block deformation 
and movement of blocks relative to 

each other. Can model complex 
behaviour and mechanism 

(combined material and 
discontinuity behaviour coupled 

with hydro-mechanical and 
dynamic analysis). Able to assess 
effects of parameter variations on 

instability. 

Coupled finite element/ distinct 
element modls able to simulate 
intact fracture propagation and 
fragmentation of jointed and 

bedded media 

Limitations 

Users must be well trained, 
experienced and can observe good 

modelling practice. Need to be 
aware of mode / software 

limitations (e.g. boundary effects, 
mesh aspect ratios, symmetry, 
hardware memory restrictions). 

Availiability of input data 
generally poor. Required input 

parameters not routinely 
measured. Inability to model 

effects of highly jointed rock. Can 
be difficult to be performing 

sensitivity analysis due to run time 
constraints. 

As above experienced user 
required to observe good 

modeling practice. General 
limitations similar to those listed 
above. Need to be aware of scale 

effects. Need to simulate repetitive 
discontinuity geometry (spacing, 
persistence, etc.) Limited data on 

joint properties are available. 

Complex problem require high 
memory capacity. Comparatively 
little practical experience in use. 
Requires ongoing calibration and 

constraints 

1.3. Objectives 

Most of the previous studies for rockfall analysis were based on macroscopic 

behaviour of rocks in a rockfall, determination of a conservative range for trajectory of 

falling rocks, as well as the kinetic energy level of the rocks at position of mitigation 
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devices [12,13]. This research is concerned with microscopic behaviour of rocks during 

the rockfall as well as macroscopic behaviour of the system. 

The first objective of this research is a comparative study to find the best contact 

model for simulation of rockfall. Several contact models have been developed based on 

DEM. Each contact model defines a method for calculation of contact forces based on 

force-displacement relationship between colliding bodies. Since contact forces have 

essential effect on overall behaviour of rockfall simulation, it is necessary to investigate 

effect of each contact model on dynamic behaviour of rocks. Five contact models are 

obtained through DEM, three of which were successfully used for the modeling of soil 

grains: linear model [18], Hertz-Mindlin [18] and Ng model [19]. The forth contact 

model is called elastic-inelastic power function [20], which was originally proposed for 

simulation of rockfall by An, and finally, a combination of Hertz and Ng model is 

performed. The effect of using each model on macroscopic result of rockfall is 

investigated by building some simple models and comparing the microscopic properties 

(contact stiffhessess, contact forces, and deformations) and macroscopic behaviours 

(trajectories, motions and velocities). 

The second objective of this research is to determine the correlation between the 

microscopic properties of rock types and their macroscopic behaviour in a contact. In 

this research the relation between damping ratio (microscopic) and coefficient of 

restitution (macroscopic) are discussed, as well as the relation between material 

properties such as mass, density, Poisson ratio, Young modulus and uniaxial compressive 

strength for certain rock types. 
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The third objective of this research is to determine the effect of input factors on 

horizontal travel distance of a rock in a probable rockfall. Estimating the horizontal travel 

distance (endpoints) of a rock is an important outcome of the rockfall simulation. 

Knowing the trajectories of balls allows engineers to design appropriate remedial 

measures with a reasonable factor of safety at an appropriate position for reducing the 

impact of rockfall on infrastructures. An intelligent model (the neural network model) is 

utilized to estimate the possible end points of a rock and study the effect of initial 

conditions in a probable rockfall. A sensitivity analysis is performed for seven factors 

that are ball's radius, ball's density, damping ratio, initial position of the ball (horizontal 

and vertical coordinates with respect to X and Z) and initial velocity of the ball 

(horizontal component of the velocity with respect to "X" direction and vertical 

component of the velocity with respect to "Z" direction ). Using this analysis the effect of 

seven parameters on horizontal travel distance of a spherical rock is investigated. 

To achieve the objectives of this research a computer program is developed by the 

author for simulation and numerical analysis of rockfalls based on 3D Discrete Element 

Method (DEM). This code is capable of modeling numerous rocks of various sizes and 

properties some of which are mass, moment of inertia, Poisson ratio, Young modulus and 

friction coefficient. Also, it is capable of realistically modeling the geometry and material 

properties of the impact surfaces. 

1.4. Organization of the Thesis 

The contents of this dissertation are organized as follow: 
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Chapter 2 provides the literature review covering the essential and relevant parts 

of contact mechanics theory, an introduction to DEM, as well as the contact models of 

DEM. 

Chapter 3 provides an overview of the analysis of rockfall, and determination of 

rocks' trajectories method in RocFall software. It also provides a better insight about 

calculation cycle in Discrete Element Method and general formula of DEM. 

Chapter 4 presents an overview and details of the "Haraz" code, based on 3D 

DEM for simulation of rockfall. 

Chapter 5 compares the magnitude and configuration of the nonlinear normal and 

shear stiffness of Hertz-Mindlin, Hertz-Ng and Ng model during a freefalling contact and 

compares the ratio of normal stiffness to shear stiffness of each contact model for 

different rock types and discusses the force-displacement configuration of each contact 

model. 

Chapter 6 presents the dynamic behaviour of a free falling ball made of different 

rock types when colliding with a flat and horizontal surface for each contact model with 

and without damping ratio. Relation between coefficient of restitution and damping ratio 

is discussed as well. 

Chapter 7 investigates 3D elastic-inelastic power function contact model. A 

simple model (A freefalling ball on a horizontal and flat wall) is utilized to study the 

variation of dynamic properties of a rock for different values of transition forces, 

exponents and linear stiffness. In this chapter, the correlation of coefficient of restitution 

and transition forces that represent different rock types (transition forces are depend upon 

unaxial compressive strength of the material) is determined, also. 
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Chapter 8 presents a discussion about correlation of coefficient of restitution and 

damping ratio using linear model in slopes. 

Chapter 9 presents an estimation of horizontal travel distance for a 3D case study 

using an Intelligent Modelling Method (Artificial Neural Network) and a discussion of 

the effects of seven factors on horizontal travel distance of a rock in a probable rockfall. 

Chapter 10 presents conclusions, limitations of the proposed methods, and main 

research contributions, and recommendations for future research work. 
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2. Review of Contact Mechanics 

When two bodies collide, their velocities change and reaction forces and contact 

elastic and/or plastic deformation of bodies take place with some energy dissipation [21]. 

There are two main approaches to analyse contacts. "The first approach assumes that the 

interaction between the objects occurs in a very short time and that the configuration of 

the impacting bodies does not change significantly"[21]. "The second approach is based 

on the fact that the forces of interaction act in a continuous manner during impact" [21]. 

Therefore, the contact forces are added into the equations of motion during contact [21]. 

Figure 2.1 describes the contact according to the second approach [21]. Contact occurs in 

two phases [21]: The first phase is called compression (impact or loading), which starts at 

point O, where two bodies come in contact with each other and deformation 

(displacement or overlap) starts to increase. After reaching a maximum deformation 

(displacement) at point A the first phase ends. The second phase called restitution 

(rebound or unloading), during which deformation (displacement) decreases until two 

bodies separate and the deformation return to zero at point B, C or D [21]. 

^ Deformation 

A 

0 / J \ C T ^ P w .. 
compression restitution 

Figure 2.1: Deformation during the impact [21]. 

Friction in the system will stop and/or reverse the motion and will dissipate 

energy [21]. According to Coulomb's law, the magnitude of frictional force depends 

upon normal contact forces and act in opposite directions of the tangential motion [21], 
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The contacts are categorized as "sticking" and sliding. Sticking contacts occur when 

Fi < M,F„, and "sliding" contacts occur when F, = Md
F„ [21,22]. 

where: 

[21]. 

Ft is tangential contact force. 

F, is normal contact force. 

Hs is coefficient of static friction. 

jud is coefficient of dynamic friction. 

Figure 2.2 illustrates the zones with possibility of sticking and sliding contact 

M A 

Slip-stick 
zone 

> Vj 

Figure 2.2: the variation of coefficient of friction versus initial tangential velocity [21] 

2.1. Coefficient of Restitution 

Energy loss during contact due to motion can be expressed in terms of coefficient 

of restitution [21]. Coefficient of restitution characterizes the energy loss due to inelastic 

deformation during object's contact [11]. One of the most acceptable definitions for 

calculation of coefficient of restitution which is identified by Newton is given by 
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Equations (2.1) and (2.2) [11]. At impacts with zero velocity coefficient of restitution is 

calculated by Equations (2.1) and (2.2) [11]. 

K. (2-1) 

(2.2) 

*„ 

/? 

/he 

v„ 
V, 

re: 

Rn and Rt are normal and tangential coefficient of restitution. 

Vrn and Vrl are normal and tangential component of rebounding velocity. 

Vin and Vit are normal and tangential component of incoming velocity. 

Another definition based on work done by the normal contact force in first and 

second phases of contact (impact and rebound respectively) is presented by Strong [23]. 

Strong defines the square coefficient of restitution (e2), as "the negative of the ratio of the 

elastic strain energy released during restitution (rebound, unloading) to the internal 

energy of deformation absorbed during compression (impact, loading)" [23], which is 

equal to the enclosed area between the loading (impact) and unloading (rebound) curves 

[23]. Strong proved that these definitions of coefficient of restitution are the same except 

for the eccentric contacts, for rough contact's bodies, and also for cases that the direction 

of slip varies during contact. 

2 _ Area under unloading curve (2.3) 

Area underloading curve 

where: 

e is energy coefficient of restitution. 
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For each contact material, the normal coefficient of restitution is not a constant 

value. Coefficient of restitution depends upon geometry, material of contact bodies and 

the initial velocity (decreases with increasing the initial impact velocity) [21]. The value 

of coefficient of restitution for most of the material is much less than unity where the 

impact is perfectly plastic [12,21,24]. 

2.1.1. Coefficient of Restitution Scaling in Rockfall Simulation 

More local crushing on rock and impact surfaces take place at higher impact 

velocities [11,20] thus a scaled coefficient of restitution can be found by Equation (2.4) 

and (2.5) considering the effect of velocity on normal coefficient of restitution [20,25]. 

The value of velocity at scaling factor 0.5, (MXS) empirically have been determined to be 

about 9.144m/s [20,25]. Figure 2.3 shows that the scaling factor reduces when impact 

velocity increases [20]. 

Rn {scaled) = Ri: x Scaling factor (2.4) 

o ,. , 1 (2.5) 
Scalingjactor = — 

n+(_«**_)2] 
K0.5 

where: 

Rn{scaled) is scaled coefficient of restitution for rockfall simulation. 

V05 is velocity at scaling factor of 0.5. 

Vrock is normal component of rock velocity , immediately before impact. 
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12 14 6 8 10 
Impact Veloci ty <rn/s) 

Figure 2.3: Relation between scaling factor and impact velocity [20]. 

2.2. Review of Hertz and Mindlin Studies for Calculation of 

Contact Forces 

Hertz [26] showed that if two spheres as shown in Figure 2.4, with radius ^, and 

Rj collide along their centers, the contact surface (as shown in Figure 2.5), is a circle with 

radius of a, also the distribution of normal pressure which has a half-elliptical 

configuration is independent of angular coordinates [26]. 

S7 

P, =P 

C, 

>6 

/', = p 

/ • 

Figure 2.4: Two spheres in normal contact [28], 

13 



Therefore, the normal pressure for point A in contact area can be found by 

Equation (2.6) [28] 

P(r) = pm[l-(r-) ] 
a 

where: 

p(r)is normal pressure for a point with distance of r from center in 

contact area. 

r is distance of a point in contact area from center. 

Pm is maximum normal pressure. 

a is radius of contact area. 

a) b) 

" l A 
P 

/ \ a 
B J x 
LI o J 

* / 

o 
Figure 2.5: Contact area and Hertz pressure, (a) Circular contact-area (viewed from +Z).Section B-B is contact-area 

diameter, (b) Hertz normal pressure at section B-B [28]. 

By integrating Equation above with respect to s, the maximum normal pressure, 

Pm which occur at r = 0 can be found by Equation (2.7). 

3p (2.7) 

27ia 

Considering surface displacement and boundary conditions, Hertz determined the 

contact-area which depends upon normal and distant points in spheres as Equation (2.8). 

He also found the distant point in spheres (Figure 2.4) is given by Equation (2.9). 

W , , (2-8) 
4£* 
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(2-9) 
«.. =al+aj= — 

For elastic spheres, aij is given by the following Equation: 

a = ( " * )•» ( 2 ' 1 0 > 

" W*(£*)2' 
where 

£* is equivalent elastic modulus and is given by Equation (2.11). 

1 / ̂  is equivalent contact curvature is given by Equation (2.12). 

1 1 1 
F"^ + ^T (2-11) 

1 1 1 

F=^+F (2-*2) 

Finally, by combination of Equation (2.8) and (2.10) the relation of the maximum 

contact pressure and spheres' properties is found by: 

f6PjE')\U3 (213) 

Where: 

P is normal contact force. 

Note that Hertz's theory is valid for the contact of hard materials with low initial 

speed because experimental tests show that Hertz's theory is not valid for perfectly 

elastic situations [21,24]. 

2.2.1. Tangential Contact Force 

Tangential motion can be divided into sliding, spinning and rolling. Sliding and 

spinning consist of a relative velocity of the surfaces at their point of contact and stand 

respectively, for translational and rotational relative velocities. Rolling involves a relative 
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angular velocity of two bodies about axes parallel to their tangent plane. Rolling and 

spinning can take place at the same time [28,27,29]. Figure 2.6 shows two identical 

spheres in frictional contact and subject to normal force P and tangential force Q. 

a) 

an 

Qj=Q\ 

p•- = p 

\\- 8f 

Figure 2.6: Two frictional spheres subjected to normal forces [28]. 

b) 

A f 
t—j- I-

i • 

X • i 

\A 
y 

Figure 2.7: Slip region and tangential stress distribution, (a) Annulus of slip. Section A-A is aligned with a contact-; 
diameter, (b) Tangential stress on the contact-area, at section A-A [29]. 
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Mindlin [27, 28] obtained the relation for tangent stress in case of constant normal 

force and varying tangential force through Equation (2.14) based on the following three 

assumptions: 

1. Hertzian normal pressure on contact surface is assumed. 

2. The effects of normal and tangential force are considered separately. 

3. Complete sticking on the contact zone will cause the tangential stress distribution to 

go to infinity at the edge of contact [28]. 

The last assumption brings in the concept of slip [28]. Figure 2.7 shows that slip 

region and tangential stress distribution of cases in cross section of Figure 2.6 [28]. The 

slip area is an annulus c<r <a \n which the tangential stress 1 is the friction limit 

(9m - /^P). When c (slip radius) approaches to zero, the applied tangential force (Q) 

approaches Qm = MP[2S]. Mindlin in 1949 [27,28] found the stress profile as Equation 

(2.14) where P is constant and Q is varying [27,28]. 

3 / " , 2 2 \ l / 2 ^ ^ 

(a -r ) , c < r < a, 2na'K ' ' - - ' - « , ( 2 M ) 

3 / £ r r , 2 2 \ l / 2 / 2 2 \ , 

-\{a - r ) - ( c - r ) , r<c 2na 

where: 

c is slip radius. Slip radius is expressed by Equation (2.15) [27, 28 ]. 

c=a«-Q-r {2A5) 

MP 

It can be seen that when tangential applied force is zero, the slip region 

disappears. Mindlin calculated the net displacement of spheres relative to contact area 

17 



[27,28]. By integrating the above equation, tangential compliance (°T ) was determined as 

Equation (2.16); hence CT is the inverse of the tangential stiffness T [27,28 ]. 

OS 2-un Q._.m) /_ ^ _ t \ (2.16) 
T dQ 8Ga /JP

 V ' 

if 
T js given as follows (Equation (2.17)). 

K^L.^L^-Q-r <2-17> 
cT 2-v juP 

Finally, Mindlin and Deressewicz [30] developed a more generalized model for 

elastic (deformable) spheres in sliding or torsional contact with varying normal force in 

two cases: when P and Q both increase (loading) in Equation (2.18) and when P and Q 

decrease (unloading) in Equation (2.19) [28,30]. Because of the complicity of solution, 

here are the tangential compliance (stiffness): 

cT =~[AHi-A)v-^-r(m) o<^-<l (2-18) 

T SGa dq dq fjP dQ Q 
_ 2-v dp 1 

C r = ^ ' ~dQ~~n (2-19) 

For case P and Q both decreasing: 

,> = 2=!! [_„*+ ( I + | (* ) ( 1_£ze r3. ±>0 <2-20> 
SGa dq dq fjP dQ 

2.3. Discrete Element Method (DEM) 

Considering the relation between rigid bodies, Cundall and Strack [31] proposed 

the Discrete Element Method (DEM), for modeling of geomaterials such as rocks and 

soils. In this model, soils and rocks are represented as spherical rigid grains. Each grain 

(particle) is modeled by its trajectory along the system due to the contact forces and 

external forces acting on each particle, such as gravity. 



DEM Particle 

Node 

Element % ~ \ Contact 

y 

(3) (b) 

Figure 2.8: Schematic diagram illustrating DEM and FEM analogy, (a) Elements and nodes (FEM). (b) Particles and 
contacts [38]. 

The fundamental algorithm of DEM is based on differential equations of motion 

of contact bodies. In each time step, after detection of colliding objects, contact stiffness, 

colliding forces and resultant forces on each particle are calculated, and then Newton's 

second law of motion is utilized in order to update velocity, acceleration and position of 

each particle. Figure 2.9 demonstrates the Voigt-Kelvin model (mass-spring-damper 

system with one degree of freedom), which is employed in DEM to model contact 

between two objects [11,18]. Contact forces are calculated according to force-

displacement relationship (Hoek's law). Spring and dampers can be linear or/and 

nonlinear. 

Normal module ,'armential modul 

* 

LtK'n 

-a- Slider 
Ms 

/tin LyVW 

-L No tension 

Figure 2.9: The Voigt-Kelvin element consists of a spring and a dashpot (damper) connected in parallel [11] 
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Discrete Element Method (DEM) [31] is one of the most widely used methods for 

dynamic simulation of soils and rocks [31,17], whose micromechanical behaviour are 

discontinuous, thus it helps to have better insight of engineering problems in these fields; 

for instance, the effect of microfeatures on the overall behaviour [34] and some emergent 

properties of macroscopic system that come automatically from discontinuum model i.e., 

"transition from brittle to ductile behaviour, hysteresis and nonlinear mechanism in 

deformation" [17]. 

2.4. Introduction to Linear, Hertz-Mindlin, Ng, Hertz-Ng, An 

and Modified Discrete Element Model (MDEM) Contact 

Models for Application in DEM Simulation 

Several contact models for application of DEM simulation are used. Contact 

models determine the procedure of calculation of stiffness and contact forces in the 

model. Generally contact forces are calculated according to the force-displacement 

relationship; displacements can be found from the geometry of contact's bodies, and the 

magnitudes of contact stiffnesses are defined in each contact model. Since contact forces 

have essential effect on overall behaviour of rockfall model, it is necessary to illustrate 

each contact model. In this chapter, six contact models are introduced: Linear model, 

Hertz-Mindlin, Ng, Hertz-Ng, elastic-inelastic power function Contact Model (here called 

An model) and Modified Discrete Element model (MDEM). 

2.4.1. Contact Stiffness in Linear Model 

The contact stiffness for linear contact model is computed assuming that springs 

of two contacting bodies act in series. The contact normal secant stiffness is given by the 

following Equations [18]: 
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K>l=k[A]k[B] (2-21) 
// n 

And the contact shear model shear stiffness is found by [18]: 

k[A]k[B] (2-22) 
Ks = s s 

k\A]+k[B] 

s s 

where: 

k[A] and k\A] represent linear normal and shear stiffness of ball A. 

k[
n

B] and k[
s
B] represent linear normal and shear stiffness of ball B. 

k„ = dF" _d{KaUu)_K„ (2-23) 

dU" dU" 

Normal and shear stiffness between two objects should be determined using linear 

contact model for each contact for each contact i.e., ball-ball or ball-wall normal and 

shear stiffness for each object should be determined. 

2.4.2. Contact Stiffness in Hertz- Mindlin Contact Model 

Cundall and Strack [31,33] developed a nonlinear model based on an 

approximation to the theory of Mindlin and Deresiewicz [30] called "Hertz-Mindlin 

Model" [18]. According to this model the contact normal secant stiffness and the contact 

shear tangent is defined as Equation (2.24) and Equation (2.25) [18]. 

IGJIF r— (2-24) 

K" — IT J" 

~ 3(1-o) 
KS 2G23{\-o)R'f\ r (2-25) 

where: 

U" is the overlap between colliding particles at time of contact. 

IF/'l is the magnitude of the normal contact force. 
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^ is equivalent shear modulus for colliding particles given by Equation 

(2.27). 

° is equivalent Poisson's ratio for colliding particles [dimensionless]. 

IIR is equivalent contact curvature is given by Equation (2.26) for ball-

ball contact and Equation (2.27) for ball-wall contact. 

where: 

R[A] is radius Sphere A. 

RlB]is radius Sphere B. 

J_ = J _ J_ (2.26) 
R*~ R{A]+R[B] 

G = V2(G[A]+G[B]) (2-27) 

R* 

G-

V-

= J^boU] 

_ (-.[ball] 

-. u[ba"] 

(2.28) 

(2.29) 

(2.30) 

For Hertz model, the normal-secant stiffness * is related to the normal-tangent 

stiffness by the following Equation (2.31) [18]. 

dF" 3 (2-31) 

dU" 2 

2.4.3. Viscous Damping for Linear and Hertz-Mindlin Model 

Normal and tangential dashpots and friction are the sources of impact energy 

dissipation in DEM. Several linear and nonlinear damping models were developed. The 

viscous damping force can be calculated by the following Equations. 
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Fd=C\V.\ (2-32) 

C,. = ptCf (2-33> 

where: 

F? (i = n: normal, s : shear) is viscous damping force. 

Cj (i = n: normal,s -.shear) is damping constant. 

Pt (i = n: normal, s : shear) is damping ratio. 

Cj"' (i = n: normal,s:shear) is critical damping constant. 

Cc
i
r"=2mconi=2jmki (2-34) 

where: 

(oni (i-n: normal, s: shear) is natural frequency of a system. 

k; (i = n: normal, s : shear) is the contact tangent stiffness. 

m is the average mass of the two balls in ball-ball contact and mis the 

ball's mass in ball-wall contact. 

Note that time step in damped system should be adjusted by the following Equation [18]: 

,. . k, (2.35) 
k. =a (Vl + /l2 -A)2 

where: 

£,.(/ = n '.normal,s :shear)the contact stiffness of a system with viscous 

damping, 

a is the safety factor. 

kt{i = n:normal,s:shear) ./lis a parameter which is given by the 

following Equation: 
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x_ C, (2-36) 

' 2*,A/0 

where: 

At0 is the time step without viscous damping. 

2.4.4. Ng Model 

Ng used Hertzian normal and simplified Mindlin's tangential contact law to find 

the normal and tangential contact stiffness for ellipsoidal granular materials as follows 

[19]: 

Kn = 2Ga (2.37) 

Ks = 
AGa (2.38) 

2-v 

where: 

G is equivalent shear modulus is given by Equation (2.27). 

v is equivalent Poisson's ratio [dimensionless]. 

a is radius of contact which is dependent upon the normal contact force 

and can be found by Equation (2.39). 

, , (2-39) 
^ 3(\-v)\Fn\R m 

8G 

where: 

IF/'l is the magnitude of the normal contact force. 

1/Reis equivalent contact curvature is given by Equation (2.26) for ball-

ball contact and Equation (2.27) for ball-wall contact. 
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The above equations are valid for spheres as well as ellipsoidal particles since 

sphere is a specific case of ellipsoid in which principle radii of ellipsoid are equal. Ng 

solved the differential Equation (2.40) [19]. By applying the central difference 

approximation to the above Equation, the new velocity of particle is found as follows 

[19]: 

dV, (2.40) 
m—- = F. -cv. 

dt 

where: 

m is particle's mass. 

Ft is resultant force on center of particle. 

Vi is contact velocity. 

c is constant damping ratio. 

yd+M) _ _ | 2 m 

' - o+f) 
where: 

^('+A,) is new velocity of particle. 

^ is the time step. 

Calculation of current velocity allows updating the position of particles. Those 

updated position will be considered step for detection of new contacts between particles 

in next time. 

2.4.5. Hertz-Ng Model 
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This model is a combination of Hertz-Mindlin model and Ng model. Forces are 

calculated according to Hertz-Mindlin model. Velocity, acceleration and the positions of 

particles are updated according to Ng model. 

2.4.6. Elastic-Inelastic Power Function Contact Model (An Model) 

An proposed a DEM nonlinear contact model for 2D simulation of rockfall 

[20,37]. In this model, normal dashpot is replaced by a power function to reduce the 

normal component of the contact force. The power function generates a lower value of 

coefficient of restitution in each time step. During the impact, at first the normal contact 

force is calculated in accordance with linear elastic relationship. After reaching the 

transition force, contact force is set to the transition force until the relative velocity 

between the objects in contact reaches to zero. In other words, when maximum overlap 

occurs by rebounding, the contact force is calculated and reduced by power function of 

y = ax (as shown in Figure 2.10.) 
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A 

—r—= 
0.0 2.0 0.5 1.0 1.5 

Contact overlap (mm) 

Figure 2.10: Elastic-inelastic power function model [20] 

Three parameters are required for elastic-perfectly plastic power function model: 

transition force, exponent and initial normal contact stiffness. The transition force is a 
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normal contact force, at which the model transfers form elastic response to perfectly 

plastic deformation, while undergoing compression. The exponent adjusts the power 

function to a damping function that is applied to rebound phase of contact. The value of 

exponent determines the energy loss during the impact. 

Point A in Figure 2.10 is found when linear contact force reaches to transition 

force. Point B is the starting point for rebound phase when contact bodies initiate to move 

away. In other words, point B is the position of maximum overlap between contact bodies 

and where relative contact velocity reaches zero. The value of a is determined by 

Equation (2.42) [20,37]. 

T (2.42) 

Bb 

where: 

T is transition force. 

B is maximum overlap displacement. 

b is an exponent. 

Using high value of transition force such that the inelastic deformation is 

prevented, the contact model becomes an elastic-inelastic power function model. Using a 

low value of transition force and exponent value of 1.0 makes a triangular contact 

damping model (See Figure 2.11). Low values for transition force cause balls to pass 

through walls and high values make the model unstable [20]. 
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Figure 2.11: Different forms of elastic-inelastic power function model [20]. 

For a rock under compressive loading, the transition to non-elastic behaviour 

begins to occur at approximately 75% of the uniaxial compressive strength [20]. An 

suggests Equation (2.43) to calculate the transition force [20]: 

T = 0.157i{sRfc>c 

where: 

(2.43) 

R is radius of the particle. 

<rc is uniaxial compressive strength. 

s is a scaling factor (s<l) that reduces the radius to an effective radius 

carrying the contact load. Scale factor can be found according to Equation 

(2.5) or Figure 2.3 [20]. Table 2-land Figure 2.12 show the transition 

force for various particle sizes and different normal stiffnesses [20]. 

Table 2-1: Transition force for various particle size samples at different normal stiffness [20], 
Normal Stiffness 

(N/m) 

4.80xl010 

3.20xl010 

Transition Force for various particle sizes 

R = 0.04 m 

3.20xl03 

3.00xl03 

R = 0.14 m 

4.13xl04 

4.00 xlO4 

R = 0.20 m 

2.10xl05 

1.90xl05 

R = 0.25 m 

3.835xl05 

3.82xl05 

R = 0.30 m 

5.l0xl05 

3.50xl05 
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6.40 xlO10 

9.60 xlO10 

l . l lxlO1 0 

3.50xl03 

8.00 xlO3 

1.22x104 

4.50xl04 

7.60 xlO4 

1.25xl05 

2.5xl05 

4.80 xlO5 

1.025 xlO6 

5.30xl05 

l.lOxlO6 

2.10xl06 

8.00 xlO5 

1.88xl06 

3.525xl06 

£ 2.0F.-H)6 -) 

I J 

H I.QE'06 

O.OE-O) 

A Kn-120E- I0 

O Kn~4.80EI0 

C Kn-6.40£-l& 

I K n - I2.S0EIO 

0.1 0.15 

Particle Radius (m) 

Figure 2.12: Transition force vs. particle radius (models with various normal stiffness) [20]. 

The exponent of the power function largely determines the damping effect of the 

model [20]. An suggests Equation (2.44) to adjust the exponent by rock velocity 

regardless of radius of rock. Figure 2.13 is the best-fit of Equation (2.44) [20]. 

.y = 0.0429x3 -0.4744*2 +2.5508*+ 1.1489 (2.44) 

6 S 10 
Velocity (m si 

16 

Figure 

12 34 

2.13: exponent vs. impact velocity and various radii [20] 

29 



2.4.6.1. Damping and Normal Restitution Coefficient in An Model 

Figure 2.14 shows the force-displacement relationship for An's model. In addition 

to other parameters, in rockfall simulation the normal restitution coefficient depends upon 

the rock type and slope conditions [20]. Although the energy dissipation in this model 

mainly depends on the exponent [20], transition force affects on system energy loss after 

setting the exponent [20]. The exponent is dependent upon the rock impact velocity, and 

is almost independent of other factors such as particle radius [20]. The numerical model 

of energy loss in this model is illustrated in Figure 2.14 [20]. 

[20]. 

as o 
, o 

"o 
«s 
t: 
o 
O 

kinetic energy 
returned to rock 

0.5 1.0 1.5 
Contact overlap (mm) 

Figure 2.14: Schematic of energy dissipation of elastic-perfectly plastic power function model [20]. 

The normal restitution coefficient in this model can be found by Equation (2.45) 

R,. = 

where: 

2 lG + l 
x. 

(2.45) 

b + \ G + 2 

G is the ratio of elastic to inelastic deformation. 

p (2.46) 

Figure 2.15 illustrates the variations of normal coefficient of restitution versus 

exponent for different amounts of inelastic deformation. Figure 2.14 shows that normal 
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coefficient of restitution decreases as the exponent b increases [20]. For an impact with 

fully elastic deformation (P=0), value of b is equal to 7 that gives normal coefficient of 

restitution of 0.5 [20]. 
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Figure 2.15: Coefficient of normal restitution versus exponent for varying amounts of inelastic deformation [20]. 

Since inelastic deformation of rocks depends upon impact velocity (increasing 

mass or velocity, increase of inelastic deformation), the coefficient of normal restitution 

becomes smaller for higher impact velocities. An adjustment of value of b for impact 

velocity larger than 4 m/s should be done as in Equation (2.47) [20]. 

v. , (2.47) 

o 

where: 

v. is impact velocity. 
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Figure 2.16: Scaling factor for coefficient of normal restitution (as V; increases Rn decreases) [20]. 

2.4.7. Modified Discrete Element Model (MDEM) 

Ashayer proposed a modified version of DEM called (MDEM) [11]. In MDEM, 

in order to remove the effect of shock and tensile forces at beginning and end of contact 

respectively, the normal dashpot is replaced by a nonlinear viscous module as shown in 

Figure 2.17 [11]. Using nonlinear viscous module makes damping force dependent on 

velocity and contact indentation [11] and correlates the normal coefficient of restitution 

with impact velocities [11]. 

Normal module langcntial module 

Sliderjji) 

unit 
Figure 2.17: Normal and tangential modules in Modified DEM (MDEM) [11]. 

In this model, tangential dashpot is taken out, and a mono-direction mechanical 

unit is added. This unit releases the strain energy stored in the tangential direction when 
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the direction of tangential slip reverses [11]. Since the perfect investigation on 

application of this model to rockfall simulation has been done by Ashayer [11], this 

model will not be discussed in this thesis. 
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3. Review of Current Approaches for Simulation 

ofRockfall 

There are several software packages and codes developed for simulation of 

rockfall. Table 3-1 shows the list of software representations [11]. 

Table 3-1: Different computer simulation for rockfalls categorized based on their main Characteristics, after Guzzetti et 
al. (2002) [11]. 

Year 

1976 

1982-86 

1985 

1987 

1989-91 

1990 

1991-95 

1991 

1998 

1999 

2000 

2002 

2007 

2007 

Author 

Piteau and Clayton 

Bozzolo and Pamini 

Bassato el al. 

Descouedres and 
Zimmermann 

Pfeiffer and Bowen 

Kobayashi et al. 

Azzoni et al. 

Scioldo 

Stevens 

Paronuzzi and Artini 

Jones et al. 

Guzzetti et al. 

Ashayer and Curran 

Nejati 

Program name 

Computer 
Rockfall model 

SASS-MASSI 

Rotolamento 
Salto Massi 

Eboul 

CRSP 

-

CADAMA 

Rotomap 

RocFall ver.4 

Mobyrock 

CRSP 4.0 

STONE 

GeoRFS 

Haraz 

Dimensions 

2D 

2D 

2D 

3D 

2D 

2D 

2D 

3D 

2D 

2D 

2D 

3D 

2D 

3D 

Approach 

Lumped -mass 

Hybrid 

Lumped- mass 

Rigid body 

Hybrid 

Rigid body 

Hybrid 

Lumped- mass 

Hybrid 

Lumped- mass 

Hybrid 

Lumped -mass 

Rigid body 

Discrete Element 
Method 

Probabilistic 

Partly 

Yes 

No 

No 

Yes 

No 

Yes 

NO 

Yes 

Yes 

Yes 

Yes 

Yes 

Partly 

"RocFall" is a 2D probabilistic software for analysis of rockfall, which can be 

used to simulate rockfall events and design remedial measures and test their effectiveness 

[12]. It contains two essential objects: a rock which is a disk whose mass is concentrated 

at a point, and a slope, which consists of any number of 2D line segments with different 

material properties such as ^» and &T [12]. 
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Because of availability of software RocFall and its documentations for the author, 

in this thesis RocFall has been utilized for validation and applying necessary calibration 

of Haraz. In this chapter, algorithm and formulation of RocFall as well as calculation 

cycle and formulation of Haraz is presented to have better insight about rockfall 

simulation with RocFall and to compare the outcomes of RocFall and a code based on 3D 

Discrete Element Method. 

3.1. Calculation Procedure in RocFall 

The initial location, velocity, and mass of the rocks must be defined with a value 

larger than zero. The calculation cycle begins by assigning the initial position of the rock, 

finding the location of the intersection between the path of the rock (parabola) and a line 

segment (slope). Once the intersection point is found, the impact is calculated according 

to the coefficient of restitution. If rock, after the impact still moves fast enough to 

overcome the present drag force, the process begins again with searching for next 

intersection point. 

x = X]+(X2-Xl)u (3.1) 

y = Y]+(Y2-Y])u we [0,1] (3.2) 

where: 

X Y • >' 1 is the coordinates of the first intersection of rock path and the line 

segment. 

X Y 2 ' 2 is the coordinates of the second intersection of rock path and the 

line segment. 

The parametric equation for a parabola: 

x = VxOt + x0 (3.3) 
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1 , (3-4) 

where: 

X0, Y0 is the initial position of the rock. 

VX0,VY0 is the initial velocity of the rock. 

The parametric equations for the velocity of a particle: 

VXB = Vxo (3.5) 

VYB=VY0+gt (3.6) 

where: 

XB^YB is the velocity of a rock at any point along a parabolic path, 

before impact. 

Equating the points of parabola with equations of lines followed by rearranging to 

the quadratic equation ax +bx + c = 0 g j v e s : 

1 

2* 
I'+K-iy^hk-y^+i^.-^ho <r7> 

where: 

^ is the slope of line segment. 

( y 2 - ^ ) (3-8) 

{X2-Xx) 

The roots of Equation (3.9) are the times of contact of rock and slope. 

-b±ylb2~4ac (3-9) 
/ = 

2a 

The parabola formed by the rock trajectory is checked with every segment of the 

slope [12]. Once the intersection is detected, the velocity just before the impact is 
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calculated and transformed into normal and tangential components of the slope according 

to [12]: 

Vm ={VYB)cos{0)-{VXB)sm{O) (3.10) 

VTB ={VYB)sm{e)-(VXB)cos{6) (3.11) 

where: 

Vm, VTB are the normal and tangential components of the rock velocity, 

before impact, respectively. 

Q is the slope angle of the line segment. 

Considering the coefficient of restitution, the impact is calculated according to 

Equation (3.12) and Equation (3.13) [12]: 

VNA=RNVNB (3-12) 

VTA=RTVTB (3.13) 

where: 

RN is the coefficient of normal restitution, RN e [0,1] 

RT is the coefficient of tangential restitution, RT e [0,1] 

The post-impact velocities are transformed back in horizontal and vertical 

components according to Equation (3.14) and Equation (3.15) [12]: The post-impact 

velocities are transformed back in horizontal and vertical components according to 

Equation (3.14) and Equation (3.15) [12]: 

VXA =(VNA)sm(0) + (VTA)cos(0) (3.14) 

VYA=(VTA)sm(8) + (VNA)cos(0) (3.15) 

where: 
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VU->VYAare the velocity components of the rock, after impact, in the 

horizontal and vertical direction, respectively [12]. 

3.2. Coefficient of Restitution in RocFall 

Typical analysed values in RocFall for the normal coefficient of restitution 

vary from 0.3 to 0.5, and the tangential coefficient of restitution *• T' ranges from 

0.8 to 0.95 [12]. Since coefficient of restitution directly is employed in every cycle to find 

the new velocity, simulation is very sensitive to any change in the coefficients of 

restitution [12]. 

3.3. Discrete Element Method Formulation 

The essential parts of a DEM calculation cycle are as follow: 

1. Calculation of time step 

2. Detection of contacts in each time step 

3. Calculation of contact stiffness, contact forces and resultant force on each particle 

using force-displacement relationship. 

4. Updating particle's position using Newton's second law of motion 

Note that the following formulation is written the Einstein summation format (the 

convention that repeated indices are implicitly summed over). 

3.3.1. Calculating Time Step 

DEM utilizes the central difference time integration method. The system is stable 

when time step (time increment) is less than critical time. 
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The critical time corresponding to a point mass with one degree of freedom is 

given by Equation (3.16) 

= T_ (3.16) 
critical 

n 

where: 

Tis natural period of a system and can be found by Equation (2.4) [18]: 

T-ln\-k 

One approach for estimating the critical time step for assembly of similar disks or 

spherical particles is to model multiple mass-spring system with infinite series of point 

masses and springs as is shown in Figure 3.1 [18]. The minimum value of the period of 

multiple mass-spring system occurs when masses are moving in the synchronized 

opposing direction such that there is no motion at the center of each spring [18]. The 

motion of a single mass can be described by two equivalent systems shown in Figure 3.1 

[18]. For the general degree of freedom, the translational and rotational stiffnesses are 

expressed as [18]: 

*r=(*„-*>w
2-^ (3-18) 

where: 

* is translational stiffness. 

Krot 

K is rotational stiffness. 

/ is moment of inertia. 
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Therefore, the critical time for the generalized multiple mass-spring system can be 

expressed as Equation (3.20) [18]. 

. [ V ^ F 7 <3-2°) 
t cmcal = min^ 

V/Tr 
where: 

(critical is critical time of a system. 

m K K m K m K m 

(a) 

2K m 2K 

PW\>— -MA/— 

(b) 

4K m 

(c) 

Figure 3.1: Calculation of critical time for multiple mass-spring system [18]. 

Finally, time step can be determined by the following Equation: 

& = atcrilicaI (3.21) 

where: 

a is coefficient of critical time which is always a < 1. 

In this research, the time step is first calculated by determining the maximum 

stiffness of the possible contacts between objects using linear normal and shear 

stiffnesses and the minimum mass value of the system. After, the calculated time step is 

reduced by the value of the coefficient of time step to make sure that time steps are 

reasonable. 
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3.3.2. Detection of Contacts 

First step in the calculation cycle of DEM is detection of contacts. Contacts can 

occur between balls, called ball-ball contact, or between a ball and a wall, called ball-wall 

contact (Figure 3.2). According to definition of contact in DEM, two bodies are in 

contact when they have an overlap. Hence for every two objects, overlap existence 

should be checked to detect the contact. Relative normal displacement is determined by 

Equation (3.22) for ball-ball contact and Equation (3.23) for ball-wall contact. 

U"=R[A]+R[B]-d (3-22) 

U';=Rb-d (3-23) 

where: 

^ is the magnitude of the normal overlap in ball-ball contact. 

U'l is the magnitude of the normal overlap in ball-wall contact. 

#M]is radius of ball A. 

7?[8,is radius of ball B. 

Rb is radius of ball at ball-wall contact. 

" is minimum distance between two contact bodies. 

In other words, contact forces are calculated only if ^ or U'w a r e positive [18]. 

The coordinates of contact points are found by Equations (3.24) and (3.25) [18]. 

x 
c] = xf + (R[4] -1/2U")/i; ball - ball (3-24) 

x\c] =x,lb]+(R[b] -\/2Uj')ni ball-wall (3-25) 

where: 
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x]c](i = 1,2,3) represents contact point coordinates with respect to the 

Cartesian system. 

xf(i = 1,2,3) represents coordinates of centre of ball A at ball-ball contact. 

x]b](i = 1,2,3) represents coordinates of ball centre at ball-wall contact. 

ni is the normal unit of contact plane. 

The unit normal vector for ball-ball contact is calculated by Equation (3.26). 

.B A (3.26) 

where: 

xf(i = 1,2,3) represents coordinates of centre of ball A at ball-ball contact. 

Xj (i = 1,2,3) represents coordinates of centre of ball B at ball-ball contact. 

The method for determination of unit normal vector for ball-wall contact, 

considering the plane equation in space is presented in chapter 4. 

Contact Plane 

a) Notation used to describe ball-ball contact. b) Notation used to describe ball-wall contact. 

Figure 3.2: Collision notation (a): ball-wall contact, (b): ball-wall contact [18]. 
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3.3.3. Calculation of Contact Forces (Force-Displacement Law) 

The contact force with respect to the contact plane (Figure 2.1) can be determined 

by Equation (3.27) [18]. 

F^Ff+F* (3-27) 

where: 

Ft (i = 1,2,3) represents the components of contact force with respect to 

the Cartesian coordinate system. 

F" (i = 1,2,3) represents the components of the normal contact force with 

respect to the Cartesian coordinate system. 

F* (i = 1,2,3) represents the components of shear contact force with 

respect to the Cartesian coordinate system. 

3.3.3.1. Calculation of Normal Component of Contact Force 

The normal component force of two contact bodies for ball-ball contact and ball-

wall contact are calculated by Equations (3.28) and (3.29) respectively. 

F?=KnU"nt (3-28) 

F? _wall = K"Uln, (3-29) 

where: 

F"andF" _wall are normal contact forces for a ball-ball contact and 

ball-wall contact, respectively, with respect to the Cartesian coordinates 

system. 

A'"is the ball-ball or ball-wall contact stiffness. 

U" is the normal overlap in ball-ball contact. 
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U'l is the normal overlap in ball-wall contact. 

nj is the unit normal of the contact plane. 

3.3.3.2. Calculation of Shear Component Force of Contact Forces 

Shear contact force is found by the calculation of two rotations: the first being 

about the line common to the old and new contact planes, and the second being about the 

new normal direction. The shear force due to first rotation is determined by Equation 

(3.30). 

IFS\ =FS(S -e e n n[M]n (3-30) 
I1 i fro/A 1 j \uij t:ijk*:kmnrtkmii"m "n X ' 

where: 

{F*}rolX(i = 1,2,3) represents the shear force due to rotation about old 

normal of contact plane with respect to Cartesian system. 

«°/rf is the old unit normal vector (previous step) to contact. 

The shear force due to second rotation is determined by Equation (3.31) 

{Fi)m.2 = {FjUtA^y-eyk^k)^) ( 3 ' 3 1 ) 

where: 

{FjS}rot2(i = 1,2,3) represents the shear force components due to rotation 

about new contact plane with respect to Cartesian system. 

(a>k) is average angular velocity of two contact bodies about the new 

normal direction (current time step). cok can be found by Equation (3.32). 

fl>t=l/2(0^ + fi>'*]W (3.32) 
A v J J 7 J i 

where: 
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o)]B](i = 1,2,3) represents rotational velocity of ball B with respect to the 

Cartesian system. 

co\A](i = 1,2,3) represents rotational velocity of ball A with respect to the 

Cartesian system. 

co\B]{i = 1,2,3) represents rotational velocity of ball B with respect to the 

Cartesian system. 

The relative motion at contact, contact velocity, K is given by: 

K, =#< ' ) , - ( i f ' ' ) , = ( * j * + ^ (3.33) 

where: 

Vt{i = 1,2,3)represents the velocity components with respect to the 

Cartesian system. 

xf(i -1,2,3) represents the translational velocities of ball A. 

xf(i = 1,2,3) represents the translational velocities of ball B. 

V; =Vt- V; =V,- V}n}nt (3-34) 

where: 

Vj
s(i = 1,2,3) represents shear components of velocity with respect to the 

Cartesian coordinate system. 

V"(i = 1,2,3) represents normal components of velocity with respect to the 

Cartesian coordinate system. 

The shear component of the contact displacement-increment vector, A£/,. ? o v e r a 

time step of ̂ , is found by: 
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AU* = V;M (3-35) 

Elastic shear force-increment vector is calculated by Equation (3.36). 

AF;=-ksAU* (3-36) 

Finally the shear component of contact force in each time step is determined by 

Equation (3.37). By summing the old shear force (the shear force calculated at the 

previous time step) with the shear force- increment in this time step, the contact shear 

component is determined as follows: 

/ ^ { / O ^ + A F / (3-37) 

where: 

F' (i = 1,2,3) represents shear force with respect to the Cartesian system. 

AF* (i = 1,2,3) represents elastic shear force-increments with respect to the 

Cartesian coordinate system. 

3.3.4. Law of Motion 

Newton's second law of motion predicts the behaviour of objects for which all 

existing forces are unbalanced. The presence of an unbalanced force will accelerate a 

particle that has variable velocity. 

T.F = ma (3.38) 

After finding contact forces, the resultant force on each ball can be determined. 

Using Newton's second law of motion, the translational and rotational accelerations for 

each ball at time t with respect to Cartesian coordinate system is calculated as Equation 

(3.39) [18]. 
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x'.=±-(x?+*"2)-x<'-*"2)) (3'39) 

At 
^ = ± ( ^ ^ " 2 ) _ ( y ( ^ / 2 ) ) I3"40) 

At 

where: 

x] (/ = 1,2,3) represents the translation acceleration at time t. 

d>' (i = 1,2,3) represent the rotational acceleration at time t. 

Integrating above Equations, translational and angular velocities of balls are 

found at time (' + A/ / 2) a s f0no w [ 18]: 

F' (3.41) 

m 

fl>(/+A,/2) =a«-«l2) +{^il + gj)At
 ( 3 ' 4 2 ) 

where: 

x\'+A"2)(i = 1,2,3) represents the translational velocity at time at mid 

interval (t + At/2). 

x(
('~A'/2)(z = 1,2,3) represents the translational velocity at time at mid 

interval (t-At/2). 

C0f'+A"2)(i = 1,2,3) represents the rotational velocity at time at mid interval 

(t-At/2). 

Note that, ball velocity in Ng model is updated by Equation (3.43). 

3 0-££)+£= <3'43> 

• «+A//2) 2 m 

o+f> 
Finally, the position of ball's centre (ball's trajectory) is updated by Equation 

(3.44) [18]: 
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x<:l+Al)^xi
i'

)+(x]'+&"2))At (3-44) 

where: 

x,"' (i = 1,2,3) represents the position of ball's centre at time t. 

jcf'+A/)(/ = 1,2,3) represents the new position of ball's centre at time 

(t + At). This quantity will use for calculation of force and moment in 

next calculation cycle. 

3.4. Comparison RocFall Algorithm and a Program Based on 

DEM 

DEM potentially can be appropriate for rockfall simulation because of the 

following reasons: 

1 - Rocks can be modeled with more detail of their material properties, 

sizes and shapes. 

2- The effect of contact of each rock on other rocks is considered as well 

as the effect of contacts of rocks on surfaces. 

3- Microscopic behaviour of rocks can be tracked as well as macroscopic 

behaviour. 

4- Since a surface can be defined with several triangles and each triangle 

has its own material properties and stiffness, surface can model very 

closely to real field conditions. 

In contrast with a simulation program based on DEM, RocFall, which is based on 

the particle model, does not consider the effects of size or shape of each rock and contact 

of rocks with other rocks, nor the microscopic behaviour of rock and angular momentum 

of rocks on their trajectories. Also, a freefalling model cannot be modeled using RocFall 

since according to its algorithm initial velocity should be a non-zero value. In spite of its 

limitation, RocFall has the following advantages: 
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1. RocFall is extremely quick to calculate hence, it allows engineers easily find the 

critical cases by trying different models with different geometries and conditions. 

Thus, they can take advantage of the analysis of outputs resulting from this software. 

CPU time for a simulation program based on DEM for complex models would be 

very high since time steps are very small (the algorithm of RocFall is not based on 

time step), since according to its algorithm, several parameters are involved and 

several calculation should be performed. 

2. Most of the inputs for RocFall such as slopes' geometry, coefficient of restitution for 

rock types and friction angle are usually available. Simulation of rockfall using 3D 

Discrete Element Method requires several inputs. In spite of the RocFall inputs 

required materials' properties and damping ratio are not available for certain rock 

types. 

3. RocFall is user friendly software and its algorithms are easy to understand; therefore 

user can be trained fast. A program based on DEM requires series of adjustments and 

calibration, therefore strong knowledge of rock and dynamics of contacts for analysis 

of the outputs are required for the user. 

4. Some statistical analysis are carried out for output of the rockfall simulation such as 

distribution of horizontal location of rocks' end points, which provides engineers with 

necessary information for design efficient remedial measures at appropriate locations. 
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4. Haraz: Overview and Details 

In this chapter, the computer program "Haraz" is presented. The code is based on 

DEM. "Haraz" is an object oriented program and is written in C++. The main reasons for 

using C++ are: Codes compiled in C++ are optimal (compared with other high level 

language codes), which makes them ideal when working on large codes. Furthermore, in 

C++ there is more control on main memory and this is essential for making a powerful 

data structure. 

In this code there are two main elements, namely ball and wall. Balls are 

assumed to be spherical rocks with different sizes and materials. Walls are composed 

from some triangles with different material and stiffness. 

4.1. Calculation Cycle 

Figure 4.1 shows the general flowchart of computer program Haraz. 

4.1.1. Generation of Balls 

In this part, balls are generated and their properties are assigned. Balls are 

spherical rocks with different sizes and materials. First, material properties and radius of 

each ball are read from an input file, Data.txt. Then, mass, circular section area, moment 

of inertia and polar moment are calculated according to the following Equations. Finally, 

after running the program, out put files are printed out. 

m = 4/3nR3y/9.81 (4.1) 

A = TTR2 (4.2) 

I = \I4TIRA (4.3) 

J = 1/2TTR4 (4.4) 

where: 
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m is mass for each ball. 

^ is ball density. 

^ is ball radius. 

I is ball moment of inertia. 

J is ball polar moment of inertia. 

4.1.2. Ball's Initial Conditions 

The initial position of each ball center can be either defined by the user or by 

randomly generating by uniform distribution over a point assigned by user or equally 

distributed tangent along a line parallel to impact surface (wall). Note that balls at the 

initial position should not overlap to avoid initial contact forces. The initial velocity of 

each ball is also defined by the user. 

4.1.3. Generation of Walls 

Wall is composed of triangular meshes. The coordinate of vertexes of the 

triangles are read from input file called "Wallpoints.txt". Also, the linear normal and 

shear stiffness are read from "Wallstiffness" and are assigned to each mesh. Then, the 

unit normal of each triangle is calculated. 
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Generate balls 

Generate walls 

Calculation of mass, cross section 
area ,moment of inertia and polar 

moment for balls 

Initialization of balls' position and 
velocity 

Calculation of linear contact 
stiffnesses 

for all possible contacts between 
balls 

Calculation of linear contact 
stiffnesses between balls and walls 

Determination of critical time and 
time step 

Detection of contacts and 
calculation of contact forces 

between balls 
(Force-Displacement Law) 

TRUE Step Number < = 
nstep 

FALSE 

Detection of contacts and 
calculation of contact forces 

between balls and walls 
(Force-Displacement Law) 

Calculation of resultant forces on 
each ball 

Up date the balls' 
positions 

(Law of motion) 
Print out puts End 

Figure 4.1: Flowchart representation of main block in Haraz. 
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4.1.4. Determination of the Time Step 

For determination of time step, first normal and shear stiffness of each ball and 

wall are read from related input files and linear normal and shear contact stiffness for all 

possible ball-ball and ball-wall contacts and the translational and rotational stiffnesses are 

calculated. After determination of maximum stiffness and minimum stiffness, critical 

time is calculated using equation (3.20). Finally, by choosing a value for a (coefficient of 

time step), and multiplying it by the critical time, time step is determined. 

4.1.5. Force-Displacement Law 

For each ball-ball contact and ball-wall, normal and shear contact forces viscous 

damping forces are calculated using "CForce" function and "CForcewall" function, 

respectively. Figure 4.2 illustrates the calculation procedure of normal and shear stiffness 

between two balls and Figure 4.3 illustrates the calculation procedure of normal and shear 

stiffness between a ball and a wall. After calculation of contact force and viscous 

damping forces, resultant forces acting on each ball are determined. According to contact 

type contact stiffnesses are calculated. 
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Start 
Calculation of unit normal 

vector ( „ ) 

Calculation of distance 
between two balls (rf) 

TRUE 

check if balls slip, 
; then contact forces set 

to zero. 

Calculation of Overlap of 
two Balls ( £ / " ) 

FALSE 

FALSE 

TRUE 

Contact forces is 
set to zero 

TRUE 

Calculation of coordinates of 
contact point 

^ontact type is either--— FALSE 
JHertz-Midlin or N g ^ ^ ^ " 

TRUE ^ - - Contact type is H e r t z > \ ^ FALSE 
Mindlin or Ng at first step^ 

Calculation of Hertzian normal j 
stiffness 

Calculation Ng normal and 
shear stiffness 

Calculation of the magnitude of normal contact 
force 

Calculation of linear normal and 
tangent stiffness 

T 
T 
T 

Calculation of normal component 
of contact force / 77 n \ 

Calculation of Hertz- Mindlin shear 
stiffness 

TRUE Contact fypeTs-^.^ 
Hertz-Mindlin ,_-—""' 

FALSE 

Calculation of rotational shear 
force about a line common to old 

and new contact planes. 

Calculation of average 
angular velocity 

Calculation of shear! 
force increment 'r* 

vector 

Calculation of 
displacement-

increment vector 

Calculation of 
normal and shear 

velocity 

i Calculation of shear component; 
of contact force 

FALSE -~~' Contact type~is-\_ 
either linear or 

^Hertz-Mindlin _—-" 

TRUE 

Calculation of total „ , , . , 
„ , , Calculation of total contact ; 
End « moments on each •* : ,. , , „ ~4 

. ,. forces on each contact ball. • 
contact ball. (P\ 

Calculation of viscous damping force 
and friction 

Figure 4 .2 : F lowchar t representa t ion o f function C F o r c e : Calcula t ion o f contact forces b e t w e e n t w o bal ls . 
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Start 

Read coordinates 
of triangles and 
their properties 

Genearte walls. 

Check if the origin of 
unit normal locates in the 

triangle. 
I Find the unit normal vector « 

Calculation of unit normal 
vector. 

Find the shortest distance 
between two the ball and wall 

(d) .__. 
TRUE 

Calculation of overlap of two 

lUlll=°> 
FALSE 

TRUE 
FALSE 

- & / > 0)& (/ sin triangle =]} 

Check if balls slip and 
contact forces set to zero. 

Contact force is i 
set to zero 

Calculation of coordinates of 
contact point 

TRUE 

TRUE 

- - " Contact type is Herz -Mindlin 
or Ng model at first step of the contag 

Calculation of Hertzian normal 
stiffness. 

FALSE 

Calculation of Ng normal and 
shear stiffness. 

FALSE 

Calculation of the linear normal 
and tangent stiffness. 

Calculation of the magnitude of 
normal contact force. 

Calculation of normal component 
of contact force , r n i 

(A- ) 

Calculation of Hertz- Mindlin shear 
stiffness. 

TRUE FALSE 

Calculation of contact rotational 
shear force about a line common to k 

old and new contact planes. 

Calculation of j 
average angular '•* 

velocity. | 

Calculation of 
contact shear force 
increment vector. 

Calculation of 
contact 

displacement 
increment vector. 

Calculation of 
contact normal and \ 

shear velocity. 

Calculation of shear component of 
contact force, 

FALSE 
" Contact type is 
either Linear or 
Hertz-Mindlin . 

TRUE 

End 
Calculation of total 
moments on each < 

contact ball. 

Calculation of total contact 
forces on each contact -

ball. 

Calculation of viscous damping 
Force. 

Figure 4.3: Flowchart representation of function CForcewall: Calculation of contact forces between a ball and a 
triangle. 

55 



4.1.5.1. Calculation of Contact Stiffness for Linear, Hertz-Mindlin and Ng Models 

Linear normal and shear stiffness using Equations (2.21) and (2.22). Figure 4.4 

and Figure 4.5 illustrate the calculation procedure of normal Hertz-Mindlin stiffnesses 

and shear Hertz-Mindlin stiffnesses respectively. 

Start 

Calculation of normal Hertz-Mindlin 
stiffness 

End 

Figure 4.4: Flowchart representation of calculation Hertz-Mindlin normal forces. 

Start 

Calculation of normal Hertz-Mindlin 
stiffness 

Calculation of normal contact force 

End 

Figure 4.5: Flowchart representations of Hertz-Mindlin shear stiffness. 

Figure 4.6 illustrates the calculation procedure of normal and shear stiffness for 

Ng model. 
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Start 

TRUE FALSE 

Stiffness Hertz Mindlin normal 

Calculation of radius of contact. 

Calculation of normal stiffness. 

Calculation of normal stiffness. 

End 

Figure 4.6: Flowchart representation of calculation of Ng normal and shear stiffness. 

Figure 4.7 illustrates the procedure of calculation of normal contact forces 

according to An model. 

After calculation of contact stiffnesses, using Equation (3.28) and (3.29), contact 

forces for linear, Hertz-Mindlin, Ng are calculated. 
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Start 

Read the values of 
transition force and 

an exponent 

Calculation of linear 
normal contact forces 

FALSE TRUE 

F? = T x rif 

Calculation of a, 
T 

a = (t/£_max)° 

Calculation of normal 
contact force using 

F" -ax xrij 

End ) 

Figure 4.7: Flowchart representation of calculation of power function forces ("An" normal contact forces). 

4.1.5.2. Calculation of Viscous Damping Forces 

Figure 4.8 illustrates the calculation procedure of viscous damping force. 

4.1.5.3. Calculation Unit Normal for Ball-Wall Contact 

Equation (4.5) is the standard equation of a plane in 3D space: 

Ax + By + Cz + D = 0 (4.5) 

(A, B, C) represent normal vector on the plane. Expanding the above gives: 
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A = yl(z2 -zi) + y2(z3 - z , ) + ^3(z, - z2) 

B-zl(x2-x3) +z 2 (x 3 -x , ) + z 3 ( x , - x 2 ) 

C= xx{y2-yi) +x2(y3-yl) + x3{yx-y2) 

(4.6) 

(4.7) 

(4.8) 

Start 

TRUE FALSE 

TRUE 

• 

. X , 

Stiffness_Hertz_Mindlin normal 

T 

Stiffness_Hertz_Mindlin_tangential 

V 

Calculation of critical damping 

V 

Calculation of viscous damped 
force 

End 

Figure 4.8: Flowchart representation of calculation of viscous damping forces. 

4.1.5.4. Perpendicular_ Origin 

Equations (4.5), (4.6), (4.7) and (4.8) allow us to calculate the magnitude and the 

direction of the vector normal to the plane. However, the origin of this vector can be 

anywhere on the plane of (not necessarily on the mesh). In Haraz, 
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"Perpendicular_Origin" function determines the coordinates of perpendicular origin on 

the plane. 

4.1.5.5. isInTringle 

The "isInTriangle" function checks if the origin of the unit normal vector is 

located within the mesh. 

4.1.5.6. Find_TheShortest_distance: Calculation of the Distance between Ball and 

Wall 

Figure 4.9 illustrates all possible positions of mapped ball centre on the wall. 

When Ball centre lies in zone (2) or zone (4), distance is the length of normal, and it can 

be calculated by Equation (4.9) 

i I ball perpendicu far _ foot (4.9) 

W 

(1) 

V 
c \ 

A 

. '' (5) 

1 r 

1 
« / 2 

• D ^ r * 

/ 

" i * 4 -

5 

Determination of normal direction for ball-ball contact. 

3 

Figure 4.9: Normal unit vector in ball-wall contact [ 18]. 
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When the ball center located in zone (1), (3) or (5) contact will occur at one of the 

endpoints. To find out which endpoint, the distance between ball center and three 

vertexes of triangle is calculated, and the least value would be considered as a distance of 

ball and the triangle. 

Start 

Find perpendicular foot (the ball's 
center map on the plane) 

FALSE 

Calculation of distance 
between ball's center and each 

origin of normal vector. 

Distance is minimum value. 

End 

TRUE 

Calculation of distance between 
ball's center and perpendicular 

foot. 

Figure 4.10: Flowchart representation of calculation of the shortest distance between a ball and a triangle. 

4.2. Newton's Second Law of Motion 

Figure 4.11 represents the procedure of finding new position of each object at the 

end of the calculation cycle. 
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FALSE 

Update object's velocity and 
angular velocity according to 

Equations (3.39)-(3.42) 

Update object's velocity 
according to Ng formulation 

Equation (3.43) 

Update object's acceleration and 
angular acceleration 

Update the position of object 

time= time + timestep 

End 

Figure 4.11: Flowchart representation of compute new position of an object using the law of motion. 
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5. Nonlinear Normal and Shear Stiffness for 

Different Rock Types 

This chapter is concerned with normal and shear stiffnesses, which are produced 

by Hertz-Mindlin, Hertz-Ng and Ng model. To be able to compare the outcomes of 

contact models, the ratio of normal stiffness to shear stiffness for different rock types is 

calculated. Also, variation of normal contact force in respect to time and normal 

displacement is presented in this chapter. In these models, normal stiffness depends upon 

objects' material properties: Poisson ratio °, elastic shear modulus G, and objects' 

geometry such as radius of ball and contact properties: contact normal overlap. Shear 

stiffness in addition to material and geometry properties, also depends upon the 

magnitude of the normal contact force. Table 5-1 illustrates the material's properties of 

some rock types [40] and Table 5-2 is part of input file for computer program and 

describes the properties of a ball with 100.8 N weight (radius of 0.21 m and density of 

2600 kg/m3) subject to 1.0 m free fall to horizontal wall (Figure 6.1) in ideal situation 

(damping ratio is equal to zero). 

Table 5-1: Properties of some rock types [40]. 
Rock Type [40] 

Westerly Granite 

Young 
modulus, E 

(GPa) 

56 

Rock Type [40] 

Westerly Granite 

Young 
modulus, E 

(GPa) 

56 

Lac du Bonnet Granite 

Springwell Sandstone 

Tournemire Mudstone 

69 

79 

71 

Poisson s ratio, v 

(dimensionless) 

5771 

0726 

5738 

036 

032 

Elastic shear 
modulus, G 

(GPa) 

25.225 

27.381 

6.884 

4.412 

8.712 

Unconnned 
Compressive 

Strength (MPa) 

229 

200 

"977" 

~47~ 

7577" 

Berea Sandstone 
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Table 5-2: Inputs for the model. 
Number 

of 
triangles 

2 

Number 
of 

balls 

1 

Number 
of 

steps 

lxlO7 

Contact 
type 
code 

1,3,4 

R 
(m) 

0.21 

(N/m) 

6.4xl010 

(N/m) 

9.6xl06 

r 
(N/m3) 

2600 

P 

0 

In order to investigate normal and shear stiffness for Hertz-Mindlin, Hertz-Ng and 

Ng model, a model of a ball and horizontal wall are modeled. Since in linear model the 

method to determine the stiffness of individual contact bodies as well as the relation 

between stiffness and rock properties is not discussed, the comparison of these contact 

models can be used to find a reasonable range for linear stiffness when a linear model is 

used. Note that the values of linear stiffnesses are used for determination of time steps in 

this problem. 

5.1. Hertz - Mindlin Model 

Normal and shear stiffnesses in Hertz-Mindlin are calculated by Equations (2.24) 

and (2.25) respectively. Figure 5.1 and Figure 5.2 demonstrate Hertz-Mindlin normal and 

shear force for some rock types of ball-wall contact. In this case the normal stiffness for 

all mentioned rock types is about 80% of shear contact stiffness as shown in Table (5-3). 

Table 5-3: The ratio of maximum normal stiffness to shear stiffness 
using Hertz-Mindlin contact model for first impact. 

Rock type 

Westerly Granite 

Lac du Bonnet Granite 

Berea Sandstone 

Springwell Sandstone 

Tournemire Mudstone 

K" 

Ks 

0.708 

0.784 

0.871 

0.854 

0.824 
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Figure 5.1: The normal stiffness produced by Hertz-Mindlin model for different rock types. 
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Figure 5.2: The shear stiffness produced by Hertz-Mindlin model for different rock types. 

65 



Figure 5.3 illustrates the normal contact forces of the contact model for the 

mentioned rock types. The value of normal contact forces are calculated by Equation 

(3.28). 

Normal contact force vs. time for the rock types. 
x 10 

<2 2.5 

ifi 

1.51 

0.5 

0.451 

• ^ —— Westerly Granite 
- "f» • Lac du Bonnet Granite 
...<*... Berea Sandstone 
. . . » Springwell Sandstone 
— • • Tournemire Mudstone 

"I a--'- "1 * 

I ff A -:* 

0.452 0.4525 
time (sec) 

0.453 0.4535 

Figure 5.3:The variation of normal contact force versus time. 

Figure 5.4 illustrates the variations of normal contact force versus normal overlap 

for the mentioned rock types. The slope of tangents to curve shows the normal stiffness 

of the contact. 
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Hertzian normal force vs. Overlap(displacement) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Overlap (normal displacement) (m) x 1 ° 

Figure 5.4: The variation of normal contact force versus normal displacement. 

5.2. Ng Normal and Shear Stiffness for Different Rock Types 

Ng normal and shear stiffness contact for ball-wall contact are calculated by 

Equation (2.37) and (2.38) respectively. Both normal and shear stiffnesses depend on 

normal contact force in addition to material and geometry properties. For the first step of 

contact, when normal contact force is not determined, in this work, the magnitude of 

normal force is calculated by Hertz-Mindlin formula. Figure 5.5 illustrates the variation 

of contact normal stiffness versus time for different rock types using Ng model. Figure 

5.6 illustrates the variation of contact shear stiffness versus time for the same rock types. 

Ng normal stiffness is noticeably less than shear stiffness as it is shown in Table 5-4. 
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Table 5-4: The ratio of maximum normal stiffness to shear stiffness using 
Ng contact model for first impact. 

Rock types 

Westerly Granite 

Lac du Bonnet Granite 

Berea Sandstone 

Springwell Sandstone 

Tournemire Mudstone 

K" 

Ks 

0.0037 

0.0038 

0.0057 

0.0063 

0.0052 

x10 Ng normal stiffness vs. time for the different rock types. 

0.45 

*• Tournemire Mudstone 

Westerly Granite 
Lac du Bonnet Granite 
Berea Sandstone 
Springwell Sandstone 
Tournemire Mudstone 

0.455 0.46 
time, (sec) 

0.465 0.47 

Figure 5.5: The Variation of Ng normal stiffness versus time for different rock types. 
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x10° Ng shear stiffness vs. time for the rock types 
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Figure 5.6: The variations of Ng shear stiffness versus time for different material. 

Ng normal contact force vs. time for different contact types. 
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Figure 5.7: The variation of Ng normal forces versus time during first contact. 
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Figure 5.8: The variation of Ng normal forces versus normal displacement for different rock types. 

As previously discussed, damping ratio directly affects on calculation of new 

velocity in Equation (2.41). The relation of damping ratio P in this model and normal 

coefficient of restitution will be discussed later. 

5.3. Hertz-Ng Model 

This model combines Hertz-Mindlin and Ng model, i.e., contact stiffness and 

consequently forces are calculated by Hertz-Mindlin method, at which normal stiffness 

does not depend upon the value of magnitude of normal force. However, viscous 

damping used in form of Ng model and the value of damping ratio directly affects the 

new velocity. As it can be seen in Table 5-5, in this case the ratio of maximum normal 

stiffness to maximum shear stiffness is greater than Ng model and less than Hertz-

Mindlin model. 
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Table 5-5: Ratio of maximum normal stiffness to shear stiffness 
using Hertz-Ng contact model for first impact 

Rock types 

Westerly Granite 

Lac du Bonnet Granite 

Berea Sandstone 

Springwell Sandstone 

Tournemire Mudstone 

K" 

0.0095 

0.0100 

0.0144 

0.0152 

0.0130 

Figure 5.9 and Figure 5.10 illustrate the variations of Hertz-Ng contact normal 

and shear stiffness versus time for above rock types respectively. 

x10 
8 The variation of Hertz-Ng contact normal stiffness versus time for different rock types. 
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Figure 5.9: The variation of Hertz-Ng contact normal forces versus time for different rock types. 

Figure 5.11 illustrates the variations of Hertz-Ng normal contact force versus 

normal overlap for the mentioned rock types. The slope of tangents to curve shows the 

normal stiffness of the contact. 
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X10° 
Hertz -Ng shear stiffness vs. time for different rock types. 
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Figure 5.10: The variations of Hertz-Ng shear stiffness versus time for different rock types. 
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The variation of normal contact force versus time for different material using Hertz-Ng model. 
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Figure 5.11: The variation of normal contact forces versus normal displacement for different rock types. 
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5.4. Summary 

• Normal and shear stiffnesses and consequently contact forces in Hertz-

Mindlin model are larger than the values in Hertz-Ng and Ng models. 

• Considering the ratio of normal stiffness to shear stiffness, the ratio of 

normal stiffness to shear stiffness in Hertz-Mindlin, Hertz-Ng and Ng 

model are noticeably different. Normal stiffness in Hertz-Mindlin model is 

about 80 %, in Hertz-Ng model is about 1% and in Ng model less than 1% 

of shear stiffness. 

• Linear, Hertz-Mindlin, Hertz-Ng and Ng contact models only describe the 

elastic deformation of rocks as force-displacement curves in these models 

are reversible for different rocks. Therefore, these models do not show the 

complete presentation of behaviour of colliding rocks and energy loss due 

to rock fragmentation. 
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6. Influence of the Contact Models on Dynamic 

Responses of Falling Ball on a Horizontal Wall 

This chapter is concerned with demonstration of microscopic and macroscopic 

behaviours of a freefall ball colliding with a flat and horizontal wall when different 

contact models are used. Since collision of a ball and a flat wall can be considered as 

generalization of the case of collision of two identical spheres [24], the results of this 

model can be valid for collision of two balls as well. In this chapter, contact of a ball and 

a horizontal wall is modeled using linear, Hertz-Mindlin, Ng method with and without 

damping ratio, and the dynamic response of each model is discussed and compared with 

other contact models. Coefficient of restitution for contact of a 10 kg Berea Sandstone 

ball and a horizontal wall with different materials is calculated and the correlation of 

coefficient of restitution and damping ratio is determined for each contact model. Note 

that the effect of impact velocity on coefficient of restitution is not considered. Moreover, 

in an ideal system, the contact models Hertz-Mindlin and Hertz-Ng model have the same 

algorithm. 

6.1. Comparison of Contact Models 

Table 6-1 is part of the input file named "Data.txt", and it describes the properties 

of a ball with 100.8 N weight (radius of 0.21 m and density of 2600 kg/m3 ) subjected to 

free fall in ideal situation (damping ratio is equal to zero). 

Table 6-1: Inputs for the model. 
Number 

of 
triangles 

2 

Number 
of 

balls 

1 

Number 
of 

steps 

lxlO7 

Contact 
type 
code 

0,1,4 

R 
(m) 

0.21 

(N/m) 

6.4xl010 

(N/m) 

9.6 xlO6 

7 
(N/m3) 

2600 

P 

0 
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Wall is a frictionless horizontal plane including two triangles. Figure 6.2 presents 

the configuration of the wall and arrangements of triangles (mesh). 

Table 6-2: wall stiffness of horizontal wall. 
Number of 
triangles 

1 

2 

Linear shear stiffness 

(N/m) 

107 

107 

Linear shear stiffness 

(N/m) 

107 

107 

Table 6-2 shows the stiffness of each triangle. Note that in ideal situation (where 

the law of energy conservation is upheld), contact stiffnesses of ball and wall have no 

effect on the trajectory and velocity of the balls (walls are assumed static). Figure 6.2 

shows the trajectory of the ball. 

Horizontal wa l l : Arrangement of the mesh. 

X (m) 

Figure 6.1 : Configuration of the mesh of the horizontal wall. 

75 



1 

0.9 

0.8 

0.7 

~ 0 . 6 

N°.5 

0.4 

0.3 

0.2r 

0.1 

0-

Ball's trajectory for linear, Hertz-Mindlin and Ng model in ideal situation. 

initial poisition of ball's center 
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Linear contact model 
- Hertz - Mindlin contact model 

Ng model 

Position of horizontal wall 
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x (m) 

0.35 0.4 0.45 

Figure 6.2: Ball trajectory in free fall on horizontal wall when damping ratio equal to zero. 

0.5 

Since the ball is just affected by gravity, the trajectory of ball is vertical. In other 

words shear forces are equal to zero. According to the law of energy conservation, an 

object in free fall would have a gradually increasing kinetic energy as the velocity 

increases as it is drawn closer to ground by gravitational acceleration. Right before the 

object makes contact with ground, the kinetic energy is at its maximum value, whereas 

the potential energy is zero. During the contact phase of the object and the wall, the two 

objects will overlap and potential energy increases. At maximum overlap the potential 

energy reaches its maximum value. Right after the contact phase, when the object starts 

to separate from the wall, all the potential energy gradually converts to kinetic energy 

permitting the object to return to its initial position or elevation. Figure 6.3 shows the 

ball's motion with respect to time. 
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Figure 6.4 illustrates the ball's velocity in "Z" direction with respect to time. The 

fact that all the contact models have similar ball's trajectory and ball's velocity confirms 

the validity of all the contact methods with respect to the energy conservation law. Also, 

since the rebound velocity and impact velocity are equal, coefficient of restitution is 1.0, 

which shows that the collision is perfectly elastic. 

Figure 6.5 illustrates the variation of normal force (in the "Z" direction) with 

respect to the extent of the normal overlap for linear, Hertz-Mindlin, and Ng models. This 

figure also confirms the conservation of energy in all contact models since the impact and 

rebound curves coincide, and the ratio of areas under impact and rebound curves is one, 

meaning there is no energy dissipated. 

Ball's motion in rspect with time for linear, Hertz-mindlin and Ng model in ideal situation. 

0.2h W I ' * " " Ng model *ij | 

0.1 — 1 _... : 
0 0.5 1 1.5 

time (sec) 

Figure 6.3: Ball's motion in respect with time in ideal situation for different contact model. 

77 



Contact normal velocity versus time in ideal situation using linear, Hertz - Mindlin and Ng contact models. 
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Figure 6.4: Ball's velocity in free fall in ideal situation using linear, Hertz- Mindlin and Ng model. 

x IQ4 Force- displacement relation in ideal situation using linear.Herta - Mindlin and Ng model. 
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Figure 6.5: Force-displacement relation in ideal situation for different contact models. 

The slope of the tangent to each curve in Figure 6.5 represents its stiffness value. 

As shown in this figure, Hertz-Mindlin model produces larger values for normal stiffness 
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than other contact models. Also, the area under the loading and unloading curves which 

are coincided for all the contact models, represent the energy loss of system, which 

confirms the validity of conservation of energy in this system. 

As the Hertz-Mindlin model produces much higher values of the stiffnesses value, 

normal forces values are larger as well. Figure 6.6 shows the variation of normal force (in 

the Z direction) with respect to the extent of the overlap of linear, Ng and An models in 

ideal situation. 

4 The variation of normal contact force versus time in ideal situation 
x 10 using linear, Hertz- Mindlin and Ng model. 

Figure 6.6: Normal contact force versus time in ideal situation for linear, Hertz-Mindlin and Ng contact models at first 
contact. 

The maximum normal forces of Hertz-Mindlin model is about ten times greater 

than the maximum normal forces of other models and occurs in a much shorter period of 

time compared to the other contact methods. The linear model and Ng model have almost 

the same curve configuration as well as the maximum normal force value, but maximum 

force in Ng model occurs with delay in comparison with linear model 
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The variation of normal displacement versus time at first contact using linear, Hertz - Mindlin and Ng model in ideal situation 
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Figure 6.7: The variation of normal displacement versus time at first contact using linear, Hertz -Mindlin and Ng 
contact models in ideal situation. 

Figure 6.7 illustrates the overlap between the ball and the wall over time. 

Displacement in Ng model is much larger than other models. The minimum displacement 

occurred with the Hertz-Mindlin method (less deformable method). In fact, it is less than 

a third of the displacement value of the linear method. 

6.2. The Effect of Viscous Damping on Ball Motion 

Table 6-3 is part of input file, namely "Data.txt", and describes the properties of a 

ball (Berea Sandstone), number of triangles and steps. A model including a 10 Ag- ball and 

horizontal ball is built and dynamic of the damped freefall using mentioned contact 

models which are studied. 

Table 6-3: Inputs of simulation 
Number 

of 
triangles 

2 

Number 
of 

balls 

1 

Number 
of 

steps 

lxlO7 

Contact 
type 
code 

0,1,3,4 

R 
(m) 

0.21 

(N/m) 

6.4x10' 

(N/m) 

9.6xl06 

r 
(N/m3) 

2600 

P 

various 

V 

0.38 

E 
(Pa) 

6.88xl09 
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6.2.1. Ball's Motion 

Unlike the freefall system without damping, in damped systems the ball's motion 

and ball's velocity using different contact models are dissimilar. As seen in Figure 6.8, 

Figure 6.9, Figure 6.10 and Figure 6.11, for certain damping ratios, the bounce height of 

the ball using different models is very different. Meaning the effect of the value of 

damping ratio, in each contact model on macroscopic and microscopic behaviours of ball 

and also contact time are different. Contact time in Ng and linear models are much longer 

than Hertz-Mindlin and Hertz-Ng models. Increasing the value of damping ratio increases 

the contact time in all models except Hertz-Mindlin, which has always a constant contact 

time. 

Ball's motion in respect to time for various damping using linear contact model and viscous damping. 

Beta = 0.0 
— Beta = 0.2 
••- Beta = 0.5 
— Beta = 1.0 

V^-#ZL_ 
0.8 1 1.2 

time (sec) 
1.6 

Figure 6.8: BalFs damped motion using linear model. 
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Bairs motion in respect to time for different damping ratio using Hertz-Mindlin model and viscous damping. 

1.5 
time (sec) 

Figure 6.9: Ball's damped motion in respect to time using Hertz-Mindlin model. 

motion in respect to time for various damping ratio using Hertz - Ng contact model and visous damping. 

1.5 
time (sec) 

Figure 6.10: Ball's damped motion using Hertz-Ng model. 
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Bairs motion in respect to time for various damping ratio using Ng contact model and viscous damping. 

time (sec) 

Figure 6.11: Ball's damped motion using Ng model. 

6.2.2. Ball's Velocity 

The term ball's velocity or contact velocity represents the velocity of the center 

of ball during contact. Figure 6.12, Figure 6.13, Figure 6.14 and Figure 6.15 illustrate the 

variation of ball's normal velocity versus time for the different value of the damping ratio 

for linear, Hertz-Mindlin, Hertz-Ng and Ng model. Similar to ball's trajectory, the effect 

of the value of the damping ratio is different in each contact model. 
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Bairs normal velocity vs. time for various damping ratio using linear contact model and viscous damping. 

fr.\.j,Jw-

1 1.5 
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Figure 6.12: The variation of contact velocity versus time for various damping ratio using linear model. 

Ball's normal velocity vs. time for various damping ratio using Hertz-Mindlin contact model and viscous damping. 
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Figure 6.13: The variation of contact velocity versus time for various damping ratio using Hertz-Mindlin model. 
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Ball's velocity vs. time for various damping ratio using Ng contact model and viscous damping. 

Figure 6.14: The variation of contact velocity versus time for various damping ratio using Hertz-Ng model. 

Ball's velocity versus time for various damping ratio using Ng contact model and viscous damping. 

Figure 6.15: The variation of contact velocity versus time for various damping ratio using Ng model. 
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6.2.3. Contact Normal Force 

Figure 6.16, Figure 6.18, Figure 6.20 and Figure 6.22 demonstrate the variations 

of normal contact forces versus time using linear, Hertz-Mindlin, Hertz-Ng and Ng 

models respectively. Also Figure 6.17, Figure 6.19, Figure 6.21 and Figure 6.23 illustrate 

the variations of normal contact force versus time during first contact. As can be seen in 

force-time figures, is not only the value of maximum normal contact force for different 

values of damping ratio ' ̂ , different in each contact model, but also the configuration 

of forces, beginning and ending time of contact and the duration of contact forces are 

different. 

In linear model, system for P~ is in critically damped condition so ball's 

motion decays fast but in the other cases, which are in underdamped condition ball's 

motion oscillate with decreasing bounce height and maximum force, and increasing the 

damping ratio causes the successive contacts occur faster. For example, as shown in 

Figure 6.16, second contact for" , occurs about 0.7 (sec) sooner than the second 

contact when ̂  = 0 - ° . 

In linear contact model, some tension forces are produced in second phase of 

contact (rebound). The values of the tension forces decrease with increasing of damping 

ratio, ^-P' ,although for certain value of damping ratio, *•"', tension forces decrease in 

successive contacts. 
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x10 
The variation of normal contact force vs. time for various damping ratio using linear model. 
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Figure 6.16: The variation of norma) contact force versus time using linear model. 

The variations of normal contact force vs. time for various damping ratio using linear model during first contact 
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Figure 6.17: The variation of normal contact force versus time using linear model at first contact. 
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As shown in Figure 6.18 the maximum values of normal contact forces in Hertz-

Mindlin model are much higher than the maximum contact force in other models. 

Normal4contact force vs. time for various damping ratio using Hertz- Mindlin contact model and viscous damping. 
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Figure 6.18: The variation of normal contact force versus time using Hertz-Mindlin. 
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Figure 6.19: The variation of normal contact force versus time using Hertz-Mindlin model at first contact. 



At first contact in Hertz-Mindlin contact model (Figure 6.19), the time of 

maximum contact force for different values of damping ratio ̂ P', is almost the same but 

for successive contacts, maximum force of contact occurs faster for higher value of 

damping ratio. As shown in Figure 6.21 and Figure 6.23, at first contact in Hertz-Ng and 

Ng models, increasing the damping ratio, ^ ' , causes delay in contact. For successive 

contacts same as Hertz-Mindlin and linear model, contacts with higher value of damping 

ratio occur faster. 
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Normal contact force vs. time for various damping ratio using Hertz - Ng model and viscous damping. 
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Figure 6.20: The variation of normal contact force versus time using Hertz-Ng model. 
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Figure 6.21: The variation of normal contact force versus time using Hertz-Ng model at first contact. 

Normal contact force vs. normal displacement for various damping ratio using Ng model. 
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Figure 6.22: The variation of normal contact force versus time using Ng model. 
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Normal contact force vs. normal displacement for various damping ratio using Ng model during first contact. 
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Figure 6.23: The variation of normal contact force versus time using Ng model at first contact. 

6.2.4. Normal Displacement (Overlap) 

Figure 6.24, Figure 6.26, Figure 6.28 and Figure 6.30 demonstrate the variations 

of normal contact overlap (displacement) versus time using linear, Hertz-Mindlin, Hertz-

Ng and Ng model. Although, configurations of overlaps are different in each contact 

model, increasing the damping ratio decreases the normal overlap between objects in all 

the models. Similar to contact forces, the effect of damping ratio on Hertz-Ng and Ng is 

not noticeable. 

At first contact, increasing the value of damping ratio has no effect in contact time 

in linear and Hertz-Mindlin model in contrast with Hertz-Ng and Ng model since 

damping ratio is incorporated in updating velocity. 
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Normal displacement vs. time for various damping ratio using linear model 
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Figure 6.24: The variation of normal displacement versus time using linear model. 

Normal displacement vs. time for various damping ratio using linear model during first contact. 
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Figure 6.25: The variation of normal displacement versus time using linear model at first contact. 
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Normal displacement vs. time for various damping ratio using Hertz-Mindlin contact model and viscous damping 
xir/1 
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Figure 6.26: The variation of normal displacement versus time using Hertz-Mindlin model. 

Normal displacement vs. time for various damping ratio using Hertz-Mindlin contact model and viscous damping 
x 10 during first contact. 
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re 6.27: The variation of normal displacement versus time using Hertz-Mindlin model at first contact. 
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x10 
^ Normal displacement vs. time for various contact model and viscous damping using Hertz - Ng model 
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Figure 6.28: The variation of normal displacement versus time using Hertz-Ng model. 

Normal displacement vs. time for various contact model and viscous damping using Hertz - Ng model 
x i o during first contact. 
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Figure 6.29: The variation of normal displacement versus time using Hertz-Ng model at first contact. 
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Normal displacement vs. time for various damping ratio using Ng contact model and viscous damping 
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Figure 6.30: The variation of normal displacement versus time using Ng model. 

Normal displacement vs. time for various damping ratio using Ng contact model and viscous damping 
during first contact. 
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Figure 6.31: The variation of normal displacement versus time using Ng model at first contact. 
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6.2.5. Force-Displacement Relation 

Figure 6.32 and Figure 6.33 demonstrate the variations of normal contact force 

versus normal overlap using linear and Hertz-Mindlin model. Viscous damping is used 

for dissipation of energy during the contact. Since the linear dashpot (viscous damping) is 

used, it is expected to see the half elliptic curve with hysteresis behaviour with the 

maximum damping force at origin [11]. Using viscous damping causes the incorrect 

hysteresis behaviour [11]. In contrast with experimental tests, the initial contact force is 

not zero at the beginning of contact in Figure 6.32 and Figure 6.33 [11]. Negative areas in 

Figure 6.32 and Figure 6.33 represent tension forces that reduce the real amount of 

energy dissipation which is another error [11]. To cancel the effect of these errors, some 

nonlinear dashpots were proposed in literature. However these errors in linear and 

especially in Hertz-Mindlin model can be ignored. 

Hysteresis loop associated with viscous clamping and linear model. 
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Figure 6.32: The variation of normal contact force versus normal displacement using linear model. 
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Hysteresis bop associated with viscous damping and Hertz - Mindlin contact model 
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Figure 6.33 : The variation of normal contact force versus normal displacement using Hertz-Mindlin model. 

Figure 6.34 and Figure 6.35 demonstrate the variations of normal contact force 

versus normal overlap using Hertz-Ng and Ng model. In these models the viscous 

damping ratio is directly applied in Equation (2.40) and directly appears in new velocity 

formula (Equation (2.41)). The relationship between normal force and normal 

displacement (overlap) is a nonlinear power law. For both of the models the impact and 

rebounds curves for the certain damping ratio almost coincide, and for different damping 

ratio, just maximum force and maximum overlap (the coordinates of end points) differ. 

Also for both models, the initial force is zero which means that the error in linear and 

Hertz-Mindlin is cancelled in Ng-Hertz and Ng model. 
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,x10 
5 The force displacement relalation associated with viscous damping and Hertz-Ng contact model. 
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Figure 6.34: The variation of normal contact force versus normal displacement using Hertz-Ng model. 
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Figure 6.35: The variation of normal contact force versus normal displacement using Ng model. 
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6.3. Coefficient of Restitution 

Table 6-4 shows the values for normal coefficient of restitution for various rock 

types [11,43] as well as the damping ratio for the mentioned contact models with viscous 

damping can produce the coefficient of restitution for each material. By definition, 

coefficient of restitution is the ratio of ball's velocity in last step of contact (when two 

bodies separate from each other) to ball's velocity in first step of contact when (two 

bodies start to overlap), as shown in Equation (6.1). 

R_Voul (6-1) 

in 

Where: 

7?„is normal coefficient of restitution. 

Vout is the normal component of velocity, when contact ends (overlap is 

zero). 

Vjn is the normal component of velocity, at begining to overlap of contact 

bodies. 

As it shown in the table while the values for normal coefficient of restitution 

range 0.30-0.53, the values for damping ratio for each contact model vary in a different 

way. For linear model, Hertz-Mindlin and Ng model the values for damping ratio range 

0.179-0.364, 2.399-3.76 and 16.1-38.1 respectively. Note that coefficient of restitution 

depends upon the contact velocity, here no modification is done regarding to the velocity. 
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Table 6-4: The values of viscous damping ratio for contact of a ball and a wall with different materials. 

Wall's materials 

Clean hard bed rock 

Asphalt roadway 

Bed rock outcrops with hard 
surface, large boulders 

Talus cover 

Soft soil 

Values for 

V 

in 

0.53 

0.40 

0.35 

0.32 

0.30 

Values for damping ratio ( P ) 

Linear 

0.179 

0.283 

0.324 

0.328 

0.364 

Hertz-Mindlin 

2.399 

3.169 

3.464 

3.642 

3.76 

Hertz- Ng Ng 

16.10 

34.90 

36.5 

37.50 

38.10 

As discussed before, another definition of coefficient of restitution is based on 

work of indentation approach [11,43]. The areas within the loading (impact) and 

unloading (rebound) curves define the amount of energy dissipated during impact 

(energetic definition of coefficient of restitution). Many data about terms of energy 

dissipation in for different types of rock rockfall studies are presented in terms of 

coefficient of restitution. To define energy loss in Discrete Element Method and use the 

previous studies, it is necessary, to find a correlation between coefficient of restitution 

and damping ratio. Figure 6.36 demonstrates the correlation of coefficient of restitution 

and damping ratio for first bounce of contact of a ball and horizontal wall, considering 

above definitions of coefficient of restitutions. For several damping ratios, ratio of 

relative velocity of ball at end of contact to relative velocity of ball at beginning of 

contact calculated and linear relation of the coefficient of restitution and damping ratio 

based on Newton's definition is found. For calculation of energetic coefficient of 
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restitution, for several damping ratios, the force-displacement curves are drawn and the 

area within loading and unloading curves of numerically is calculated. With same 

approach the relation for normal coefficient of restitution and damping ratio for Hertz-

Mindlin is found. 

The correlation of coefficient of restitution and damping ratio for 
linear model. 
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Figure 6.36: The correlation of coefficient of restitution and damping ratio for linear model. 

As shown in Figure 6.37 two definition of coefficient of restitution have same 

representation in linear and especially in Hertz-Mindlin model. For Hertz-Ng model, 

since increasing the damping ratios, does not change the ratio of end velocity to start 

velocity of the ball, the relation is not found. In contrast with linear and Hertz-Mindlin 

model, the relationship between coefficient of restitution and damping ratio are dissimilar 

(Figure 6.38). 
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Correlation of coefficient of restitution and damping ratio for 
Hertz-Mndlin model. 
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Figure 6.37: The correlation of coefficient of restitution and damping ratio for Hertz-Mindlin contact model. 
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Figure 6.38: The correlation of coefficient of restitution and damping ratio for Ng model. 
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6.4. Comparing the Ball's Motion in Haraz and RocFall 

Figure 6.39 demonstrates the motion of freefall balls with certain set of 

coefficient of restitution and 10 kg on frictionless surface in RocFall, similar to the model 

discussed before. Note that since the model is 2D and balls are dimensionless, to obtain 

maximum height bounce ball's radius should be added to values of this figure. According 

to RocFall algorithm, balls are moving through the air when their velocities are higher 

than the certain value. Because of RocFall algorithm, trajectory of ball is very sensitive to 

this value. Since the effect of air drag (air resistance) is not considered in Haraz model, to 

be able to compare the results, I reduced initial velocity of ball to 0.001 m/s (minimum 

possible value). 

The comparison of the ball's motion using RocFall. 

• Asphalt 

• Bedrock out crops 

a Clean hard bed rock 

soil with vegetation cover 

x Talus 

0 0.5 Time (Sec) ' 

Figure 6.39: Balls trajectories for different wall's material in RocFall. 

Figure 6.40 illustrates the motion of a freefall ball with normal coefficient of 

restitution of 0.53 which is modeled using linear, Hertz-Mindlin and Ng model as well as 
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a similar model in RocFall. For first contact, adding the ball's radius (0.21m) to 

maximum bounce height, results in similar configuration of linear and Hertz-Mindlin 

model in contrast with Ng model. First contact in Ng model occurs with about 0.4 Sec 

delay in compare with other models. For successive contacts, none of methods are 

completely similar. However, bounce heights in linear model are much closer to linear 

model and contact times are different. 

Ball's motion when coefficient of restitution is 0.53. 

— Linear model for Beta = 0.179 
Hertz - Mindlin moel for Beta = 2.394 

— Ng model for Beta= 16.51 
««•' RocFall Rn = 0.53 

0.6 
time (sec) 

Figure 6.40: Comparison ball's motion comes from linear, Hertz-Mindlin and Ng model and the model in RocFall. 

6.5. Summary 

Dynamic behaviour (ball's trajectory, ball's motion and ball's velocity) of 

Linear, Hertz-Mindlin and Ng contact model in ideal situation are the 

same and consistent with the law of conservation of energy. 
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• In ideal situation, force-displacement relationship is nonlinear power 

function in Hertz-Mindlin and Ng model and force-displacement 

relationship is linear in contrast with linear model. 

• Dynamic behaviour of Linear, Hertz-Mindlin and Ng contact models with 

viscous damping are dissimilar. 

• Force-displacement relationships of linear and Hertz-Mindlin represent the 

hysteresis loops. 

• Force-displacement relationships of Hertz-Ng and Ng model form the 

power function, and the impact and rebound curves coincide. 

• Energetic and Newton coefficient of restitution of linear and Hertz-

Mindlin almost coincide. 

• Because of dependence of normal and shear contact force to normal force, 

which does not exist in first contact in Ng model, results of first contact 

(motion, velocity and etc.) are not reliable. 

• Comparison of ball motion when linear, Hertz-Mindlin, Ng model and 

RocFall shows the similarity of linear model and RocFall model. 
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7. Study of 3D Elastic-Inelastic Power Function 

Contact Model and Comparison with Other 

Contact Models 

As previously mentioned, elastic-inelastic power function contact model depends 

on three factors: initial normal stiffness C^w), transition force (T) and exponent (b) [20]. 

Since each of these elements has a significant effect on macroscopic and microscopic 

behaviours of falling rocks, effect of each of these parameters are studied and, coefficient 

of restitution for contact of a. 10 kg Berea Sandston when collides with different walls is 

determined and correlation of coefficient of restitution and transition force is discussed 

in this chapter. 

7.1. The Effect of the Exponent (b) on Motion of Ball 

Using this model, it is necessary to adjust and calibrate the values of initial 

normal stiffness ( A « ) , transition force (T) and exponent (b), since this model is unstable 

for some set of values and also, it is possible to get incorrect results. For lower values of 

linear stiffness, when maximum linear force in first phase of contact (impact or loading) 

is less than transition force, with any value of exponent, system is unstable. Also, when 

the value of b is zero the ball's bounce height, the contact velocity and the overlap 

increase with respect to time (similar to resonance) as shown in. This fact occurs because 

the value of contact force is equal to value of a, which equal to transition force in each 

time step; hence, overlap increases causing an increase in the bounce height and the 

velocity. It is not expected that this case never occurs in reality. When exponent b is 
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equal to 1.0, the second phase of this model becomes a linear model as shown in Figure 

7.1 Equation (7.2). Figure 7.2 shows the motion of ball when transition force has a 

constant value and value of b is variable. Increasing the value of b decreases the bounce 

height but effect of exponent on the velocity just appears in first bounces (3-4 first 

bounces). 

F=a 

a = — , 6 = 0.0 
1.0 

F = ax 

« = - , 6 = 1.0 
B 

(7.1) 

(7.2) 

1-4r 
The effect of exponent on bounce height of a freefalling ball using An model. 

T = 4.0 KN 
Kn = 64 GN/m 
Kn wall =10 MN/m 

b = 0 

E. 

0 ! J . j _ „ 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 
time (sec) 

Figure 7.1: Ball's motion in "An" model when exponent is variable. 

For adjustment variables of elastic-inelastic power model and also to determine 

the value of coefficient of restitution, it is necessary to plot the normal contact force 

versus overlap. Figure 7.2 illustrates the variation of normal contact forces versus normal 
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overlap (displacement) when exponent b is variable. First phase of first contact of ball 

and wall (OB) is common for all cases with different exponents, meaning elastic 

deformation (AB) remains constant for first contact as exponent increases. However, 

increasing the exponent increases the amount of plastic deformation. Also, increasing the 

exponent increases the energy loss. For successive contacts, plastic deformation 

decreases. As shown in Figure 7.2, for (b=2), at first contact plastic deformation (BF) is 

about 0.020 mm and in second contact decreases to about 0.010 mm (BH) and for third 

contact plastic deformation is equal to (BG). 

The variation of normal contact force versus normal displacement when b is varying 

Overlap (m) 

Figure 7.2: The variation of normal contact force versus time when exponent is variable. 

7.2. The Effect of the Transition Force on the Motion 

As mentioned before transition force is used for determination of the parameter a . 

The values of Table 7-1 are used to simulate the contact of a 10 kg freefalling rock from 

height of 1.0 m and frictionless horizontal wall for different values of transition force, 
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constant exponent (b=8), and constant normal stiffness of 6.4x10 ^/m. As is shown in 

Figure 7.3 and Figure 7.4 increasing the transition force increases the ball's bounce 

height and the ball's velocity. In addition to that, increasing the value of transition force 

causes an increase in the contact overlap and consequently an increase in the contact 

forces. 

Table 7-1: the inputs for model a system of a ball and a horizontal wall. 
Number 

of 
triangles 

2 

Number 
of 

balls 

1 

Number 
of 

steps 

IxlO7 

Contact 
type 
code 

2 

R 
(m) 

0.21 

Kn 

(N/m) 

6.4xl010 

(N/m) 

9.6 xlO6 

7 
(N/m3) 

2600 

(MPa) 

90 

Comparing the motion of a 10 kg freefalling rock from height of 1.0 m which is 

modeled with elastic-inelastic power function with the one that is model with linear 

model, maximum bounce heights and contact normal velocity (first two bounces) of a 

ball with T- 16xio TV and exponent of (b=8) is similar to motion of a same ball with 0.2 

damping ratio, however contact times and amount of the energy loss for each contact are 

different. The motion of the balls in linear model ends in about 1.5 sec which is not 

occurring in the elastic-inelastic power model. 

To study the amount of energy loss in each contact in elastic-inelastic power 

function model, coefficient of restitution for several cases (when transition forces varies 

from 4 x l 0 N to 30x10 N an(± with an exponent of a constant value of 8) is calculated 

and trend line is drawn as in Figure 7.5. 
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Ball's motion for different transition force 
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Figure 7.3: The variation of ball's bouncing versus time when transition forces vary from 4.0 KN to 16.0 KN. 

The variations of normal velocity versus time for different transition force. 
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Figure 7.4: The variation of ball's velocity versus time when transition forces vary from 4.0 N to 16.0 N. 
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The method for calculation of coefficient of restitution is the same as the one used 

in chapter 6. Considering the values of contact velocities that are printed in the file 

contact_velocity.txt, the ratio of velocity at beginning of contact and velocity at the end 

of contact for each contact is calculated (Newton definition). 
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o 
e 
o 
o 

0.8 
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Correlation between coefficient of restitution and transition force 
when b=8 

y = 2E-05x + 0.2468 

R2 = 0.9967 

• An model, b=8.0 

— Linear (An model, b=8.0) 
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Transition force (N) 

35000 

Figure 7.5: The linear relationship between coefficient of restitution and transition force. 

As it is shown in Figure 7.5, coefficient of restitution between 0.30-0.53 using 

3 3 

Equation (2.1) corresponds to transition forces between 4x10 -10x10 fusing Equation 

(2.1). 

Figure 7.6 illustrates the variations of the normal forces versus time. According to 

algorithm of elastic-inelastic power function model, since contact forces are limited with 

the values of transition force, as shown in Figure 7.6 maximum contact forces are equal 

to transition forces and have similar configuration in successive contacts. For lower 

values of transition force, the number of contacts for certain times is higher. For instance, 
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•3 

during 1.0 sec after first contact, when transition force has a value of 4x10 TV, the ball 

collides with wall five times, but when transition force has a value of 16x10 jy, only two 

contacts occur. 

The variation of normal force versus time for different transition force and constant exponent 
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Figure 7.6: The variation of normal contact forces versus time when transition forces vary from 4.0-16.0 KN. 

Figure 7.7 illustrates the variations of normal forces and normal displacements 

(overlaps). For ^ = 4x10 ^ the ratio of plastic deformation to elastic deformation at the 

first contact is about 5.55 which seem too much since the rocks are considered brittle. For 

T = 16x10 j\r plastic deformation does not occur. Force jumps without displacement. 

This fact is because the final linear contact force (maximum displacement) occurs before 

reaching to transition force. This fact shows the linear normal stiffness should increase if 

we need for higher coefficient of restitution. In other words maximum allowable 

transition force for this set of normal stiffnesses is about 12x10 jy Also, minimum 

transition forces should be determined considering the ratio of plastic deformation to total 
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deformation of the rock. It's important to determine this ratio for different rock types 

since rocks are brittle and this ratio limits the elastic ratio. The author could not find the 

values for this ratio for different rock types in the literature. 

The variation of normal force versus normal displacement 
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Figure 7.7: The variation of normal contact forces versus normal displacement when transition forces vary from 4.0 to 
16.0 KN. 

As shown in Figure 7.7, only in first the contact elastic deformation occurs when 

3 3 

transition forces are less than 12x10 jy ancj for transition forces higher than 12x10 /\f 

elastic deformation never occurs. 

7.3. The Effect of Transition Force and Exponent on 

Coefficient of Restitution 

An suggests a value 250x10 j y a s transition force for a ball with normal stiffness 

0 f 6.4x10 Tv/m for 2D model as mentioned in Table 2-1. According to Equation (2.43), 

transition force for a rock with properties of Table 7-1 and a scaling factor of 0.078, can 
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be found 58.0x10 N which is about 23 percent of the proposed value. The values of 

transition forces and exponents that are related to coefficient of restitution of some wall's 

material are found as it shown in Table 7-2. Using the values of Table 7-2, Figure 7.8 is 

plotted. 

Table 7-2: Coefficient of restitution for some wall's material. 
Wall's materials 

Clean hard bed rock 

Asphalt roadway 

Bed rock outcrops with 
hard surface, large boulders 

Talus cover 

Values for A « 

V 

tn 

0.53 

0.40 

0.35 

0.32 

Transition force, (N) 

r = 58.0xl03 

774 = 14.5x103 

778 = 7.25xl03 

7718 = 3.22xl03 

7720 = 2.9xl03 

Exponent's 
values 

( * ) 

7.0 

7.0 

7.5 

8.0 

0.9 

0.8 

0.7 

I 0 6 

N 0.5 

0.4r 
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Ball's trajectory using "An" model for various transition force and exponent. 
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Figure 7.8: Ball's motion in respect to time for various transition forces and exponents. 
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7.4. Comparison of Elastic-Inelastic Power Function Model 

and Other Contact Models 

Table 7-3 is a combination of Table 6-4 and Table 7-2 that shows the set values 

for damping ratio, transition forces, and exponents corresponding to coefficient of 

restitution of different wall's material. 

Table 7-3: Coefficient of restitution for some wall 
Wall's material 

Clean hard bed rock 

Asphalt roadway 

Bed rock outcrops 
with hard surface, 

large boulders 

Talus cover 

Soft soil 

Values for 

V 

n _ rn 

in 

0.53 

0.40 

0.35 

0.32 

0.30 

Values for damping ratio ( " ) 

Linear 

0.179 

0.283 

0.324 

0.328 

0.364 

Hertz-
Mindlin 

2.399 

3.169 

3.464 

3.642 

3.76 

Ng 

16.10 

34.90 

36.5 

37.50 

38.10 

An model 

Transition force,(N) 

T = 58xl03 

774 = 14.5xl03 

778 = 7.25xl03 

7718 = 3.222xl03 

7720 = 2.9xl03 

b 

7.0 

7.0 

7.5 

8.0 

To compare the macroscopic behaviour of a ball freefalling on a horizontal wall 

(made of above materials) using different contact models, the variation of ball's motion 

and ball's contact velocity with respect to time are plotted in Figure 7.9 and Figure 7.10. 

It seems that the elastic-inelastic model is similar to linear model however energy 

dissipation in each contact is less than linear model. 

Figure 7.9 demonstrates the difference in ball's motion with respect to time and 

also maximum bounce height of the ball using different contact models. It can be seen 

that energy dissipation in Hertz-Mindlin model is faster than other models. In other words 
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the ball's motion in Hertz-Mindlin model ends before the motion in other contact models. 

First contact in Ng model and Hertz-Ng model occurs with a delay in comparison with 

other models. Maximum bounce heights are noticeably less than other models, also. 

Ball's motion when coefficient of restitution is 0.53. 

0.2 ~ 0.4 0 . 6 o V 1 1.2 
time (sec) 

Figure 7.9:Ball's motion using different contact model when coefficient of restitution is 0.53. 

Although, as it's shown in Figure 7.10 coefficient of restitution is the same (the 

ratio of rebound velocity to impact velocity) for all the contact models, the magnitude of 

rebound and impact velocity are different. Also, contact times are different. Obviously, 

these small differences in a simple model can be noticed in complex models. 

This study provides some analytical data of microscopic and macroscopic 

behaviours of contact of a ball and wall; it is recommended that the validation of data, 

examined by performing sets of experimental test in future researches. To be able to 

distinguish which contact model is more appropriate for rockfall simulation, comparison 

and calibration of analytical results is necessary. 
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Ball's contact velocity versus time when coefficient of restitution is 0.53. 

Figure 7.10: The variation of contact velocity versus time using different contact models when coefficient of restitution 
is 0.53. 

7.5. Summary 

• Adjustment of variables and calibration for this model is necessary. 

Several sets of input parameters were observed, whose results are not 

acceptable. Adjustments can be done by plotting the force-displacement 

relationship. 

• Rocks fragments can be modeled using elastic-inelastic power Function 

(An) model; however the value of transition force should be studied 

through analytical and experimental tests in future researches. 

• Minimum value of the transition force should be determined in order to 

limit plastic deformation considering the ratio of plastic deformation to 

total deformation of the rock. 
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• An's suggested values for transition force in 2D models are not valid for 

3D models. 

• For successive contacts, elastic deformation remains constant since it is 

only dependent on linear stiffness for first contact as exponent increases, 

but increasing the exponent increases plastic deformation in further 

researches. 

• Increasing the exponent noticeably increases the energy loss. 

• For successive contacts, plastic deformations decrease as the exponent 

increases. 

• The macroscopic behaviour of a ball which is modeled by elastic-inelastic 

power function model is similar to linear model however energy 

dissipation in each contact is less than the energy loss of each contact in 

linear model. 

• Using the Ng model and Hertz-Ng model is not recommended in 

application of rockfall, as macroscopic and microscopic behaviours are far 

from expectations. 

118 



8. Coefficient of Restitution of Slopes Using 

Linear Model 

Normal coefficient of restitution of freefall ball on horizontal, flat wall using 

different contact models are studied in chapter 6 and 7. Since trajectory of a freefall ball 

on horizontal, flat wall is vertical as shown in Figure 6.2; hence, coordinates of the ball's 

contact velocity in respect with "X" and "Y" are equal to zero. This chapter is concerned 

with determination of normal and tangential coefficient of restitution for slopes and the 

variation of coefficient of restitution versus slope angle as well as the variation of normal 

and tangential coefficient and coefficient of restitution of resultant velocity (COR) of 

during the successive contacts. For this purpose two slopes with slope ratio of -1:1.73 and 

-1:1 are modeled and normal and tangential coefficient of restitution as well as COR for a 

freefall ball (Berea Sandstone ball) (Table 8-1) for various damping ratio are calculated. 

For calculation of Newton coefficient of restitution, same method as method of chapter 6 

and chapter 7 is utilized. 

Number 
of 

triangles 

4 

Number 
of 

balls 

1 

Number 
of 

steps 

lxlO7 

table 
Contact 

type 
code 

0 

8-1:In 
R 
(m) 

0.21 

juts tor th 

K„ 
(N/m) 

lxlO7 

e model. 

Ks 
(N/m) 

lxlO7 

r 
(N/m3) 

2500 

P 

various 

V 

0.38 

E 
(Pa) 

6.88xl09 

The ratio of the magnitude of velocity when contact ends (overlap of ball-wall 

ends) to magnitude of velocity of the ball when overlap starts (ball and wall start to 

overlap) represent Newton definition for coefficient of restitution. Since most of the 

studies of coefficient of restitution are conducted in 2D, traditionally coefficient of 
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restitution is calculated with respect to extent of normal and tangent of the slope. 

However, Cartesian system can be more appropriate when 3D DEM is used since ball's 

trajectory and ball's velocity are determined with respect to extent of Cartesian Axes. 

Figure 8.1 illustrates the ball's trajectory on a slope with slope ratio -1:1.73 when 

different values of damping ratio are used. When damping ratio is higher than 0.1 ball's 

motion ends after some contact with slope but for the values less than o.l, ball collide 

with horizontal wall as well. For damping ratio equal to 0.01, the ball collides with a 

slope twice then several times collides with horizontal wall. For damping ratios less than 

0.1, ball's trajectory ends in different distance in horizontal wall. Figure 8.2 illustrates the 

ball's trajectory on a slope with slope ratio -1:1.73 for different values of damping ratio. 

The variation of ball's trajectory for various damping ratio. 
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Figure 8.1: The variation of ball's trajectory for various damping ratio for a 120 degree slope angle. 
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The variation of ball's trajectory for different values of damping ratio for a slope with -1:1 slope ratio. 

0 20 40 60 80 100 120 140 160 

x (m) 

Figure 8.2: The variation of ball's trajectory for various damping ratio for a 135 degree slope angle. 

8.1. Coefficient of Restitution for a 120 Degree Slope Angle 

(slope ratio -1:1.73) 

Figure 8.3 illustrates the correlation of normal and tangential coefficient of 

restitution and damping ratio as well as correlation of coefficient of restitution (COR) and 

damping ratio for a 120 degree slope. COR is the ratio of the magnitude of resultant 

velocity at end of the contact to magnitude of velocity at beginning of the contact. The 

values of normal, tangential coefficient of restitution, and also COR are almost the same 

in successive contacts. 

Table 8-2 shows the values of coefficient of restitution with respect to "Z" when a 

ball collides with a slope with -1:1.73 slope ratio (a 120 degree slope). As shown in Table 

8-2, for a certain value of damping ratio, the coefficient of restitution increases in 

successive contacts. In order to find a coefficient of restitution for a slope, average value 

is calculated. Figure 8.4 illustrates the variation of coefficient of restitution versus 
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damping ratio for this slope. Also trend line for average values of coefficient of 

restitution versus damping ratio is plotted and its linear equation is displayed. 
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Figure 8.3: The variation of coefficient of restitution versus damping ratio for a slope with slope ratio of -1:1.73. 

Table 8-2: Coefficient of restitution with 
Damping 

ratio 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0.08 

0.09 

0.10 

0.15 

respect to "Z" for different damping ratio for E 1120 degree slope. 
Normal coefficient of restitution 

First 
bounce 

0.557 

0.518 

0.481 

0.446 

0.414 

0.384 

0.355 

0.329 

0.304 

0.281 

0.186 

Second 
bounce 

0.786 

0.734 

0.686 

0.641 

0.599 

0.559 

0.522 

0.487 

0.454 

0.424 

0.297 

Third 
bounce 

-

-

-

-

0.641 

0.599 

0.559 

0.522 

0.487 

0.455 

0.320 

Forth 
bounce 

-

-

-

-

-

-

-

0.537 

0.501 

0.468 

0.334 

Fifth 
bounce 

-

-

-

-

-

-

-

-

0.509 

0.475 

0.339 

Sixth 
bounce 

-

-

-

-

-

-

-

-

-

0.479 

0.343 

Average 

0.671 

0.626 

0.583 

0.544 

0.551 

0.514 

0.479 

0.469 

0.451 

0.448 

0.300 
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Correlation between coefficient of restitution and damping ratio. 

• First bounce 

• Second bounce! 

Third bounce ! 

Forth bounce 

* Fifth bounce j 

• Sixth bounce 

0 0.05 0.1 0.15 0.2 + Average 
I Damping ratio — Poly. (Average) 

Figure 8.4: The variation of coefficient of restitution with respect to "Z" versus damping ratio for a slope with slope 
ratio of-1 : 1.73. 

Table 8-3 shows the values of coefficient of restitution with respect to "Z" for 

different values of damping ratio for a horizontal wall after the slope. Coefficients of 

restitution with respect to "Z", which are normal to surface as well, are almost constant 

for successive contacts (bouncing). Since for damping ratio equal to 0.1 ball's trajectory 

ends before in slope and the range of calculated coefficient of restitution ranges between 

0.970-0.76 which is not in range coefficient of restitution of rocks which is 0.3-0.53, 

stiffness of horizontal ball should be modified and lower values of stiffness should be 

assigned to horizontal walls in compare with sloped walls. Figure 8.5 shows the 

correlation of coefficient of restitution and damping ratio for a horizontal wall after the 

slope. 
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Damping 
ratio 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0.08 

0.09 

Table 8-3: Coefficient of restitution for different damping ratio for horizontal wall. 
Coefficient of restitution 

First 
bounce 

0.971 

0.931 

0.911 

0.882 

0.849 

0.833 

0.807 

0.788 

0.758 

Second 
bounce 

0.969 

0.939 

0.910 

0.882 

0.855 

0.828 

0.802 

0.777 

0.758 

Third 
bounce 

-

-

-

-

0.854 

0.828 

0.802 

0.777 

0.753 

Forth 
bounce 

-

-

-

-

-

0.828 

0.802 

0.776 

0.759 

Fifth 
bounce 

-

-

-

-

-

0.828 

0.802 

0.776 

0.759 

Sixth 
bounce 

-

-

-

-

-

-

-

0.775 

0.754 

Average 

0.970 

0.935 

0.911 

0.882 

0.853 

0.829 

0.803 

0.777 

0.756 

3 
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Figure 8.5: Correlation of coefficient of restitution and damping ratio for horizontal wall after a 120 degree slope. 

8.2. Coefficient of Restitution for a 135 Degree Slope Angle 

(slope ratio-1:1) 

Using same method as chapter 6 and chapter 7, coefficient of restitution for the 

various damping ratio for collisions of a freefalling ball and a slope with slope ratio of 
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-1:1 are calculated. Figure 8.6 demonstrates the correlation of normal and tangential 

coefficient of restitution and damping ratio for a 135 degree slope as well as the 

correlation of COR and damping ratio. 

Correlation of coefficient of restitution and damping ratio for a 135 degree slope 
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Figure 8.6: Correlation of coefficient of restitution and damping ratio for a slope with slope ratio-1:1. 

As shown in Table 8-4, similar to a slope with slope ratio of-1:1.73, for a certain 

value of damping ratio coefficient of restitution increases in successive contacts. In order 

to find a coefficient of restitution for the slope, average value of coefficient of restitution 

is calculated as well. Comparing the values of coefficient of restitution of 120 degree 

slope angle (first model) and the 120 degree slope (second one) result in that coefficient 

of restitution depends on slope angle. Increasing the slope increases the value of 

coefficient of restitution. Figure 8.7 illustrates the variation of coefficient of restitution 

with respect to "Z" and damping ratio for a slope with slope ratio -1:1. 
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Table 8-4: Coefficient of restitution with respect to "Z" for different damping ratio for a 
Damping 

ratio 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0.08 

1135 degree slo pe. 
Normal coefficient of restitution 

First 
bounce 

0.311 

0.282 

0.256 

0.232 

0.209 

0.189 

0.169 

0.151 

Second 
bounce 

0.664 

0.617 

0.573 

0.533 

0.496 

0.464 

0.455 

0.397 

Third 
bounce 

0.759 

0.705 

0.656 

0.611 

0.569 

0.530 

0.488 

0.463 

Forth 
bounce 

0.802 

0.770 

0.695 

0.646 

0.603 

0.561 

0.524 

0.486 

Fifth 
bounce 

0.828 

0.785 

0.717 

0.667 

0.622 

0.549 

0.541 

0.502 

Sixth 
bounce 

-

-

0.731 

0.680 

0.633 

0.600 

0.552 

0.513 

Average 

0.673 

0.632 

0.605 

0.561 

0.522 

0.482 

0.455 

0.419 
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Figure 8.7: Correlation of coefficient of restitution with respect to "Z" and damping ratio for a 135 degree slope. 

Figure 8.8 demonstrates the variation of coefficient of restitution versus damping 

ratio for a horizontal wall after the slope. Similar to previous case ( horizontal wall after 

the a 120 degree slope ), coefficients of restitution with respect to "Z", which are normal 

to surface as well, are almost constant for successive contacts. 
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Figure 8.8: Correlation of coefficient of restitution and damping ratio for horizontal wall after a slope with slope ratio -
1:1. 

Table 8-5: Coefficient of restitution for different damping ratio for a horizontal wall after a 135 degree slope. 
Damping 

ratio 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0.08 

Normal coefficient of restitution 

First 
bounce 

0.969 

0.939 

0.910 

0.881 

0.858 

0.836 

0.828 

0.787 

Second 
bounce 

-

0.939 

0.910 

0.881 

0.858 

0.835 

0.812 

0.786 

Third 
bounce 

-

0.939 

0.910 

0.881 

0.858 

0.834 

0.820 

0.779 

Forth 
bounce 

-

-

-

0.881 

0.858 

0.829 

0.808 

0.787 

Fifth 
bounce 

-

-

-

-

0.855 

0.836 

0.809 

0.786 

Sixth 
bounce 

-

-

-

0.858 

0.835 

0.810 

0.779 

Average 

0.969 

0.939 

0.910 

0.881 

0.857 

0.834 

0.814 

0.784 

The calculated normal coefficient of restitution for horizontal wall after slope, 

which defined by same property of the slope are higher than the expected value (0.53). 

To avoid this error, for walls with same material, horizontal walls should be define by 

lower values of stiffness. 
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8.3. Summary 

• The values of coefficient of restitution for a certain value of damping ratio 

increases in successive bounces when are calculated with respect to 

Cartesian axes, for contact of a ball and a slope. 

• The values of normal and tangential coefficient of restitution as well as 

COR, for a certain value of damping ratio are almost constant. 

• Normal, tangential coefficient of restitution and COR depends upon slope 

angle. 

• Increasing the slope angle (120 to 135 degree) increases the values of 

normal coefficient of restitution and COR. 

• For damping ratio of less than 0.1, increasing the slope angle (120 to 135 

degree) increases the values of tangential coefficient of restitution. 

• For certain value of damping ratio, coefficient of restitution remains 

almost constant in successive contacts. 

• Stiffness of horizontal walls should be modified and lower values of 

stiffness in compare with the values of stiffness for sloped walls should be 

assigned to horizontal walls since the values of coefficient of restitution 

which produced with similar values of stiffness, are higher than range of 

coefficient of restitution of rock types. 
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9. Estimation of the Horizontal Travel Distance of 

a Rock Using Artificial Neural Networks (ANN) 

Finding the trajectories and endpoints (horizontal travel distance) of rocks of a 

probable rockfall are important outcomes of the rockfall simulation. Having information 

of balls' trajectory as well as the kinetic energy level of the rock at location of remedial 

measures for rockfall allows engineers to design appropriate remedial measures with 

reasonable factor of safety at appropriate position. 

Figure 9.1 shows some of the possible trajectories for a falling rock from top of 

the slope. Endpoint of a rock by definition is where rock stops and velocity is zero 

(Vx = 0, Vy = 0,Vz = 0) p o r analysis of rockfall and determination of horizontal travel 

distance of a falling rock, several models should be prepared since many factors are 

involved in rockfall such as geometry of slope, slope angle, number of rocks, mass 

(radius and density), initial position, initial velocity, coefficient of restitution, which is 

related to materials and stiffness of walls and materials and damping ratios of rocks. 

Figure 9.2 shows the effect of damping ratio of a ball on the ball's trajectory. Also Figure 

9.3 shows the effect of mass on a rock's trajectory in rockfall. This chapter is concerned 

with determination of a ball's horizontal travel distance considering different conditions 

of rocks and walls. 

For this purpose, in this chapter, 122 sets of data are collected for various 

conditions of a ball using linear contact model. The corresponding data can be found in 

Appendix 2. Since the results of DEM based code are strongly sensitive to time steps and 

at same time CPU time is high, coefficient of time steps are chosen between 0.085-0.001 
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in order to keep time steps reasonable (in order of l x l ° sec or less). Then an intelligent 

model (the Artificial Neural Network model) is built. After validation of the model, a 

sensitivity analysis is performed for seven factors of DEM which are ball's radius, ball's 

density, damping ratio, initial position of the ball (horizontal and vertical coordinates 

with respect to X and Z) and initial velocity of the ball (horizontal component of the 

velocity with respect to "X" direction and vertical component of the velocity with respect 

to "Z" direction). Finally, the effect of mentioned parameters on horizontal travel 

distance of a spherical rock is discussed. 

Some of the possible trajectoies of a rock. 

Figure 9.1: Some of the possible trajectories for a rock at top of the slope. 
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The effect of damping ratio on ball's trajectory. 
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Figure 9.2: The variation of ball's trajectories when ball's damping ratio is variable using linear model. 
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Figure 9.3: The variation of ball's trajectort when ball's damping ratio change using linear model. 
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9.1. Intelligent Modeling 

In this chapter, Artificial Neural Networks method is used to model the horizontal 

travel distance of a rock as a function of various parameters. Using this method, we can 

find the horizontal travel distance of a rock for an arbitrary set of parameters in order to 

overcome the time consumption of running the code. 

9.1.1. Basics of Artificial Neural Network 

A methodology for modeling procedural and reflexive functions is using the 

Artificial Neural Networks, which can be described as non-linear multivariable function 

approximators and are motivated by input-output and learning properties of biological 

neural systems [44]. "Artificial Neural Networks consist of processing elements 

interconnected by weighted links that simulate the neurons and synapses of biological 

nervous systems (see Figure 9.4)" [44]. "Their knowledge is acquired by learning, which 

can be either supervised or unsupervised "[44]. 

[weighted I 

Figure 9.4: Basic structure of Artificial Neural Network [44]. 

The method presented here takes advantage of the fact that Artificial Neural 

Networks organize themselves while learning experience [44]. In this thesis, an Artificial 
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Neural Networks model is designed for estimation of horizontal travel distance of a ball 

based on supervised training method. 

9.1.2. Artificial Neural Network Based Approximation 

The (ANN) based model is developed with 7 inputs, 1 output, with 5 layers, each 

layer has 7, 5, 7, 2, 1 neurons respectively. Also, "tansig" and "logsig" excitation 

functions are used. 122 sets of data are obtained from the code to train the network. The 

training history of the network is depicted in Figure 9.5. As seen after about 1000 epochs 

the training error reaches 0.01= lcm which is satisfactory for our purpose. The 

simulation results show that the developed model provides a good performance for 

estimation of horizontal travel distance of a ball. 

Performance is 0.015086, Goal is 0 
10 

Stof)TiaB«ift;;| 

100 200 300 400 500 600 700 800 900 1000 

1000 Epochs 

Figure 9.5: Training of Neural Network Estimator 
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9.2. Sensitivity Analysis Based on Neural Network Model 

After developing and training the (ANN) model, the model is validated with some 

20 sets of data. Since the values of horizontal travel distance of the Neural Network 

match with the out put of the simulation, the (ANN) model is used for sensitivity 

analysis. To study the effect of each of the factors such as ball's radius, density of the 

rock, damping ratio, initial position and initial velocity of the ball, the trained Neural 

Network model is used for a wide range of inputs. The results are plotted in Figure 9.6 

through Figure 9.12. For each case, one parameter varies within range of interest and 

other parameters preserved constant. 

The effect of the mass of the ball in simulation rockfall using DEM is 

considerable because mass affects the value of time step, new velocity of the ball and 

gravity as an external force. Mass of a spherical ball depends on ball's density and ball's 

radius. Figure 9.6 shows the effect of density on horizontal travel distance of the 

freefalling of ball and Figure 9.7 shows the effect of the ball's radius and on horizontal 

travel distance. As shown in Figure 9.6, the effect of density of a ball is negligible. This 

fact allows the researchers to choose any value for density (within a range of rock types 

density) when density of ball is not determined exactly. 
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The effect of density on horizontal travel distance of a free falling ball using linear contact model. 
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Figure 9.6: The effect of density of a freefalling ball on horizontal travel distance using linear model. 

The effect of the ball's radius on horizontal travel distance of a ball is 

considerable. For ball's radius of smaller than 0.5 m, increasing the value of radius 

increases the horizontal travel distance, but for ball's radius larger than 0.9 m, the 

horizontal travel distance decreases. As mentioned in previous chapters, damping ratio 

has noticeable effect on macroscopic and microscopic behaviours of a falling ball such as 

ball's trajectory. Figure 9.8 demonstrates the effect of damping ratio on horizontal travel 

distance. As shown in Figure 9.8, the range of 0.01 to 0.20 for damping ratio has a 

considerable effect on horizontal travel distance using linear contact model. Noticeable 

effects of damping ratio on ball's trajectory and ball's horizontal distance indicates the 

importance of study of energy loss concept and more specific determination of damping 

ratio for rock types in rockfall simulation. 
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Figure 9.7: The effect of radius of a freefalling ball on horizontal travel distance using linear model. 

The effect of damping ratio on horizontal travel distance of a freefalling ball using linear model. 
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Figure 9.9 and Figure 9.10 show the effect of initial position of the ball on 

horizontal travel distance. In spite of the small effect of horizontal coordinate alone on 

ball's trajectory, initial height of the freefalling ball affects ball's trajectory considerably 

due to dependence of potential energy upon the height of falling. Figure 9.10 shows at 

location horizontal wall (x=45), where the height of falling is about 60 m, how the height 

of the falling ball dramatically affects on the horizontal travel distance. 

Figure 9.11 and Figure 9.12 show the influence of initial velocity on horizontal 

travel distance of the ball. Kinetic energy of the system depends upon velocity; hence 

horizontal and vertical component of velocity affect the ball's motion. Also, velocity 

affects the damping force and energy loss of the system. Furthermore, initial velocity is 

participating for updating velocity and has an effect on impact of contact particles; hence 

the effect of velocity in multiple contacts can be significant. 
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Figure 9.9: The effect of horizontal initial position of a freefalling ball on horizontal travel distance using linear model. 
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Figure 9.10: The effect of vertical initial position (Z) of a freefalling ball on horizontal travel distance using linear 

model. 

In comparison between horizontal and vertical component of the velocity, effect 

of the vertical velocity on ball's trajectory and horizontal travel distance is greater. 
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Figure 9.11: The effect of initial velocity (with respect to X) of a freefalling ball on horizontal travel distance using 
linear model. 
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60 
The effect of initial velocity (with respect to Z) on horizontal travel distance using linear contact model. 
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Figure 9.12: The effect of vertical initial position (Z) of a freefalling ball on horizontal travel distance using linear 

model. 

9.3. Summary 

The effect of the radius, damping ratio and vertical initial condition 

(position and velocity) of ball on ball's trajectory on horizontal travel 

distance of a ball are considerable. 
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10. Summary and Recommendations for Further 

Research 

DEM potentially can be powerful tool for rockfall simulation although CPU time 

is high and more experimental data for calibration of simulation is required. It is expected 

the data in this research, provides necessary information about contact models in DEM 

and some better insight about mechanism of contacts in rockfall. 

10.1. Conclusion 

To find the most appropriate contact model for rockfall analysis, five models have 

been chosen. Three contact models obtained through DEM, which were successfully used 

for the modeling of soil grains (linear model, Hertz-Mindlin, Ng model), elastic-inelastic 

power function, a contact model which originally was developed by An for simulation of 

rockfall and also combination of Hertz model and Ng model (Hertz-Ng model) that have 

been modeled to investigate the effect of each contact model on dynamic of rocks 

contacts. In this research, simple model containing a spherical ball and a horizontal plane 

was built to study the outcomes of each contact model and dynamic behaviour of a rock 

in normal direction. 

Linear contact model contains normal and shear linear springs. Hertz-Mindlin, Ng 

and Hertz-Ng have nonlinear springs in normal and shear directions. Elastic-inelastic 

power function, (An) model has a linear spring for shear stiffness also a linear spring for 

first phase of normal contact (phase of loading). When two bodies collide, the resultant 

stiffness of two bodies is calculated. Although the resultant stiffness due to contact is 
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established, for linear model in contrast with other models, the method to determine the 

stiffness of individual contact bodies as well as the relation between stiffness and rock 

properties was not discussed in previous studies. 

Hertz-Mindlin, Hertz-Ng and Ng model directly depends upon material properties 

of each contact bodies. In this research the contact stiffness of Hertz-Mindlin, Hertz-Ng 

and Ng model contact models has been compared. The comparison of the contact models 

can assist researchers to select better values for stiffness when a linear model is used. 

However, this research showed that the effect of the magnitude of stiffness of linear 

springs on the macroscopic behaviour (trajectories and velocities) of rocks is negligible 

when the time steps are very small. 

Microscopic and macroscopic behaviours of a freefall ball when collide with a flat 

and horizontal wall has been studied when different contact models are used. Since 

collision of a ball and flat wall can be considered as generalization of the case of collision 

of two identical spheres, the results would be also valid for ball-ball contact as well. 

Normal coefficient of restitution of freefall ball on a orizontal and flat wall using 

different contact models has been studied and coefficient of restitution for contact of a 10 

kg Berea Sandstone ball and a horizontal wall with different materials has been 

calculated, and the correlation of coefficient of restitution and damping ratio is 

determined for each contact model. 

As previously mentioned, elastic-inelastic power function contact model depends 

on three factors: initial normal stiffness (K"), transition force (7) and exponent (b) [20]. 

Each of these elements has a significant effect on macroscopic and microscopic 

behaviours of falling rocks. In this research, the effect of each of these parameters has 
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been studied for a 10 kg Berea Sandstone ball, and furthermore coefficient of restitution 

for contact of a 10 kg Berea Sandstone when collide with different walls' material is 

determined and correlation of coefficient of restitution and transition force has been 

determined. 

Result of this research have indicated that the Ng, Hertz-Ng contact models are 

not appropriate for rockfall simulation. 

Trajectory of a freefall ball on a horizontal and flat wall is vertical. Hence, the 

magnitudes of the contact velocity in respect with "X" and "Y" are equal to zero. Two 

slopes (120 degree slope and 135 degree slope) have been modeled to investigate normal 

and tangential coefficient of restitution and COR for slopes and the variation of 

coefficient of restitution versus slope angle as well as the variation of coefficient of 

restitution during the successive contacts. 

Finding the trajectories and endpoints (horizontal travel distance) of the rocks of a 

probable rockfall are important outcomes of the rockfall simulation. Having information 

of balls trajectory as well as the kinetic energy level of the rock, allows engineers to 

design appropriate remedial measures for rockfalls with reasonable factor of safety at 

appropriate position. In this research, 122 sets of data have been collected for a single 

contact (a ball and a slope) using the computer program "Haraz" and an intelligent model 

(the Artificial Neural Networks model) has been built. After validation of the model, a 

sensitivity analysis is performed for seven factors of DEM and the effect of seven 

parameters on horizontal travel distance of the falling ball has been investigated: ball's 

radius, ball's density, damping ratio, initial position of the ball (horizontal and vertical 

coordinates with respect to X and Z), and initial velocity of the ball (horizontal 
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component of the velocity with respect to " X" direction and vertical component of the 

velocity with respect to "Z" direction ). 

10.2. Future Work 

Some parameters such as rock's geometry and friction are not considered in this 

research, which may have noticeable effect on outcomes of the simulation of rockfall. 

Some studies have shown a considerable effect of rocks' geometry on coefficient of 

restitution [11]. As a result, the author suggests a vast study of the effect of the mentioned 

parameters on energy loss of the system and rockfall simulation. 

Since rock's fragments are source of energy loss in rockfall modeling that affect 

the overall behaviour of rocks in rockfall simulation, author suggests a vast study of 

rocks' fragments, rock's fractures and plastic deformations of rocks using DEM. 

Furthermore, knowing the minimum and maximum values of deformation (elastic 

and plastic deformation) or the ratio of maximum plastic to total deformation for rock 

types can be useful for calibration and validation of elastic-inelastic power contact model 

as a model which was the only contact model within this research that considers both 

plastic and elastic deformations. 

Multiple contacts, contact of rocks (ball-ball) together and several contacts to 

walls (ball-ball) during rockfall, are possible. Contacts of balls together can change their 

velocity, momentum and impact and can affect on energy loss since coefficient of 

restitution is a velocity dependent parameter. It also can break the rocks to smaller pieces. 

It is strongly recommended to carry out a study of multiple contacts in rockfall. 

Recommended future of this research can be listed as: 
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1. Investigation on the effect of rock's shapes (rock's geometry) and friction in rockfall 

simulation. 

2. Investigation on modeling of the rock fragments during contacts. 

3. Modeling and investigation of multiple contacts. 
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APPENDIX 1 

. " Inroduction to Computer Program "Haraz' 

"Haraz" mainly contains two classes: ball and wall associated main elements 

mentioned previously. Several functions are applied to generate the simulation. In this 

chapter the functions and their tasks are illustrated. Table 2 shows some of the math and 

functions which are used in this program. Table 1, Table 2 and Table 3 represent of 

classes and functions which are used in the program. 

Tablel: List of classes in Haraz. 
Class list 

Ball 

Wall 

Objectives 

Presents spherical rocks properties and their 
mechanical behaviour 

Presents wall surfaces' properties (mesh) and their 
mechanical properties. 

Table 2: Complementary functions in Haraz. 
Math Function list 

Dot_product 

Cross_product 

Task 

Implementation of dot product 

Implementation of cross product 

Table 3: The list of functions in Haraz. 
Functions list 

CForce 
CForce wall 

Stiffness linear 

Stiffhesslinearwall 

Stiffness_Hertz_Mindlin_normal 

Stiffness Hertz Mindlin tangent 

Stiffness Hertz Mindlin normal wall 

StiffnessHertzMindlin tangent wall 

Force powerfunctioncontact Model An ball 

Force power function contact Model An 

Task 

Find contact force for a ball-ball contact. 
Find contact force for a ball-wall 
contact. 
Calculation of normal and tangential 
linear contact stiffness (constant values) 
for ball-ball contact. 
Calculation of normal and tangential 
linear contact stiffness (constant values) 
for a ball-wall contact 
Calculation of normal contact stiffness 
for ball-ball contact 
Calculation of normal contact stiffness 
for ball-ball contact 
Calculation of normal contact stiffness 
for ball-wall contact 
Calculation of normal contact stiffness 
for ball-wall contact 
Calculation of normal component of 
contact force for ball-ball contact 
Calculation of normal component of 
contact force for ball-ball contact 

Class 

Ball 
Wall 

Ball 

Wall 

Ball 

Ball 

Wall 

Wall 

Ball 

Ball 
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Viscousdamping 

Viscousdampingwall 

Local damp 

Local dampwall 

Sim 

Stiffhess_cr 

Timecr 

Find_TheShortest_distance 

Perpendicular Origin 

isInTringle 

Calculation of viscous damping and 
normal and shear damping- forces for 
ball-ball contact 
Calculation of viscous damping and 
normal and shear damping- forces for 
ball-wall contact. 
Calculation of local damping and normal 
and shear damping- forces for ball-ball 
contact. 

Calculation of local damping and normal 
and shear damping- forces for ball-wall 
contact 

This function simulates the motion of 
single particle using Newton's second 
law of motion. Centered finite difference 

involving At is used for solving the 
differential equations 
Calculation of translational and 
rotational stiffness and find the 
maximum value 
Calculation of critical time 

Find the distance between a ball and 
each triangle 
Find the perpendicular origin 

Checking if perpendicular origin is in 
mesh 

Ball 

Wall 

Ball 

Wall 

Ball and Wall 

Ball 

Ball 

Wall 

Wall 

Wall 

List of Input and Output Files in Haraz 

Input files are text files. "Microsoft Excel" is used to build the input and outputs. 

Data 

The first input file is named "Data.txt". Data contains the number of triangles, the 

number of balls, the number of steps, the contact model type and also ball properties. It 

introduces the balls with their properties such as radius ( ^ ) , linear normal stiffness 

(K"), linear shear stiffness (K'), density {/), damp ratio ( ^ ) , coefficient of friction 

( ^ ) and elastic shear modulus. Table 4 illustrates an example ofdata.txt for one ball and 

12 triangles. Table 5 shows the code for each contact model type. 
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Table 4: An example of " Data.txt" 
Number 

of 
triangles 

12 

Number 
of 

balls 

1 

Number 
of 

steps 

6x l0 7 

Contat 
type 
code 

1 

R 

(m) 

0.21 

(N/m) 

6.40xl010 

(N/m) 

9.60 xlO6 

r 
(N/m3) 

2600 

P 

various 

V 

0.38 

E 
(Pa) 

6.88xl09 

Table 5: the code for each contact model type. 
Contact Model Type 

Linear model 

Hertz- Mindlin model 

Elastic-inelastic power 
function model (An) 

Ng-Hertz model 

Ng model 

code 

0 

1 

2 

3 

4 

Wallpoints 

"Wallpoints" is a text file which contains the coordinates of mesh. Points should 

be in the order of counter clockwise starting from the highest or the lowest point of wall. 

For example, Table 6 illustrates the input data to for the wall is shown in following 

figure. 

Table 6: An example for Wallpoints input file format 
Vertex's 
Number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

X (m) 

0 

10 

7.3 

7.3 

19.3 

19.3 

26.2 

26.2 

38.6 

38.6 

46 

46 

170 

170 

Y (m) 

10 

0 

10 

0 

10 

0 

10 

0 

10 

0 

10 

0 

10 

0 

Z (m) 

60 

60 

40 

40 

40 

40 

20 

20 

20 

20 

0 

0 

0 

0 
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2D view of a wall (slope) 

20 40 60 80 100 120 140 160 
x (m) 

Figure 1: 2D view of a wall. 

Wallstiffness 

"Wallstiffiiess" is a text file which contains linear normal and linear shear 

stiffness for each mesh. Table 7 shows the normal and shear stiffness of each triangle. 

Table 7: Normal and shear stiffness for the wall. 
Triangle Number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Kn(N/m) 

lxlO6 

lxlO7 

lxlO7 

4xl06 

7xl06 

7xl06 

lxlO6 

lxlO6 

lxlO6 

lxlO6 

lxlO6 

lxlO6 

Ks (N/m) 

7xl06 

7xl06 

7xl06 

7xl06 

7xl06 

7xl06 

7xl06 

7xl06 

lxlO6 

lxlO6 

lxlO6 

lxlO6 
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Points 

This file contains the coordinate of meshes and is used for "Matlab for drawing 

purpose. 

Location_out 

After running the file for each ball an out put file is built is named locationout 

(the ball number) for example for three balls location_outl for 1st ball, location_out2 for 

Newton's second law of motion ball and location_out3 for third ball will build 

automatically by program. Table 8 demonstrates some part of Locationoutl .txt. 

Table 8: Part of file called "Location outl". 

Time 
(sec) 

0 

0.00025 

0.0005 

0.000749 

0.000999 

0.001249 

0.001499 

X 
(m) 

0.454 

0.454 

0.454 

0.454 

0.454 

0.454 

0.454 

Y 
(m) 

0 

0 

0 

0 

0 

0 

0 

z 
(m) 

60.454 

60.454 

60.454 

60.454 

60.454 

60.454 

60.454 

Vx 
(m/s) 

0 

0 

0 

0 

0 

0 

0 

Vy 
(m/s) 

0 

0 

0 

0 

0 

0 

0 

Vz 
(m/s) 

0 

-2 .45x l0" 3 

-4 .9xl0~ 3 

-7 .35xl0" 3 

-9 .8x l0" 3 

-1.223xl0~2 

-1.147xl0"2 

Ax 

(m/s2) 

0 

0 

0 

0 

0 

0 

0 

Ay 

(m/s2) 

0 

0 

0 

0 

0 

0 

0 

Az 

(m/s2) 

0 

-9.81 

-9.81 

-9.81 

-9.81 

-9.81 

-9.81 

Force_out.txt 

Same as locationout files, after running the file for each ball an out put file is 

built is named Force_out(the ball number) for example for three balls Forceoutl for 1st 

ball , Force _out2 for Newton's second law of motion ball and Force _out3 for third ball 

will build automatically by program. Importing the data to "Matlab" allows the user to 

plot the graphs. Table 9 demonstrates some part of Forceoutl .txt. 
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Table 9: Part of Force outl file. 
time 

Sec 

3.16101 

3.17095 

3.18089 

3.19083 

ball-ball contact 
forces 

Fx 

(N) 

0 

0 

0 

0 

Fy 

(N) 

0 

0 

0 

0 

Fy 

(N) 

0 

0 

0 

0 

ball-wall contact forces 

Fx_wall 

(N) 

2.058 xlO3 

1.783xl03 

0 

0 

Fy wall 

(N) 

0 

0 

0 

0 

Fzwall 

(N) 

-3 .098xl0 3 

- 2 6 8 x l 0 3 

0 

0 

Resultant forces acting on each ball 

Fxtotal 

(N) 

-2 .058xl0 3 

-1.783xl03 

0 

0 

Fytotal 

(N) 

0 

0 

0 

0 

Fztotal 

(N) 

3.098xl03 

268xlO3 

0 

0 

Fn_ Un_wall.txt 

"Fn_Un_wall.txt" files represent normal forces and normal overlaps of each ball 

during contact for each time step.' 

Table 10: An example of output file called "Forceoutl .txt" file. 
Time (Sec) 

0.401331 

0.401347 

0.401363 

Fn (N) 

5.238xl03 

5.382xl03 

5.521 xlO3 

Un (m) 

6.32 xlO"5 

2.58 xlO - 4 

4.51 xlO"4 

Contact_ velocity, txt 

"Contact_velocity.txt" files represent normal velocity of each ball during contact 

for each time step. 

Table 11: Part of "Contact_velocity.txt'' file. 
time 

0.401331 
0.401347 

Normal contact velocity 
3.91819 
3.87927 
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APPENDIX 2 

List of Samples for Estimation of Horizontal Travel Distance 

of a Rock 
Table A.2.1: Values of samples for a rock and 12 triangles of the mesh. 

Radius 

of a 
rock 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.21 

0.21 

0.21 

0.21 

0.21 

Density of 
a rock 

7 kg/m3 

2600 

2600 

2600 

2600 

2600 

2600 

2600 

2600 

2600 

2600 

2600 

2600 

2600 

2600 

2600 

2600 

2600 

2600 

2600 

2600 

2600 

2600 

2600 

2600 

2600 

Damping 
ratio 

0.075 

0.075 

0.075 

0.075 

0.075 

0.075 

0.075 

0.075 

0.075 

0.075 

0.01 

0.03 

0.05 

0.07 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.02 

0.04 

0.06 

0.08 

0.12 

Normal 
stiffness 

of a ball 
(N/m) 

6.4107 

6.4*10' 

6.4*10' 

6.4*10' 

6.4*10' 

6.4*10' 

6.4*10' 

6.4*107 

6.4*10' 

6.4*10' 

6.4*10' 

6.4* 107 

6.4*10' 

6.4*107 

6.4*10' 

6.4* 107 

6.4* 107 

6.4* 107 

6.4* 107 

6.4*10' 

6.4*10' 

6.4*10' 

6.4*10' 

6.4*10' 

6.4*107 

Normal 
stiffness 

of a ball 
(N/m) 

9.6*105 

9.6*10" 

9.6*10" 

9.6*10* 

9.6*105 

9.6*10s 

9.6*10" 

9.6*10" 

9.6*105 

9.6*105 

9.6* 10s 

9.6*10" 

9.6*10" 

9.6*10s 

9.6* 105 

9.6*10" 

9.6*10" 

9.6*10s 

9.6*105 

9.6* 10' 

9.6*10" 

9.6*10" 

9.6*10" 

9.6*105 

9.6*10" 

XQ 

(m) 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.21 

0.21 

0.21 

0.21 

0.21 

^ 0 

(m) 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

zo 

(m) 

60.1 

60.2 

60.3 

60.4 

60.5 

60.6 

60.7 

60.8 

60.9 
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Appendix 3 

Matlab Code for Artificial Neural Network 

clear all; 

% Reading Inputs 

load data4.txt; 

a=data4; 

M=a(:,2); 

Gama=a (:,3); 

Beta=a (:,4); 

X=a (:,5); 

Y=a (:,6); 

Z=a (:,7); 

Vx=a (:,8); 

Vy=a (:,9); 

Vz=a(:,10); 

Kx=a(:,11); 

Ky=a(:,12); 

Endpoint=a (:,17); 

% %Setting Inputs 

InputRangel = [0.1 1; 2400 2600; 0.01 1; 0.1 105.75;10.75 61 ;0 10;-20 

0]; 

%setting outputs 

net11 = newff(lnputRange1, [7,5,7,2,1], {'tansig' 'tansig' 'tansig' 'tansig' 

'logsig'}, 'trainlm'); 

netH.trainParam.epochs = 1000; 

% Here are learning examples 

%% Filling Array 
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InputSetl = [iTiGama'iBeta'; X'; Z';Vx';Vz']; % Getting Data 

% The targets for learning examples 

%%Filling Array 

Targetl =[Endpoint']; 

% Scaling 

[m,n]=size(lnputSet1); 

for i=1:m 

Scale(i)=max(abs(lnputRange1(i,1)),abs(lnputRange1(i,2))); 

end 

Scale_Target=max(abs(Target1)); 

for i=1:m 

forj=1:n 

lnputSet2(i,j)=lnputSet1(ij)/Scale(i); 

end 

end 

Target2=Target1 ./Scale_Target; 

% training 

net11=train(net11, lnputSet2, Target2); 

%simulation 

Y1 =sim(net11,lnputSet2); 

%figure(2); plot((Target1-Y1 )./Target1*100) 

figure(2); plot(Target1-Y1 *Scale_Target) 

%figure(3); plot((Target2-Y1 )./Target2*100) 

figure(3); plot(lnputSet1(2,:),Y1*Scale_Target)
,*,); 

%//////////Gamatest 

Gamajestl =2400:10:2600; 

r1_test1=0.5*ones(1,21); 

Beta_test1=0.1*ones(1,21); 
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XJest1=0.5*ones(1,21); 

Z_test1=60.5*ones(1,21); 

Vx_test1=0*ones(1,21); 

Vz_test1=0.0*ones(1,21); 

Input_test1 

=[r1_test1/Scale(1);Gama_test1/Scale(2);Beta_test1/Scale(3);X_test1/Scale(4);Z 

Jest1/Scale(5);Vx_test1/Scale(6);Vz_test1/Scale(7)]; 

Y2 = sim(net11,lnput_test1); 

figure(4); plot(Gama_test1 ,Y2*Scale_Target,'*') 

%//////////r1 

Gamajestl =2500*ones( 1,19); 

r1_test1 =0.1:0.05:1; 

Beta_test1=0.1*ones(1,19); 

X_test1=0.5*ones(1,19); 

Z_test1=60.5*ones(1,19); 

Vx_test1=0*ones(1,19); 

Vz_test1=0.0*ones(1,19); 

Input_test1 

=[r1_test1/Scale(1);Gama_test1/Scale(2);Beta_test1/Scale(3);X_test1/Scale(4);Z 

_test1/Scale(5);Vx_test1/Scale(6);Vz_test1/Scale(7)]; 

Y3 = sim(net11,lnput_test1); 

figure(5); plot(r1_test1 ,Y3*Scale_Target,'*') 

%//////////beta 

Gamajestl =2500*ones(1,50); 

ii_test1=0.5*ones(1,50); 

Beta_test1 =0.01:0.01:0.5; 

X_test1=0.5*ones(1,50); 

Z_test1 =60.5*ones( 1,50); 

Vx_test1=0*ones(1,50); 

Vz_test1=0.0*ones(1,50); 
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Input_test1 

=[r1 _test1 /Scale( 1 );Gama_test1 /Scale(2); Betajestl /Scale(3);X_test1 /Scale(4);Z 

_test1/Scale(5);Vx_test1/Scale(6);Vz_test1/Scale(7)]; 

Y4 = sim(net11 ,lnput_test1); 

figure(6); plot(Beta_test1 )Y4*Scale_Target,'*') 

%//////////X 

Gamajestl =2500*ones( 1,100); 

r1_test1=0.5*ones(1,100); 

Betajestl =0.1 *ones( 1,100); 

XJestl =0.1:1:100; 

ZJest1=60.5*ones(1,100); 

Vx_test1=0*ones(1,100); 

Vz_test1 =0.0*ones( 1,100); 

Input_test1 

=[r1_test1/Scale(1);Gama_test1/Scale(2);Beta_test1/Scale(3);X_test1/Scale(4);Z 

Jest1/Scale(5);Vx_test1/Scale(6);Vz_test1/Scale(7)]; 

Y5 = sim(net11,Input_test1); 

figure(7); plot(X_test1 ̂ Sca le ja rge t , ' * ' ) 

%//////////z 

Gamajestl =2500*ones(1,60); 

r1Jest1=0.5*ones(1,60); 

Betajestl =0.1 *ones( 1,60); 

XJest1=5*ones(1,60); 

ZJest1=1:60; 

Vxjest1=0*ones(1,60); 

Vz jest l =0.0*ones(1,60); 

I n put test 1 

=[r1Jest1/Scale(1);GamaJest1/Scale(2);BetaJest1/Scale(3);XJest1/Scale(4);Z 

Jest1/Scale(5);VxJest1/Scale(6);VzJest1/Scale(7)]; 

158 



Y6 = sim(net11 ,lnput_test1); 

figure(8); plot(Z_test1 ,Y6*Scale_Target,•*,) 

%/IIIIIIIINz 

Gama_test1=2500*ones(1,21); 

r1_test1=0.5*ones(1,21); 

Beta_test1=0.1*ones(1,21); 

X_test1=5*ones(1,21); 

Z_test1=60.5*ones(1,21); 

Vx_test1=0*ones(1,21); 

Vz jest l =-10:0.5:0.0; 

Inputtestl 

=[r1_test1/Scale(1);Gama_test1/Scale(2);Beta_test1/Scale(3);X_test1/Scale(4);Z 

Jest1/Scale(5);Vx_test1/Scale(6);Vz_test1/Scale(7)]; 

Y7 = sim(net11 ,lnput_test1); 

figure(9); plot(Vz_test1,Y7*Scale_Target,,*,) 

%/////////A/x 

Gama_test1=2500*ones(1,21); 

r1_test1=0.5*ones(1,21); 

Beta_test1=0.1*ones(1,21); 

X_test1=5*ones(1,21); 

Z_test1=60.5*ones(1,21); 

Vx_test1 =0:0.5:10; 

Vz_test1=0.0*ones(1,21) 

Input_test1 

=[r1_test1/Scale(1);Gama_test1/Scale(2);Beta_test1/Scale(3);X_test1/Scale(4);Z 

_test1/Scale(5);Vx_test1/Scale(6);Vz_test1/Scale(7)]; 

Y8 = sim(net11 ,lnput_test1); 

figure(10); plot(Vx_test1 ,Y8*Scale_Target,'*') 
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