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Abstract 

On strongly regular graphs 

Majid Behbahani, Ph.D. 

Concordia University, 2009 

Strongly regular graphs are regular graphs with the additional property that the 

number of common neighbours for two vertices depends only on whether the vertices 

are adjacent or non-adjacent. 

From an algebraic point of view, a graph is strongly regular if its adjacency matrix 

has exactly three eigenvalues. Strongly regular graphs have very interesting algebraic 

properties due to their strong regularity conditions. 

Many strongly regular graphs are known to have large and interesting automor-

phism groups [23]. In [23] it is also conjectured that almost all strongly regular graphs 

are asymmetric. Peter Cameron in [7] mentions that "Strongly regular graphs lie on 

the cusp between highly structured and unstructured." 

Although strongly regular graphs have been studied extensively since they were 

introduced, there is very little known about the automorphism group of an arbitrary 

strongly regular graph based on its parameters. 

In this thesis, we have developed theory for studying the automorphisms of strongly 

regular graphs. Our study is both mathematical and computational. On the com-

putational side, we introduce the notion of orbit matrices. Using these matrices, we 

were able to show that some strongly regular graphs do not admit an automorphism 

of a certain order. 

Given the size of the automorphism, we can generate all of the orbit mat rices, using 

a computer program. Another computer program is implemented that generates all 

the strongly regular graphs from that orbit matrix. 
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From a mathematical point of view, we have found an upper bound on the number 

of fixed points of the automorphisms of a strongly regular graph. This upper bound 

is a new upper bound and is obtained by algebraic techniques. 
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Chapter 1 

Introduction and statement of the 

problem 

In this chapter, we summarise the basic definitions and theorems about strongly 

regular graphs and partial geometries that we are using in the thesis. Some examples 

are provided for a better understanding of the theory. 

1.1 Organisation of the thesis 

In this thesis, we study the existence of strongly regular graphs and their automor-

phisms. For this purpose, we developed a computer program called the SRG program. 

Given an automorphism of prime order and the parameters of a strongly regular graph, 

the SRG program is able to tell us whether or not there is a strongly regular graph 

with those parameters having the given automorphism. 

Strongly regular graphs have many interesting algebraic and combinatorial prop-

erties. We study the properties of strongly regular graphs in Chapter 2. 

The SRG program uses the concept of orbit matrices for the generation of strongly 

regular graphs. In Chapter 3, we will see how orbit matrices can be generated for 

strongly regular graphs. 

In Chapter 4. we will show how the computer program, we developed for finding 
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strongly regular graphs, works. In this chapter, we will also show the results we 

obtained by running this computer program. 

In chapter 5, we will show how the orbit matrices can be obtained for partial 

geometries. We also show how partial geometries can be generated by a computer 

program. 

The conclusion and future work can be found in Chapter 6. 

1.2 Basic definition of a strongly regular graph 

and an example 

We start by defining the concept of a graph. 

Definition 1.1 An undirected graph G consists of a set of vertices V(G): together 

with a set of edges E(G) where an edge is an un-ordered pair of vertices. 

In this thesis, the vertex set is usually the set {1,2, . . . ,y} . Please note that we 

sometimes use uv or (u, u), to represent an edge {u.v}. Two vertices u and v are 

adjacent, if {u, ?;} € E. and u is a neighbour of v, and vice versa. Since every graph 

in this thesis in undirected, we shall generally omit the adjective "undirected". The 

number of neighbours of a vertex x is called the degree of .x. A graph is called regular 

if all its vertices have the same degree. The minimum degree of a graph G\ denoted 

5(G), is the minimum degree of all the vertices of G. The adjacency matrix B of a 

graph G(V, E) is the | V| x |V| matrix such that 

A subgraph of a graph G is a graph H such that V{H) C V{G) and E{H) C E{G). 

A vertex induced subgraph of a graph G is a subset X of vertices of G, along with 

all edges that have both their endpoints in X. An edge indvced subgraph of a graph 

G is a subset Y of edges of G along with all vertices that are endpoints of the edges 

in Y. 

0 otherwise. 
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Definition 1.2 A strongly regular graph svg(v, k, A. /i) is a graph with v vertices such 

that the number of common neighbours of x and y is k, X, or n according to whether 

x and y are equal, adjacent, or non-adjacent, respectively. 

Example 1. Matrix B defined below is the adjacency matrix of the Petersen graph. 

0 0 0 0 0 0 0 1 1 1 

0 0 0 0 1 1 0 0 0 1 

0 0 0 0 0 1 1 1 0 0 

0 0 0 0 1 0 1 0 1 0 

0 1 0 1 0 0 0 1 0 0 

0 1 1 0 0 0 0 0 1 0 

0 0 1 1 0 0 0 0 0 1 

1 0 1 0 1 0 0 0 0 0 

1 0 0 1 0 1 0 0 0 0 

1 1 0 0 0 0 1 0 0 0 

One can verify that the Petersen graph is an srg(10, 3,0.1) by counting for each 

edge, {u, i'}, the number of common neighbours of u and v. For example, {1,2} ^ E 

and the vertex 10 is the only common neighbour of 1 and 2, which agrees with the 

assertion that //, = 1. 

One can see that by simultaneously cyclically permuting the rows and columns 

in these groups, group 1 being {2,3,4}, group 2 being {5,6,7}, and group 3 being 

{8, 9,10}, the matrix B is unchanged. 

One can also see that the matrix B is subdivided into 9, 3 x 3 cyclic submatrices 

and one fixed row (column). This is a result of an automorphism of order 3 Avith 

1 fixed point. We use the idea of automorphisms in order to reduce the size of the 

search in the SRG program. The search space is smaller if we know the whole matrix 

can be divided into cyclic submatrices. • 
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1.3 Partial geometries and strongly regular graphs 

Partial geometries are point-line structures. A point-line structure is a triple S = (V, £, I) 

where V is a set of points, £ is a set of lines, and I C (V x £ ) U (£ x V) is a sym-

metric incidence relation. The elements of I are also called flags. If (P, /) 6 / , we say 

that the point P is on the line I or P and I are incident. 

If S is a point-line structure, <S*, the dual of S, is a point-line structure such that 

the points (lines) of S* are the lines (points) of S. Two elements are incident in S* 

if and only if they are incident in S. 

The incidence matrix A of a point-line structure is defined as follows: 

Definition 1.3 A partial linear space pls(,s, t) is a point-line structure such that: 

(a) any line is incident with 5 + 1 points, and any point with t + 1 lines: 

(b) two lines are incident with at most one point (and two points with at most one 

line); 

If two lines are incident with a point they are called concurrent. If two points are 

incident with a line they are called collinear. 

Definition 1.4 A partial geometry pg(s, t, a) is a p is(s , t ) such that for every point 

P not incident with a line I. exactly a lines on P are concurrent with I. 

Example 2. The following example is the incidence matrix of a pg(2,2,1). 

0 otherwise 

1 if point i is on line j 
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I I I I I I I 1 I I I I I I I 

1 2 3 4 5 6 7 8 9 ] 1 1 1 1 1 
0 1 2 3 4 5 

Pi 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 
p2 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 
Pz 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 
PA 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 
Ps 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 
P6 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 
PT 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 
Ps 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 
P9 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 

P10 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 
Pn 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 
P12 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 
Pl3 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 
Pi 4 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 
Pis 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 

The column sum in this example corresponds to the number of points on a line, 

which is s + 1 = 3. The row sum corresponds to the number of lines incident on a point, 

which is 3 since t = 2. To check that it is a partial geometry, we need to verify the 

Q—condition stated in Definition 1.4 for every point-line pair (P, I) ^ I. For example, 

we take P = P\ and I — I2- The set of lines incident with is {i1: Z3,1-, 1$, Z10, £12}-

From this set., only l\ is incident, with P\. The o condition can be checked similarly 

for the rest of the point-line pairs. • 

Partial geometries and strongly regular graphs are related because the existence 

of a partial geometry implies the existence of two strongly regular graphs. 

The point graph of a point-line structure S, denoted by r(<S). is a graph where the 

vertices are the points of S. and where two vertices are adjacent if the corresponding 

points in S are collinear. 

For example, the matrix B defined as follows: 
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0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 

1 0 1 0 0 1 1 0 1 0 0 0 0 1 0 

0 1 0 1 0 0 1 1 0 1 0 0 0 0 1 

0 0 1 0 1 1 0 1 1 0 1 0 0 0 0 

1 0 0 1 0 0 1 0 1 1 0 1 0 0 0 

1 1 0 1 0 0 0 0 0 0 1 1 0 0 1 

0 1 1 0 1 0 0 0 0 0 1 1 1 0 0 

1 0 1 1 0 0 0 0 0 0 0 1 1 1 0 

0 1 0 1 1 0 0 0 0 0 0 0 1 1 1 

1 0 1 0 1 0 0 0 0 0 1 0 0 1 1 

0 0 0 1 0 1 1 0 0 1 0 0 1 1 0 

0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 

1 0 0 0 0 0 1 1 1 0 1 0 0 0 1 

0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 

0 0 1 0 0 1 0 0 1 1 0 1 1 0 0 

is the point graph of the partial geometry pg(2. 2,1), shown in Example 2. It is a 

strongly regular graph with parameters v = 15, k = 6. A = 1, fi = 2. 

Another strongly regular graph besides the point graph can be obtained from a 

partial geometry. The line graph of a point-line structure S is a graph where the 

vertices are the lines of S, and where two vertices are adjacent if the corresponding 

lines in S are concurrent. The line graph of a partial geometry is also strongly 

regular because it is the point graph of its dual. 
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1.4 Status of existence of strongly regular graphs 

and partial geometries 

1.4.1 Status of existence of strongly regular graphs 

One of the most important problems about strongly regular graphs is their existence. 

While many classes of strongly regular graphs are constructed, and there are some 

non-existence results, for many parameter sets the existence of a strongly regular 

graph is still unknown. 

The first parameter set, for which we are not aware of the existence of the strongly 

regular graph, is v = 65, k = 32, A = 15, fx = 16. 

The following table extracted from the CRC-handbook of combinatorial designs 

[10] shows the parameters of strongly regular graphs, with 100 or fewer vertices, 

whose existence are unknown. Since the complement of a strongly regular graph is 

V k A 
65 32 15 16 
69 20 7 5 
75 32 10 16 
76 30 8 14 
76 35 18 14 
85 14 3 2 
85 30 11 10 
85 42 20 21 
88 27 6 9 
95 40 12 20 
96 35 10 14 
96 38 10 18 
96 45 24 18 
99 14 1 2 
99 42 21 15 
100 33 8 12 

Table 1: Unknown strongly regular graphs with small parameters 

also strongly regular (Lemma 2.3). Table 1 contains only the parameter sets with 



k < v/2. 

Our main objective within this thesis is to determine whether these unknown 

strongly regular graphs exist, if the order of a non-trivial automorphism is given. 

1.4.2 Status of existence of partial geometries 

Because of the relationship between partial geometries and strongly regular graphs, 

one secondary objective is to investigate the possible existence of the unknown partial 

geometries. An extensive amount of work has been done on the existence of partial 

geometries. Table 2, obtained from the CRC-handbook of combinatorial designs [10], 

shows the existence and non-existence of partial geometries with small parameters. 

It also shows the parameters of the associated point and lines graphs. 

Partial Geometry Point Graph Line Graph 
s t a Num. V k A P Num. V k A M Num. 
2 2 1 1 15 6 1 3 1 15 6 1 3 1 
2 4 1 1 27 10 1 5 1 45 12 3 3 + 
3 4 2 0 28 15 6 10 4 35 16 6 8 + 
3 3 1 2 40 12 2 4 28 40 12 2 4 + 
4 6 3 2 45 28 15 21 1 63 30 13 15 + 
3 5 1 1 64 18 2 6 167 96 20 4 4 + 
5 8 4 0 66 45 28 36 1 99 48 22 24 + 
6 6 4 ? 70 42 23 28 + 70 42 23 28 + 
4 7 2 ? 75 32 10 16 ? 120 35 10 10 ? 

3 6 1 0 76 21 2 7 0 133 24 5 4 0 
5 5 2 + 81 30 9 12 + 81 30 9 12 + 
4 4 1 1 85 20 3 5 + 85 20 3 5 + 
6 10 5 ? 91 66 45 55 1 143 70 33 35 + 
4 9 2 ? 95 40 12 20 ? 190 45 12 10 ? 
5 6 2 ? 96 35 10 14 ? 112 36 10 12 ? 

5 9 3 ? 96 50 22 30 ? 160 54 18 18 ? 

Table 2: Partial geometries with small parameters 

In Table 2, the column "Num." gives the exact number of non-isomorphic partial 

geometries, or the specific strongly regular graph if the number is known. Otherwise. 
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a "+" denotes that one or more combinatorial object is known, and a "?" denotes 

that its existence is unknown. 

The number with the associated point or line graph is the number of strongly 

regular graphs with the specified parameters, but they may not be the actual point 

or line graph of a partial geometry. 

We note that for some unknown partial geometries, for example pg(6,6,4) and 

pg(6,10, 5), candidates for their point and line graphs exist. For other cases, even the 

existence of candidate point and line graphs are also unknown. 

1.5 Contributions 

In this thesis, we developed the theory of orbit matrices for strongly regular graphs. 

The theory gives an efficient method to test the existence of a strongly regular graph 

when given an automorphism of prime order. This method, implemented using a 

computer program, allows us to eliminate many primes as possible divisors of the order 

of the automorphism group of the unknown strongly regular graphs. The remaining 

viable prime divisors are given in Table 3. 

While testing the program, we have also found some new strongly regular graphs 

with parameters v = 49. k — 18. A = 7, // = 6, that are not isomorphic to the known 

srg(49,18, 7,6). In addition, we have found some new upper bounds on the number 

of fixed points that an automorphism of a strongly regular graph may have. 

We have also generalised the theory of orbit matrices to partial geometries. As 

future work, a computer program can be written to expand the orbit matrix to a 

partial geometry. 

1.6 Related work 

The main result of a recent paper of Paduchikh [40] is that. 
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possible primes 
G {p : p\\Aut(G)\} 
srg(65. 32,15,16) 2,3,5 
srg(69. 20, 7, 5) 2,3 
srg(75,32,10,16) 2,3 
srg(76.30,8,14) 2,3 
srg(76.35,18,14) 2,3,5 
srg(85,14, 3, 2) 2 
srg(85.30,11,10) 2,3,5,17 
srg(85.42,20,21) 2,3,5,7 
srg(88. 27,6, 9) 2,3,5,11 
srg(95,40,12, 20) 2,3,5 
srg(96,35,10,14) 2,3,5 
srg(96.38,10,18) 2,3,5 
srg(96,45, 24,18) 2,3,5 
srg(99,14,1,2) 2,3 
srg(99,42, 21,15) 2,3,5,7,11 
srg(100,33,8,12) 2,3,5,11 

Table 3: Results summarising the possible prime divisors of the order of the unknown 
strongly regular graphs. 
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Theorem 1.5 (Paduchick [40]) If G = srg(85,14, 3, 2), p is an automorphism of 

G of prime order p. and A is the subgraph induced by the fixed points of p, then one 

of the following is true: 

(1) p = 5 or p = 17 and A is the empty graph; 

(2) p —7 and A is a 1-clique or p = 5 and A is a 5-clique; 

(3) p = 3. A is a quadrangle or a 2 x 5 lattice, and in the last case the neighbourhoods 

of six vertices of A contain exactly two maximal cliques; 

(4) p = 2. the neighbourhood of any vertex of A is connected. A is a union of x 

isolated vertices and y isolated triangles, and either y = 1 and x {4, 6} or 

y = 0 and x = 5. 

The proof of Theorem 1.5 is based on the character theory of the Bose-Mesner algebra 

of the graph. 

One of the results of this thesis, as seen in Table 13, is that, the only possible 

prime divisor of the size of the automorphism group of srg(85,14.3, 2) is 2, which 

implies the items 1 to 3 of Theorem 1.5 are not possible. 

In [35], Makhnev and Minakova, by using the same technique have shown that: 

Theorem 1.6 (Makhnev, Minakova [35] ) If G = srg(99,14.1,2). p is an auto-

morphism of G of prime order p. and A is the subgraph induced by the fixed points of 

p. then one of the following is true: 

(1) A is the singleton graph and p equals 2 or 7: 

(2) A is the empty graph and p equals 3 or 11: 

(3) A is the triangle graph and p = 3. 

One of the results of this thesis, as seen in Table 21, is that, the only possible prime 

divisors of the size of the automorphism group of srg(85,14,3, 2) are 2 and 3. Moreover 

if p = 3. then there are no fixed points. 
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Chapter 2 

Introduction to strongly regular 

graphs 

2.1 Basic concepts 

In 1963. Bose [2] introduced strongly regular graphs and partial geometries. A com-

prehensive survey about the construction, uniqueness, non-existence and necessary 

conditions for partial geometries and strongly regular graphs is given by Brouwer and 

van Lint [3]. We shall introduce the basic properties in this section. 

The following theorem shows the relationship of the parameters of a strongly 

regular graph. 

Theorem 2.1 If G is an svg(v. k, A, //). then k(k — A - 1) = i_t(v — k — 1). 

Proof To show the above equality, we count, in two different ways, the number of 

edges {y, z} where y G N(x) and 2 ^ N(x). 

First fix point .r and choose 2. We have v — k — 1 possibilities for since 2 ^ N(.r) 

and 2 x. Now. we calculate all the possible choices for y. Any vertex that is 

adjacent to both x and 2 is a candidate for y therefore, by Definition 1.2. there are // 

options for y. Thus the number of edges {//. 2} is equal to /i(t> — k — 1). 

Next, we count the number of edges {ij. 2} by choosing the vertex y first. Since 
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y G N(x), there are k possible choices for y. Now, we calculate the number of possible 

choices for z. Since 2 6 N ( y ) and z fi N(x) and z ^ x, there are k — A — 1 possible ways 

of choosing 2. Therefore the number of edges {y, z} is k(k — A — 1) which completes 

The following lemma stems directly from Definition 1.2. 

Lemma 2.2 A symmetric (0,1 )-matrix B. with zero on the diagonal, is the adjacency 

matrix of srg(e, k, A, /a) , if and only if 

Proof We know that BJL] is equal to the number of common neighbours of vertices 

% and j . Therefore by the definition of a strongly regular graph, the result follows. • 

The complement of a strongly regular graph is also strongly regular. 

Lemma 2.3 The complement of an srg(t», k, A, //) is an srg(v, v — k, v — 2k+jj, — 2, v — 

2k + A - 2). 

Proof If B is the adjacency matrix of a strongly regular graph, then J — I — B is 

the adjacency matrix of its complement. Using Equation 1, we can see that 

{ J - I - Bf = (k - v)I + [v - 2k + n - 2)( J - I - B) + {v - 2k + A - 2 )B. 

Therefore the complement of an srg(t>, k. A, f i) is an srg(t>, v — k, v — 2k + fi — 2. v — 

2k + A - 2). • 

If G = srg(f, k, A, fi) is disconnected, then /< -- 0, because there are at least two 

non-adjacent vertices that have no common neighbours. In this case, G is the disjoint 

union of m complete graphs Kn. A strongly regular graph that is connected, and its 

complement is connected is called primitive To avoid the trivial case, throughout 

this thesis, all strongly regular graphs are considered to be primitive. 

the proof. • 

B2 = kl + XB + /i(J - / - B). (1) 
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2.2 Graph automorphism 

In this thesis, we study strongly regular graphs with a non-trivial automorphism 

group. In this section, we review the mathematical definition of the automorphism 

group of a graph and its properties. 

An automorphism is a permutation p on the vertices of a graph G such that for 

any u.v G V(G), (up,vp) G E(G) if and only if (u,v) G E(G). This fact can also be 

expressed using the matrix notation. 

If p is a permutation, then the corresponding permutation matrix P = [p^] is 

obtained by permuting the rows of the identity matrix by permutation p. P can also 

be defined as follows: 

1 if jp = i 

0 otherwise. 

Let A be the adjacency matrix of a graph G, a permutation matrix P is an 

automorphism of A if and only if 

Pij = 

PAPt = A. 

Example 3. If 

A = 

0 0 0 0 0 0 0 1 1 1 

0 0 0 0 1 1 0 0 0 1 

0 0 0 0 0 1 1 1 0 0 

0 0 0 0 1 0 1 0 1 0 

0 1 0 1 0 0 0 1 0 0 

0 1 1 0 0 0 0 0 1 0 

0 0 1 1 0 0 0 0 0 1 

1 0 1 0 1 0 0 0 0 0 

1 0 0 1 0 1 0 0 0 0 

1 1 0 0 0 0 1 0 0 0 
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is the adjacency matrix of a graph G, and 

1 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 

0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 1 0 0 

we can see that 

PAPt = A. 

Therefore P is an automorphism of G. • 

Let p and a be automorphisms of a graph G. Let per denote the composition of p and 

a. Both p and a are the members of the symmetric group on V(G). We have 

xy G E(G) & xpyp G E{G) 

xpoypa G E(G). 

Therefore, the set of automorphisms of a graph G under composition operation is 

closed. Thus it forms a subgroup of the symmetric group on V(G). We call this 

subgroup the automorphism group of G namely Aut(G). 

The automorphism group of a graph shows us the symmetry of the graph. For 

more information about the automorphism group of graphs please see [1] and [6]. 

Frucht. in [21] has shown that any group can be represented as the automorphism 

group of a graph. Moreover, if the group is finite, then the graph can be taken as a 

finite graph. Mendelsohn in [39] has further shown that for every (finite) group H. 
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there is a (finite) strongly regular graph G such that the automorphism group of G 

is isomorphic to H. 

If the automorphism group of a graph is the identity, then the graph is called 

asymmetric. That means the graph has no non-trivial automorphism. It is shown 

in [18] by Erdos that almost all graphs are asymmetric. It is also conjectured in [23] 

that almost all strongly regular graphs are asymmetric. 

On the other hand, Peter Cameron in [7] notes that "Strongly regular graphs lie 

on the cusp between highly structured and unstructured". 

Even though strongly regular graphs had been studied extensively since they were 

introduced, there is not much known about the automorphism group of an arbitrary 

strongly regular graph based on its parameters. 

For this reason, we are interested to know more about the automorphisms of 

strongly regular graphs. 

2.3 Algebraic properties 

2.3.1 The eigenvalues of a strongly regular graph 

The adjacency matrix of a strongly regular graph has interesting algebraic properties. 

For one, it has exactly three eigenvalues. 

Let B be the adjacency matrix of a primitive srg(t>, k, A, //), and let j be an all-one 

vector of size v. By the definition of a strongly regular graph, the row (column) sum 

of B is k; thus B] = kj. Therefore, j is an eigenvector of B and k is one of the 

eigenvalues of B. We will see that the multiplicity of the eigenvalue fc is 1. 

We need to mention a few lemmas in order to prove the above statement. We 

start with the definition of a reducible matrix. 

Definition 2.4 An nxn matrix M is called reducible if there is a permutation matrix 

P such that 
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where M\ and M2 are square matrices of size at least one. 

A matrix is called irreducible if it is not reducible. Clearly the adjacency matrix 

of a connected graph is irreducible. 

Eigenvalues of real non-negative matrices have interesting properties. The Perron-

Frobenius theorem characterises the properties of real positive and non-negative ma-

trices. We only mention the parts of the Perron-Frobenius theorem that we need. 

Please refer to [28] for the complete version of the theorem. 

Define the spectral radius p of a matrix A to be its largest eigenvalue: 

The proof of the following theorem is given in [28]. 

Theorem 2.5 (Perron-Frobenius) Let A be a real non-negative irreducible ma-

trix. then 

2. p(A) is an eigenvalue of A; 

3. The algebraic multiplicity of p(A) is one. 

Another fundamental theorem that we would need to use to conclude the main result 

is the Gersgorin circle theorem [22]. 

For a square matrix A = [a.^]. define the deleted absolute row-sums of A as 

The following theorem (Gersgorin circle or disc theorem) indicates that all the 

eigenvalues of A are inside the closed discs centred at an with radius Rr in the complex 

plane C. For the proof of this theorem, we refer the reader to [28]. 

Theorem 2.6 (Gersgorin) Let A = [a^] be a complex n x n matrix, and let 

p(A) = max{|Aj(v4)l). 

1. p(A) > 0; 

Di = {z e C : [2 - nii| < R,}. 
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where Ri s are the deleted absolute row-sums, then all the eigenvalues of A lie inside 

the union of all Di "s. 

The following lemma is related to the eigenvalues of a regular graph. For more 

information about eigenvalues of regular graphs please see Brualdi and Ryser [4]. 

Lemma 2.7 Let A be any real irreducible non-negative matrix of order n with con-

stant row sum k and diagonal zero. Then k is an eigenvalue of A of multiplicity equal 

to 1. Also i f . A is another eigenvalue of A. then |A| < k. 

Proof Let j be an all one vector of size n. We have Aj = kj. Therefore k is an 

eigenvalue of A. Since the deleted absolute row-sum of every row of A is k, and 

an = 0 for all z, all the eigenvalues of A lie inside the disk: 

D = {z € C : \z\ < k}, 

by using Gersgorin's theorem (Theorem 2.6). Therefore no other eigenvalue of A has 

modulus larger than k. Since k is the largest modulus eigenvalue, 

p{A) = k. 

We assumed that A is irreducible. Thus, we can use the Perron-Frobenius theorem 

(Theorem 2.5), to see that the multiplicity of A is equal to 1. • 

Since the strongly regular graph is primitive, it is connected, hence B is irreducible. 

Thus the above theorem applies and k is an eigenvalue of B with multiplicity 1. We 

will see that B has exactly two other eigenvalues. The following lemma is a standard 

result that will help us to find tbe other two eigenvalues. 

Lemma 2.8 Let M be any symmetric real-value matrix. Then the eigenvectors cor-

responding to different eigenvalues of M are orthogonal. 
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Proof Assume a and (3 are two different eigenvalues of M and x and y are the 

corresponding eigenvectors. We have 

rp rj-1 
ay x = y Mx 

= (xTMy)T 

= (xTPy)T 

= PyTx. 

Since a ^ [5, we should have yTx = 0 and the previous equation is satisfied. • 

Using Lemma 2.8, every other eigenvector of i?-should be orthogonal to j. Let a k 

be another eigenvalue of B with the corresponding eigenvector x. Applying Equation 

1, we have 

B2X + (n - A)Bx + {[x- k)Ix - iiJx = 0. (2) 

Using Lemma 2.8, we have 

Jx = 0. 

Therefore Equation 2 simplifies to 

a2x + (/i — A)ax + ([/. — k)x = 0. 

Since the eigenvector x ^ 0. we have 

a 2 + (/x - A)a + {n - k) = 0. (3) 

The eigenvalues of B must be the zeros of the quadratic equation (3). Therefore B 

has exactly two more eigenvalues, which are the solutions of Equation 3: 

r = ^ (A - / i + - A*)2 + 4(fc - / x ) ) , (4) 

and 

s = \( A - / x - V ( A ~ / / ) 2 + 4 ( / c - / * ) ) • (5) 

Since k is always greater than //, in a primitive strongly regular graph, the expression 

under the square root in Equations 4 and 5 is always positive. Therefore the two 

eigenvalues are always distinct. 
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Let / and g be the multiplicities of the eigenvalues r and s respectively. We have 

V = l + f + g. (6) 

Since the sum of the eigenvalues is equal to the trace of the matrix, we have 

k + fr + gs = tr(B) = 0. (7) 

Solving Equations 6 and 7 for / and g, and using the values of r and s in Equations 

4 and 5, we find 

2 ^ ^(A - v.y + i{k - v ) ) 

and 

Using Equations 8 and 9, and restricting / and g to non-negative integers, we 

have a very strong necessary condition on the parameter set (v. k, A, //). 

If (u—!)(//—A) — 2k 0, then the requirement that / and g be integers implies that 

\/(A — /i)2 + 4(k — fi) should be a perfect square. In this case, ^(A — //)2 + 4(k — //.) 

is even, if and only if A — /x is even. Thus, from Equations 4 and 5, the eigenvalues r 

and s are integers. 

If (v — l)(ju — A) — 2k = 0, then f = g and r and s need not be integers. In this 

case, the strongly regular graph is a conference graph. 

The following lemma shows the eigenvalues of the complement of a strongly regular 

graph. 

Lemma 2.9 Let G be a strongly regular graph with parameters (v, k, A, p) and eigen-

values k. r, and s. Then Gc has eigenvalues v — k— 1. —r — 1, and — s — 1. Moreover 

the eigenspaces of G' and G are the same. 

Proof Let. B be the adjacency matrix of G. then the adjacency matrix of Gc is 

Bc = J — I — B. We know that k is an eigenvalue of G and its eigenspaee is the space 

of constant vectors. Let .r be a constant vector, then, we have: 

Bcx = ( . / - / - B).r = v.r - r - k.r = (r - k - l).r. 
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Therefore v — k — 1 is an eigenvalue of Gc, and its eigenspace is the same as the 

eigenspace of k. 

Let y be an eigenvector of B corresponding to the eigenvalue r. We know that y 

is orthogonal to j . We have 

Bcy = (J - I - B)y = 0 - y - ry = ( - 1 - r)y. 

Therefore —?•— 1 is an eigenvalue of Gc, and its eigenspace is the same as the eigenspace 

of r . 

We can show that — 1 — s is an eigenvalue of Gc in a similar way. • 

The results of this subsection are summarised in the following theorem: 

Theorem 2.10 Let G be a strongly regular graph with parameters (v.k,X,fi), then 

the eigenvalues of G have the following properties: 

1. G has exactly three eigenvalues which are k. r. and s where 

and 

s = I (A - // - v/(A - /i)2 + 4 ( k - f i 

2. The multiplicity of eigenvalue k is 1 and the multiplicities ofr and s are f and 

g respectively where 

/ = » / „ - , + ( " - D O ' " A ) - 2 * 
2 ^ V"(A - + 4(fc - „) 

and 
1 ( (v - l)(fj - A) - 2k 

q = - f — 1 ^ 
2 ^ ^/(A - / , ) 2 + 4(A:- /x) / 

3. If (v — l)(/i — A) — 2k 0. then the eigenvalues r and s are integers. On the 

other hand if (v — — A) — 2k = 0. then f — g and r and s need not be 

integers. The strongly regular graph is called a conference graph in this case. 
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2.3.2 The idempotent matrices 

In this subsection, we introduce the concept of idempotent matrices for strongly 

regular graphs. These matrices play a crucial role in the study of strongly regular 

graphs. 

In order to study these matrices, we need to use some classical definitions and 

theorems of linear algebra. 

The following definitions are obtained from [19] and [27], with some minor modi-

fications. Let V be a vector space and V\.... ,Vm be its subspaces. 

Definition 2.11 The sum ofV\,..., Vm. namely VH \-Vm is the set of all vectors 

V\ + H vm. where vt £ Vt for all 1 < i < m. 

Using the definition of vector spaces, we can see that V\ -\ + Vm is a subspace of 

V. 

Definition 2.12 A vector space V is said to be the direct sum of its subspaces 

Vi,..., Vm. namely 

V = Vj © • • • © Vm 

if and only ifV = V\-1 + 14, and V\,... ,Vm are independent. 

We state the following lemma without proof. 

Lemma 2.13 V = V\ © • • • © Vm if and only if every vector v € V has a unique 

representation 

v = vx -1 1- vrn 

for some Vi € Vi. 

Definition 2.14 A linear transformation E is called a projection or idempotent if 

E2 = E. 



Let V = Vi©- - -©Vm and let w = hvm, for vi € V*, be the unique representation 

of v as mentioned in Lemma 2.13. Define EiV = Ei is a linear transformation and 

the range of Ei is V*. Since EiEiV = EiVi = Vi = E{v, we have 

El = Ei. 

Therefore Ei is a projection. The linear transformation Ei defined above is called the 

projection ofV onto Vi. 

A square matrix A = [a,j] with complex entries is called Hermitian if al3 = a*,. 

Here the superscript * is the complex conjugate operation. A linear transformation 

is called self-adjoint if its matrix is Hermitian. 

In this part, we explain an important theorem called the Spectral theorem. We use 

the Spectral theorem to find idempotent matrices E\ and E2 for any strongly regular 

graph. 

Spectral theory has been studied extensively in operator theory. The Spectral 

theorem reveals the structure of normal operators on a Hilbert space. If N is a 

normal operator on a finite dimensional Hilbert space H, then the theorem states 

that the eigenvectors of N form an orthonormal basis for H [12], [20]. 

Here, we only explain the theorem on a finite dimensional space and refer the 

reader to [12] for the general case. There are different ways to prove the finite dimen-

sional case. 

In order to prove the Spectral theorem, we need to use some results on self-adjoint 

linear transformations. We state the following theorem without a proof. For the proof 

of this theorem please refer to [27, page 313]. 

Theorem 2.15 Let V be a real finite dimensional inner product space of positive 

dimension and let T : V —> V be a self-adjoint linear transformation. Then T has a 

real non-zero eigenvector. 

The following theorem can be found in [27, page 314]. 
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Theorem 2.16 LetV be a finite dimensional inner product vector space owerM and 

let T : V —> V be a self-adjoint linear transformation. Then there exists a set of 

eigenvectors ofT, which form an orthogonal basis for V. 

Proof Proof by induction on the dimension of V. 

If dim V = 1, then the proof is trivial. If dim V > 1, then by Theorem 2.15, T 

has at least one real non-zero eigenvector xj. Let Vi be the subspace of V consisting 

of all vectors orthogonal to x\. We have dim V\ — dim V — 1. By the induction 

hypothesis V\ has an orthogonal basis consisting of eigenvectors of T. Call this basis 

{x2..... xn}. Since xi.xt = 0, the vectors xt are independent from X\ for i > 2 . Thus 

{x i , . . . . Xn} forms an orthogonal basis for V. • 

Theorem 2.17 (Spectral Theorem) Let V be a finite dimensional inner product 

vector space over R and let T : V —>• V be a self-adjoint linear transformation. Let 

\i,...,\k be the distinct eigenvalues of T and Vt 's be their associated eigenspaces. 

Let Ei be the projection ofV on Vi. Then 

1. V = V! © • • • © 14: 

2. Ej + --- + Ek= I; 

3. T = \1E1 + --- + XkE/c-

Proof Using Theorem 2.16, we see that V = V\ ^ 1-14- We will show that V, 's 

are independent in order to prove part. (1). Lemma 2.8 can be generalised to self-

adjoint linear transformations using a similar proof. Therefore the eigenvectors of T 

corresponding to different eigenvalues are orthogonal. If v, £ Vi and v\ H b i'k = 0, 

then, we have 

0 = = V{Vi = 1 1 2 -
j i 

Thus the subspaces Vt are independent and 

V = r , © • • • © 14. 
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Let a be an arbitrary vector. Since V = Vi © • • • © 14, we have a = a H Van 

such that a , G V%. Since Ei s are projections of V on Vi, we have EtQ = a t . Therefore 

(Ei + b Ek)a = « H h afc 

— Q -

which leads to 

Let a be an arbitrary vector in V. Since Ei is the projection of V on Vi, we know 

that 

on = Eia e V. 

Since Vi is an eigenspace of T, we have 

Ton = XiOi. 

Yielding 

TEi<y. = \iEia 

for any a G V". Hence 

TEi = A iEi. 

Since Ei + • • • + = h w e have 

T = TI 

= T(Ei + ---Ek) 

= TEi H TEk 

= XiEi + • • • + A kEk-

• 

A matrix U is called unitary if 

U*U = I. 
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The following corollary can be deduced from the Spectral theorem, but we refer the 

reader to [33] for its proof, since it is equivalent to the theorem we have already proved. 

Some textbooks call Corollary 2.18 the Spectral theorem and deduce Theorem 2.17 

as a corollary [42]. 

Corollary 2.18 Hermitian matrices are unitarily diagonisable which means if A is 

Hermitian. then 

A = U*DU, 

where the matrix U is a unitary matrix 

( Ai 0 ^ 

D = 

\ 1 

and Ai , . . . . An are the eigenvalues of A. 

Xn 

Now, we apply the Spectral theorem to the adjacency matrix B of G = srg(t», k, A, //) 

to find the idempotent matrices E0, E\, and E2. Let V be R", the v dimensional 

real vector space. Let V'o. Vj, and V2 be the eigenspaces of B corresponding to the 

eigenvalues k, ?\ and s respectively. Define Ei to be the projection of V onto Vi for 

i = 0,1,2. These matrices are called minimal idempotent matrices. From Theorem 

2.17, we have the following equations: 

Eo + Ei + E2 = I, 

B = kE0 + rE\ + sE2, 

and 

Bc = J - B - I = ( v - k - 1)E0 + ( - r - 1 ) ^ + (—s - 1 )E2. 

Please note that the last equation comes from the fact that J — B — L the adjacency 

matrix of the complement of G. has the same eigenspaces as B. After solving the 

above three sets of equations, we find: 

Eo = ~J, (10) 
a 
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El = -L- - si + , (11) 

and 

E2 = - L - { b - t I + — J \ . (12) 
s - r \ v J 

Definition 2.19 A Hermitian n x n matrix A is called positive semidefinite if for all 

non-zero vectors z £ C". 

z*Az > 0. (13) 

If the inequality in Equation 13 is strict (z*Az > 0/. then the matrix A is called 

positive definite. 

Lemma 2.20 Let E be an idempotent matrix, then E is positive semidefinite. 

Proof Since E is idempotent, we have E2 = E. Let x be an arbitrary complex 

non-zero vector and let x = z*E. We have 

(Ez)* = x*E* - x*E = x. 

Thus 

x* = Ez. 

Now. we have 

z*Ez = z*E2z = (z*E)(Ez) = x*x > 0. 

Therefore E is positive semidefinite. O 

Every principal submatrix of a positive (semi) definite matrix is also positive 

(semi) definite. We use this fact in our exhaustive search when the adjacency matrix 

of the strongly regular graph is partially discovered. The proof of the following 

theorem is obtained from [28] with some modification. 

Theorem 2.21 Let A be a positive semidefinite matrix of size n. Then every prin-

cipal submatrix of A is positive, scmidefimle as well. 
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Proof Let S be a subset of {1 ,2 . . . . . n} and let A' be the principal submatrix of A 

by deleting rows and columns i from A whenever i E S. Let 2 = [2,;] be an arbitrary 

complex non-zero vector, such that Zi = 0 whenever 1 E S. 

Since A is positive semidefinte, we have 

Let z' be the vector obtained by removing the i-th entries of 2 whenever % E S. We 

have 

Since z' can be any arbitrary non-zero vector of C, we conclude that A' is positive 

Now, we can apply Lemma 2.20 to see that the matrices E\ and E2 in Equations 11 

and 12 are positive semidefinite. Using Theorem 2.21, we can see that every principal 

submatrix of E\ and E2 is positive semidefinite. 

2.4 Necessary conditions 

There exists some necessary conditions on the parameter set (v,k.X,fi). If these 

conditions are not satisfied, there is no srg(t>, k, A, //). In this section, we show some 

of these necessary conditions. 

We obtain the first necessary condition from the parameter set of the complement 

of G = srg(t>, k, A, //). We know that. Gc = srg(v, v - k\ v - 2k + /1 - 2, v - 2k + A - 2). 

Therefore v - 2k + /z - 2 > 0 and c - 2k + A - 2 > 0. Thus 

z*Az > 0. 

z'*A'z = z*Az > 0. 

semidefinite. The proof for positive definite is similar. • 

A, /t > 2k - v + 2. (14) 

Theorem 2.1 states that, if G is an srg(r. k. A.//), then 

k{k - A - 1) = fi{v - k - 1). (15) 

28 



which is a necessary condition on the parameters of a strongly regular graph. 

Rationality conditions 

In Section 2.3, we obtained Equations 8 and 9 for the multiplicities of the eigen-

values r and s of an srg(v, k, A, p). The fact that the multiplicities / and g should be 

non-negative integers together with Equations 8 and 9, places tight restrictions on 

the parameter set (v. k, A. /_i). 

Any parameter set (v. k, A, /t) that satisfies the rationality condition and Equations 

14 and 15 is called feasible. 

There are several other necessary conditions on the parameter set of strongly 

regular graphs. Among these, the most important conditions are as follows: 

Krein conditions 

Scott in [43], using a result of M.G. Krem [31], in harmonic analysis, showed that 

(r + 1 ){k. + r + 2rs) < {k + r)(.s + l)2, 

and 
(s + l)(k + s + 2rs) < (k + s)(r + l)2. 

The above two inequalities are called Krein conditions. The proof of the Krem con-

ditions is long and we omit it in this thesis. We refer the reader to [46, page 237] for 

its proof. 

It can be seen that, for example, the parameter set v = 28, k = 9, A = 0. // = 4, 

is feasible, but it does not satisfy the Krem conditions. 

Absolute Bound 

Another useful necessary condition is the so called absolute bound. Delsate, 

Goethals, and Seidel [16] introduced this bound, which is as follows: 

V < \fU + 3). 

The proof of absolute bound is long and we omit it in this thesis, we refer the reader 

to [46, page 239] for its proof. 

One can check that, the parameter set. v = 50. k = 21. A = 4. //. = 12, is feasible 

and satisfies the Krem conditions, but it does not satisfy the absolute bound. 
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2.5 Some combinatorial constructions of strongly 

regular graphs 

In this section, we introduce some of the well-known constructions of strongly regular 

graphs and describe their properties. 

2.5.1 Triangular graph T(m) 

Definition 2.22 The triangular graph T(m) has as vertices the 2-element subsets 

of a set of cardinality m. Two vertices are adjacent if and only if their corresponding 

subsets are not disjoint. 

The triangular graph T(m) can also be expressed as the line graph of the complete 

graph Km. 

Property 2.23 T(m) is an 

srg(^m(m - 1), 2(m - 2), m - 2,4). 

Proof Let S be a set with M elements. Since there are (™) 2-element subsets of S, 

we have V = Let A = {ai, 02} be a subset of S. Adjacent vertices to A are the 

subsets {«i, x} and {y, 0,2}, for all x.y «i and x,y / a2- There are rn — 2 choices 

for x and rn, — 2 choices for y, therefore k = 2(m — 1). Using the same method of 

counting, we can see that A = m — 2 and /i = 4. 

• 

As an example, consider the complement of the Petersen graph given in Example 1. 

The complement of the Petersen graph is T(5). 

It is shown in [8] that every strongly regular graph with the same parameters as 

T(m) is isomorphic to T(m). 
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2.5.2 Strongly regular graphs from orthogonal arrays 

Strongly regular graphs can be obtained from orthogonal arrays. An orthogonal array 

can be considered as a generalisation of a Latin square. 

Definition 2.24 A Latin square is a square matrix of order n such that its entries 

are all from the set of symbols {l,...,n} and each symbol appears exactly once in 

each row and exactly once in each column. 

For any integer n, one can easily find a Latin square of size n. One construction is as 

follows: 

Take 1, 2 , . . . , n as the first row. Row r, r > 1 is obtained by a cyclic shift of the 

row r — 1 to the right. 

Example 4. 

^1 2 3 4^ 

4 1 2 3 

3 4 1 2 

^2 3 4 1j 
• 

Latin squares have been studied extensively. For more information on Latin squares, 

we refer the reader to [17] and [34]. 

Definition 2.25 An orthogonal array OA(k, n) is a kxn2 array of symbols from the 

set {1,..., n} such that for any two rows r and s. all the ordered pairs s,). where 

1 < i < n2. are distinct. 

It is not difficult to see that any Latin square of order n is equivalent to an OA(3, n). 

For example, the Latin square in Example 4 is equivalent to the following orthogonal 

array: 

^ 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 ^ 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

^ 1 2 3 4 4 1 2 3 3 4 1 2 2 3 4 1 ^ 
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Given an orthogonal array OA(k, n), one can define a graph G as follows: 

1. The vertices of G are the n2 column vectors of OA(k,n). 

2. Two vertices are connected if and only if the corresponding vectors have the 

same entry in one of the coordinates. 

Theorem 2.26 The graph G defined above is an 

srg(n2, (n - l)fc, n - 2 + (k - l){k - 2), k(k - 1)). 

Proof We use a simple counting method to prove the theorem. Let X = OA(k, n). 

Two columns of X have at most one common entry in the same coordinate. First, we 

calculate the degree of the vertices. Let x be a vertex with the corresponding column 

( : r i , . . . , Xk) in X. A vertex y with the corresponding column (y j , . . . , yk) is adjacent 

to x if and only if xt = yi for some i and x3 ^ yj for all j ^ i. There are n — 1 such 

vertices y for each coordinate i. Therefore, the total number of vertices adjacent to 

x is equal to 

k(n — 1). 

Let x and y be two adjacent vertices. Without loss of generality, we can assume that 

the corresponding columns of x and y are (a, x2; - . . , xk) and (a, y 2 , . . . , yk) respec-

tively, where x, ^ yl for all 2 < i < k. Let z be a vertex adjacent to both x and y. 

Then the corresponding column of 2 is one of the following two types: 

(i) (a. 22,. . . , 2^), where 2,; Xi and Zi ŷ  for all 2 < i < k. 

(ii) (z\, 22,. . . , 2^), where z\ ^ a, Zi = xt and Zj = yj for only two indices i and j, 

and for the rest of the indices I, 2/ xt and 2/ 7̂  y;. 

There are exactly n — 2 columns of type (i), and exactly (k — l)(k — 2) columns of 

type (ii), therefore A, the number of common neighbours to any two adjacent vertices 

in G. is equal to 

n — 2 + (k — 1)(A" — 2). 
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A method of counting similar to that used in type (ii), shows us that /i, the number 

of common neighbours to any two non-adjacent vertices in G is equal to 

k{k-l). 

• 

One could also obtain the strongly regular graph directly from the Latin square 

as follows: 

Let L = [kj] be a Latin square of order n. Define A = [a(i.j)(t'.j')], 1 < i, j, i', j' < n 

be a (0,1) matrix of order n2 such that: 

1 if i = i' or j = f or /tJ = lv 

0 otherwise. 
a(i.j)(i'J') -

Then A — I is the adjacency matrix of an 

srg(n2, 2(n - 1), n, 6). 

Example 5. Let 

U = 

1 2 3 4 

4 1 2 3 

3 4 1 2 

2 3 4 1 
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Then the following matrix A is the adjacency matrix of the strongly regular graph G 

produced from h\ . 

\ 

A = 

/ 0 1 1 1 

1 0 1 1 

1 1 0 1 

1 1 1 0 

1 1 0 0 

0 1 1 0 

0 0 1 1 

1 0 0 1 

1 0 1 0 

0 1 0 1 

1 0 1 0 

0 1 0 1 

1 0 0 1 

1 1 0 0 

0 1 1 0 

0 0 1 1 

1 0 0 1 

1 1 0 0 

. 0 1 1 0 

0 0 1 1 

0 1 1 1 

1 0 1 1 

1 1 0 1 

1 1 1 0 

1 1 0 0 

0 1 1 0 

0 0 1 1 

1 0 0 1 

1 0 1 0 

0 1 0 1 

1 0 1 0 

0 1 0 1 

1 0 1 0 

0 1 0 1 

1 0 1 0 

0 1 0 1 

1 0 0 1 

1 1 0 0 

0 1 1 0 

0 0 1 1 

0 1 1 1 

1 0 1 1 

1 1 0 1 

1 1 1 0 

1 1 0 0 

0 1 1 0 

0 0 1 1 

1 0 0 1 

1 1 0 0 

0 1 1 0 

0 0 1 1 

v 1 0 0 1 

1 0 1 0 

0 1 0 1 

1 0 1 0 

0 1 0 1 

1 0 0 1 

1 1 0 0 

0 1 1 0 

0 0 1 1 

0 1 1 1 

1 0 1 1 

1 1 0 1 

1 1 1 0 

It can be easily checked that the graph G is an srg(16, 9,4.6). The complement of 

G is called the Shrikhande graph. It is known that there are exactly two strongly 

regular graphs with parameters (16, 9,4,6) up to isomorphism. The second graph can 

be obtained from the following Latin square: 

L2 = 

^1 2 3 4^ 

2 1 4 3 

3 4 1 2 

\4 3 2 1 

Li and L> are the only two Latin squares of order 4 up to isomorphism. 
7 

• 
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2.5.3 Strongly regular graphs obtained from a pair of skew 

symmetric Hadamard matrices 

Here is another method of constructing strongly regular graphs. We review this 

method because we will use it in one of our test cases. This method was introduced 

by Pasechnik in [41], In his paper he uses the concept of association schemes, but 

to simplify the concept, we only use adjacency matrices to show the results. By 

this method one could obtain a strongly regular graph from two skew symmetric 

Hadamard matrices of order 4n. 

Definition 2.27 A matrix H of order n with ±1 entries is called an Hadamard 

matrix if 

HHt = nl, 

where I is the identity matrix. 

An Hadamard matrix H is skew symmetric if H + HT = 21. 

It is not difficult to show that the order of an Hadamard matrix is either 1. 2 or 4k. 

Jacques Hadamard in [24] conjectured that there exists an Hadamard matrix of order 

4n for all integers n > 0. This conjecture is still open. 

Example 6. H, the following matrix, is an Hadamard matrix of order 4: 

where "—represents —1. 

H = 

' l 1 1 ^ 

1 1 - -

1 - 1 -

v 1 - - y 
• 

Example 7. H. the following matrix is a skew symmetric Hadamard matrix: 
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H = 

1 1 1 1 

- 1 1 -

- - 1 1 

- 1 - 1 
• 

A skew symmetric Hadamard matrix is called normalised if all the entries of the 

first row are positive. The matrix in Example 7, is a normalised skew symmetric 

Hadamard matrix. 

Let Hi and H2 be normalised skew-symmetric Hadamard matrices of order An. 

Let E\ and E2 be matrices obtained from II \ and H2, respectively, by removing the 

first row and the first column. For example, if Hi is the matrix in Example 7, then 

/ 

Ei = 

\ 1 1 

1 1 

1 - 1 

Since the matrices //,, i = 1,2, are skew symmetric Hadamard matrices, we have 
V 7 

EjEf = Ani - J, (16) 

and 

EiEi = Ei(21 - E j ) = J - 4ni + 2E h (17) 

Moreover, let I be the identity matrix of order 4n — 1 and J be the all one matrix of 

order An — 1. Since the row sum and column sum of the E,'s are equal to 1, we have 

Ei J — J Ej — J. 

Now, we define two matrices 1\ and T2 as follows: 

Ti =^(Ei + J - 21). 

(18) 

Let 

A = /', y T[ + Ti >: T>. 
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and 

B = Tj <g> T2 + T[ g T2
t, 

where the operator <gi is the matrix Kronecker product operator. Let X 

m x n matrix and Y be another matrix of any size, then 

[xij\ be an 

= 

/ 

V 

xnY XlnY \ 

/ 

The Kronecker product has many interesting properties; however, we only mention 

two of them here, since we will use them later in this thesis. Let X, Y, X', and Y' 

be matrices of proper size, then, we have 

XX' <g> YY' = {X ® Y){X' <8> y'). 

This property is called the mixed product property. We also have 

(X ® y)T = XT S YT. 

Theorem 2.28 The matrices A and B defined above are the adjacency matrices of 

two strongly regular graphs with parameters 

((4n - l)2, 8n2 - 8n + 2,4n2 - 6n + 3, 4n2 - 6n + 2). 

Proof We will show that A and B satisfy Equation 22 on page 42. Before calcu-

lating A2 and B2, we first calculate T{Tj and T2 since we will need to use them later. 

Using the definition of Ti and Equations 16 and 18, we have: 

4 T{Ti = (Ei + J - 2I){Ej + J - 21) 

= EiEj + EiJ - 2Ei + JEj + J2 - 2J - 2Ej - 2J + 41 

= - J + 4nl + J - 2E{ + J + (4n - 1 )J - 2 J - 2 E j - 2 J + 4/ 

= (4n — 4) J + 4n.I. 
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Therefore, 

T{Tj = (n- l)J + nI. 

Using Equation 17, we have: 

AT? = (E + J-2I)2 

= E2 + EiJ - 2El + J ^ + J 2 - 2J - 2£z - 2J + 4/2 

= £ 2 + (4ra - 3) J - AEi + AI 

= (An - 2) J - 2Ei + (4 - An)I 

= 4n J — 47; — AnI. 

(19) 

Therefore 

T = nJ — Ti — ni. (20) 

Using Equation 19, we can calculate A2 as follows: 

A2 = (T1®T? + T?®T2)2 

,2 T = Tt ® T f + TiTj* S T2T2 + 7? '7\ <g> T2T2
J + T f ® T^ 

= [nJ - Ti - n/] <g> [nJ - T2
r - n / ] + [nJ - Xf - n/] (8) [nJ - T2 - ni] 

+2[(n - \)J + nJ] ® [(n - 1) J + ni] 

= (2n2 - Qn + 2) J <g> J + (4n2 - 2n)7 <8> I + Ti <8> Tf + Tf <8> T2 

= [An2-Qn + 2)J ®J+ (An2-2n)I ®I + A. 

Using Equation 20, one can calculate B2 as well. We omit this calculation (it is 

similar to the calculation of A2) and show the result which is the following: 

B2 = (4n2 - 6n + 2) J ® J + (4n2 - 2n)I <g> I + A. 

We see that both A and B satisfy Equation 22 which completes the proof. • 

Example 8. Let 

EI — E2 = 

1 1 -

- 1 1 

1 - 1 

\ 
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then 

and 

A = 

f° 1 
= T2 = 0 0 1 I1 

0 °J 
;s A and B, we find 

0 0 0 0 1 0 1 o\ 
0 0 0 1 0 0 0 0 1 
0 0 0 0 1 0 1 0 0 
0 1 0 0 0 0 0 0 1 
0 0 1 0 0 0 1 0 0 
1 0 0 0 0 0 0 1 0 
0 0 1 0 1 0 0 0 0 
1 0 0 0 0 1 0 0 0 1° 1 0 1 0 0 0 0 

/ 0 0 0 0 1 0 0 0 1 

0 0 0 0 0 1 1 0 0 

0 0 0 1 0 0 0 1 0 

0 0 1 0 0 0 0 1 0 

B= 1 0 0 0 0 0 0 0 1 

0 1 0 0 0 0 1 0 0 

0 1 0 0 0 1 0 0 0 

0 0 1 1 0 0 0 0 0 

1 0 0 0 1 0 0 0 0 

One can check that both A and B are srg(9, 2,1,0). 
\ 

• 

We are going to show that isomorphic normalised skew Hadamard matrices gen-

erate isomorphic strongly regular graphs. Let 7] and T2 be two matrices obtained 

from skew symmetric Hadamard matrices as mentioned above. Let T[ be a matrix 

isomorphic to 7\ and V2 be a matrix isomorphic to TV Let us further assume that. A 
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and B are Pasechnic strongly regular graphs obtained from T\ and T2, and A' and B' 

are Pasechnic strongly regular graphs obtained from T[ and T2. 

Since T\ is isomorphic to T[ and T2 is isomorphic to T2, we have: 

T[ = P\T\Pl. 

and 

n = P2T2PI 

Where P\ and P2 are some permutation matrices, define 

P : = P I ® P 2 . 

We can see that P is a permutation matrix as well. Using the properties of the 

Kronecker product we mentioned on page 37, we have: 

A! = T[®T'2T + T[T <g>7£ 

= ( P I T R P F ) ® (P 2 T 2
T P 2

T ) + ( P ^ P L ) 0 ( P 2 T 2 P 2
T ) 

= (PI ® P2)(T1 0 T 2
T ) (P 1

T ® P 2
R ) + (PI ® P2)(T? (g) T 2 ) ( P 1

T 8) P 2
T ) 

= P ( T J ® T 2
T ) P T + P ( 7 f ® T2)Pt 

- P(T, 0 7F + ® T2)Pt 

= PAPT. 

As a result of the above equation, we conclude that A' is isomorphic to A. The same 

procedure can be followed to show that B' is isomorphic to B. 

2.6 Strongly regular graphs and partial geometries 

A partial geometry pg(s, t, a) with a = 1 is called a generalised quadrangle and 

denoted by GQ(.s, /.). A GQ(1,1) is the usual quadrangle with four points and four 

edges. 

The concept of a partial geometry was introduced by Bose [2], A partial geometry 

is a generalisation of the concept of a generalised quadrangle. Generalised quadrangles 

were introduced by Tits [45] as a generalisation of the quadrangle GQ(1,1). 

40 



Theorem 2.29 The point graph of a pg(s, t, a) is an 

SRG ( { s + 1^st + a\s(t + 1), s - 1 + t(a - 1), a{t + 1)). (21) 
Q 

Proof Since there are t + 1 lines passing through a point P and there are s points 

other than P on each of these lines, we have k = s(t +1). Let Pi and P2 be two points 

on a line Z. There are s — 1 other points on I which all are collinear with both Pi and 

P2. Now, we count the number of points not on Z which are collinear with both Pj 

and P2. There are t lines (li,l2. • • •, h) passing through P\ other than I. Exactly a 

lines on P2 are concurrent with each Ẑ , i = 1 , 2 , . . . , t, (one of these lines is Z, therefore 

a — 1 points on k are collinear with both Pi and P2 and are not on I). Therefore, we 

have t,(a — 1) points not on Z, collinear with both Pj and P2. Thus A = 5 — l + t(a — 1). 

Using a similar argument, we can see that // = a(t + 1). The value of v can be 

obtained using Theorem 2.1 • 

A strongly regular graph of the form (21) is called a psuedogeometric (s,t,a)-graph. 

Such a graph is geometric if it is the point graph of a pg(s, f. a). 

Lemma 2.30 A psuedogeometric graph is geometric if and only if it is the point 

graph of a partial linear space. 

Proof The following proof is based on [9]. 

Since any partial geometry is also a partial linear space, the necessary condition 

is easily resolved. We shall now prove the sufficient condition. 

Let S = pls(,s. i). Because the point graph is geometric, we have 

T(S) = srg({s + 1){st + a \ s(t + 1), 5 - 1 + t(a - 1), a(t + 1)), 
a 

for some integer a . It is enough to show that S = pg(.s, t. o). Fix a line Z. For a 

point P not incident with Z. let ap be the number of lines on P concurrent with Z. 
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We have: 

p<£i Mel 

= E ' s 

Mei 
= (s + 1 )ts. 

We also have: 

£ Ctp 

2 

Therefore: 

= J ] \{Q£L,M ~Q,N~Q}\ 

M.N el 

M.N el 

P^/ 

p^/ p<fi v y P£f 
ap 

p<t,i 
= 0. 

Thus op = Q for every P ^ / and 5 = pg(s. I. a) . • 

The adjacency matrix of the point graph can be obtained easily from the incidence 

matrix of the partial geometry. Let A be the incidence matrix of V = pg(s, t, a) and 

B be the adjacency matrix of the point graph of V. The {i. j) entry of B2 is the 

number of vertices adjacent to i and j. Since the point graph is an srg(y. k, A, fi), we 

have 
k if i = j 

(B% A if Bij = 1 

//. if Bu = 0. 

Thus 

B2 = (k - //)/ + ,,.J + (A - i,)B. (22) 
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Since A is the adjacency matrix of P, we have 

1 if the points i and j are collinear 

(•AAf)ZJ — \ 0 if the points i and j are not collinear 

t + 1 if i= j. 

Therefore by the definition of a point graph. 

AAT = B + (T + 1)/. (23) 

Constructing a partial geometry from its point graph has been unsuccessful in most 

of the cases, but Haemers in [25] constructed a pg(4,17, 2) from an srg(175, 72, 20, 36). 
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Chapter 3 

Orbit matrices 

3.1 Introduction 

The size of the search for the unknown strongly regular graphs we are interested in 

is very large. We have to use mathematical techniques to reduce this size. One of 

the techniques is the use of an automorphism group. In this chapter, we shall show-

how the assumption of a non-trivial automorphism group may enable us to finish the 

search in a feasible amount of time. 

Assuming that the strongly regular graph has a non-trivial automorphism group, 

in this chapter we develop the theory of orbit matrices for strongly regular graph for 

the first, time. 

3.2 Related work 

Rudolf Mathon in [37] introduced the concept of orbit, matrices for block designs. 

In that, paper, orbit matrices are referred to as "tactical decompositions". Clement. 

Lam in [32] showed how to use orbit, matrices by the use of a program called BDX 

to construct block designs. Rudolf Mathon in [36] introduced the concept, of block 

valencies for self-complementary strongly regular graphs. A graph is called self-

complementary if there is a permutation p on its vertices which maps every edge to 
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a non-edge and vice versa. Block valencies are computed based on the partitions 

that p induces on the adjacency matrix of the self-complementary strongly regular 

graph. Using these, a computer program was implemented in [36] to find all self 

complementary strongly regular graphs with less that 54 vertices. 

3.3 The construction 

Let G(V,E) be an srg(v, k, A, /i). Suppose an automorphism of G partitions the set 

of vertices V into b orbits Oi, 0 2 , . . . , Ob- Define ni = |Oj| for 1 < i < b. 

Let V1./U2, • . • , vn be an ordering of the vertices of G that preserves the ordering 

{0\, O2, • • . , Ob)- In other words, if i < j, then for all vi E Oi and vm G Oj, I < m: 

Using this ordering, the orbits of V divides the adjacency matrix B of G into 

submatrices 

B = [BZJ], 

where Bl:j is the adjacency matrix of vertices in Ol versus vertices in Oj. 

As an example, consider the point graph of the partial geometry pg(2, 2,1) shown 

in Example 2 on page 4. It is an srg(15, 6,1, 2). As a point graph, the vertices are the 

points {Pi, P2,.... P|5}. For simplicity, we denote vertex Pi by i. The permutation 

(1,2,3,4, 5)(6, 7,8, 9,10)(11,12,13,14,15) on the vertices is an automorphism of the 

point graph. This automorphism produces three orbits of size five, namely 01 = 

{1,2,3,4,5}, 02 = {6, 7,8,9,10}, and 03 = {11,12,13,14,15}. 
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0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 

1 0 1 0 0 1 1 0 1 0 0 0 0 1 0 

0 1 0 1 0 0 1 1 0 1 0 0 0 0 1 

0 0 1 0 1 1 0 1 1 0 1 0 0 0 0 

1 0 0 1 0 0 1 0 1 1 0 1 0 0 0 

1 1 0 1 0 0 0 0 0 0 1 1 0 0 1 

0 1 1 0 1 0 0 0 0 0 1 1 1 0 0 

1 0 1 1 0 0 0 0 0 0 0 1 1 1 0 

0 1 0 1 1 0 0 0 0 0 0 0 1 1 1 

1 0 1 0 1 0 0 0 0 0 1 0 0 1 1 

0 0 0 1 0 1 1 0 0 1 0 0 1 1 0 

0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 

1 0 0 0 0 0 1 1 1 0 1 0 0 0 1 

0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 

0 0 1 0 0 1 0 0 1 1 0 1 1 0 0 

The row sum and column sum of the submatrices Bij are extremely important in 

the theory we are developing. Define three matrices C = [%], R = [r^], 1 < i.j < 6, 

and N such that 

Cij = column sum of B,j, 

Tij = row sum of BX]. 

and 

N = diag (ni,n2,...77fc). 

Note that R is related to C by the formula 

Since the adjacency matrix is symmetric, 

R = CT. 
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For example, the matrices C and R corresponding to the matrix B are: 

/ 2 3 1 ^ 

C = 

and 
/ 

3 0 3 

1 3 2 

2 3 1 

3 0 3 

1 3 2 

The orbit sizes are on the diagonal of the matrix N 
V / 

/ 5 0 0 ^ 

N = 0 5 0 

0 0 5 / 
The matrix C is the orbit matrix of the graph G. It gives structural information 

about the adjacency matrix B. 

We next establish a relationship involving the matrices C, iV, and R. This will 

be our starting point for a computer enumeration of all the possible orbit matrices C 

for a given orbit partition of the vertices. 

Let W = B2, where Wuv counts the number of paths of lengths 2 between vertices 

u and v. Using the same orbit partition of the vertices, W can also be partitioned in 

W = [ly^-], where i and j are the indices of the orbits. 
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We continue our example of srg(15,6,1,2) and calculate W as follows: 

3 3 1 3 3 \ 

3 3 3 1 3 

3 3 3 3 1 

1 3 3 3 3 

3 1 3 3 3 

W = B2 = 

f 6 1 3 3 1 1 3 1 3 1 

1 6 1 3 3 1 1 3 1 3 

3 1 6 1 3 3 1 1 3 1 

CO
 

3 1 6 1 1 3 1 1 3 

1 3 3 1 6 3 1 3 1 1 

1 1 3 1 3 6 3 3 3 3 
CO

 
1 1 3 1 3 6 3 3 3 

1 3 1 1 3 3 3 6 3 3 

3 1 3 1 1 3 3 3 6 3 

1 3 1 3 1 3 3 3 3 6 

3 3 3 1 3 1 1 3 3 1 

3 3 3 3 1 1 1 1 3 3 

1 3 3 3 3 3 1 1 1 3 

CO
 

1 3 3 3 3 3 1 1 1 

V 3 3 1 3 3 1 3 3 1 1 

1 1 3 3 1 

1 1 1 3 3 

3 1 1 1 3 

3 3 1 1 1 

1 3 3 1 1 

6 3 1 1 3 

3 6 3 1 1 

1 3 6 3 1 

1 1 3 6 3 

3 1 1 3 6 

Define a 6 x 6 matrix S = [.s?J] such that 

Sij = sum of all the entries in Wl}. 

Since B2 = (k—n)I+fiJ+{\—fj)B, we have W^ = n)I +{X—fj)Bij. Please 

note that in the second equation, the dimension of I is iii x n l and the dimension of 

J is rii x rij. We have 

Sij = dij(k - [i)nj + unirij + (A - n)ci:)nr 

In our example, the matrix is calculated as follows: 

(24) 

( 70 45 65 ^ 

5 = 45 90 45 

65 45 70 / 
The matrix S can also be calculated in a different way. 
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Lemma 3.1 

CNR = S. (25) 

Proof Let a , be a vector of size v such that 

f 1 if.? € Oi, 
ttiO) = < 

I 0 otherwise. 

The vectors are chosen such that s,j = a iB 2 aJ . Define 1 < i < 6, to be a row 

vector of size i> such that ^(A:) = c{j for k G Similarly, define (3j, 1 < j < b, to be 

a row vector of size v such that pj(k) = rij for k e Oi. We have 

SlJ = ctiB2aJ = {aiB)(BaJ) 
b 

= r)iPj = '^cikrkjnk = (CNR)ij. 
k=I 

• 

Continuing our example, we calculate ,s]2 for the matrix 5 , using the previous proof, 

we have 

a j = (11111 00000 00000), 

Q 2 = (00000 11111 00000), 

= (22222 33333 11111), 

and 

fo = (33333 00000 33333). 

We can see that 

Si2 = a i B 2 o 2 = rj\02 = 45. 

3.4 Properties of orbit matrices and prototypes 

Lemma 3.1 allows us to derive a set of integer equations for the possible entries in row 

r of the matrix C. The only information we need are the parameters of the strongly 
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regular graph G\ therefore, these equations are independent of the matrix B. Solving 

these equations will help us to find the orbit matrix C without knowing the matrix 

B. 

Using Equation 25, we have 

t t 

•Srr = Crkrkrnk - clknk- (26) 
k=1 1 

Using Equation 24, we have 

srr = (k — /j,)nr + pr?r + (A — p)crrnr. (27) 

For simplicity, we restrict ourself to the case where the orbits are either of size one 

or of size p, a prime. Let ib be the number of orbits of size p and <p be the number of 

orbits of size one. <p and -0 satisfy the following equation. 

<p = v — pip (28) 

In this case, we have two types of rows (columns). Fixed rows (columns) are those 

whose orbit size is one and non^fixe'd rows (columns) are those with orbit size p. 

Without taking into account the ordering of the entries in a row of C, we first 

consider the distribution of such entries. We call this a prototype of a row of C. Each 

prototype will tell us the possible number of occurrences of each integer as an entry 

of a particular row of C. 

Consider an arbitrary fixed row r of C. The possible value of each entry of that 

row, regardless of being a fixed column or non-fixed column, is either 0 or 1. 

Let .To and xi be the number of zeros and ones respectively on the fixed columns 

of row r. Let yo and //i be the number of zeros and ones respectively on the non-fixed 

columns of row r. Since the number of fixed columns is we have xo + x\ = d>. 

Similarly we have y0 + yj = •</;. Since the row sum of the matrix B is equal to k. we 

have 

+ Plh = k-
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Thus, we have the following set of equations: 

Xo + Xj = (f>, 

Vo + yi =</>, (29) 

+ pyi = k. 

We define a Fixed Prototype as a non-negative integer solution of xo, xj, IJQ, and y\, 

satisfying this set of linear equations. 

Now consider an arbitrary non-fixed row r of C. The possible values of the fixed 

column entries of row r are either 0 or p. The possible values of the non-fixed column 

entries of row r can be 0 . 1 , . . . ,p. Let xo and xp be the number of zeros and p s on 

the fixed columns of row r. Let i = 0 , 1 , . . . . p be the number of €s on the non-

fixed columns of row r. Similar to the situation with columns, we have xo + xp = d> 

and Yli=o Vi = V-'- Also, since the row sum of B is equal to k, by counting, we have 

xp + Wi ~ Using Equation 26, we have 

p 
p2-fp + ^ i2pyi = srr. 

i=1 

Thus, we have the following set of equations: 

XQ + xp = <p, 

+ Ijp 

+ PVp = k. 

+ p2yP = SRR 

(30) 2/o + 2/i + v 2 + 2/3 + • • 

xp + 2/i + 2 y2 + 32/3 + -• 

pxp + 2/i + 4 y2 + 9 2/3 + 

We define a Non-Fixed Prototype as a non-negative integer solution of xo, xp, 

2/0, • • •, 2/p, satisfying this set of linear equations. 

In the above equation, the value of s r r is obtained from Equation 27. Using 

Equation 27, we can generate a separate set of equations for each value of crr. The 

following lemma puts a restriction on these values. 

Lemma 3.2 If nr is odd. then crr is even. 
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Proof Let Y be the subgraph induced by Oi. Brr is the adjacency matrix of Y. 

Y is a regular graph of degree c r r . By counting the number of edges of Y in two 

different ways, we have 

2\E(Y)\ = nTcTT. 

Since n r is odd, c r r must, be even. • 

Since 0 = v — pip. the smallest possible value for 0 is z = v mod p. The possible 
values of 0 are 2, 2 + p. z + 2p, .... z + p The following two theorems state p 

that, once we find no fixed (or non-fixed) prototype for a given 0, then there is no 

need to consider any larger 0\s when 0 > 2p. 

Theorem 3.3 If there exists a fixed prototype with 0 fixed columns and 0 > 2p. then 

there is a fixed prototype with (j) — p fixed rows. 

Proof Since there exists a fixed prototype with 0 fixed columns, there is an integer 

solution (zo, yo, y\) for Equation 29. Consider the following equations for a fixed 

prototype with (j) — p fixed rows: 

•r'0 + x'j =<t>-p, 

y'o + y\ + h (31) 

•>'1 + piA = k-

If XQ > p, then x'0 = xo — p, x\ = x , . y'0 = y0 + 1, and y\ = yi would be a solution for 

Equation 31, and Xq, X\, y'(], and y\ are all non-negative. 

If xi > p. then Xq = .r0, x'i = xi — p, y'0 = y0, and y\ = y\ + 1 would be a solution 

for Equation 31, and X'j . y'0, and y[ are all non-negative. 

Since 0 > 2p. one of these two cases has to be true and Equation 31 has a non-

negative integer solution. • 

Theorem 3.4 If there exists a non-fixed prototype with, o fixed rows and 0 > 2p. 

then there is a non-fixed prototype with 0 — p fixed rows. 
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Proof Since there exists a non-fixed prototype with 4> fixed rows, there is a non-

negative integer solution (xo, xpi yo, y i , . . . , yP) for the set of Equations 30. Consider 

the following equations for a non-fixed prototype with 0 — p fixed rows: 

x'0 + xp =(f>- p, 

* + * + * + * + - + * + (32) 

x'p + y[ + 2y'2 + 3y's + ••• + py'p = fc, 

px'p + y\ + 4 y'2 + 9y'3 + ••• + p% = srr/p. 

Since (p > 2p, either xo > p or xp > p. If xo > p, then x'Q = Xo — p, x'p = xp, 

Ho = ?/o + l , and y' = yt for 1 < i < p would be a solution for Equation 32, and 

xp, y'o, y'l,..., y'p) are non-negative. 

If xp > p, then x'0 = xo, x'p = xp — p., and y\ = ŷ  for 0 < i < p — 1, and y'p = yp +1 

would be a solution for Equation 32, and (x[,, x'p. y'0. y[,..., y'p) are non-negative. 

Since 0 > 2p, one of these two cases has to be true and Equation 32 has a non-

negative integer solution. 

• 

3.5 Upper bounds on the number of fixed points 

In this section, we introduce some new upper bounds on q> the number of fixed points 

of an automorphism of a strongly regular graph. We need to use the concept of orbit 

matrices to derive some of these upper bounds, but some upper bounds are obtained 

independently, without the use of orbit matrices. 

Let B be the adjacency matrix of G = srg(?>, k, X, //,), having a non-trivial auto-

morphism. Let B' = [b'tj] be the adjacency matrix of the subgraph of G, induced by 

all the non-fixed vertices. Let a = max(A, ft). The following lemma gives a restriction 

on row-sums of B'. 

Lemma 3.5 Let G = srg(v. k. X, p) and further assume that G has a non-trivial 

automorphism p. Let H be the subgraph of G. induced by all the non-fixed vertices of 
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G. Then 

5(H) > fc-max(A.//). 

Proof Let i be a non-fixed vertex of G and let y = xp. Let 2 be any fixed vertex 

of G adjacent to x. Since (z,x) G E(G), we have 

(zp,xp) = (2, y) G E(G). 

Thus any fixed vertex adjacent to x is adjacent to y as well. Since x and y have 

at most max(A./i) common neighbours, there are at most max (A, //) fixed vertices 

adjacent to x. Since G is a regular graph of degree k, every non-fixed vertex of G 

has at least k — max(A,/i), non-fixed neighbours. Thus 

8(H) >k — max(A./t). 

• 

Lemma 3.6 Let A = [a^] be an n x n positive semidefinite matrix. Then 

Y , -

i-j 

Proof Since A is positive semidefinite, we have 

z'Az > 0, 

for any 2 G Cn. Take the all one vector j as 2, the result follows directly. • 

Lemma 3.6 is a special case of the Fejer's theorem. For more information about Fejer's 

theorem, refer to [28, page 459]. 

The following theorem gives us an upper bound on the number of fixed points. 

The interesting fact about this bound is that- it is independent from the selection of 

P-

Theorem 3.7 Let r < s < k be the eigenvalues of an svg(v, A:, A, /1). then 

max (A. //.) 
<£> < — v. 

k — s 
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Proof Let B be the adjacency matrix of the strongly regular graph and B' = [b'ZJ} 

be the principal submatrix of B corresponding to the non-fixed vertices. 

We know that the idempotent matrix E\ in Equation 11 is positive semidefinite. 

Therefore, every principal submatrix of E\ is positive semidefinite. Let E[ = [e^] be 

the submatrix of E\ corresponding to the non-fixed vertices. Let us further assume 

that E[ is of size n. Let a = max(A. /i). From Lemma 3.5, we know that the row sum 

of the matrix B' is at least k — a. Therefore, 

By considering that r — s < 0 and combining Equations 11, 33, and 34, we have 

(33) 
y 

In order for E[ to be positive semidefinite, using Lemma 3.6, we have 

(34) 

> 0. 

Since r — s < 0 and n > 0, we have 

^ ^ 
(k — a) — s-\ -n < 0. 

v 

After simplifying, we get 
av 

n> v — . 
k — s' 

which implies 

• 

As an example, consider an srg(99,14.1. 2), using Theorem 3.7. we can see that, an 

automorphism of this strongly regular graph, can have at most 18 fixed points. 
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Theorem 3.8 
k2 - k 

(f> <v ——- + 2k — max(A. u) — 2. 
max(A, jj.) 

Proof Let a = max(A, //). Let B be the adjacency matrix of the strongly regular 

graph and B' = \b'tJ] be the principal submatrix of B corresponding to the non-fixed 

vertices. Let n be the size of B'. Using Lemma 3.5, the matrix B' has at least k — a 

ones in each column. Since any two vertices have at most a common neighbours, we 

have: 

Bn < (k - a)I + aJ. (35) 

We count the sum of entries of B'2 in two different ways. First, since B' is symmetric, 

we have B'2 = B'B'T. Let r be an arbitrary column of B'. By Lemma 3.5 there are 

at least k — a ones on r. By counting the number of un-ordered pairs of l ' s on the 

column r, we have 

£ b'irb'jr > {k — a)(k — a —1). 
1 <i-j<n.ijtj 

Let s be the sum of all the entries of B'2. except the ones on the diagonal. In fact, s 

is the sum of inner products of different rows. We have 
n 

S = ^'jr 
1 <i.j<n.i^j r— 1 

n 

= S b'"-b'jr 
r= 1 l<i.j<n.i^j 

> n(k — a)(k — a — 1). 

Using Equation 35, we have 

s < an(n — 1). 

Using the last two calculations, we have 

(k — a){k — a — 1 )n < an(n — 1). 

One could simplify the above equation to see 

k2 - k 
n > 2k + a + 2. 

c\ 
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Since n = v — <f>, we have 

k2 -k 
<b<v + 2k - a - 2. 

a 

• 

As an example, again consider an srg(99,14,1, 2), using Theorem 3.8, we can see that, 

an automorphism of this strongly regular graph, can have at most 32 fixed points. 

We have realised, in all our test cases, Theorem 3.7 gives a better upper bound 

than Theorem 3.8, but we have not been able to prove that the upper bound obtained 

from Theorem 3.7 is always lower than the upper bound obtained from Thorem 3.8. 

The following theorem states that when the orbit size is large enough, there is no 

fixed point. 

Theorem 3.9 If p > k and /j, 0. then 0 = 0. 

Proof Consider Equation 29. Since p > k, the only solution to the equation is the 

following: 

(•'•<). .f). y0, //i) (o - k. k. i \ 0). 

Let u be a fixed vertex and v be a non-fixed vertex. Since y\ = 0, we have Buv = 0. 

Consider an arbitrary vertex x different from u and v. Again, since y\ = 0, if x is a 

fixed vertex, we have Bxv = 0. If x is a non-fixed vertex, we have Bxu — 0. In both 

cases ,r is not a common neighbour of u and v. Thus either // = 0 or there is no fixed 

point. • 

Corollary 3.10 If p > k and // ^ 0. then v should be divisible by p. 

The following theorems put some bound on the number of fixed points a strongly 

regular graph can have. 

Theorem 3.11 If 6 < k - 1 and p > max(A, //). then & < v/(p + 1). 
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Proof Using Equation 29, since X\ < 0 < k, we have pyi > 1. Therefore, y\ > 1. 

Consider the submatrix of C corresponding to the fixed rows and non-fixed columns 

and call it C. Since y\ > 1, there is at least one "1" in each row of C". Since 

C' is of size <p x ill there are at least 0 ones in C". If 0 > ip, by the pigeon hole 

principle, there is a column of C that, has more than one 1 in it. Therefore there 

are two fixed rows, i and j , and a non-fixed column k such that CikCjk = 1- But, we 

have pCikCjk < max(A, fi) since the inner product of two fixed rows of B is less than 

max(A, p), which contradicts the assumption that p > max(A. //.). Therefore 0 < tp-

Since (p + pip = v, we have 0 < v/(p + 1). • 

3.6 Computer construction of orbit matrices 

After we have obtained the prototypes, we can construct the matrix C by backtrack-

ing. The first row can be constructed easily using its prototype. For the first row we 

know the number of occurrences of each value. The order of entries is not. important, 

for the first row as the orbits of the same type are still free to be permuted among 

themselves. 

The rest, of the rows can be constructed recursively. Assume that the matrix C is 

constructed up to the row r — 1. To construct row r, first we consider the prototype. 

Using Equation 24. for 1 < i < r, we have 

SiT — piliTlr + (A — jx)a rn r . (36) 

Since i < r, the value of cir is already known. Hence the value of sir is known. On 

the other hand, using Equation 25, we have 

6 
Sir = CikCrknr- (37) 

fc= 1 

The new row r has to satisfy Equation 37 for all 1 < i < r. The entries in row 

r are constructed recursively starting from column 1 and ending at column b. Since 

the variables on the right-hand side of Equation 37 are all non-negative, if we are at 
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a column b' < b, Equation 37 can be replaced by 

v 
Sir CikCrk r̂ • (38) 

k=\ 

For each column b', we try all possible values for crly. but ensuring that it satisfies 

Equation 38. 

Since B is an adjacency matrix, it is symmetrical. Thus, for k < r, c.rk = 

<-'kr{nk/nr), which is already known. 

The number of candidate matrices for C can further be reduced by isomorph 

rejection, since the fixed and non-fixed columns can permute among themselves re-

spectively. 

We finish this chapter using an example, to see how the orbit matrices for strongly 

regular graphs are constructed. 

Example 9. In this example, we consider srg(15. 6,1.3). Assume p — 3 and assume 

that there are three orbits of size one and four orbits of size three. Therefore 0 = 3, 

ib = 4, ni = ri2 = n3 = 1 and n4 = r?,5 = iiq = n7 = 3. 

First, we calculate the fixed prototype using Equation 29. We have the following 

equations: 

•T0 + -TL = 3, 

I/o + V I — 4, (39) 

xi + 3yi = 6. 

The only non-negative integer solutions of the above equations are 

(xo,xi,yo. yi)e{(0. 3, 3,1), (3,0,2,2)}. 

Since the diagonal of B is zero. c r r = 0 when r is a fixed row. Therefore, there has 

to be at least one zero in the fixed columns. Thus XQ > 1 and the first solution is 

not acceptable, implying (.to. .<"1. yo, y\) = (3. 0, 2. 2). Now, we consider the non-fixed 
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prototype for the non-fixed rows of the incidence matrix. Equation 30 gives: 

x0 + x3 = 3, 

Vo + V\ + 2/2 + 2/3 = 4, 
(40) 

x3 + y i + 22/2 + 3y3 = 6, 

3 ^ 3 + 2/1 + 4 y 2 + 9 ^ 3 = s„/3. 

Using Equation 27, we have srr — 36 — 6crr. The possible values of c r r are 0, 1, and 

2. We shall consider all these cases. 

For c r r = 0, we have s r r = 36. The solutions of Equation 40 are 

( x o , x z , 2 / 0 , 2 / 1 , 2 / 2 , 2 / 3 ) G { ( 0 , 3 , 1 , 3 , 0 , 0 ) , 

(1,2,1,2,1,0), 

(2,1,1,1,2,0), 

(3,0,1,0,3,0), 

(3,0,0,3,0,1) }. 

Since c r r = 0, we have y0 > 0. Therefore the last solution is not possible. 

We do not need to consider the case crr = 1 using Lemma 3.2. 

For crr = 2, we have srr = 24. In this case the prototype in 40 has no non-negative 

integer solution. 

Now, we build the matrix C row by row. The first row is a fixed row. Its only 

prototype is (3,0, 2, 2), meaning 3 zeros for the fixed columns, and 2 zeros and 2 ones 

among the non-fixed columns. By permuting the columns, we can assume that the 

first row is [000(0011]. 

Now, we need to construct the second row. Since C12 = 0, Equation 36 implies 

S12 = 3 — 2C12 = 3. 

Thus by Equation 37, we have 

= 3. 
A-= I 
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Since we already know the first row of C, we have: 

3C'26 + 3C'27 = 3. (41) 

The prototype for the second row is (3,0,2,2). Considering Equation 41 and, by 

permuting the columns, we can assume that the second row is [OOOjOlOl]. By a 

similar argument the third row is [000|1001] up to isomorphism. 

Consider the forth row. By Equation 36, we have 

.Si4 = 9 — 6C14 = 9, 

S24 = 9 - 6 c 2 4 = 9 . 

S34 = 9 - 6C34 = 3. 

Considering the values of sz-4, by Equation 37, we have: 

3C46 + 3C47 = 9, 

3C45 + 3C47 = 9, 

3C44 + 3C47 = 3. 

The only solutions of the above set of equations are 

(c44-, C45, C<J6j C47) G { (1,3,3,0), 

(0,2,2,1) }. 

The first solution does not belong to any non-fixed prototype, however the second 

solution does. Therefore the forth row up to isomorphism is [003)0221]. 

Similarly, we construct the rest of the rows of C by using their prototypes. Equa-

tions 36, 37, and by permuting the rows in order to consider the symmetry. 

Finally, up to isomorphism one can see that there is only one possible solution for 

the column sum matrix, which is the following: 
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0 0 0 0 0 1 1 

0 0 0 0 1 0 1 

0 0 0 1 0 0 1 

0 0 3 0 2 2 1 

0 3 0 2 0 2 1 

3 0 0 2 2 0 1 

C
O

 3 3 1 1 1 0 
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Chapter 4 

Computer search for strongly 

regular graphs 

We have implemented a computer program to search for unknown strongly regular 

graphs. Our algorithm is an exhaustive backtrack search based on orbit matrices. 

Throughout the thesis we call this program the SRG program. 

After an orbit matrix for the desired strongly regular graph is obtained, the SRG 

program tries to find the adjacency matrix of the strongly regular graph by expanding 

the entries of the orbit matrix into blocks of the adjacency matrix. 

Several combinatorial and algebraic techniques have been used in pruning the 

backtrack search tree. 

The SRG program also has the ability to estimate the size of the search tree using 

a random probing method. This random probing technique can be used as well to 

perform a randomised search. 
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4.1 History of computer search for strongly regu-

lar graphs 

The existence or non-existence of strongly regular graphs has been studied using com-

puter searches. It was shown in [5] by the use of a computer search that srg(49,16, 3, 6) 

does not exist. The uniqueness of some strongly regular graphs up to isomorphism 

was shown by the use of an exhaustive search in [15]. Complete classification of some 

strongly regular graphs with small parameters has been performed in [13], [26], [38], 

and [44], by the use of computer searches. Corneil and Mathon in [14] describe several 

algorithmic techniques for the construction of strongly regular graphs and other com-

binatorial configurations. In this paper general search techniques for combinatorial 

configurations such as hill-climbing and backtracking, as well as specific techniques 

for strongly regular graphs such as switching classes are introduced. In [36], a com-

puter search was performed to find all self-complementary strongly regular graphs 

with less than 54 vertices. 

4.2 Methodology 

The SRG program tries to complete the adjacency matrix of a strongly regular graph 

by expanding the entries of its orbit matrix into circulant. submatrices. Let us assume 

that C = [cij\ is the orbit matrix of the strongly regular graph corresponding to an 

automorphism of order p, and that. B = [Bij} is the adjacency matrix of the strongly 

regular graph. The SRG program would expand each non-fixed upper triangular 

entry cl:t to all the possible (c
p ) circulant matrices Bjj. 

After each circulant block B^ is placed into the matrix B, a check would be 

applied to see that B does not. violate the properties of strongly regular graphs. This 

is the pruning part of the algorithm. We will discuss these checks in more detail later. 

Because the adjacency matrix B is symmetric, the lower triangular half of the matrix 

is obtained by symmetry. 
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In order to make the backtrack search flexible for each non-fixed tipper diagonal 

entry of C, we associate a time-stamp in the SRG program. The time stamp rep-

resents the order which the entries Cij are expanded into circulant blocks Bij in the 

backtrack search. 

The program also has the ability to perform isomorph rejection at a specific given 

time stamp. It means the user is able to specify at which level of the search tree the 

isomorph rejection algorithm should be applied. We usually use isomorph rejection at 

the beginning and at the very end of the search. Isomorph rejection is time consuming 

and very costly when applied to the middle level where there are many cases. 

Another pruning technique that is implemented into the SRG program is the 

positive semidefinite test. Whenever a principal submatrix is completed, the SRG 

program checks whether or not the corresponding submatrix is positive semidefinite. 

As we have shown in Chapter 2, the idempotent matrices E\ and E2, as defined in 

Equations 11 and 12, are positive semidefinite. Therefore their principal submatrices 

are positive semidefinite as well. This is a strong pruning technique, and has given 

us the ability to solve cases which we were not able to complete before using this 

pruning technique. The program uses a maximal clique algorithm to find at w?hich 

time stamps a new principal submatrix is completed. Let n be the number of orbits 

and let T}J represent the time stamp of the i,j block. Define the graph G(V,E) as 

follows: 

• V = {L...N}; 

• uv € E iff Tuu < t, Tvv < t. and Tuv < t. 

Each clique in G corresponds to a complete principal submatrix at an arbitrary time 

stamp t. 

In order to find all strongly regular graphs with parameters (t», k, A, /z) that have 

an automorphism group of size divisible by a prime p. one should do the following 

procedure: 
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1. Find all the orbit matrices with p as the non-fixed orbit size for all the possible 

fixed points. 

2. Run the SRG program for all orbit matrices obtained. 

3. Run a final isomorphism test. 

4.3 An example 

In this section, we show by an example, how the SRG program works and the structure 

of its input file. We consider the srg(15, 6,1, 3) for this example, with p = 5, and no 

fixed points. After running the orbit matrix program, we find that there are exactly 

two orbit matrices as follows: 

3 3^ 

3 0 3 , 

^3 3 Oj 
and 

^0 3 3^ 

3 2 1 -

V3 1 V 
For this example, we consider the second matrix. 

The description of the input file (Figure 1) is as follows: 

Line 1: The parameters v. k. A. fi of the strongly regular graph; 

Line 2: Prime p for the size of the non-fixed orbits, and the number of orbits; 

Line 3: Orbit sizes (here we have three orbits of size 5); 

Lines 4-6: The orbit matrix: 

Lines 7-9: The time stamps. Please note that since Tij = Tji, only the upper trian-

gular part of the matrix is required: 

Line 10: The inverse probability of going into each backtrack level (this can be used 

either for a random search or estimation): 

Line 11: The stop time and snap shot, frequency: 
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1 
2 
3 

15 6 1 3 
5 3 
5 5 5 

4 
5 
6 

0 3 3 
3 2 1 
3 1 2 

7 
8 
9 

1 4 6 
2 5 

3 

10 
11 
12 
13 
14 

1 1 1 1 1 1 
0 0 
1 
0 1 0 0 0 1 
0 

Figure 1: The input file for this example 

Line 12: A boolean control variable to show that we are using manual isomorph re-

jection; 

Line 13: An array which indicates at which time stamp we have isomorph rejection; 

Line 14: A boolean control variable to show whether or not, we have a partial entry 

(in this case we do not). 

We ran the program to get a snap shot at t — 2. At time stamp t = 2, two partial 

solutions B\ and B2 were found. 
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0 0 0 0 0 X X X X X X X X X X 
0 0 0 0 0 X X X X X X X X X X 
0 0 0 0 0 X X X X X X X X X X 
0 0 0 0 0 X X X X X X X X X X 
0 0 0 0 0 X X X X X X X X X X 

X X X X X 0 1 0 0 1 X X X X X 
X X X X X 1 0 1 0 0 X X X X X 
X X X X X 0 1 0 1 0 X X X X X 
X X X X X 0 0 1 0 ] X X X X X 
X X X X X 1 0 0 1 0 X X X X X 

X X X X X X X X X X X X X X X 
X X X X X X X X X X X X X X X 
X X X X X X X X X X X X X X X 
X X X X X X X X X X X X X X X 
X X X X X X X X X X X X X X X 

0 0 0 0 0 X X X X X X X X X X 
0 0 0 0 0 X X X X X X X X X X 
0 0 0 0 0 X X X X X X X X X X 
0 0 0 0 0 X X X X X X X X X X 
0 0 0 0 0 X X X X X X X X X X 

X X X X X 0 0 1 1 0 X X X X X 
X X X X X 0 0 0 1 1 X X X X X 
X X X X X 1 0 0 0 1 X X X X X 
X X X X X 1 1 0 0 0 X X X X X 
X X X X X 0 1 1 1 1 X X X X X 

X X X X X X X X X X X X X X X 
X X X X X X X X X X X X X X X 
X X X X X X X X X X X X X X X 
X X X X X X X X X X X X X X X 
X X X X X X X X X X X X X X X 

Since Bj is isomorphic to Bo. and we have isomorph rejection at the time stamp 

t = 2. the second solution B2 would be rejected. 

We finisher! the run to see how many strongly regular graphs were found. This is 

a excerpt of the output- of the program for this example: 

aut size of the solution: autogp size =(1)(4)(5) 
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solution number 1 : 

00000 11010 11100 

00000 01101 O H I O 

00000 10110 00111 

00000 01011 10011 

00000 10101 11001 

10101 01001 00010 

11010 10100 00001 

01101 01010 10000 

10110 00101 01000 

01011 10010 00100 

10011 00100 00110 

11001 00010 00011 

11100 00001 10001 

01110 10000 11000 

00111 01000 01100 

The number of strongly regular graphs found:1 

elapsed time = 1.000000 ms 

Number of nodes visited= 64 

1: 1 - 0 

2: 1 1 0 

3: 10 - -

4: 2 5 - 0 

5: 25 - -

6: 1 24 0 
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The total estimation of number of nodes= 64 

elapsed time=0.00 seconds 

elapsed time==0.00 hours 

Estimated time = 0.00E+00 days 

The last part of the output shows the size of the backtrack search tree. From the 

output, we can see that at time stamp t = 1 there is one partial solution, at time 

stamp t = 2 there are two solutions, but one is rejected by the isomorphism test. 

At time stamp t = 3 there are ten partial solutions and the isomorphism test is not 

performed. At time stamp t = 6 there are 25 solutions, but only 1 non-isomorphic 

solution. 

4.4 Correctness tests 

In order to make sure that the SRG program works correctly, we performed some tests. 

The first test was running the program on a few small cases that could be verified 

by hand. We also compared our results with the results from other people. Since 

the chance of getting exactly the same result, from different algorithms and different, 

implementations is very small, we can conclude, with a high level of confidence, that 

the SRG program is correct. 

One of the test cases that we used was the srg(36.14,4,6). The complete enu-

meration of this case has been done by McKay and Spence in [38]. There are 180 

strongly regular graphs with the above parameters which can be downloaded from 

£'http://www.maths.gla.ac.uk/~es/srgraphs.html''. 

We ran the SRG program for all the possible orbit sizes to compare our results to 

the results of McKay and Spence. The SRG program found 152 srg(36,14,4, 6) with 

non-trivial automorphism groups. 

Table 4 shows the statistics on the number of strongly regular graphs found by 

Brendan McKay and Edward Spence. and the strongly regular graphs found by the 

70 

http://www.maths.gla.ac.uk/~es/srgraphs.html''


Automorphism group size Number of SRGs Number of SRGs 
McKay program the SRG program 

1 28 Not Applicable 
2 37 37 
3 14 14 
4 51 51 
8 16 16 

12 5 5 
16 5 5 
21 2 2 
24 9 9 
32 1 1 
36 1 1 
48 5 
64 1 1 
72 1 1 

144 1 1 
216 1 1 
432 1 1 

12096 1 1 

Table 4: Automorphism group statistics of all srg(36.14, 4.6) 

SRG program. The results are exactly the same except for the asymmetric graphs, 

which the SRG program is not designed to find. Since it is very unlikely to get the 

same results randomly, this test shows us that the SRG program works correctly 

Another test that was done can be found in Section 4.6.2. 

4.5 Estimations 

Since the running time of most of the combinatorial search algorithms, as well as the 

SRG program, are not polynomial, it is very important to h a v e an estimation of the 

running time of the program before starting the exhaustive search. 

Donald Knuth in [29], showed, for the first time, a simple method for estimating 

the size of the search tree of a backtrack algorithm. Let. us assume that the level i in 

a search tree is the set of all nodes with distance ? to the root. In Knuth s method. 
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a random path P = PQP\ ... PN from the root of the search tree to one of the leaves 

is taken. Let Q be the number of children of P, in the search tree. Then an estimate 

of the number of nodes at level i is calculated as follow: 

Ei — c'oc'i... c*i_i- (42) 

An estimate of the size of the search tree is calculated as follows: 

E = 1 + C0 + C0Ci + C0CiC2 H b C0C1C2 • • • cn_ 1. (43) 

Under the assumption that all children of a node have equal probability of being 

chosen, Donald Knuth in [29] proved that the expected value of E in Equation 43 is 

equal to the size of the search tree. Therefore if we compute E for various times and 

calculate the average, we can get a good estimation of the size of the backtrack tree. 

For more information about backtracking, backtrack search tree, and the Knuth's 

method, refer to [30]. 

In the SRG program, we applied a method, similar to the Knuth's method, to 

estimate the size of the search tree. This method has some advantages to the Knuth's 

method which will be explained later. 

We assign the probabilities pt to each level of the backtrack tree. In the backtrack 

search, if we are at a node X at level I, we visit each child of X with probability p,-. 

If all pi s are equal to 1, we visit all the nodes of the backtrack search tree, thus we 

do a complete exhaustive search. Therefore by the choice of pi, we can do either a 

complete search, or a random search using the same program. If we do a random 

search, we calculate the estimated number of nodes at each level of the backtrack 

search using a recursive method. Let X be a node of the backtrack search tree at. 

level T that, has been visited in our random search. Let C(X) be all the children of X 

that have been visited in the random search. Define: 

1 if i = t. 

£i(X) = 0 if?' < t. (44) 

YlveCiX) £I(y)PI Otherwise. 
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Define 

Ei = £(ROOT), 

then Ei is the estimated number of nodes at each level i, and Yhi Ei is the estimated 

number of all the nodes of the backtrack search. 

This method fits perfectly into the backtrack program since it is recursive. We 

calculate £i(X) whenever we visit a node X in the backtrack search. The proof of this 

method is similar to the proof of the Knuth's method. For the proof of the Knuth's 

method refer to [30, page 117]. 

If we do the complete search, then Ei would be the exact number of nodes at level 

i. In this method, we have control over the choice of the probabilities p,. We can 

visit the nodes at some levels, especially the levels near the root and near the leaves, 

more often than other levels of the backtrack search. This would gives us a better 

estimation of the size of the backtrack search. 

4.6 Results 

In this section, we provide all the results of running the genOrbit and the SRG 

program. We divided the results into two subsections. One section is related to 

the strongly regular graphs whose existence or non-existence is unknown. The other 

section provides the results about the strongly regular graphs whose existence is 

known, but there has not been a complete classification performed. 

4.6.1 Results on unknown strongly regular graphs 

In this section, we are investigating the strongly regular graphs whose existence is un-

known. We obtained the list of these strongly regular graphs from the CRC handbook 

of combinatorial designs [11]. 

The details of all the computer runs on these graphs can be found in Appendix 

A. 
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Theorem 4.1 If an srg(65, 32,15,16) exists, the only possible prime devisors of the 

size of its automorphism group are 2, 3, and 5. Moreover, if it has an automorphism 

of order 5, then it can only have 5 fixed points. 

Theorem 4.2 If an srg(69, 20. 7,5) exists, the only possible prime devisors of the 

size of its automorphism group are 2 and 3. 

Theorem 4.3 If an srg(75, 32,10,16) exists, the only possible prime devisors of the 

size of its automorphism group are 2 and 3. 

Theo rem 4.4 If an srg(76,30, 8,14) exists, the only possible prime devisors of the 

size of its automorphism group are 2 and 3. 

Theorem 4.5 If an srg(76, 35,18,14) exists, the only possible prime devisors of the 

size of its automorphism group are 2. 3, and 5. Moreover, if it has an automorphism 

of order 5, then it can only have 1 fixed point. 

Theorem 4.6 If an srg(85,14, 3,2) exists, the only possible prime devisor of the size 

of its automorphism group is 2. 

Theorem 4.7 If an srg(85, 30,11,10) exists, the only possible prime devisors of the 

size of its automorphism group are 2, 3, 5, and 17. 

Theorem 4.8 If an srg(85, 42, 20, 21) exists, the only possible prime devisors of the 

size of its automorphism group are 2, 3, 5, and 7. 

Theorem 4.9 If an srg(88, 27.6, 9) exists, the only possible prime devisors of the 

size of its automorphism group are 2, 3, 5, and 11. 

Theorem 4.10 If an srg(95, 40,12,20) exists, the only possible prime devisors of the 

size of its automorphism group are 2. 3. and 5. 

Theo rem 4.11 If an srg(96, 35,10,14) exists, the only possible prime devisors of the 

size of its automorphism group are 2. 3, and 5. Furthermore, if it has an automor-

phism of order 5. then it has no more than one fixed point. 



Theorem 4.12 If an srg(96,38,10.18) exists, the only possible prime devisors of the 

size of its automorphism group are 2. 3, and 5. 

Theorem 4.13 If an srg(96,45, 24.18) exists, the only possible prime devisors of the 

size of its automorphism group are 2. 3, and 5. 

Theorem 4.14 If an srg(99,14,1,2) exists, the only possible prime devisors of the 

size of its automorphism group are 2 and 3. Moreover, if it has an automorphism of 

order 3. then it has no fixed points. 

Theorem 4.15 If an srg(99,42, 21.15) exists, the only possible prime devisors of the 

size of its automorphism group are 2, 3, 5; 7. and 11. 

Theorem 4.16 If an srg(100,33,8,12) exists, the only possible prime devisors of the 

size of its automorphism group are 2, 3, 5, and 11. 

Table 5 summarises the results. 

4.6.2 Results on known strongly regular graphs 

We have used the SRG program on parameter sets where there is a strongly regular 

graph known, for three reason: 

1. To test the SRG program; 

2. To find new strongly regular graph that are not isomorphic to any of the known 

ones; 

3. To build a database of strongly regular graphs with non-trivial automorphisms. 

One of the strongly regular graphs that we have studied is srg(49,18, 7, 6). Using 

our computer program, we have generated all srg(49,18, 7,6) which have automor-

phisms of order divisible by 5 or 7. 

It is mentioned in [11] that all known srg(49.18, 7,6) are either from OA(7. 3) or 

Pasechnik(7). 



possible primes 
G {p:p\Aut(G)} 
srg(65,32,15,16) 2,3,5 
srg(69,20, 7,5) 2,3 
srg(75,32,10,16) 2,3 
srg(76,30, 8,14) 2,3 
srg(76,35,18,14) 2,3,5 
srg(85,14,3,2) 2 
srg(85,30,11,10) 2,3,5,17 
srg(85,42, 20,21) 2,3,5,7 
srg(88,27,6, 9) 2,3,5,11 
srg(95,40,12,20) 2,3,5 
srg(96,35,10,14) 2,3,5 
srg(96,38,10,18) 2,3,5 
srg(96,45, 24,18) 2,3,5 
srg(99,14,1, 2) 2,3 
srg(99,42,21,15) 2,3,5,7,11 
srg(100,33,8,12) 2,3,5,11 

Table 5: Results summery on the automorphism groups of unknown strongly regular 
graphs 

We have reviewed both of the above constructions in Chapter 2. OA(7, 3) is 

equivalent to a Latin square of order 7. According to [11] there are exactly 147 Latin 

squares of order 7. We have obtained all the non-isomorphic Latin squares of order 

7 from Professor Brendan McKay's webpage at 

<f http://cs.anu.edu.au/~bdm/data/latin.html 

We generated all the strongly regular graphs obtained from these 147 Latin squares, 

and compared them to our own results. Table 6 shows the automorphism group size 

statistics of all the strongly regular graphs obtained from Latin squares of order 7. 

It is mentioned in [11] that all known srg(49,18, 7. 6) are either obtained from 

Latin squares or from the Pasechnik method. We wrote a computer program to find 

all Pasechnik srg(49. 18. 7.6). 

It can be seen by hand calculations that there is exactly one skew symmetric 

Hadamard matrix of order 8 up to isomorphism which is the following: 

http://cs.anu.edu.au/~bdm/data/latin.html


Automorphism group size Number of strongly regular graphs 
1 44 
2 57 
3 4 
4 11 
6 16 
8 1 

10 1 
12 2 
15 1 
16 2 
18 1 
24 3 
72 1 

144 1 
1008 1 
1764 1 

Table 6: Automorphism group statistics of all srg(49.18, 7,6) obtained from Latin 
squares of order 7 

Automorphism group size Number of strongly regular graphs 
10 1 
15 
21 1 
30 1 
63 1 

126 1 
1008 1 
1764 1 

Table 7: Automorphism group size statistics of all srg(49,18. 7, 6) with automorphism 
group size divisible by 5 and 7 obtained from the SRG program. 



/ 1 1 1 1 1 1 1 1 \ 

1 1 1 1 

1 1 1 1 

1 1 1 1 
H 

1 1 1 1 

1 1 1 1 

1 1 1 1 

V - 1 - 1 - 1 - I ) 
There are two srg(49,18, 7, 6) that can be obtained from the matrix II above 

by the Pasechnik method. We compared these two graphs to the Latin square 

srg(49,18, 7, 6). We realised that the two Pasechnik graphs are isomorphic to a 

strongly regular graph with automorphism group of size 1764 which can be obtained 

from a Latin square. 

Table 7 shows all the strongly regular graphs with automorphism group of size 

divisible by 5 and 7. 

We compared the output of our program for p = 5 and p = 7 to all srg(49,18, 7,6) 

from Latin squares of order 7 and obtained the following two important conclusions: 

• All Latin square srg(49.18, 7, 6) which had automorphism orders divisible by 5 

and 7 were found by the SRG program, which is a strong correctness test of our 

program. 

• We have found 6 new strongly regular graphs that were not known before. The 

graphs can be found in Appendix B. 

78 



Chapter 5 

Partial geometries 

5.1 Introduction 

Theorem 2.29 on page 41 shows that the point graph of a partial geometry is strongly 

regular. Since the line graph of a partial geometry is the point graph of its dual, 

the line graph is also strongly regular. Table 2 on page 8 shows some unknown 

partial geometries, and the parameters of their associated point and line graphs. 

It is tempting to construct, partial geometries from their associated strongly regular 

graphs. In this chapter, we develop the theory of orbit matrices for partial geometries, 

and give some preliminary results. 

5.2 Automorphisms of partial geometries 

Let A be the incidence matrix of a partial geometry pg(s, t, a) and let B the adjacency 

matrix of the associated point graph. Equation 23 gives 

B = AAT - (t + 1 )A. 

An automorphism of A is a pair of permutation matrices P and Q such that. 

PAQ = A. 
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Here P permutes the rows (points) and Q the columns (lines). We have 

PBPT = P(AAt - (f + 1 )I)PT 

= PAATPt - [t + 1)1 

= PAQQTATPT - {T + 1)/ 

= AAT-(T + l)I 

= B. 

Therefore, P is the automorphism of the point graph. Similarly Q is the automor-

phism of the line graph. One should note that an automorphism of the point or line 

graph need not be an automorphism of the partial geometry. For example, when 

a = 5 + 1, the partial geometry is a 2 — (v, s + 1,1) design. The point graph is a 

complete graph and any permutation is an automorphism of the complete graph, but 

not necessarily an automorphism of the design. 

We next see how the assumption of the existence of a non-trivial automorphism 

can help to reduce the size of the search for possible point and line graphs of a partial 

geometry. Later on, we shall also see how the automorphism can be used to find a 

partial geometry, given a line graph. 

5.3 Orbit matrices for partial geometries 

Once we have an orbit matrix C for B, we can find the possible orbit matrices of 

A. Assume the columns of A are in orbits of size mi, m-2,..., rn,i. For simplicity, we 

restrict ourself again to the case that we only have column orbits of size 1 or a prime 

P-

Let v' be the number of columns of A. Let. rjp be the number of column-orbits of 

size p and r?i = v' — pr\p be the number of column-orbits of size 1. 

Let. CA = [u?J] be the b x d column-sum orbit matrix of A and CAA
 J — [t'jj] be 

the 6 x 6 column-sum orbit- matrix of AAT. Using Equation 23. we have 

CAAT = C + { t + l ) J . ( 4 5 ) 
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Since the row sum is t + 1, we have 
d 

= t+ 1. (46) 

Checking the column sum, we get 
b 

J 2 U i j = s + l . (47) 
i=1 

Let. M = diag(mi, m2,..., ma)- Using a method similar to the one in Lemma 3.1, 

one can show that 

where the (i, j ) - t h entry of SAAr is the sum of all the entries in the («, j ) - t h block of 

the matrix AAr. which is in fact, equal to VijUj. Since M is a diagonal matrix, using 

Equation 48, we have 
d 

5 3 UikU]kmk = VijUj. (49) 
k=l 

More specifically, when i = j, Equation 49 implies 
d 

5 3 "m-7"/.- " (50) 
k=I 

Using Equations 46 and 50, we define the fixed and non-fixed prototypes for the 

matrix CA , in a way similar to the prototypes for the matrix C. 

Consider an arbitrary fixed row r of CA . Let V>Q and W\ be the number of zeros 

and ones, respectively, on the fixed columns of row r. Let ,?0 tuid zi be the number 

of zeros and ones, respectively, on the non-fixed columns of row r. Since the number 

of fixed columns is 771, we have w0 + v>i = rft. Similarly we have 20 + 2: = VP- Since 

the row sum of the matrix A is equal to t + 1, we have 

w 1 + pz\ = t + 1. 

Thus, we have the following set. of equations: 

C-AMCT
A = SAAT. (48) 

U'o + Wi = m-

z 0 +21 — rjp. (51) 

+ pz\ = f + 1. 
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We define a Fixed Prototype as a non-negative integer solution to these linear equa-

tions. 

Now consider an arbitrary non-fixed row r of CA- The possible values of the fixed 

column entries of row r are either 0 or p. The possible values of the non-fixed column 

entries of row r can be 0 ,1 , . . . , p. Let w0 and wp be the number of zeros and p's on the 

fixed columns of row r. Let Zi, i = 0 , 1 , . . . be the number of i's on the non-fixed 

columns of row r. Similar to the situation with fixed rows, we have U>q + wp = rji and 

XX=o zi = rh- Also- since the row sum of A is equal to t + 1, by counting we have 

wp + izi = t + 1. Using Equation 50, we have 

p 
p2wp + i2pzi = vrrnr = pvrr = p(crr + t + 1). 

J=1 

Thus, we have the following set of equations: 

wo + wp = r/). 

z0 + Z! + z2 + z3 + ••• + zp =rjp, (52) 

wp + z\ + 2Z2 4- 3z3 + • • • + pzp = t, + 1, 

pwp + zj + iz2 + 9z3 + ••• + p2zp = crr + t + l. 

We define a Non-Fixed Prototype as a non-negative integer solution to those linear 

equations. 

After calculating the prototypes, the backtrack search for finding the matrix C'A 

is similar to the backtrack algorithm for finding C. The only difference is that for CA 

we should also consider the column sum which is equal to s + 1. 

After the matrix CA is found, one can then apply a backtrack search to try to find 

the incidence matrix A of the partial geometry. 

Note that the column orbits of the incidence matrix ,4 are the orbits of the vertices 

of the line graph for the partial geometry. Thus, we only need to consider those 

column orbit sizes for which there exist an orbit matrix for the line graph with the 

corresponding orbit sizes. 

Next, we consider an example. 
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E x a m p l e 10. In this example, we consider the pg(2,2,1). Its point graph is an 

srg(15,6.1,3). Assume p = 3 and assume that, for the point graph, there are three 

orbits of size one and four orbits of size three. Therefore <p = 3, </' = 4, n\ — = 

n3 = 1 and n4 = n5 = n6 = n7 = 3. We have found the orbit matrix for the strongly-

regular graph with the same automorphism in Example 9, which is as follows up to 

isomorphism: 

/ 

C = 

0 0 0 0 0 1 1 

0 0 0 0 1 0 1 

0 0 0 1 0 0 1 

0 0 3 0 2 2 1 

0 3 0 2 0 2 1 

3 0 0 2 2 0 1 

3 3 3 1 1 1 0 

Using Equation 45, we have: 

CAAT = 

V 

CO 0 0 0 0 1 1 

0 3 0 0 1 0 1 

0 0 3 1 0 0 1 

0 0 3 3 2 2 1 

0 3 0 2 3 2 1 

3 0 0 2 2 3 1 

3 3 3 1 1 1 3 

Now, we try to construct the orbit matrix of A. Assume that the desired partial 

geometry has 5 column orbits of size 3, that is, mi = m.2 = m-i = ni\ = m^ = 3. 

Therefore r)i = 0 and 773 = 5. 

Now, we calculate the prototypes for CA- First, we calculate the fixed prototype 
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using Equation 51. We have the following set of equations: 

w0 + w\ = 0, 

zo + 21 = 5 , (53) 

w\ + 3zi = 3. 

The only non-negative integer solution to the set of equations above is: 

(u>o,Wi, 20,21) = (0,0,4,1). 

So there are exactly four 0's and one 1 on each fixed row of the matrix CA-

Now, we consider the non-fixed prototypes, we have: 

Wo + W3 = 0, 

20 + 2 a + z2 + 2 3 = 5, 
(54) 

w 3 + z\ + 2z2 + 323 = 3, 

3U>3 + ZI + 4 Z2 + 923 = Crr + 3. 

In this example, for the non-fixed rows r, crr = 0. The only non-negative integer 

solution to the set of equations above is: 

(w0, li'3. Z0, Z\, z2, 2 3 ) = (0, 0, 2, 3,0, 0). 

So there are exactly two 0's and three l 's on each non-fixed row of the matrix CA-

Now, we try to construct the matrix CA using the information from the prototypes. 

The first row is [10000] up to isomorphism. Using Equation 49. we can see that 

5 

T ; UuU2i = 0. 
i=1 

One can see, up to isomorphism, the second row is [01000]; the third row is [00100]; 

and so on. Therefore, the only possible choice for CA up to isomorphism is the 
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following: 

/ 1 0 0 0 0 ^ 

0 1 0 0 0 

0 0 1 0 0 

CA= 0 0 1 1 1 

0 1 0 1 1 

1 0 0 1 1 

1 1 1 0 0 

Using this orbit matrix, a BDX backtrack algorithm finds the following partial geom-

etry: 

V 

A = 

' i l l 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

1 0 0 

0 1 0 

0 0 1 

1 0 0 

0 1 0 

0 0 1 

1 0 0 

0 1 0 

0 0 1 

0 0 0 

0 0 0 

0 0 0 

1 0 0 

0 1 0 

0 0 1 

0 0 0 

0 0 0 

0 0 0 

0 1 0 

0 0 1 

1 0 0 

1 0 0 

0 1 0 

0 0 1 

1 0 0 

0 1 0 

0 0 1 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 1 

1 0 0 

0 1 0 

1 0 0 

0 1 0 

0 0 1 

1 0 0 

0 1 0 

0 0 1 

0 0 1 

1 0 0 

0 1 0 

0 1 0 

0 0 1 

1 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 
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3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 
0 3 0 0 0 0 1 1 1 0 0 0 1 1 1 
0 0 3 1 1 1 0 0 0 0 0 0 1 1 1 
0 0 1 3 0 0 1 0 1 1 1 0 0 0 1 
0 0 1 0 3 0 1 1 0 0 1 1 1 0 0 
0 0 1 0 0 3 0 1 1 1 0 1 0 1 0 
0 1 0 1 1 0 3 0 0 1 0 1 0 1 0 
0 1 0 0 1 1 0 3 0 1 1 0 0 0 1 
0 1 0 1 0 1 0 0 3 0 1 1 1 0 0 
1 0 0 1 0 1 1 1 0 3 0 0 1 0 0 
1 0 0 1 1 0 0 1 1 0 3 0 0 1 0 
1 0 0 0 1 1 1 0 1 0 0 3 0 0 1 
1 1 1 0 1 0 0 0 1 1 0 0 3 0 0 
1 1 1 0 0 1 1 0 0 0 1 0 0 3 0 
1 1 1 1 0 0 0 1 0 0 0 1 0 0 3 

Its point graph is: 

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 
0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 
0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 
0 0 1 0 0 0 1 0 1 1 1 0 0 0 1 
0 0 1 0 0 0 1 1 0 0 1 1 1 0 0 
0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 
0 1 0 1 1 0 0 0 0 1 0 1 0 1 0 
0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 
0 1 0 1 0 1 0 0 0 0 1 1 1 0 0 
1 0 0 1 0 1 1 1 0 0 0 0 1 0 0 
1 0 0 1 1 0 0 1 1 0 0 0 0 1 0 
1 0 0 0 1 1 1 0 1 0 0 0 0 0 1 
1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 
1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 
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and 
6 3 3 CO

 

3 3 3 3 3 1 1 1 1 1 
\ 

3 6 3 3 3 3 1 1 1 3 3 3 1 1 1 

3 3 6 1 1 1 3 3 3 3 3 3 1 1 1 

3 3 1 6 3 3 1 3 1 1 1 3 3 3 1 

3 3 1 3 6 3 1 1 3 3 1 1 1 3 3 

3 3 1 3 3 6 3 1 1 1 3 1 3 1 3 

CO 1 3 1 1 3 6 3 3 1 3 1 3 1 3 

3 1 3 3 1 1 3 6 3 1 1 3 3 3 1 

3 1 3 1 3 1 3 3 6 3 1 1 1 3 3 

1 3 3 1 3 1 1 1 3 6 3 3 1 3 3 

1 3 3 1 1 3 3 1 1 3 6 3 3 1 3 

1 3 3 3 1 1 1 3 1 3 3 6 3 3 1 

1 1 1 3 1 3 3 3 1 1 3 3 6 3 3 

1 1 1 3 3 1 1 3 3 3 1 3 3 6 3 

1 1 1 1 3 3 3 1 3 3 3 1 3 3 6 

• 

5.4 Methodology 

When searching for partial geometries, we assume that the partial geometry has an 

automorphism group of prime order p. 

Depending on the parameters of the partial geometry, the construction process 

will be one of the following processes, or the combination of both. 

Process 1: 

1. Construct the orbit matrices of the point and/or line graph. 

2. Construct the orbit matrices of the partial geometry from the orbit matrices of 

the point graph. 

3. Construct the partial geometry from its orbit matrices. 

Process 2: 
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1. Construct the orbit matrices of the point and/or line graph. 

2. Construct the point and/or line graph. 

3. Construct the partial geometry from its point and/or line graph. 

We have implemented most of the programs required for Process 1 and Process 2. 

5.5 Results 

We have some preliminary results on pg(6.10. 5). The point graph of a pg(6,10, 5) is 

an srg(91.66,45, 55), which is the unique T(14). 

It can be seen that the automorphism group of T(14) is the symmetric group 

514, since any permutation on the ground set keeps the graph unchanged. We are 

interested to know if T(14) is geometric or not. This would show whether a pg(6,10,5) 

exists or does not exist. Using Lemma 2.30 it would be enough to check whether this 

graph is the point graph of a pls(6.10) or not. 

The prime factors of 14!, the size of Aut(T(14)), are 2,3, 5, 7,11, and 13. We have 

finished the search for p = 5,7.11 and 13. and no partial geometry was found for 

those group sizes. For p = 11 and p = 13 the computation time was low, about two 

hours CPU time, but for p = 7 and p = 5 the amount of computation was very large. 

We used more than 100 machines to finish the task in a reasonable amount of time. 
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Chapter 6 

Conclusion 

In this chapter we summaries the contributions of this thesis and talk about the 

possible future work. 

6.1 Contribution 

In this thesis, we studied the properties of strongly regular graphs and their auto-

morphism groups. 

The summary of the contributions in this thesis is as follows: 

1. We implemented the theory of orbit matrices for strongly regular graphs for the 

first time which is a new theory in this field. We have implemented a computer 

program that generates all the orbit matrices for the given parameters and an 

automorphism. 

2. Using orbit matrices we implemented an exhaustive search algorithm for finding 

strongly regular graphs. Using orbit matrices in our algorithm helps us to reduce 

the complexity as well as the required time of the algorithm. 

3. Using our program we eliminated many primes as possible divisors of the order 

of the automorphism group of many unknown strongly regular graphs. 
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4. We found some new strongly regular graphs that are not isomorphic to any 

known ones. 

5. We found several upper bounds on the number of fixed points (p of the auto-

morphism of strongly regular graphs. 

6. We have developed the theory of orbit matrices for partial geometries. 

6.2 Future work 

We have run the SRG program for several parameter sets, but because of time limi-

tation, we were not able to do the search for other parameter sets. For future work, 

we can improve the program so that it can handle more parameter sets. 

We have obtained some preliminary results on partial geometries. We can use the 

orbit matrix program for partial geometries to investigate their automorphisms and 

their existence. 

We have found some upper bounds on the number of fixed points of an automor-

phism of a strongly regular graph. As future work, we can try to lower these upper 

bounds. 
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Appendix A 

Search for unknown strongly 

regular graphs with less that 100 

vertices 

In this appendix, we provide the details of results of computer runs for strongly 

regular graphs. There is a table for each parameter set with fewer than one hundred 

vertices. The first row of each table corresponds to the smallest prime for which we 

were able to run the program. All subsequent rows correspond to other larger possible 

primes. The second column corresponds to the number of possible fixed points for 

each prime p in the first column. The third column corresponds to the number of 

orbit matrices found for the given number of fixed points. If there exist orbit matrices, 

then we run the SRG program for those orbit matrices; the fourth column shows the 

number of strongly regular graphs found for the orbit matrices. If there is a in 

the table, it means that we have not found any solutions and we were not able to 

finish the program due to time constraints. Under the note column, we provide more 

information about the specific case. For example, if we have done an estimation for 

the particular case, it would be given in this column. We have found some upper 

bounds in this thesis on the number of fixed points an automorphism of a strongly 

regular graph can have. We refer to these upper bounds in the note column to shows 
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why we do not need to check for bigger numbers of fixed points. If there is an "nnfp" 

in the note column, it means that there is no non-fixed prototype for that number of 

fixed points. By Theorem 3.4 there would be no more non-fixed prototypes for any 

larger number of fixed points. 

V #fix point #orb matrix #srg found note 
5 0 0 

5 36 ? estimation 10 million days 
10 0 
15 0 nnfp 

7 2 0 
9 0 nnfp 

11 10 0 nnfp 
13 0 0 

13 0 nnfp 
17 14 0 nnfp 
19 8 0 nnfp 
23 19 0 nnfp 
29 7 0 nnfp 
31 3 0 nnfp 

Table 8: Computer run results on the automorphisms of srg(65, 32,15,16). 
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p x point #orb matrix #srg found note 
5 4 27 0 

9 1 0 
14 0 
19 0 
24 0 
29 0 nnfp 

7 6 0 
13 0 
20 0 nnfp 

11 3 0 
14 0 nnfp 

13 4 0 
17 0 nnfp 

17 1 0 
18 0 nnfp 

19 12 0 nnfp 
23 0 2 0 

Table 9: Computer run results on the automorphisms of srg(69,20, 7, 5). 

P #fix point #orb matrix #srg found note 
5 0 231 0 

5 0 
10 0 
15 0 
20 0 nnfp 

7 5 0 
12 0 
19 0 nnfp 

11 9 0 nnfp 
13 10 0 nnfp 
17 7 0 nnfp 
19 18 0 nnfp 
23 6 0 nnfp 
29 17 0 nnfp 
31 13 0 nnfp 

Table 10: Computer run results on the automorphisms of srg(75. 32.10.16). 
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p #fix point #orb matrix #srg found note 
5 1 0 

6 0 
11 0 
16 0 
21 0 nnfp 

7 6 0 
13 0 
20 0 nnfp 

11 10 0 nnfp 
13 11 0 nnfp 
17 8 0 nnfp 
19 0 2 0 

19 0 nnfp 
23 7 0 nnfp 
29 18 0 nnfp 

Table 11: Computer run results on the automorphisms of srg(76, 30, 8,14). 

P #fix point #oil) matrix #srg found note 
5 1 4409 ? 

6 0 
11 0 
16 0 
21 0 nnfp 

7 6 0 
13 0 
20 0 nnfp 

11 10 0 nnfp 
13 11 0 nnfp 
17 8 0 nnfp 
19 0 1 0 

19 0 nnfp 
23 19 0 nnfp 
29 18 0 nnfp 
31 14 0 nnfp 

Table 12: Computer run results on the automorphisms of srg(76, 35.18.14). 
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p #fix point #orb matrix #srg found note 
3 1 0 

4 2 0 
7 0 
10 0 
13 0 
16 0 
19 0 
22 0 
25 0 
28 0 Theorem 3.7 

5 0 3 0 
5 1 0 
10 0 
15 0 
20 0 
25 0 
30 0 Theorem 3.7 

7 1 8 0 
8 0 
15 0 
22 0 
29 0 Theorem 3.7 

11 8 0 
19 0 
30 0 Theorem 3.7 

13 7 0 
20 0 
33 0 Theorem 3.7 

17 0 2 0 

Table 13: Computer run results on the automorphisms of srg(85.14,3,2). 
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p #fix point #o rb matrix #s rg found note 
5 0 >30000 ? 

5 236 ? 

10 3 ? estimation is 5 x 104 days for solution 1 
15 0 
20 0 
25 0 nnfp 

7 1 0 
8 0 
15 0 
22 0 nnfp 

11 8 0 
19 0 nnfp 

13 7 0 
20 0 nnfp 

17 0 2 ? 

17 0 nnfp 
19 9 0 nnfp 
23 16 0 nnfp 
29 27 0 nnfp 

Table 14: Computer run results on the automorphisms of srg(85,30,11,10). 
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p #fix point #orb matrix #srg found note 
5 0 ? 

5 24994 ? 

10 0 
15 0 nnfp 

7 1 1536 ? 

8 0 
15 0 nnfp 

8 5 0 
13 nnfp 

9 4 0 
13 nnfp 

11 8 0 nnfp 
13 7 nnfp 
17 0 0 

17 0 nnfp 
19 9 0 nnfp 
23 16 0 nnfp 
29 27 0 nnfp 
31 23 0 nnfp 
37 11 0 nnfp 
39 7 0 nnfp 
41 3 0 nnfp 

Table 15: Computer run results on the automorphisms of srg(85. 42, 20. 21). 
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p #fix point # o r b matrix #srg found note 
5 3 138 ? 

8- 0 
13 0 
18 0 
23 0 
28 0 nnfp 

7 4 0 
11 0 
18 0 
25 0 nnfp 

11 0 5 ? 

11 0 
22 0 nnfp 

13 10 0 
23 0 nnfp 

17 3 0 
20 0 nnfp 

19 12 0 nnfp 
23 19 0 nnfp 

Table 16: Computer run results on the automorphisms of srg(88, 27, 6, 9). 
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V #fix point # o r b matrix #srg found note 
7 4 0 

11 0 
18 0 
25 nnfp 

11 7 0 
18 0 nnfp 

13 4 0 
17 0 nnfp 

17 10 0 nnfp 
19 0 7 0 

19 0 nnfp 
23 3 0 

26 0 nnfp 
29 8 0 nnfp 
31 2 0 

33 0 nnfp 
37 21 0 nnfp 
39 17 0 nnfp 

Table 17: Computer run results on the automorphisms of srg(95,40,12, 20). 

104 



p #fix point #o rb matrix #srg found note 
5 1 ? 

6 0 
11 0 
16 0 
21 0 
26 0 nnfp 

7 5 0 
12 0 
19 0 nnfp 

11 8 0 
19 0 nnfp 

13 5 0 
18 0 nnfp 

17 11 0 nnfp 
19 1 0 

20 0 nnfp 
23 4 0 

27 0 nnfp 
29 9 0 nnfp 
31 3 0 nnfp 

Table 18: Computer run results on the automorphisms of srg(96, 35,10,14). 
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p #fix point #orb matrix #srg found note 
7 5 0 

12 0 
19 0 
26 0 nnfp 

11 8 0 
19 0 nnfp 

13 5 0 
18 0 nnfp 

17 11 0 nnfp 
19 1 8 0 

20 0 nnfp 
23 4 0 

27 0 nnfp 
29 9 0 nnfp 
31 3 0 

34 0 nnfp 

Table 19: Computer run results on the automorphisms of srg(96, 38,10 

P #fix point #orb matrix #srg found note 
7 5 0 

12 0 
19 0 
26 0 nnfp 

11 8 0 
19 0 nnfp 

13 5 0 
18 0 nnfp 

17 11 0 nnfp 
19 1 0 

20 0 nnfp 
23 4 0 

27 0 nnfp 
29 9 0 nnfp 
31 3 0 

34 0 nnfp 

Table 20: Computer run results on the automorphisms of srg(96,45, 24 
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p #fix point #orb matrix #srg found note 
3 0 ? 

3 0 
6 0 
9 0 
12 0 
15 0 
18 0 
21 0 Theorem 3.7 

5 4 0 
9 0 
14 0 
19 0 Theorem 3.7 

7 1 0 
8 0 
15 0 
22 0 Theorem 3.7 

11 0 0 
11 0 
22 0 Theorem 3.7 

21: Computer run results on the automorphisms of srg(99,14,1, 
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p #fix point #orb matrix #srg found note 
7 1 21989 ? 

8 0 
15 0 
22 0 
29 0 nnfp 

11 0 173 ? 

11 0 
22 0 nnfp 

13 8 0 
21 0 nnfp 

17 14 0 nnfp 
19 4 0 

23 0 nnfp 
23 7 0 

30 0 nnfp 
29 12 0 , nnfp 
31 6 0 nnfp 
37 25 0 nnfp 
39 21 0 nnfp 
41 17 0 nnfp 

Table 22: Computer run results on the automorphisms of srg(99,42, 21,15) 
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Appendix B 

s r g ( 4 9 , 1 8 , 7 , 6 ) 

In this appendix, we provide the adjacency matrix of all srg(49,18, 7. 6) that our SRG 

program has found. Table 23 shows a summery of all the graphs in this appendix. 

Graph Aut group size From Latin square New 
Ai 10 Yes No 
a2 15 Yes No 
a3 30 No Yes 
a4 15 No Yes 
A 5 15 No Yes 

21 No Yes 
A 7 1764 Yes No 

63 No Yes 
1008 Yes No 

Aw 126 No Yes 

Table 23: srg(49,18, 7, 6) results summery 

109 



00000 00000 00000 
11111 

11111 11111 00000 11111 00000 
00000 
00000 
00000 
00000 
00000 

01101 

10110 

01011 

10101 

11010 

11001 

11100 

OHIO 
00111 
10011 

11000 

01100 

00110 

00011 
10001 

10001 

11000 

01100 

00110 

00011 

01001 

10100 

01010 

00101 
10010 

11000 

01100 

00110 

00011 
10001 

10100 

01010 

00101 

10010 

01001 

01011 

10101 

11010 

01101 

10110 

00000 
00000 
00000 
00000 
00000 

01011 

10101 

11010 

01101 

10110 

11000 

01100 

00110 

00011 
10001 

01100 

00110 

00011 
10001 

11000 

10100 

01010 

00101 

10010 

01001 

10010 

01001 

10100 

01010 

00101 

11000 

01100 

00110 

00011 
10001 

11001 

11100 

OHIO 
00111 
10011 

01101 

10110 

01011 

10101 

11010 

00000 
00000 
00000 
00000 
00000 

10100 

01010 

00101 

10010 

01001 

10010 

01001 

10100 

01010 

00101 

00110 

00011 
10001 

11000 

01100 

00101 

10010 

01001 

10100 

01010 

11000 

01100 

00110 

00011 
10001 

10001 

11000 

01100 

00110 

00011 

10001 

11000 

01100 

00110 

00011 

10010 

01001 

10100 

01010 

00101 

01111 
10111 

11011 

11101 

11110 

10000 

01000 

00100 

00010 

00001 

10000 

01000 

00100 

00010 

00001 

10000 

01000 

00100 

00010 

00001 

10000 

01000 

00100 

00010 

00001 
11000 

01100 

00110 

00011 
10001 

00011 
10001 

11000 

01100 

00110 

10100 

01010 

00101 

10010 

01001 

3 0000 

01000 

00100 

00010 

00001 

01111 
10111 

11011 

11101 

11110 

10000 

01000 

00100 

00010 

00001 

01000 

00100 

00010 

00001 
10000 

10010 

01001 

10100 

01010 

00101 

01001 

10100 

01010 

00101 

10010 

10010 

01001 

10100 

01010 

00101 

00110 

00011 
10001 

11000 

01100 

10000 

01000 

00100 

00010 

00001 

10000 

01000 

00100 

00010 

00001 

01111 
10111 

11011 

11101 

11110 

11000 

01100 

00110 

00011 
10001 

00010 

00001 
10000 

01000 

00100 

10001 

11000 

01100 

00110 

00011 

10100 

01010 

00101 

10010 

01001 

01010 

00101 

10010 

01001 

10100 

10000 

01000 

00100 

00010 

00001 

00001 
10000 

01000 
00100 

00010 

10001 

11000 

01100 

00110 

00011 

01111 
10111 

11011 

11101 

11110 

00100 

00010 

00001 
10000 

01000 

10010 

01001 

10100 

01010 

00101 

10001 

11000 

01100 

00110 

00011 

10001 

11000 

01100 

00110 

00011 

10000 

01000 

00100 

00010 

00001 

10100 

01010 

00101 

10010 

01001 

00100 

00010 

00001 
10000 

01000 

00010 

00001 
10000 

01000 

00100 

01111 
10111 

11011 

11101 

11110 

10100 

01010 

00101 

10010 

01001 

00011 
10001 

11000 

01100 

00110 

11000 

01100 

00110 
00011 
10001 

10010 

01001 

10100 

01010 

00101 

10000 

01000 

00100 

000)0 

00001 

00010 

00001 
10000 

01000 

00100 

00010 

00001 
10000 

01000 

00100 

10000 

0 1 0 0 0 

00100 

00010 

00001 
autogp size =10 

Latin square graph. NOT NEW-
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{0 1 1 1 00000 00000 00000 00000 00000 00000 33111 11111 33133 
1 0 1 1 00000 00000 00000 00000 11111 11111 00000 00000 33111 
1 1 0 1 00000 00000 00000 11111 00000 11111 00000 11111 00000 
] 1 1 0 00000 00000 00000 11111 11111 00000 11111 00000 00000 
0 0 0 0 00000 03031 10101 11000 11000 11000 10010 01100 10010 
0 0 0 0 00000 10101 11010 01100 01100 01100 03001 00110 01001 
0 0 0 0 00000 11010 01101 00110 00110 00110 10100 00031 10100 
0 0 0 0 00000 01101 10110 00011 00011 00011 01010 10001 01010 
0 0 0 0 00000 10110 01011 10001 10001 10001 00101 11000 00101 
0 0 0 0 03303 00000 01011 11000 10100 01010 11000 10001 03 3 00 
0 0 0 0 30310 00000 10101 01100 01010 00101 01100 11000 00110 
0 0 0 0 03011 00000 11010 00110 00101 10010 00110 01100 00011 
0 0 0 0 10303 00000 01101 00011 10010 01001 00011 00110 10001 
0 0 0 0 11010 00000 10110 10001 01001 10100 10001 00011 11000 
0 0 0 0 11010 01101 00000 10100 00110 30001 11000 10100 10001 
0 0 0 0 01101 10110 00000 01010 00011 11000 01100 01010 11000 
0 0 0 0 10330 01011 00000 00101 10001 01300 00110 00101 01100 
0 0 0 0 03013 10101 00000 10010 11000 003 30 00011 10010 00110 
0 0 0 0 30303 11010 00000 01001 01100 00011 10001 01001 00011 
0 0 1 1 30001 10001 10010 01111 10000 10000 10000 10000 10100 
0 0 1 I 3 3000 13000 01001 10111 01000 01000 01000 01000 01010 
0 0 1 1 03 3 00 03 300 30300 11011 00100 00100 00100 00100 00101 
0 0 1 1 003 3 0 00110 01010 11101 00010 00010 0003 0 00010 10030 
0 0 1 1 00013 00011 00101 11110 00001 00001 00001 00001 01001 
0 1 0 1 30003 10010 00110 10000 01113 01000 00010 10100 00300 
0 1 0 1 3 3 000 01003 00011 01000 30311 00100 00001 01010 00010 
0 1 0 I 03 300 10100 10001 00100 11011 00030 10000 00303 00001 
0 1 0 3 00110 01010 11000 00010 11101 00003 01000 30030 10000 
0 1 0 3 00011 00101 01100 00003 11330 30000 00100 03 003 01000 
0 1 1 0 10001 00101 11000 3 0000 00001 01111 10100 03000 10000 
0 1 1 0 11000 10010 01100 03000 30000 10111 01010 00100 01000 
0 1 1 0 01100 01001 00110 00100 03 000 11011 00101 00030 00100 
0 1 1 0 003 3 0 10100 00011 00010 00300 11301 10010 00003 00010 
0 1 1 0 00031 01010 10001 00001 00030 11110 01001 30000 00001 
1 0 0 3 10300 30001 10003 10000 003 00 10010 01111 00003 10000 
1 0 0 3 01010 13000 3 3 000 01000 00030 01001 10133 30000 01000 
1 0 0 3 00101 03100 on oo 00100 00001 10100 33011 03 000 00100 
1 0 0 3 10010 00110 00110 00010 10000 01010 31101 00100 00010 
1 0 0 3 01001 00011 00011 00001 01000 00101 13310 00010 00001 
1 0 1 0 00011 31000 30010 10000 10010 00001 03000 01111 00100 
1 0 1 0 10001 01100 03001 01000 01001 10000 00100 10111 00010 
1 0 1 0 13 000 00110 10100 00100 10100 01000 00030 11011 00001 
1 0 1 0 03 3 00 00011 0303 0 00010 01010 00100 00001 11101 10000 
1 0 1 0 003 30 10001 00303 00003 00101 00010 10000 11330 01000 
1 1 0 0 30100 00011 31000 10010 00010 10000 10000 00030 01111 
1 1 0 0 03030 10001 01100 01001 00001 01000 01000 00001 10311 
1 1 0 0 00101 11000 00110 10100 10000 00100 00100 30000 11011 
1 1 0 0 1003 0 01100 00011 01010 01000 00010 00010 03000 11103 
1 1 0 0 01003 00110 10001 00103 00100 00001 00001 00300 11110 j 

autogp size = 15 
Latin square graph. NOT NEW. 

Ill 



0 1 1 3 00000 00000 00000 00000 00000 00000 11111 11111 11111 

1 0 1 1 00000 00000 00000 00000 11111 11111 00000 00000 11111 

1 1 0 3 00000 00000 00000 11133 00000 11111 00000 11111 00000 

1 1 3 0 00000 00000 00000 31111 11111 00000 11111 00000 00000 

0 0 0 0 01331 10000 10000 10000 11000 11100 11010 10100 10000 

0 0 0 0 10111 01000 01000 01000 01100 01110 01101 01010 01000 

0 0 0 0 11011 00100 00100 00100 00110 00111 10110 00101 00100 

0 0 0 0 11101 00010 00010 00010 00011 10011 01011 10010 00010 

0 0 0 0 11110 00001 00001 00001 10001 11001 10101 01001 00001 

0 0 0 0 10000 01111 10000 00110 11010 01000 00010 11100 01001 

0 0 0 0 01000 10111 01000 00011 01101 00100 00001 01130 10100 

0 0 0 0 00100 11011 00100 10001 10110 00010 10000 00111 01010 

0 0 0 0 00010 11101 00010 11000 01011 00001 01000 10011 00101 

0 0 0 0 00001 11310 00001 01100 10101 10000 00100 11001 10010 

0 0 0 0 10000 10000 01111 10110 00010 10100 11000 01000 11001 

0 0 0 0 01000 01000 10111 01011 00001 01010 01100 00100 11100 

0 0 0 0 00100 00100 11011 10101 10000 00101 0013 0 00010 OHIO 

0 0 0 0 00010 00010 11301 11010 01000 10010 0003 3 00001 00111 

0 0 0 0 00001 00001 11110 01101 00100 01001 10001 10000 10011 

0 0 1 3 10000 003 3 0 10110 01001 11000 10100 11000 00011 00000 

0 0 1 3 01000 0003 3 01011 10100 01100 01010 01100 10001 00000 

0 0 3 3 00100 30003 10101 01010 00110 00101 00110 11000 00000 

0 0 1 3 00010 3 3 000 11010 00101 00011 10010 00031 03 300 00000 

0 0 3 3 00001 03100 01101 10010 10001 01001 10001 00330 00000 

0 1 0 3 10001 10101 00100 10001 01001 11000 0013 0 00000 01010 

0 1 0 1 11000 11010 00010 11000 10100 01100 00011 00000 00101 

0 1 0 3 01100 01101 00001 01100 01010 00110 10003 00000 10010 

0 1 0 3 00110 10110 10000 00110 00101 00011 11000 00000 01001 

0 1 0 3 00011 01011 03000 00011 10010 10001 01100 00000 30300 

0 1 3 0 10011 00001 3003 0 10010 10001 00110 00000 03 003 3 0010 

0 1 3 0 11001 10000 03003 01001 11000 00011 00000 30300 03003 

0 1 3 0 11100 01000 30100 10100 01100 10001 00000 03010 10100 

0 1 3 0 01110 00100 01010 01010 00110 11000 00000 00101 01010 

0 1 3 0 00111 00010 00101 00101 00011 01100 00000 10010 00101 

1 0 0 3 10101 00100 10001 10001 00110 00000 01001 00101 10001 

1 0 0 3 11010 00010 11000 11000 00013 00000 10100 10010 11000 

1 0 0 3 01301 00001 01100 01100 30003 00000 01010 01001 01100 

1 0 0 3 10110 10000 00110 00110 3 3000 00000 00101 10100 00110 

1 0 0 3 01011 01000 00011 00011 03 300 00000 1003 0 0103 0 00011 

1 0 3 0 10010 10011 00001 01100 00000 01001 03030 00330 10010 

1 0 3 0 01001 11001 10000 00110 00000 10100 003 03 0003 3 01001 

1 0 1 0 30100 11100 01000 00011 00000 01010 3003 0 30003 10100 

1 0 3 0 01010 01110 00100 10001 00000 00101 03003 3 3 000 01010 

1 0 3 0 00101 00111 00010 11000 00000 10010 30300 01100 00101 

1 3 0 0 10000 01001 11001 00000 00101 10100 11000 10100 00110 

1 1 0 0 01000 10100 11100 00000 10010 01010 01100 01010 00011 

I 1 0 0 00100 01010 01110 00000 01001 00101 00110 00101 10001 

1 1 0 0 00010 00101 00111 00000 10100 10010 00011 10010 11000 

1 1 0 0 00001 10010 10011 00000 01010 01001 10001 01001 01100 
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( 0 1 1 1 00000 00000 00000 00000 00000 00000 31111 11111 11111 \ 

1 0 1 1 00000 00000 00000 00000 31111 3 3 3 3 1 00000 00000 11113 

1 1 0 1 00000 00000 00000 11111 00000 11111 00000 11111 00000 

1 1 1 0 00000 00000 00000 11131 11111 00000 11111 00000 00000 

0 0 0 0 03331 10000 30000 10000 11000 11100 11010 10100 10000 

0 0 0 0 10111 01000 01000 01000 01100 01110 01101 01010 01000 

0 0 0 0 11011 00100 00100 00100 00110 00111 10110 00103 00100 

0 0 0 0 11101 00010 00010 00010 00011 10011 01011 30010 00010 

0 0 0 0 11110 00001 00001 00001 10001 11001 10103 01001 00001 

0 0 0 0 10000 01111 01000 00011 11010 01000 00030 11100 10100 

0 0 0 0 01000 10111 00100 10001 01101 00100 00003 01110 01010 

0 0 0 0 00100 11011 00010 11000 10110 00010 30000 00111 00101 

0 0 0 0 00010 11301 00001 01100 01011 00003 03 000 10011 10010 

0 0 0 0 00001 11110 10000 00110 10101 30000 00300 11001 01001 

0 0 0 0 10000 00001 01333 10110 00100 30300 31000 3 0000 11001 

0 0 0 0 01000 10000 30313 01011 00010 03030 03 3 00 01000 11100 

0 0 0 0 00300 01000 33033 10101 00001 00303 00110 00100 01110 

0 0 0 0 00030 00300 3 3301 11010 10000 30030 0003 3 00010 00111 

0 0 0 0 00001 00010 11110 01101 01000 03 001 10001 00001 10011 

0 0 1 1 10000 01100 10330 01001 10001 30100 11000 00110 00000 

0 0 1 3 01000 00110 01011 10100 3 3000 01010 01100 00011 00000 

0 0 1 1 00300 00011 10101 01010 01100 00101 00110 10001 00000 

0 0 1 1 00010 10001 11010 00101 00110 10030 00011 11000 00000 

0 0 1 1 00003 13000 01101 10010 00011 01001 10001 01100 00000 

0 1 0 1 3 0003 30303 00010 11000 01001 11000 00110 00000 00101 

0 1 0 1 31000 33030 00001 01100 10100 01100 00011 00000 30030 

0 1 0 3 01300 03101 10000 00110 01030 00110 10001 00000 01001 

0 J 0 3 00110 10110 01000 00011 00301 00011 11000 00000 10100 

0 1 0 1 00011 01011 00300 10001 10010 10001 01100 00000 01010 

0 1 1 0 10011 00001 30030 10010 10001 00110 00000 01001 10010 

0 1 1 0 11001 10000 03001 03001 11000 00011 00000 10100 01001 

0 I 1 0 11100 01000 10100 10100 01100 30001 00000 01010 10100 

0 1 3 0 OHIO 00100 01010 01010 00130 13 000 00000 00101 01010 

0 1 1 0 00111 00010 00101 00101 00011 03 300 00000 3 0010 00101 

1 0 0 1 30101 00100 3 0001 10001 00110 00000 01001 00101 10001 

1 0 0 3 11010 00010 11000 11000 00011 00000 10100 10010 3 3 000 

1 0 0 3 01101 00001 01100 01100 10001 00000 0103 0 01001 03 300 

1 0 0 3 10110 10000 00110 00110 11000 00000 00303 10100 0013 0 

1 0 0 3 01011 01000 00011 0003 3 01100 00000 30030 01010 00011 

1 0 1 0 10030 10011 10000 003 30 00000 03003 0303 0 0013 0 01001 

1 0 3 0 03 001 11001 01000 00011 00000 30300 00303 00031 10100 

1 0 1 0 10100 31100 00100 30001 00000 03030 30030 10001 01010 

1 0 1 0 01010 01110 00010 3 3000 00000 003 03 03001 11000 00101 

3 0 1 0 00101 00111 00001 03 300 00000 3003 0 10100 01100 10010 

1 1 0 0 10000 10010 11003 00000 01010 30300 11000 01003 003 3 0 

1 1 0 0 01000 01001 11100 00000 00101 03030 01100 30300 00013 

1 1 0 0 00100 10100 onio 00000 10010 00303 00110 01030 30003 

3 1 0 0 0003 0 01010 00111 00000 01003 30030 00011 00301 11000 

\ I 1 0 0 00003 00303 10011 00000 30300 03 001 30001 10010 03 300 / 
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0 1 1 1 00000 00000 00000 00000 00000 00000 11111 11111 11311 

1 0 1 1 00000 00000 00000 00000 11111 11111 00000 00000 11131 

1 1 0 1 00000 00000 00000 11111 00000 11111 00000 11113 00000 

1 1 1 0 00000 00000 00000 11111 11111 00000 11111 00000 00000 

0 0 0 0 01111 10000 10000 10000 11000 11100 11010 30100 10000 

0 0 0 0 10111 01000 01000 01000 01100 01110 01101 01010 01000 

0 0 0 0 11011 00100 00100 00100 00110 00111 10110 00101 00100 

0 0 0 0 11101 00010 00010 00010 00011 10011 01011 10010 00010 

0 0 0 0 11110 00001 00001 00001 10001 11001 10101 01001 00001 

0 0 0 0 10000 01111 01000 10100 11010 01000 00010 11100 0003 3 

0 0 0 0 01000 10111 00100 01010 01101 00100 00001 o m o 30003 

0 0 0 0 00100 11011 00010 00101 10110 00010 10000 00111 3 3000 

0 0 0 0 00010 11101 00001 10010 01011 00001 01000 10011 03 3 00 

0 0 0 0 00001 11110 10000 01001 10101 10000 00100 11001 00330 

0 0 0 0 10000 00001 01111 11001 00100 10100 11000 10000 30330 

0 0 0 0 01000 10000 10111 11100 00010 01010 01100 01000 03033 

0 0 0 0 00100 01000 11011 01130 00001 00101 00110 00100 10101 

0 0 0 0 00010 00100 11101 003 3 3 10000 10010 00011 00010 11030 

0 0 0 0 00001 00010 11110 3003 3 01000 01001 10001 00001 03303 

0 0 1 1 10000 10010 11001 00330 01010 10100 11000 03001 00000 

0 0 1 1 01000 01001 11300 00011 00101 01010 01100 10100 00000 

0 0 1 1 00100 10100 OHIO 10001 10010 00101 00110 01010 00000 

0 0 1 1 00010 01010 00111 11000 01001 10010 00011 00101 00000 

0 0 1 1 00001 00101 10031 01100 10100 01001 10001 10010 00000 

0 1 0 1 10001 10101 00010 00101 01001 11000 00110 00000 3 3 000 

0 1 0 1 11000 11010 00001 10010 10100 01100 00011 00000 03300 

0 ] 0 1 01100 01101 10000 01001 01010 00110 10001 00000 00310 

0 I 0 1 00110 10110 01000 10100 00101 00011 11000 00000 0003 3 

0 1 0 I 00011 01011 00300 01010 10010 10001 01100 00000 30003 

0 1 1 0 10011 00001 30030 10010 10001 00110 00000 01001 30030 

0 1 1 0 11001 10000 03 001 01001 13000 00011 00000 10100 03001 

0 1 1 0 11100 01000 10100 10100 03300 10001 00000 01010 10100 

0 1 1 0 OHIO 00100 01010 01010 00310 11000 00000 00101 0103 0 

0 1 1 0 00111 00010 00101 00101 00011 01100 00000 10010 00101 

1 0 0 1 10101 00100 10001 10001 00110 00000 01001 00101 10001 

1 0 0 1 11010 00010 11000 11000 00011 00000 10100 10010 13 000 

1 0 0 1 01101 00001 01100 01100 10001 00000 01010 01001 01100 

1 0 0 1 10110 10000 00110 00110 11000 00000 00101 30300 00110 

1 0 0 1 01011 01000 00011 00011 01100 00000 10010 01010 00011 

1 0 1 0 10010 10011 10000 01001 00000 01001 03010 00110 00110 

1 0 1 0 01001 11001 01000 10100 00000 10100 00101 00011 00011 

1 0 1 0 10100 11100 00100 01010 00000 01010 10010 10001 10001 

1 0 1 0 01010 01110 00010 00101 00000 00101 01001 11000 13 000 

1 0 1 0 00101 00111 00001 10010 00000 10010 10100 01100 03300 

1 1 0 0 10000 01100 10330 00000 10001 10100 11000 00110 03001 

1 1 0 0 01000 00110 01011 00000 11000 01010 01100 00011 10100 

1 1 0 0 003 00 00011 10101 00000 01100 00101 00110 10001 01010 

1 1 0 0 00010 10001 11010 00000 00110 10010 00011 11000 00101 

J 1 0 0 00001 11000 01101 00000 00011 01001 10001 01100 10010 
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' 0000000 1110000 1110000 1100100 1300300 1010100 1030300 N 

0000000 0111000 0111000 0110030 0330030 0101030 0303030 

0000000 0011100 0011100 0011001 0031001 0030303 0030303 

0000000 0001110 0001110 1001100 1001100 3003030 3003030 

0000000 0000111 0000111 0100110 0100110 0300101 0300301 

0000000 1000011 1000011 0010011 0010011 1010010 3030030 

0000000 1100001 1100001 3001001 1001001 0101001 0303003 

1000031 0000000 1100100 1100030 0001011 1010010 0001101 

1100001 0000000 0110010 0110001 1000101 0101001 1000130 

1110000 0000000 0011001 1031000 1100010 1010100 0100013 

0111000 0000000 1001100 0101100 0110001 0101030 3030003 

0011100 0000000 0100110 0010110 1011000 0010101 3 303 000 

0001110 0000000 0010011 0001011 0303100 1001010 03 30100 

0000111 0000000 1001001 1000101 0010110 0100101 0033010 

1000011 1001001 0000000 1010100 0101001 0100110 1110000 

1100001 1100100 0000000 0101010 1010100 0010011 0111000 

1110000 0110010 0000000 0010101 0101010 1001001 0011100 

0111000 0011001 0000000 1001010 0010101 1100100 0001110 

0011100 1001100 0000000 0100101 1001030 0110030 0000111 

0001110 0100110 0000000 1010010 0300303 0033003 1000013 

0000111 0010011 0000000 0101001 1010010 1001100 3 300001 

1001001 1010001 1001010 0000000 0101100 0011100 0003031 

1100100 1101000 0100101 0000000 0010110 0001110 1000101 

0110010 0110100 1010010 0000000 0001011 0000131 1100010 

0011001 0011010 0101001 0000000 1000101 100003 3 0110001 

1001100 0001101 1010100 0000000 3 300030 1100001 1011000 

0100110 1000110 0101010 0000000 03 30001 1110000 0101100 

0010011 0100031 0010303 0000000 1011000 0111000 0010130 

1003001 0110100 0300303 0001101 0000000 1110000 3300030 

3 3 00300 0011010 1010010 1000110 0000000 0111000 03 30001 

0110010 0001101 0101001 03 0003 3 0000000 0011100 1033000 

0011001 1000110 1010300 3030001 0000000 0001110 0303300 

1001100 0100011 0101010 1103000 0000000 0000111 0030130 

0100110 1010001 0010101 0330100 0000000 1000011 0003033 

0010011 1101000 1001030 0013030 0000000 1100001 3000303 

1003030 1010010 0031001 00033 3 0 1000011 0000000 3003100 

0100301 0101001 1001100 0000111 1100001 0000000 0100110 

3030010 1010100 0100110 1000011 13 30000 0000000 001003 3 

0101001 0101010 0010011 1100001 0131000 0000000 3003003 

1010100 0030303 1001001 1110000 0011100 0000000 3100100 

0101010 3003010 1100100 0111000 0001110 0000000 0110030 

0010101 0300301 0110010 0011100 0000111 0000000 003 3 003 

1001010 0101100 1000011 0110100 1010001 1001100 0000000 

0100101 0010330 1100001 0011010 1101000 0100110 0000000 

1010010 0001011 1110000 0001101 0110100 0010011 0000000 

0101001 1000101 0111000 1000110 0011010 1001001 0000000 

1010100 1100010 0011100 0100011 0001101 1100100 0000000 

0101010 0110001 0001110 1010001 1000110 0110010 0000000 

^ 0010101 1011000 0000111 1101000 0100011 0013001 0000000 J 
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f 0000000 1110000 1110000 1100100 1100100 1010100 1010100 

0000000 0111000 0111000 0110010 0110010 0101010 0103010 

0000000 0011100 0011100 0011001 0011001 0010101 0010101 

0000000 0001110 0001110 1001100 1001100 1001010 1001010 

0000000 0000111 0000111 0100110 0100110 0100101 0100101 

0000000 1000011 1000011 0010011 0010011 1010010 1010010 

0000000 1100001 1100001 1001001 1001001 0101001 0101001 

1000011 0000000 1010010 1001001 0101010 1110000 0100110 

1100001 0000000 0101001 1100100 0010101 0111000 0010011 

1110000 0000000 1010100 0110010 1001010 0011100 1001001 

0111000 0000000 0101010 0011001 0100101 0001110 1100100 

0011100 0000000 0010101 1001100 1010010 0000111 0110010 

0001110 0000000 1001010 0100110 0101001 1000011 0011001 

0000111 0000000 0100101 0010011 1010100 1100001 1001100 

1000011 1010010 0000000 0101010 1001001 0100110 1110000 

1100001 0101001 0000000 0010101 1100100 0010011 0311000 

1110000 1010100 0000000 1001010 0110010 1001001 0011100 

0111000 0101010 0000000 0100101 0011001 1100100 0001110 

0011100 0010101 0000000 1010010 1001100 0110010 0000111 

0001110 1001010 0000000 0101001 0100110 0011001 1000011 

0000111 0100101 0000000 1010100 0010011 1001100 1100001 

1001001 1100100 0010101 0000000 1100001 1001010 0000111 

1100100 0110010 1001010 0000000 1110000 0100101 1000011 

0110010 0011001 0100101 0000000 0111000 1010010 1100001 

0011001 1001100 1010010 0000000 0011100 0101001 1110000 

1001100 0100110 0101001 0000000 0001110 1010100 0111000 

0100110 0010011 1010100 0000000 0000111 0101010 0011100 

0010011 1001001 0101010 0000000 1000011 0010101 0001110 

1001001 0010101 1100100 1100001 0000000 0000111 1001010 

1100100 1001010 0110010 1110000 0000000 1000011 0100101 

0110010 0100101 0011001 0111000 0000000 1100001 1010010 

0011001 1010010 1001100 0011100 0000000 1110000 0101001 

1001100 0101001 0100110 0001110 0000000 0111000 1010100 

0100110 1010100 0010011 0000111 0000000 0011100 0101010 

0010011 0101010 1001001 1000011 0000000 0001110 0010101 

1001010 1000011 0011001 1010100 0111000 0000000 1001100 

0100101 1100001 1001100 0101010 0011100 0000000 0100330 

1010010 1110000 0100110 0010101 0001110 0000000 003003 3 

0101001 0111000 0010011 1001010 0000111 0000000 3001001 

1010100 0011100 1001001 0100101 1000011 0000000 1100100 

0101010 0001110 1100100 1010010 1100001 0000000 0110010 

0010101 0000111 0110010 0101001 1110000 0000000 0011001 

1001010 0011001 1000011 0111000 1010100 1001100 0000000 

0100101 1001100 1100001 0011100 0101010 0100110 0000000 

1010010 0100110 1110000 0001110 0010101 0010011 0000000 

0101001 0010011 0111000 0000111 1001010 1001001 0000000 

1010100 1001001 0011100 1000011 0100101 1100100 0000000 

0101010 1100100 0001110 1100001 1010010 0110010 0000000 

0010101 0110010 0000111 1110000 0101001 0013 001 0000000 
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ill 

' A\3N 

£9 = azts dSojnii 

0000000 tootoot OOIIOIO onotoo oooottt 011000I toiotoo 
0000000 ttootoo OOOtlOt OOIIOIO I0000II tottooo OIOIOIO 
0000000 ottooto toootto 0001 to I tioooot OIOIIOO OOIOIOI 
0000000 oottoot otooott toootto ittoooo OOIOIIO tooioto 
0000000 toottoo IOIOOOI OIOOOII outooo OOOIOII otootot 
0000000 otootto IIOIOOO IOIOOOI ootitoo toootot toiooto 
0000000 ootoott ottotoo IIOIOOO ooottio ttoooto ototoot 
I too too 0000000 toooott ottooot I000II0 otototo I1000to 
otiooto 0000000 1100001 tottooo otoootI OOIOIOI onooot 
oottoot 0000000 1110000 oionoo totooot tooioto tot 1000 
too I[00 0000000 outooo OOIOIIO ttotooo OIOOIOI OIOIIOO 
otootto 0000000 0011100 oootott ottotoo toiooto oototto 
OOlOOIt 0000000 000II to toootoi OOIIOIO ototoot OOOIOII 
too toot 0000000 00001 It ttoooto OOOItOt IOIOIOO 1000101 
0010II0 in oooo 0000000 ttotooo IOIOIOO OOOtlOt UOOIOO 

oootott 0111000 0000000 otioioo otototo toootto OIIOOIO 
toootot ootitoo 0000000 OOIIOIO oototot otooott oottoot 
11000 to 00011 to 0000000 0001 to I tooioto totooot tooI too 
ottooot oooottt 0000000 toootto OIOOIOI IIOIOOO OlOOIIO 
tottooo I0000It 0000000 otooot t toiooto ottotoo ootoott 
otottoo 1100001 0000000 IOIOOOI OIOIOOI OOIIOIO tootoot 
0001011 OtOOOIt toooiot 0000000 OIIOIOO 0110001 ttotooo 
toootoi IOIOOOI 11000 to 0000000 OOIIOIO tottooo ottotoo 
ttoooto tto1000 011000t 0000000 OOOUOI otottoo oottoto 
ottooot ottotoo IOHOOO 0000000 toootto OOIOIIO OOOItOt 
tottooo oouoio otottoo 0000000 OIOOOII oootott IOOOIIO 

otottoo 0001101 oototto 0000000 totooot 1000I0I otooott 
oototto toootto oootott 0000000 IIOIOOO ttoooto IOIOOOI 
omooo tottooo IOOIOIO OOOIOII 0000000 I too too ttotooo 
ootitoo otottoo OIOOIOI toootoi 0000000 otiooto OIIOIOO 
000it to oototto IOIOOIO ttoooto 0000000 oottoot OOIIOIO 
oooottt oootott OlOIOOt 0110001 0000000 toottoo OOOItOt 
10000 It toootot IOIOIOO toitooo 0000000 otoouo IOOOIIO 
II0000I ttoooto OIOIOIO oiottoo 0000000 ootoott OIOOOII 
11 too00 ottooot OOIOIOI OOIOIIO 0000000 tooiooi IOIOOOI 
OlOOOll oototot 0 tot 100 OIOOOII tootoot 0000000 tt10000 
IOIOOOI toototo oototto IOIOOOI 1100100 0000000 Oil1000 
ttotooo otootot 000 to 11 IIOIOOO 01 too to 0000000 OOlllOO 
ottotoo toiooto toooiot OIIOIOO OOIIOOI 0000000 OOOllIO 
oottoto ototoot ttoooto OOIIOIO 1001 too 0000000 oooottt 
000 not IOIOIOO ottooot OOOItOt OlOOIIO 0000000 10000II 
toootto oiototo tottooo I000I10 OOIOOII 0000000 ttoooot 
toototo IOIOOOI tootoot 1000 to I toootot 10000II 0000000 
otootot ItOtOOO I too too ttoooto ttoooto Itoooot 0000000 
toiooto OtlOIOO otiooto otiooot ottooot 1110000 0000000 
ototoot OOUOIO oottoot tot 1000 toitooo 0111000 0000000 
toiotoo OOOtlOt toot too oionoo otottoo 0011100 0000000 
otototo lOOOItO otootto OOIOIIO oototto 000 It to 0000000 
oototot OIOOOII OOIOOII oootott oootott oooottt 0000000 ) 
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800 [ = D3OMW 
0000000 [[OOOOt 0[0[[00 [00[00[ 0[[000[ oottoto [010(00 

0000000 II10000 oototto [[00[00 [0([000 000[[0[ 0(0(0(0 

0000000 otttooo 000[0[[ 0[t00(0 0(0 [(00 (OOOttO 00(0t0( 

0000000 001[[00 [000[0[ 00[[00[ 00t0[(0 0t000[[ tooioto 

0000000 000[[[0 [[000(0 [00[[00 000[0[[ [0(000( otootot 

0000000 0000[[[ 0[[000[ otootto [000(0( ttotooo [0(00(0 

0000000 I0000II 1011000 00[00[[ ([000(0 0t(0[00 0[0(00( 

I[0000[ 0000000 [00[0[0 [000[[0 0([000t 0(00(10 [(000(0 

itroooo 0000000 0[00[0[ 0[000[[ [0[[000 00(00(1 0([000t 

otttooo 0000000 [0[00[0 [0[000[ otouoo too (00 [ tottooo 

001 two 0000000 OtOtOOI [[0[000 00(0((0 UOOIOO 0t0((00 

000[I to 0000000 [0[0[00 0[[0[00 000[0[[ ottooto 00[0(t0 

0000[II 0000000 otoroto 00[[0[0 [000(0[ 00[[001 000(0([ 

[00001t 0000000 00(0[0[ 000[[0[ [[000(0 [00(100 [000[0[ 

0001I0I [0[0[00 0000000 0000[[[ 0(0[(00 OUOOO[ [[00I00 

t ooo no otototo 0000000 IOOOOtI 00(0((0 10(1000 ottooto 

01000II ooiotot 0000000 ttoooot 000 toil 0(01(00 oottoot 

totooot toototo 0000000 [[[0000 [000(01 00(0(10 [00[[00 

[[0[000 0[00[0[ 0000000 otttooo [(000(0 000[0(t 0(00([0 

0[[0[00 [0[00[0 0000000 ootttoo 0U 000[ toootot ootoott 

00[[0[0 0[0[00[ 0000000 000[[[0 tot[000 ttoooto tootoot 

IIOOIOO [01(000 on [ooo 0000000 000[0(t (00(0(0 [[01000 

0[(00[0 0[0[[00 ootttoo 0000000 (000(01 0(00[0( ottotoo 

00[[00[ 00[0[[0 ooottto 0000000 [[000(0 10(00(0 oot(0(0 

[00 [[00 000[0[[ 0000[[[ 0000000 0[[000[ 0(01001 ooottot 

0(00[[0 1000[0[ [0000[[ 0000000 [0([000 10(0(00 toootto 

OOIOOtt U000[0 1100001 0000000 0(0(100 0(01010 OtOOOtt 

[00[00I 0[[000[ [[[0000 0000000 00(0tt0 00t0(0[ totooot 

0[000[[ 01000[[ 000[[0[ 0[[0[00 0000000 totooot ttotooo 

[0[000[ [0[000[ tooono oottoto 0000000 [to1000 0t(0[00 
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