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ABSTRACT 

Popularization of mathematics as intercultural communication - An 
exploratory study 

Klara Kelecsenyi, Ph.D. 
Concordia University, 2009 

Popularization of mathematics seems to have gained importance in the past decades. 

Besides the increasing number of popular books and lectures, there are national and 

international initiatives, usually supported by mathematical societies, to popularize 

mathematics. Despite this apparent attention towards it, studying popularization has not 

become an object of research; little is known about how popularizers choose the 

mathematical content of popularization, what means they use to communicate it, and how 

their audiences interpret popularized mathematics. 

This thesis presents a framework for studying popularization of mathematics and intends 

to investigate various questions related to the phenomenon, such as: 

- What are the institutional characteristics of popularization? 

- What are the characteristics of the mathematical content chosen to be 

popularized? 

- What are the means used by popularizers to communicate mathematical 

ideas? 

- Who are the popularizers and what do they think about popularization? 

- Who are the audience members of a popularization event? 
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- How do audience members interpret popularization? 

The thesis presents methodological challenges of studying popularization and suggests 

some ideas on the methods that might be appropriate for further studies. Thus it intends to 

offer a first step for developing suitable means for studying popularization of 

mathematics. 
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CHAPTER 1 

INTRODUCTION 

Sadly, the level of abstraction in mathematics, and the consequent 
need for notation that can cope with that abstraction, means that 
many, perhaps most, parts of mathematics will remain forever 
hidden from the non-mathematician; and even the more accessible 
parts - the parts described in books like this one — may at best be 
dimly perceived, with much of their inner beauty locked away from 
view. Still, that does not excuse those of us who do seem to have 
been blessed with an ability to appreciate that inner beauty from 
trying to communicate to others some sense of what it is we 
experience - some sense of the simplicity, the precision, the purity, 
and the elegance that give the patterns of mathematics their 
aesthetic value. (Devlin, 2002b: 8-9) 

In the last two decades, there seems to have been an increase in the activity of 

popularization of mathematics and a growing interest in it within the mathematical 

community. Besides the many popular books on mathematics published and displayed on 

bookstore shelves, magazines targeting high school students, public lectures and math 

fairs organized by schools and universities, there have been large scale initiatives at the 

national or international level. 

Year 2000 was declared the World Mathematical Year1, aiming, in particular, at 

making modern research in mathematics more visible to "the man in the street". That 

year, a series of large and colorful posters with messages about mathematics were on 

display in the Montreal Metro stations. Year 2008 was a similar event on the national 

For additional information about the program see the official site of WMY2000: 
http://wmy2000.math.iussieu.fr/ (Downloaded: July 5, 2009) 

http://wmy2000.math.iussieu.fr/
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level in Germany: Jahr der Mathematik2. There is now an annual set of activities, called 

The Math Awareness Month3, targeting mostly the North American audience. 

There are, thus, many popularization of mathematics projects, but, most of the 

time, these projects are not evaluated (Ernest, 1996:785). 

Popularization of mathematics is often considered as a possible remedy for the 

problems that mathematics has with its public image, attitudes towards mathematics, 

appreciation of mathematics in the society at large, and low enrollment in mathematics 

and mathematics related topics (science, engineering) at the university level (Landsman, 

2008). According to my knowledge, however, there has been very little systematic 

research on whether these expectations are realistic or not. I am aware of one empirical 

study that seemed to address these questions in the particular case of the effects of Square 

One TV on children's attitudes and constructs of mathematics (Debold, Hall, Fisch, 

Bennett, & Solan, 1990). 

Little is also known about how popularizers choose what to present to the general 

public and decide how to do it, and even less about their audiences' impressions, 

reactions, opinions and understanding of popularized mathematics. These were the 

questions that I was the most interested in. 

There could be several reasons for the dearth of research on popularization of 

mathematics. One of them is that the object of study, "popularization of mathematics" is 

2The following site contains additional information about the event http://www.jahr-der-mathematik.de/ 
(Downloaded: July 5, 2009) 
3 The annual event is organized by The American Mathematical Society, the American Statistical 
Association, the Mathematical Association of America, and the Society for Industrial and Applied 
Mathematics, for further information see http://www.mathaware.org/index.html (Downloaded: July 5, 
2009) 

http://www.jahr-der-mathematik.de/
http://www.mathaware.org/index.html
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not a well defined area. There does not seem to be a consensus, even within the 

mathematical community, on what counts as popularization and what does not. It is also 

not clear which academic discipline it belongs to: mathematics, mathematics education, 

or science communication. It cannot be a discipline in itself; that much is rather obvious. 

In fact, some mathematics educators are adamant about putting mathematics education 

research in the same "bag" as popularization of mathematics, as it is done in the 

International Congresses of Mathematicians: 

In the International Congress of Mathematicians, one of the parallel sessions was 
devoted to 'Teaching and popularization of mathematics' (1998) and 'Mathematics 
Education and popularization' (2002). Some researchers in didactics of mathematics 
were invited as official lecturers.... However, why is teaching paired with 
popularization? Is it a way of emphasizing once again that, for mathematicians, 
teaching mathematics is similar to popularizing mathematics? Whichever is the 
mathematicians' opinion, we must insist that they are related, yet different, things. 
Popularization might be related only to some aspects of the research in didactics of 
mathematics, like students' motivation and the reorganization of a field of knowledge 
around a few fundamental ideas. But teaching is much more (and very different) than 
popularization.... (Bartolini Bussi & Bazzini, 2003) 

I became aware of another reason for the paucity of research on popularization of 

mathematics the hard way, by stumbling on methodological challenges in trying to 

conduct such research myself. Methods used in research on mathematics teaching and 

learning in school contexts do not apply, because students in those contexts usually do 

not have a choice between attending or not attending, paying attention or not, unless they 

do not care about the formal consequences of their behavior. Popularization is a free 

activity chosen according to the participants' wishes, and generally, there is no 

assessment following the event. If the researcher, however, wants to investigate the 

audience members' reactions or interpretations of a popular event, he or she must recruit 

some of them to talk or write about the event. This may feel like a test to some 
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participants, and turn the popularization event into a teaching event. Therefore, it is not 

popularization that we would be studying but something different. 

Moreover, since there can be no norms about the interpretation of the 

mathematical contents of a popular event - participants are free to attend to whatever 

they wish - no measure of understanding can be established, and evaluation of the event 

becomes problematic. There seems to be some awareness of the methodological 

difficulties in studying popularization in the mathematical and mathematics education 

community (Holton, Muller, Oikkonen, Valenzuela & Zizhao, 2009: 12). 

This thesis presents the results of my struggles (and sometimes the story of these 

struggles) to study popularization of mathematics nevertheless. I present a framework for 

studying popularization that I finally came up with in Chapter 2, and its application to 

analyzing, in detail, three popular lectures in the remaining chapters. I observed two of 

them, and conducted myself the third one. I interviewed several participants after the 

observed talks, and asked the participants of my talk to fill out a questionnaire. This 

experience allowed me to realize the methodological challenges of studying 

popularization and get some insight into what could be the methods that are more 

appropriate. I consider this thesis as a first step for developing suitable means for 

studying popularization of mathematics. 

Chapter 2 addresses the question, what is popularization. Popularization of 

mathematics is described by ten characteristics that lead to questions about popularization 

which structure the rest of the thesis. These questions are: 

What are the institutional characteristics of popularization? (Chapter 3) 

What are the characteristics of the mathematical content chosen to be popularized? 
(Chapter 4) 
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How can mathematics be popularized? What are the means used by popularizers? 
(Chapter 5) 

Who are the popularizers and what do they think about popularization? (Chapter 6) 

Who are the audience members of a popularization event? (Chapter 7) 

How do audience members interpret popularization? (Chapter 8) 

Chapters 3 to 6 are organized into two parts. In the first part of the chapters, I 

discuss the main question of the chapter in general terms, looking at various examples of 

popularization. In the second part, I address the question specifically in the case of the 

two popular lectures that I observed. I analyze each lecture individually, and then look at 

similarities and differences between them. Chapters 7 and 8 are devoted entirely to 

studying these two lectures' audiences' perceptions of the lectures. 

Chapter 9 is devoted to the lecture I designed and conducted myself with two 

audiences, one composed of Hungarian secondary school students, and the other - of 

Canadian college students and teachers. The questions that I posed to analyze 

popularization provide the structure of this chapter. The thesis ends with Chapter 10 

which contains conclusions. 
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CHAPTER 2 

BUILDING A FRAMEWORK FOR STUDYING POPULARIZATION OF 

MATHEMATICS: POPULARIZATION AS INTERCULTURAL COMMUNICATION 

2.1 INTRODUCTION 

In this chapter, I present a general framework for studying popularization of mathematics, 

in the form of questions to be asked about this activity. The starting point was a reflection 

on the possible implications of the metaphor of popularization of mathematics as 

"mathematical tourism", inspired by the title, The Mathematical Tourist by Ivars Peterson 

(1998). In this metaphor, popularizers give "guided tours" of mathematical landscape and 

culture to visitors from "foreign" cultures (Fig. 2.1). From this point of view, 

popularization of mathematics becomes a kind of intercultural communication. 

Exploiting the implications of the tourist metaphor leads to distinguishing ten important 

aspects of popularization of mathematics. These particular aspects of popularization of 

mathematics lead to a structured set of questions to be asked about a popularization of 

mathematics event by a researcher. 

2.2 THE TOURIST METAPHOR AND ITS IMPLICATIONS 

Let us formulate the "tourist metaphor" for popularization of mathematics as follows: 

Popularization of mathematics consists in communicating selected parts of 

mathematical culture to groups of "tourists " from other cultures, in the aim of 

improving their appreciation of the mathematical culture. 
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\ 

A 
MATH X 

1 

Figure 2.1. The tourist metaphor of popularization of mathematics 

Let us exploit the implications of this metaphor. 

2.2.1 Popularization of mathematics is organized action 

One mathematician talking about mathematics with a non-mathematician in a chance 

encounter (e.g. during a flight or train journey) is not a popularization event, just as 

walking in historic parts of a foreign city or a scenic mountainous area is not necessarily 

tourism. Tourism is organized by tourist agencies; it is an institutionalized activity. 

Likewise, popularization events are planned, organized actions aimed at larger groups of 

people, although the level of institutionalization of popularization of mathematics is 

certainly much lower than in tourism. A tourist agency must organize the trip, ensure the 

means of transportation, hire the guides, etc. The organizers of a popularization event 

must ensure there will be a speaker or an animator who will serve as a "guide" for 

mathematical culture in the event; that the theme or object of activity is sufficiently 
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attractive; that there will be a physical space (e.g. a room) for the meeting or activity; that 

the event is properly advertised, etc. 

Organization of a tourist tour and organization of a school "field trip" may have a 

lot in common, but participation in these two types of events is different in ways similar 

to the differences between popularization of mathematics and teaching mathematics. 

Several aspects of popularization discussed below will highlight these differences. 

2.2.2 Admission to a popularization of mathematics event is non-selective 

Like tourists visiting a culture, participants in a popularization of mathematics event are 

not selected; access is open to all. In particular, admission is not based on candidates' age 

or achievement on examinations, as in the case of courses in mathematics taken for credit 

in an educational institution. Accessibility to the wider public was mentioned as one of 

the characteristics of popularization of mathematics in Howson and Kahane (1990: 5-6), 

and Ernest (1996: 786). 

2.2.3 Participation in a popularization of mathematics event is not compulsory 

There is no obligation to engage in tourism. There is no obligation to participate in a 

popularization of mathematics event, either, and this aspect, like the previous one, is part 

of the existing characterizations of popularization of mathematics (Howson & Kahane, 

1990: 5-6; Ernest, 1996:786). The non-compulsory character of popularization of 

mathematics distinguishes it from teaching and learning mathematics in a diploma 

awarding educational institution, where participation is obligatory by contract, both for 

the teachers and for the students. 
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2.2.4 Popularization of mathematics attempts to make mathematics appear attractive to 

the visitors 

Travel agencies are trying to make tourist sites as attractive as possible. So do 

announcements of popularization of mathematics events. This is yet another difference 

between popularization and institutionalized teaching of mathematics, where making 

mathematics engaging and fun is optional. If some teachers do it, it is on their own 

initiative. There is no penalty if they do not. Students of boring teachers, on the other 

hand, can be punished if they leave the classroom for that reason. However, if a 

popularization of mathematics event is boring, the audience leaves the site and the 

popularizer has to close shop, maybe forever. One can be an unpopular popularizer only 

once. 

2.2.5 Mathematics is a culture 

Our fundamental metaphor of popularization of mathematics as stated above assumes that 

the tourists are visiting "a part of mathematical culture". This requires an explanation: in 

what sense is mathematics a culture? 

I will use the definition proposed by the anthropologist Clifford Geertz, where 

culture refers to 

an historically transmitted pattern of meanings embodied in symbols, a system of 
inherited conceptions expressed in symbolic forms by means of which men 
communicate, perpetuate, and develop their knowledge about and attitudes towards life 
(Geertz, 1973: 89). 

Mathematics seems to satisfy this definition. It is, indeed, "an historically 

transmitted pattern of meanings", with its own (rather unique) symbolic formalism and 

value system. The value system not only internally distinguishes between elegant and 
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ugly proofs, meaningful and pointless mathematics or fruitful and sterile approaches (see, 

e.g. Anglin, 1997), but also more or less directly influences many decisions we make in 

life (at least those that rely on some measure or measurement). 

Mathematics as a culture consists of various subcultures. It includes, but is not 

limited to the different domains of mathematical research usually represented in sectional 

addresses of the International Congresses of Mathematicians4, such as Logic and 

Foundations, Algebra, Geometry, Number Theory, Analysis, Topology, Probability and 

Statistics or Applications of Mathematics in the Sciences. These domains share many 

aspects of the mathematical culture but there are subtle differences in symbolism (e.g. 

algebraists and topologists may use slightly different notations and graphic 

representations), and values (e.g. a topologist may value visual representations more than 

an algebraist). 

The list of sections at the ICM 2006 in Madrid did not contain such titles as 

Actuarial Mathematics or Financial Mathematics, although in some Mathematics and 

Statistics departments at universities these areas attract many (if not the majority of 

students), and scholarship in these domains is already quite well developed5. This 

suggests the developing and changing nature of the mathematical culture. 

Besides the various domains of research mathematics, which altogether constitute 

"mathematicians' mathematics", it can be argued that school mathematics (Civil, 2002), 

as well as everyday mathematics used by various ethnic communities (including 

See, for example, the sections of ICM 2006, Madrid, available at 
http://www.icm2006.org/scientificprogram/scieritificsections/ (Downloaded on May 16, 2008) 
5 See, for example, the web page of Interdisciplinary Master of Science Degree in Financial Mathematics at 
Stanford University (http://finmath.stanford.edu/) 

http://www.icm2006.org/scientificprogram/scieritificsections/
http://finmath.stanford.edu/
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aboriginal groups, see Saxe, 1990) and in different occupations (including children 

selling candy in the streets, see Nunes, Schliemann & Carraher, 1993) also constitute 

subcultures of the mathematical culture in the broad sense. 

2.2.6 The visited mathematical culture must be somewhat "exotic" for the audience to 

warrant organizing a popularization of mathematics event to show it 

One cannot be a tourist in one's own familiar surroundings. The tourist wants to be 

surprised, amazed; tourism is fuelled by the curiosity of the unknown and the appeal of 

the "exotic". Similarly, popularization applies only to themes that are new, strange or 

surprising to the audience. Thus, a popularization of mathematics event may consist in a 

mathematician specializing in one domain presenting - in an attractive way - this domain 

to mathematicians specializing in another domain. However, a mathematician presenting 

his or her results to colleagues working in the same domain, no matter how attractive or 

exciting the presentation, would not qualify as a popularization of mathematics event. 

The mathematical subculture visited in a popularization of mathematics event 

does not have to be part of the "mathematicians' mathematics". Puzzles and other kinds 

of "recreational mathematics" are not part of mathematicians' mathematics, yet they are 

often the site of the popularization of mathematics "tourism", visited by lay people and 

mathematicians alike. Also "ethnic mathematics", developed in various oral aboriginal 

traditions can be an attractive subject of a popularization of mathematics event, besides 

being the object of study in the vast area of research at the intersection of anthropology 

and mathematics education called "ethnomathematics" (Ascher & D'Ambrosio, 1994). 

"Exotic" culture is also "foreign" to the visitor. "Foreignness", however, has 
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certain negative connotations that "exotic" has not. In fact, in mathematics education 

research, the foreignness of the school mathematical knowledge is largely treated as a 

problem, causing students' difficulties and sometimes their alienation from school culture 

in general. Students' difficulties in school mathematics have been explained by the 

cultural clash or conflict between the familiar everyday mathematics and the foreign 

school mathematics (e.g., Lave, 1988; Nunes, Schliemann and Carraher, 1993; Bishop, 

1994; Civil, 2002). Also, the analogy between learning mathematics and learning a 

foreign language has been drawn and thoroughly exploited both for explaining what is at 

stake in learning mathematics and for proposing ways of facilitating the process (Pimm, 

1987; Prediger, 2004). 

2.2.7 Popularization of mathematics involves communication between two cultures, but 

not enculturation in or acculturation to a foreign culture 

Just as tourism is distinct from immigration, popularization of mathematics does not aim 

at enculturation or acculturation of the visitors into the mathematical culture or one of its 

subcultures. These anthropological concepts have been adapted to study phenomena of 

mathematics education by Bishop (1988; 1994; 2002). Bishop described mathematics 

learning as a process of enculturation whereby students are gradually integrated into 

mathematical culture. Ideally, this process is supposed to be similar to children's 

integration into their home culture. Less ideally, however, the process can become one of 

acculturation (Bishop, 2002), which refers to imposed modification of one culture by 

another (as in the context of colonization). In the case of acculturation, one culture is 
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often endowed with institutional power, and changes are a one-way process where the 

more influential culture dominates. 

This institutional power is lacking in the case of popularization of mathematics. In 

fact, a popularizer has neither the time nor the authority either to enculturate or to 

acculturate his or her audience. Both enculturation and acculturation aim at living (and 

functioning) in (a new) culture, as when students have to live (or survive) and function in 

a school environment. Popularization of mathematics only proposes a brief guided tour of 

a mathematical culture. This tourist position of the audience is entirely different from that 

of students of mathematics who find themselves in a position of "immigrants" landing on 

a foreign soil. 

This aspect of popularization of mathematics has its positive side: it is free from 

the oppressive aspects of enculturation and acculturation. There is a downside, however, 

as well: a tourist learns considerably less about the visited culture than an immigrant 

does, and sometimes the knowledge acquired can be quite biased. 

It is more appropriate to think of popularization of mathematics as 

communication between two cultures without the intention of one of the interlocutors to 

"naturalize" the other, although the wish to exert some influence is certainly there. This 

aspect will be discussed separately later, under the title of "Popularization of mathematics 

has a political agenda". First, we will look at the fact that, just as there are different 

models of communication between the host culture and the visitors in tourism, there are 

different models of communication with the audience in popularization. 
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2.2.8 There are different models of communication between popularizers and the 

audience in popularization of mathematics 

There are different forms of tourism. The most common form is the silent group of 

people following an incessantly talking guide in Old City streets or museum halls. But 

there are also forms of tourism where exchanges between the tourists and the host culture 

are more symmetric. Similarly, in popularization of mathematics one can observe 

different forms of communication between the popularizer and the audience. On the one 

hand, there are televised lectures that can only be watched; on the other - there are 

interactive workshops or displays of mathematical puzzles that visitors can touch and 

play with (as in, e.g. the Cite des Sciences et de I'Industrie in Paris La Vilette, France). 

To identify, describe and name these different forms of communication, it was 

useful to look at general models of communication in communication theory (Shepherd, 

St. John, & Striphas, 2006) and models identified in theory of science communication 

(e.g., Gross, 1994; Logan, 2001; Weigold, 2001; Lewenstein, 2006). 

One way of classifying these models can be to look at the direction of the 

information flow between the interlocutors and distinguish between models where the 

flow is uni-directional and models where the flow is bi-directional (Figure 2.2). 

I will look at examples of both kinds of models and how they have been or could 

be applied to communication in the context of popularization of science and mathematics. 

2.2.8.1 Uni-directional communication: the dissemination model 

In communication theory, the dissemination model applies especially to mass 

communication (Peters, 2006). It applies to situations where a message is broadcast many 
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times as, for example, in repeated lectures, or lectures broadcast on television or via the 

internet, theatre plays, museums, etc. In this type of communication, the intentions of the 

sender of the message and the representations of the message are well known, but little is 

known about the receiver's interpretation of the message: the sender receives little or no 

feedback on his or her presentation. 

Figure 2.2. Different models of communication in Communication Theory and their existing applications in 

theory of Science Communication. The "Intercultural communication" model of popularization is my addition. 

Some forms of tourism follow the dissemination model of communication. This is 

what often happens during a guided tour in a famous town, church, museum, etc. The 

guide simply tells the tourists what they should know about a particular monument, piece 
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of art, etc, and is not interested in listening to the tourists' impressions, stories and 

accounts of their knowledge of the visited site. The tourists sign up for a guide speaking a 

particular language they can understand and that is about all the contextual information 

normally taken into account in this communication. In the case of a special audience (for 

example for people with the same profession, e.g. architects) the tour guide might adapt 

the message to the special group by focusing on specific details close to the group's 

interest. 

The dissemination model of communication has been extensively used and 

studied in science communication (e.g. Gross, 1994; Logan, 2001; Weigold, 2001). It was 

seen as representing a communication situation where popularizers, acting as interpreters 

for scientists, disseminate scientific information to the general public, thus filling in a 

"deficit" in the public's knowledge (whence the "deficit model" of science 

communication, see Figure 2.2). The popularizer's task was to "translate" scientific 

information into a language and form that general public could understand. This model, 

however, was generally criticized for not taking into account the contextual information 

about the audience. This was considered to be the reason why popularization did not lead 

to a better understanding of science among the general public (Gross, 1994; Logan, 

2001). 

In its modified version, also known as the contextual model of science 

communication (Lewenstein, 2006), dissemination-type communication would vary 

according to the expected participants' background such as their previous experience 

with science (level of education) or belonging to an ethnic minority. The new model, 

however, did not bring about the expected results. Surveys did not show any significant 
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improvement in the level of public understanding of science as a result of participating in 

popularization events following this model (e.g. Clark & Illman, 2001). There are no 

analogous results for popularization of mathematics. 

2.2.8.2 Bi-directional models of communication 

Recent models of communication assume some symmetry in the contributions of the 

interlocutors. This is certainly the case of the "political participation" and presentation of 

"social identity" models, which have their counterparts in studies of science 

communication and in mathematics education. 

2.2.8.2.1 Communication as political participation 

From the point of view of the "political participation" model (Kelshaw, 2006), all 

communication is interaction (and therefore two-way) and all communication is political 

since politics is a universal condition influencing all kinds of social interactions. Even 

refusing to communicate is participation since, in fact, it provides a very definite 

feedback to the other participants of the act; moreover, it conveys a political statement. 

The view of communication as political participation (or more generally 

participation in social interactions) corresponds to another major model of science 

communication, namely the engagement-based model6 (Lewenstein, 2006). Science 

popularization events following this model would engage the audience in doing science 

through workshops, and in decision making through public debates. 

6In fact, Lewenstein (2006) distinguished between two engagement-based political participation models. 
The first model focused on lay expertise by acknowledging and asking for lay experience about science 
(e.g. radioactivity). The second model tried to involve the public in science through participation, and even 
in decision making through political debates about science. 
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Active participation of the audience highlighted in this model has been sometimes 

seen as a remedy for problems of general public's lack of interest in science. Also, in 

popularization of mathematics, starting from the common belief that "mathematics is not 

a spectator sport", some events would be organized to encourage the audience's 

engagement. Math Fairs, games, workshops, or logical puzzles are examples of 

popularization activities that followed this model. Although popularization of 

mathematics does not always follow this model, engagement of the audience in doing 

mathematics has become part of the characterization of popularization of mathematics by 

Howson and Kahane (1990: 5-6) and Ernest (1996: 786). In science communication, the 

engagement model has been criticized for reaching only small audiences and for the fact 

that debates would often drift away from scientific matters towards political issues 

(Lewenstein, 2006). 

2.2.8.2.2 Communication as presentation of social identities: focus on intercultural 

communication 

The model of communication as conveying a social group identity (Harwood, 2006) 

focuses on intergroup communication rather than on interpersonal communication. It is 

concerned with how social identity influences communication, and, conversely, how 

communication shapes social identity. Social identity of a particular person is determined 

by the different groups (professional, ethnic, etc.) the person belongs to (or does/does not 

want to belong to). This way, the intergroup communication can be considered as 

intercultural communication, encompassing international communication, as well as 

communication between different professions, or between a profession and lay people 

relative to this profession, as could be the case in a popular lecture about mathematicians' 
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mathematics to general public. In this model, the lecturer represents not his or her 

individual self but mathematicians as a professional group. 

From the point of view of intercultural communication, tourism involves 

communication between tourists' culture and the hosts' culture. This rough picture has 

been refined by Holliday, Hyde and Kullmann (2004) (see Figure 2.3). The refined model 

distinguishes between tourists' home culture and "tourist culture", as well as between 

hosts' home culture and hosts' culture of dealing with tourists. 

Figure 23. Relations among tourists' and hosts' cultures 

(based on Holliday et al., 2004: 27) 

The model of tourism proposed by Holliday et al. (2004) draws attention to the 

fact that the image the tourists get of the foreign culture is not identical with that of the 

members of the culture. The image shown to tourists is rather the image intended to "sell" 

the culture to outsiders. The souvenir shops sell "folk art" objects which are generally far 

from those that have actually been used in the given culture, even in a distant past. 

Similarly, the mathematics presented in popular lectures can be very far from the 

mathematics done by researchers. It is mathematics specially made for popularization. 
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2.2.9 Popularization of mathematics has apolitical agenda 

The tourist industry is not a-political. In fact, as mentioned before, some communication 

theorists claim that no social interaction is a-political (Kelshaw, 2006). Interlocutors want 

to win each other over to their cause or point of view. They may try to achieve this aim 

by force (physical or legal). But they may also use "seduction", which is certainly the 

case of tourism. Tourist agencies have no means to force anybody to visit a country. But 

they want the tourists to come back and to encourage others to visit. Therefore, they "put 

their best foot forward", showing the beauty of the country, not the slums, the misery of 

unemployment, or the drudgery of everyday work in a factory or office. There is an 

element of propaganda in every message intended for tourists. 

The same can be said of popularization of science or mathematics. "To improve 

the image of mathematics" has even been inscribed in the "definition" of popularization 

of mathematics proposed in Howson and Kahane (1990: 5-6) and Ernest (1996: 786). The 

very reason for organizing science or mathematics popularization events is often a real or 

perceived decrease of public support for financing research and development in these 

areas or for the decreasing weight mathematics and science are given in compulsory 

education. The support can be "moral" only, but, when we speak of "public funding 

support", it is measurable in the portion of the budget that a government spends on 

funding scientific research and development. This money comes from taxes and concerns 

all citizens and businesses. The approach to popularization of science where public 

support is the main concern has been called the "persuasion model" (Clark & Illman, 

2001:9). 

Activity in popularization of mathematics or science is likely to increase in the 



21 

wake of journalistic accounts of reports about falling enrollment in science and 

mathematics at the university, or shortage of mathematics and science teachers. There is 

some belief in the impact popularization may have on people's career choices, even if the 

reports themselves point to systemic factors of the falling enrollments and teacher 

shortages that cannot be solved by persuasion alone. However, here is in a quote from a 

2007 report for the Australian government, where such factors are pointed out and no 

appeal to improvement of public image of science or mathematics through popularization 

is made: 

[W]hile most science occupations are not in short supply, there is a recognised 
shortage of engineers and of secondary school teachers in science and 
mathematics. The shortage of engineers is partly self-correcting as it has elicited 
a rapid growth in salaries for both graduate and experienced engineers, 
encouraging entry into the profession. In the case of science and mathematics 
teachers, shortages have instead been accommodated by using teachers without 
adequate skills in these areas. This may adversely affect student performance and 
engagement and decrease future university enrolments in the sciences. In 
teaching, price signals have not been able to respond to shortages due to the 
inflexible pay levels and structures. This should be subject to reform. 

Job satisfaction amongst scientists appears to be falling, with potential 
consequences for productivity and future recruitment. This morale problem 
reflects scientists' concerns about poor career pathways, excessive use of short-
term contract employment and a burgeoning non-research workload. Many of the 
issues are best addressed by negotiation and agreement between employers and 
employees. However, job satisfaction can also be increased through: longer-
term funding certainty; carefully designed performance assessment processes 
that reward higher performing institutions, research teams and individuals; a 
level of academic freedom consistent with the strategic interests of the employing 
institution; and the minimisation of non-research workloads, (my emphasis) 

The myth of the influence of popularization on the public image of mathematics 

or science may have its source in a traditional model of communication proposed by 

7"Pub!ic Support for Science and Innovation." Australian Government. Productivity Commission Research 
Report. Overview. Downloaded February 18, 2009 from 
http://www.pc.gov.au/ data/assets/pdf file/0014/3712 l/scienceoverview.pdf 

http://www.pc.gov.au/
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Newcomb in the 1950s (Newcomb, 1953). According to this model, the goal of 

communication is to reach an equilibrium regarding the participants' view of their social 

environment. This model - which appears to assume symmetry in the influence of the 

communicating sides - has been somewhat politicized in the metaphor of communication 

as "social influence", studied by Boster (2006). This model treats communication 

essentially as a way of changing beliefs, attitudes or behavior: "social influence is a result 

of all communication" (ibid, p. 183); "communication necessarily impacts beliefs" (ibid, 

p. 185). Newcomb's model suggests that, if two-way exchanges are allowed, this 

influence can be mutual for the communicating parties and that it depends on the 

participants' cultural values (or "cultural lenses"). In the context of popularization of 

mathematics, this influence would depend on participants' (both the audience's and the 

popularizer's) values related to mathematics, or mathematical culture. 

The political aspects of communication have been extensively investigated in 

mathematics education, from the perspective of ethnomathematics and broader cultural 

and sociological points of view. 1 have already mentioned some of the conclusions drawn 

by mathematics educators working from these perspectives (Bishop, 1994). 

2.2.10 Popularization of mathematics faces several important challenges: problems of 

communicability and translation 

Tourists may fear they will be lost in the foreign culture; that they will not understand the 

local people and will not be able to make themselves understood; that they will do 

something contrary to the local custom and will get into unpleasant situations. Organized 

tourism is reassuring because it minimizes direct contacts between the tourists and the 
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local people; there are specially appointed mediators (travel agents, guides, interpreters, 

etc.) who take care of communication between the tourists and the local culture. 

The situation is very similar in popularization. Popularizers act as mediators 

between the mathematical culture and the audience. Participants in a popularization of 

mathematics event are not given a research paper to read or listen to; rarely if ever are 

they invited to do original research. The popularizer must choose what to communicate to 

the audience and how. The popularizer is thus faced with issues of "communicability" 

and problems of "translation". 

2.2.10.1 Communicability 

Some communication theorists consider communicability to be their main object of 

study. For some of them, the problem is to identify conditions, under which 

communication is possible, and those under which it fails (Chang, 2006). For others, 

communication is bound to failure; it is fundamentally impossible (St. John, 2006). 

According to St. John, the available sign systems are not able to communicate our 

thoughts, feelings, etc., and we can only imagine how the others receive and interpret 

what we intend to communicate. Accepting this theory would lead, of course, to 

abandoning all efforts of popularizing mathematics, since mathematics is abstract ideas 

that cannot be communicated by pointing to objects or using everyday language. Even if 

we do not take this radical position, we have at least to admit that communicating 

mathematics is an extremely difficult task. This means that the issue of communicability 

must be treated in all seriousness. 
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In popularization, we have to do with intercultural communication, where 

communicability is rendered more difficult by the fact that messages are filtered by the 

different cultural identities, background knowledge, values, sensitivities and dialects, i.e. 

the "cultural lenses" of the interlocutors. If a message is filtered by such cultural factors, 

then what parts of the message are accessible? Some popularizers appear to believe that a 

possible solution lies in a judicious choice of the subject or theme for a popularization 

event. This could explain the frequency of themes such as puzzles and games (some 

mathematical puzzles, such as Sudoku, have become part of everyday culture); number 

theory (as natural numbers are part of everyday culture as well); geometry (because it can 

be represented in a visual manner), or chaos theory, which, although mathematically 

quite complicated, can be described using impressive yet simple examples (the famous 

"butterfly effect") and colorful dynamical pictures8. An interesting question would be to 

investigate what happens with other areas of mathematics. Are they neglected because 

they are not fashionable, not interesting enough, or because they address topics that are 

not communicable this way? Can we identify some characteristics (topics, types of 

presentation, etc.) of popularization, which necessarily lead to failure? Indeed, there are 

certain areas of mathematics (e.g. ring theory or cohomology theory) that are considered 

impossible to popularize, even by well-known popularizers such as Ian Stewart or Keith 

Devlin (see Kruglinski, 2004). 

See e.g., the applet illustrating the Lorenz attractor at 
http://to-campos.planetclix.pt/fractal/lorenz_eng.html (downloaded February 18, 2009). 

http://to-campos.planetclix.pt/fractal/lorenz_eng.html
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2.2.10.2 Translation problems 

Besides the choice of the topic to present in a popularization event, there is the question 

of its "translation" into a language more accessible to the audience. Translation is so 

closely related to communication that some communication scientists do not distinguish 

between them. For example, Striphas (2006) argues that every communication can be 

considered as translation; when speaking to someone we are, in fact, translating our ideas 

or feelings into signs (words, sentences, images, sound, etc.). Speaking about linguistic 

translations literally, he distinguishes between interlingual and intralingual translations by 

referring to the process of communication across and within sign systems, respectively. 

The translator's task is to be aware of communication problems caused by translation. In 

particular, he mentions interlingual problems such as structural-grammatical differences 

(when a certain grammatical situation, for example a verb tense, does not have an 

equivalent in the other language), and vocabulary differences (when a particular word or 

phrase does not exist in one language, or has a different meaning or connotation in 

different languages). Striphas also points out that intralingual translation problems can be 

explained similarly to the interlingual ones (e.g. differences in meaning of a word for 

people with different backgrounds). 

The perspective of communication as translation has led to quite extensive 

research on the teaching and learning of mathematics. 1 have already mentioned the work 

of Pimm (1987) where the starting point was the analogy between learning mathematics 

and learning a foreign language. Prediger's (2004) research also starts from this 

assumption but it is based on a broader framework of intercultural perspectives, which 
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also goes beyond the notions of cultural conflict, enculturation and acculturation 

envisaged by Bishop (1994). Prediger argues that instead of considering the "vertical" 

view of integrating students into the mathematical culture, it is worth taking a 

"horizontal" view, which acknowledges the existence of simultaneous cultures, and using 

them to enrich mathematics teaching and learning. Obstacles to learning mathematics 

may be explained not so much by cultural conflicts, as by the fact that in learning 

mathematics one has to learn a whole new vocabulary that describes a world that is in 

some ways totally different from the one experienced in everyday and out-of-school life 

(Prediger, 2004: 379-380). There may be no conflict, but just an encounter with a 

different culture. In this process, the mathematics teacher should be aware of the 

difficulties of the students and help them translate the new cultural (linguistic and non-

linguistic) elements into a language they can understand. Prediger saw four sources of 

difficulties in this translation. One was the already mentioned aspect of mathematics as a 

foreign language. Second source was the problem of intercultural misunderstandings. 

These refer to linguistic and non-linguistic situations in an intercultural setting that could 

cause discrepancies in the interpretation of a certain situation by different participants 

(such as conflicting values, customs, etc.). Third, she mentions the effects of overlapping, 

referring to the fact that, although mathematical language and everyday experiences often 

overlap, simply transferring the everyday usage of the language to the mathematical 

situation can interfere with the mathematical meaning. Fourth, an affective component of 

intercultural issues is foreignness as an experience. Many students experience 

mathematics as foreign and, in some cases, this uncomfortable feeling can lead to fear 

and anxiety. 
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Although Prediger's ideas capture some important intercultural aspects of 

learning mathematics, not all her ideas can be applied to popularizing mathematics. In the 

case of school mathematics, students are expected to function in an everyday life context 

in the culture of mathematics. In other words, students have to live in a foreign culture 

and learn to speak the foreign language. Participation in a popularization event does not 

require as much. Neither is foreignness an unpleasant experience in popularization, as 

mentioned before. The fact remains, however, that mathematics is a foreign language also 

for the popularization event audience. The popularizer is not given the time necessary to 

teach the audience this foreign language; he or she must translate the mathematical 

language into a language that the audience can understand. This is very difficult because 

this translation has to overcome the other two obstacles identified by Prediger: the 

intercultural misunderstandings and the effects of overlapping. A popular presentation of 

mathematics must minimize the use of the technical aspects of mathematics such as 

formal definitions, equations and other expressions. Mathematics is, largely, a written 

language, and uses symbolic forms that have no counterparts in everyday language (one 

cannot even read them literally, as they are written). Therefore, abstract mathematical 

ideas must be conveyed using everyday language to build analogies and illustrative 

examples; this inevitably leads to the above-mentioned problems of intercultural 

misunderstandings and effects of overlapping. 

In this section, 1 have identified ten essential aspects of popularization of 

mathematics. I will now combine these aspects into a framework for studying 

popularization of mathematics. 
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2.3 A FRAMEWORK FOR STUDYING POPULARIZATION OF MATHEMATICS 

From the perspective of the tourist metaphor, popularization of mathematics can be seen 

as organized action whereby mathematicians volunteer to engage a willing audience in a 

communication about mathematics or a particular mathematical topic. The aim of the 

action is to increase the audience's understanding and/or appreciation of mathematics or 

the particular topic. The communication style and/or the mathematical theme or activity 

must be sufficiently attractive and novel for the audience to maintain its willingness to 

participate. Communication in popularization of mathematics is "intercultural": the 

popularizer represents a mathematical culture; the audience - either a different 

mathematical subculture or a culture that has little to do with mathematics. The 

popularizer and the audience view the object of communication and understand the 

language of communication through their respective "cultural lenses". This implies that 

the means of communication must be adjusted to overcome the usual challenges of 

intercultural communication: problems of communicability, and the risk that some 

essential aspects of mathematics might be lost in translation. 

Schematically, we can represent a popularization of mathematics event as in 

Figure 2.4. 
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Figure 2.4. Schema of a popularization event, containing elements such as the popularizer (P), audience (A), and 

the mathematical culture. Popularizers and audience members see the mathematical culture through cultural 

lenses. The communication between the participants is dominated by the popularizer (3) with some optional 

feedback from the audience members(4). 

The schema highlights the following aspects of popularization. The event is 

organized within an institution. There is a popularizer (P). There is an audience (A). P 

engages A in communication (3) about an aspect of mathematical culture (M). P obtains 

some feedback from A (4) but communication is engaged from P's initiative. P views M 

through cultural lenses (1). A views M through possibly quite different cultural lenses 

(2). The success of communication depends on how much of what P tells A about M can 

be grasped through A's cultural lenses. 

In studying popularization of mathematics, the researcher can ask questions about 

each element of this general situation: 
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1. What are the institutions that organize popularization of mathematics? What are 
the different models of the organization? 

2. (P)9 Who are the popularizers! Why do they volunteer to engage in this activity? 
What are their objectives? What do they expect the audience to understand? 

3. (1) How do popularizers view mathematical culture? 

4. (M) What criteria (So popularizers use to select parts of mathematical culture for 
popularization? 

5. (3) What are the means that popularizers use to overcome the challenges of 
intercultural communication with respect to mathematics? 

6. (A) Who are the members of the audience? Why do they participate in the 
popularization event? What do they expect from the activity? 

7. (2) How do members of the audience view mathematical culture in general and 
the part of the mathematical culture they are being shown? 

8. (4) How do members of the audience react to the event? What do they think they 
have understood from the communication? 

In my research, 1 have been seeking answers to all these questions in relation to a 

selection of popularization of mathematics events and activities (mainly popular lectures 

and books). I will report on my findings in the consecutive chapters, although not always 

in the order of the questions listed above, and I will sometimes deal with several 

questions in one chapter. 

In Chapter 3,1 will focus on Question 1, related to the popularization institutions 

(I label this chapter as INSTITUTIONS). 

Chapter 4 will be devoted to the content of popularization or Question 4 {WHAT 

is being popularized). 

In Chapter 5, I will talk about the means used in popularization {HOW 

9 Symbols in brackets before the questions refer to codes of the elements in the schema in Figure 2.4. 
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mathematics is popularized). This chapter corresponds to Question 5. 

Chapter 6 corresponds to Questions 2 and 3. Here, I will investigate who the 

popularizers are and what are their "cultural lenses", or how they see mathematics and its 

popularization (WHO are the POPULARIZERS). 

Chapters 7 and 8 correspond to Questions 6, 7 and 8, and are related to the 

audience. 

Chapter 7 (Questions 6 and 7) looks at the cultural lenses of the audience (WHO 

are the A UD1ENCE), on the example of nine members of audiences of two particular 

popular lectures, that 1 have attended, analyzed and used throughout the thesis as two 

constant examples of popularization events. 

Chapter 8 (Question 8) looks at the audience members' reactions to the lectures 

(A UDJENCE 's REA CTIONS). 

Chapter 9 presents my own experience in designing and conducting a popular 

lecture in mathematics, and analyzes it based on all 8 questions of the framework. 
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CHAPTER 3 

INSTITUTIONAL ENVIRONMENTS OF POPULARIZATION OF MATHEMATICS 

3.1 INTRODUCTION 

This chapter looks at the institutional environments of popularization of mathematics. I 

will start by explaining what I mean by "institution". Using the adopted definition of 

institution, I will then reflect on the extent to which popularization of mathematics is 

institutionalized. A comparison between institutional environments of popularization of 

mathematics and those of popularization of science will lead to observing the relative 

weakness of the former compared to the latter. I will then look in more detail at 

institutional environments of one kind of popular activity, namely public lectures on 

mathematics. I will base my analysis on empirical data from two popular lectures that I 

attended, and whose organizers, lecturers and members of the audience 1 have 

interviewed. 

3.2 A NOTION OF INSTITUTION 

Institutional theory aims to reveal the underlying aspects of certain social structures. As 

such, it embraces theoretical and empirical studies of institutions from the point of view 

of sociology, political science, economics and philosophy, and takes many different 

approaches, such as rational choice institutionalism, normative institutionalism, or 

historical institutionalism (Peters, 1999). These approaches differ mainly in how they 

treat the relationship between the individual and the social. For example, rational choice 

theory stresses the fact that individuals act autonomously and choose actions that would 
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maximize their personal utility based on rational assumptions. 

However, whatever role is attributed to the individual in an institutional theory, it 

is always taken for granted that "an institution transcends individuals to involve groups of 

individuals in some sort of patterned interactions that are predictable based upon 

specified relationships among the actors" (Peters, 1999: 18). Moreover, in all theories 

reviewed, Peters was able to identify four commonly accepted characteristics of an 

institution (1999: 18) which I list below and use as a "definition" of institution here: 

1) An institution is a structural feature of a society (or polity); the structure can be 
formal (legal) or informal (as in a network of organizations). 

2) An institution has some stability over time. 

3) An institution constrains the individual behavior of its members through rules 
and norms. 

4) Members of an institution share certain values and goals and give common 
meaning to the basic actions of the institution. 

(based on a summary from Peters, 1999: 18, proposed by Sierpinska, Bobos & 
Knipping, 2008) 

The third characteristic above mentions "rules" and "norms". A distinction 

between these two types of constraints has been drawn by Ostrom (2005). Norms can be 

represented by statements such as, "Participants in such and such positions and in such 

and such situations will be expected to behave so and so". Note that the statement does 

not say what will happen if a participant decides not to behave in the expected way. A 

rule differs from a norm by the addition of a sanction for not behaving in the expected 

way: "Participants in such and such positions and in such and such situations will behave 

so and so or else...". Norms characterize any repetitive activity in a culture. There must 

be rules for the activity to become institutionalized. 
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For example, if a few people get together on some sunny afternoons to play 

tennis, this social activity will not count as an institution, even if it shares some of the 

above defining features of it (e.g. the meetings have some stability over time, the people 

most probably all like playing tennis). If the same group of people, however, decides to 

start a club that will - for a fixed fee - provide its members with a permanent tennis court 

to play, a trainer, and will organize classes or even competitions for the members, then 

the occasional and informal activity is well on its way of becoming institutionalized. 

Soon there will be a president, a treasurer, membership lists and cards, and statutes 

spelling out all the rights and obligations of the members and the executive committee. 

The club members will be united in their devotion to playing tennis and teaching this 

sport to others, but the statutes of the club will also constrain the members by setting 

some entrance criteria, such as a minimum age, or requirements on physical condition, as 

well as rules institution-members should obey (e.g. paying a regular membership fee). 

Sanctions will apply if a participant violates the rules and regulations of the club. 

National and provincial mathematical societies (e.g. American Mathematical 

Society, Canadian Mathematical Society, Association Mathematique du Quebec, Bolyai 

Janos Matematikai Tdrsulat, Polskie Towarzystwo Matematyczne) are institutions 

according to the above definition. There are formal structures of the society, usually 

legalized at the state level. Many have a long history, preceding the establishment, in 

1920, of an international organization representing all mathematicians in the world, 

namely the International Mathematical Union. Their functioning is regulated by a formal 

document ("Bylaws", "Statutes") where amendments can be introduced only through a 

formal vote. In applying to become a member of the society, a candidate declares his or 
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her agreement with the basic aims, values and regulations of the society. Thus all four 

conditions of an institution are satisfied. 

Mathematical societies exemplify institutions that organize or, at least, promote 

popularization of mathematics on a national level. For example, the American 

Mathematical Society (AMS), a formal organization established in the late 19th century 

(1888), is devoted to "promote mathematical research and its uses, strengthen 

mathematical education, and foster awareness and appreciation of mathematics and its 

connections to other disciplines and to everyday life10". It is the "foster awareness and 

appreciation of mathematics" part of this statement that points to popularization 

activities. This aim of the society is materially realized, among others, through its 

contribution to an award for such activities: the JPBM Communications Award". 

Moreover, AMS has included popularization of mathematics into its formal 

structures. There is a special office devoted to improving the public image and public 

understanding of mathematics: the AMS Public Awareness office. Its main responsibility 

is to improve "public relations" between the mathematical community and the general 

public. It "works with the media, scientific societies, institutes, universities, and museums 

to promote awareness of mathematics and to publicize meetings, events, prizes, and AMS 

activities."12 It sponsors magazines on mathematics, and provides information for the 

general public about mathematics-related books, films, art-works websites, etc. It also 

10 http://www.ams.org/ams/about.html Downloaded: July 10, 2008 
" The Joint Policy Board for Mathematics Communications Award was established in 1988, "to reward 
and encourage communicators who, on a sustained basis, bring mathematical ideas and information to non-
mathematical audiences" (downloaded July 30, 2008, from http://www.ams.org/prizes/ipbm-comm-
award.html). 
12 Information about the AMS Public Awareness Office http://www.ams.org/ams/about.html Downloaded: 
July 10,2008 

http://www.ams.org/ams/about.html
http://www.ams.org/prizes/ipbm-comm-
http://www.ams.org/ams/about.html
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gives contact information about mathematicians that can be useful for journalists. The 

goals and values of the AMS Public Awareness Office include improving public 

relations, and are declared as follows: 

The goal of public awareness is more than just making the layperson understand (or 
love?) mathematics. It's making people realize that mathematics is a field of research, 
just like physics, chemistry, or biology. It's helping other scientists to realize this as 
well. It's providing mathematicians with material that allows them to better explain to 
non-mathematicians what mathematicians do. It's giving everyone, mathematicians and 
non-mathematicians alike, a pride in mathematical accomplishments. And it's 
promoting the Society's accomplishments, both to the mathematical community and to 
the world beyond13. (Ewing, 2002: 5) 

Popularization of mathematics is not the sole activity of national societies of 

mathematics; they could probably survive by serving only the internal needs of their own 

members' community. The question is, therefore, if popularization of mathematics would 

survive on its own, outside of the national societies. This is the topic of the next section. 

3.3 TO WHAT EXTENT IS POPULARIZATION OF MATHEMATICS INSTITUTIONALIZED? 

An institution is, first of all, a group of people. So the first question we have to ask is: 

who are the popularizers of mathematics? If we only look at the recipients of the JPBM 

Communications Award, we find that less than one third are mathematicians by 

profession and not one of the recipients has been trained as a "professional popularizer of 

mathematics". There is no such profession. There are no departments of popularization of 

mathematics in colleges or at universities. Nor can one obtain a PhD in mathematics 

based on popularization products. Mathematicians in a department of mathematics are 

evaluated based on their activity in three domains: research, teaching and service for the 

|J http://www.ams.org/ams/state-of-ams2002.pdf (Downloaded: July 10, 2008) 

http://www.ams.org/ams/state-of-ams2002.pdf
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community. With the good will of the evaluating committee, popularization activity can 

be included in the "service for the community". Popular papers and books hardly ever 

count for as much as research papers in the evaluation. For a research mathematician, 

popularization activity is not academically rewarding: it only takes the precious time 

away from research. Ian Stewart, in his response upon receiving the JPBM 

Communications Award in 1999, expressed his gratitude for what he felt was still quite 

exceptional, namely the recognition, by fellow mathematicians, that "communicating 

mathematics to the public is now... a respectable activity for an academic rather than a 

feeble substitute for serious research"14. 

Moreover, there is too little interaction among popularizers of mathematics to 

develop rules and norms of behavior. They usually work individually, not in groups; they 

do not form associations. The AMS Public Awareness Office and the JPBM 

Communications Award do not bring popularizers to work together; they only identify 

the individuals and ask them to perform, or reward their performance. The Mathematics 

Awareness Centre at Warwick that Ian Stewart talks about in the above-mentioned 

response apparently has greater institutional ambitions since it aims at "coordinating 

activities in the Public Understanding of Science, with special emphasis on the 

mathematical sciences"15 according to the description on its website. 

It is interesting that even at the Mathematical Awareness Centre in the University 

of Warwick, popularization of mathematics is not the only activity, but it is broadened to 

popularization of science. Institutionalization of science popularization has a longer 

H http://www.ams.org/notices/199905/comm-ipbm.pdf (downloaded June 29, 2009) 
15 http://freespace.virgin.net/ianstewart.joat/macaw.html#macaw (viewed June 29, 2009) 

http://www.ams.org/notices/199905/comm-ipbm.pdf
http://freespace.virgin.net/ianstewart.joat/macaw.html%23macaw
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tradition, and Stewart might have wanted to graft popularization of mathematics on this 

stronger "trunk" to make it grow better. 

When studying Journalism at the university, one can specialize in Science 

Journalism. Science popularization is also supported by the existence of academic 

research that takes it as its object. There are graduate programs in "science 

communication" at some universities. The results of this research can be communicated 

in international conferences16, and published in specialized regular scientific journals 

such as Public Understanding of Science, Science Communication, or Journal of Science 

Communication. The journals are devoted to following an interdisciplinary approach by 

covering "all aspects of the inter-relationships between science (including technology and 

medicine) and the public" (from policy statement of Public Understanding of Science) 

and publishing the results of "international scholarly exploration of three broad but 

interrelated topics: Communication within research communities - Communication of 

scientific and technical information to the public - Science and Technology 

communications policy [with regard to] social science, engineering, medical knowledge, 

as well as the physical and natural sciences" {Science Communication). These journals 

also try to define the meaning of "science communication" in today's society and to 

identify the sociological and epistemological issues related to the popularization of 

science {Journal of Science Communication). The journals accept papers on: 

- surveys of public understanding and attitudes towards science and technology 
- perceptions of science 

16 Information about the conferences http://www.scienceinpublic.com/scienceinmelbourne2007/ 
(Downloaded: July 12,2008) 

http://www.scienceinpublic.com/scienceinmelbourne2007/
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- popular representations of science, images and representations of science and 
technology 

- science and the media 
- public communication of and discourses on science and technology 

- understanding public communication of science and technology 

The university programs and courses are hosted by different areas, such as 

Science, Educational Studies or Social Studies of Science and Communication Studies. 

For admission into a graduate program in science communication, an undergraduate 

degree in science is certainly an asset but may not be absolutely necessary. Some general 

characteristics of the different university courses and programs, as well as the state of the 

research domain were summarized, for example, by Turney (1994), and a more recent 

account was given by Mulder, Longnecker, and Davis (2008). Besides the actual course 

offerings of universities (e.g. University of Bath17), some information about science 

communication courses can also be found in Littmann's (2005) overview. Although some 

of these programs have science modules, they offer courses mainly in science 

communication, in history and philosophy of science, and practical communication 

courses such as interviewing techniques, or news and feature writing. The emphasis is 

rather on communication and on cultural aspects of science than on the scientific 

content18. 

In addition to international journals and graduate programs, there exist national 

associations of science writers (journalists, public relation officers, researchers), such as 

the Canadian Science Writers' Association, the Association of British Science Writers, or 

17 Further information about the program can be found on the following page of the University of Bath: 
http://www.bath.ac.uk/prospectus/postgrad/psvchology/progs/comm.shtml (Downloaded, June 25, 2009) 
l8See http://www.bath.ac.uk/psychology/srhc/content.html for further details (Downloaded, June 25, 2009) 

http://www.bath.ac.uk/prospectus/postgrad/psvchology/progs/comm.shtml
http://www.bath.ac.uk/psychology/srhc/content.html
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the National Association of Science Writers (NASW) in the U.S.A.. NASW was 

established in 1934 in New York; with more than 2400 members, it is, by far, the largest 

national organization of science writers worldwide today. The association is devoted to 

"fostering the dissemination of accurate information regarding science through all media 

normally devoted to informing the public." Its members are freelancers and employees of 

major magazines and broadcasting media as well as public information officers. 

Membership requires five samples of work produced for a lay audience in the past five 

years, along with the sponsorship of two members of the association.19 

Although these international journals and associations devoted to science 

communication include mathematics, mathematics as a discipline on its own is usually 

underrepresented compared to other scientific fields, such as biology or physics. For 

example, in the journal Public Understanding of Science, so far (Summer 2009) only one 

paper has addressed public understanding of mathematics (von Roten, 2006). 

Popularization of mathematics has no (at least to my knowledge) specialized 

international journals or associations devoted to the study and improvement of this 

activity (this does not include popular magazines such as the Russian language journal 

Kvant). This may change in the future because this activity has known increased interest, 

in recent times, among mathematicians and mathematics educators. One sign of this 

tendency is that issues related to popularization of mathematics started to be addressed in 

international conferences. In the next section, 1 will describe this development, first in the 

International Congresses of Mathematicians (ICMs), and then in congresses and 

19 The information is posted on the home of NASW, available: http://www.nasw.org/ (Downloaded: July 
10,2008) 

http://www.nasw.org/
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conferences for mathematics educators. 

3.4 POSITION OF POPULARIZATION OF MATHEMATICS IN INTERNATIONAL CONFERENCES 

3.4.1 Popularization of mathematics in ICMs 

The coverage of a topic in international conferences can be a measure of its status in the 

mathematical community. The oldest and probably the most prestigious international 

mathematical conference is the International Congress of Mathematicians (1CM) held 

every four years in different countries. The ICMs now have a regular section on 

"Mathematics Education and Popularization of Mathematics", with information about its 

work included in the Proceedings on a par with sections on Algebra, Number Theory or 

Probability and Statistics. It has not always been so; the areas of mathematics education 

and popularization of mathematics used to have, for some time, special symposia 

organized on the site of the congress, but information about the work of these symposia 

were not included in the ICM Proceedings (Howson, 1984; Letho, 1998). 

In the ICMs, there has always been at least one section devoted to something else 

than a strict domain of mathematics (such as Algebra or Number Theory). In the early 

ICMs, there was one such section, titled, in ICM 1897 - History and Bibliography; in 

ICM 1900 - Bibliography and History, Teaching and Methods; in ICM 1904 -

Pedagogy. This was usually the last section to be mentioned in the list of sections, and it 

could well be called "Other matters" or "Miscellaneous". Here, 1 will call it, the "Last 

Section". Around this time, many talks in the Last Section addressed issues related with 

the construction of an internationally unified mathematical terminology and with the 

identification of important mathematical problems to work on. This, in fact, served the 
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process of institutionalization of mathematical research at the international level. For the 

international cooperation, the construction of a unified language was, indeed, essential, as 

was a consensus on what is important to investigate. On the latter issue, 1900 Hilbert's 

talk "Sur les problemes futurs des Mathematiques" delivered in the Last Section, had an 

enormous impact of the development of mathematics in the 20th century. 

In the following congresses, with the demand for clarifying the role and 

foundations of mathematics, philosophy was more and more emphasized, as can be seen 

from the titles of the Last Section in the ICMs between 1908 and 1928: 1908 -

Philosophical, Historical and Didactic Questions', 1912 - Philosophy and History. 

Didactics; 1920 — Philosophical, Historical and Didactic Questions; 1924 - History, 

Philosophy, Didactics; 1928 - Philosophy and History of Mathematics. Gradually, 

however, together with foundations of mathematics (and, later, logic) and history, 

philosophy was transferred to another section. In 1936, philosophy became part of 

Section 7: Logic, Philosophy and History, leaving Pedagogy alone in the last section, 

which, in ICMs 1932 and 1936, was titled, simply, "Pedagogy". 

So far, "popularization" had not appeared in the above-mentioned titles of the 

Last Section. However, some lectures addressed topics that we would now consider as 

popular. For example, in 1912, Zermelo delivered a talk titled, Ueber eine Anwendung 

der Mengenlehre auf die Theorie des Schachspiels (On an application of set theory to 

chess). Also Loher's (1937) talk on Goethes Stellung zur Mathematik (Goethe's attitude 

toward mathematics) would fit well into a public talk on mathematics. Besides these 

talks, which only addressed a popular topic, in 1920, Hatzidakis addressed directly the 

issue of popularization, and reflected on its importance in his talk Systematische 
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Rekreationsmathematik in den mittleren Schulen (Systematic recreational mathematics in 

middle schools). 

After WWII, the ICM's Last Section seemed quite stable by embracing history 

and education. In Cambridge (1950) and Amsterdam (1954) the role of mathematics in 

society seemed an important issue. Wilder's (1950) talk on The cultural basis of 

mathematics was one of the invited lectures and Kurepa's (1957) presentation of the 

results of the ICMI study on The Role of Mathematics and Mathematicians at the Present 

Time was also published in full length in the Proceedings. 

In the aftermath of WWII, mathematics as a teaching subject has grown in 

importance (Garrett & Davis Jr., 2003). However, by the 1990's, after the disappointment 

with the radicalism of the "New Math" reforms in the 1960s and 70s, and the subsequent, 

not necessarily convincing, attempts to return to moderation in school mathematics, the 

importance of mathematics in the eyes of the general public was no longer obvious. 

Mathematicians have become more and more aware of the problems with the public 

image of mathematics, and felt the need for action. Thus, from 1994 on, 1CM addressed 

also questions related to popularization of mathematics. That year, the Last Section was 

split into two: Teaching and Popularization of Mathematics; and History of Mathematics. 

The title of the former section remained unchanged in 1998, but, in 2002 and 2006, it 

became Mathematics Education and Popularization of Mathematics. 

At the ICM in Beijing in 2002, the description of the section on Mathematics 

Education and Popularization was very long and detailed. The part on Popularization 

was as follows: 



44 

Popularization: Broadly accessible expositions of significant mathematical concepts and 
developments. Narrative or dramatic accounts of important mathematical events. High 
quality and creative mathematical journalism. Connections with section 19 [History of 
mathematics]. 

This quote reflects the ICM's Program Committee's collective understanding of 

what counts as "popularization of mathematics". At the ICM in Madrid in 2006, the 

description was much abbreviated and contained only the name, "popularization of 

mathematics", and it is the same for the ICM 2010. 

This review shows that, in the history of ICMs, Popularization of Mathematics 

was never assigned a section of its own. Does this mean that, for the International 

Mathematical Union, "communicating mathematics" does not have the status of "an 

acceptable activity for an academic", as Ian Stewart had hoped? 

There is some hope, however, in the fact that, at the more recent ICMs, talks in 

the section on mathematics education and popularization included not only a "popular 

talk" on mathematics, but also a discussion of issues related to popularization and a 

reflection on the activity of popularizing. Such were the presentations by the project 

director of Square One TV, Joel Schneider (1995; Issues for the Popularization of 

Mathematics); the organizer of the World Mathematical Year 2000, Vagn Lundsgaard 

Hansen (2002; Popularizing Mathematics: From Eight to Infinity); or Ian Stewart (2006; 

Mathematics, the media, and the public). These speakers shared their experience and 

their views on popularization, and discussed topics especially appropriate for 

popularization or worthy of popularization. The ICM in Madrid in 2006 also held a panel 

discussion on the problem of popularization by investigating the question: Should 

mathematicians care about communicating to broad audiences? Theory and Practice. 

Based on the above historical remarks, it seems that, in the last century, 
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popularization of mathematics evolved from an occasional activity done by a few to a 

phenomenon whose problems and consequences generate discussions within the 

international mathematical community. This community acknowledges the need for and 

the difficulties of popularization. The academic status of popularization of mathematics, 

however, remains undefined. There is no tendency towards establishing popularization as 

an area of academic mathematical activity. 

In the next section, I move on to speak about the place of popularization of 

mathematics in the community of mathematics educators. 

3.4.2 Popularization of mathematics in conferences on mathematics education 

Many mathematics educators - especially those whose professional activities (research, 

teaching or teacher education) focus on post-elementary mathematics education - like to 

maintain strong institutional links with mathematicians. This is why the largest congress 

of mathematics education (ICME) is organized by the International Commission on 

Mathematics Instruction (ICMI), which is an official commission of the International 

Mathematical Union. Every four years, ICMI conducts a "study" devoted to a particularly 

important issue in mathematics education. The study is made available in a 

comprehensive publication representing expert views and research on the issue . 

Popularization of mathematics featured as the subject of one of the ICMI studies 

(Howson & Kahane, 1990). It has not been, however, very prominent in the ICMEs. 

Apart from a Topic Group on Mathematics for All (ICME-5); Video, Film; Mathematical 

Games and Recreation (1CME-6) and a discussion group on the Public Understanding of 

20 http://www.mathunion.org/icmi/ICMIstudies org.html (Downloaded: July 27, 2008) 

http://www.mathunion.org/icmi/ICMIstudies
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Mathematics (ICME-10), only a few lectures addressed related topics. Among those, Jin 

Akiyama (2004) gave a talk on Mathematics for mass media. The two major conferences 

on research in mathematics education, Psychology of Mathematics Education (PME) and 

its North-American chapter (PME-NA) seem not to consider popularization of 

mathematics as an area for research. I could find only a few presentations somewhat 

related to popularization (e.g., Beisiegel, 2006; Evans, 2004). 

Mathematicians thus appear to be more interested in the topic than mathematics 

educators, but neither of the two communities view popularization of mathematics as an 

object of research. It is only invoked sometimes as a means to address certain cultural 

issues, such as lack of appreciation of mathematics by the society at large and its poor 

"public image". As such, it is more likely to be addressed in round table discussions than 

in plenary talks. For example, the European Congress of Mathematics has had several 

round table discussions in relation to popularization {Public Image of Mathematics at 

ECM1 and ECM2, and Raising Public awareness of Mathematics at ECM3). 

Based on these facts, we can quite confidently state that institutionalization of 

popularization of mathematics is considerably weaker than that of popularization of 

science, especially in terms of the level of formal and stable organizational structures. 

The activity of popularization of mathematics does seem, however, to be constrained by 

certain rules that 1 will try to identify in the next section. 

3.5 THE "RULES OF THE GAME" IN POPULARIZATION OF MATHEMATICS 

The rules of science communication can be gleaned from official documents in related 
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university programs or professional associations, or workshops and guidebooks21 

(Malavoy, 1999). The guidebooks give advice regarding the style (e.g. straightforward, 

humorous) and language (avoid jargon and formulas), etc. Malavoy mentions three 

general principles of popularization: 

Popularization is not teaching. Good popular science texts are much more than simply 
didactic texts. The challenge here is not only to explain well the aspects of a scientific 
research but also to generate interest in the reader. Never forget that the latter cannot be 
won ahead. A popularizer should be read or listened to with pleasure. A challenge 
worth trying! 

Popularization is not mystifying science. Popularization should not advertise science 
and limit its image to a success story. Don't hide the pitfalls, the problems a scientist 
should face, and so provide a more human image of science. Popularization is telling a 
story, sharing an adventure of science and also of the scientists involved. 

Popularization encourages critical thinking. A good popularizer emphasizes the "side 
effects" of the presented research whether they are social, cultural, economic, politic or 
environmental. It is especially important that the lectures should generate questions 
(and not answer those that were not asked). (Malavoy, 1999: 7, my translation) 

I am not aware of the existence, in AMS, of similar guidelines that could serve as 

a source of rules for popularization of mathematics. However, perhaps some rules can be 

derived already from the fact that participation in popular mathematical activities is 

optional; it is not part of compulsory education. If an activity is not pleasurable, it will be 

abandoned. Popularization of mathematics events usually have to compete against many 

other activities on offer. Because there isn't a set assignment in the end of these events, 

the audience can take away whatever they want from these events. Moreover, the 

audience in any single event is varied with respect to age and background education. A 

Short guides are also posted on related websites, e.g. http://www.scidev.net/en/practical-guides/ 
(Downloaded: July 12, 2008) 

http://www.scidev.net/en/practical-guides/
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popularizer must take all these facts into account. 

Explicit rules, as far as I know, exist for a borderline case of popularization, 

namely mathematicians writing expository papers about advanced mathematics 

(especially recent developments) for other mathematicians who may not be experts in the 

given subject. It is debatable whether these activities can be considered as popularization 

at all. If we interpret popularization as intercultural communication, however, then this 

kind of activity, presenting a subculture to people who might belong to the broader 

culture but not necessarily coming from the same subculture, can also qualify as 

popularization. 

This special type of popularization is typical of mathematical magazines that 

claim to target a wide audience of mathematicians and sometimes also students. This is 

the case, for example, of the Notices of the American Mathematical Society, The 

American Mathematical Monthly, Focus, Math Horizons, The Mathematical 

Intelligencer, etc. They all contain "lighter" articles on historical and cultural topics. For 

example, the profile description of The Mathematical Intelligencer and its Instructions for 

Authors mention several desirable features of the papers published there that could well 

function as rules of "popular writing" since papers that do not satisfy the conditions are 

not accepted: 

This journal publishes articles about mathematics, mathematicians, and the history and 
culture of mathematics. It presents expository articles on all kinds of mathematics and 
interdisciplinary trends, and articles that portray the diversity of mathematical 
communities and mathematical thought. 

Not only does The Mathematical Intelligencer inform a broad audience of 

22 The rules were also identified by Godot (2005) as those characteristics of a didactic contract in a situation 
of popularization that distinguish this activity from leaching. 
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mathematicians and the wider intellectual community, it also entertains. 
Throughout the journal, humor, puzzles, poetry, Action, and art can be found. The 
journal also features information on emergent mathematical communities around the 
world, new interdisciplinary trends, and relations between mathematics and other 
areas of culture. 

Instructions to Authors: The Mathematical Intelligencer welcomes submissions from 
within and without the international mathematical community. Articles may feature 
new results, surveys of recent work in a particular field, profiles of mathematicians 
past or present, and so on: the scope is wide (see below). 

We welcome controversy; this is an international forum for issues on which 
mathematicians disagree. But whatever their subject, all articles should be written in a 
relaxed, engaging style, and should be accessible to the entire community, 
irrespective of specialty. Articles are peer-reviewed. 

Authors need not feel confined to non-fiction: we will consider humor, poetry, fiction, 
and art forms not yet invented. (Policy statements of The Mathematical Intelligencer, 
my emphasis) 

Based on the policy statements of The Mathematical Intelligencer and the other 

journals mentioned above, it is possible to surmise the following desirable features of 

"popular writing" for "[all] mathematicians and the wider intellectual community" 

(which might be applicable in a wider context as well): 

1. Intended for a broad audience, i.e. for people who are not necessarily expert in the 

given subject. 

2. Intended to satisfy widespread interests. 

3. Puts mathematics in an interdisciplinary context and shows it in the light of a 

broader, historical or cultural perspective. 

4. Stimulating, challenging, well motivated, thought-provoking (for example, 

through addressing controversial issues). 

5. Informal; clear explanation of the essential idea of an argument is more important 

than logical rigor and technical detail. 
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6. The novelty of the mathematical results is not so important; the paper can contain 

an interesting and clear exposition of old results; in any case, clarity of exposition 

is more important than the originality of the results; 

7. Entertaining (e.g., through using various literary genres such as fiction, or visual 

art forms, humor, puzzles). 

The above features function like formal rules in an institutionalized activity in the 

sense that, if they are not satisfied, the audience will quit, and popularization without an 

audience cannot exist. 

So far, 1 was searching for rules for popularizers. Audience members are also 

participants in popularization; are there any rules for them? The only rule seems to be, 

"no rules for the audience members". The audience must be free to come and go; 

otherwise, it is not popularization. Popularizers, however, bear the responsibility to make 

them come and stay, rather than go. Therefore, they offer advice or soothing remarks of 

the kind, "don't be afraid if you don't understand everything". For example, in the 

Preface to his 2004 book, Penrose gives such direct advice to his readers: 

Do not be afraid to skip equations (I do this frequently myself) and, if you wish, whole 
chapters or parts of chapters, when they begin to get a mite too turgid! There is a great 
variety in the difficulty and technicality of the material, and something elsewhere may 
be more to your liking. You may choose merely to dip and browse. (Penrose, 2004: xix) 

In the next section, 1 will describe the particular institutional environments of the 

two popular lectures that I use in the thesis as constant examples. The title of the first 

lecture was Medial Representations: Mathematics, Algorithms and Applications. The title 

of the second - The mathematics of Escher's "Print Gallery". 1 will refer to the first 

lecture as the "Medial representation" lecture, and to the second as the "Escher" lecture. 
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3.6 THE INSTITUTIONAL ENVIRONMENTS 

OF THE "MEDIAL REPRESENTATION" LECTURE AND THE "ESCHER" LECTURE 

Information presented in this section is based on my interviews with the organizers of the 

lectures. 

The lectures were organized in two Canadian research institutions as part of 

popular lecture series, not restricted to mathematics. The declared goals of the series of 

lectures were, in both cases, to offer non-specialists some insight into important recent 

research. The mathematics-related lectures were thus intended for non-mathematicians. 

3.6.1 The institutional environment of the "Medial representation " lecture 

The first lecture I attended was part of a lecture series organized by the Science and 

Engineering departments of a leading English Canadian University and supported by the 

Royal Society of Canada. The goal of the lecture series, as I was informed, was to 

enhance communication among scientists representing different disciplines and between 

scientists and the general public. There were normally eight lectures per year. In the last 

four years, there were three mathematics-related presentations compared to an average of 

seven in physics, biology or medicine. The lectures were announced on the university's 

web page and in a university newspaper. Lecturers were selected and invited based on 

what the organizers knew about them. Having given a popular talk before was not a 

prerequisite. 

The make-up of the audience changed depending on the topic (with an average of 

30-50 people), but usually the majority were the university's professors and students. 

The talks took place on the university campus and lasted an hour. After the 
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lectures, there was usually a small reception. The reception gave the audience an 

additional opportunity to talk with the lecturer and ask questions they did not have a 

chance to ask during the short question period after the talk. 

The title of the actual presentation was "Medial Representations: Mathematics, 

Algorithms and Applications" given by a professor from the Department of Computer 

Science. The professor was a representative of an interdisciplinary research group of the 

university working on computer vision. The audience was varied in terms of age and 

previous knowledge, but most belonged to the university community (faculty and 

students). 

This was supposed to be a popular lecture and therefore participation in it should 

have been optional and not a compulsory task followed by an assessment. It turned out, 

however, that at least one of the audience members - who agreed to be interviewed by 

me after the lecture - was there as a student on the assignment of attending and writing a 

report on a popular lecture in mathematics. The assignment was compulsory for a course 

she was taking in the same university. Thus, some university professors may force their 

students to attend popular lectures, violating the spirit of popularization. 

In a way, my interviews with audience members also interfered with the popular 

character of the lecture. I had approached some of the audience members before the 

lecture, asking them if they would grant me an interview after the lecture about what they 

have understood from it. Those who agreed may have felt obliged to stay in the lecture 

and pay attention even if they did not enjoy it and would have gladly left the room much 

earlier without this promise. Indeed, the lecture did cause more frustration and shock than 

pleasure for some of the participants 1 have interviewed. 
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3.6.2 The institutional environment of the "Escher" lecture 

The second lecture was organized by a Canadian research institute, and, similarly to the 

previous talk, it was also part of a lecture series, but the lectures were all devoted to 

mathematics. The series was aimed at communicating the "power" and the "beauty" of 

recent mathematical research to the general public. The lecturers were asked to present 

the ideas in a language accessible to non-mathematicians. The organizers were looking 

for speakers with a special gift for communicating mathematics in an "exciting" way. 

Having previous experience in popularization (talks, books or articles) thus was a 

prerequisite. The organizers were also trying to attract speakers knowledgeable about 

modern applications of mathematics (cryptography, quantum computing, chaos in 

meteorology or financial systems, brain imagery, biotechnology, etc). 

There were three to four lectures per year. Topics of the lectures in the past few 

years included mathematical thinking, logic, dynamical systems, geometry, biographies 

of famous mathematicians, and mathematics in art. 

The lectures were advertised in daily newspapers. Those planning to attend were 

advised to register before the lecture, to give the organizers an idea about the required 

room size. On the average, 150-200 people participated in the events. Emails advertising 

the lectures were also circulated among faculty members and students of the mathematics 

departments of universities in the neighborhood of the research institution. 

The lectures were held in a big auditorium of a university, and lasted an hour. 

Similarly to the previously presented lecture series, time was reserved for a short question 

period after the presentations. There was also a reception after the talk, and the lecturer 

had to be prepared for additional questions in less formal circumstances. 
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The title of the talk was, "The mathematics of Escher's Print Gallery". Its abstract 

promised to use computer animations to explain the mathematics of one of Escher's most 

elusive pictures and fill the "mysterious" white spot left by Escher in the middle. 

There were about 200 people in the audience and I interviewed only a few of 

them. Although one of the interviewees was advised by one of her professors to attend 

the talk, the attendance itself was not part of the course assignment. Thus none of the 

interviewees were attending the talk on a course assignment, but, of course, they were 

obliged to stay in the talk because of the promise they made to me. Unlike in the first 

lecture, however, none of them felt like leaving the talk in the middle. They all enjoyed it 

immensely. 

3.6.3 General remarks about the institutional contexts of the lecture series 

For both lectures, a research institution supported the event, invited the speakers, 

advertised the lecture, and provided a venue as well as a seal of the scientific community. 

The choice of the means of dissemination of the information about the talks already 

served as a filter for the audience: English speakers, internet users, the particular 

newspaper readers. Members of the academic community had easier access to the 

information because it arrived in their e-mail. The lecturers were constrained by the time 

(1 hour) allotted for the talk, the language of the presentation (English) which needed not 

be their mother tongue, the request to formulate the ideas in a language accessible to non-

mathematicians. At the same time, the lecture would have to be interesting for 

mathematicians as well, since they were likely to come. These factors already constrained 

somewhat the aspects of mathematics that the lecturers could communicate. On the other 
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hand, there were no strict rules imposed on the lecturer regarding how to choose the 

topic, the title, what technical aids to use, how to prepare the presentation, how to deliver 

it, how to answer the questions of the audience, whether and what kind of additional 

resources to suggest to the audience for further information, etc. Similarly, the behavior 

of the public (willing to come, listen to the talk and paying attention to it, asking 

questions, talk to the lecturer after the presentation or later) was not constrained by strict 

rules, except those that generally apply in similar social situations, like how one should 

behave in a lecture. 

No systematic evaluation was used in the case of the lectures. The lecturers got 

feedback from the audience's reaction, in the form of questions during the talk or in the 

reception after the talk and could change the presentation (for the next time) accordingly. 

The organizers' feedback came from their own perceptions about the lecture and about 

the audience. Based on this perception they could invite other lecturers (e.g. choosing 

lecturers working of areas which seemingly attracted more people), or change the means 

of disseminating the information about the lecture. 

Referring to the models of communication described in Chapter 2, both talks 

seem to fall into the uni-directional, contextualized dissemination model, since the 

lecturers seemed to take into account the cultures represented in the audience (they knew 

there will be both mathematicians and non-mathematicians), but there was very little 

interaction between the lecturers and the audience. 

3.7 CONCLUSIONS 

Popularization of mathematics has become an activity that increasingly provokes 
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reflection within the mathematical community. However, popularization of mathematics 

has a considerably lower level of institutionalization than science popularization. Except 

for a few individuals (freelance writers, moviemakers), popularization of mathematics 

relies mainly on the mathematical community (mathematicians, educators) affiliated with 

research and educational institutions and on governmental funding. In science (including 

medical sciences), the funding can be provided by industrial organizations that are 

financially interested in promoting (or even organizing and evaluating) popularization 

activities. Educational and research institutions, on the other hand, usually do not reward 

popularization the way they do research or teaching. Popularization activity must be 

fuelled, therefore, by reasons other than material: a hobby, an interest for popular topics, 

or a particular talent that pushes one to creative action. Popularization of mathematics is 

more an art than a profession. It has its "masters" and its "sponsors", but, as yet, no 

"schools". The masters seem to have developed some techniques, but there is little or no 

language to speak about these techniques and teach them to others. This is what weak 

institutionalization of popularization of mathematics means. 
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CHAPTER 4 

THE POPULARIZED MATHEMATICS 

4.1 INTRODUCTION 

The question posed in this chapter is: what part of the mathematical culture popularizers 

choose to "show" the audience? Can some criteria be identified? 

Recent reviews of popular works on mathematics mention that there have been a 

large number of publications in this area over the last twenty-odd years, but also 

underline the commonality of their contents. For example, in a review of Higgins' book 

(2002), Morics (2003) states that many books try to give an overview of all branches of 

mathematics, with some topics - such as Fermat's Last Theorem or Ramanujan's story -

inevitably mentioned: 

Within the last fifteen years, many books have been published which attempt to discuss 
mathematics in a manner which non-mathematicians can understand. While other 
disciplines have been pursuing this line of public relations for some time, 
mathematicians have only recently expended the effort to place their field of study in 
contexts, which appeal to the general reader. Since this effort is so new, it's not 
surprising that few of these efforts have stood out from their kin. The books of this 
genre have begun to resemble each other, with much of their content overlapping from 
book to book. As more people take their turn at adding to the growing list of 
mathematics books for the mainstream reader, we should expect these books to be more 
focused, eschewing yet another mention of Fermat - Wiles or Ramanujan and the 
taxicab in favor of a more detailed description of a smaller region of the field of 
mathematics. Science books have been doing this for a long time.... [P]ractically every 
popular mathematics book I have read tries to cover every branch of mathematics.'1'' 
(Morics, 2003, the emphasis is mine). 

Morics lauds Higgins' book for not trying to "cover every branch of mathematics" 

and focusing on geometry instead. The selection of geometric topics, however, is not 

much different from those chosen by other authors (e.g., Pythagorean theorem; spherical 

geometry; rotational symmetry and its order; the geometry of crystals; geometric models 
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of planetary motion). The originality, according to Morics, lies in the author's attempt to 

use visual arguments whenever possible. 

Higginson (2006) also feels compelled to express his impression of a sharp 

increase in the production of popular books on mathematics in the last years. 

'Popular' treatments of mathematical ideas are not new. Authors like W.W. Sawyer, 
Lancelot Hogben, W.W. Rouse Ball and Martin Gardner, for instance, wrote prolifically 
for large and appreciative audiences through the previous century.... But, for whatever 
reasons, the former trickle of publications has become a torrent. In the period of a few 
months in late 2000 and early 2001 there were two books published on the topic of zero 
(Kaplan, 2001; Seife, 2000). More recently, an even shorter time frame saw the 
publication of three substantial books on the Riemann conjecture (Derbyshire, 2003; du 
Sautoy, 2003; Sabbagh, 2002). Some other recent texts have focused on a particular 
branch of mathematics. For instance, Barabasi (2002) [networks], Beltrami (1999) 
[chance and order] and Havil (2003) [Euler's constant]. (I have more than thirty other 
titles in this category on my shelves alone.) (Higginson, 2006: 136-137) 

Writing later than Morics, Higginson's examples suggest that at least some of the 

recent popularization books attempt to focus on a smaller number of related ideas, rather 

than to "cover all branches of mathematics". While the common topics of popularization 

such as number, Riemann hypothesis, Euler's constant, or processes of proof appear to be 

still very present, Higginson notices a strong emphasis of many books on the aesthetic 

aspects of mathematics. 

A surprisingly large number of authors choose to emphasize the artistic, aesthetic and 
spiritual connections of their publications in the titles they give the books. See, for 
instance, The Artful Universe (Barrow, 1995), The Universe and the Teacup: The 
Mathematics of Truth and Beauty (Cole, 1998) or It Must be Beautiful: Great Equations 
of Modern Science (Farmelo, 2002) - again, there are over thirty more I could mention, 
all with this characteristic. (Higginson, 2006: 137) 

Higginson also notes an increase of interest in the human aspects of mathematics 

through books about mathematicians (e.g., Nasar, 1998, about J.F. Nash; Hoffmann, 

1999, about Paul Erdos) as well as theatre plays and feature films where the main 

characters are mathematicians (e.g. Good Will Hunting, Pi or Proof). 



59 

Reading popular books gives one the impression that some themes are indeed 

quite popular. Topics such as chaos or cryptography are certainly frequent. Books also 

often address core mathematical concepts, such as number, infinity, parallel lines, etc. 

Moreover, what they choose to say about them and how they say it, is similar from book 

to book. 

In investigating popularization of mathematics, it seemed a very natural question 

to try to pin down the content of popularization of mathematics, and break it into some 

sensible categories. I thought it would be an easy task, based on my impression of there 

being only a few recurrent themes. A closer look at the themes, however, suggests a more 

complex picture. Over the period of the last 10-15 years, the content has been changing 

and there are various conjectures about the direction of these changes. Singh (2005), for 

example, perceives a trend towards a growing importance of what he calls the narrative 

non-fiction in popularization of both science and mathematics: 

Traditionally popular science writers have put the emphasis on explanation, 
concentrating on conveying to the reader an understanding of scientific concepts.... 
However, the last five years have witnessed the burgeoning of a new type of science 
writing, so-called narrative non-fiction, in which the emphasis is not solely on the 
explanation of science. Instead, the author also writes about the scientists, their motives, 
adversities and triumphs. All of this is framed within an overarching narrative. These 
books explain science, but they also tell the tale of scientific discovery or have a 
biographical thread. [Narrative non-fiction is different from] fiction based on scientific 
or mathematical themes. In these books the story is naturally more important than any 
explanation of scientific concepts but they do explain what drives scientists, describing 
the culture and atmosphere of scientific research. Recently there have been several 
fictional books about mathematics namely Uncle Petros and Goldbach 's Conjecture by 
Apostolos Doxiadis and The Parrot's Theorem by Denis Guedj. Arguably the trend 
towards narrative non-fiction began with Dava Sobel's Longitude, a description of the 
invention of the marine chronometer, which also tells the story of its inventor John 
Harrison, who had to battle with the establishment in order to get his breakthrough 
recognized and adopted. Subsequently, many other books have been categorized as 
narrative non-fiction, including my own books, Fermat's Last Theorem and The Code 
Book. (Singh, 2005: 183) 

Recent examples of popularization suggest that, besides the narrative non-fiction 
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trend mentioned by Singh above, there is also much interest in modern applications of 

mathematics and statistics and in the various abuses of mathematics and statistics in the 

media. Books on great ideas in mathematics including old and new mathematical results 

are still being published (e.g. Devlin, 2002a; Szpiro, 2007), but more attention seems to 

be paid to applications including not only mathematics applied to physics and cosmology 

(e.g. Penrose, 2004; Szpiro, 2003), but also to biology, understanding nature, information 

technology (e.g. Casti, 2000; Ball, 2003; Higgins, 2007; Ratzan, 2004), and the use of 

mathematics in everyday life (e.g. Herzog, 2007; Zev, Segal & Levy, 2009). 

In my research, I was trying to somehow "define", "characterize" or "categorize" 

the mathematical content of popularization. I was asking, is it possible to add something 

to the observations about the content of popularization of mathematics made by the 

authors quoted above? This chapter presents the results of my efforts in sections 4.2 and 

4.3. One of these results is that I found the categorization of the content of popularization 

a rather impossible task. 1 will explain why. Then, I tried to at least identify a pattern in 

recurrent topics of popular books. Part of this pattern was the absence of proofs for most 

of the results presented in popular books. Yet, proofs are often considered to be the heart 

of mathematics. I noticed, however, that two proofs were recurrent in the books: the 

infinity of primes, and the irrationality of the square root of two. I tried to understand the 

authors' reasons for including these proofs in their books. What values did they intend to 

communicate with these proof? I write about my findings related to irrationality of the 

square root of two in section 4.3. Finally, in section 4.4,1 deal with the most modest task 

about the content of popularization: 1 describe the mathematical content of the "Medial 

representation" and "Escher" lectures. The chapter ends, in section 4.5, with a tentative 
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list of characteristics that it is desirable for a mathematical topic to possess if it is to be 

chosen for popularization. 

4.2 ATTEMPTS AT CATEGORIZING THE MATHEMATICAL CONTENT OF POPULARIZATION 

My first approach to studying the content of popularization of mathematics was to 

categorize it somehow. I was looking at popular books, journals, and magazines, trying to 

find some pattern in their content. The results, however, were not very promising. I 

thought that the difficulty comes from the fact that the category of "popularization of 

mathematics" is not clearly defined and contains too great a variety of publications. 1 

started searching for some reliable source for deciding whether something can be 

considered as popularization of mathematics or not, but did not find any explicit 

definition. 

What I found, however, were some implicit hints on what counts, for the 

mathematical community, as good popularization. The American Mathematical Society 

has a special award, called The Joint Policy Board for Mathematics (JPBM) 

Communications Award. This Award was established, in 1988, "to reward and encourage 

communicators who, on a sustained basis, bring mathematical ideas and information to 

nonmathematical audiences"23. Until 2009, nineteen awards have been given. The list 

includes some very famous names, such as Martin Gardner, Ian Stewart, Keith Devlin 

and Roger Penrose. Some of the reasons for giving the award were: 

Information about this award, together with the list of winners, is posted on the website of the American 
Mathematical Society: http://www.ams.org/prizes/jpbm-comm-award.html (Viewed: July 25, 2009). 

http://www.ams.org/prizes/jpbm-comm-award.html
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- "... for communicating the beauty and fascination of mathematics and the passion 

of those who pursue it" 

- "... for increasing the public's understanding of mathematical concepts" 

- "... for making a consistent effort to reach out to a wider audience" 

- "... for being an erudite spokesman for mathematics, communicating its charm 

and excitement to thousands of people from all walks of life" 

- "... for artful and accessible essays and lectures elucidating the mathematical 

concepts" 

- "... for the discovery of Penrose tilings, which have captured the public's 

imagination" 

These and other justifications confirmed my conviction that the winners of the 

award were practicing popularization of mathematics in the sense of the characteristics 

highlighted in Chapter 2. The awards were not given to "great teachers" or skilled 

textbook writers. The award winners were producing books, articles or works of art (e.g. 

sculptures) for anybody willing to stop by and read or look. They were the 

"spokespersons for mathematics": trying to win the public appreciation of mathematics 

by making it attractive (beautiful, fascinating, charming, exciting, capturing the public's 

imagination). They were successful in overcoming, to some extent, the challenges of the 

intercultural communication: their works were believed to "increase public understanding 

of mathematical concepts", and make mathematics more "accessible" and clear. 

Therefore, looking at the JPBM Communications Award winners' work could 

give some idea of what parts of the mathematical culture popularizers choose to show to 

nonmatbematical audiences. 1 first tried to find a categorization of popular works based 
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on how the award winners' publications were classified according to different 

classification systems used by mathematicians, mathematics educators and librarians. The 

attempt simply showed that, indeed, there seem to be some recurring topics (such as those 

mentioned in section 4.1), but also provided evidence that topics addressed by 

popularizers are often unclassifiable according to the existing catalogue systems. 

Moreover, it turned out that what counts as popularization changes from community to 

community. The notion of "popular work in mathematics" may be different for a librarian 

and a mathematician. 

After these unsuccessful trials, I have given up looking for a general way of 

categorizing the content of popular mathematical activities. Instead, I decided to look at a 

sample of books written by the winners of the JPBM Communications Award in some 

detail. The result of this experience is described below. 

As noted by Morics (2003), some books are monographs of a particular domain or 

problem of mathematics, and others take the reader on a mathematical tour displaying 

various more or less disconnected snapshots of mathematical culture. There seems to be 

more books of the latter kind than of the former. Perhaps the most spectacular example of 

the "monograph" approach is Penrose's (2004) book, which aims at no less than giving 

the reader^ Complete Guide to the Laws of the Universe. Examples of the "snapshots" 

approach abound in Peterson's books. In The Mathematical Tourist (Peterson, 1988), the 

subtitle promises to show the reader Snapshots of Modern Mathematics (Peterson, 1988). 

In another book, the author invites his readers to A Mathematical Mystery Cruise 

(Peterson, 1990). I was expecting the choice of topics to be more varied in the 

monographs, but at least in the examples I saw, the same themes appeared to come up 
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again and again. 

Numbers and logic always seem to come to mind when people think about 

mathematics. Thus it is not surprising that these two themes appear frequently in the 

popular literature. In relation to numbers, authors often speak about the extension of the 

notion of number from whole numbers, used in the context of counting or ordering, to 

integers (positive and negative), to rational, to real and, sometimes, to complex numbers. 

The notion of irrational number receives much attention, often with a story of their 

discovery by the Pythagoreans, and a proof of the irrationality of the square root of two 

(but not the square root of three, for example). Numbers such as TC, e, and / are introduced 

in a similar vein, with their history or just historical anecdotes, explanations of their 

mathematical meaning and significance in the progress of mathematical theories. 

Presentation of natural numbers is often accompanied by the discussion of factoring them 

into prime numbers and applications in cryptography. The history of classical problems 

such as the number of prime numbers, or of perfect numbers appears to be necessary in a 

chapter devoted to number theory. Looking for patterns in sequences of natural numbers 

such as those in the Fibonacci sequence is a popular topic, as well. 

The theme of logic may be presented in the context of the classical logic puzzles, 

(as in the books by Martin Gardner) or in the context of foundational problems of 

mathematics such as Godel's incompleteness theorem or issues related to infinite sets, 

which border on the philosophy of mathematics. 

In Euclidean geometry, the most popular topics seem to be, besides the 

Pythagoras theorem and its various proofs (especially the visual ones), the Kepler's and 

Poincare conjectures. Discussion of the parallel postulate, together with the history of 
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mathematicians' attempts at proving it, inevitably leads to the invention of non-Euclidean 

geometries and the transformation of the philosophy of mathematics with which this 

invention was associated. Personal stories of Bolyai, Lobatchevsky and Gauss are usually 

told in this connection. In particular, hyperbolic geometry - and its artistic 

representations in Escher's works - has received special attention (see, e.g. Penrose, 

2004, section 2.4). Geometry also serves as a vehicle to convey the fundamental concepts 

of group theory. These classical geometric subjects, however, seem to give way, in more 

recent times, to such new forms of geometric thinking in mathematics as those found in 

topology or knot theory. 

The traditional ideas of calculus, although still present in popular literature, 

appear to lose fame to the more "hot" topics such as dynamical systems, chaos and 

fractals. Advances in technology have allowed producing beautiful color plates and 

animations to represent these ideas. Chance and probability are also gaining in 

popularity; their applications involving money such as card games or lottery may be quite 

appealing to the general audience. The growing importance of networks provides also a 

place for graph theory in popularization of mathematics. 

Across all the above-mentioned "must-sees" in popularization of mathematics, the 

mathematician is concerned with testing his or her conjectures using proofs, often based 

on processing of formal expressions. Such proofs distinguish mathematics from other 

domains of scholarly knowledge. Proofs, however, do not appear to belong to the "must-

sees" for the "average" popularizer. Detailed proofs generally require the reader or the 

listener to be familiar with a specialized mathematical language, and this is not normally 

assumed about the so-called general audience. If proofs are an essential part of the 
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mathematical culture, then how, without proofs, can one give the audience an appropriate 

picture of this culture? There are certainly a few possibilities to overcome this 

paradoxical situation. 

Probably the most common solution is to include only a few proofs - chosen as 

"paradigmatic examples" but still easy to follow - to give an idea of the essence of a 

mathematical proof. 

Another approach is to justify the particular result one is focusing on, but without 

the technical details: offering only a narrative sketch of the main idea of the proof. This 

was the option chosen by Singh in his book on Fermat's Last Theorem (Singh, 1997). 

Yet another solution is to convey the idea of mathematical proof on an artificial 

example, specially constructed for this purpose. For example, Stewart would explain 

what it means to prove in mathematics by showing that reaching the word DOCK by 

transforming the word SHIP one letter at a time will necessarily include a word 

containing two vowels (Stewart, 2006: 72). 

It is also possible to omit a proof of a theorem in the main body of the book, but 

include it in an appendix (e.g. Singh, 1997). 

Penrose - certainly not an "average" popularizer - would simply not give up 

proofs or formal processing in his The road to reality. A complete guide to the laws of the 

universe. 

The reader will find that in this book I have not shied away from presenting 
mathematical formulae, despite dire warnings of severe reduction in readership that this 
will entail. I have thought seriously about this question, and have come to the 
conclusion that what I have to say cannot reasonably be conveyed without a certain 
amount of mathematical notation and the exploration of genuine mathematical 
concepts. (Penrose, 2004: xv) 

Penrose proposed that his book can be read at four levels (ibid., xv-xvi). The first 
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three levels are for readers who are not already familiar with the subjects approached in 

the book. The first level is for the reader who has trouble with any kind of mathematical 

notation (including operations on fractions). This reader can just read the text and skip 

the formulas. There is still, Penrose claims, something to be learned from the text alone. 

The second level is for the reader who is ready to read the mathematical formulas but is 

not inclined to verify them. The third level is for readers who not only are willing to read 

the formulas but also are interested in understanding why they are true. For this level of 

reading, Penrose has provided, in the footnotes, exercises of three levels of difficulty. 

Finally, the fourth level is for the expert, who is already familiar with the mathematics. 

This reader will not waste his or her time in doing the exercises, but might be interested 

in the author's unconventional point of view on various modern theories such as the big 

bang theory or black holes. 

This is an interesting approach to writing popular books, but it risks to highly 

increase their volume - Penrose's book is over a thousand pages - and make their writing 

a much more complex enterprise. Very few popularizers want to devote eight years to 

writing a single book. 

In the next section, 1 will share some observations about the proof of the 

irrationality of the square root of two in a few popular books. 

4.3 INVESTIGATING ONE RECURRENT TOPIC IN POPULARIZATION: 

THE PROOF OF THE IRRATIONALITY OF THE SQUARE ROOT OF TWO 

Two proofs are frequent in popular works in mathematics: those of irrationality of y2 and 

of the infinity of primes. What could be the reasons of the popularity of these proofs? 
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To gain some insight into this question, I looked at a sample of publications 

written by the JPBM Communications Award winners and tried to find the reasons of 

choosing to include, in particular, a proof of the irrationality of the square root of 2. I 

picked only four books but even this small (and rather opportunistic) sample suggests that 

there could many reasons for the choice and presentation of the proof. 

4.3.1 Proof of irrationality of^ in Constance Reid's "From zero to infinity" 

The first edition of the book had a chapter devoted to each of the natural numbers from 0 

to 9. In one of the revised editions, a chapter on the number e was added. This was the 

first chapter with an irrational number in its title. It is in this chapter that the proof of 

irrationality of the square root of 2 is mentioned. The main idea of the proof is given, 

namely that 2 cannot be expressed as a square of the ratio of two whole numbers, but 

detailed argumentation is missing. The context indicates that the purpose of mentioning 

the proof was to motivate the existence of irrationals and to gain some idea about their 

characteristics (e.g. the characteristics of their decimal representation). Thus, Reid used 

the proof for introducing irrational numbers as mathematical objects. With its rich 

connections to various mathematical objects, y/2 indeed serves as a perfect illustration of 

a meaningful mathematical object. The main argument for the existence of V2 in this 

chapter is not so much in the above mentioned proof, as in its geometric interpretation as 

a measure of the diagonal of the unit square. Although other irrationals could have been 

The books I looked at were the following: 
Reid, C. (1992). From zero to infinity. What makes numbers interesting. MAA Spectrum 
Stewart, I. (2006). Letters to a young mathematician. New York: Basic Books 
Penrose, R. (2004). The Road to Reality. A Complete Guide to the Laws of the Universe. London: Jonathan 
Cape 
Davis, P. J. and Hersh, R. (1981). The Mathematical Experience. Boston: Birkhauser 
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used (e.g. V3), the square root of two gave Reid an opportunity to speak about 

Pythagoreans to endow the notion of irrationality with a dramatic flavor25, and also 

explain the restricted character of the Greek concept of number, which did not include all 

irrationals. 

4.3.2 Proof of irrationality ofyj?. in Ian Stewart's "Letters to a young mathematician " 

The purpose of mentioning the proof in Stewart's book is different from that in Reid's. 

Stewart is using the proof in the context of giving advice on how to read mathematical 

texts. The book is meant to give an insight into the mathematician's work and life. 

Although one of the chapters has the word "proof in the title, and the chapter titled 

"mathematical stories" is also devoted to the notion of proof, Stewart decided to mention 

the proof of irrationality of square root of 2 in the chapter on how to study mathematics. 

An efficient way of reading mathematical texts plays an important part in studying 

mathematics. Reading the proof of irrationality of square root of two serves as an 

illustration of the more general process of reading mathematical texts. In particular, the 

author suggests that if one is stuck in reading a mathematical text, it is often a good 

technique to keep on reading, in the hope that subsequent explanations will shed light on 

the encountered difficulties and the problem will be solved. The choice of this particular 

proof in this context seems rather arbitrary. Other examples might easily serve the same 

purpose. For example, reading the definition of linear independence, saying that vectors 

v1,...,vn are linearly independent if a1v1 + ...+ anvn = 8 implies that ax = ••• = 

an = 0, certainly better represents the kind of mathematical text that undergraduate 

25 This is an example of the narrative non-fiction mentioned in the Introduction to this chapter. 



70 

students have trouble reading and interpreting. Stewart's book, however, is not addressed 

to undergraduate students, although it speaks about studying mathematics at the 

university, doing a PhD in mathematics and eventually becoming a mathematician. The 

book's intended readership are mainly secondary school students who are about to make 

a decision what to study at the university. This audience would not understand examples 

from university mathematics; proof of irrationality of V2 is accessible to them. 

4.3.3 Proof of irrationality of V2 in Phillip J. Davis and Reuben Hersh, "The 

Mathematical Experience " 

The Mathematical Experience is a book that tries to describe how mathematicians feel 

and think. The authors have described their task as "to explain to nonprofessionals just 

what these people are doing, what they say they are doing, and why the rest of the world 

should support them at it" (Davis & Hersh, 1981: xii). The book aims to give a general 

impression about mathematics through various questions related to history, philosophy, 

and content of mathematics. The number V2~ is discussed in two chapters. In one of them 

(Algorithmic vs. Dialectic Mathematics), the problem of the existence of the number is 

posed and two proofs of the existence of a solution to the equation x2 = 2 are given, one 

"algorithmic", the other - "dialectic". The distinction between these two approaches is 

the main idea and the proofs merely illustrate it. Proofs of irrationality of the number 

appear in the chapter titled "Comparative Aesthetics". Again, there are two proofs and 

one is argued to represent "a higher degree of aesthetic delight", in the authors' words. 

The not-so-delightful proof (Proof 1) is longer, contains detailed algebraic argumentation, 

deriving the contradiction in a step-by-step fashion. The one considered aesthetic (Proof 
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II) is shorter, contains no algebraic manipulations, and omits details, but clearly states the 

main idea of the proof, or "the heart of the matter", as the authors say. 

Certainly, other proofs could be used to illustrate the aesthetic component of 

mathematics. For example, a collection of such results can be found in Aigner & Ziegler 

(2003). Undoubtedly, the brevity and elementary character of the proofs of irrationality of 

V2 were good reasons why this particular theorem was chosen in a book addressed to 

general audience. Interestingly, however, the only places in the book where irrational 

numbers are mentioned are those where the number V2" is mentioned. This number thus 

appears to be regarded by the authors as the paradigmatic example of irrational number. 

4.3.4 Proof of irrationality ofy/2 in Roger Penrose's "The Road to Reality. A Complete 

Guide to the Laws of the Universe " 

Penrose's approach to writing a popular book is certainly quite different than any of the 

authors' mentioned above. His goals are quite ambitious as he offers a "complete guide to 

the laws of the universe". It is not a tour of a few interesting mathematical concepts and 

results chosen for communicating certain general characteristics of the mathematical 

culture. The author's ambitious goal requires appropriate mathematical tools and 

techniques, and Penrose spared no effort in acquainting the reader with them. Penrose 

aimed at giving a complete, self-contained guide. With the choice of topics, he intended 

to support his main goals; each mathematical tool in the book is there for a purpose, and 

they are all interconnected. The choice of topics seems to be guided by their contribution 

towards a coherent presentation rather than by offering an insight into the world of 

mathematics and mathematicians. The proof that V2! is irrational is included because 
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Penrose heavily relies on the special characteristics of the set of real numbers in the book, 

thus its completeness had to be addressed at some point at the beginning. 

The proof is different from those in the previously mentioned books. Penrose uses 

the method of infinite descent. The proof starts by assuming that there is a solution to the 

equation (-)2 = 2, or, equivalently, a2 = 2b2, where a and b are positive integers. This 

looks almost like the classical proof evoked by the previous three authors, except that no 

assumption is made about the fraction - being reduced to lowest terms. This assumption 

is essential in obtaining the contradiction in the classical proof. Penrose doesn't need this 

assumption, however, since he uses the infinite descent method and obtains a 

contradiction with the fact that every strictly descending sequence of positive integers is 

finite. The argument goes as follows. The last equation, a2 — 2b2, implies not only that a 

is even and so a2 is divisible by 4, and therefore b is even, but also that a2 > b2 > 0. 

Since b can be written as b = 2c for some positive integer c, we have b2 — Ac2, whence 

b2 > c2 > 0. Continuing this process, we obtain an infinite sequence of positive integers 

a, b, c, d, ... with a2 > b2 > c2 > d2 > ••• > 0. However, a decreasing sequence of 

positive integers must come to an end, which contradicts the above conclusion that the 

obtained sequence is infinite. 

Penrose explains his choice of proof by the fact that the claim that it is possible to 

reduce any fraction to lowest terms is not obvious and requires a proof (which can be 

based on Euclid's algorithm), while the method of infinite descent is more elementary, 

closer to the axioms (in particular the axiom of well ordering). Another advantage that 

Penrose sees in his proof is the possibility it offers to highlight an essential difference 
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between real numbers and natural numbers: it is not true that a strictly descending 

sequence of real numbers must end. He shows where his argument of the non existence of 

square root of two in positive integers breaks down when "integer" is replaced by "real". 

Penrose takes the time to enumerate the properties of numbers that were used in 

his proof to illustrate the mathematicians' tendency to be suspicious about the "obvious" 

and always trying to "identify the precise assumptions that go into a proof (Penrose, 

2004: 53), since this may save them from unjustified generalizations. 

As in the other books, the proof is also used as an occasion to speak about the 

Ancient Greek restricted concept of number and the breakthrough that the discovery of 

the impossibility to represent the square root of two as a quotient of integers has brought 

about. 

4.3.5 Conjectures about reasons for including the proof of irrationality of V2 in a 

popular book 

The examples above suggest that the proof is rarely used to convince the reader solely 

about the irrationality of this particular number. If irrationality is in the focus at all (Reid, 

Penrose), then the purpose is to show that integers and quotients of integers are not 

enough to solve even simple equations or to measure such familiar segments as the 

diagonal of a square, and there is a need to extend the notion of number. The proof that 

V3~ is irrational might serve the same purpose, but apparently not that well. The square 

root of 2 has become the paradigmatic example of irrational number at school, and this 

notion is perpetuated through popularization. 

As the examples above show, however, the proof can serve other purposes as 
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well. It seems to have a great potential to connect with and illustrate various aspects of 

the culture of mathematics: its history (Reid, Penrose); its objects and their various 

representations (Reid, Penrose); its special notion of truth and methods of justification 

(Davis & Hersh, Penrose); its aesthetic values (Davis & Hersh); its utilitarian values 

(Penrose), and skills necessary for its study (Stewart). I elaborate on these purposes 

below. 

History. The story of the discovery, by Pythagoreans, of the impossibility to 

represent the ratio of the diagonal of a square to its diagonal as a ratio of two integers 

leads far in various directions. It provides an opportunity for introducing elements of the 

Pythagorean philosophy and religion. It also gives space for discussing the Pythagorean 

view of number and thus provides an immediate link to the Elements, which might be a 

starting point for talking not only about many mathematical ideas but also about 

epistemological issues regarding the conceptualization of the notion of number. Human 

aspects of mathematical history can also be touched upon in the context of the proof, by 

telling the legend of the Pythagorean who lost his life as a result of the discovery of 

irrationality of square root of two. 

Objects and their representations. The proof asserts that a mathematical object, 

whose existence was not recognized before, becomes a valid entity. This may contradict 

previous expectations, but the logical argument claims its right for existence. This 

argument, however, is not the only "evidence" for the existence of the square root of two. 

Usually, the popularizer will talk about the construction of this number as the length of 

the diagonal of a unit square, which satisfies many people's conception of number as 

measure. The situation is more difficult if one wants to convince the audience that it 
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makes sense to say that i is a "number". Therefore, the square root of two is a more 

convincing illustration of the process of extending the notion of number in mathematics. 

Square root of 2 is, moreover, a special number and as such it already exemplifies 

number as an important mathematical object. It has different immediate representations 

(analytic, numerical, geometric), and this allows popularizers to make excursions into 

various areas of mathematical culture. It provides immediate links to important 

mathematical concepts, such as infinity, limits, completeness, unpredictable decimal 

representations, etc. It also gives an opportunity for talking about other special irrational 

numbers and for looking at their properties and significance in mathematics. The 

distinction between constructible and non-constructible numbers as well as between 

algebraic and transcendental numbers can be drawn. 

Methodology. There are several ways to prove the irrationality of the square root 

of 2 and comparing them gives the popularizer the opportunity to discuss important 

methodological issues. The fact that the theorem states an impossibility makes it natural 

to use a proof by contradiction, which is almost a trademark of the mathematical culture. 

The method of proof by contradiction is not intuitive for many people, because it is based 

on the law of excluded middle, which does not apply in most everyday situations. 

Illustrating this method on the example of irrationality of the square root of two can be a 

good choice since the proof is quite short and straightforward and thus technical 

complications do not obscure the main idea of the proof. 

Aesthetic Values. The proof of the irrationality of square root of 2 is often cited as 

an example of an elegant mathematical proof. Short and based on not more than 

mathematical facts known from school, the proof is considered accessible to general 
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audience (Betts, 2005). The examples of books presented above show, moreover, that 

there are several approaches to proving the fact and that their comparison can also lead to 

the discussion of aesthetic values in mathematics. 

Utilitarian values. The proof offers an opportunity to discuss the usefulness of 

irrational numbers in the applications of mathematics. Extending the notion of number 

from integers and ratios of integers (to which this notion was restricted in Greek 

mathematics) to real numbers certainly made calculations easier to manage, especially 

when using decimal representations. For example, the use of real numbers was necessary 

for the development of calculus and therefore also for the theory of motion in physics. 

Numerical methods for approximating square roots opened the way towards other 

techniques used in modern numerical mathematics. 

Study skills. As we have seen in Stewart's book, the proof of irrationality of the 

square root of 2, can be used as a context for talking about study skills to secondary 

school students. 

1 will not give an account here of my investigation into the purposes of including 

the proof that there are infinitely many primes in popular books, but I found that they are 

similar in kind to those mentioned above for the square root of two. 

4.4 THE MATHEMATICAL CONTENT OF TWO POPULAR LECTURES 

In the following, 1 will describe the mathematical content of the two lectures that I am 

using as one constant example about which I am asking all the questions posed about 

popularization in the thesis. For the description of the mathematical content, 1 used not 
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only my notes from the lectures but also information about this content in the scholarly 

literature to which the lecturers referred. I will first present the content of the first lecture, 

then that of the second lecture and finally I will briefly compare the contents of the two 

lectures at the end of the section. 

4.4.1 The mathematical content of the first lecture: Medial representation 

The title of the lecture was, Medial Representations: Mathematics, Algorithms and 

Applications. The lecture aimed at presenting the mathematics behind storing, retrieving 

and processing computer images. The main concept was that of the "medial axis" of a 

shape, as opposed to its "boundary representation". The medial axis of a shape can be 

likened to the "skeleton" of an object, while the boundary representation is its "contour", 

as shown in Figure 4.1. "Skeleton" is a technical term in the domain of computer imagery 

(Yushkevich, 2003) but, in the lecture, it was first used as a metaphor. 

The theory proposes that if an object can be described by a set of "maximal inside 

balls", which are spheres (or circles in the case of 2D objects) that are tangent to (at least) 

two sections of the boundary, then the "skeleton" of the object (also called its "medial 

axis") can be described by a pair of data (x,r), where AT is the center of the maximal inside 

ball and r is its radius at the given point (Yushkevich, 2003). Knowing the data for a 

sufficient number of inside points allows reconstructing the boundary of the object. 
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Figure 4.1. The "skeleton" of a man 

Information about x gives the "medial curve". For a given skeleton-point (x, r), 

using the radius, r and the local behavior of the medial curve we can reconstruct vectors 

pointing from x to the corresponding boundary points. These vectors are likened to the 

paddles of a rowboat touching the bank of a narrow canal26. We can determine the 

direction of the boundary shape by calculating the unit tangent vector of the medial 

dr 
curve, whose angle with the vector pointing to the boundary is given by arccos (— —), 

where s is the arc length along the medial curve. 

This way, a close correspondence obtains between medial representation and 

"6 A picture illustrating the analogy can be found for example in Yushkevich (2003: 24). Available: 
http://midag.cs.unc.edu/pubs/phd-thesis/PYushkevich03.pdf (Downloaded: July 7, 2009). 

http://midag.cs.unc.edu/pubs/phd-thesis/PYushkevich03.pdf
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boundary representation. Moreover, medial representation can capture some special 

aspects of the object. The method of medial representations has been also used to 

understand features of human vision (Blum, 1967; Yushkevich, 2003). 

Some scholarly publications on the subject focus on finding the medial curve, 

referring to it as Blum's Medial locus. There exist several definitions or descriptions of 

this concept in the literature. Yushkevich (2003) gives a short overview of these. Besides 

the one just mentioned, the set of the centers of the inner balls is often described using the 

grass fire analogy. The object is imagined as a patch of grass that catches fire along its 

boundary. The skeleton of the patch consists of points where the fire fronts hit each other. 

The movement of the fire fronts can be described by a partial differential equation of a 

motion with a constant speed in the direction normal to the boundary: —j^- = —aN(p), 

where C(t, p) denotes the fire front parameterized by p at time t, N(p) is the unit outward 

normal to the fire front and a is a constant whose sign depends on the direction of the 

propagation. 

Although there is a differential equation that describes the motion, the "brute 

force" method of determining the desired points by solving the partial differential 

equation raises serious difficulties. An attempt at solving the problem was suggested in 

Siddiqi, Bouix, Tannenbaum, and Zucker (1999, 2002) and Dimitrov, Damon, and 

Siddiqi (2003). The proposed method was based on the behavior of the gradient vector 

field of the distance from the boundary function. This vector field changes exactly at the 

points of this skeleton, as if these points functioned as charges. Using this analogy, the 

problem can be reduced to a well-known question in physics, namely to detect the place 

of the charged particles of an electromagnetic field. 
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Using the gradient vector field of the distance from the boundary function we can 

compute the average outward flux. To visualize the situation better, color coding is 

sometimes used. Around the singularities, the flux has large negative values while the 

smooth regions close to the boundary have zero flux. To indicate the singularities inside 

the objects, the points can be colored according to the value of the flux. Thus coloring 

could change around the singularities; the closer one gets to the singularities the brighter 

(or darker) the colors are. In the literature (e.g., Dimitrov et al., 2003; Pizer, Siddiqi, 

Szekely, Damon & Zucker, 2003; Siddiqi et al., 2002), this idea is often illustrated by 

applying the method to the image of a panther . 

The method based on Blum's medial loci was presented as an alternative 

representation in data processing in Stolpner and Siddiqi (2006) with an emphasis on 

medical applications, such as brain imagery (Bouix, Siddiqi & Tannenbaum, 2005; 

Yushkevich, 2003, etc.) or endoscopy (Bouix, Pruessner, Collins & Siddiqi, 2005). 

Researchers tested the efficiency of the method by applying it to sorting shapes. Using 

graph matching techniques based on eigenvalues of the adjacency matrix, researchers 

identified about twenty different groups of objects. The method was able to capture 

characteristics such as having many additional parts as in the case of an octopus or a 

human shape (Zhang, Siddiqi, Macrini, Shokoufandeh & Dickinson, 2005). 

7 A picture similar to the one used in the lecture is shown, for example, in Pizer et al. (2003: 165) 
[Available: http://www.cim.mcgill.ca/~shape/publications/iicv03.pdf. Downloaded: July 7, 2009] where the 
singularities are colored black while the points closer to the boundary are marked using grey colors. This 
way, the skeleton is outlined by the dark lines in the middle. (The additional white lines outside of the 
panther are noises coming from the fact that the distance function is defined also for points outside of the 
object but the medial loci were defined only for points inside the image. The lines are not part of the medial 
axis using the definitions of inner circles, or the non-linear differential equation.) 

http://www.cim.mcgill.ca/~shape/publications/iicv03.pdf


81 

4.4.2 The mathematical content of the second lecture: the mathematics ofEscher's "Print 

Gallery" lithograph 

Escher's drawings have attracted much interest amongst mathematicians, who 

investigated how geometric transformations, such as symmetry (Chung, Chan & Wang, 

1998), and non-Euclidean geometries, particularly hyperbolic geometry (Adcock, Jones, 

Reiter & Vislocky, 2000), inspired his artwork. Although the artist himself was not 

trained as a mathematician, Bool (1982) argues that he had strong connections with 

mathematicians, was inspired by Polya and corresponded with Coxeter and Penrose. 

The April 2003 issue of the Notices of the American Mathematical Society 

published two articles on the mathematics of Escher's drawings. They were a contribution 

to the 2003 Mathematical Awareness Month, as an illustration of the theme 

"Mathematics and Art". In the first of these articles, the authors, Bart de Smit and 

Hendrik Lenstra (2003) sketched "The mathematical structure ofEscher's Print Gallery". 

"Print Gallery" refers to Escher's 1959 lithograph, titled "Prentententoonstelling", which 

represents, in a rather unobvious way, a man standing in an art gallery looking at a 

picture showing himself standing in an art gallery looking at a picture of himself standing 

in an art gallery, etc. The infinite repetition in the picture, however, is not as obvious as 

in the picture on the Droste cocoa box, where a nurse carries a tray with a Droste cocoa 

box with the picture of herself carrying a tray, etc. In the case of the cocoa box, the 

consecutive pictures seem to be obtained by iterating a scaling mapping, which preserves 

ratios of lengths and produces an object similar to the original one. In the Print Gallery, 

the iterated mapping not only shrinks, but also rotates and distorts objects considerably. 

The picture does not show what the mapping is exactly; only the start of the iteration is 
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shown and further steps are hidden within a white spot in the centre of the picture, 

containing only Escher's signature. De Smit and Lenstra successfully reconstructed the 

mapping, and were able to fill in the white hole, based on Escher's original sketches for 

the picture, where he used transformations of grids. It turned out that, to obtain a picture 

like the Print Gallery, one needs a rotation and an exponential map on the complex plane, 

a special conformal mapping. A group at the University of Leiden (The Netherlands) 

developed an animated explanation of this reconstruction, using simple grid examples 

and videos. It can be viewed on a special website devoted to the topic28, titled, "Escher 

and the Droste effect". 

One tends to think of popularization as a "mere" transposition of material from 

existing mathematics to a product that could be appealing to a mathematical tourist. 

Escher's pictures have been used in popular works in mathematics to illustrate various 

geometric transformations and the idea of tiling, or how mathematics can be successfully 

used in art (Ernst, 1976; Hofstadter, 1979). De Smit's and Lenstra's paper is, however, a 

not very common example of the "inverse transposition": from popular work to scholarly 

mathematics. In fact, however, we have here an instance of the process of going "from 

popular work to scholarly work and back": the scholarly work of de Smit and Lenstra has 

been popularized in the form of a website devoted to it and the many lectures of which 

the one I am describing here is an example, and generated publications in scholarly 

journals (e.g. Leys, 2007; Carphin & Rousseau, 2009). 

http://escherdroste.math.leidenuniv.nl (Viewed: July 25, 2009) 

http://escherdroste.math.leidenuniv.nl
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4.4.3 Comparison of the mathematical content of the two lectures 

The topics of both lectures certainly provided a wide scope for presenting different 

features of the mathematical culture, and a rich set of mathematical objects (e.g. distance, 

iteration, etc.). Both lectures also created links between mathematics and other fields 

(medicine or information retrieval in the first lecture, art in the second), thus making it 

possible to communicate mathematical ideas through "translation" into other languages, 

perhaps closer to the audience's cultures. With these extra-mathematical references, 

however, the two lectures appealed to different values: the first - to utilitarian values, the 

second - to aesthetic values. Apart from these differences, the first lecture contained 

much more technical details than the second. 

4.5 CONCLUSIONS 

The choice of a particular topic for a mathematical tour seems to be guided by the 

popularizers' intention to show as much of the mathematical culture as possible in a brief 

time and space. Thus a topic is more likely to be chosen if, 

- it bears some important core characteristics of the mathematical culture, i.e. it 

exemplifies some fundamental mathematical concept or method; 

- is deeply rooted in the culture with a rich network of links to other elements of the 

culture; 

- is easy to show to an outsider, requires little advanced knowledge of mathematical 

concepts and familiarity with specialized mathematical symbolism; 

- contains a deep and surprising idea; 
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- exemplifies the more elegant and alluring aspects of the mathematical culture; 

- is likely to resonate with the audience's emotions by being linked with universal 

human concerns represented in historical facts or anecdotes; 

- has links to other cultures, preferably those represented in the audience, and 

therefore provides the possibility of translating its meaning or significance using 

extra-mathematical associations. 

The above list is by no means exhaustive and it does not imply that a 

mathematical topic addressed by a popular activity should have all these characteristics. 

It simply provides a summary of the characteristics of mathematical questions that are 

often used in popularization. 
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CHAPTER 5 

ANALYZING THE MEANS THAT POPULARIZERS USE 

TO COMMUNICATE THEIR MESSAGE 

5.1 INTRODUCTION 

This chapter focuses on how popularizers communicate their message; what means do 

they use? There have been, to my knowledge, no systematic studies of this question in 

relation to popular works in mathematics, but I have found such research in the domain of 

popularization of science. Discourse analyses of popular works in science suggest that 

these works are not merely simplified versions of scholarly publications but represent a 

different genre of scientific writing (Nwogu, 1991; Myers, 2003; Calsamiglia, 2003; 

Calsamiglia & van Dijk, 2004): 

[A] popularization article is not a simplified version of the research article, but a 
discursive reconstruction of scientific knowledge to an audience other than the 
academic one (de Oliveira & Pagano, 2006: 628). 

How do we distinguish the popular mathematics genre from the mathematics 

textbook genre or the scholarly writing genre? This is not an easy question. Let us look at 

the following brief texts. Without knowing their sources, can one tell, which ones belong 

to a popular work in mathematics, and which ones - to a mathematics textbook? 

1) "... the essence of [linear transformations] is that these are transformations that 
'preserve' the vector operations of addition and scalar multiplication." 

2) "A linear transformation preserves the vector-space structure of the space on 
which it acts."30 

29 Poole, D. (2006). Linear Algebra. A Modern Introduction. Second Edition. Thomson. Brooks/Cole (p. 
211) 
30 Penrose, R. (2004). The Road to Reality. A Complete Guide to the Laws of the Universe. London: 
Jonathan Cape (p. 255) 
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3) "A transformation T: Rn -» Rm is called a linear transformation if 
1. T(u + v) = T(u) + T(v) for all u and v in Rn and 
2. T{cv) = cT(vj for all v in fln and all scalars c."31 

4) "The concept of linearity is pervasive in linear algebra. When a mapping has the 
property of linearity, matters that are otherwise difficult can become simple. For 
this reason, linearity has become a broad area of study in applied mathematics, 
containing many theories, facts and formulas - probably far beyond what any one 
person can comprehend!"32 

5) "In the general study of groups, there is a particular class of symmetry groups that 
have been found to play a central role. These are the groups of symmetries of 
vector spaces. The symmetries of a vector space are expressed by the linear 
transformations preserving the vector-space structure."33 

6) "Geometrically, a linear transformation is one that preserves the 'straightness' of 
lines and the notion of 'parallel' lines, keeping the origin O fixed."34 

7) "A linear transformation maps one line segment into another." 

Texts 1) and 2) are very similar, yet the first one is taken from a textbook and the 

second from a popular work. Text 3) raises no doubts about its origin in a textbook, 

although it might appear in a popular work as well. The difference would be in the 

context: in a textbook, it could appear without comments such as 1), 2) or 4), while 

leaving it without such comments would not be acceptable in a popular work. The 

difference would also be in the intended rapport of the reader to a text like 2): in a 

popular work, text 2) would be optional; in a textbook, the reader may skip the 

'superfluous introductions' such as 4) but must read text 2). Texts 6) and 7) are similar, 

yet the first one is in a popular work, and the second - in a textbook. The difference is, 

again, not in these texts themselves, but in the contexts in which they appear. Text 6) is 

part of an explanation of the general notion of linear transformation: part of the author's 

31 Poole, ibid. 
j2 Cheney, W. & Kincaid, D. (2009). Linear Algebra. Theory and Applications. Jones and Bartlett (p. 170). 
33 Penrose, ibid. (p. 254) 
34 Penrose, ibid. (p. 255-6) 
j:i Cheney & Kincaid, ibid., p. 181. 
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attempt to communicate, "what linear transformations look like" (Penrose, ibid.). Text 7) 

is a theorem and is followed by a proof. Texts 4) and 5) are both the first paragraphs of 

sections on linear transformations; 4) - in an undergraduate textbook in Linear Algebra, 

5) - in a popular work. No author of an undergraduate text in Linear Algebra intended for 

Canadian universities would dare to precede the notion of linear transformation by the 

notion of group of transformations. A popular work author, on the other hand, may 

derive a more elementary notion from a more advanced notion because the reader is not 

expected to have learned the more advanced notion to the point of being able to apply it 

as part of a technique in solving problems. 

These examples show that sentence-by-sentence discourse analysis of popular 

works in mathematics is not enough to identify the characteristics of this genre and that a 

more global, structural view is needed. 

Seeking a framework to organize an analysis of popular texts or lectures from the 

point of view of the means mathematics popularizers use to convey their message, 1 

turned to several sources: 

- Analyses of popular texts in scientific fields, such as medicine (Nwogu, 1991), 

biology and nanotechnology (Miller, 1998; Beacco, Claude!, Doury, Petit & 

Reboul-Toure, 2002; Knudsen, 2003; Calsamiglia & van Dijk, 2004), physics 

(Leane, 2007), or general science (de Oliveira & Pagano, 2006); 

- A framework for analyzing the discourse of mathematical textbooks proposed by 

Richard & Sierpinska (2004), based on a combination of two functional models of 

language: Jakobson's model of communication (Jakobson, 1963), and Duval's 

model of mathematical language (Duval, 1995). 1 will refer to this framework as 
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the Duval-Jakobson framework. 

Frameworks used in analyzing popular science were not sufficient for studying 

the popularization of mathematics genre, because they were usually restricted to looking 

at textual (Myers, 2003) and visual (Miller, 1998) aspects, ignoring symbolic notation, 

which plays a central role in mathematics. Only some general assumptions about the 

means used in science popularization could apply also to popularization of mathematics. 

For example, Calsamiglia & van Dijk (2004) recommended that analyses of popular texts 

should take into account not only the internal features of the texts or lectures, but also 

their social/institutional and cognitive contexts. With regard to the cognitive context, the 

authors were offering distinctions between different kinds of knowledge (e.g. episodic 

knowledge, abstract knowledge) and strategies of knowledge management to be used as 

analytic tools for analyzing popularization. 1 have devoted a special chapter in this thesis 

to the institutional context of popularization. The cognitive aspects will receive more 

attention in the chapter on the audience's reactions to lectures. 

The present chapter will be devoted to the internal structure of popular texts or 

talks. For this aspect of popularization (in relation to science popularization) Calsamiglia 

& van Dijk (ibid., pp. 372-373) were offering such analytic categories of description as, 

introduction, explanation, clarification, and filling the knowledge-gap through 

paraphrasing. They classified explanations into denomination, definition/description, 

exemplification, generalization and analogies (comparisons and metaphors). These very 

general categories are not sufficient to capture the specific characteristics of a popular 

text or lecture in mathematics. 

This is why I sought some inspiration in the second of the above-mentioned 
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frameworks. I present this framework in the next section (Section 5.2). In Section 5.3,1 

show how I interpret the proposed categories in the context of popularization of 

mathematics. In the remaining part of the chapter I will apply the framework to analyze 

the mathematical discourse in the case of written (Section 5.4) and oral (Section 5.5) 

communication of mathematical ideas. In section 5.4,1 will compare the discourse in a 

research paper and in a more popular text, while in Section 5.5 I will present and compare 

the discursive means of communication in the two popular lectures I use as a constant 

example in the thesis. 

5.2 THE DUVAL-JAKOBSON FRAMEWORK FOR STUDYING MATHEMATICAL TEXTS 

Richard and Sierpinska (2004) proposed a framework for analyzing mathematical texts 

that combines Duval's framework designed for this purpose (Duval, 1995) and 

Jakobson's model of communication (Jakobson, 1963). Jakobson's model was added 

because Duval's was not sufficiently detailed with regard to the communicative functions 

of language. 

Duval distinguished 

- discursive, 

- meta-discursive, and 

- non-discursive uses of language. 

The discursive function refers to four uses of language: 

- referential function (identifying and naming objects); 

- apophantic function (making statements about these objects); 

- discursive elaboration function (linking those statements into a coherent whole), 
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and 

- discursive reflectivity function (signaling the value, the mode, or the status of the 

statements). 

The meta-discursive functions include 

- communication, 

- objectivation, and 

- processing. 

Communication aims at establishing a rapport between the interlocutors, 

maintaining and controlling it, and clarifying the meaning of messages. The aim of 

objectivation, on the other hand, for the individual engaged in it, is to represent his or her 

ideas or solutions to problems in a certain symbolic system to depersonalize them and 

make them more accessible for analysis and tests of consistency. This is what a 

mathematician does in writing a proof of a theorem he or she has discovered: the aim is 

not to communicate to others the cognitive process of discovery but to turn its result into 

an object - whence the term 'objectivation' - to be studied from the point of view of 

mathematical rules and meanings. Processing refers to transformations of expressions 

using conventions and rules of manipulation such as those found in grammar or algebra. 

The term non-discursive functions refers to such uses of language as 

- editorial organization, 

- synoptic function, and 

- graphical representations. 

Structuring a text using chapters and sections marked by headings of different 

levels are ways of using language for the purposes of editorial organization. 
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Numbering sections in a hierarchical way (e.g. 1, 1.1, 1.2, 2, 2.1, etc.) serves the 

synoptic function; it facilitates the grasp of the overall organization of the whole text. 

Graphical representations such as diagrams, charts, icons, graphical symbols that 

abound in mathematical texts do not produce a coherent discourse on their own, but they 

are meaningful in their function of representing objects and ideas discussed in the 

accompanying text. 

Duval was not interested in the study of the function of communication; he 

focused more on objectivation. Jakobson, on the contrary, was interested in modeling 

communication, and he proposed several categories of the functions of language used in 

communication, namely, 

- poetic (making the message more pleasant to the listener or reader), 

- conative (producing a change in the receiver's attitudes or actions), 

- phatic (maintaining contact with the receiver), and 

- metalinguistic (making statements about the form of one's utterance) 

functions. 

In the next section, I will explain in more detail how I understand the 

communication functions, and all other functions of language in the context of 

popularization of mathematics. Before I go into that, however, let me clarify what I mean 

by "language". 

In Duval's work, "language" has precise technical meaning. In fact, he 

distinguishes between the meanings of the French words langue and langage. The former 

refers to semiotic systems that make possible the realization of all the four discursive 

functions. Natural languages such as English or French are "langues". 
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Fig. 5.1 Diagrams used in geometry do not constitute a "langue" 

Diagrams used in geometry can be used to refer (e.g. the diagram in Fig. 5.1 

refers to a triangle); to make statements (the diagram shows for example that the angle 

BAC is a right angle), and to signal the status of these statements (the diagram suggests 

that the statement that the triangle is right-angled is true). It is not possible, however, to 

decide based on the diagram whether the statement that the angle BAC is a right angle is 

an assumption or has been deduced from other statements (proved or assumed as true) 

such as that angle BCA measures 45 degrees and the triangle is isosceles. Diagrams, on 

their own, do not allow us to "elaborate" or link statements into a coherent whole. 

Therefore, they do not constitute a "langue" (Richard & Sierpinska, 2004). "Langage", on 

the other hand, encompasses all sign systems that make it possible to refer and to mean, 

including not only the "langues" but also such convention-based means of expression as 

diagrams, drawings, pictures, font color schemes, text bordering and highlighting, sounds 

and gestures. It is in this larger sense of langage that I use the English word "language" 
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here. 

5.3 INTERPRETATION OF THE DUVAL-JAKOBSON FRAMEWORK 

IN THE CONTEXT OF POPULARIZATION OF MATHEMATICS 

In this section, I will interpret the meta-discursive, discursive and non-discursive 

functions of language of the Duval-Jakobson framework in the context of popularization 

of mathematics. 

5.5.7 The meta-discursive functions 

I will discuss, in turn, the functions of communication, objectivation and processing in 

popularization of mathematics. 

5.3.1.1 Communication 

Jakobson distinguished the poetic, the conative, the phatic and the meta-linguistic 

functions of language in communication. How do popularizers use these functions to 

convey their message? 

5.3.1.1.1 The poetic function 

The poetic function refers to the use of means that make a talk or a text pleasant to listen 

to or read: an appropriate length and rhythm of the sentences; a melodious or harmonious 

way of linking the words; the aesthetic value of visual illustrations. These aspects are 

taken into account in advice given to science popularizers; it is recommended that they 

avoid long words and sentences for addressing the general audience (Malavoy, 1999). 

Malavoy also stressed the importance, in popularization, of using varied punctuation and 
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vocabulary, and enlivening the text or talk with metaphors, word play and verbal puns. 

These are also instances of the poetic functions of language in communication. Such 

means, used in the title, are likely to attract an audience, and maintain the audience's 

attention if used during a talk or within a text. In popularization of mathematics, word 

play is quite common, although some authors (e.g. Roger Penrose, Constance Reid) use it 

less often than others (particularly Ivars Peterson). Peterson's "The Mathematical 

Tourist" is full of word play: the chapter on number theory is titled "Prime pursuits" and 

one of its subtitles is, "Breaking up is hard to do" (the section is about factoring). 

Keeping up with the poetic principle in popularization of mathematics is a 

challenge whenever formulas and symbolic manipulations come into play. Should they be 

presented at all, and if yes, how? Clearly, embedding mathematical formulas "inline" 

within the text may be considered as violating the poetic principle, because they 

inevitably interrupt the flow of reading the text. Replacing formulas by narrative 

explanations or mixed representations (Pimm, 1987), or inserting formulas in the 

"display" mode (in a separate paragraph or in the margin) might reduce these 

interruptions. 

5.3.1.1.2 The conative function 

The conative function refers to expressions of the communicator's intentions regarding 

the effects of his or her message on the audience (e.g. to provoke an attitude, a feeling 

towards a thing or a person, or cause the audience to do certain things). Popularizers of 

mathematics do not have to engage the audience in mathematical activity - as teachers 

are obliged to do - but they want the audience to develop at least an interest in 

mathematics and a positive attitude towards it. How do they do it? Using lively 
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metaphors, emphasizing the importance and excitement related to the discovery of a 

result, relating anecdotes about private lives of mathematicians and particularly their 

"endearing foibles", or making the story of a mathematical discovery read like a thriller. 

A good example of the last method is the first paragraph of the section "Breaking up is 

hard to do" in Peterson's "The Mathematical Tourist": 

Several decades ago, an interest in factoring was the mark of a mathematical eccentric. 
A small, unheralded group of mathematicians worked quietly, prying open large 
composite numbers to unlock their prime secrets. They reveled in the pure delight of 
calculation and in the immense pleasure of devising elegant algorithms to do their work. 
Like many ardent hunters, they even kept lists of 'wanted' and 'most wanted' targets. 
(Peterson, 1988:43) 

Let us note, in the quote above, the expression, "the pure delight of calculation". 

"Pure delight" is not a very common qualifier of "calculation" in everyday conversations. 

Much more often, we hear and speak about "tedious calculations" or about the "drudgery 

of calculations". Obviously, Peterson was trying to break the association, in his readers' 

minds, of calculation with boredom and hard work, and replace it with "delight", the 

excitement of "unlocking secrets" or "ardent hunting". 

While conative function plays an important role in teaching, teaching involves a 

different kind of mathematical communication than popularization and the two differ 

mostly in their conative aspects. Popularizers want their audiences to change their images 

or attitudes towards mathematics, but rarely intend to induce actions. Contrary to students 

of mathematics in compulsory education, participants in popularization are not forced to 

do anything by institutional rules. Moreover, if some activities are included in a 

popularization event, they are normally quite different from those in a regular 

mathematics course. It is hard to imagine, for example, that an instructor of a calculus 

course would assign the same set of problems as Penrose (2004) proposed to his readers 



96 

in Chapter 6 of The Road to Reality. Besides the fact that Penrose's problems generally 

asked for knowledge not explicitly taught or even mentioned in the previous chapters in 

the book, the problems usually asked for proofs and not for a straightforward application 

of a computational technique, as would be the case for most exercises in a calculus 

course. 

5.3.1.1.3 The phatic function 

Staying in touch with the audience or the readers is very important in popularization. 

Otherwise, they might just walk out or leave reading. Unlike taking a course, 

participation in popularization is optional. Therefore, engaging audience in active 

participation is recommended in guidelines for popularizers. This was even the central 

point in the so-called "engagement model of science communication", presented in 

Chapter 2. 

Popularizers use a variety of means not to lose their audience. They try to create a 

bond with the participants. For example, they seek feedback by using humor. If the 

audience is laughing, it is already a sign that they are with the speaker, and that they have 

understood something. They may also address the audience directly, ask questions, invite 

participants to ask questions, offer opinions or share their experience with mathematics. 

This technique is used not only in talks but also in written work. For example, Stewart's 

"Letters to a young mathematician"36 has been written as a collection of the author's 

responses to questions in letters from "Meg", who, at the beginning of the 

correspondence, is a finishing secondary school student considering, but not being sure 

Stewart, I. (2006). Letters to a Young Mathematician. New York: Basic Books. 
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about, studying mathematics at the university. 

Another way of creating a bond with the audience is by saying, "I am like you". 

For example - "Like you, I am also not a mathematician, and found mathematics 

difficult, but I was able to understand something about mathematics, and if I could 

understand, so can you". This is the technique used by Peterson: 

Years ago, as a University of Toronto undergraduate majoring in physics and chemistry 
(with a heavy dose of mathematics on the side), there were times when I felt I had 
dropped down a rabbit hole into a bewildering land. More than once, I remember sitting 
in cavernous lecture halls, surrounded by dozing or fidgeting classmates, trying to 
figure out what was going on. The lecturer would be scrawling equation after equation 
across the blackboard and speaking in a puzzling language that sounded like English 
but somehow wasn't. Although I could pin a meaning to practically every word, I didn't 
seem to understand anything he said. I was as lost as an accidental tourist wandering in 
a very foreign country. (Peterson, 1988: xv). 

The above quote is the first paragraph of the Preface to Peterson's book. Creating 

a bond with the readers was the first thing this author wanted to ensure. 

5.3.1.1.4 The metalinguistic function 

This function refers to saying something and then reflecting on what one has said, for 

example, by paraphrasing it, saying it in different words to make it simpler, clearer (e.g. 

"What this theory really means is . . .") . Reformulation is a meta-linguistic technique 

frequently applied in scholarly texts. Finding a different, simpler representation of a 

mathematical concept can even be an important result in mathematics. This is certainly 

the case of matrix representations of linear transformations. In the section on linear 

transformations in The Road to Reality (section 13.3), Penrose puts a lot of stress on 

paraphrasing the statement, "A linear transformation preserves the vector-space structure 

of the space on which it acts". The seven pages of this section contain at least sixteen 

different ways of describing linear transformations. There are structural-algebraic 
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descriptions (preservation of the vector-space structure), geometric descriptions 

(preservation of straightness), and analytic descriptions ("each new coordinate is 

expressed as a linear combination of the original ones, i.e. by a separate expression like 

ax + Py + yz, where a, ft, and y are constant numbers", Penrose, 2004: 256). There are 

descriptions using index notation, matrices, diagrammatic notation, and others. In a 

Linear Algebra textbook, not all of these reformulations would appear and they would 

certainly not appear in a single section. Having so many of them in a popular book is a 

sign of the use of the meta-linguistic function of language in a communicative intention. 

The meta-linguistic function has received a lot of attention in studies of science 

popularization: the role of reformulation in expository texts including popular science 

was studied, in particular, in Ciapuscio (1997; 2003), and Bach (2001a; 2001b). 

5.3.1.2 Objectivation 

In Sierpinska's words (2005: 222), "objectivation is the use of language in the aim of 

obtaining some control over one's activity and one's experience, whether physical or 

mental. Objectivation organizes and reorganizes one's activity and experience and makes 

it the object of conscious evaluation and decision." Thus, its primary concern is not 

communication, which is the main aim of popularization. In fact, the main difference 

between scholarly mathematical texts and popular works in mathematics lies in the 

different meta-discursive functions they intend to fulfill. This difference is clear when we 

compare a scholarly and a popular paper on the same mathematical topic. An example is 

provided later in this chapter, in the comparison of two papers, a research journal 

publication by Rubinstein & Sarnak (1994) in Experimental Mathematics, and a paper 
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intended for the broader audience of The American Mathematical Monthly, by Granville 

& Martin (2006), on the same result in Number Theory, related to prime numbers. The 

former was presenting a new mathematical result, and it is clear from the analysis of its 

discourse that the authors wrote it primarily to organize and verify this result. The authors 

of the Monthly article are trying to explain this result - which is no longer new - to a 

broader audience. There is an emphasis on motivating examples, illustrations and 

reformulations. 

5.3.1.3 Processing 

Formalized processing of expressions written using an operational symbolism plays an 

important role in modern mathematics. It was not always so, however, as the history of 

pre-Viete mathematics shows. There are also differences in emphasis on processing even 

across mathematical domains. Moreover, mathematical domains differ in the formal 

notational systems they use. Therefore, whenever a speaker is invited to give a plenary 

talk to a larger audience, even if all members of the audience are mathematicians, he or 

she is asked to avoid the "technicalities" (which includes formal processing of 

expressions) and use a convincing narrative argument in natural language or visual 

representations to convey the main ideas. In popularization of mathematics, the 

seriousness of abiding by this recommendation ranges from complete avoidance of 

processing (as in, e.g. Stewart's Letters to a Young Mathematician) to unabashed use of it 

(as in Penrose's The Road to Reality). Penrose appears to have had to fight with 

reviewers and publishers for his right to use mathematical formalism, but he remained 

unconvinced by their arguments, because he did not believe that what he had to say could 
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be conveyed without a minimum of mathematical notations: 

The reader will find that in this book I have not shied away from presenting 
mathematical formulae, despite dire warnings of the severe reduction in readership that 
this will entail. I have thought seriously about this question and have come to the 
conclusion that what I have to say cannot reasonably be conveyed without a certain 
amount of mathematical notation and the exploration of the genuine mathematical 
concepts. The understanding that we have of the principles that actually underlie the 
behavior of our physical world indeed depends upon some appreciation of mathematics. 
(Penrose, 2004: xv) 

The use of processing in Penrose's book has apparently not deterred the readers, if 

we judge by the high number of reviews of the book on Amazon.com (165) and the even 

higher number of people who bothered to evaluate these reviews. The reviews, while 

praising the scope and depth of the contents of the book, warn the readers, however, that 

the book is "not for the faint of heart" and that "this is a very, very heavyweight book for 

non-mathematicians". The reviewer who was writing the quoted statements, in fact, 

contrasts this book with what he calls the "more 'pop' science" books: 

The first half of this extremely challenging book takes the reader through huge swathes 
of mathematical territory - hyperbolic geometry, complex numbers, complex calculus, 
Riemann surfaces, n-manifolds and many more topics are covered. These chapters don't 
just convey a general impression of each subject in layman's English, but make heavy 
use of formulae and mathematical notation, effectively letting the math do the talking 
where a more 'pop' science book would be breaking out the strained analogies. 
Although Penrose takes care to provide the reader with all groundwork necessary to 
understanding these subjects, this is still fundamentally difficult and unintuitive stuff 
and non-mathematicians will find that each page requires heavy concentration; skipping 
or skimming any part of these chapters renders later chapters unintelligible. Still, 
careful reading reaps huge rewards - the ideas these chapters cover are deep and 
beautiful. (Reviewer "MikeF"; review written in 2004; excerpt downloaded from 
Amazon.com website June 20, 2009). 

This reviewer suggests that heavy use of processing in a text may effectively 

make it unfit for the "popular works in mathematics" category. 

5.3.2 The discursive functions 

In this section, 1 will look at the four discursive functions of language - referential, 
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apophantic, discursive elaboration and discursive reflectivity - in relation to 

popularization of mathematics. 

5.3.2.1 The referential function 

Language used in the referential function is meant to identify an object and constrain the 

freedom of its interpretation. Tools used to fulfill this function include denomination 

(naming the object), and description using analogies and metaphors (Calsamiglia & van 

Dijk, 2004). The role of metaphors in the referential function of language is extensively 

studied by linguists and cognitive scientists (e.g. Lakoff & Johnson, 1980), sometimes 

focusing on mathematical metaphors (Lakoff & Nunez, 2000). 

The use of metaphors was emphasized in learning (Muscari, 1988; Duit, 1991; 

Ortony, 1993; Brown, 2003) popularization of science (Knudsen, 2003), as well as in 

mathematics education (e.g., Pimm, 1981, 1987, 1991; Sierpinska, 1994: 92-111; 122-3; 

Presmeg, 1998; Lakoff and Nunez, 2000). The use of metaphors by mathematicians was 

addressed also in some studies (Sfard, 1994; Burton, 1998; Manin, 2007). Metaphors 

became an area of investigation also from the point of view of education in general. Some 

authors (e.g. Tourangeau & Sternberg, 1982; see also Leino and Drakenberg, 1993) 

consider metaphors as a way of relating new knowledge to old knowledge; the metaphor 

correlates concepts of two different domains to which they belong. In the light of 

intercultural communication, the domains can be interpreted in terms of cultures (or 

subcultures). Thus, metaphors are constructs that make it possible to relate objects that 

belong to the same or to different cultures. However, the relation is made not only 

between the objects themselves, but it also affects their "environments", images closely 
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related to the objects in the given culture. Thus, a metaphor might be interpreted 

differently according to different cultural lenses. 

In linguistics (e.g., Richards, 1936), metaphor is a figure of speech where one 

thing or idea (called the tenor) is described with words normally used for something else 

(called the vehicle of the metaphor). Similarities between the tenor and the vehicle are 

called the ground of the metaphor, while differences between them are referred to as the 

tension. For example, if the statement, "medial axis of a shape is its skeleton" is treated 

as a metaphor to explain what the notion of "medial axis" means to people who are not 

familiar with the technical vocabulary of image processing but are familiar with the 

anatomical notion of skeleton, then "medial axis" is the tenor and "skeleton" - the 

vehicle. This metaphor was used in one of the lectures I will be analyzing later on in the 

chapter. 

In scholarly mathematical literature, the referential function is fulfilled mostly by 

definitions. These definitions are not easy to understand for non-mathematicians because 

they usually use already defined technical terms and specialized notations. Therefore, 

popularizers have to use other means to name and describe mathematical concepts. 

Analogies with the familiar are common, but mathematicians are more curious about the 

counter-intuitive than the intuitive and so contrasting newly discovered (or invented) 

mathematical objects with familiar ones is often more useful. This is the technique that 

Peterson used in introducing the concept of fractal dimension. After having introduced 

the word "fractal" and derived some of its meaning from its Latin etymology, he 

proceeded to describe the contrasts between fractals and the familiar school geometry 

objects such as spheres, triangles and lines: 
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Fractals rum out to have some surprising features, especially in contrast to such 
geometric shapes as spheres, triangles and lines. In the world of classical geometry, 
objects have a dimension expressed by a whole number.... Fractal curves can wiggle so 
much that they fall into the gap between two standard dimensions. Indeed, they can 
have a dimension anywhere between one and two, depending on how much they 
meander.... (Peterson, 1988: 119) 

In analyzing the "Medial representation" and "Escher" lectures, I have noticed yet 

another technique of referring and meaning, that I will call the "hook technique". In each 

lecture, there was some kind of central symbol intended to represent (signify, refer to) the 

main idea the lecturer wanted to convey in the lecture. In the first lecture, it was the 

picture of the panther. In the second - the picture on the Droste cocoa box. This central 

symbol was in each case visually attractive, vivid, and therefore likely to attract people's 

interest and attention. In this sense, the symbol was a "hook"37 for the audience: it 

attracted their attention. Once, however, the lecturer had the audience's attention, he 

could explain the meaning of the symbol, and refer to it in the rest of the talk by a single 

word associated with this symbol ("panther"; "Droste"). The way I want to use the word 

"hook" to refer to this technique could be explained through the metaphor of "fishing": 

the lecturer is "fishing" for the audience's attention and understanding of his lecture; he 

or she prepares a "hook" to get this attention and direct it to the intended meaning. The 

lecturer may have a "central hook" to convey the main idea of the talk, and some 

additional hooks to convey the meanings of some details. This technique seems to be 

rather specific to lectures. I will refer to this technique in the rest of the thesis. In 

particular, 1 will use this notion in analyzing the audience members' reactions to the 

37 According to Longman's dictionary, one of the meanings of "hook" as a noun is "something that is 
attractive and gets people's interest and attention". An example of the use of the word in this sense is, "You 
need a bit of a hook to get people to come to the theatre". 
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lectures and, in this context, I will be saying that the audience members "get hooked" set 

by the lecturer (or not). 

5.3.2.2 The apophantic function 

In scholarly mathematical texts, the apophantic function (saying something about objects 

named using the referential function) is most seriously played in the formulation of 

theorems. In popularization of mathematics, the definition-theorem-proof style of 

exposition is not acceptable and it is not practiced. If stated at all, theorems are conveyed 

informally, as "facts", and they are rephrased in many ways, as well as represented using 

pictures, diagrams, animations and only rarely - formulae. For example, Stewart (1996) 

states not only the theorem but also its consequences as follows: 

To see the way in which topological insight can illuminate a wide variety of apparently 
unrelated things, consider one of its minor triumphs, which says (in suitably refined 
language) that you can't comb a hairy ball to make it smooth everywhere. Here are 
some direct consequences: 

(1) At any moment, there is at least one point on the Earth's surface where the 
horizontal wind speed is zero. (If not, comb along the wind.) 

(2) A spherical magnetic bottle, as used in 1950s fusion reactor experiments, must 
leak. (It leaks where lines of magnetic force run perpendicular to the surface of 
the bottle, i.e. where the horizontal component is zero.) 

(3) Dogs, bears, cheetahs, and mice must have a parting in their fur. (Self-
explanatory.) 

(4) Every polynomial equation has a complex root. (Technical proof based on the 
fact that the complex numbers, plus a point at infinity, form a sphere.) 

(5) A chemical gradient on the surface of a cell must have a critical point (where 
there is no local 'downhill' direction). (Stewart, 1996: 213) 

It is important to note that diagrams are frequently used in scholarly papers as 

well. However, their role is different in the scholarly and popular works. In relation to 

popularization of science, Miller (1998) noted that graphical representations that are 
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integral part of scientific research papers - as part of empirical evidence, for example, or 

as elements of formal diagrammatic notation - may appear only as loose illustrations in 

popularization of science. The role of graphical representations will be discussed in detail 

as part of the non-discursive functions of language. 

5.3.2.3 The discursive elaboration function 

Proofs are examples of the application of the discursive elaboration function in scholarly 

mathematical texts. One could perhaps risk saying that they are the only part of a 

scholarly paper where the exercise of the discursive elaboration function is 

"compulsory". Longer "discourses" in such papers are usually proofs. Not so in popular 

texts. Popularizers are advised to organize their texts or lectures in a special way 

(Malavoy, 1999). Proofs are rare in popular works in mathematics, yet these works are 

full of long discourses. Popularizers must be able to produce mathematical discourses 

that are not proofs. They must have a literary or oratory talent on top of a good 

understanding of mathematics to communicate it to non-mathematical audience. 

What are these long discourses about in popular talks or writing if they are not or 

cannot be proofs? 1 have addressed this question in a previous chapter. Here, let me just 

stress again that, in contrast to the scholar's concern with consistency and truth, particular 

to objectivation, the popularizer must try to convey meanings and values of the 

mathematical culture to an audience of strangers to this culture. The question, for the 

audience, is not why something is true, but what is its historical significance and its 

meaning in present day applications of mathematics. 
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5.3.2.4 The discursive reflectivity function 

In using this function, popularizers express their emotions and attitudes towards the 

subject of their talk or writing. This function can be exercised by means of directly telling 

the audience how the author thinks and feels about the subject, but also by indirectly 

signaling the value (the significance or importance), the mode (affirmative, interrogative 

or imperative), the status (whether it is a truth or a conjecture) of what is being said or 

written. In particular, exclamations such as "Oh!", "Phew!", "Arghh!" are used to express 

emotions such as surprise, relief and anger, respectively. Ways of conveying the status of 

truth or conjecture probably do not differ between scholarly and popular works, but 

scholarly work is certainly much more restrained in expressing emotions. Authors of 

mathematical textbooks are also constrained in their freedom to present their opinions 

and feelings. Penrose (2004), on the other hand, devotes a lot of space in his book to 

presenting his original philosophical views about mathematics and physics and claims 

that mathematicians and physicists, who are already familiar with the theories, will be 

interested mainly in this layer of the book. 

In science communication studies, the author's sharing his or her reflections on 

the truth status of a statement (to what extent a statement can be true) is often referred to 

as hedging. Varttala (1998, 2001) found that hedging is extensively present in both 

scientific and popular texts on science, but there is a difference in the purpose for which 

this reflection is offered. In scholarly papers, hedging is intended to assure precision; in 

popularization, it is used for valuation purposes, since the audience is usually not in the 

position of being able to judge the truth-value of the popularizer's statements. 
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5.3.3 The non-discursive functions 

In this section, I will briefly look at aspects such as editorial organization, synoptic means 

and graphical representations in popular works in mathematics. 

5.3.3.1 Editorial organization 

Editorial organization uses a variety of means. Structuring a text by titles and subtitles 

(verbal means); using nonverbal means such as borders, shading and color; distinguishing 

the significance of some elements using footnotes, different fonts, etc.; organizing 

information in tables or diagrams, are some of them. In popularization, editorial 

organization has an important role to play not only in structuring a text but also in 

capturing attention and maintaining interest. The synoptic function facilitates the grasp of 

the whole, and graphical representations assist in both the editorial organization and in 

clarifying the meaning. 

It seems reasonable to assume that, in a popular text, sections should not be too 

long, the text on a page not too dense (the text should be broken into short paragraphs and 

illustrated with visual matter) and titles must be clearly marked and captivating. 

Interrupting the flow of reading by reference to previously introduced definitions and 

literature sources - common and, in fact, required in scholarly texts - should be used very 

sparingly in a popular text. 

A look at some popular texts in mathematics reveals, however, that these 

apparently reasonable rules are not always respected. Peterson's The Mathematical 

Tourist is perhaps the closest to this editorial ideal. Paulos' A Mathematician Reads the 

Newspaper has short chapters, but the text is pretty dense and there are not many 
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graphical illustrations. In Penrose's The Road to Reality, the text has been cut into 34 

chapters, each with five to eighteen sections, but the book has over a thousand pages. 

There are, indeed, many illustrations, but the text on many pages (sometimes in a row) is 

extremely dense. References are used, but only in the form of endnotes, without 

interrupting the flow of the text. 

5.3.3.2 Synoptic function 

The function helps to grasp the overall concept of the text by certain global 

organizational method (like numbering the sections, etc.). Since popularization is often 

organized in a linear way (Miller, 1998), and the texts are usually not intended as a later 

reference (unlike research monographs, encyclopedias, etc.), the role of synoptic function 

is generally not significant. The reader, however, needs some "road posts" to keep track 

of where he is in a book or paper, and authors use language in the synoptic function to 

assist the reader in that. If the book is a collection of texts that can be read in whatever 

order, a table of contents with the titles of the texts, and starting each text on a new page 

is enough. The texts do not have to be numbered in the table. This is the case, for 

example, of popular books consisting of a collection of letters (Stewart, 2006), or 

dialogues (Renyi, 1967). Peterson's The Mathematical Tourist could also be regarded as 

a collection of separate articles on different domains of mathematics, but the author 

decided to use such synoptic means as a "map of the mathematical landscape" with 

names of imaginary countries such as "Algebria" or "Topologia" to help the reader orient 

him or herself in the mathematical tour. The synoptic means in Penrose's (2004) book are 

no different from those normally used in a textbook or a scholarly monograph. Helping 
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the reader in grasping the structure of this more than a thousand-page long monograph 

certainly required some careful organization. Penrose not only used detailed hierarchical 

numbering of the chapters, sections, subsections, etc., but also used cross-referencing 

between the sections and chapters: 

My hope is that the extensive cross-referencing may sufficiently illuminate unfamiliar 
notions, so it should be possible to track down needed concepts and notation by turning 
back to earlier unread sections for clarification. (Penrose, 2004: xix) 

References to particular research papers are generally omitted in popular books 

although some authors do it in the form of endnotes (Penrose, 2004; Stewart, 1996). The 

detailed bibliographic information is included not necessarily for reference but for further 

reading on the particular topic even with additional information on how to locate the cited 

sources. 

5.3.3.3 Graphical representations 

The function refers to the use of graphs, icons, symbols, animations, etc. in the text. As 

already mentioned for the apophantic function, graphical representations appear generally 

as illustrations in popular science texts, contrary to scholarly publications where 

graphical representations are integral parts of the text. In mathematics, this does not seem 

to hold as a general rule. Apart from examples where pictures are put as appealing 

illustrations as it is done, for example, in the color plates in Peterson (1988), they might 

be inserted into the text and referred to, as well (e.g. Reid, 1992: 157). While in many 

cases the representations are similar to those used in research papers and teaching (e.g. 

graphs of functions, drawings of geometric figures or topological objects) one can find 

also unconventional representations, such as the diagrammatic notation used by Penrose 
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(2004: 258-262). 

In this section, I presented a framework for analyzing the discursive, meta-

discursive and non-discursive ways of using language in popularization of mathematics. I 

will now apply this framework to two sets of data: two popular lectures and two texts on 

the same mathematical topic, a scholarly one and a popular one. 

5.4. COMPARING THE MATHEMATICAL DISCOURSE IN A RESEARCH PAPER AND IN AN 

EXPOSITORY ARTICLE 

In this section, I will apply the framework presented in the previous section for 

comparing two papers written about the same topic but using a different genre. One is a 

research paper and the other a popular text. 

5.4.1 Choice of the papers 

Finding two texts on the same topic but written with different purposes was not easy. I 

was looking for recent papers but the majority of the popular literature (similarly to 

regular textbooks and mathematics courses) contains older results. On the other hand, 

publications addressing new research in mathematics are either too short (short 

communications in newspapers announcing the results within a few columns, such as 

recent news in the New York times about symmetry of simple Lie groups38, or about the 

gomboc39, a convex three-dimensional shape with one stable and one unstable 

equilibrium points, etc.) or too long (books written about the entire background of a 

http://www.nvtimes.corn/2007/03/20/science/20math.html?scp=l&sq:=mathematics+sviTimetrv&st=nvt 
39http://querv.nytimes.com/gst/fullpage.html?res=9B05EFDA 1730F93 AA35751C1A9619C8B63&scp= 1 & 
sq=mathematics+gomboc&st=nyt (Downloaded: July 24, 2009). 

http://www.nvtimes.corn/2007/03/20/science/20math.html?scp=l&sq:=mathematics+sviTimetrv&st=nvt
http://querv.nytimes.com/gst/fullpage.html?res=9B05EFDA
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theorem or even a whole mathematical area such as Fermat's Last Theorem (Singh, 1997) 

or the Poincare conjecture, O'Shea, 2007), and often not associated with a single research 

paper, which makes the comparison difficult. Moreover, choosing one particular paper 

from the variety of popularization literature necessarily restricts the observable features. 

The criteria I used for choosing the texts for the comparison were the following: 

- The popular paper should exemplify intercultural communication by addressing 

an audience different from those of readers of research publication in the given 

area and so accessible to a non-specialist audience and displaying important 

features of the mathematical culture. 

- The popular paper should contain a recontextualization of what is already 

contained in the research paper including a detailed description of the results. 

- The popular paper should be long enough for such a comparison, but both the 

research paper, and the popular paper are still reasonably short (the length of an 

average scholarly paper). 

- The popular paper should contain different representations of mathematical 

language (textual, symbolic, graphic). 

Finally, I chose two papers in number theory. One of them, Chebychev's Bias 

written by M. Rubinstein and P. Sarnak is a recent research paper published in 

Experimental Mathematics in 1994. The other one, Prime Number Races written by A. 

Granville and G. Martin appeared in The Mathematical Monthly in 2006. The latter paper 

won the Lester R. Ford Award40 recognizing "articles of expository excellence" among 

'http://www.maa.org/awards/ford.html (Downloaded: July 22, 2008) 

http://'http://www.maa.org/awards/ford.html
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papers published in The Mathematical Monthly and in the Mathematics Magazine. Based 

on the Monthly's policy statement the latter one should be appropriate for undergraduates 

(sometimes even for high-school students), and read by a wide range of mathematicians. 

Its policy statement claims that: 

The MONTHLY publishes articles, as well as notes and other features, about 
mathematics and the profession. Its readers span a broad spectrum of mathematical 
interests, and include professional mathematicians as well as students of mathematics at 
all collegiate levels. Authors are invited to submit articles and notes that bring 
interesting mathematical ideas to a wide audience of MONTHLY readers. 

The MONTHLY'S readers expect a high standard of exposition; they expect articles to 
inform, stimulate, challenge, enlighten, and even entertain. MONTHLY articles are 
meant to be read, enjoyed, and discussed, rather than just archived. Articles may be 
expositions of old or new results, historical or biographical essays, speculations or 
definitive treatments, broad developments, or explorations of a single application. 
Novelty and generality are far less important than clarity of exposition and broad 
appeal. Appropriate figures, diagrams, and photographs are encouraged. 

Notes are short, sharply focused, and possibly informal. They are often gems that 
provide a new proof of an old theorem, a novel presentation of a familiar theme, or a 
lively discussion of a single issue.41 

According to the policy statement of The Mathematical Monthly, articles 

published in the journal belong to a special type of popularization, namely popularization 

among mathematicians. They are supposed to satisfy the criteria of didactic transmission 

proposed by Moirand (1992) (cited in Beacco et al., 2002: 278) and the phenomenon of 

the blurred boundaries between popularization and professional literature coming from 

the fact that scientists themselves constitute a considerable audience of science 

popularization literature (Myers, 2003: 268). 

5.4.2 Some general remarks about the two papers to be compared 

The two papers share quite a few characteristics, besides, of course, the fact that both are 

http://www.maa.org/pubs/monthly.html (Downloaded: July 22, 2008) 

http://www.maa
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devoted to the same mathematical problem. Both articles display the historical 

background of the problem and provide further generalizations. Thus, both present 

mathematics as a discipline in continuous development and not a dead subject. Both 

contain symbolic and visual representations. Neither contains problems for the reader to 

solve. 

The way the two papers use language in the metadiscursive, discursive and non-

discursive functions is, however, quite different. It will briefly summarize the differences 

regarding each of the three groups of functions in the next sections. I will pay special 

attention to differences regarding the communicative function. I will refer to the papers 

by the initials of the last names of their authors: [RS] for Chebychev's Bias and [GM] for 

Prime Number Races. 

5.4.3 Comparing the role of metadiscursive functions of language in the two papers 

The goals of the two papers are different. While the primary aim of the research article is 

objectivation, the popular text is intended to communicate the existing result. This 

difference is visible if we compare the functions of communication and objectivation in 

the two articles. Although some communicative functions are present also in [RS] they 

are not made explicit. The use of language in the phatic function is virtually absent from 

[RS], and the conative function is applied only in a limited way (mainly to induce an 

action). The communicative function will be discussed in detail in a separate section. 

Algebraic processing, although present in both papers, plays much more significant role 

in [RS] where algebraic manipulations give the backbone of the paper, whereas in [GM] 

they are considerably less frequent and generally followed by narrative explanations as 
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well. 

5.4.4 Comparing the role of non-discursive functions of language in the two papers 

The organizational features in [RS] support a compact presentation of the topic in itself, 

while [GM] emphasizes the overall role of the result in mathematics. The relative space 

occupied by various sections shows this idea clearly: while in [RS] 15 pages of the 20 

page-long paper are devoted to the main result and only 5 pages for introduction and 

generalizations, in [GM] it is the opposite; the main result is presented in only five pages, 

while the other 26 contain the introduction and generalizations (16 and 10 pages 

respectively). Besides the difference in the length of the sections, the transition between 

them is more clear-cut in [RS]. In [RS], the section titles (listed also at the beginning of 

the paper) refer to the content of a given section explicitly and objectively. Titles of 

sections in [GM] are more informal (e.g. "So what do we know about the count of primes 

up to x anyway?") and the transition from one section to another is rather smooth. While 

the topics of the subsections in [RS] seem more traditional (introduction, results, 

examples, generalizations), [GM] is organized around the metaphor of prime number 

races. 

While in [RS] there are only two tables to illustrate the corresponding numerical 

values, [GM] contains eleven tables with the purpose of convincing the reader about the 

long-term behavior of certain numerical sequences and giving a feeling for the magnitude 

of the numbers to be dealt with. In [GM], the most important formulae are highlighted 

using borders. Unlike the general characteristics of popular science texts (Miller, 1998), 

[GM] contains several footnotes referring to historical information, personal data or 
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references. The frequent use of these footnotes can be explained by the fact that the paper 

targeted a varied audience and in this way the authors could give additional information 

for interested readers. 

Both papers contained different forms of representations (symbolic, graphical, 

etc.) which were integral parts of the texts. However, in [RS] there are no pictures, or 

graphs illustrating the actual content. The graphs and tables contained in the text show 

the results of the numerical computation; they are not meant to facilitate understanding. 

The role of graphs and histograms in [GM] is to illustrate the actual concept and foster 

understanding. They are always followed by explanation and interpretation of the given 

representation. In the use of graphical representations, [GM] does not follow the 

traditions in science popularization (Miller, 1998), where visual representations are 

integral parts of research papers but usually serve only as a loose illustration in popular 

articles. 

The Monthly article was considerably less structured, assuming that the readers 

will read the text linearly. On the other hand, [RS] was heavily cross-referenced, with 

careful numbering of theorems, formulae and sections. The theorems were often 

mentioned only in the introduction and not necessarily stated again in the corresponding 

section, which made the later reference easier but did not facilitate reading. 

5.4.5 Comparing the role of discursive functions of language in the two papers 

As popularization is meant to "translate" elements of the culture (or subculture) to 

outsiders, it is not surprising that there is a considerable difference between the uses of 

discursive functions in the research paper and in the popular text. The referential function 
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used for identifying and naming objects appears mostly in terms of strict definitions in 

[RS] often clearly indicated beforehand such as "define" or "introduce". To have a 

common understanding of the terms used in the research paper, the authors clarify 

explicitly the objects and notations they intend to use. Hedging or the constraining of the 

interpretation of a given definition or theorem was done by careful listing of the 

assumptions, usually without giving any rationale for their necessity. In [GM] the authors 

use a much broader variety of means for naming objects. The main object, the idea of 

prime races, is introduced through an elaborated metaphor, a "hook". Various cases 

exemplify the phenomenon by serving seemingly different didactical purposes (e.g. mod 

4 - historical, mod 3 - simplicity, having only two contestants, mod 10 - corresponds to 

last digits, Li(x) vs. n(x) - symmetry), which led to the general formulation of the 

problem. Definitions were avoided and replaced by mixed notations (e.g. " #{primes 

4n + 1 < *}"); the exact definitions were put in footnotes (p. 1) or defined through 

analogy (e.g. the Dirichlet L-functions are "defined" only "as relatives of the Riemann 

zeta-function", p. 15). The constraints on the definitions were often justified within the 

text or in the footnotes. 

Although [RS] consists of complete sentences containing subject and verb, and 

the punctuation conform to standard grammatical rules, the sentences often contain 

mathematical formulae whose length can be up to half a page. In the case of [GM], 

despite the inserted mathematical formulation, the text is closer to the natural language. 

The formulae are less numerous, and they are usually shorter. [GM] contains a greater 

variety of representations, such as formulae, tables, graphs and histograms. 

In [RS], the function of discursive elaboration is used mainly in proofs. The 
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particular mathematical objects of study are identified in the introduction by definitions 

along with their characteristics stated in the form of theorems and the rest of the paper is 

devoted to proving these theorems. In [GM], on the other hand, the essential content of 

the paper refers to the implications of the race metaphor and the historical development 

of the problem elaborated in a narrative form. 

Emotive and evaluative functions are rather weak in [RS]. The genre of scientific 

writing does not provide much scope for revealing personal feelings, and evaluations 

refer only to restricted objects and are meant to signal their relative importance within the 

paper (e.g. "it is a crucial point", "this is the key to the proof). The authors do not 

evaluate the significance of particular results in mathematics. On the other hand, 

emotional factors are quite strong in [GM]. This takes the form, for example, of 

personification of mathematical expressions (e.g. "goes to infinity with great dignity") 

and expressions of the authors' feelings and judgment toward the subject throughout the 

paper. The importance of a particular result is often made explicit (e.g. "perhaps the most 

prominent open problem in mathematics"), and the evaluation refers to the global 

importance of the statement and signals its value within the mathematical culture. 

Although both papers contain proofs, the question of rigor and the role of proofs are 

considerably different in the two articles. In [RS] each statement is proved rigorously, 

while in [GM] presenting an argument which is convincing is more important than giving 

a rigorous proof. 
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5.4.6 Some additional remarks on the use of communicative functions of language in the 

two papers 

The authors of [GM] put a great emphasis on introducing the metaphor of the races. They 

elaborated on this metaphor using extensively different communicative functions of 

language (poetic, conative, phatic). While the poetic function in [RS] is restricted to the 

aesthetic component in the mathematical content, such as searching for a symmetric 

treatment and presentation, in [GM] it appears in a variety of ways. While in [RS] natural 

language often serves only to bind the formulas, the text in [GM] itself reads more 

smoothly and can be considered as a narrative with some inserted formulae, presented 

regularly through mixed representations (Pimm, 1987) in a form close to the spoken 

language (e.g. using the # {definition of the set} notation). In [RS], the conative function 

is used to provoke an action (such as reproducing the missing calculations or look for 

reference); in [GM] its main function is to induce an attitude. Mathematical objects are 

presented, in [GM], as an integral part of human culture (e.g. "primes have music in 

them") and the results are signaled by positive attributes ("extraordinary claim", 

"amazing result", etc.). The mathematical results in this paper are personified by means 

of historical information about the mathematicians involved or giving some insight into 

the authors' personal life and interests at the end of the paper. Even the mathematical 

content is often approached through conative aspects, for example, listing the numbers in 

a multiple exponential form makes one feel how big the actual numbers are. Although not 

always as a form of an explicit command, the authors encourage the reader to perform 

investigations, such as examining characteristics of numerical results presented in the 

tables or look for patterns among them (e.g. "Do you see a pattern?"). Nevertheless, these 
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investigations do not require lengthy computations as in [RS]. 

The use of phatic function of language for addressing the reader and maintaining 

the communication is rather apparent in [GM]. The reader is often addressed explicitly by 

"you" form. The style is informal and the text contains a lot of questions not only about 

the material (e.g. "Do you see a pattern?") but also about the personal thoughts and 

feelings of the reader as well, (e.g. "If so, you are right to be skeptical", or "You might 

have grown bored"). On first sight it seems that in [RS] the authors do not use the phatic 

function to keep contact with the reader (e.g. there are hardly any questions in the text 

and the verbs are usually in an impersonal form). In fact, however, the reader has to think 

and work together with the authors to be able to follow the text. In this sense, the 

connection between the authors and the reader is much stronger than in [GM]. 

Unlike [RS], the emotive-expressive component in [GM] is dominant throughout 

the paper. The reader's activity to understand the text is hidden in [RS] while in [GM] it 

is more apparent. Saenz Ludlow (2006) states that the "acts of writing [of mathematical 

papers] are concomitant with acts of reading, listening, interpreting, thinking, and 

speaking" (p.234). Similarly to writing, reading of [RS] is also a complex process. 

While the use of metalinguistic function is not common in [RS], explaining the 

meaning of terms or reasoning frequently happens in [GM]. The theorems are often 

restated in a "less mathematical" form introduced by terms such as "may be 

paraphrased", "in other words", etc. For example, "restate it in entirely elementary 

language" clarifies the meaning and makes it visible also through the reader's cultural 

lenses. 
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Based on the above analysis it can be stated that the written popular discourse 

bears some special characteristics and is considerably different from research 

publications. The main goal is communication (in fact intercultural communication) in 

the first, and objectivation in the second. In the following section, I will investigate how 

these special elements of the popular discourse were implemented in the oral discourse of 

the popular lectures I attended. 

5.5. COMPARING TWO POPULAR LECTURES FROM THE POINT OF VIEW OF THE MEANS USED 

TO CONVEY THE MESSAGE 

In this section, I will look at the discursive and other means used in the "Medial 

representation" and "Escher" lectures. I will attempt to identify the main differences 

between the popular discourses involved in the lectures. 

When I asked for permission to audiotape the lectures, the organizers offered to 

provide me with their own recording instead. The organizers of the first lecture failed, 

however, to fulfill their promise. During the second lecture, there was a technical glitch 

and I was able to obtain only a partial recording. Thus, instead of a detailed discursive 

analysis of the two talks, I was forced to take into account only the more global aspects of 

the lectures. 

5.5.7 The "Medialrepresentation" lecture 

1 will first describe how the speaker communicated the topic, focusing on the means he 

used and then I will analyze the lecture in terms of the Duval-Jakobson framework. 
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5.5.1.1 Description of the first lecture 

The lecturer started by motivating the importance of image analysis, illustrating it by the 

problem of matching objects viewed from different perspectives. He showed a set of 

contours: three hands in various positions, a hammer and four views of a walking horse 

(similar to the figure in Siddiqi et al., 2002: 7). The categorization of these shapes would 

be an easy task for a 6-year-old, but, the lecturer said, it is a highly non-trivial problem 

for computers. Organizing and classifying two- and three-dimensional objects is very 

difficult, since, due to the fact that these objects undergo various transformations, or are 

seen from various perspectives, the actual images of a particular object can be 

considerably different. The idea that the lecturer was trying to convey was that the task of 

recognizing and distinguishing objects could be facilitated if the objects were represented 

by simpler drawings: abstracting from their "flesh" and taking into account only their 

"skeletons". He drew an analogy with drawings that young children make of people, 

representing their hands by thin "sticks". He pointed to the curves drawn inside the 

pictures of the hands, the hammer and the horses shown in the figure mentioned above. 

The first time the lecturer used the word "skeleton", it was a metaphor; its vehicle 

was the anatomical sense of the word. In the course of the lecture, however, the lecturer 

was progressively narrowing down (or "hedging") the meaning of the word "skeleton". 

Already the curves inside the pictures of the hands, hammer and horses were indicating 

that he did not mean the skeleton in the anatomical sense. Ultimately, the meaning of this 

word was conveyed by the impressive colorful and dynamic figure of the panther 
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(Dimitrov et al., 2003)42, shown at the peak of the lecture, as the "central hook", 

representing a method of obtaining the skeleton - in this technical sense - of a shape. 

This method was intended as the main point of the lecture. The lecturer wanted the 

audience to associate the word "skeleton" with the process of skeletonization43 

represented in the panther figure and, during the lecture, often referred to it, just using the 

word "panther" (e,g. "as we did it for the panther"). 

Analogies with other familiar objects or situations and their visual representations 

were used throughout the lecture. In particular, methods of finding the skeleton of a shape 

were described using both the grass fire analogy and as a set of centers of inscribed balls. 

The local medial geometry was illustrated by the rowboat analogy. These were the other, 

less central, "hooks" of the lecture. The lecturer did not have to invent these analogies 

and pictures for the purposes of the popular lecture; they were already standard in 

scholarly literature. 

To demonstrate the technique for computing medial loci, the lecturer used not 

only the animated panther figure with appropriate coloring, and other visualizations, but 

also presented the mathematical background of the problem, including the formalization 

of the average outward flux method and the corresponding differential equation, and 

sketched the algorithms written to determine the medial loci. These were his hooks 

intended for the more expert members of the audience. 

Applications of the method, such as medical applications in brain imagery, or 

interpreting camera images of blood vessels or intestines taken from the inside, and the 

42 The color picture is available online at http://www.cim.mcgill.ca/~pdimit/cvpr03-poster.pdf 
(Downloaded: June 27, 2009) 
43 "Skeletonization" is another technical term in the domain, but it was not used in the lecture. 

http://www.cim.mcgill.ca/~pdimit/cvpr03-poster.pdf
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more playful application to finding the "skeleton" of a picture of the Venus of Milo 

sculpture displayed at Louvre, were other examples of the lecturer's hook technique. 

The empirical evaluation of medial representations by retrieving 3D models was 

also presented during the talk, as an illustration of the scientific method of hypothesis 

testing. 

5.5.1.2 Analysis of the first lecture 

As mentioned in the description above, the lecturer's main discursive means for 

conveying his message were metaphors and analogies, and also technical terminology. 

The main concept was that of a shape's skeleton, and this technical word was first used as 

a metaphor, based on the similarity of its graphical representations with skeletons in the 

anatomical sense. The similarity is in the idea of a "central line in the middle". This is a 

rather loose resemblance, because the anatomical skeleton might be located differently, it 

consists of more bones, etc. Moreover, the technique applied to determine the skeleton of 

the panther produced additional points located outside of the shape, which is not 

conceivable for the anatomical skeleton. The anatomical skeleton can be obtained by 

means of an X-ray of an actual live animal. The technique presented in the lecture, 

however, was applied to an iconic representation of the animal, a very simplified drawing 

of a panther. The image of the panther was chosen because the shape was complicated 

enough to illustrate how the technique could be applied in complex situations and 

therefore it was representative of the general case. Examples of skeletons of simple 

objects such as circles would not be able to play this role. 

"Skeleton" was only one among the many technical terms used in the lecture. It 
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was the only one that could also function as a metaphor accessible to lay audience. Other 

terms, like "medial axis", "Blum's loci", "Blum's medial axis", were very remote from 

everyday experience, yet played an essential role in the lecture. 

The lecturer used a variety of means to convey the meaning of the concepts: 

natural language, differential equations, static diagrams as well as animations and color. 

The shape of the panther was animated to shrink to the skeleton and the change of colors 

indicated the distance. 

The lecturer succeeded in presenting a range of cultural values in the talk. His 

talk, however, had few features of "a tour for mathematical tourists". It was no different 

from a talk in a more general mathematical conference (such as a conference of a 

mathematical society). Expecting to have different professionals among the audience 

members (mathematicians, computer scientists, psychologists, medical workers), the 

lecture was intended to "sell" the results to people with various backgrounds, showing 

them the possibility of applications of the results in their domains. From this point of 

view, we could say that the lecturer engaged in multicultural communication. The focus, 

however, was on specific research results and the more general aspects of mathematical 

culture received no explicit attention at all. The lecturer adjusted his talk almost 

exclusively to the cultural lenses of other professional scientists possibly working in a 

field where the presented results could be applicable. Moreover, the translation provided 

by the lecturer referred only to limited professional cultures, particularly mathematics, 

computer science, and medicine. The content and the organization of the presented 

material were very similar to that in research publications. 

The communicational functions of the message generally focused on the explicit 
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desire to convince the audience of the usefulness and applicability of the research results. 

The speaker presented the results as a scholar, and the function of objectivation 

dominated over the communicative function. The poetic function was practically absent 

from the lecture. The slides and the verbal presentation in the lecture were intended to 

conform to the professional rather than to the aesthetic standards. The phatic function was 

generally not emphasized: the lecturer rarely if at all made eye contact with the audience, 

and did not seek feedback through questions or humorous remarks. With regard to the 

conative function, the lecturer was trying, using logical reasoning and examples, to 

convince the participants about the scientific and mathematical truth and usefulness of the 

results, but did not seem concerned about changing their attitudes towards mathematics. 

It was as if he took for granted that those who came to his lecture already had a positive 

attitude towards mathematics. 

The title of the talk, Medial Representations: Mathematics, Algorithms and 

Applications, referred to the general organization of the lecture into three sections, 

presenting the mathematical background, the corresponding algorithms and the possible 

applications. The organization of the lecture was generally in accordance with the 

organization of research publications. Graphical representations were applied extensively 

in the presentation for introducing the concepts, justifying the statements, illustrating the 

applications and for convincing the audience about the advantages of the presented 

technique compared to previous ideas. The illustrations shown in the talk were identical 

to those used in research publications, although they seemed to be intended to serve as 

convincing visual explanations, not necessarily as a way for presenting the exact results. 
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5.5.2 The "Escher "lecture 

This section is organized similarly to the one on the first lecture. 

5.5.2.1 Description of the second lecture 

Although the mathematical content of the presentation was based mainly on the paper by 

de Smit and Lenstra (2003), the organization of the lecture was considerably different 

from that of the paper. The lecturer first introduced some information about the artist's 

life as well as about the history of the creation of the lithograph. 

The "central hook" of the lecture was the picture on the Droste cocoa box, with 

the term "Droste effect". It was meant to convey the main idea of infinite iteration of a 

mapping. In this case, the mapping is quite simple: scaling. The Droste effect was then 

shown on the picture of a ship on the sea with, on the board, a swimming pool with a toy 

ship with a swimming pool floating in the middle, etc. This was one of the additional 

hooks in the lecture. Gradually, the lecturer was showing examples of more complicated 

mappings and the effects of their iteration. The first complication was to combine scaling 

with a rotation; this was shown on the example of the picture on the circular box of the 

"La vache qui rit" cheese spread. The cow on the box has earrings that are boxes of the 

"La vache qui rit" cheese spread. Finally, the lecturer arrived at explaining the method 

used by mathematicians to discover the mapping used in the Print Gallery picture. 

He presented some of the sketches Escher did in preparation for the picture, and 

emphasized the surprising mathematical sophistication of the graphics in spite of 

Escher's lack of formal training in the subject. The mathematical formalization used for 

the construction of the conformal grid was not avoided in the lecture, and was presented 
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in a similar way as in de Smit and Lenstra (2003). It was, however, only very briefly 

"flashed" in the lecture, with a focus on the numerical values in the formulas, such as the 

scaling factor. The fact that the mapping was defined over the complex plane was briefly 

mentioned. Much more time was spent on the visual representation of the conformal map 

in the particular case of the lithograph. The lecturer referred the audience to the website 

"Escher and the Droste effect" for additional details. 

The lecture focused mostly on the effects of various mappings when applied to 

concrete grids and pictures. The effects were shown in a dynamic way, using animations, 

like on the Escher and the Droste effect website, and described using metaphorical 

language. In particular, it was shown in detail how the mappings that lead to pictures like 

those on the Droste cocoa box must be changed to obtain mappings leading to a picture 

like the Print Gallery. Several examples were given of both the "Droste effect" and the 

"Print Gallery effect". 

In addition to the animated presentation of the method used for filling the hole in 

the Print Gallery picture, the technique (pull-back - scaling - push forward) was applied 

to other pictures. In particular, at the end of the lecture, a visualization of one of Van-

Gogh's paintings distorted by the Riemann zeta-function was shown. 

5.5.2.2 Analysis of the second lecture 

Similarly to the lecture on medial representations, the message of the Escher lecture was 

communicated through visual means. Metaphors and dynamic visualization rather than 

definitions, theorems and proofs were the main vehicles for discursive functions. The 

44 http://escherdroste.malh.leidenuniv.nl (Viewed: July 25, 2009) 

http://escherdroste.malh.leidenuniv.nl
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idea of conformal mapping was conveyed by means of visual representations of the 

effects of concrete examples of such mappings. Iteration of such mappings was conveyed 

by the familiar action of repetition, using animations. "Distortion of a picture or grid" 

was a metaphor for "mapping"; "repetition" - a metaphor for "iteration". 

Transformations of pictures where straight lines turned into curves but angles between 

them were preserved - a metaphor for "conformal mapping". The meanings of "straight 

line" and "curve" were suggested by pointing to elements of pictures and the everyday 

meaning of these words. 

The aim of the lecture was not just to present the results of a mathematical 

modeling work. Using this one particular example of mathematical work, the lecturer 

wanted to guide the "mathematical tourist" around some of the mathematical culture and 

landscape. Certainly deductive reasoning and formal processing are important landmarks 

in the mathematical culture, but they were not a big part of this "guided tour". The 

lecturer stressed the culture of curiosity in solving mysteries of all kinds, even those 

created by an artist's genius. 

The communicative functions, especially phatic (maintaining contact with the 

audience) and conative (influencing people's thinking), were dominant throughout the 

whole lecture. The poetic function was exercised through the display of pieces of art and 

animations. The lecturer frequently used humor; emphasized personal aspects of both the 

artists and the mathematicians working on the project. He suggested a visit of the website 

of the project. All these are examples of the use of these above-mentioned 

communicative functions. The results of the work of objectivation and processing were in 

the article in the Notices; in the talk, language was used mainly in its communicative 
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function. 

Although the title of the lecture - The Mathematics of Escher's Print Gallery -

resonated with the title of the Notices article of de Smit and Lenstra (2003), the 

organization of the lecture differed greatly from that of the paper. Aside from the 

difference in space devoted to mathematical formalism and processing in the lecture and 

the paper, there was also a difference in the way each was introduced. Both announced 

the main idea to be presented, but the lecture introduced it using metaphors, pictures and 

animations, stressing the informal and ludic aspects of the idea. Graphical representations 

were so much an integral part of the lecture that it would be completely incomprehensible 

based on an audio-recording alone. There were some graphics in the paper as well, but 

they were less numerous and played a different role. 

5.5.3 Comparing the two lectures 

The main difference between the means the lecturers used to convey their messages 

seems to lie in the nature of their communication. The "Medial representation" lecture, 

which addressed a special application of mathematics (mathematical imaging), a well-

defined and technically demanding problem, resembled a talk for non-specialists in the 

particular area, but still representing the same overall profession as the speaker. It was 

like a "tour" of an unfamiliar "subculture" for people belonging to a common culture. 

The lecturer appeared to assume that the audience is familiar with the general features of 

the overall culture, and thus saw no need to give a general picture of that culture; he 

focused on the subculture's specialized ideas. Even the editorial organization of the talk 

mirrored that of a scholarly paper: Motivation through a possible application, 
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introduction of the main concept and methods, verification, applications. 

The "Escher" lecture dealt with connections between mathematics and art along 

with a humanistic perspective, since the talk focused on the work of one artist, M. C. 

Escher. This lecture appeared to address an audience foreign to the presented culture 

altogether, and offered a general "guided tour" of it. 

Both lecturers made an extensive use of metaphors. These were, however, 

different kinds of metaphors. The metaphors in the first lecture were "dead metaphors" in 

the sense that they were already practically lexicalized in the standard technical 

vocabulary and set of paradigmatic graphical illustrations of scholarly papers in the 

domain (Dimitrov et al, 2003; Pizer et al, 2003; Siddiqi et al., 1999; Yushkevich, 2003, 

etc.). The metaphors in the "Escher" lecture, such as "infinite repetition", "shrink", 

"distort", "twist" were ad-hoc, live metaphors, invented to convey the idea of iterations of 

various mappings to a lay audience. The graphical representations supporting these 

metaphors were also not the standard ones used in scholarly literature, but invented, if not 

for the purpose of this particular talk, then for the website aimed at popularizing the 

discovery of the mapping behind the Print Gallery lithograph. 

According to the special characteristics of popularization, the mathematical 

content involved in popularization should differ from research mathematics and also from 

school mathematics. In particular, it is intended to present mathematical culture to people 

with diverse cultural backgrounds. The mathematical discourse in the lecture on medial 

representation was in many aspects similar, or even identical to that of research 

publications. Its organization followed that of conference presentations, its metaphors 

were identical to those used in scholarly papers and the use of language did not rely 
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heavily on communicative aspects. Thus, it can be concluded that the lecture on medial 

representation did not fulfill the special characteristics of a popular discourse. The lecture 

on Escher's Print Gallery seemed more appropriate to provide a guided mathematical tour 

in terms of the means used by the lecturer. 

5.6 CONCLUSIONS 

As popularization is a special genre of scientific communication it appears to bear some 

special characteristics such as a greater emphasis on communicative functions of the 

language, the role played by different metaphors, the reformulation of statements and 

arguments, etc. The mathematical discourse differs from that used in research or 

teaching. The first and foremost aim of popularization is to communicate, while the aim 

of scholarly publications is to objectivate personal knowledge. Teaching, although 

designed for mathematical communication, differs especially in its conative aspects and 

organizational features of mathematics. According to Verret (1975: 145-174) knowledge 

intended for communication through institutionalized teaching, must be 

1) Explicit 

2) Impersonal 

3) Divisible into small chunks that can be associated with learning practices and 

exercises 

4) Programmable into teaching, study and assessment periods 

5) Testable 

Popularization does not have to abide by these norms. For example, Penrose's 

book (2004), The Road to Reality, fails in all five aspects. It asks the readers to solve 
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problems often based on mathematical techniques that were not explicitly presented 

before in the book, and that it may not be even possible to transpose into an explicit 

object of teaching. The main interest of this book for experts in mathematics and physics 

are Penrose's personal views on various philosophical issues, such as whether 

mathematics is discovered or invented. The text is an indivisible whole if the reader's 

goal is to understand how the universe works. Cutting it into "lessons" followed by tests 

would defeat this purpose; it would result in fragmented knowledge, a collection of 

unrelated concepts. 
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CHAPTER 6 

POPULARIZERS AND THEIR VIEWS OF MATHEMATICS AND 

POPULARIZATION 

6.1 INTRODUCTION 

This chapter deals with questions about popularizers. Who are the popularizers? What do 

they think about the goals, content and means of popularization of mathematics? 

In my research, I have sought answers to these questions mainly by directly 

interviewing nine mathematicians and mathematics educators who engaged in different 

forms of popularization activity45. The sample was opportunistic; I interviewed 

popularizers that I could reach, by attending their popular lectures, or participating in 

conferences and other meetings at which they were present. The popularizers I 

interviewed engaged in different forms of popularization activity, such as giving lectures 

for the general audience, writing popular articles and books, developing websites, or 

organizing open houses and math fairs. 

In section 6.2 of this chapter, I present a "family portrait" of the interviewed 

popularizers. In the fourth section, I present the individual portraits of two of the 

popularizers, whose lectures I attended and have been using to illustrate various aspects 

of popularization in the chapters of this thesis. 

45 For ethical reasons, the names of the interviewed popularizers will not be revealed in this thesis. 
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6.2 A "FAMILY PORTRAIT" OF POPULARIZERS BASED ON NINE INTERVIEWS 

In this section, I will speak about the popularizers' backgrounds and professions, and 

their views on the goals of popularization and criteria of its success. 

6.2.1 Backgrounds and professions 

The interviewed popularizers represented a variety of national and professional 

backgrounds: six North-Americans, three Europeans, pure and applied mathematicians, 

and mathematics educators. The sample did not include journalists, writers, filmmakers 

or artists, but people representing these professions are also sometimes highly valued -

by mathematicians - for their work as popularizers of mathematics. This follows from the 

list of the winners of the JPBM Communications Award46. It is not necessary to be a 

mathematician or even to have an advanced academic degree in mathematics to receive 

the award. Of the 21 people who received the award between 1988 (the first award) and 

2009, thirteen were non-mathematicians. Among these, eight (8) worked as journalists, 

freelance writers for journals and television programs or were writers of books and 

theatre plays: Carl Bialik, award received in 2008; Sylvia Nasar, 2000; Constance Reid, 

1998; Gina Kolata, 1996; High Whitemore, 1990; Ivars Peterson, 1991 and James Gleick, 

1988. Three (3) were filmmakers, television producers and directors: George Csicsery, 

2009; John Lynch, 1999 (he received the award together with Simon Singh) and Joel 

Schneider, 1993. Two were artists (sculptors): Halaman and Claire Ferguson, 2002 

(common award). Two other recipients had PhD degrees in mathematics or physics, but 

did not continue in research: Barry Cipra, 2005, and Simon Singh, 1995. The remaining 

46 http://www.ams.org/prizes/jpbm-comm-award.html (Downloaded: July 6, 2009) 

http://www.ams.org/prizes/jpbm-comm-award.html
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six recipients have been active mathematicians at the time of receiving the award: Steven 

H. Strogatz, 2007, dynamics of synchrony; Roger Penrose, 2006, mathematics and 

mathematical physics; Robert Osserman, 2004, geometric problems (Riemann surfaces, 

minimal surfaces, etc.); Keith J. Devlin, 2001, applications of mathematics in linguistics 

and design of information systems; Ian Stewart, 1999, nonlinear dynamics and 

applications in, among others, fluid dynamics and mathematical biology, and lastly, 

Philip J. Davis, 1997, numerical analysis. It is noticeable that the work of most of the 

recipients in this last category was close to applications of mathematics. 

Interestingly, however, the interviewed popularizers (especially research 

mathematicians) emphasized that research mathematicians should play a crucial role in 

popularization; stories about mathematicians or mathematical activities cannot replace 

direct contact with a live and active research mathematician. 

One of the interviewees believed that popularization becomes increasingly a 

"specialization": some people "specialize" in this activity. 

[T]here are books now, and there are people specializing in it, [John] Allen Paulos 
specializes in popularizing mathematics, Keith Devlin48 is certainly a big figure in the 
US. And you start to see more and more popular books in mathematics. [SM] 

He saw that more and more people engage in popularization and that "there is a 

market for it", but still believed that there were not enough popularizers and that "there 

should be much more". 

John Allen Paulos is a research mathematician who has worked in the domains of logic and probability, 
and also a prolific writer of popular books on mathematics, e.g., Innameracy - Mathematical Illiteracy and 
its Consequences (1988) or A Mathematician Reads the Newspaper (1995). 
48 Keith J. Devlin is also a research mathematician; his name already appeared in this chapter as one of the 
JPBM Communications Award recipients. His popular works in mathematics include, e.g., Life by the 
Numbers (1998) and The Language of Mathematics: Making the Invisible Visible (2002). 
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6.2.2 Views on the goals of popularization of mathematics 

All interviewees believed in the need of popularization of mathematics, because 

mathematics is disliked and misunderstood by the general public and this results in 

dwindling enrollments in mathematics, science and engineering at the university, which 

is bad for the survival of mathematicians. More specifically, the interviewees mentioned 

such goals as improving 

- public image of mathematics and mathematicians; 

- public understanding of mathematics; and 

- public attitudes towards mathematics and mathematicians. 

1 will give some more details about the interviewees' opinions about these goals in the 

next subsections. 

6.2.2.1 Improving the public image of mathematics and mathematicians 

The interviewees seemed to believe that the general public views mathematics as 

"something that's been left in books written hundreds of years ago and done by white 

European men" [MG]; that it is "dull and mechanical like book-keeping or something, 

just add numbers, you have to be precise and add them all". They wanted popularization 

to convince people that mathematics is a live and interesting domain of research; that it 

has recently been progressing "at an amazing rate", with the proofs of Fermat's Last 

Theorem and Poincare's Conjecture, yet there is a "vast mathematical universe that is still 

waiting to be discovered" [EL]. 

Popularizers wanted also to present mathematicians as interesting people and their 

work as exciting. This motive can be also found in introductions to popular books about 
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mathematics. For example, Constance Reid, in From Zero to Infinity, explains that she 

wanted to impart to the general audience some of the excitement of mathematical work 

and discovery that she witnessed as a sister and sister-in-law of mathematicians (Julia 

Bowman Robinson and Raphael Mitchel Robinson). In his Preface to The Mathematical 

Tourist, Ivars Peterson speaks of his difficulties in understanding advanced mathematics, 

feeling in mathematical lectures as an "accidental tourist lost in a foreign land"; he wrote 

the book to prove to himself and others that visiting the "foreign land" of mathematics 

can be a pleasant and exciting adventure. 

Another image of mathematics that popularizers wanted to change was the view 

that mathematics is mainly a teaching subject and tool of academic selection, but 

otherwise not very useful. They wanted to show the public that "if science progresses, it's 

mainly, it's a lot because of mathematics; that mathematics is not only the universal 

language of science but it's also a basis of all science; people would not do science if they 

didn't have the mathematical models and so forth." [SM]. Some stressed that 

mathematical culture is strongly connected to other cultures. For example, mathematics 

was compared to music, as an "organic part of culture" [WS]. They also mentioned the 

need to show the public that mathematics pervades their daily lives, but that it is also 

abused in the media, leading to misconceptions about mathematics. 

6.2.2.2 Improving the public understanding of mathematics 

For some popularizers, an important goal was to fight the widespread innumeracy, 

expressed in the common misconceptions about numbers, randomness and statistical data. 

John Allen Paulos' work was mentioned in this context by one of the interviewed 



138 

popularizers. Another referred to the same problem, proposing that an important goal of 

popularization is to get people to think critically about mathematics. 

... to get people to think, think critically about it. Not to criticize but to think critically, 
you know, to ask questions. Like the research with breast cancer, right? Well, 
everybody is saying, well, hormone replacement, hormone replacement, but then one 
looked back and looked at the studies where hormone replacement seemed to have a 
good influence on women; well they found that those women were the healthiest 
women to start with. So it wasn't the hormone replacement, it was just that they were 
healthy to begin with, and so like getting people to think about that; what else could 
explain it. I think that for me that's the most important in statistics. That correlation is 
not the same as causation. Just because the price of alcohol goes up and teaching 
salaries go up, doesn't mean they are related; these are different things. You know what 
I mean? Get people to think about that. You know, just because two things are 
increasing at the same time, it doesn't mean that one is causing the other. [MF] 

6.2.2.3 Improving the public attitude towards mathematics 

One of the popularizers believed that thanks to movies such as Good Will Hunting or A 

Beautiful Mind, "people seem to be bit more sympathetic for mathematicians and their 

careers". [SM] Another was saying that popularizers should make people "feel attached 

[to mathematics] in some way, enjoy the fact that it surrounds them, so that they get to 

have a feeling that it belongs to them in some way." [LA] 

To achieve this goal, popularizers should "try to show that mathematics is fun and 

useful" [SM], "interesting" and "fascinating" [EL], contrary to their previous negative 

experiences with school mathematics. This view is often found in popular books in 

mathematics; even in Penrose's "complete guide to the laws of the universe": 

Moreover, I hope that I may persuade my reader that, despite what she or he may have 
previously perceived, mathematics can be fun. (Penrose, 2004: 21) 

For one of the interviewees, a research mathematician, a popularization act 

consisted, at least in part, in showing the public, using himself as an example, what it 
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means to be a mathematician, to think like a mathematician by presenting himself as a 

warm person, passionate about his mathematical work [EL]. Thus popularization could 

"help people not normally involved in mathematics" to "like mathematicians" and "see 

that mathematics is something that can be interesting, engaging and something that's 

supposed to be experienced" [LB]. This, as it was hoped, could shift the attitudes of the 

"many [who] left school with a negative experience of mathematics". 

Popularizers who were not research mathematicians themselves, also insisted on 

conveying the human and emotional side of mathematical culture in popularization 

through, for example, the biographical details of lives of famous mathematicians, or the 

dramatic stories of mathematical discoveries. 

6.2.3 Popularizers' views on the conditions of success of popularization 

According to the interviewed popularizers, the success of popularization depends on 

certain characteristics of popularizers and what they present and how. 

Popularizers should, first of all, have a deep understanding of the mathematical 

area they want to present. They should also be fascinated by the subject and enjoy 

working on it. Last but not least, they should be able to represent abstract mathematical 

ideas in a visual form. 

Regarding the mathematical content of popularization, it should be 

mathematically serious and important yet relevant for non-mathematicians, applicable, 

not too technical or narrowly specialized, and intellectually stimulating not only for 

mathematicians. Moreover, it should be possible to represent it in a lively way, visually, 

if possible. The presentation should be able to capture the audience's interest, for 
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example, by relating it to daily life or topics with which people are confronted in the 

news. It should also stir critical thinking among the audience. 

Popularizers mentioned some themes that are particularly suitable for 

popularization such as problems in applied mathematics; examples of mathematical 

modeling; geometry and measurement; topics associated with the calculation of risk 

particularly in the context of games of chance; logical problems; knot theory; the 

mathematics of soap bubbles, etc. Some popularizers, however, believed that any 

mathematical content could be good for popularization: 

If the speaker's skilled and inspired, I think you can make interesting stories in very 
many different mathematical areas. I don't think it is limited to, you know, applied areas 
or number theory.... I would say if you are a mathematician and you work on 
something and do enjoy it, you find that it is fun, there must be a way to convey that joy 
to express what is fascinating about the subject. If you think it is fascinating, you know, 
I think you can explain to other people why it is fascinating. [EL] 

Almost everything is [a] good [topic in mathematics to popularize]. I mean if you really 
sit down and think about it thoroughly, you will realize that in just about any concern in 
our daily, modern life, there is some mathematics you can explain and you can...relate 
to their daily life. You just have to make the exercise.... General public can [feel 
attached to] to mathematics if they can relate it to their daily lives. What happens in 
their daily lives? They use cell phones, they use television... they listen to the news, 
and they need to understand what graphics is all about, what statistics is all about, or 
probability.... The general concerns they have about [genetically modified organisms]... 
nuclear physics, whatever. You know, some science related aspects, which they need to 
maybe have an opinion on, or to be able to take a decision on. Surveys, for instance, is 
another example. And all these things they can appreciate. And perhaps realize that 
there is some very important science behind that and very important mathematics. So I 
do this equation between their daily preoccupation and the real science. [SM] 

Even some ordinary school mathematics topics, generally considered as boring 

such as addition of fractions or factorization of polynomials, can be turned into an 

exciting activity, as one of the interviewees said, based on his own experience. 

The condition of avoiding technicalities (including mathematical symbolism and 

proofs) in popularization was discussed by the popularizers as one of the hardest to 
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satisfy. The price of giving up the technical aspects of mathematics in popularization 

results, according to one of the interviewees, in not showing "the real thing": 

[I]t's not the real thing. You got to go away from the real thing.... But you have to 
compromise somehow. You have to make a decision between real science and popular 
science. And I know for real scientists it's difficult to do that. To give up the rigor to 
just give the general lines and so forth. I know, it's not real science. But if you want to 
reach out to the people you have to go down a few steps. And you can do that while still 
being honest, scientifically honest. [SM] 

Some popularizers were sharing their ways of avoiding the technicalities but still 

conveying a picture of mathematics that is not too far from "the real thing": 

But so I remember one article I wrote about the four color theorem, which is an easy 
question to understand, but hard to answer. But there are some interesting things that 
you can say about it that most people can understand and you can do some 
mathematics. So that the four colors problem takes place on a plane and you can have 
other surfaces you can ask about coloring, like for example the surface of a torus. And 
there the problem has been solved for a long time and it's a very nice formula and it's 
easier. It's much easier mathematics. It's an easy problem compared to the four color 
problem. So that's a good example, I think. [LA] 

It was interesting to see that popularizers themselves had an ambivalent relation 

with the symbolic aspects of mathematics. While they stressed the importance of using, 

in popularization, alternative means of communicating mathematical ideas instead of the 

traditional mathematical formalism used by mathematicians, one of them mentioned that 

it were, in fact, the symbolic aspects and rigor that attracted him to mathematics, in the 

first place. 

When I was in 5th grade in primary school, I had this nun who was teaching 
mathematics and she was writing all these equations on the board and it seemed so 
interesting, so fun, that she really gave me a passion.... What I didn't like so much 
about physics was how they always approximated the results. And they were not so 
rigorous. While in mathematics you have to be rigorous if you want go anywhere. So 
that attracted me more than physics. [SM] 

Another interesting view was that, although symbolism certainly has a great 

power in capturing the structure of mathematical objects, overemphasizing symbolism 
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can be a cause of communication problems even between mathematicians working in 

different areas. 

I think that there is a certain level of snobbery on the part of some mathematicians. 
They feel they have to be incredibly abstract in order to be doing [it] mathematically. 
So I think one of the worst things that has happened to mathematics in the 20th century 
is the development of the Bourbaki [volumes] which, I think, has been absolutely 
horrible. For example, if you look at a textbook in mechanics appeared in 1942, it is a 
perfectly straightforward textbook. It talks about the motion of bodies, planets, the solar 
system and the planets using a pretty straightforward language. And here is a modern 
textbook in mechanics from 197849. When you look at it, you will not even realize that 
it has anything to do with the problems of mechanics it was developed from, which was 
the motion of planets. It's ridiculous, this desire of incredibly many people to make 
things as abstract and obscure as possible. And I think it's absolutely horrible. Because 
it's unnecessary, and it really makes [the reader] feel very confused. And it's also quite 
horrible in the sense that it's got to the point that a lot professional mathematicians can't 
talk [to each other] now. If you have an algebraist or an analyst, they can't go to a 
lecture or a seminar by a topologist and understand what's going on. And even 
mathematics departments usually have either seminars or colloquia. The colloquia are 
supposed to be a much more broadly based, and more intelligible [event], but often if 
you go to math department colloquia there are just the people [who] are the specialists. 
If it's an algebraic number theorist's talk, who goes? The algebraic number theorists. 
[MO] 

I will now sketch the individual portraits of the lecturers of "Medial 

representation" and "Escher" talks. 

6.3 INDIVIDUAL PORTRAITS OF TWO POPULARIZERS, WITH THEIR LECTURES IN THE 

BACKGROUND 

The two popularizers were interviewed a few days after their popular lectures, and the 

interviews were strongly connected to the lectures. I will refer to the speaker in the 

"Medial representation" lecture by "ML", and to the speaker of the "Escher" lecture by 

"EL". 

Referring to the book: Abraham, R. & Marsden, J. E. (1978). Foundations of mechanics. Reading, Mass.: 
Benjamin/Cummings Publ. Co. 
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6.3.1 The lecturers' backgrounds 

ML was a professor in a university department of Computer Science, and member of a 

research group on computer vision. ML stressed that his background was in electrical 

engineering, not in mathematics, and that he only got in deeper contact with mathematics 

during his work in the area of computer vision, what he described as: 

...a field interpreting and analyzing visual information. So it's to be able to do different 
tasks such as data perception or motion recognition. Computer vision is a quite 
unestablished field. It's a field that is sort of interdisciplinary; in some universities it is 
in Computer Science and in others it is in engineering, and in many of them it is applied 
mathematics, and certainly is related to human vision. So the problems require some 
expertise in mathematics and in signal processing. The problem of shape analyzing and 
shape understanding is rather the areas of computer vision. And that is what I am doing 
since my PhD years. So it's not like I trained in mathematics to do it, it's more the other 
way. [ML] 

ML described his own learning of the necessary mathematical concepts as picking 

them up those through working on the applications. He thus experienced mathematics as 

an applied domain. For him, mathematics was a necessary and powerful tool to 

implement and justify various methods in engineering and computer science especially 

associated with computer vision. 

It's a fairly direct subject, it's not like you need esoteric advanced mathematics to get 
ahead. You pick up the pieces as you go along and at least you need to be aware of what 
you don't really understand. ... And it's the combination of mathematics and 
implementation of algorithms that allows us to do this. So in a sense it is certainly a 
transition between pure mathematics to applied mathematics that allows you to work 
with these models and compute descriptions of objects and then you can visualize 
those... That's, this is certainly a kind of subject where, if you have an interest in it and 
you understand a part of it, you can push deeper and pick up the tools as you need them. 

Based on what ML said in the interview, he seemed to be familiar with learning 

mathematics through the particular problems he had to face in his research work. 

According to his field of study, these mathematical problems probably originated from a 

concrete (often visual) application of certain mathematical concepts usually coming from 
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differential equations or differential geometry. 

ML was quite new to popularization. Before the "Medial representation" lecture, 

he only gave one other talk to non-specialists in his area. The audience in this other talk 

consisted of mathematicians, but they were not familiar with computer vision. 

The second lecturer, EL, on the other hand, was an experienced popularizer. He 

lectured in front of a variety of audiences including high school students and teachers and 

designed websites on popular topics such as the famous "hole" in Escher's lithograph 

"Prentententoonstelling" (Print Gallery, 1956), the abc conjecture or the number % . 

EL was trained as a mathematician and was still engaged in mathematical 

research at the time of the interview (Number Theory). He explained his decision of 

becoming a mathematician by his fascination with mathematics as a kid. He also 

mentioned a magazine for high school students, as well as Mathematical Olympiads as a 

source of inspiration in his high school years. In the interview, he was comparing 

mathematics to art, citing stories of mathematical intuition and stressing the fact that, in 

popularization, he wanted to show that "math is fun". 

6.3.2 The choice of the topic of the lecture 

6.3.2.1 ML 

ML was invited to give a talk in a series of lectures to a broad audience on the "cutting-

edge of science", but the organizers left the choice of the topic to his discretion. He 

decided to talk about his own research, because 

- he knew the topic well and was enthusiastic about it; 

- preparing a talk about one's own research for a "non-technical audience... forces 
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people to think about what they are working on... in a meaningful way" and is 

therefore useful for the researcher; 

- he believed the subject to be both accessible and appealing to a broad audience, 

because it was directly connected with the everyday experience of human vision 

and could be understood at an intuitive, non-technical level; 

- at the same time, the subject was sufficiently complex to satisfy the interests of 

three groups of people he expected to attend his lecture: general public, computer 

scientists, and mathematicians. 

He said, 

I knew the general theme of the lecture series was to speak of a topic that could be 
interesting for a broad audience and was not necessarily too technical or too specialized. 
And this problem is one where the intuition is quite easy to capture, although the 
problems are quite challenging, technical. So I decided to talk about it because the 
aspects of the problems. There could be appealing for mathematicians, mainly for 
differential geometers but there are other aspects that could be appealing for anybody 
who is interested in shape perception, and mathematical biology and also for those who 
are interested in describing visual forms. So I thought I could give the talk at three 
different levels. One, it could be technical, one that should be more algorithmic for 
computer scientists and [one] which would illustrate the applications. 

ML thus decided to "disseminate" knowledge about a certain area of research he 

was well familiar with. 

6.3.2.2 EL 

EL's goal was not so much to disseminate mathematical knowledge but to influence 

people's attitudes towards mathematics and images of mathematics. For EL, 

popularization was mainly a tool for recruiting high school students to study mathematics 

at universities: popularization as a possible remedy against the steady decline of the 

number of mathematics students. He stressed its great importance for the survival of 
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academic mathematics. It was important to make the public (both the general public and 

the academic community) aware that mathematical research exists, and it is in fact an 

activity that people enjoy doing. Mathematicians, he said, should engage more often in 

popularization because he felt that "mathematics tends to be focused inward a lot" 

whereas it would be important to build public relations both outside and inside of the 

academic community. 

When I asked EL about his goals in his lecture, he emphasized conveying a 

positive image of mathematics as fun and interesting, and dispelling misconceptions 

about mathematics. 

Well, the goal is to get more people interested in mathematics and to get people 
convinced that mathematics is a fun activity. [EL] 

He wanted to show that, contrary to what people usually believe, intuition (and 

not only logical reasoning and computation) plays a very important role in mathematical 

research and that mathematics is not a finished science. He believed that the topic he 

chose was quite likely to achieve these goals. 

6.3.3 Lecturers' expectations about the audience's understanding of the lectures 

6.3.3.4 ML 

ML assumed that anybody who would care to come to his lecture would be at least 

"interested in shape perception, mathematical biology and in describing visual forms". In 

addressing members of the general public group - which, in this case, were people who 

were neither mathematicians nor computer scientists, but who might be academics from 

other departments - ML assumed the following background: 
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- Having some previous experience with computer vision and human vision and 
image analysis, not more, however, than what can be gained through everyday 
experience. 

- Being used to learning through examples, since he planned to introduce the main 
ideas through specific examples and metaphors, such as the metaphor of the 
panther. 

- Being prepared to be presented with the inevitable technicalities that belong to the 
nature of the subject of his research, including mathematical formalism as well as 
empirical and theoretical testing of hypotheses. The lecturer expected that the 
audience will not be surprised by the steps generally used in this type of research 
such as posing the problem, formalizing it, developing an algorithm and testing it. 

And that you can think about what would be the ways to formalize this. What would be 
the necessarily mathematics. What assumptions would be made? Where would the 
techniques be successful and everything. ... Once you have algorithms developed, you 
can test and so continue to understand them. So if you chose the nature of the subject, I 
think the appeal of it would be actually that. If they understand the physical processes, 
they can visualize that in the sense of what the nature of the problem is. And they don't 
need sophisticated tools for understanding that. And furthermore you have a specific 
claim and hypothesis that you can test and demonstrate the experiments. They can 
understand [it]. So it's certainly what even quite a general audience can do. And then 
they could expect that there exist certain techniques that precisely answer the questions 
of flows. You can build it all through examples the mathematics that you use. [ML] 

As for the group of computer scientists, ML was assuming these would be people 

capable of understanding computer implementations of the theory and would be, 

therefore, familiar with data structures and algorithms, as well as with some aspects of 

computational geometry (such as geometry of discrete structures, lattices, matrix, points, 

polygons and algorithms for specific processes). 

ML elaborated most on his expectations about the group of mathematicians in his 

audience. He identified four subgroups of prerequisites that he considered necessary to 

understand certain aspects of the material presented: 

- calculus and basic differential geometry to understand basic facts about smooth 
curves and surfaces; 

- advanced calculus and advanced differential geometry to understand singularity 
theory; 
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- differential equations, partial differential equations to understand the process how 
curves move; 

- differential topology, measure theory to understand the reverse process. 

ML intended to communicate three different kinds of messages to the three 

groups of the audience. 

To the general audience, he wanted to communicate the idea of medial locus as a 

way to compare two- and three-dimensional objects. He also wanted to show the general 

method of his research by indicating the specific technique (the mathematical idea on 

which an algorithm is constructed), and point to the potential applications. 

And to the general audience I wanted to get them a feeling that when you compare 
objects, often you do so in terms of the points. And these medial loci give me a way of 
thinking about parts of an object. That's mathematical, that's precise but it's also 
algorithmic. You can compute the parts, represent them and then apply them to for 
example to 3-D objects, to a trivial problem as a starting point. 

To the computer scientists, ML intended to present how mathematics can be 

applied differently than in the previous methods used in the field of computer vision and 

pattern recognition. He also wanted to show the advantage of his method compared to 

other techniques and emphasize the importance of the theoretical basis in this kind of 

research. 

To the computer science oriented people I wanted to say that the intuition and the 
continuous mathematics is really useful because it provides new ways and new 
algorithms for computing these. And they were tempted [to use] much more direct 
algorithms, which basically failed. They haven't been generalize-worth in 3-dimensions. 
It's too much complexity, [nothing] is stable but fragile. [There are] a lot of heuristic 
assumptions you have to make. 

For the mathematicians, the emphasis was on presenting a mathematically precise 

treatment of differential geometry along with highlighting the applications. More 

specifically, medial representations offer a nice way for connecting differential geometry, 

computational techniques and applications. 
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For the mathematically sophisticated the main goal was to communicate the idea that 
there is really a new way of thinking about precisely differential geometry of curves and 
surfaces. And there is a rich way of doing all of that through this medial representation 
along with the details. They will develop a lot of aspects and interest of all about. 

6.3.3.4 EL 

EL did not expect the audience to come out from his lecture with some deep and precise 

understanding of the mathematical concepts, but he hoped that they would remember the 

main question of the talk and that the visual material and the animations would have 

made a lasting impression on them. He wanted them to remember that mathematicians 

had various ideas and methods for filling the hole in Escher's lithograph. He hoped they 

would be intrigued by the infinite repetition suggested in Escher's work and that they will 

enjoy the idea. 

I think what they'll all remember mostly is the visual material. I think the stuff I said 
and the whole talking around will not be remembered as much as just looking at the 
animations. ... I hope that is what they'll remember. So I hope what they remember is 
that there are these pictures and these mathematicians have a way to look at them that 
when you can do these amazing manipulations just by sort of a change of perspective. 
Yes. And 1 think the main message they will remember is that there was this print of 
Escher which had a hole in it and there were some mathematicians who figured out 
what goes into it. Maybe they will remember that there is this infinite repetition in it. 
But the main thing they should remember is that mathematics is fun. That's all.... So 
when we are asked why we do mathematics we usually say that because it makes us 
happy to do mathematics. So if you want to be a happy person like me, then you will 
also do mathematics. [EL] 

Regarding EL's expectations about the audience, he said that he did not expect 

any previous knowledge about mathematics from the audience: "I think ... the best thing 

is to assume that they know no mathematics." 
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6.3.4 Popularizers' beliefs about effective means of communicating mathematics in their 

lectures 

6.3.4.1 ML 

In the interview, ML stressed that he planned to build his presentation on examples 

(mainly visual examples). 

...a quite general audience can still understand principles by examples. Typically -
visual examples. So if you can go through a specific example, describe the process for 
example in this context of this topic, the process is very simple. You have an object, the 
boundary is on fire. And the fire is eating its way to the inside of the object. Everybody 
can visualize that. And in the end they understand that finally the fire fronts hit each 
other and these are the regions we are interested in. So there is no mathematics really, 
that's all by example. [ML] 

He cited the idea of curvature as a concept that could be understood this way: 

...for example everybody knows bending of surfaces described in terms of a qualitative 
notion. The thing that precisely captures how much a surface is bending is the principal 
curvature and that's much more formal. Now from formal to abstract: a lot of the 
abstractions that people can understand in the world of mathematics as they can 
visualize it and they are familiar with this intuition. And once you are familiar with it, if 
they had the training and calculus and linear algebra of course, they can pick up enough 
of the basics to figure out, to understand what curvature is, what the principal curvature 
is. [ML] 

He also stressed the use of animations and analogies in the presentation. For 

example, he intended to introduce some mathematical notions he used in the talk, such as 

the idea of divergence and flux. For this purpose, he used the picture of the panther, on 

which he also demonstrated the method he used to find the medial locus. 

... the panther shape where I showed what this distance function is. Everybody can see 
that. If there is a move away from the boundary it gets brighter. That's intuitive. And I 
said let's compute the derivative; it looks like this flow. Everybody can visualize what a 
flow is. Even if they haven't understood [it] precisely. That intuition is simple. And 
then you sort of throw in this idea that you can compute the divergence of a vector field. 
People don't really know what that means, but they can imagine that there is a medium, 
and there is a flow and there are particles. And maybe the flow is pushing the medium. 
And intuitively divergence captures what's happening. So I think it's, it's useful to have 
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the mathematics. They may not understand the notation but they could understand the 
description of the problem being solved. ... Because people remember the examples. 
[ML] 

At the same time, expecting that computer scientists and mathematicians will be 

in the audience, ML also included a technical layer in his talk. It was as if he was a 

multilingual tour guide offering explanations in all languages spoken by the tourists in his 

group. 

Based on the feedback ML received from the audience after the talk (the lecture 

was followed by a small reception where interested participants could talk to the 

lecturer), he considered it successful. 

I think it was at the right level. That's my sense, that's the feedback I got... [From] the 
questions I have received, I got the feeling that the audience really did understand the 
problem and what I wanted them to understand. 

He described his experience during the reception as the following: 

They remember that thinking about a medial locus could address that problem. And 
certainly the biologist would be curious about the way to discover certain significant 
descriptive differences or similarities between shapes that would be useful for that 
particular example, analysis of fossils, or evolution of species, or such things. So they 
remember the aspects that we can compare objects by this representation. So I think 
they remember quite a bit. They remember the model and they remember some of its 
applications. They all understood the idea of lines through the center of some structure. 
So they remember the examples shown. And they understood that once you have this 
representation you can get back the boundary. That they understood. But mostly by the 
examples. They probably will not understand the detailed notation, or the process, or 
even the algorithms. But they might understand that there is a physical principle that 
explains it all. And once you read about it again maybe you'll remember it. Many of 
them admit that they didn't have the mathematics to dispute the theory, but that the 
examples were suggestive. [ML] 

In response to the question about what he would change in the presentation, ML 

mentioned that time permitting, he would have talked a little more about the technical 

details such as the models used, and on graph matching for searching algorithms. 

Given a little more time, I would have explained more clearly... how these models were 
created, what their medial structure is, what graph matching is about. There is a huge 
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field which is both mathematics and computer science and graph theory and subgraph 
isomorphism, related to the problem. I am certainly not an expert on that but it's a wide 
field and to describe the nature of that field also takes some time. So I wouldn't really 
attempt to change the content so much. 

6.3.4.2 EL 

EL devoted a substantial amount of time in the interview to discussing the problem of the 

level of mathematical rigor in popularization. He claimed that it is not necessary to give 

up rigor and proofs in popular talks, however, it has to be presented in an appropriate 

style. 

Well, I think [a popular lecture] can be very rigorous. But in a certain style, I think. So 
for instance, suppose [that in the audience, some] people are working in law. They have 
a notion of proof and we have a notion of proof. I think people can appreciate very strict 
logic. So I think you can do a proof in a general audience lecture. [EL] 

Rigor, however, should be subordinated to the clarity of the presentation: 

Well, if you state that something is true but really there are technical conditions that 
need to be satisfied before it's true, yet you don't really need them [for what you want to 
say in your talk], then the whole lecture is better off by your omitting them. If this 
would disturb you too much as a mathematician you can say that something is 'usually 
true'. So that you compromise on the precision of the statement but, the usual way a 
mathematician would proceed just by stating these conditions, that is not the way for a 
general audience lecture. You don't want to bother people with complicated details 
because it will only detract from the main story. 

EL was well aware that one has to be very careful in using mathematical 

formalism (and even the technical mathematical terminology) in popular talks. This was a 

major difficulty in popularization - a challenge - for him in preparing popular lectures. 

He had to find means to convey mathematical ideas otherwise. Similarly to ML, EL 

resorted to "translating" mathematical concepts into natural language and pictures, using 

analogies with familiar things and visual aids. 
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So I think the main problem of communicating mathematics is that mathematics is a 
stacked science. In the first year you learn words that you use in the next year and you 
learn more words and then after five years or maybe 10 years you use all these words 
like they are normal words with the very few people who know what you are talking 
about. Only the people who have done the same thing in your program. So if we talk 
about complex numbers, well to me, it is like talking about sandwiches. But I lose, if I 
am talking in front of a general audience, 90% of the people. They don't know what I 
am talking about. And so it is very easy for mathematicians to talk over the heads of the 
audience. And to miss them. I think the challenge for us as mathematicians is to phrase 
things by analogies or by visual aids or by other means to phrase things using only 
normal words. And not using our own terminology. And this is difficult. And often 
mathematicians will say, this can't be done. If somebody doesn't know what a finite 
field is how can I talk to them? Well, I say, think about a bit more and find a way to talk 
about it without using "finite fields". [EL] 

For these reasons, EL said, a popular talk requires a lot more preparation than 

teaching a class. Preparing the visual material and finding "substitutes" for the specific 

vocabulary takes time. 

...popular talks for me, it's a lot more preparation than teaching a class. When I teach a 
class it happens much easier for me. Because I am a mathematician and I am doing 
mathematics with my students. But for a general audience, a lecture is often much more 
depending on visual materials that you have to prepare in advance. I have to think more 
about what it is that I want to say. When I teach, I use the mathematical vocabulary. I 
use all the terminology, which is so natural for me. And when I get a general audience 
lecture I have to avoid that. Or maybe use some terms but not in the way that are critical 
for the audience. So that is more work. 

Another difference with teaching he mentioned was the motivation of the 

audience. 

If you are teaching something, if you are teaching a course for the students, they come 
to your class and they will try to pass the exam. And so you can make them work. And 
they are supposed to really learn the subject. So I think it is very different from giving a 
general audience lecture. Because in a general audience lecture you don't want to lose 
people. What you want to get, of course, is the inspiration. And if you teach, you want 
to actually communicate the real mathematics. And be precise, and really educate them. 
So I would say it is quite different. But, of course, if I want to..., it is important when 
you teach to inspire students as well. So, I mean a lot of... these skills are the same, but 
the focus is very different. 

Although EL has already given lectures on the same topics several times before, 

he said he constantly tries to improve the presentation often by adding more visual 

materials. EL learned from his experience with popularization to look at familiar things in 
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mathematics with a fresh eye and learned to see their potential for discovery for someone 

who is a "tourist" in this culture: 

I think I have learned that, for me, as a mathematician, I find certain things fascinating 
but other things I am completely used to and they are so normal that they are not 
fascinating anymore. But, for a general audience, it is often these things that I find sort 
of trivial that are already a big discovery for them. And so it is often, I think, that we 
tend to undervalue our own mathematics. And we think that oh, that I have to tell more, 
or we have to make it more, but already just explaining something that for us is really 
very simple, it can be a big discovery for someone else. I think we have a tendency to 
make things too complicated before we think they are interesting. But that material can 
be interesting for someone else. 

6.3.5 Comparison of the lecturers' views 

I end this section with a comparative summary of ML's and EL's views of mathematics 

and popularization. Based on the interviews, the two lecturers expressed considerably 

different views of mathematics. For ML mathematics is a tool that offers a rich way for 

developing methods useful in science and engineering with a smooth transition between 

pure and applied mathematics. In contrast with ML's mostly utilitarian image of 

mathematics, EL considered mathematics as a creative art with rapid progress and with 

various open problems people enjoy doing. 

Besides their different views on mathematics ML and EL considered 

popularization also very differently. ML interpreted the activity mainly in terms of the 

deficit model as its goal is spreading information, although he intended to give a 

presentation at three levels50 depending on the audience members' background and 

expressed his expectations according to the different audience groups. Thus, he behaved 

" This approach is used also by other popularizers, for example Penrose (2004) also intended his book to 
be read at four levels from the general audience to the experts. 
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rather as a multilingual tour guide trying to provide the appropriate translation for the 

different groups in the audience. As means of the translation, he used analogies and 

images, computer implementations and symbolic representations. EL, on the other hand, 

wanted to invoke interest and show that mathematics is "fun" and inspiring. It seemed 

form the interview, that he interpreted popularization mostly in terms of the intercultural 

model, where he, as a tour guide offers a glimpse into the mathematical culture. Although 

the tour included both mathematicians and "outsiders" it seemed that he rather focused on 

the latter group. He provided a translation of mathematical ideas by means of animations 

which he continually improved over time. Unlike ML, he did not expect the audience 

members to remember any details of the presentation except probably the main question 

and the fact that mathematicians solved it. 

ML was more satisfied with his performance than EL was, and did not see as 

many challenges in the task of popularization as EL did. Yet, as we will see in Chapters 7 

and 8, some of ML's audience walked out with a rather negative attitude towards 

mathematics, while all interviewed audience members of EL's lecture found that it was 

"fun". 

6.4 CONCLUSIONS 

Popularizers as a collectivity possess a lot of experience and knowledge about the 

challenges of popularization and various means to overcome these challenges. It is a 

disappointing, however, that this knowledge remains, to a large extent, the individual 

popularizers' private knowledge and that there is no platform where this knowledge could 

be made explicit and transmitted to the novices in this special practice. 
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CHAPTER 7 

ANALYSIS OF INTERVIEWS WITH MEMBERS OF THE AUDIENCE OF 

POPULAR LECTURES. 

PART I. AUDIENCE MEMBERS' CULTURAL LENSES 

7.1 INTRODUCTION 

In this and the next chapter, I will analyze my interviews with audience members of the 

"Medial representation" and the "Escher" lectures. In this chapter, I will describe the 

audience members' "cultural lenses" (background, images of mathematics, previous 

experience with popularization and reasons for coming to the talk), that may have 

influenced their perception of the lecture. In the next (Chapter 8), I will focus on the 

audience members' perceptions of the talks (understanding, opinions). 

In Section 7.2, I will describe the procedures of choosing the participants and 

administering the interviews. Section 7.3 will contain a description of the "Medial 

representation" audience members' cultural lenses; Section 7.4 will do the same for the 

"Escher" talk. In the final Section 7.5, I synthesize the results and discuss them in the 

light of the literature on people's images of mathematics. 

7.2 PROCEDURES 

7.2.1 Recruitment of audience members for the interviews 

1 engaged in recruitment of candidates for the interview before the lectures, as well as 

during the receptions after the lectures. Before the lectures, 1 would ask several of my 
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(mainly non-mathematical) acquaintances and fellow graduate students if they would be 

interested in attending the lectures and be interviewed afterwards. Unfortunately, people 

were generally very reluctant to be interviewed, even if they were interested in attending 

the lectures. Many were discouraged from coming to the "Medial representation" lecture 

already after hearing its title. The late evening (after 8 pm) timing was a deterrent for 

attending the "Escher" lecture. Among those finally recruited prior to the lecture, some 

already held a degree in mathematics. Participants recruited before the lecture knew that I 

was going to interview them, but 1 did not tell them what questions I was going to ask. 

During the receptions held after the talks, I also tried to find participants to be 

interviewed by choosing audience members randomly. A few people agreed, and I 

contacted them later by email and phone, and finally a small number of them agreed to be 

interviewed. The sample may be not very representative especially that most of the non-

mathematicians I approached refused to be interviewed. 

Finally, 1 managed to recruit six audience members after the "Medial 

representation" (four were non-mathematicians) lecture and the same number of 

participants after the "Escher" talk (three were non-mathematicians). All but two of them 

were non-native English speakers. All were fluent in spoken English, however, and had 

no difficulty understanding the lecturer. Two interviewees were Hungarian and 1 

interviewed them in this language which happens to be my mother tongue. For the 

purposes of quoting in the thesis, 1 translated some parts of these interviews into English. 

The interviews took place within a week after the lectures. 
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7.2.2 Interview questions and their rationale 

The interview was based on questions about 

1) the participants' background (especially their mathematical background), 

2) their image and attitude toward mathematics, 

3) their previous experience with popularization of mathematics and science, 

4) their reasons for choosing to attend the talk, 

5) their general opinion about the presentation, and 

6) what they understood from it: I asked participants to summarize the talk and 

mention some details that they found engaging. 

The questions were not necessarily asked in this order in the interview, which was 

conducted as an informal conversation. 

1 will give an account of participants' responses to questions 1 to 4 in this chapter 

and to questions 5 and 6 in the next. 

Questions 5 and 6 have been the main motivation for my research on 

popularization of mathematics. How can we distinguish between good and bad 

popularization, if we don't know what effect it has on the audience - a general audience, 

that is, and not only the mathematicians on, say, the JPBM Communications Award 

committee? Why spend so much effort on preparing popular talks and writing popular 

books if one needs to have studied mathematics at the university to be able to understand 

them? What does someone without training in mathematics understand from the popular 

talks and books? How can we improve popularization if we don't even know what is 

wrong with it from the point of view of the audience? 

Questions 1 to 4 were supposed to provide a context and perhaps some 
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explanation to the interviewees' responses to Questions 5 and 6. If, as argued in Chapter 

2, popularization can be considered as intercultural communication about mathematics, 

then it is important to know something about the audience members' "cultural lenses" 

since these will inevitably filter what they hear and see. I assumed that aspects of cultural 

lenses that are relevant in the context of popularization of mathematics are related to 

people's mathematical background, their images of mathematics and previous experience 

with popularization. 

7.3 CULTURAL LENSES OF THE "MEDIAL REPRESENTATION" AUDIENCE MEMBERS 

This section is devoted to describing the "Medial representation" audience members' 

cultural lenses. That is, 1 will present the interviewees' mathematical background, 

summarize their views on mathematics and on popularization and end with a synthesis of 

all these. 

7.3.1 Interviewed audience members' backgrounds 

After the lecture on medial representations, I interviewed six participants, of which four 

were non-mathematicians. In the following, I will describe in detail the profiles of only 

one of the two mathematicians (Ml) and all four of the non-mathematicians. (I chose to 

present the profile of only one mathematician since the interviews with mathematicians 

were quite similar to each other from the point of the questions I address in the thesis.) Of 

the four non-mathematician audience members, two persons (Gl and G2) could be 

considered as representatives of the general public (in the sense given to this category by 

the lecturer, see Chapter 6), and two (CI, C2) had a computer science background. 

All interviewees had post-secondary education; even those whom 1 classified as 



160 

representatives of the "general public", namely Gl and G2. 

Gl had a degree in psychology and took some courses in statistics during his 

studies. He had some superficial familiarity with mathematical applications and research 

through his wife who had a PhD in mathematical biology and was on a post-doctoral 

fellowship position in this area at the university where the "Medial representation" 

lecture was taking place. He described his knowledge of mathematics as very basic: 

"mathematics for me is just fundamentals; maybe basic equations but not too much". 

G2 was an undergraduate student of biology, and, at the time of the interview, 

was at the earliest stage of post-secondary education amongst all the interviewees. Her 

last "pure mathematics" class was Calculus at the university four years earlier, but she 

also took some courses in mathematical applications to biology. 

CI and C2 had engineering degrees in computer science areas. CI was working 

on her PhD and C2 already had a PhD. Both needed mathematics in their doctoral 

research, CI more extensively than C2. 

CI had a Bachelor of Engineering degree, a Master's degree in software 

engineering, and was currently working on her PhD thesis in telecommunications 

engineering. She planned to use optimization methods in her research, combining 

mathematics, computer science and engineering and, to prepare to study linear 

programming more closely in the near future. 

C2 studied computer systems engineering and completed her PhD in biomedical 

sciences. She mentioned that she used statistics and tools related to dynamical systems 

but she stressed that, outside of her field, she knew only the "basics" of mathematics. 

Ml was on his way to become a research mathematician. At the time of the 
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interview, he was working on a doctoral thesis in mathematical physics. He took courses 

in differential geometry and differential equations, and therefore belonged to both the 

group with a background in advanced calculus and advanced differential geometry and 

the group with a background in differential and partial differential equations, named by 

the lecturer (see Chapter 6). His choice of mathematics as an area of doctoral study was 

motivated mainly by his high school experience with the subject in his home country (not 

Canada). Mathematics was considered a key subject and being good at it meant a lot; it 

made those who were good at it "feel successful". He was selected to follow an enriched 

mathematics program during his secondary education, was successful in it, and became 

"stuck with mathematics"; his career choice was determined. 

7.3.2 Interviewed audience members' images of mathematics 

7.3.2.1 Gl 

Gl, the psychologist, said he used to think of mathematics as being useful mainly as a 

mental exercise or challenge, its only applied area being statistics. Now, however, seeing 

what his wife was doing, and going to popular and professional lectures in mathematics 

with her, he was starting to view it more as a tool for science: construction of models, 

solving problems using these models in various domains. 

Before I attended these talks, I used to think about mathematics in terms of statistics or 
in terms of its use for exercise. But now, 1 think mathematics is a fundamental basis for 
research and for psychology. 

More frequent contact with mathematicians also had an effect on his opinion 

about mathematicians and mathematical symbolism. 

Because I have learned that mathematics is a very fundamental researching tool, now I 
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think mathematicians are more human, more interested in real life. Because before I 
used to watch mathematics as a science of symbols without [any] sense. But now I have 
learned that it makes sense to see symbols and concepts of the real life. 

Operating with mathematical symbolism, for Gl , became an exteriorization of a 

process of mathematical thinking, especially after he saw the movie The Beautiful Mind, 

based on a biography of John Nash: 

To see the mathematical signs in The Beautiful Mind and to see the guy drawing them 
was important to me because I understood that he has a main thing in his mind and he 
has a.process in his mind running. 

This idea was reinforced through his observation of his wife's work and attending 

with her the seminars in the biology department. 

7.3.2.2 G2 

G2 saw a sharp distinction between pure and applied mathematics. Applied mathematics 

is something closer to "everyday people". Doing pure mathematics, on the other hand, 

does not mean much for most people. It can be a very "satisfying" activity, but requires 

special abilities, and only "smart people", with "a lot of brain" can do it. 

So, I think, the more theoretical stuff; like, to me is just, wow, like, I can't handle it, like 
it's not just that I can't handle, it's like I could never do that, you know what I mean. If 
it's applied, I think, it is more... in touch, maybe? ... You have the people who create all 
these theorems and the people who take this theory and apply. And I guess I have more 
awe for the people who do this theory. 

You start algebra in school; you will never use it in your life. And you never use 
geometry in life unless you are an architect, and you never use calculus unless you are a 
physicist... Anyway, that's the thing, since we start algebra you're never going to use it 
again in your life unless you pursue a career in it. I think statistics is the one, you know, 
something that you can really need in your life. 

Thus, G2 had a lot of admiration for mathematicians, people able to do the pure 

mathematics, but saw herself as unable to "do the theory". 
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7.3.2.3 CI 

CI stressed that she always loved mathematics. This subject attracted her most from the 

primary school on. Mathematics in her home country, however, she said, was taught as a 

"pure science". In primary school, she said she "loved the logical aspects of it because 

everything was making sense. There were no vague parts.... In the primary school, 

everything was very clearly defined and... two plus two is four, there is no discussion 

about it.... Logic and mathematics, I saw them as the same thing". She enjoyed 

abstracting patterns from relations among objects and formulating them in a 

mathematical language. In high school, however, she started questioning this "pure 

science" approach to mathematics. 

I wanted to do math and continue with math, but then math in my home country was 
pure science. The only application of it was to become a teacher and teach math again. 
So that part I found a bit obscure, it was not as lively because I believed that there must 
be some application of all this formalism and all these theories. But I couldn't see. 
Then..., in high school, we had a bit of linear programming, and that part, oh yeah, that 
was it, but it was still very limited. In that part, I could see that you can apply it in your 
daily life. It is something that applies. It is not just the logic, logic, all the pure science. 
Just to teach it again... to the next generation, and again, and again. And what to do 
with it? How do we apply it in life? So that part was a huge question mark in my head 
and nobody could answer that, or maybe I just didn't know how to ask it. But it was sort 
of my dilemma in math. Is it math for math's sake, or math for life. I couldn't see the 
application of it. 

She appears to have finally found her way to applied mathematics by going into 

engineering at the university level, and now doing a PhD in telecommunications 

engineering. 

7.3.2.4 C2 

C2 did not say she "loved" mathematics, but accepted it as "a fundamental tool for 

science in general" (including social and human sciences). Like the previous audience 
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members, she distinguished between pure and applied mathematics, but talked more 

about the difference between pure and applied mathematicians. She described pure 

mathematicians as those who understand the things that she doesn't, but who are also 

"cold" as people, in contrast to those working in applied fields whom she saw as more 

sympathetic toward non-mathematicians. 

7.3.2.5 Ml 

In high school, for Ml, mathematics consisted mainly in solving problems that, while 

challenging, were still school problems to be solved and stop there. They were not 

problems that would lead to the need to broaden one's knowledge of an area and further 

investigations. He only developed this attitude later, at the university, under the influence 

of his professors and engagement in research. He felt that the "problem solving view" of 

mathematics is not enough for a mathematical career he intended to pursue. 

[It is not enough] if someone stops at the point when he is able to solve all the problems 
correctly but it doesn't generate anything in him, like thinking about it further, like 
thinking 'How interesting, I would like to read more about this'. 

To describe his present image of mathematics, he used the metaphor of exploring 

a land, which, for him, was still "largely undiscovered" and "beautiful". 

Mathematics is like a vast, largely undiscovered landscape: some parts of it you know 
by heart (you walk there every day), some parts you have seen from a birds-eye-view 
and admire its beauty from a distance. 

He did not distinguish between "pure" and "applied" mathematics as sharply as 

G2 and C2. He just said that he was interested in knowing about useful applications of 

mathematics. 
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7.3.3 Interviewed audience members' images of popularization of mathematics 

Gl and G2 had rather opposed motivations in attending popular talks in mathematics. Gl 

wanted to deepen his understanding of his own domain (psychology of scientific 

thinking). G2 wanted a distraction from her own domain and learn something different. 

7.3.3.1 Gl 

As a psychologist, Gl was interested in cognitive processes relating thought and speech. 

Popular talks were, for him, an occasion to observe these processes, not in young 

children, but in mature scientists; not in cognitive development from birth to adolescence, 

but in the development of the scientific method. The scientific facts or results presented 

in the lecture did grab his attention to start with, but he was really attending to the 

cognitive processes engaged in scientific knowledge construction: 

I am interested in the way they express, the way they organize the information, which is 
a scientist's way. I always try to find out how they organize the information in their 
head, in their brain. I always attend these talks because I know the psychological 
approach to it. How people organize thoughts, how people raise the concepts to the 
order of speech,... the scientific method. 

7.3.3.2 G2 

G2 would go to lectures in domains other than her strict area of study because she 

enjoyed learning something new or different: "if you like learning, you like going to a 

lecture where something different is taught". She mentioned that she "wandered into" a 

physics talk before, but she has never attended talks related to mathematics prior to the 

"Medial representation" lecture. She came to this particular lecture not just by curiosity, 
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however, but because, in one of her compulsory courses, she had an assignment to attend 

a mathematics or computer science lecture and write a report on it. She chose the "Medial 

representation" lecture because it fit her schedule. She took notes during the lecture, 

wrote a report and made it available to me. 

7.3.3.3 CI 

CI came to the lecture upon my request and agreed to be interviewed after. During the 

interview, she mentioned that in her school years she regularly participated in 

mathematics competitions. She viewed popularization as a means to influence the image 

of mathematics not only among the general public but also among engineers. For her, this 

image (also in engineers) represents mathematics as a "septic, dry" domain with "a lot of 

logic", that is also "nasty" and "scary", and so difficult that "you have to kill yourself to 

understand" it. Showing applications of mathematics was a way, for her, to make it more 

meaningful, understandable and less scary. She said that seeing applications of 

mathematics was crucial in her career choice. Showing applications in popular talks must 

be properly done, however; it must be understandable. She was disappointed with this 

particular talk because she could not understand the mathematical content of the lecture 

although she expected it from herself. 

7.3.3.4 C2 

C2 did not have much experience in attending popular talks in mathematics; rather, she 

would read popular science sections is daily newspapers, and more specialized magazines 

(such as Scientific American). She mentioned that reading popular literature helped her in 
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her research work. When she wants to look up something with which she is not yet 

familiar (especially in relation with medical issues), popular literature and websites are 

often her first sources of information about the topic. She goes on to more specialized 

professional literature only in a second step. C2 considered popularization as a very 

important tool in spreading scientific knowledge, and emphasizing its methods and its 

demand for objectivity. If people are more interested in science and understand it better 

then they are more willing to support it financially. They are also better prepared to 

distinguish between science and pseudo-science. She saw, however, a dilemma here: to 

popularize science, it must be simplified; but if it is overly simplified, then the difference 

between science and pseudo-science is harder to see. 

7.3.3.5 Ml 

Previous experience of Ml with popularization included mainly reading books such as 

Simon Singh's book Fermat's Last Theorem (Singh, 1997), James Gleick's Chaos: 

making a new science (Gleick, 1987), and George Polya's How to solve it (Polya, 1973). 

The first two of these books were recognized by the JPBM Communications Award. To 

Ml , these readings served as a motivation for his later studies about a particular subject. 

As for the way such books can be read by non-mathematicians, he proposed that the aim 

of popularization is to give a "general view" of the work of mathematicians, and 

convince the public that mathematics has many useful applications. The lecture he just 

attended did that and this is why he liked it. 

7.3.4 Synthesis 

All interviewed audience members stressed the applied aspects of mathematics and had a 
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positive attitude towards these aspects. 

For Gl and C2, mathematics was a tool for science. Mathematics without 

applications ("pure mathematics") appeared to them as senseless manipulation of 

symbols, for the sake of training one's own mind as a student, and the minds of others as 

a teacher. Those who practice this kind of mathematics appeared as distant, cold, and 

unsympathetic towards others. 

The other three interviewees did not perceive pure mathematics as negatively as 

the previous two. G2 and CI, who distinguished rather sharply between "pure 

mathematics" and "applied mathematics", had a lot of appreciation for pure mathematics. 

G2 admired those who were able to do it (the "smart people"), although she did not think 

she could do it herself; CI enjoyed studying it because she liked the precise and clear 

definitions and the logical connections that made everything make sense. Both, however, 

craved for applications; G2 - because this was what she could do; CI - because this was 

what interested and intrigued her the most. 

Ml did not distinguish between pure and applied mathematics. He did not even 

mention "pure mathematics" and only used the word "applications" a couple of times, 

when saying, for example, that showing applications of mathematics is useful in 

popularization. For him, the important distinction was between a problem solving 

approach to mathematics and an investigative approach to mathematics. The difference is 

between stopping after having solved a problem, and using a problem to pose further 

questions. It seems that one can practice either, in both pure and applied mathematics. 

All but Ml had ambivalent feelings towards mathematics. For Ml mathematics 

was like a still "largely undiscovered landscape", and "beautiful". In other members of 
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the audience, negative feelings were expressed mostly in connection with "pure math"; 

even CI, who enjoyed the "pure math" approach to mathematics in elementary school, 

eventually was disenchanted with it. Pure mathematics was associated mostly with 

negatively laden expressions such as "science of symbols without any sense"; "algebra, 

you are never going to use it in your life"; "obscure formalism"; "septic"; "dry"; "nasty"; 

"scary"; "cold"; "not sympathetic to non-mathematicians"; "[can be done only by] smart 

people... but I can't handle it"; "I could never do it"; "something I can't do"; "you have 

to kill yourself to understand it". It was only very rarely associated with positive feelings: 

"[thanks to] logicfal connections] everything was making sense"; "everything was clearly 

defined"; "[can be a] very satisfying activity". Applied mathematics gained praise for 

being "more human"; "more interested in real life"; "closer to everyday people". 

Regarding images of popularization of mathematics, it was interesting to note 

that, in responding to questions about popularization of mathematics, Gl did not seem to 

make a difference between the departmental research seminars and popular talks. It was 

as if he treated both as popularization, because, in the departmental seminars, he was an 

outsider, like a tourist in a foreign land, observing the natives of a domain in their natural 

habitat. 

Therefore, popularization is not a property of a talk, or a book or some other 

event, but a property of a relation between the speaker (author, animator) and the 

audience member (reader, participant). 

This relation must involve "intercultural communication", whether there is a 

conscious effort on the part of the participants to make this communication more 

effective or not. Something to this effect is mentioned by Penrose (2004, Preface) when 
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he compares the reading of his book at the level of skipping all mathematical formulas 

with his reading, as a child, chess magazines without understanding the technical notation 

describing the detailed moves, but attending to the stories of the exploits of the chess 

masters. These magazines were certainly not written in the intention of popularizing 

chess among people who have never played chess; they were written for active chess 

players. Yet, the rapport of Penrose with these magazines was a "popularization relation". 

Interviewees' responses suggested several reasons for participating in 

popularization (reading books, attending talks): 

- To understand one's own domain better 

- To understand real life better 

- To learn something about a domain totally different from one's own 

- To get an initial basic information about a topic related to one's own work 

- To find inspiration for further research in mathematics. 

The suggested purposes of popularization of mathematics were: 

- Popularization of mathematics amongst secondary school students helps them 

make career choices. 

- Convince people that mathematics makes sense and is interesting by showing 

them a wide variety of applications of mathematics. 

- Change negative images and attitudes towards mathematics amongst engineers. 

- Spread scientific knowledge and distinguish it from pseudo-science. 

7.4 CULTURAL LENSES OF THE "ESCHER" AUDIENCE MEMBERS 

I interviewed six people after the "Escher" lecture. Among these six people, two were 
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non-mathematicians, one studied Political Science (interviewee PS) and the other -

Microbiology (Mb). Another interviewee was an undergraduate student of physics (in a 

program with strong emphasis on mathematics). The other three were graduate students 

in a mathematics department. One of the three was in a master's level mathematics 

education program (ME), and another one was doing her master's degree in mathematical 

physics (MPh). I chose to describe in detail the cultural profiles of PS, Mb, ME and MPh. 

(I included only one student of mathematics as the interview with her represented the 

behavior of the other two students in mathematics or in a mathematics-related domain 

quite well.) 

Contrary to the "Medial representation" lecture, the "Escher" lecturer did not 

classify his expected audience into "general public" and other groups. Therefore, 1 cannot 

treat the interviewees as representatives of the lecturer's groups. I can only propose my 

own categories. In an effort of having some analogy with the categories of interviewees 

in the previous lecture, I will consider PS and Mb as representing more or less the 

"general public" since they were non-mathematicians and worked in domains not related 

in any way to the theme of the lecture. As a mathematics educator, ME was already 

closer related to the theme of the lecture, since Escher pictures are being used in teaching 

as motivation for the introduction of geometric transformations. In this sense, she 

corresponds to CI and C2 in the previous lecture. Finally, the mathematical physics 

student MPh corresponds to Ml, since they both regarded themselves as mathematicians 

and worked in the same domain. 
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7.4.1 Interviewed audience members' backgrounds 

When PS was in a social sciences and humanities program at College, she took classes in 

mathematics as electives. She has not taken mathematics courses at the university level. 

Mb had a Bachelor of Science degree in microbiology, and worked in this area "to 

a certain point". At the time of the interview, he mentioned marketing as his current 

occupation. 

EM was a graduate student in a master program in mathematics education but she 

already had an MSc degree in mathematics. She said that she chose to study mathematics 

at the university because she liked mathematics in school. She never planned to become a 

research mathematician, however, and was more interested in its teaching and in 

applications of mathematics in finance and actuarial science. 

MPh was a graduate student in mathematical physics. She chose to study 

mathematics at the university partly because her family motivated her to do so (her father 

and brothers were engineers or mathematicians), and partly as a result of her positive 

experience in school. 

7.4.2 Interviewed audience members' images of mathematics 

7.4.2.1 PS 

PS said that she liked mathematics and found it "interesting" and "fascinating". She 

stressed, however, that she found it interesting only when she could understand it. She 

was attracted to "the whole mystery of mathematics". Part of the mystery, for her, was 

the inborn "gift" for mathematics that some people appear to have while others do not. 
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[Mathematicians are] people who have that capacity. It's a gift. It's a gift to be born 
with. People have it and they know they have it and use it. And once you have it you 
could use it or not. It's very interesting. 

She would pay attention to news about mathematicians, published in newspapers. 

She was aware of a Fields medal being awarded to Grigori Y. Perelman in 2006, which 

made news a few weeks before the interview and was in newspapers all over the world 

not only because one of the long-standing mathematical conjectures (the Poincare 

conjecture) was finally proved but also because Perelman refused to accept the award and 

did not come to the awarding ceremony. There was certainly an aura of mystery 

surrounding Perelman and PS must have been extrapolating his genius and eccentricity to 

all mathematicians at the time of the interview. 

7.4.2.2 Mb 

Mb said that he "always had a passion for mathematics when he was young" and he was 

in a group of young people with similar interests. Some of his "buddies" went on to study 

mathematics, but he decided to use mathematics as a tool in another science rather than 

"do research with it". For him, "mathematics is definitely a tool that every scientist must 

use", and it is also "a tool that you can use every day for everything". One doesn't have 

to be a mathematician, however, to be creative with mathematics; he said that he was 

"praised for being more creative" than his friends, the mathematicians. While he believed 

that "anyone can be a mathematician", he observed that mathematicians have certain 

"distinctive" characteristics in common: "interest for complicated things"; "interest for 

putting things in order"; "rememberfing] patterns that it would take somebody else more 

time [to remember]; "[ability] to simplify some concepts to people". 
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He was interested in the life and work of mathematicians (especially Arabic 

mathematicians), because "there should be a good story behind each of them" that could 

show that "they are not as geeks as you think". For Mb, mathematics (and science as 

well) was part of general culture, as he considered himself as an "eclectic" person by 

saying: 

I like to know about everything. Because this is odd. I can tell you something that I love 
mathematics and all that. And at the same time I love literature and philosophy. Highly. 
Some people think that if you like one you shouldn't like the other. 

This was why he perceived himself as being similar to mathematicians since 

"[y]ou should go back to history. The biggest mathematicians became the biggest 

philosophers, actually". 

7.4.2.3 ME 

ME saw many different aspects of mathematics and did not have a clear dislike of any of 

them. Similarly to PS, ME stressed she generally liked the parts of mathematics that she 

could understand. She was not interested in becoming a mathematics researcher herself 

and was interested in applications, but this did not mean that she did not appreciate the 

value and interest of pure mathematical research. Her husband was on his way to 

becoming a research mathematician, her mother was a mathematics teacher, so 

mathematics and the different rapports one can have with it were very much part of her 

everyday life. She considered mathematics as an activity that first of all requires 

creativity. 
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7.4.2.4 MPh 

MPh described mathematics as a language that helps to model and therefore understand 

real life situations. It seemed that the lecture provided a link between the mathematical 

theory she learned in classes and the applications to "real life situations" which turned out 

to be related to art in this case. She perceived that "related to the lecture, mathematics is 

useful" by saying: 

It was very nice [to see] actual things that we study in mathematics... So I found it very 
beautiful the use of functions we actually were studying in complex analysis. They can 
complete pictures, it's amazing... I couldn't imagine that they can be used like that. 
Sometimes, it seems so abstract that we would never really think something about that. 

7.4.3 Interviewed audience members' images of popularization of mathematics 

7.4.3.1 PS 

As mentioned above, PS liked to study mathematics and was well-informed about 

mathematical "news", but she did not seek to know more about mathematics through 

attending popular talks or reading popular books in mathematics. 

7.4.3.2 Mb 

Mb said that he would go to popular lectures quite often: 6-10 popular talks per year. He 

seemed enthusiastic about the idea of popular talks by saying: 

I think the idea is wonderful. To have those kind of talks and because, you know, we 
call this general culture. 

He also read popular books about mathematics and physics. He quoted, among 

others, the names of Hubert Reeves and Stephen Hawking. His reason for going to 
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lectures and reading was to broaden his "general culture". This was also what he 

considered to be the purpose of popularization: spreading scientific information to the 

interested public. 

7.4.3.3 ME 

ME did not have much previous experience with popularization. When I explicitly asked 

her about lectures, magazines, books or competitions, she said that since she did not like 

reading books in general, she did not read popular works in mathematics, either. She did 

participate, however, in a few mathematics competitions because she appreciated the 

challenge. In each case, she would seek advice of her teachers, to tell her if they thought 

the challenge would not be too big for her. 

Popular talks, for ME, were nothing more than "enrichment activities" within 

institutionalized mathematics education, attended by and intended for mostly teachers 

and students. 

I think it is mainly for people that already live in an academic environment... It is for 
those who already feel a need for a cultural, scientific, or whatever information. Those 
who want to know what research is all about. And not tired. Because these are 
educational-like programs.... You sit down and learn something. But most of the people 
are tired. They just finished work and don't want to learn any more or use their mind 
after a hard day. 

She interpreted popularization rather broadly, without institutional constraints; for 

example, talking about one's mathematical work to family and friends who are not 

mathematicians also counted as popularization for her. Participation in enrichment 

programs and reading books other than textbooks in preparation for an examination were 

other examples, for her, of participation in popularization. ME came to the lecture 

because one of her professors recommended it as an additional source for a project she 
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was working on. Thus the position from which she was looking at the popular talk was 

similar to that of G2 in the previously discussed lecture: popularization is used as an 

extended school task (e.g. used as enrichment) and puts the participant in the role of a 

student. 

7.4.3.4 MPh 

When asked about her previous experience with popularization, MPh said that she had 

none unless reading science fiction counts as such. Her attendance of the "Escher" 

lecture was rather an exception. She found information about the talk among the 

mathematical announcements, on a university web page containing mathematics related 

events aimed primarily at mathematicians and university students of mathematics. She 

chose the lecture because she was interested very much in things "that involve magical 

mathematical works", such as the pictures of Escher and Dali. She perceived this type of 

popular lecture as a way of changing the popular image of mathematics. She knew people 

thinking that the work of a mathematician consists in being good at sums, being fast at it, 

smart and thinking all the time, and that mathematics is finished and involves mainly 

calculations. The lecture provided a good way to challenge this view. 

7.4.4 Synthesis 

Generally, the interviewed audience members displayed a positive attitude towards 

mathematics. The attitude was nuanced in PS and ME who mentioned that they like the 

mathematics that they can understand. Both considered that mathematicians are special 

people. ME attributed it to the fact that doing mathematics requires creativity while PS 

considered it as an inborn gift, which one either has or has not. 
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Mb, on the other hand, believed that anybody can be a mathematician. Still, being 

a mathematician means to develop certain distinctive skills such as noticing and 

remembering patterns, and interest in complicated things that they are able to simplify. 

Both Mb and MPh stressed the relationship between mathematics and real life. 

MPh saw mathematics as a language that helps to describe and model real life situations. 

Mb considered mathematics as a tool for science and "everything" because it simplifies 

things and helps to see a pattern. Besides this rather pragmatic view of mathematics, both 

stressed its connection to general culture, as MPh expressed her interest in "magical 

mathematical works" done by artists and Mb was attracted not only to mathematics but 

also to literature and philosophy, and stressed that, in history, mathematicians would 

often turn to philosophy to answer questions that mathematics could not solve. 

Compared to the first lecture, no sharp distinctions were made between pure and 

applied mathematics by the audience members. Only Mb mentioned "pure mathematics" 

once, when saying, "1 don't say 1 am a pure mathematician but 1 have a high interest in 

that and 1 certainly have a high interest in literature". They did not stress the difference 

between these two "kinds" of mathematics. In fact, PS seemed indignant that 

mathematical work developed within a different domain is sometimes not recognized as 

mathematics. She gave the example of John Nash, who got a Nobel Prize in economics, 

not mathematics: 

It's not mathematics, it was economics. It's like the math was in economics. And for his 
theory he got a Nobel Prize in economics. Not in mathematics because there is no 
Nobel Prize in mathematics. It's well known. So then he got a Nobel Prize. But he did 
do a lot of mathematics also. But still his theory got the Nobel Prize in economics. It's 
not relevant for mathematics? 
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The other striking difference between the interviews after the "Medial 

representation" and the "Escher" lecture was the balance between positively and 

negatively laden emotional expressions about mathematics. Although some of the 

"Escher" lecture interviewees mentioned that school mathematics may make people 

scared, the negative expressions were not many. Mathematics was rather considered as 

"interesting", "fascinating", "amazing", "fun", and mathematicians were described not 

only as special people with a "gift" but also as "human beings who found something that 

is interesting". 

Interviewees mentioned different reasons for participating in popularization, such 

as: 

- to learn about art and design (thus to learn about a nonmathematical topic 

corresponding to the lecture); 

- to be entertained, get distracted from classes; 

- to learn about applications of abstract knowledge learned in mathematics courses; 

- to use the acquired information for study; 

- to access certain information not available from other sources; 

- to learn new things; 

- to hear about interesting things in mathematics (without theory). 

They also suggested purposes of popularization such as follows: 

- to educate people (mostly within the academia) 

- to give a picture about culture in general; 

- to give credit to and promote Arabic mathematicians; 
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- to show that mathematicians are "not as geek as you think"; 

- to show a good story about mathematicians; 

- to show for the "people outside" that mathematics is not only about numbers; 

- to entertain. 

7.5 DISCUSSION OF THE RESULTS 

The above report of my interviews with audience member gives, of course, only a limited 

picture of their cultural lenses. My observations certainly cannot be generalized to 

popular lectures' audiences as such because the sample was very small and opportunistic. 

They may not even be considered as faithful representations of the cultural lenses of the 

interviewed people because their views may change in time and circumstances. A short 

conversation is often not enough to reveal the detailed aspects of these views. Thus 

drawing conclusions based on the interviews is certainly rather risky. There are, however, 

some lessons to be learned from these interviews. The striking difference between the 

emotional reactions of the non-mathematical audience members' after the two lectures 

cannot be just a coincidence. It is worth trying to understand what could have caused 

such reactions. 

Mathematics, in general, provokes strong emotional reactions in people, and, 

perhaps because of its rather universally fundamental role in education (it is taught 

everywhere), everyone has some image of it (Furinghetti, 1993). The general opinion 

among mathematicians and mathematics educators is that the public image of 

mathematics is bad, and should be significantly improved (Howson & Kahane, 1990; 

Ernest, 1996, 2004; Fiori & Pellegrino, 1996; Lim, 1999). This opinion is supported by 
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survey studies on images of mathematics, which, however, never addressed people as 

participants of popular events, but mainly as participants of formal education such as 

present or former students, or as teachers, mathematicians, or educators (e.g., Karsenty, 

2004; Mura, 1993, 1995; Sterenberg, 2008; Wilson & Cooney, 2002). Ernest (1996), in 

giving a general overview of the public image of mathematics, noted that mathematics is 

often perceived as a "difficult, cold, abstract, theoretical, ultra-rational and largely 

masculine" domain, seen as an abstract academic subject completely remote from actual 

life and professions (ibid, p. 449). 

Negative emotions towards mathematics were expressed more often by the 

interviewed audience members after the "Medial representation" lecture than after the 

"Escher lecture". These negative emotions, however, did not include the image of a 

domain "completely remote from actual life and professions". On the contrary, members 

of the audience were convinced that mathematics has many applications and the talk 

consolidated this view. All interviewed persons had positive and warm attitude towards 

the "applications" or "applied mathematics", which, in the talk, were conveyed by means 

of everyday language, vivid metaphors and dynamic visualizations involving familiar 

shapes. The negative emotions were associated with "pure mathematics", which, for the 

participants, appeared in the talk in the form of numerous technical terms, differential 

equations and graphs. These elements were completely out of reach for the audience and 

even the mathematicians did not fully understand how the differential equation was 

obtained, or what were, exactly, the experiments whose results were represented in the 

graphs. Some of the non-mathematicians were "shocked" or "distressed" by not being 

able to see the highly unobvious relations between the metaphors and pictures and the 
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technical mathematical elements of the lecture. This may have led to this striking sharp 

distinction between "applied" and "pure mathematics" evoked by the interviewees, and 

the negative emotions towards the latter. In the Escher lecture the technical mathematical 

terms and symbols were not so many (or at least not fundamental for following the 

lecture) and more closely intertwined with everyday language, pictures of everyday 

objects and art in the presentation. This could explain why people were not separating 

mathematics into pure and applied. 

On the other hand, this finding raises the question whether the distinction between 

pure and applied mathematics is widespread among the general public or not, and if yes, 

then do people generally have a better attitude towards applied than towards pure 

mathematics? It is also worth investigating if focusing on applications in mathematics 

teaching at school improves people's image of mathematics in general, or only of applied 

mathematics while pure mathematics continues to evoke negative feelings. 

Some existing studies suggest that answers to these questions may depend on the 

age of the subjects. For example, in Lim's (1999) study of public images of mathematics 

in the UK, younger respondents' attitudes were significantly more negative, compared to 

middle aged participants'. The research showed also that young UK respondents have a 

much more utilitarian view of mathematics than middle aged ones (ibid, p.171). This may 

imply that applications of mathematics do not necessarily make mathematics more 

attractive or likeable to young people. Perhaps focusing on aesthetic and cultural values 

of mathematics rather than on their utility would be more appropriate for this age group, 

as suggested by certain authors (Ammari-Allahyari, 2006; Betts, 2005). 
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Aesthetic and cultural aspects of mathematics, whether "pure" or "applied", may 

well appeal to any age group, as the audience's reactions after the "Escher" talk seem to 

suggest. Nobody was making the distinction between pure and applied mathematics, and 

many positive emotions were expressed in relation to mathematics as such. Interviewees 

emphasized that mathematics is "fascinating", "magical", "requires creativity", is part of 

general culture, etc. On the other hand, audience members found nothing "magical" or 

mysterious about the "Medial representation" topic; the talk was about useful research 

that could improve the accuracy of medical diagnosis based on pictures taken from inside 

a sick organ, a serious but not necessarily very aesthetic matter. 

The "Medial representation" was, indeed, very serious and was taken as such by 

the audience. The interviewed members of the audience generally interpreted the goals of 

the lecture in terms of spreading information and good for recruitment purposes by 

showing interesting mathematical applications. The "Escher" lecture was much "lighter", 

and the interviewees perceived it as entertainment. 

Moreover, as I will show in the next chapter, in the "Medial representation" 

lecture, the interviewed non-mathematicians somehow expected to understand more of 

the technical mathematical aspects and were disappointed with themselves, and this may 

have caused them to express so many negative feelings about mathematics. In the 

"Escher" lecture, the non-mathematicians did not feel they "should have" understood the 

technical mathematics. They felt like outsiders, "tourists", having fun in an exotic 

environment and so were not bothered by not understanding. 

1 can thus, so far, conjecture that, a lecture is more likely to induce positive 

feelings towards mathematics in the audience given the following conditions: 



184 

1) a closer connectedness between the mathematical notions and their visual 

representations, 

2) stressing the cultural and aesthetic aspects of mathematics rather than serious 

applications, 

3) making the encounter with mathematics entertaining, and 

4) avoiding giving the non-mathematical audience the impression that they should 

know or understand the technical aspects of mathematics shown in the popular 

lecture, 

1 was trying to confirm this conjecture with the existing literature, but I have not 

found many relevant papers. 

Somewhat relevant was Lim's (1999) paper. This research looked not only at 

people's images of mathematics, but also at the sources of major influence on these 

images. Besides mathematics teachers, parents, one's self, peers and the experience of 

learning mathematics in school, respondents also mentioned mass media. Some 

respondents said that their previous (negative) view about mathematics changed after 

watching mathematics-related television programs. It was not clear, however, what kinds 

of programs they were, and whether they satisfied the conditions proposed above or not. 

These conditions (at least the first three) were apparently satisfied in the Square One TV 
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television programs, designed to popularize mathematics among high school students51. 

These programs were aligned with the school curriculum and teachers could schedule 

watching those programs at school as part of mathematics "enrichment activities". The 

influence of this program on students' images of mathematics was investigated by 

Debold et al. (1990). These authors claimed that viewers of the program (8- to 12-years 

old North-American children) referred more often to advanced mathematical content and 

problem solving in the interviews and in the written essays, but their views of 

mathematics remained focused mainly on arithmetic (similarly to non-viewers). This 

result suggests that just watching a popular event might enrich participants' views of 

mathematics but generally it will not change their already existing mathematical 

constructs. It is not known, however, if popularization has the same effect on adults. 

Certainly, among my interviewees, Gl's views of mathematics changed as a 

consequence of attending lectures on mathematics to include a larger scope of 

applications, and he also started seeing the significance of mathematical formalism for 

mathematical thinking. 

Gl was, however, an adult, and a university educated person, not a child. This 

supports the conjecture that the influence of various forms of popularization on people's 

images of mathematics is age-sensitive. The effect might also depend on the type of 

activity (passive listening or engaging in some activity). 

Another relevant paper was Hirano and Kawamura (2001), who argued that 

mathematical museums could have an effect on changing adults' negative images of 

'""' http://www.squareonetv.org/default.asp7iPr: 1 (viewed July 9, 2009) 

http://www.squareonetv.org/default.asp7iPr
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mathematics and give an opportunity to understand mathematical principles 

experimentally. I am not aware, however, of any more systematic evaluation of the effect 

of popular activities on the public image of mathematics. 
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CHAPTER 8 

ANALYSIS OF INTERVIEWS WITH MEMBERS OF THE AUDIENCE OF 

POPULAR LECTURES. 

PART II. AUDIENCE MEMBERS' PERCEPTIONS OF THE LECTURES 

8.1 INTRODUCTION 

In this chapter, I look at how audience members understood the content of the lectures, 

how they assessed their understanding of it, what they thought about the lecturer's 

performance as popularizer of mathematics, and how all this compared with the lecturer's 

expectations and goals. 

I derived this information from the interviewees' responses to my requests to 

summarize the main idea of the presentation; to mention the details they remembered and 

to describe what they found engaging or interesting in the talk and why. 1 also asked 

some specific questions about certain details of the talks. Based on the interviews, I tried 

to identify in what sense the reaction of the audience members met the lecturer's 

expectations and goals identified in the previous chapters. 

At the end of the chapter, I will discuss the findings in the light of previous 

research. 

8.2 INTERVIEW RESULTS. AUDIENCE MEMBERS' PERCEPTIONS OF THE "MEDIAL 

REPRESENTATION" LECTURE 

In this section, I will describe the results of interviews with audience members in the 
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"Medial representation" lecture, regarding their understanding of the content of the 

lecture and what they liked or did not like about the lecture. 

8.2.1 What was the talk about? 

Among the interviewed audience members, only the mathematicians had no difficulty in 

summarizing the lecture. 

8.2.1.1 Gl 

When I asked Gl to summarize the lecture, he could not immediately recall the subject of 

the talk. He appeared ashamed of not having paid more attention. 

Gl: It's a very interesting question. (Pause). He was talking about (Pause) how images, 
(little pause) no, I can't remember any more, sorry. ... If I had known that I would be 
asked about that, I would have paid more attention. ... now I cannot remember any of 
it, the whole completely, even the title of the conference, I'm sorry. Now that I am 
thinking about the conference or the talk I cannot even remember its topic.... 

In the quote above, Gl said he would have paid more attention, had he known he 

would have to report on the talk. This suggests the rather significant difference between 

two research procedures: participants who know that they will be interviewed after the 

popular lecture attend to it differently than those who do not. Those who know may 

behave more like students than like regular popular talk audience members. 

Memory came back to Gl after a few minutes. In his description, the talk was 

about the development of a mathematical method for analyzing complicated shapes; 

starting from analyzing simple shapes and gradually refining the method to analyzing 

more complicated ones. 

Maybe the goal was to present a tool or a way to go from a single concept or method 
(Pause) to see the things. I think that was the goal. The way maybe he started with very, 
very simple shapes and he then went to more and more complicated shapes. Now I can 
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remember that. That he started with very simple, and went to complicated shapes and 
then went to those that are more difficult to distinguish. So he was trying to present a 
method or a tool, maybe mathematical tool (Pause) to find final ways to analyze 
complicated shapes. 

He never mentioned the words "skeleton" or "panther", and never referred to 

medical applications. As it turned out later in the interview, it was not his goal to pay 

attention to the subject matter details of the lecture. For him, the lecturer was a cognitive 

subject that he observed as a psychologist interested in general cognitive mechanisms of 

advanced scientific and mathematical thinking (see Chapter 7). 

8.2.1.2 G2 

Similarly to Gl, G2 also had problems recalling the main idea of the talk, even though 

she made notes during the lecture because she was there on an assignment for another 

course. The notes, however, contained bits of the terminology used by the lecturer, but 

not the basic idea or the research problem discussed. The first thing that she recalled was 

that the lecturer used an "analogy" but she needed her notes to recall what the analogy 

was about. 

I remember understanding that he used analogy at some point, as far as I remember. 
The analogy was the basic, well, I don't remember, I really need my notes. The thing is 
I took notes to prove that I was there. It is part of my work. 

She referred to the analogy in her report, stating: 

Blum medial loci can be defined by fire coming inwards from the outline of the object. 
Where the fire quenches itself are the Blum Medial loci. This explanation was the only 
one of many (others were physics or computer science related) that my non-computer 
science trained brain even remotely grasped and understood....Blum morphologies are 
key in developing such algorithms, but either I did not understand the explained link 
between these and web repositories, or audience knowledge of it was assumed. 

G2 had problems in seeing the connections among the various concepts presented 

in the lecture. She was, in a way, lost in the details. She remembered the grass-fire 



190 

analogy, as shown above. Another detail she remembered was the image of the panther. 

In describing her understanding of the skeleton of the panther, she did not use the 

metaphor of "skeleton", however, but that of "valley". 

And the panther. Yeah, that's what made sense to me like if everything is coming into a 
center point, that's what made sense to me. Well, I think, there was an image, like a 
valley, wasn't there? 

The valley metaphor that she constructed did capture some of the dynamic nature 

of the problem. It wasn't clear, however, if she made a link between the dynamic 

construction of the medial loci and the skeleton of the panther represented by the 

coloring. In fact, it seemed that this image did not help G2 in grasping the idea of the 

medial axis. A little later in the interview, she mentioned that the shape of the panther 

(which she called "puma" at this point) only confused her: 

See, the puma didn't make sense to me at all. Like, halfway through the lecture, when 
he was explaining all this divergence stuff, and then I didn't really understand. He said 
something like, 'everything is coming into the center', right? Or, something like 
'everything is going into the center'. And then, it all collapsed. I didn't understand a 
word of what he was saying. 

The metaphor of the valley suggests that, for G2, the colors of the animation 

indicated a depth in a three dimensional representation rather than a skeleton, which, 

although it can be obtained through a dynamic process, is still a static object. 

8.2.1.3 CI 

Like Gl and G2, CI had difficulties in recalling the topic of the lecture. C l ' s difficulties 

could partly stem from the fact that she arrived late to the lecture and missed the 

introduction, where the main problem to be discussed in the talk was presented. She felt 

quite distressed about her difficulties in understanding right after the talk, to the point of 
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losing confidence in her ability to apply mathematics in her own research. Her distress 

was so visible that, when she returned home that evening after the talk, her husband 

asked her, "what happened?". 

I went home. At home, my husband asked what happened, I said it was very bad. I 
didn't understand anything. It wasn't because of the lecture. The lecture was perfect. It 
was because of me, because of my expectations. I didn't understand anything. And it is 
terrible. I want to apply mathematics now and I, maybe I am wrong, maybe I can't. And 
my husband said: 'okay, explain it to me'. And I could remember exactly what that was. 
And that was the application. I think that is my interest. And that part can still trigger 
me, and I can build on it. If I can find some part of mathematics, which is applied, then 
I would be able to build on it. And of course now that you see I am trying to learn back 
about the linear programming, and try to apply it. It's again sort of going back to an old 
friend I once had. And also again, from the point of applications. But it was good, but it 
was good for me to know that there are a lot of things I don't know in mathematics, but 
there are still... the applications. 

Thus, focusing on applications rather than on the mathematical theory helped CI 

to calm down, and recall and summarize the lecture (for her husband, right after the 

lecture). She remained unsure, however, about her understanding of the lecture. In 

summarizing the lecture for me, she said that the talk was about finding a method of 

encoding information in a way that could help us to reconstruct even moving objects. She 

focused on the advantages of the method; its applicability for image processing of three-

dimensional shapes and moving objects. She did not speak about the idea of skeleton. 

Based on what we have of the object, we can sketch the whole object. We can find the 
pattern, to build up from the limited amount of information that we can get from the 
dimension. That's what I understood. From the little information that we can have about 
an object, which is a dynamic object, a moving object, which is changing, so it is not a 
stable object, we can draw the object, we can have a good picture of the object and we 
can see they move. The way it is changing. That's the whole message I got. I don't know 
whether it was correct or not. ... I think the message somehow was clear. I don't know 
if the message that I got was correct, that's the thing, because since it had technical 
mathematical formulas and also it has this message, I said, okay, the message is, that 
you have application for this. But still I am not hundred percent sure that that was the 
message. 

She implicitly referred to the idea of the points of the medial axis acting like 

attractors, illustrated by the image of the panther, by saying, "when they called back all 
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the movements". Here again, she appeared to focus on the dynamic characteristics of the 

vector field rather than on the set of attractors. 

8.2.1.4 C2 

When C2 was asked to summarize the lecture, her first reaction was to say that she did 

"not remember anything about the specific mathematics he showed", and that she was 

"not very good at it". 

[T]he core of the mathematics, actually, when he explained like some functions or some 
manipulations with those functions that gives another thing related. I could not follow 
that. 

In using dynamical systems in her work, she only "just know[s] the basics to 

apply", so when the "equations [are] different", she doesn't understand them that well. 

For her, the main point of the lecture was to show a method of "manipulating the 

image, reducing] the whole image to a few parameters, [so that] at least you can get its 

structure". This was, for her, analogous to children's drawings, where, say, arms or legs 

are represented by single lines, and the idea behind the method was to simulate, with an 

algorithm, the kind of cognitive processing that goes on in a child's mind. 

[R]educe the whole image to a few parameters, so at least you can get its structure. 
Suppose that the image is reduced to a few parameters. And the image is very, very 
close to how children reduce [images] to lines. The speaker thinks that the images can 
be reduced to lines just as children usually draw the lines at the beginning. He wonders 
if the computer system works like that, kind of reducing the information to single 
parameters. I found that very interesting. 

[T]hey work on the application of some mathematical concepts, tools, I mean, 
application of those things to some algorithms for computer. And analyze something, 
for me, an image. There were assumptions about, I mean, that they can parameterize the 
image in mathematics. 

C2 referred to the picture of the panther as a tool to illustrate the technique used 

by the researchers, but she did not mention any more details about what exactly the 
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lecturer wanted to illustrate with the panther image. 

I liked the example of the panther or tiger, I don't know which one. Maybe because it is 
something he used... because this was the analysis how to get results and then they are 
appealing things, tigers, perhaps because I like cats, maybe. 

She did not appear to understand the relation between the mathematical symbolic 

representations of the skeleton (in the form of the differential equation) and the visual 

representation of the process of obtaining the skeleton for a concrete shape (that of a 

panther). She only said she found this picture appealing because a panther is a cat and she 

likes cats. 

8.2.1.5 Ml 

For Ml, the lecture was presenting a mathematical technique for constructing an 

algorithm for image processing and image retrieval and giving evidence for the 

application and effectiveness of the technique. He gave an illustration of this technique. 

And also for me, if I sit down in front of a computer and I would like to find a polka-dot 
puppy, and I like to find all polka-dot puppies in the world, then for me [this problem] 
could be deadly important. The problem, that if I give my picture to some kind of 
machine with the command of finding similar things to this, finding all possible images. 

Ml did not mention any details, formal mathematical or other, of the talk. He said 

he did not understand all the mathematical details of the method, but was satisfied with "a 

feeling" for the problem and the connections among the ideas presented in the talk. Still, 

he was glad the lecturer did not completely omit the formulas in the talk. 

I wouldn't be able to write which thing was which, and of which object we have taken 
the vector field. But the ideas more or less came through, like what is going on there, 
why that surface is interesting. More or less. One could get a feeling how things are 
connected. It was certainly good for those who could decode the formulas, so for me, 
for instance it was pretty good that he talked about those. Again, the exact meaning 
cannot be grasped but the feeling that one has seen such thing and that this is a 
phenomenon of having seen something before. This is enough. 
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This notion of being satisfied by grasping the structure of connections among 

concepts without understanding the concepts themselves when listening to a lecture is 

probably not uncommon among mathematicians (see Sfard, 1994: 48). Ml said that not 

everything was clear for him, but he considered this quite natural; it did not disturb him 

in following the lecture. 

One learns to go on. It could be compared to a situation where you are reading 
something and the fact that you don't understand certain words disturbs you for a while. 
... But after a while you can ignore the fact that you don't understand the thing in the 
middle and you can simply go on reading. 

The technique of "going on" in reading to get a general idea of what a text is 

about, even if not every detail is clear, is well known in reading comprehension studies 

and the link to mathematics has been investigated by mathematics educators (see, e.g., 

Zack & Reid, 2003, 2004). 

One of the few details Ml mentioned in his description of the lecture was the 

image of the panther. He did not remember the word "panther", however, and referred to 

the image as "leopard or jaguar". This image was meant, according to him, to convey the 

main idea of the talk in a visual manner. 

... leopard or jaguar with the appropriate coloring. It would have been even better if the 
colors had been less blurred, but that conveyed the most important things. 

He did not mention the "skeleton", however, and it seemed that, like CI, he also 

focused on the dynamics of the process rather than on its static outcome. 

8.2.2 What is your opinion about the talk? 

8.2.2.1 Gl 

Gl ' s general opinion about the talk was very positive. He liked the lecture because he 
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was interested in the topic of image processing from the point of view of cognitive 

psychology, and because the talk showed real life applications of mathematics. 

[I liked the lecture] because this guy was talking about - for me - all kinds of 
representations of images, and because I am interested in images, shapes and forms I 
have in my mind, in my brain. (...) 

When this guy tried to explain the concepts, the mathematical concepts applied to the 
real life, matching with the real life. (...) 

Well, when you try a test, trying to detect [visual] impairment in some people. For 
example, some people cannot detect some details in some figures, in some shapes. 
There are people who cannot see eyes, or cannot see ears, or they cannot see details like 
hair, and then the psychologist presents to the people different shapes in order to detect 
specifically where the problem is. That was very similar. 

Gl mentioned that the mathematical symbolism shown in the lecture did not 

disturb him. 

When I go to any of these talks, I focus on the process of the topic and the parts that are 
especially meant to explain the ideas. More frequently, I wasn't deep into the details of 
the talks. I am going like, okay, this guy is talking about doing this.... I usually don't go 
deep into the details. 

It seemed that he simply considered these more technical parts as additional 

information for specialists. 

8.2.2.2 G2 

G2's main impression of the lecture was the feeling of being "overwhelmed" and "taken 

aback" by the presentation, which was one of a series of science lectures she was forced 

to attend as part of the requirements for a course. 

This one, I actually found the most specialized among all of [the lectures I have 
attended before]. Maybe it's because I don't know anything about it, like I don't know 
things like algorithms and things like that, but I found this one the hardest to follow out 
of all of them. And that is just speaking about the material, not the presentation. 

But since 1 haven't seen any talk in computer science or any advanced talk in math, I 
was more taken aback. Like, usually, if I go to these really advanced things, somehow I 
follow along. [But in this lecture] I felt overwhelmed and I was just, like, wow. 
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In her report she made her feelings even clearer and described her experience as 

an "academic shock": 

[The lecture] was an academic shock for me. Never before had I been exposed to a 
lecture or topic where I would be. so completely lost. Therefore, the following summary 
is a highlight of points I think I grasped as the talk progressed, but do not swear to be 
accurate. 

[A]s I quickly realized I was going to have a tough time understanding. I glanced 
around and noticed a few people from my class whose facial expressions I was unable 
to read but also noted that the audience was predominantly male. 

She did not try to blame her difficulties on the lecturer; she recognized that 

communicating cutting-edge scientific research is a hard thing to do, because it is 

formulated in a specialized "jargon" that is hard to avoid in speaking about it. She did not 

suggest eliminating the "jargon" from the lecture. 

Because [the lectures] should be cutting-edge but they should also be good for public 
and you can't, like it is hard to do, right? Like science is. All people use jargon. 

She tended to blame her own lack of foundations in the subject of the talk for her 

difficulties of understanding. 

Well I think I have the foundation of biology, so I could built on it more. Whereas this 
one, I think, I lack the foundation. One thing I did relate with in this one though, is 
[when] he was talking about applying it to about the biological models like going 
through the hole and in the arteries, and that I could relate to, that I could understand. 

In the above quotation, G2 was referring to applications of the presented method 

in medicine mentioned in the lecture. 

8.2.2.3 CI 

CI was less indulgent for the lecturer than G2 to have used so much mathematical 

formalism and specialized terminology in a talk that was advertised as "open to the 

public". She was especially critical about referring to methods by the names of their 
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inventors (Blum), or by some strange words ("medial axis") because they were empty 

names for her. She said this kind of discourse would be appropriate only in a regular 

course, where the method is thoroughly described and studied. Then the lecturer can refer 

to the method by a name. She noticed that, during the question period, some members of 

the audience were mentioning those "big words", and had "big questions", so the 

technical parts of the lecture were "probably very valuable" for them. As for herself, she 

couldn't "remember any of those names that this person used about what is this method 

or that method, because to me it is blablabla, it is nonsense because I have never heard 

that word before". She found that it was not appropriate to refer to concepts and methods 

by their technical names in a talk for "people who were not mathematicians and actually 

scared of math". 

She felt diminished in her confidence about her own mathematical knowledge 

after the talk. She used to be successful in mathematics as a student, and she expected to 

understand more from the lecture. Now she felt "disappointed in herself. She used to be 

good at understanding and using symbolic notations; in fact, this is what she enjoyed 

most about mathematics. Yet, she could not follow the notation used by the lecturer. 

I was actually a bit disappointed in myself. Because there is (Pause) my love for math, 
although 1 have left it alone. Although I have this big love, I haven't paid much attention 
to it, I haven't been around it as much. But I thought I could still understand much more. 
... I expected more from myself to understand. It was hard for me to follow. Especially 
when it was getting to the formulas. The thing that I loved for so long. To formulate the 
things. It was sort of strange in front of me, and I thought, oh my God, it's not my friend 
anymore. And that was a bit sad for me. But it was the expectation, the wrong 
expectation. 

Despite her disappointment, she still perceived the goal of the lecture in terms of 

improving the image of mathematics, even to convince students to pursue a career in 

mathematics (or in related fields, such as engineering) which seems to contradict her 
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opinion that the lecture was not appropriate for non-mathematicians. This is what she said 

about the goal of the lecture: 

I think the goal of the lecture, or maybe it is the way I wanted to see, was to ...make 
mathematics not scary, make it more popular. So it has usage. It has to be creative and it 
was. I think that was to introduce it more to the human beings. Among the engineers, 
they have all kinds of degrees but when it comes to a formula and mathematics, oh my 
god. Like if it is scary, nasty, difficult part. It is like septic, dry, not easy to understand. 
You have to have so much logic to kill yourself to understand. That is the image among 
the people. So if we could have used it, if we could have presented it better. It is the 
way that in my life, and in my career I choose. Because the lecture showed real 
applications, and [made it] not to be scared of. 

She remarked that images and charts used in the lecture were helpful in grasping 

the general idea ("whole picture") of the topic. 

If you give an image, if you give a chart, if you give something ... intuitively, it is 
much easier to get a grasp. A grasp to remember. Because I am not going to be a 
mathematician by the lecture. I am not going to learn that method. But it's good to have 
the whole picture. 

She mentioned some images used in the lecture (a chair in an upside down 

position, the panther) as helping in grasping "the whole picture". 

I am a visual person, so the image, and especially the image ... like of the chair, upside 
down, and it was especially the animal when they called it back all the movement. That 
gave me the whole picture, the message of the lecture. That was very useful. 

She did not go into the details of what exactly in these images was helpful. 

8.2.2.4 C2 

Despite not having grasped the formal mathematical parts of the lecture, C2 still found 

the talk enjoyable, much more entertaining than CI did. She liked it because the talk was 

related to engineering, and she was an engineer, too, and was familiar with some of the 

problems mentioned in the lecture. She found the main idea of the presented method 



199 

(reduction of the number of parameters to obtain a simpler structure) very interesting. She 

also appreciated the visual representations in the talk. 

She thought that the talk would be appropriate for an audience of mathematicians 

and students of mathematics but not for a "general general public ". 

8.2.2.5 Ml 

Mi ' s general opinion about the lecture was positive. He said that he especially liked the 

main problem posed by the lecturer and the clarity and good organization of the 

presentation. 

I really liked the problem posed. He talked very clearly about the problem, why it is 
interesting and what is our goal with this. What would be the final goal toward which 
we are approaching. And he could certainly communicate this message. Practically he 
could tell what their research group is working on. And then, more or less successfully, 
he tried to sketch the mathematical background of this. 

Ml said that he could connect the lecture to the things he was currently working 

on. 

I particularly liked also, and I actually paid attention to this part, that it seemed to me 
that a lot of things, like the type of figures he was working with, and the tools he 
applied could probably be useful in what I have to do now. So that attracted me. And 
what he did was really interesting. And then I got a bit scared when I saw the first slide 
with the algorithms because it brought back a memory of the horribly boring lectures 
[given by one of my former professors]. 

Ml also said that, since there was "mathematics" in the title, it was to be expected 

that there would be some mathematical symbolism in the lecture. For him, it showed that 

the research required serious work and indicated the depth of the subject. He remarked 

that although the technical part could be "frightening" for a non-mathematician, the 

lecturer still managed to "convey the most important things" using natural language and 

visualizations. 
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8.2.3 How close was the audience members' perception of the talk to the lecturer's 

expectations? 

In this section I will compare the lecturer's expectations about the audience's cultural 

lenses and interpretation of the talk with what actually happened in the case of the 

interviewees. In particular, I give a comparative summary of the expectations and actual 

facts on the interviewed audience members' background, images of mathematics and 

popularization and their understanding of the lecture. 

8.2.3.1 Background 

The lecturer expected a diversity of backgrounds in his audience. This expectation was 

certainly satisfied, based on the sample I was able to meet and interview. They were not 

all computer scientists or mathematicians. 

One category of audience members the lecturer anticipated was the "general 

public", of whom he did not expect to have more than an everyday experience with vision 

and image analysis, the ability of learning through examples, and some awareness of 

scientific methods such as hypothesis testing or using mathematical formalism. Anybody 

with secondary education would have satisfied these expectations. All participants that 1 

have interviewed exceeded, however, these expectations, as they either already had a 

university degree or were on their way of getting one. Even Gl (psychologist) and G2 

(biology student), who were neither computer scientists nor mathematicians, had, 

nevertheless, some professional knowledge related to the topic of the lecture (visual 

cognition, mathematical models in biology). 

Regarding computer scientists, the lecturer expected them to be familiar with data 
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structures, algorithms and computational geometry. 

Based on their background, CI and C2 were possibly familiar with data structures 

and algorithms that are parts of the core curriculum in computer science. However, they 

did not necessarily have previous experience with computational geometry. In spite of 

their computer science background, they stressed their lack of experience with 

mathematical formalism and they did not emphasize their previous experience with 

computer science when they talked about the lecture. 

According to his background in mathematics, Ml could be classified as a member 

of the mathematicians belonging to the group with previous knowledge on differential 

equations and partial differential equations ('group c"). In a way he also exceeded the 

expectations of the lecturer by mentioning that he was working on a related topic. 

8.2.3.2 Images of mathematics 

While the lecturer considered the topic he presented (and was also working on) as a 

"transition between pure mathematics to applied mathematics", he did not succeed in 

showing this transition in the lecture since the audience members generally saw pure and 

applied mathematics as separate domains. 

The lecturer considered the mathematical foundations of his research as 

"intuitive"; he said that the problem he was working on did not require any "esoteric 

advanced mathematics to get ahead". This could have been his own experience of 

learning the mathematics he used. Except for the mathematician, however, and the 

psychologist who did not even pay attention to the mathematical details, the audience 

members, found the technical mathematical aspects overwhelming. Even the 



202 

mathematician did not use the word "intuitive" in relation to the differential equation 

displayed in the lecture. 

8.2.3.3 Images of popularization of mathematics 

In the interview, the lecturer said that he perceived popularization as a way of "making a 

technical subject non-technical" in a thought-provoking and inspiring way. A popular talk 

should be able to inspire the mathematicians in the audience to apply some of the 

presented idea in their own domains. 

The interviewed audience members shared the lecturer's opinion that 

popularization should make the technical non-technical, but several perceived this 

particular lecture as too technical. 

The lecturer's notion that popularization can be used for getting ideas to apply in 

one's own domain were apparently shared by some of the audience members (e.g. Gl, 

Ml), but it was only one among several possible purposes of popularization given by the 

interviewees. Different views of popularization could also affect how one interprets the 

lecture or processes the presented information. If an audience member wants to use a 

lecture as a source of inspiration then he or she only takes the part that is inspiring and 

feels satisfied. This is what happened in the case of Gl, who related the presentation to 

his experience of the psychological aspects of image processing. Gl described his 

mathematical background as "only basics" and seemed not to expect to understand the 

technical part of the lecture. He did not perceive his lack of mathematical foundations as 

an obstacle to understanding the lecture; rather, he tried to find the part applicable in his 

profession and relate it to what he had heard. Instead of learning through examples (as the 
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lecturer expected) he focused only on one example, namely, the first one presented by the 

speaker. 

On the other hand, G2 interpreted popularization as a distraction from her regular 

classes. She sought something different from her own domain in attending popular talks. 

Therefore, she could not have been looking for something to inspire her in her own 

domain. Rather, she was trying to learn something completely new to her. This was an 

overly ambitious goal. The lecturer did not expect to teach anybody his domain of 

research in one hour. G2 was trying to achieve the impossible. Like a student, she paid 

attention to the details, took notes, got all the difficult terminology down, but ended up 

not grasping the main idea of the talk, even in the most general terms. 

8.2.3.4 Understanding of the lecture 

The lecturer expected the general audience to understand the following from his talk: 

As to the general audience, I wanted to get them a feeling that when you compare 
objects, often you do so in terms of the points. And these medial loci give me a way of 
thinking about parts of an object. That's mathematical, that's precise but it's also 
algorithmic. You can compute the parts, represent them and then apply them to, for 
example, to 3-D objects, to mention a trivial problem as a starting point. 

He wanted people to understand that the problem could be represented by a 

mathematical model leading to an algorithm that could be implemented in an appropriate 

computer environment, that the technique could be applied in various situations and that 

the effectiveness of the model could be shown (at least according to a certain measure). 

These expectations were not quite met, however, neither in the general public 

representatives, nor in the computer scientists, and only the mathematician came close to 

it. According to the interviewed audience members, the lecture was about 
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- A mathematical method for analyzing complicated shapes (Gl) 

- Reconstructing a whole object based on limited information about it, even if it is 

changing or moving (CI) 

- Reducing the image of a whole object to a few parameters to get a grasp of its 

structure (C2) (Note: this process is inverse to the previous one) 

- Presenting a mathematical technique for the construction of an algorithm for 

image processing and image retrieval and giving evidence for the application and 

effectiveness of the technique (Ml) 

None of these descriptions, alone, gives a sufficient idea of the content of the 

lecture; collectively, however, they are better, since each of the above statements 

describes some aspect of the lecture. 

While Gl focused on the main problem of how to compare objects, he did not 

really make the connection with the method of medial representations and its technical 

realization presented in the talk. He attended to the fact that the problem captured the 

attention of applied mathematicians and computer scientists, because, for him, this used 

to be a problem of cognitive psychology. As mentioned above, G2 could not even grasp 

the main idea of the talk; she was lost in details. 

The lecturer had additional expectations with regard to computer scientists: 

To the computer science oriented people, I wanted to say that the intuition and the 
continuous mathematics is really useful because it provides new ways and new 
algorithms for computing. And that one would be tempted to use much more direct 
algorithms, but that's basically failed. They have no generalization to three dimensions. 
It's too much complexity, nothing is stable but fragile. It's a lot of heuristic assumptions 
you have to make. So then the main point I wanted to convey was that, having even a 
single theorem that maps from the theory to applications is very useful.... 

Neither CI nor C2, however, paid attention to the algorithmic part of the lecture, 
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and only C2 mentioned that the research group represented by the lecturer was working 

on implementing methods of image analysis to "computer systems". Although CI 

stressed that engineers and computer scientists need to appreciate the importance of 

mathematical theory and methods more, she did not make any specific comments on 

applications, in computer science or in the construction of search engines, of the results 

presented in the lecture. CI and C2 understood the lecture more in the way expected of 

the general public; they referred to the connection of medial representations with 

reducing images to information coded by points (vectors) of the medial axis and using it 

for comparing images. 

Finally, regarding mathematicians in the audience, the lecturer had the following 

message: 

For the mathematically sophisticated, the main goal was to communicate the idea that 
there is really a new way of thinking about, precisely, the differential geometry of 
curves and surfaces. And that there is a rich way of doing all of that through this medial 
representation along with the details. They will develop an interest about a lot of 
aspects. 

None of the mathematicians 1 have interviewed met this expectation. Nobody saw 

the presented method as a precise mathematical way of thinking about curves and 

surfaces in general; rather, they perceived it as a method to be applied in medicine or in 

search engines. They all attended only to the aspects the lecturer expected from the 

general public. They noticed the mathematical formalizations, of course, but have not 

tried understanding them in detail. The difference between them and some of the other 

interviewed participants was that the mathematicians were not disturbed in the least by 

not understanding the mathematical details. 

The lecturer thought that the main idea of the lecture could be grasped based on 
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everyday experience regarding human vision, and some very general notion of scientific 

method. The interviewed members of the audience had much more knowledge than that, 

yet nobody had the impression of having understood the lecture fully. One person (G2) 

could not even say what the main idea of the lecture was, and the other four gave only 

very vague descriptions. Already recalling what the lecture was about was a problem for 

three people (Gl, G2 and CI), and C2 said she did not remember the "specific 

mathematics he showed" because she did not understand it. The psychologist Gl did not 

remember the content details because he was not paying attention to them. The biology 

student G2 had a fragmented picture of the lecture, made of disconnected details. She 

remembered the panther image but "did not understand a word" from the verbal 

explanations accompanying it. One of the computer scientists, CI, said she had the 

feeling of not having understood anything and was extremely upset about it. The other, 

C2, said she did not understand the mathematics in the lecture. Only the mathematician 

(Ml) did not complain about not remembering what the lecture was about in general or 

some of the details, even if he, too, did not remember the details and did not understand 

the mathematical models to the point of being able to reproduce them by himself. 

The lecturer expected the audience to be prepared to see some mathematical 

formalism. He did not intend to intimidate anyone with this formalism. Yet, this is what 

happened in the case of some audience members, even in those who applied mathematics 

in their work. 

What were the details that audience members remembered from the lecture 

(except for the mathematical formulas that scared some of them)? All except the 

psychologist (Gl) mentioned the panther image. The psychologist paid no attention to 
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details and only distinguished between "simple shapes" and "more complicated shapes". 

The image of the panther seemed to be interpreted in various ways by the 

audience members. According to Presmeg (1992), experts' visual images function as 

"pattern imagery", where the concrete details of the image are disregarded and only pure 

relationships stay in memory. The interviewed audience members did not seem to behave 

as "experts", however. They focused on rather insignificant details of the picture, 

interpreting, for example, the colors as an illustration of depth and the skeleton as a 

"valley", or thinking about the panther as a cute cat, rather than as a non-trivial shape 

used to illustrate the technique of finding the skeleton. They also paid attention more to 

the dynamic process, visualized in the colored animation of the panther image, than to the 

outcome of the process in the form of the skeleton. 

The lecturer assumed the ability of "learning from examples" in the audience, 

particularly in representatives of the "general public". The person who was perhaps the 

closest to his definition of general public, G2, was not, however, able to learn from 

examples. Examples were not enough for her to understand the main idea of the lecture. 

She could recall some elements of the examples given, but she could not understand what 

these examples were examples of, and her memory of the lecture remained very 

fragmented. The other "general public" representative, Gl, mentioned only one example 

in the interview, namely the problem of categorizing images that the lecturer mentioned 

in his introduction as a motivation for his research. 
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8.3 INTERVIEW RESULTS, PART II: AUDIENCE MEMBERS' PERCEPTIONS OF THE "ESCHER" 

LECTURE. 

In this section, I describe in detail the profiles of four audience members that I have 

interviewed. Two among them had a profession outside of mathematics, and two were 

students of mathematics. Similarly as in the previous section, I will describe the audience 

members' summaries of the main ideas of the lecture and their opinions about the talk. I 

will then compare them with the lecturer's expectations. 

8.3.1 What was the talk about? 

8.3.1.1 PS 

For PS, the main idea of the talk was in "repeating forever" a picture "one inside the 

other". She thus focused on the idea of infinite iteration of a transformation as 

exemplified in the Droste-effect. 

He explained with the picture of the objects inside the design and the perfect equation 
between the angle (incomprehensible) the pi... And took examples like the cheese, 'La 
vache qui rit', or the cocoa box in Netherlands. And there were some designs repeating 
forever one inside the other. And then he explained how this could happen 
mathematically. 

I had to ask her about the problem of filling in the hole in Escher's Print Gallery, to 

get her to talk about it. She had some idea about the method but could not recall the 

details. She indicated that for completing the picture mathematicians needed to "turn 

back the technique of production" and then "put it into perspective". 

KK: How did they fill the hole? 

El: He did it by repeating the same technique, the technique of production and turned it 
back. Just repeated the same effect and filled the center.... So they could continue the 
perspective. 
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KK: So they finished the original one by drawing smaller and smaller pictures. Or did 
they do it in another way? 

El: They did it in another way. They filled it up and then they put the distance smaller 
and smaller and smaller. First they filled it up, I don't remember where and then ... they 
put some design on the picture, and the kind of motive and they finished the work with 
kind of something missing. And they just filled it all up. With the same idea as 
Escher.... They calculated mathematically... They drew the graphics and filled the hole 
by just completing the picture with the same idea. Same design and colors and anything. 
And they kind of finished it. And then they put it into perspective and it's about it. Then 
filled up the hole and then we could see the perspective. 

What seems to have impressed her most was the Droste-effect introduced by the 

lecturer. She constructed her own metaphor for it, based on the image of "Russian dolls", 

idealized so that the repetition "never stops", and ever smaller and smaller but otherwise 

identical dolls are inserted into one another. 

Because we had the cheese, we had the cocoa, we had everything in that prospect. I 
mean man doesn't realize how difficult it is to get that perfect effect. And it goes on 
forever because... it's, like, forever. And of thinking prospect of forever. So that was 
interesting. Like the Russian doll, you open one and another and one inside one inside 
one inside. And so it never stops. Well, the Russian doll has to stop but there you don't. 

Even though the finite process represented by the actual Russian doll object captured 

the idea of iteration, PS still added that this should be changed to a situation where the 

iteration "never stops" and "goes like forever". This new example differed in various 

aspects from those chosen by the lecturer. It captured the idea of iteration but might not 

have served as an appropriate introduction for the conformal maps later. 

8.3.1.2 Mb 

When I asked Mb to summarize the talk, he listed some details of the presentation 

focusing on features that he found interesting in the talk. 

OK, long day. Seriously I was about to sleep because I had a long, long day. And he 
started with this drawing. I looked at it, this is very interesting... Then he started talking 
about this Droste-effect, and all that. Yeah, I know this, I am sure. And then the "La 
vache qui rit" came, of course this is the Droste-effect with rotation of 90 degrees. OK. 
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Then I knew things where he was going. And I just having this whole day in my body, 
and I just wanted to go sleep and that's it. It's only when he started to take this kind of 
Droste-effect and he explained the "La vache qui rit" and all that, and I said, oh my god, 
this is highly interesting. Now I see something that I didn't see at first when I looked at 
the picture. And I was all the more impressed also by the animation that was behind it. 
Because he took the basic drawing, and applied it. I don't remember this kind of 
mathematical effect... So he took the basic drawing, and he applied the same effect 
having this kind of point over there and boom, boom, boom. Can I say I would have 
never ever thought of this? So I said this is highly interesting. And my interest is high 
like that, to learn that even more. Take a picture and try to apply other things that you 
would do yourself or something like that. So that's exactly how I felt. 

As for the mathematical formalism, Mb seemed to have ignored it and did not 

seem to be bothered with not understanding it. 

Mb noted that he found it very interesting that it is possible to look at the "Print 

Gallery" from a different perspective. He expressed that he was amazed by the 

underlying mathematical structure. 

I probably have seen it in a book or in a magazine or anywhere else. And I would have 
looked at it, I said, wow, interesting, very interesting but I have never thought that there 
is a Droste-effect or anything like that. So I would have probably in a real life situation, 
without these kind of lectures attended, I would have looked at it for a couple of 
seconds, 15 seconds, would appreciate the drawing aspects of it, the creativity of the 
person, but I'd never have understood. I would not have been able to understand it 
myself what was the rationale behind the construction of this image. So this is what I 
have learned. How this image actually has an algorithm behind. 

Regarding the main idea of filling the hole, Mb seemed to focus on the process. It 

was not clear, however, if he distinguished the back and forth maps for this process. 

Mb:...You have this man that is looking the basic one, without the effect. He is in this 
gallery and he is looking at this picture which represents the museum of the gallery 
where he is, and he can see himself looking the same gallery, basically. So he cut at that 
level, where this kind of Droste-effect is happening and you make this rotation. This is 
how I remember. So I remember ... you basically turn at the picture that is been created 
with this illusion. So it is how I remember. You cut and you turn. And you make two 
points that are similar in the two pictures together. So this is what I remember. 

KK: They said that there is a hole and they had to ask some people to complete the 
picture because it wasn't finished. How did they do this? 

Mb: When you do this kind of calculations, mathematical calculations and you use the 
perfect angle and the perfect ratio, I don't remember what the ratio was, you end up, I 
think it was the computer who did it. But anyway you can easily put everything back. 
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And I think Escher didn't have the perfect... angle. 

KK: The picture wasn't finished and they had to ask some designers to finish. Did they 
draw these things inside the picture? 

Mb: I think they started from the basic picture again, and they applied the same concept 
from everything is back to normal. I don't remember actually. 

Mb mentioned various details regarding the presentation especially in connection 

with the Droste-effect combined with transformations. He referred to it as repeating 

images revealed by zooming into the image, and distinguished two different kinds of 

concepts, the "basic Droste-effect" illustrated by the cocoa-box, and the Droste-effect 

with rotation exemplified in the "La vache qui rit" cheese box. He interpreted the 

iteration presented by the Droste picture in terms of repeating images where by zooming 

in the picture one can see "another image in the same one", but he never mentioned that 

the presented picture was meant to illustrate an "infinite repetition". 

8.3.1.3 ME 

When I asked ME to summarize the lecture, she described the process sequentially by 

focusing on as many details as possible, and by using expressions such as "well, it started 

with the cocoa", "and then", "after this" "wait, what kind of other pictures he had". She 

listed as many pictures as possible, a joke related to the picture as well, or circumstances 

that disturbed her like the following: 

Because I had to pay attention for such a long time and some also asked questions and 
everything. Because I always tried to pay attention that for the cuts when will the 
window meet the window. But I should consider the other points too. 

She described the main idea of the lecture as part of this sequential description as: 

And then he asked the question that they had in connection with the Escher picture, how 
to fill the hole in the middle. This was very important and of course also that by what 
kind of mathematical formula or transformation we can push it. 
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Regarding the Droste-effect, ME only briefly mentioned the simple Droste-effect 

- "Well, it started with the cocoa and then he showed on a bunch of other pictures with 

this effect" - and then went on to give a detailed description of the process of forming the 

distorted Droste-pictures from general images: 

And then all kinds of animations how we can get back this Droste-picture from the 
doubly periodic one. And at the end, this is nice, how the Escher picture came from 
this. And this gave me really a lot. And of course I should have looked longer at that cut 
that he made, from the middle he made a cut and there he rotated it. ...And for the other 
he rotated everything... On the doubly periodic picture, he made two parallel cuts and 
he translated it. But I had to look at it for such a long time ... and then I always looked 
at when the windows meet for the cuts. But I should have paid attention to the other 
points too. 

As seen from the excerpt above, her previous experience and expectations already 

shaped the way she looked at the lecture, focusing on information she identified as 

"useful" for her project. She interpreted the Droste-effect in terms of "always decreasing" 

and "self repeating images", and thought of it in the context of covering space on the 

complex plane. This interpretation did not appear in the interviews with PS and Mb. 

8.3.1.4 MPh 

MPh summarized the lecture by emphasizing the idea of the Droste-effect and the 

application of mathematical transformations to distort images. In the description, she 

stressed the fact that the picture should be "self connected", possibly referring to the fact 

that appropriate points of the image should be identified to produce a "nice" self-

repeating picture. 

One of the main ideas was to show the Droste-effect. And its different variations. It was 
very fundamental. The boat, this can be one of the main ideas. The boat is kind of this 
cruise, the pool's inside and the replica of the pool's inside. So that was one thing and 
then show how to use mathematical functions for playing with images and make them 
do this kind of things and make this ... self connected and self contained in some way 
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and then how finally they just completed the Escher picture. 

MPh described the idea of filling the hole by connecting it to the applied 

mathematical techniques and to their visual representations used in other situations in the 

talk as well: 

Well, first they drew new things which were missing from the original picture... And 
then they applied the cut and paste method that he showed with the functions. He 
played with the one of the snakes. 

... they drew it outside, and they pasted it then and got inside in some sort of, how was it 
called, the Droste-effect? Because first you had those things, that's what I remember, 
the sketches. And they were not complete because there was this circle the middle. And 
then he did a grid in order to transform everything and make them to look self 
contained. Without the power point picture there was growing and it was the building 
the guy was in the picture inside. 

... they did the same [as Escher] but they completed the part that was missing. So with 
the complete pictures they used those functions that they had for the snakes and the -2 
snakes. 

MPh described the Droste-effect by focusing on its property of self-repeating 

images that evoked, for her, the notion of fractal: 

The one about chocolate box with a nurse with the same box? It was like a fractal. So if 
you got inside the picture and went to the smaller box, you'd find the same picture, and 
if you got inside that... 

Similarly to ME, MPh also interpreted the Droste effect in terms of "self repeating 

images"; however, she connected it to a new visual image, a fractal. 

8.3.2 What is your opinion about the talk? 

In this section, 1 will summarize the interviewees' opinions about the talk. 

8.3.2.1 PS 

PS interpreted the talk primarily as a positive, relaxing, "entertaining" experience. 

I found it was very entertaining. It was a little bit tough when he started putting it in a 
mathematical figure, but, of course, that was between mathematicians. So they got it. 
Everybody was laughing and having a good time. So 1 think it was okay. 
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Even if she sometimes felt as an "outsider", for not understanding the 

mathematical formulas, she was not particularly stressed by it. Rather, she felt as a tourist 

among natives who naturally speak their own language among themselves. This could 

have been, in fact, part of the fun. It was enough that the lecturer talked to the 

"foreigners" like her from time to time and gave simple examples and explanations that 

they could understand. 

It was that the speaker was very humorous, so I was very amazed to have simple 
example for people like me. To have an idea what Escher was seeing when you have to 
look at [his pictures]. Because when you get to the picture of Escher with this staircase 
and the persons then you understand better the idea of Escher. 

When I asked her if she understood the lecture, she answered positively. She did 

not understand the formal part of the lecture ("mathematical equations" in her words) but 

she did not expect to understand it, in any case. She was satisfied with her understanding. 

8.3.2.2 Mb 

Mb heard about the lecture from a friend who saw it advertised in the newspaper. He was 

interested because he was already familiar with Escher's drawings but was curious to see 

how they could be analyzed scientifically. He was not disappointed in his expectations 

and liked the lecture very much. It amazed him and stimulated his interest to the point of 

wanting to learn more about it and see how the method can be applied to create other 

similar pictures. 

Asked if he felt he understood the lecture, he said, "Fully. Absolutely. Every 

single aspect of it." He also said that he found the flow of the lecture too slow at times, 

and the lecturer could have gone faster by referring the audience to additional 

information in the literature or on the web. 
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8.3.2.3 ME 

ME mentioned that because of her project, she read about the presented material before 

the lecture. In fact, she used the lecture as an additional source of information for her 

project preparation. She stressed that she liked the talk especially because the displayed 

animations were unavailable in the printed material she had previously found. Besides 

her previous readings on the topic, she also connected the lecture to her personal 

experience: "I enjoyed the example with the cow, because, well, you know, sometimes I 

have the cheese for breakfast... ". 

ME perceived that she understood the first part of the lecture which she connected 

also with affective components: "1 certainly understood the first part. Because I also liked 

it and in general I usually like what I understand". ME considered the lack of formal 

mathematical knowledge as the source of difficulties for understanding other parts of the 

talk: "when he brought in the snakes, I probably did not understand it because I did not 

understand its mathematical foundation." It seemed, however, that in the end she was 

satisfied with her own understanding. From the interview, it seemed that she already had 

a clear idea what she intended to use from the lecture in her project: "... and I think I 

understood what I needed". This is again similar to the satisfaction of G2 who managed, 

after all, to write a report about the lecture for her class. Both G2 and ME, therefore, 

entertained a student's relation with the lectures, and not a popularization relation. 

8.3.2.4 MPh 

MPh found the lecture "really nice". She mentioned that it was particularly interesting for 

her because at the same time she had a class devoted to a related topic. She also liked the 
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application of pure mathematics in the arts. 

It was very nice to see actual things that we study in mathematics. Something like that, 
you know. It's not only numbers, like this. Probably for the people outside. They know 
how to do this or that. It has nothing to do with arithmetic for instance. So I found it 
very beautiful the use of functions we actually were studying in complex analysis. They 
can complete pictures. It is amazing. So that's what I have learned. I couldn't imagine 
they can but used like that, sometimes, it seems I don't know, so abstract that we would 
never really thought something about that. 

8.3.3 How close was the audience members' perception of the talk to the lecturer's 

expectations? 

The section is organized similarly to that on the "Medial representation" lecture presented 

in Section 8.2.3. 

8.3.3.1 Background 

The lecturer expected that at least some people in the audience would have no previous 

knowledge of some of the mathematical concepts he was planning to use in the lecture 

(especially complex numbers). This is why he thought he should provide the audience 

with alternative means of understanding the idea, using visualizations of the 

transformations on examples of simpler pictures. 

There were, indeed, some such people in the audience; PS was an obvious 

example. Mb had probably not taken a course on complex analysis before but he may 

have heard about complex numbers. The "general public" representatives, however, 

seemed to be outnumbered by mathematicians, and PS had the impression that the talk 

was mainly for mathematicians and among mathematicians. 
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8.3.3.2 Images of mathematics 

The main goal of the lecturer was to convey to non-mathematicians an image of 

mathematics as an activity that is "fiin" and "interesting". He also said that mathematics 

should be presented as an art, which is an inspired, prospering, informal and enjoyable 

activity. He wanted to convey the "surprise of discovery" experienced by 

mathematicians. 

The interviews suggest that the lecturer did, indeed, succeed with communicating 

the above image to the audience. The interviewees mentioned that the lecture was "such a 

good fun" and "highly interesting", showing that mathematics is "fascinating" and 

"creative". 

8.3.3.3 Images of popularization of mathematics 

The lecturer viewed popularization mainly as a way to improve the public image of 

mathematics. The interviewees perceived the talk as an entertainment or an additional 

source of information. The former seemed to fit better with the lecturer's idea: one of the 

audience members noted: "if I want to learn mathematics 1 generally take a textbook". 

These audience members were more satisfied than those who sought learning some new 

mathematics. 

8.3.3.4 Understanding of the lecture 

Unlike the lecturer of the "Medial representation" talk, the lecturer of the second talk did 

not explicitly assume any previous knowledge (whether mathematical or non-

mathematical) from the audience. He wanted the audience to remember, from the talk, 
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- The visual material (mainly the animations) 

- The question posed and solved by mathematicians (How to fill the hole in 

Escher's drawing) 

- The infinite repetition suggested in Escher's picture and also emphasized in 

the lecture 

All interviewed audience members recalled (at least a part of) the visual material 

and seemed to hold vivid images of the pictures and animations presented in the talk. 

They not only remembered the images but all emphasized that they really enjoyed them. 

The main question of the talk was interpreted by the interviewees as follows: 

- Filled the hole by calculating mathematically (PS) 

- Applying the Droste-effect to various pictures including Escher's drawing (Mb) 

- Fill the hole in the middle of the picture by finding the formula of the appropriate 

mathematical transformation (ME) 

- How to use mathematical functions to play with images and make them self-

contained and in this way complete the Escher picture (MPh) 

Thus, the second expectation of the lecturer was also mainly fulfilled as most of 

the interviewees recalled the question (Fill the hole in Escher's drawing) and mentioned 

that it was solved by a mathematical technique. The details of how these mathematical 

methods were applied, however, seemed to elude especially the lay public. 

The infinite repetition in the Droste-effect was also clearly described by the 

audience members 1 have interviewed. What's more, they all distinguished between the 

different cases when the repetition involved only zooming and when it contained rotation 
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as well. In fact, participants referred to the infinite repetition by reconstructing the image. 

The interpretations are summarized as follows: 

- Russian dolls (but never stops) 

- Repeating images when zooming inside 

- Always decreasing self-repeating images 

- A fractal 

It seems that the lecturer's expectations regarding the audience's understanding 

were generally fulfilled. It must be stressed, however, that these expectations were not 

very ambitious. It seemed from the interviews that, although audience members enjoyed 

the colorful animations and the style of the presentation, they were not necessarily able to 

interpret the mathematical ideas in it. Thus, the glimpse it did provide was a rather 

superficial view of the mathematical culture. 

Participants seemed to interpret the visual representations (the Droste picture and 

the picture on "La vache qui rit" cheese box) of the infinite repetition according to the 

lecturer's intentions. For example, in the case of the Droste picture they focused on the 

fact that the embedded pictures were identical to each other up to scaling; in some cases 

even the infinite nature of the iteration was emphasized. 

8.4 DISCUSSION AND CONCLUSIONS 

In this section, I will first discuss the differences in the two lectures audiences' 

perceptions of their understanding, seeking their possible causes. Then, 1 will discuss a 

possible more objective measure to assess the two lectures audiences' understanding of 

the lectures, inspired by Goffree's (1989) model of understanding lectures. Finally, I will 
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question the lecturers' belief that visualization facilitates communication of abstract 

mathematical ideas and is particularly appropriate in popularization. 

8.4.1 Differences in the audiences 'perceptions of their understanding of the lectures 

The interviewed audience members were considerably happier after the "Escher" lecture 

than after the "Medial representation" lecture. Some found the mathematics in the 

"Medial representation" lecture intimidating, while not understanding the more technical 

mathematical parts did not appear to bother the audience of the "Escher" lecture. 

The "Medial representation" lecturer certainly underestimated the level of 

mathematical knowledge necessary to understand his lecture. He considered the 

mathematical foundations of the research he was presenting "intuitive" and basic and did 

not think it was necessary to "translate" this research into the language of a "guided tour" 

appropriate for popularization. The content and the organization of the talk were not 

different from the published research papers on the topic. The "Escher" lecture was, on 

the other hand, considerably different from the research paper on which it was based. 

The "Medial representation" audience members' disappointment with their 

understanding cannot be blamed on the lecturer's lack of communication skills alone. 

Indeed, his relation with the topic of his lecture was more a "research relation" than a 

"popularization relation". In spite of this, however, some audience members were able to 

build their perception of the talk on a "popularization relation" and ended up being quite 

satisfied with their experience (Gl, C2, Ml). The worst experience was that of audience 

members who either expected to follow the lecture as well as if it were a research lecture 

in their own domain (CI), or had a "student's relation" with the lecture (G2). In the 
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"Escher" lecture, there was also a student with a "student's relation" with the lecture 

(ME), and, while she was not "shocked" by the lecture like G2, but unlike G2, EM did 

enjoy the lecture and was able to identify the main idea of the presentation. 

It therefore seems a rather bad idea to behave as a student in a popularization 

event organized according to a dissemination model. It might work better in an 

engagement or intercultural communication model. 

8.4.2 Assessment of audience members' understanding of the lectures 

I have noted in the "Synthesis" sections above that the distance between the "Medial 

representation" lecturer's expectations about the audience's understanding of the lecture 

and the actual understanding was quite large, and certainly larger than in the "Escher" 

lecture. This was partly due to the very ambitious expectations of the "Medial 

representation" lecturer and very modest expectations of the "Escher" lecturer. Is there a 

way, however, to compare the two audiences' understandings of the lecture without 

reference to the expectations of the lecturers? 

An attempt to construct a framework for this kind of independent assessment of 

understanding popular talks in science and mathematics was proposed by Goffree (1989). 

This author distinguished three kinds of understanding in this context, namely 

"receptive", "reproductive" and "productive" understanding. This is how he defined these 

categories: 

Receptive understanding: one has been able to follow the argumentation, but cannot 
retell anything thereof; 

Reproductive understanding: one can reconstruct the argumentation, but the knowledge 
acquired is insufficient for application in a new situation; 

Productive understanding: by applying the newly acquired knowledge, one can solve 
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problems and even extend one's knowledge. (Goffree, 1989: 53) 

I have tried applying these categories to assess audience members' understanding 

of the lectures based on their responses to my request to summarize the talk. There were 

some difficulties, however. 

The only category that applied rather easily was the reproductive understanding. 

Two "Medial representation" audience members (C2 and Ml) and one 'Escher" audience 

member (Mb) could be classified as representing reproductive understanding. 

"Receptive understanding" seemingly applied to those audience members who 

could not recall what the lecture was about when I asked them to summarize the talk. 

They recalled something, however, after a minute or two. I could not say, in anybody's 

case, if they could "follow the argument" or not. 

The "productive understanding" category did not apply because the lectures were 

organized according to the dissemination model and the audience was not asked to do 

anything with the knowledge presented (solve problems, engage in a discussion, etc.). In 

fact, the first two of the above categories of understanding seem to be responses to a 

different question or task than the third one. Receptive and reproductive understandings 

are responses to the question, "Tell me about the lecture". Productive understanding is a 

response to, "Solve this problem". I did not ask such question in the interview. Perhaps 

some audience members did apply the knowledge learned in the lecture spontaneously, 

outside of the interview, but I did not seek evidence of this. 

Goffree's categories also did not cover the kind of understanding found in 

audience members with a "student relation" to the talks (G2, ME) who remembered 

details (disconnected fragments) from the talks but did not see or did not attend to the 
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conceptual relations among these details. This way of understanding the lecture could 

perhaps be called "fragmentary". 

Goffree's categories also did not appear to capture the kind of understanding that 

I was observing in PS and MPh after the "Escher" lecture. These audience members' 

understanding could not be "productive" for reasons given above. It was also different 

from the other two kinds of understanding, because both PS and MPh have constructed 

original metaphors to represent the Droste-effect idea. Their understanding could perhaps 

be called "reconstructive understanding", referring to situations when a person 

reinterprets the scientific knowledge presented in popularization in original terms, based 

on his or her own knowledge and experience. PS's "reconstruction" was the idealized, 

never-ending Russian dolls metaphor for infinite repetition; she constructed another 

image, not presented in the lecture, yet represented quite well one of the essential ideas of 

the lecture. MPh's reconstruction took the form of the "fractal" metaphor. I observed the 

reconstructive understanding after the "Escher" lecture also in a mathematician different 

from MPh, whose interview 1 was not analyzing in detail in this thesis. The above 

mentioned other mathematician, also interviewed after the "Escher" lecture, constructed a 

more sophisticated explanation for the transformations of the kind involved in Escher's 

picture: 

...take a roll film used for the old type of cameras, and we would need a film whose 
images are periodically rolled around a cylinder. And what I would do for visualizing it 
is that I would cover the cylinder with parallel rolls all of them containing the same 
image and the same picture would be repeated many times. And when you see the 
Droste picture it is like if you had looked into the cylinder somehow like 
"perspectively". And what happens if you cut it and deform it? Imagine that there is 
this cylinder and you just tear these strips because you say that they are rolled around it 
many times and you just pull the things along. And so these strips just go down and if 
you look into it now you will see that the picture like go into it in a spiral way. 
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Categorizing Gl's understanding presented a special difficulty but also pointed to 

a very important methodological problem with Goffree's model. Gl had no memory 

whatsoever of anything beyond the first "hook" set by the lecturer, namely his 

introductory example (accompanied by pictures of hands, a hammer and horses) of the 

problem of recognizing and distinguishing between shapes. This was certainly not the 

"central hook" of the lecture. Yet, by way of catching on to this single hook, the lecture 

became meaningful for Gl as a psychologist. Moreover, in the lecture, Gl was busy 

observing the mathematical behavior of the lecture, not attending to the meaning of the 

mathematical concepts. It was not "receptive understanding" because one cannot say "he 

followed the argumentation" (because he didn't) and it was not true that he "couldn't 

retell anything" from the lecture (he remembered the first hook). 

One major difference between "popularization relation" and "student relation" is 

that the effects of the latter can be measured by understanding what the lecturer intended 

to communicate ("catching on to the hook" set by the lecturer) and the former cannot. 

The "contract" in popularization relation does not bind the audience member to leam the 

mathematical content of the lecture. The audience member is free to choose what to 

attend to, what to learn. Gl chose to leam about the behavior of a mathematician in his 

natural habitat. It seems therefore that measuring the effectiveness of a popularization 

event by asking whether or not the audience "understood the lecture" in the sense of 

catching on to the hooks set by the lecturer does not make sense. 
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8.4.3 Visualization in mathematics 

In the interviews, popularizers referred to visualization as effective means of conveying 

mathematical ideas especially to an audience not familiar with technical mathematical 

notations. Both lecturers strongly insisted on the use of visual images in their talks. In 

fact, they evoked the main ideas in their lectures by the names of the pictures intended to 

encapsulate these ideas: the image of the panther in the 'Medial representation" lecture 

and the Droste cocoa box picture in the 'Escher" lecture. 

The "Medial representation" lecturer stressed visualization as a deliberately used 

means for conveying mathematical ideas for the general public: 

Because quite a general audience can still understand principles by examples. Typically 
visual examples. So if you can go through a specific example, describe the process for 
example in the context of this topic, the process is very simple. You have an object, the 
boundary is in fire. And the fire is eating the way in the inside of the object. Everybody 
can visualize that. And in the end they understand that finally the fire fronts hit each 
other and these are the regions we are interested in. So there is no mathematics really, 
that's all by example. And once they understand the example you can bring in the 
mathematics to explain the intuition. But of course that is true for this type of physical 
process that you were observing. It would be more of a challenge for abstract concepts 
of mathematics for a general audience. 

Research results cast some doubt, however, on the lecturers' believes in the power of 

visualization in communication and understanding of mathematics (e.g. Arcavi, 2003; 

Sierpinska, 2004; Zimmermann & Cummigham, 1991). The following definition of 

"visualization" as used in mathematics education research and theory has been proposed: 

Visualization is the ability, the process and the product of creation, interpretation, use of 
and reflection upon pictures, images, diagrams, in our minds, on paper or with 
technological tools, with the purpose of depicting and communicating information, 
thinking about and developing previously unknown ideas and advancing 
understandings. (Arcavi, 2003: 217) 

Researchers have acknowledged the importance that visualization may play in 

supporting learning and understanding of mathematics: 
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Sophisticated mathematicians may claim to 'see' through symbolic forms, regardless of 
their complexity. For others, and certainly for mathematics students, visualization can 
have a powerful complementary role in... [at least] three aspects...: visualization as (a) 
support and illustration of essentially symbolic results (and possibly providing a proof 
in its own right)..., (b) a possible way of resolving conflict between (correct) symbolic 
solutions and (incorrect) intuitions,..., and (c) as a way to help us re-engage with and 
recover conceptual underpinnings which may be easily bypassed by formal solutions.... 
(Arcavi, 2003: 223-224) 

Visualization in mathematics, however, is also found to be a non-trivial, complex 

cognitive process. It may facilitate understanding or producing analytical solutions, but 

the cognitive operations that are required for this to happen are themselves not easy or 

straightforward. A visual representation of a mathematical idea may be interpreted as a 

"picture" resembling the thing it is supposed to represent, and not, as usually intended, as 

a "symbol" of the thing. It is common among students to interpret the graph of the 

relation between time and height of a stone thrown vertically up as the trajectory of the 

stone. Popularizers expect their audiences to decode from the visualizations exactly what 

they have encoded into them. They may be deceiving themselves, if, as Arcavi says: 

'We don't know what we see, we see what we know'. I was told that this sentence is 
attributed to Goethe. Its last part: "We see what we know" applies to many situations in 
which students do not necessarily see what we as teachers or researchers do. (Arcavi, 
2003: 230). 

Research literature is replete with examples of situations where students were 

attending to irrelevant details of visualizations they were shown and that were supposed 

to help them understand a complex mathematical idea (e.g. Presmeg, 1986; Sierpinska, 

Dreyfus & Hillel, 1999; Sierpinska, 2004). Examples of this phenomenon were observed 

also in my research. In the "Medial representation" lecture, some audience members did 

not pay attention to the skeleton in the dynamic coloring of the panther image, although 

the whole aim of the visualization was to show how the skeleton is obtained. In the 

"Escher" lecture, this phenomenon was not as salient; people seemed to attend to the 
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relevant aspects at least in the Droste-picture. 

In his paper, Arcavi stressed, moreover, that people's interpretation of a visual 

representation may depend on the context, also for experts: 

[W]hat we see is not only determined by the amount of previous knowledge which 
directs our eyes, but in many cases it is also determined by the context within which the 
observation is made. In different contexts, the 'same' visual objects may have different 
meanings, even for experts. (Arcavi, 2003: 232). 

This phenomenon may be quite important to take into account in popularization. 

The audience filters the visualizations through their cultural lenses, bringing in 

interpretations of symbols from very different contexts than those in the lecture. This is 

bound to lead to misunderstandings. 

The last important cognitive difficulty related to visualization that I will mention 

here is related to the need for multiple representations. It is not true that one can grasp a 

mathematical idea based on a visual representation alone. More, generally, understanding 

mathematical concepts requires conversions between at least two semiotic registers 

(Duval, 1995). This is said, in different terms, in Arcavi's paper as well: 

Another cognitive difficulty arises from the need to attain flexible and competent 
translation back and forth between visual and analytic representations of the same 
situation, which is at the core of understanding much of mathematics. Learning to 
understand and be competent in the handling of multiple representations can be a long-
winded, context dependent, nonlinear and even tortuous process for students.... 
(Arcavi, 2003:235) 

Popularizers, however, expect the lay audience to "skip the equations" and 

understand the mathematical ideas from the visualizations alone. In view of the 

impossibility to perform visual-analytic translations, lay audience members may resort to 

translations of the visualization into a non-mathematical language and context they are 

more familiar with. This brings to mind the difference between using a single language 
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dictionary, which gives definitions and examples of use of the words (like a Webster 

dictionary of English language), versus using a two language dictionary which translates 

the words from one language to another (e.g. an English-Hungarian dictionary). 

Translating something into a different representation in the mathematical language may 

help understanding, but only if the terms of the explanation are not completely foreign. 

Translation into another language may be as tricky as using an English-Hungarian 

dictionary: every English word has many different meanings, depending on the context of 

use, and if one does not know which context applies in the particular case, the dictionary 

is useless. In my research, the mathematicians in the audience were using the "single 

language", mathematical dictionary to interpret the visualizations (e.g. referring to the 

exponential map on the complex plane and its characteristics in interpreting the 

transformations of pictures presented by the lecturer to convey the method of 

reconstruction of the Print Gallery picture). The non-mathematicians, on the other hand, 

"translated" the visual images into a variety of other languages (e.g. psychology, in the 

case of Gl). This helped them in making sense of the lectures to some extent, although 

both the audience and the lecturers were aware that something will inevitably be lost in 

translation. 

The lecturers were trying to deal with this problem by using not only visualization 

and corresponding analytic representations but also other means (common in single 

language dictionaries as well) such as synonyms, explanations of the meaning in different 

terms, or examples of uses of a word in sentences. For example, in the "Medial 

representation" lecture, the lecturer treated the word "skeleton" as a synonym of medial 

axis, explained it using the grass fire analogy and the centers of inside balls, and used it 
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in the examples of the skeleton of the panther. The differential equation (analytic 

representation) was not the only translation of the concept of medial representation that 

he gave. It seemed however, that audience members saw the various explanations as 

separate concepts rather than alternative explanations of a single concept. They, in fact, 

focused only on one representation, the panther, and interpreted it according to their own 

cultural lenses. 

Explaining a concept by showing the uses of a word in different contexts seemed 

to be the approach taken in the "Escher" lecture. He showed the transformations 

underlying the construction of the Print Gallery picture in various examples of use and 

hoped that the audience will be able to derive their essential nature from them. It was not 

clear if this goal was achieved, since the lay audience members were not able to make 

their understanding of the transformations explicit. 

Beside cognitive difficulties related to visualization, Arcavi (2003) also speaks, in 

his paper, of "cultural" and "sociological" difficulties that he explains in reference to 

institutionalized teaching of mathematics. Only the "cultural difficulties" may have some 

bearing in the context of popularization, and I will discuss them briefly here. 

Cultural difficulties refer to the ambivalent perception of the legitimacy of visual 

proofs in mathematics. Students are often warned not to trust the relations visible in the 

drawing of a geometric figure when constructing a proof, because the drawing may 

represent a special case not assumed in the theorem they want to prove. A "visual proof 

or "proof without words" may not be considered as acceptable proof in certain cultures or 

situations. In a popularization situation, however, a visual proof would be perfectly 

acceptable. We could say that visual proofs do not present cultural difficulties within the 
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culture of popularization: this is where it is considered legitimate. This general 

acceptance of visual proofs in the popularization culture might, however, contribute to 

cultural difficulties outside of popularization; it could contribute to the belief that visual 

images somehow "devalue" mathematics, since popularizers (and also audience 

members) suggested that popularization is not necessarily about "communicat[ing] the 

real mathematics". 



231 

CHAPTER 9 

DESIGNING A POPULAR LECTURE 

9.1 INTRODUCTION 

Besides observing popular lectures organized and conducted by others, I had the personal 

experience of preparing and giving a popular talk, and collecting information about the 

audience's reaction to it. I designed a 45-minute talk, and gave it several times, to 

different audiences, some in Hungary, and one in Canada. After each talk, I asked the 

audience to fill out a questionnaire, in the hope of obtaining some feedback on my talk. 

In this chapter, I describe the various aspects of this experience, according to the 

intercultural framework presented in Chapter 2 of the thesis. I describe the institutional 

environments of the talks I had given, present the mathematical topic I chose and reasons 

for choosing it, and the various discursive and other means I used in the talk. I include a 

complete script of the talk. I then present some results about audience members' 

interpretations of the lecture, based on the questionnaire I distributed after the talk. 1 will 

end the chapter with a critical discussion of the research methodology 1 have used to 

obtain information about the audience members' reactions to the talk. 

9.2 INSTITUTIONAL ENVIRONMENT OF THE LECTURE 

I wanted to try my lecture with two audiences with similar academic backgrounds or 

orientations and previous experience with popularization but with different cultural 
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backgrounds. I decided to give the lecture in Hungary and in Canada. In Hungary, I gave 

the talk in a secondary school. In Canada - in a "cegep" (College d'Enseignement 

General et Professionnel). 

Both the Canadian college and the Hungarian secondary school were 

academically oriented; the majority of their graduates would go on to study at the 

university. Students in the last two years of the Hungarian secondary school (grades 10 

and 11) to whom I presented, and the college students were about the same age (16-19 

y.o.). Both institutions have hosted popular talks in mathematics before. In Hungary, 

there is a tradition of schools hosting talks or special lessons given by university 

professors or graduate students. The purposes of the talks could be enrichment, or 

recruitment to study mathematics-related subjects at the university. In the Canadian 

college, there was a program of popular science lectures, regularly attended by students 

and teachers. There was a chance, therefore, that some students attending my talk would 

have had previous experience with popularization and would give me a more informed 

opinion about my talk. 

The institutional constraints in Hungary forced me to give the talks during regular 

mathematics class periods. This had an important impact on the audience I ended up 

lecturing to, and on the possibility of conducting my research altogether. Had 1 given the 

talk after classes as I had planned to, those who came to the talk would have done so of 

their own free will and would have had a "popularization relation" with the talk. Since, 

however, I had to give the talk during regular class time, my audiences contained 

participants with relations other than popularization relation to my talk. Some would have 

never come to the talk, given the option. It was not obvious from the written responses 
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who had what kind of relation with the talk and therefore the results were necessarily 

biased. I was trying to avert at least some of the effects of having the talks during regular 

classes by telling the students that their responses to the questionnaire would have no 

impact on their grades in high school. I also avoided giving the impression that the 

questionnaire is some kind of "test" of their understanding of the talk. The students knew 

from the beginning that I will ask them to fill out a questionnaire but they did not know 

what would be the connection between the questions and the presented material. This 

could help reduce the "student relation" effect but not necessarily induce "popularization 

relation". Some audience members could have, with the talk, the kind of relation that 

students often have with activities that take place in school and that they have to attend, 

but on which they are not evaluated ("time off type of relation). The same relation could 

have been prevalent among the subjects in Debold et al.'s (1990) study, and therefore this 

study of the effects of the Square One TV popularization program on students' attitudes 

and constructs of mathematics was just as biased as mine. 

Thus, in Hungary, I had an audience of students some of whom did not want to be 

there or were not interested at all. In Canada, all students who came to the talk did so 

without coercion, but only three students came! The rest of the audience were college 

mathematics or science teachers. There were thus 13 teachers and 3 students in the talk 1 

gave in Canada. This was a problem for me because the talk I prepared and the 

questionnaire were meant for students. The teachers were also not particularly happy with 

filling out the questionnaire; this was usually not "part of the deal" in their attendance of 

the popular science talks. Because of the completely different audiences in the two 

settings (Hungary and Canada), I was not able to perform a systematic quantitative 
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comparison of the responses to the questionnaires. 

The above problems are clearly not just accidental; they are inherent to any 

project of studying the effects of popularization on the audience. Any audience coerced 

into attending a popular event will not necessarily have a popularization relation with it 

and therefore what we will be testing will not be the effects of this relation. If the 

audience has not been coerced, it will be random and not representing the population that 

we are interested in. If anything, this study has made me realize the tremendous 

methodological difficulties of research on popularization; I started understanding the 

possible causes of the paucity of this research. 

Henceforth, I shall refer to participants in my talks in the Hungarian high school 

as "HS group" and to participants in the Canadian college as the "C group". 

9.3 CHOOSING THE MATHEMATICAL CONTENT OF THE LECTURE 

In choosing the topic for my lecture, I had two main criteria: it has to represent the 

mathematical culture in an exemplary way, and it has to be attractive to 16-19 years old 

students. More precisely, I had in mind the following characteristics: the topic of the 

lecture should 

1) bear some important core characteristics of the mathematical culture, i.e., it 

should be closely related to some fundamental mathematical concept or method; 

2) have a rich network of links to other elements of the culture; 

3) be easy to follow for a secondary school student, i.e., require only the 

mathematical knowledge that can be assumed in secondary school students, and 

possible to present without specialized symbolism; 
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4) contain an element of surprise: present some non-conventional, surprising 

mathematical results52; 

5) have an aesthetic value; 

6) have a humanistic value; 

7) have links with other cultures, for example, with art or with real life applications 

likely to attract students' attention; 

8) be related to some recent results in mathematics, to show that mathematics is a 

live domain, presently making rapid progress and therefore attractive for studying 

at the university. 

To satisfy condition 4), I was also looking for a less common theme, something 

students would not have heard about in previous popular talks. 

Finally, 1 decided to talk about proofs in mathematics that involve ideas and 

techniques inspired by tangrams, namely the "dissect-and-rearrange proofs", in the 

context of the historical evolution of the problem of equidecomposition of figures, which 

involves also proofs by reduction to a previously demonstrated case. Tangrams are not 

uncommon in popularization and education, but they are often used for presenting 

elementary concepts to children (Bohning & Althouse, 1997; Irving & Bell, 2004; Yang, 

Li, & Lin, 2008). My plan was to use them for introducing more advanced mathematical 

ideas, such as 

- the Bolyai-Gerwien theorem stating the equivalence between the property of 

being congruent by dissections and having the same area in the case of arbitrary 

52 This characteristic is inspired by the idea of presenting controversies to the public through popularization 
(Evans & Tsatsaroni, 2000). 
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polygons; 

- the Banach-Tarski paradox, and 

- the result of Laczkovich (1990) about squaring the circle. 

This topic has the potential of exemplifying mathematical culture according to the 

eight characteristics mentioned before, for reasons 1 will outline below. 

1) It speaks about fundamental mathematical concepts such as volume and area. As 

Stewart argues: 

The Bolyai-Gerwien Theorem isn't just a recreational curiosity: it's important because it 
justifies one possible method for defining area. Start by defining the area of a square of 
the length of its side, so that for instance a 3 cm square has an area of 9 cm2. Then the 
area of any other polygon is defined to be the area of the square into which it can be 
dissected. (Stewart, 1996: 172) 

It is also focused on proofs, which are one of the most important characteristics of the 

mathematical culture. It allowed me to include at least one proof (or the main idea of 

the proof) of a non-trivial mathematical theorem, namely the Bolyai-Gerwien 

Theorem. 

2) The topic had direct links with elementary geometry, differential geometry, topology, 

measure theory. 

3) The idea of dissect-and-rearrange proofs could be introduced through puzzles in a 

way that is easy to follow. The proof of the Bolyai-Gerwien Theorem was rather 

meant as an illustration of a certain proof methodology, namely that one can reduce a 

problem to a problem that has already been solved (such as reducing the problem of 

cutting polygons to the question of cutting triangles). 

4) The Banach-Tarski paradox is certainly highly surprising. 
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5) Playing with mathematical puzzles might show that mathematics is "fun", an image 

popularizers often try to communicate. 

6) Introducing the topic through puzzles gave me an opportunity to provide anecdotic 

and historical information about the tangram and other mathematical puzzles. It gave 

me a chance to talk a little bit about Chinese mathematics, but my choice of the topic 

was also influenced by the fact that I wanted to present results that would be related 

to Hungarian mathematicians, preferably to Janos Bolyai since his life was known by 

many of the students in the Hungarian school. In fact, Janos Bolyai was the patron of 

the school. 

7) Displaying different mathematical games gave me a chance to connect mathematics 

with puzzles displayed in many formats (movable tables, postage stamps, etc.). 

8) I was able to connect the results with recent mathematical research. 

9.4 THE MEANS OF COMMUNICATION USED IN THE LECTURE 

Knowing from research on science popularization that the dissemination model is highly 

criticized, I decided to follow the engagement model at least in a part of the event. I 

interrupted the talk at some points to let the participants to play with puzzles. 

I first present the script of the talk (Section 9.4.1). In section 9.4.2,1 will analyze 

the means I used in the talk in terms of the Duval-Jakobson framework. 

9.4.1 The script of the talk 

9.4.1.1 Part 1, organized according to the engagement model of popularization 

1 start the talk with the following introduction: 
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/. / like puzzles, and I like playing with them. I have quite a few at home by now 
but I was in high school when I first saw a tangram. Have you heard about it? 

2. It is a puzzle which consists of seven pieces only, a square, some triangles and 
a parallelogram. 

3. To solve the puzzle means simply to form given shapes using all these seven 
pieces. Easy, isn't it? There are those 1000-2000-pieces puzzles (my cousin 
plans to buy a 5000-pieces puzzle!). Compared to those, tangrams are for 
kindergarten children. 

4. To solve the puzzle means to form given shapes from the pieces. OK, but what 
are these shapes, really? Well, there are thousands of possibilities. 

5. My favourites are paradoxical pairs of puzzles. What does it mean that they 
are paradoxical? The shapes vary only a little, as if it would be possible to 
solve one of them and then use just one more piece to find the other solution. 
However, we must always use exactly the same number of pieces. So although 
the shapes are similar, the arrangement of the pieces must usually be 
completely different. 

At this point, I show a few paradoxical puzzles from Slocum et al. (2003), and 

look at how the pictures are similar to each other and that solving the puzzles means 

arranging the pieces into the given shape. 

6. For example we can have one square or we can have two squares. Let's try to 
solve the first puzzle and form a square from the pieces. 

1 encourage participants to form groups of 3-5 to work together on the puzzles. 1 

distribute the tangrams among the groups. The groups should have enough time to solve 

their puzzle, and if they get stuck at some point, 1 help them. When the majority is 

finished, 1 show them the solutions. (See Figure 9.1) 



Figure 9.1. Arranging tangram pieces to form a square 

I then propose a more difficult task. 

7. Try to form two smaller squares from the seven pieces. 

When the majority is finished, I show the solution (Figure 9.2). 

Figure 9.2. Arranging tangram pieces to form two small squares 

Then, I show how a special arrangement of two puzzles leads to the proof of the 

Pythagorean Theorem in the case of an isosceles right triangle (Figure 9.3). 

Figure 93. A "puzzle proof" of the Pythagorean Theorem for an isosceles right triangle 

I continue: 
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9. By forming these two squares we have actually proved the Pythagorean 
Theorem for an isosceles right triangle. This is only a special case of the 
theorem but considering that we were simply playing with a puzzle, it is not 
bad. 

At this point, I show some pictures of other rearrangement puzzles and tangrams 

of various forms (tangram tables, stamp collection, etc.) using the illustrations from 

Slocum et al. (2003). 

10. Rearrangement puzzles were popular throughout history, like the Stomachion 
in the ancient Greece and Rome, or a nineteen-piece puzzle in Japan. 

11. In these puzzles the number and variety of the pieces were greater; for 
instance the Japanese puzzle contained even semicircles. 

12. It is probably because of its simplicity that, unlike the Greek and Japanese 
puzzles, the tangram remained well known to this day. It is quite recent: it is 
only about 200 years old. 

13. Its age is probably surprising but its origin is not. 
14. We can find its roots in Chinese mathematics (for example, in Liu Hui's proof 

of the Pythagorean Theorem) and in similar Chinese puzzles ) . 
15. The first known tangram book was found at the beginning of the 191 century 

but the tangram craze quickly spread over North-America and Europe. 
16. The tangram books became also more vivid at this time. Instead of the simple 

black and white puzzles they contained shapes of faces of famous people, or 
buildings. It also happened that the little elements were formed by pieces of 
furniture and so to solve a puzzle meant rearranging the furniture in a room. 
In Germany, for instance, children could collect the puzzles by buying some 
sweeties and getting them as a bonus, similarly as today. 

17. We can also find tangrams today. I particularly like the Finnish stamp series, 
whose elements form the shape of tangram-pieces that can be arranged 
accordingly. 

18. Since.the method of rearranging the pieces of squares already worked for 
proving the Pythagorean Theorem in a special case, let's try to do it for a 
general right triangle. We will imitate Liu Hui's proof. For this let's first form 
a big square and then two small squares (possibly not of the same size). 

I distribute the puzzles similar to the tangrams to the participants and ask them to 

arrange the pieces to form one big square and two small squares. 

The proof can be found in various places, for example Wagner (1985), Straffin (1998), or Wang (2009). 
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Figure 9.4. "Proving" the Pythagorean Theorem for an arbitrary triangle 

When the majority is finished, I display the solution by using two sets of puzzles 

(Figures 9.4, 9.5). 

Figure 9.5. The Pythagorean Theorem for an arbitrary triangle 

19. If we arrange the pieces according to the picture, it becomes obvious that 
we have proved the Pythagorean Theorem for a general triangle. 

20. Let's just stop and think a little about what we have done. 
21. In fact the Pythagorean Theorem for us meant that we can cut two little 

squares into pieces and form a big square from the elements (as shown in 
Figure 9.6) 

Figure 9.6. Two squares dissected into one big square 
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22. We have seen that we can cut and rearrange two squares to a big square 
like the red and the yellow one into the green one. 

23. What about shapes other than small squares? Can we get a square by 
cutting and rearranging a rectangle? Well, let's try. 

I distribute the puzzles to the participants and ask them to form first a rectangle 

and then a square from the pieces (as shown in Figure 9.7). At some point, I expected a 

question about how we can figure out the parameters of the final square and where we 

have to cut to get the desired result. I got such questions only after the talk in the 

Canadian college. 

Figure 9.7. Dissecting a rectangle into a square 

24. What about triangles? Well, for an equilateral triangle it seems "easy", 
we need only three cuts (as shown in Figure 9.8), although quite 
surprising ones. 

Figure 9.8. Converting an equilateral triangle into a square 

25. But what if we have a general triangle? It seems a little more complicated. 
If we have a triangle it is easy to get a rectangle... 

Participants are encouraged to rearrange the puzzle first into a triangle and then 
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into a rectangle. (Figure 9.9) 

Figure 9.9. Dissecting a triangle into a rectangle. 

26. ... but not the square. How can we get a square instead of the rectangle? 
27. Well, how do physicists and mathematicians boil water? They take a pot, 

fill with water, put on the stove, turn it on and wait till boiling. But what if 
the pot is already filled with water? The physicist takes the pot, puts it on 
the stove, turns it on and waits till it boils. What does a mathematician do? 
Well, he takes the pot, empties it, puts it back in its place. This way he has 
reduced the problem to the previous case and from now on he follows the 
original procedure: takes the pot, fills it with water, etc. 

28. We can apply the same method for cutting the triangles. 
29. From a triangle we can easily get a rectangle and from this rectangle we 

have already seen that it is possible to get a square. 
30. We needed quite a few cuts but finally we got the square, which is what we 

wanted. (Figure 9.10) 

Figure 9.10. Dissecting a triangle into a square. 

I was thinking of giving this task to the audience as a puzzle, but I found it too 

time consuming. I also felt that this approach would probably hide the main idea, so I 

finally divided it into two parts (See Figures 9.7, and 9.9). In fact, the proof is not 

complete; the rectangle has to have a certain height to be able to make the required cuts 

(if not, first we have to reach this height by appropriate cuts). 

31. Let me just summarize what we have done up till now. 
32. We have cut and rearranged two small squares to make a big square, a 

rectangle to make a square, and a triangle to make a square. 
33. Quite a lot, but all of them are special shapes. Can we do this for an 
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arbitrary polygon ? 
34. Let's use the method of boiling water again. 
35. We can easily cut the polygon into triangles, from those triangles we form 

squares (as we did before) and from the small squares we get one big 
square (as in Figure 9.11) 

Figure 9.11. Dissecting arbitrary polygons into a square of the same area. 

36. We have seen so far that from an arbitrary polygon we can get a square 
by cutting it into pieces and then rearranging it as a puzzle. 

37. Look at the two turquoise pictures [in Figure 9.11] closely. The two 
shapes have the same size. 

38. It is not surprising since during this process the area remained the same. 

9.4.1.2 Part 2 of the talk, based on the dissemination model 

In this part of the talk, I start discussing the Bolyai-Gerwien theorem. 

39. If we have one shape and we rearrange its pieces to another one then the 
areas always will be the same. Is this true backwards? 

40. If we have two shapes of the same size, namely two polygons of the same 
area can we always cut one into pieces, rearrange the elements and get 
the other one? 

41. The answer is yes. In fact this theorem has a name; it is known as the 
Bolyai-Gerwien theorem. 

42. Here, "Bolyai" refers to the father ofJanos, Farkas Bolyai. 
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43. The theorem states the following: Two polygons are congruent by 
dissection 4 if and only if they have the same area. 

44. In particular, any polygon is congruent by dissection to a square with the 
same area. 

45. This means that if we can get one shape from the other by cutting and 
rearranging the pieces by rotating and moving them, the area remains the 
same; and also, if we have two polygons of the same area, we can always 
cut one into pieces, rearrange the elements and get the other one. 

46. It means that if we have two sheets of paper of different shapes but with 
the same area, we can always cut one into pieces and then reassemble it in 
the way that it will look the same as the other. 

47. By using our previous method we can easily prove the theorem. 
48. We can certainly cut both polygons and form squares from the pieces as 

we have seen before. 
49. But let's just reverse one of the processes. 
50. Let's cut the first polygon, say, a pentagon and rearrange it into a square. 

Here I refer to the pictures in Figures 9.12a and 9.12b. 

Figure 9.12. Illustration of the Bolyai-Gerwien Theorem 

57. And now let's cut the square and rearrange it to the other polygon, say a 
quadrilateral by simply reversing our previous process (we cut and 
reassemble the square to small squares, then to triangles, and then to the 
quadrilateral). 

In other words, are equidecomposable with each other. 
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Referring to Figures 9.12b and 9.12c, 

52. We certainly need quite a lot of cuts even in this simple case (as can be 
seen in the picture) but we can surely do it. 

53. Of course it usually doesn't give us the optimal solution, in certain cases 
only a few cuts are enough. 

54. But the good thing about this method is that it works every time for all 
kinds of polygons. 

55. Finding the good cuts is not easy, however. 
56. You can find puzzles in magazines of this kind, like dissect a cross by four 

cuts into pieces and form a square from the elements. We might need 
thousands or millions of cuts, but we can do it. 

57. From the Bolyai-Gerwien Theorem we have seen that a polygon can be 
cut and rearranged to another polygon with the same area. 

58. But polygons are plane figures. 
59. What about 3-dimensional figures? Is the same thing true in this case? 
60. If two polyhedra have the same volume, is it possible to get one from the 

other by cutting it (by planes) into pieces and rearranging them? 
61. A very famous mathematician, David Hilbert, asked the same question. 
62. In 1900, Hilbert presented 23 problems. He intended those as a program 

for future mathematical research and so listed mathematical problems 
which seemed probably the most important. Hilbert's questions turned out 
to have strong impact on the 20' century mathematics. Some of these 
problems still remain to be solved. 

63. Solving such difficult mathematical problems seems to be a pretty good 
business, by the way; you can earn one million dollars by achieving this. 

64. Our question was identical with the third problem of Hilbert, but it proved 
to be the easiest one. 

65. Max Dehn found two tetrahedra with the same volume such that no matter 
how we cut one by plane cuts, it is not possible to form the other one from 
the pieces. In this way he proved that the 3-dimensional case is not as nice 
as the one in 2 dimensions, namely having the same volume does not 
guarantee that we can automatically cut and rearrange polyhedra to each 
other. What's this difference then? 

66. In 3 dimensions we have to be careful with the angles formed by the cuts. 
67. When we put them together they should fit, namely if we put them together 

they should form either the angle of the new polyhedron or become 
straight. 

68. The monster-like complicated mathematical object which encodes this 
property of the angles is called Dehn-invariant. 

J had the formula of the Dehn-invariant on the slide but 1 wanted only to show it 

and explain it visually. 
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69. If the Dehn-invariants of two polyhedra are equal then they are "scissors 
equivalent", namely one can be cut and rearranged to obtain the other. 

On the slides I had the necessary and sufficient conditions but I didn't want to go 

into details. However, I expected a question about it. 

70. It seems that the 3-dimensional case was more rigid concerning the 
rearrangement of polyhedra. 

71. But what happens if we allow not only cuts by planes but also other kinds 
of cuts. 

72. Imagine that up till this point we used only knives and from now on we are 
allowed to use more unusual tools to cut. 

73. What happens then? 
74. The result is shocking. 
75. In fact, it is possible to dissect a ball into six pieces which can be 

reassembled by rigid motions to form two balls of the same size as the 
original. 

76. This is called the Banach-Tarski paradox. 

I didn't want to spend much time on the paradox, simply state it as an interesting 

result. 

77. Practically, it means that, if you have, let's say, an orange, you can cut it 
into six pieces, put together the pieces and get two oranges of the same 
size. 

78. In facts the cuts here are "pretty ugly ". 

I didn't want to elaborate on it more. For the questions regarding the topic, I 

simply planned to say that it could be like "taking one point here or there", or to mention 

some "very strange" cuts (for example taking points with rational coordinates, which is 

not a good example here, since it is measurable, but already peculiar enough). 

79. Of course this cannot happen if you use a knife and make plane cuts. 

80.1 have to admit that you cannot really do this because the six pieces are 
very strange. 

81. But theoretically it is possible. 
82. In fact if we allow strange cuts we can get interesting results in two 
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dimensions also. 
83. For example we can square the circle. 
84. Squaring the circle was one of three classical problems of Greek 

mathematics which was proved to be impossible by Euclidean means. 
However, if we allow "strange" cuts, it is possible to cut the circle by a 
finite number of dissections (~l(r having 50 zeros after the 1) and then 
reassemble the pieces to a square. 

85. The cuts in this case are not very nice, either. 
86. This is a quite recent result; Miklos Laczkovich proved it in 1988. So as 

you can see playing with mathematical puzzles can lead pretty far up till 
today's mathematics. 

I included it as an example for a quite recent result in mathematics but I did not 

want to go into any more details; just simply mention the fact. 

After the talk, I distributed the questionnaires to the participants who were 

assured that their answers will by no means influence their grades in school. 

9.4.2 Analyzing the means of communication in the talk according to the Duval-Jakobson 

framework 

I summarize some aspects of the means I used in the lecture similarly to the talks 

presented in Chapter 5. 

With regard to the meta-discursive functions, the emphasis was rather on 

communication than on objectivation and processing. Although 1 included proofs in the 

lecture they did not require formal processing. (It raises an immediate question about the 

accepted means of processing throughout history; while the proof by dissection was 

appropriate for Chinese mathematics it would not be for today's mathematicians.) The 

presentation also lacked the precise definitions and statements, thus it would not qualify 

for any kind of objectivation. 

Regarding the communication functions, the workshop format of the first part of 

the talk made it possible to rely heavily on conative and phatic functions. I had the means 
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to provoke an immediate action; in fact, students started to play with the puzzle before 

any explicit instructions. The rather small size of the groups (compared to a lecture given 

to hundreds of participants) made the interaction with the participants easier. In the 

second part of the talk, these functions were used much less. In this respect, the first part 

of the talk was an example for the engagement model of science communication 

presented in Chapter 2 (a similar approach was taken by Godot, 2005), while the second 

part followed the dissemination model, with a more uni-directional communication. In 

the second part, I also used the metalinguistic function quite often for formulating and 

rephrasing statements (as in the case of the Pythagorean Theorem or the Banach-Tarski 

paradox). As for the poetic function, I was consciously trying to make the presentation 

pleasant to the ear and to the eye. I tried to speak smoothly, using short and simple 

sentences. I never made a long speech without accompanying it with graphical 

representations that I also tried to make pleasing to the eye. 

While the referential function was used often for identifying non-mathematical 

objects (such as different types of puzzles), it was not very transparent for defining 

mathematical terms. Similarly to the two lectures 1 analyzed in the previous chapters of 

this thesis, I also had a "central hook" to attract the audience's attention and convey the 

main idea of my talk. This central hook was represented in the tangram puzzle, which 

worked as a metaphor for the dissect-and-rearrange proofs throughout the lecture. The 

ground of the metaphor was the action one should make to solve the puzzles or to 

complete the proofs. However, the tenor and the vehicle certainly differed in many 

aspects that 1 generally did not make apparent in the presentation. Probably the main 

difference was between the methods involved; while for the puzzles a (small number of) 
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cuts is made and the task is to find one (among the finitely many) solutions, in the case of 

theorems the question is about the existence of the cuts which generates infinitely many 

solutions. 

I used apophantic function by a variety of means such as stating facts rephrased in 

different ways, pictures, diagrams, dynamic representations. The state of truth was not 

given a great importance in the lecture. I deliberately skipped constraints of theorems and 

details of proofs (although in some cases I expected questions about them). I generally 

felt that these details were not worth mentioning. 

The organization of the first part of the talk was in accordance with those found in 

the popular paper and the lectures discussed in Chapter 5. The talk was generally 

organized around the metaphor of rearranging puzzles. Considerable time was devoted to 

introducing the problem with anecdotic aspects and puzzles, while the presentation of the 

actual mathematical results (and their justification) took much less time. The presentation 

was not structured formally (there was no slide with a "Plan" of the lecture presented at 

the beginning of the talk; the slides were not numbered; there were no cross-references, 

etc.). The graphical representations were certainly meant to play the most important part 

in conveying ideas. 1 relied heavily on pictures and dynamic images of puzzles. Instead of 

symbolic representations, I used colors for easier reference. 

9.5 MY CULTURAL LENSES AND GOALS FOR THE TALK 

Based on the interviews with popularizers, 1 identified two main views of mathematics 

that were usually intended to be communicated through popularization: Mathematics is 

useful (the utilitarian view of mathematics), and Mathematics is beautiful and fun (the 
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aesthetic and enjoyable view of mathematics). I decided to convey mainly the aesthetic 

and enjoyable view of mathematics as expressed in the ingenuity of reasoning and 

imaginative proofs. I chose to present a proof method quite characteristic of the 

mathematical culture: a technique of reduction to a previously proved case. In my 

choice, I was also certainly influenced by the fact that the talk was planned as an 

extracurricular activity only for those students who were interested in mathematics and 

possibly planning to continue their studies at the university in this direction. 

9.6 THE QUESTIONNAIRE 

The questionnaire was administered right after the talk. The HS group had 45 minutes to 

complete it (one full classroom period). The C group was not given any time limits, but 

most were done after half an hour. 

The questionnaire had two parts. The first part was intended to reveal the 

audience's cultural lenses; the second - their interpretations of the lecture. Each part had 

ten questions. The large number of questions was meant to make up for the limitations of 

the questionnaire method as compared to an interview, outlined above. By asking several 

questions on a similar topic, I was hoping to reveal more aspects of the participants' 

cultural lenses or their interpretations of the lecture. 

For reasons that 1 will explain later, 1 was not able to obtain useful conclusions 

from a detailed quantitative analysis of the responses to Part 1 of the questionnaire alone. 

I took them into account, to some extent, in analyzing responses to Part 11. 

1 reproduce the questionnaire below, without displaying the spaces left for 

answers in the original sheets given to the audience members. Together with the spaces, 
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Part I. Audience members' cultural lenses 

1.1 What is your attitude toward mathematics? (Like/Dislike/Neutral)Why? 

1.2 Where do you plan to continue your studies? Do you expect to use mathematics in 
your future profession? 

1.3 What is mathematics good for? 

1.4 What do you think modern mathematics is about? 

1.5 Complete the following sentence: Mathematics is ... 

1.6 List a few mathematicians. 

1.7 Complete the following sentence: Mathematicians are ... 

1.8 Have you ever taken part in a mathematics competition? 

1.9 Have you read popular books or attended popular lectures about mathematics? If 
yes, please give a brief description (for example, the title, or what where they about). 
What do you think about these books or lectures? 

1.10 Are you interested in popular lectures? If yes, which topics are you interested in? 

Part II. Audience members' interpretations of the lecture 

II. 1 What was the presentation about? 

11.2 Have you understood the presentation? 

1) No 2) A few things 3) Yes, essentially 4) Yes, completely 

Which parts caused the most trouble? 

11.3 What is the connection between the tangram and mathematics? 

11.4 In what form have we used the Pythagorean Theorem for the cutting? 

11.5 How could we cut and then rearrange 

a) a triangle to obtain a rectangle 

b) a rectangle to obtain a square 

c) a polygon to obtain a square 

11.6 State the.Bolyai-Gerwien theorem. Give an outline of the proof. Was it a correct 
proof? 

11.7 What is the Dehn-invariant? What is it good for? 

11.8 What does the Banach-Tarski paradox say? 

11.9 What do you think about the cuts in the Banach-Tarski paradox by which it is 
possible to cut one ball into two? 

11.10 Which parts of the presentation were the most unclear? 



253 

In the following section (9.7), I give an account of the information I could derive 

about participants' interpretations of the lecture, based, mainly, on their responses to Part 

II of the questionnaire. Unlike in the case of the "Medial representation" lecture and the 

"Escher lecture", I will not look at cultural lenses and understanding separately but will 

describe them together. In section 9.7.1, I describe my reasons for this different 

organization. 

9.7 PARTICIPANTS' INTERPRETATIONS OF THE LECTURE 

9.7.1 Introduction 

My original aim was to assess participants' understanding based on their responses to 

questions intended to measure "reproductive understanding" in Goffree's sense (1989; 

see Chapter 8). Thus, I asked them the questions in Part II of the questionnaire. 1 

expected to be able to classify the responses into categories that would be a refined 

version of the Goffree model. 

Already the interviews with the "Medial representation" and "Escher" lecture 

audiences have shown, however, that Goffree's model of understanding a popular lecture 

may not be appropriate to describe audience members' interpretations of the lectures (see 

Chapter 8). Nevertheless, the interviews were able to reveal what people have found in 

the lectures that was useful or interesting for them even if it was not necessarily the 

memory and understanding of the mathematical facts, ideas and methods presented in the 

lectures. The interviews were loosely structured conversations, and people did not have to 

respond to a question directly, in one sentence; they could come back to a question if they 
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wanted and whenever they wanted, or comment on a question rather than answer it. In the 

interviews, I could also ask additional questions, triggered by something the interviewee 

told me, and I could ask people to elaborate, if their answer was too short and not clear 

enough. All this was not possible with the methodology of questionnaires. I was not 

testing any premeditated hypothesis but exploring the different kinds of reactions and 

interpretations audiences may have, and therefore, in fact, I could not plan the appropriate 

questions to ask beforehand. I also had to decide how much space to leave on the 

questionnaire for the essay items, and this was a constraint on how much information the 

respondents could give. Another constraint was having to formulate an answer in writing; 

it is much more difficult to communicate in writing than orally, so people would write a 

lot less than they would be willing to talk about. 

Moreover, talking about a lecture during an informal conversation with those who 

already agreed to be interviewed seems to be necessarily more revealing because 

audience members who consent to an interview "have something to say". Some of the 

interviewees indeed talked a lot and the interview for them was a way for making their 

opinions heard (as Mb) or for expressing their frustration (CI). An interview situation 

induces much less of a feeling of being tested, provides an opportunity for being flexible 

and for asking participants to clarify their answers. 

In the institutional context of my lecture to the HS group, with 99 students in 

three classes, given during regular class hours, made it difficult for the audience to 

construe the lecture based on the popularization relation. Some audience members might 

have felt they were being tested. Some others may have treated the classes as "time off', 

only pretending that they participate in them (being physically but not mentally present). 
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Indeed, there were responses so laconic (e.g., the lecture was about "tangrams" or 

"geometry") or evasive ("I don't know"), or most questions not answered at all, that I 

was suspecting their authors to have the time off relation with my lecture. One participant 

even explicitly noted: "[Answering the questions] is not important unless I have to write a 

(school) test about it". The laconic or evasive answers could be, however, also a 

symptom of treating the questionnaire as a test and simply "not knowing the answer". It 

was difficult to tell which position these students were taking. There were, however, a 

number of thoughtful responses that seemed to reflect what the participants paid attention 

to during the lecture and what they took with them from it. These responses were mostly 

given by students who replied positively to the question 1.10, indicating that they would 

be interested in participating in popularization in the future, and therefore were more 

likely to be in a popularization relation with the talk. In this section, I will therefore 

present, beside the reactions of the C group, the reactions of only those nineteen HS 

students who replied positively to question 1.10. As in my accounts of audience 

members' reactions to the "Medial representation" and "Escher lectures", I will write 

mainly about the differences between the lecturer's (mine in this case) expectations 

regarding the message conveyed and what I hoped the audience will attend to, and the 

actual interpretations of my lecture, revealed in Part II of the questionnaire. 

1 have labelled the HS group members using symbols such as HS1 la/1, HSlla/2, 

etc., or HS10/1, HS10/2, etc., where "1 la" stands for grade 11, section "a" class, and "/ l" 

identifies the student in this class. Some HS group members were from grade 10; then 

they were labelled with "HS10/" followed by their number in my database. The college 

teachers were labelled CT1,... ,CT13, and the college students - CS1, CS2 and CS3, but, 
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in my analysis, I will not distinguish between teachers' and students' behaviour in the C 

group. 

9.7.2 Results based on responses to the questionnaire 

In this section, I will describe the audience members' interpretations of the lecture. The 

section will be organized into subsections corresponding to my criteria of choice of the 

topic for the talk, presented in section 9.3. The results for the HS group, as mentioned, 

refer only to the behavior of the 19 students who responded positively to question 1.10, 

i.e. to those who said they are interested in participating in popularization of 

mathematics. The results for the C group take into account responses of all college 

participants. 

9.7.2.1 Connections with mathematical culture 

The talk addressed some important characteristics of the mathematical culture, such as 

dissect-and-rearrange proofs, proofs by reduction, and the historical evolution of the 

question of equidecomposition of figures by dissection. 

About half of the audience members in each group were able to reproduce 

(usually as an answer to the question II.5c) an argument involving a dissect-and-

rearrange proof or a proof by reduction (50% in the C group and 53% in the HS group). 

For example, respondents would state that it is possible to cut and then rearrange a 

polygon to obtain a square "by dividing it into triangles and then into square, etc." (CS3). 

Among them, only one person identified proof by reduction as the topic of the 

presentation, referring to it by "the previously solved problem idea" (CT12). Another 

participant wrote that the lecture "presented the tangram method" (HS1 la/22). 1 did not 
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use the term "tangram method" in my lecture. Therefore, I infer that this participant was 

not "reproducing" what he heard in the lecture but rather "reconstructing it". I am 

referring here to the notion of "reconstructive understanding" proposed in my discussion 

of Goffree's categories of understanding a popular lecture in Chapter 8, section 8.4.2. 

There was a considerable difference in the level of detail of the presentation 

recalled by the C and HS group members in their answers, especially to question 11.5. 

While the C participants gave at most very rough sketches of dissections in solutions, the 

HS participants' responses were often extremely detailed and usually very similar to 

those presented in the puzzles and on the slides. The difference can be seen in the 

examples in Figure 9.13. 

Figure 9.13. Examples of reponses to question 11.5c. 

The sketch at the top was given by HS10/13; the one at the bottom by CT12. 

Responses to the questionnaire suggested that audience members perceived the 
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presented techniques only in terms of the exemplary cases represented in the puzzles, and 

focused on the shapes of the parts of the puzzle rather than on the reconstruction of the 

cuts based on the properties of the shapes or the fact that dissections preserve angles. 

Thus, in their responses to question 11.5a (How to cut and rearrange a triangle to obtain a 

rectangle) they usually provided a triangle similar to the one they played with in the 

puzzles (Figure 9.14), and showed how to rearrange pre-given pieces into a rectangle. 

A-9 a 
Figure 9.14. Answer to the question 11.5a on cutting and rearranging a triangle into a rectangle (CS1) 

In many cases, the methods represented in answers to 11.5 were applicable only in 

special situations. For example, in question II.5a, the method shown could apply only in 

the case of an equilateral triangle (Figure 9.15). One participant proposed to cut a 

rectangle in two squares and then cut each of the squares into two triangles; in this special 

case of a rectangle decomposable into two squares, these triangles could be rearranged 

into a square (Figure 9.16a). Another one started with the same type of rectangle and then 

implied that one can use the Pythagoras theorem to make one square from two (Figure 

9.16b). Yet another participant answered question 11.5c on the example of a polygon 

made of four little squares (Figure 9.17). 
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Figure 9.15. Answer to the question 115.a on the method of cutting and rearranging a triangle into a rectangle 

(HSlla/16) 

CD -o £ -D a 
(a) 

(b) 

Figure 9.16. Answers to the question II.5b on the method of cutting and rearranging a rectangle into a square 

(a) (HS10/16); (b) (HSllb/8) 

* ^ T * T ^ « t o r . . "'"*? ':':'* "i 

Figure 9.17. Answer to the question II.5c on the method of cutting and rearranging a polygon into a square 

(HSllb/10) 

Participants were usually not curious to know how the cuts were obtained. Only 

one audience member (in the C group) asked how it is possible to construct the cuts in the 

puzzles and what should be taken account to do them. However, a few participants 

reflected upon the cuts and reconstructed them in the case of triangles (Figure 9.18). 
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(a) 

Figure 9.18. Answers to the question II.5a on the method of cutting and rearranging a triangle into a rectangle 

(a)(HSllb/9),(b)(CT5) 

Interestingly, the image of mathematics as a "science of proofs" was held in the C 

group among those who did use or refer to the technique of proof by reduction 

somewhere in their answers, whereas among the HS participants this view was not 

associated with the reproduction of the particular proof. This could be explained by the 

fact that, among the HS participants, the view of mathematics as a science of proofs was 

held mainly by those who had a negative attitude towards mathematics ("Dislike" in 

response to question 1.1), whereas, in the C group, this view of mathematics was 

associated with positive attitudes. In both groups, the ability to reproduce proofs was 

higher among those who saw mathematics as a mental exercise or perceived it as "fun" or 

enjoyable activity. 

Besides the general method of the proof, some participants noticed also other 

aspects of the mathematical culture. For example, historical aspects of mathematical 

culture were mentioned by some of the audience members; the topic of the presentation 

was described as "[t]he evolution of geometry and resulting problems" (CS1) or the 

response mentioned Chinese mathematics by associating it with the topic or with 

tangrams (HS1 la/6, HS1 la/17, HS1 la/20). However, some participants over-generalized 

my historical remarks; for example, one participant perceived tangrams as "essentially 
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the roots of mathematics" (CS2). 

9.7.2.2 Links with additional elements of the mathematical culture 

The topic was meant to provide a rich network of links to other elements of the 

mathematical culture. There were certainly a few mathematical objects I "put on display" 

in the talk, such as the Pythagorean Theorem, the preservation of area and volume and 

their problematic definition, etc. Among these, the Pythagorean Theorem attracted the 

most attention and was often identified as one of the main ideas in the presentation. The 

preservation of area and its role in dissections was also a recurrent theme in the 

responses. While I expected that some answers, especially to question II.3 (What is the 

connection between tangrams and geometry), would list geometric shapes and mention 

the Pythagoras theorem, I certainly did not intend to convey the impression that the 

Pythagoras theorem was the main topic of the talk. 

In their responses, participants mentioned also mathematical ideas that 1 did not 

speak about in the talk nor expected the audience to make indirect associations with. 

Interestingly, this behavior appeared only in the C group, and was almost totally absent in 

responses of the HS group (with maybe a few exceptions). This difference of behavior 

could perhaps be explained by the fact that most of the HS audience appeared to attend 

the talk as students in a school period allotted to mathematics, while the C audience was 

in a popularization relation with it. The HS participants responded to the questionnaire as 

they would to a test: duly answering the questions to the best of their memory of the 

"lesson", but not offering anything extra, such as opinions, reflections, comments, 

because it is not the student's job to do such things. In the C group, respondents offered 



262 

the following "loose associations" with the ideas presented in the talk: 

- Complex numbers: CS3 wrote that the cuts in the Banach-Tarski paradox 

"probably involve imaginary and complex numbers", after stating earlier that he 

would be interested in popularization events related to "unreal numbers". 

- Infinity: In response to question 11.10 (what was most unclear?), CT2 posed the 

question, "Is 1050finite?" referring to the number of cuts in the proof about 

"squaring the circle". 

- Tiling: CT3 mentioned "tiling" as the connection between tangrams and 

mathematics. 

- Axiom of Choice was mentioned by CT4 as a problematic idea in mathematics. 

The proof of the Banach-Tarski paradox does rely on the Axiom of Choice; 

however, I did not mention it in the talk. 

- Algebraic identities: The formula (A — B)2 — C2 — 2AB (CT5) was written in the 

space allotted for the question II.5a, related with cutting and rearranging a triangle 

to obtain a rectangle. 

- Teaching-learning approaches: tangrams were seen by some participants as a 

good "entry point in teaching" (CT5) because it helps "asking the right question" 

(CT5), and it is good for "geometrical intuition" (CT8). A similar idea was 

expressed also by one HS participant who considered tangrams as a way for 

improving "geometric intuition" (HS1 la/20). 

9.8.2.3 Elements of surprise 

The Banach-Tarski paradox is certainly a non-conventional, surprising mathematical 
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result. This paradox, however, was not intended to be the most important idea in my talk, 

and I did not spend much time on it. Nonetheless, many participants took it as the most 

important or interesting idea of the talk. Several members of the C group came to me 

after the talk saying that they would be interested in hearing more about it. Responses to 

questions 11.8-9 contained remarks such as "[the Banach-Tarski paradox] is fascinating, 

yet impossible in practice, so less fun" (CS1), "troubling and intriguing" (CT6), "pretty 

incredible" (CT4), "weird" (CT10) or "I don't believe it" (CT13). In fact, the paradox 

was mentioned in responses to various questions of the questionnaire by 81% of the C 

participants and by 68% of the HS participants; however, while 75% of C participants 

also reflected on it in some ways (expressed feeling or emotions, added visual 

representations or reformulated it), only 32% of the HS participants did something 

similar. An interesting feature was that, while, in Part II of the questionnaire, HS 

participants filled out mainly questions II.1-II.6, C participants answered mostly 

questions II. 1-II.5, skipped 11.6-7 and went directly to those on the Banach-Tarski 

paradox. Responses to the questions on the paradox included, 

- connecting the paradox to real life: "It seems economical. 1 wish it could be 

applied in reality" (CT2); 

- making a joke: "here go the orange multiplications" (CT6) 

- considering its (in fact, not true) mathematical implications: "These is no 50(3)-

invariant measure on R3 " (CT7), or 

- representing it by a picture (CT9, see Figure 9.19). 
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Figure 9.19. Visual image of the Banach-Tarski paradox (CT9) 

Thus it seems that the Banach-Tarski paradox could be a good topic for 

popularization, at least in front of an audience of college teachers and students in 

popularization relation with the talk. 

9.7.2.4 Aesthetic values 

The presentation intended to convey aesthetic values of mathematics especially in the 

form of ingenuity and elegance of proofs and the fun of their representations through 

puzzles. Expressions such as "fascinating", "fun" (CS1), or that the talk was about 

"playfulness" (HSllb/9) of mathematics in responses to Part II of the questionnaire 

showed that this effort succeeded at least in the case of a few participants. However, 

answers where the expression of appreciation of the aesthetic value was explicit were not 

numerous: two HS participants described mathematics as an enjoyable activity; four C 

participants said that it is "fascinating" or "mysterious" and ten others in this group said 

that it is "fun". 

9.7.2.5 Humanistic values 

Although the talk mentioned names of mathematicians, their stories as discoverers or 

inventors of the presented mathematical results were not part of it. Thus, the humanistic 
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aspects of mathematics were only very briefly and lightly touched upon in the lecture. 

This point seemed to be well understood by the participants. Very few respondents 

seemed to think that the talk was about mathematicians. 

9.7.2.6 Links to other cultures 

The topic provided links with other cultures, for example with the culture of games. 

Although many participants mentioned the tangram when they summarized the topic of 

the talk, it was not clear, from what they had written, to what extent they perceived it in 

terms of a game. A few audience members stated solving puzzles among the ideas 

associated with the presentation. One participant (in the C group) reacted to the questions 

by saying, "1 was too busy playing with 'toys' to pay as much attention as I should have 

here". 

9.7.2.7 Presenting mathematics as a living science 

The talk referred to a recent result in mathematics, namely the result obtained by 

Laczkovich, to show that it is a live domain, presently making progress and therefore 

attractive for studying at the university. It did not seem from the responses to the 

questionnaire that this intention resonated with the participants in any way (although 1 did 

not ask any explicit question about it). The name of Laczkovich did not even appear in 

responses to question 1.6. 

9.7.3 Conclusions about participants' interpretations of the lecture 

The main difference between the two groups of audience members was certainly how 

they interpreted the questionnaire. HS participants seemed to treat it mostly as a school 
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task, while C group members saw it as an opportunity to express their opinions. 

HS participants often gave very detailed answers, mentioning much irrelevant 

information. It was often not clear from their responses, how fragmented and procedural 

their idea about the lecture actually was. However, the large number of students who 

could reproduce the method of the proof in questions II.5 or 6, indicates that detailed 

descriptions did not necessarily mean fragmented understanding (such as in the case of 

G2 in Chapter 8), but often were simply a consequence of memorizing a variety of 

details, for which they are usually trained in schools. They attempted to reproduce 

solutions similar to those in the puzzles and on the slides, and generally did not engage in 

more reflection than they thought was necessary to answer the questionnaire. 

The C participants, who, as mentioned, were much more in a popularization 

relation with the talk, provided considerably less detailed responses and omitted 

questions more often than the HS participants. They added comments or presented 

associations in some relation with the questions asked. Thus, reformulating the main 

difference between the two audience groups in the terms of "hooks", as in Chapter 8, HS 

participants generally noticed the hooks (probably also the connections between them) 

but generally did not "catch on" to them, while C participants generally caught on a hook, 

although not the one that 1 meant as the central hook (tangram, or the method of proof); 

most often they caught on to the Banach-Tarski paradox. 

The questionnaires also showed that my expectations about the advantages of the 

engagement model as compared to the dissemination model were not met. The reasons 

why they weren't, however, seemed to be different in the two audience groups. 1 

expected that participants will answer mostly questions about Part 1 of the talk, based on 



267 

the engagement model, omitting the questions about the second part, based on the 

dissemination model, or giving some laconic answers. HS participants, however, often 

answered all questions, paying equal attention to all of them. This could be because they 

were forced into a student position and thus tried to recall as much information as 

possible. Even if they mentioned that it was hard to remember the names, they still 

responded similarly to the two parts of the lecture, giving detailed descriptions without 

extra associations. C participants, on the other hand, reacted mainly to the dissemination 

part of the talk. They were interested in the Banach-Tarski paradox, which provoked 

many spontaneous associations. Thus, the models themselves do not say much about 

popularization; other considerations should be taken into account as well. 

I certainly learned a lot from the experience and would change the talk 

accordingly, had 1 to give it next time around. From the questionnaires, it seemed that, in 

a talk for teachers, it would be a good choice to focus more on the Banach-Tarski 

paradox. 

It seemed that audience members were often paying more attention to the means 

(images and manipulatives) by which the ideas were presented than to a mathematically 

justified argumentation. Their responses contained a rather faithful representation of 

those means. However, I do not think that this should be changed. The aim of 

popularization is not to teach rigorous mathematics. It is fine if the audience has a loose 

idea of what the talk was about; if the lecture generates some reflection about 

mathematics or a particular concept in them, this should be treated as a bonus. 

On the other hand, I was impressed by the rich network of related ideas audience 

members associated with the topic. 1 certainly experienced a feeling similar to the 
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"Escher" lecturer's (Chapter 6) impression that audiences are often fascinated by 

elements of the mathematical culture one would have never thought about. 1 also realized 

that 1 should have been more careful in choosing the central "hook", especially that the 

talk served also my research purposes. I will reflect on this problem in the Conclusions 

section. 

9.8 CONCLUSIONS 

The analysis presented in section 9.7.2 is a result of a long struggle to make sense of my 

audiences' responses to the questionnaire. I have categorized the responses in a variety of 

ways, and calculated the frequencies of the different categories in the groups of 

participants, taking into account the whole HS group as well as the subset of those 

students who declared, in question 1.10, that they would be interested in participating in 

popularization. Somehow, however, these minute quantitative analyses failed to lead to a 

satisfactory picture of the audiences' general interpretations and impressions of the 

lecture and of the variations among the groups. It seemed not to make sense to separate 

the analyses into "cultural lenses" and "interpretations of the lecture" as I did for the 

individual profiles of audience members in Chapters 7 and 8. 

Certainly, this quantitative work was useful for me because it made me aware of 

methodological issues related to studies of popularization and, at the same time, of 

specific characteristics of popularization. 

My main problem was how we can design an appropriate talk and a method for 

analyzing it that would help us in investigating popularization. Is it possible at all? 

As 1 already emphasized in the thesis, measuring understanding in popularization 
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is practically impossible since by "testing" participants in any way we violate one of the 

main characteristics of popularization. Observing a class might cause students and 

teachers to behave differently than when they are alone, but "having no observers in the 

classroom" is not a defining characteristic of teaching. Audience members of popular 

lectures, on the other hand, will most probably not engage in certain behaviours if they 

know that they will be asked about the talk at the end. They will probably not let their 

minds wander away, or play freely and be lost in playing with toys while not paying 

attention to the speaker. Thus measuring is hard. Still, I had the impression that, through 

informal conversations, I was able to gain information about some audience members' 

interpretations of a popular lecture. 1 was not able to obtain such information in the case 

of my presentation, especially in the case of HS responses. It seemed that the questions 1 

asked in the questionnaires were not the appropriate means of measuring understanding, 

even though 1 have asked the same type of questions in the interviews. 1 even asked my 

audience members to interpret the main metaphor of the lecture (question 11.3) (which I 

did not do explicitly in the case of the interviews), and also to perform some operations 

(which again 1 did not do in the case of the interviews). 

It still did not work as I had expected, and not because participants did not write 

anything. They took more time and effort than I expected to answer the questions. Still 1 

was often not able to decide whether their understanding was fragmented (like G2), or 

they considered the lecture as "time off, or else their minds were wandering around 

some unexpected topic but they did not bother to write it down. 1 had serious difficulty 

especially if they referred to my "hook" and wrote that the presentation was about 

tangrams but did not give much clarification; thus 1 did not know whether they wrote it 
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because they noticed the hook or because they caught on to it. 

It is true that, in the interviews, I had to ask participants quite often to clarify their 

thoughts to me. I could not do this in the questionnaire. However, I also realized that 

interviews revealed that audience members often pay attention to details and aspects the 

lecturer did not think of when preparing the lecture. 

The questionnaire was not able to detect whether or not audience members 

created new metaphors for themselves for the metaphor of the tangram I provided in the 

lecture. However, C participants seemed to reflect a lot on the Banach-Tarski paradox. It 

seems that tangram was simply not a good metaphor to provide. Apparently, some 

participants were more responsive to controversy than to playing with puzzles, or at least 

it gave them more scope for reflection. On the other hand, many participants mentioned 

tangrams, often by identifying the topic of the presentation with this metaphor. It was 

certainly among my goals to give an impression that mathematical theorems and their 

proofs can sometimes be interpreted in terms of puzzles: finding a proof is like solving a 

puzzle. In this sense they found the central metaphor. Can we then say that they 

understood the lecture? I do not think so. 1 was unable to judge whether they had any 

more to say about this metaphor. Was it because they just did not want to write it, or 

because they merely got that word without any connection to the rest of the talk? I 

created this obstacle by choosing a wrong metaphor. I used a hook labelled by an 

unknown word everyone remembered (just as in the case of the Droste-effect). In this 

way it seems that "hooks" are chosen by popularizers, in a way, to "be on the safe side". 

These hooks do not necessarily contain the main idea of the lecture (although they have a 

link to it), but they are easy to recognize and remember, and as such they are meant to 
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give something to every one in the audience to bring home from the lecture. This seems 

reasonable if the task is not to use the talk to evaluate the audience's understanding (and, 

by definition, it is generally not the case). However, the hook could be a very bad choice 

for later assessment especially if one wants to try to identify how the hook was connected 

to the lecture based on a questionnaire. My tangram hook was too easy to identify 

without finding any connection with the rest of the material presented, and it was not very 

likely to provoke a conceptual reconstruction, as it happened in the case of PS and MPh 

after the "Escher" lecture. 

Thus, when studying popularization in terms of hooks and metaphors, etc., it 

would be preferable to use in-depth interviews rather than questionnaires (where the 

interpretation of the metaphors can be discussed in detail); moreover, the central hooks 

for the talks should be constructed more carefully. Preferably, they should be easily 

identifiable but not obvious. They should be also sufficiently alluring to tempt the 

audience members to reconstruct them, possibly by connecting them to experience that 

they would have brought with them to the lecture, as it was in the case of the Droste-

picture. 

If one decides to present the metaphor by "saying it in different contexts" 

(Chapter 8), what these appropriate contexts could be? Is there a reasonable limit on the 

number of "sentences" provided? The speaker of the "Escher" lecture gave many such 

"sentences", most of them were appealing but they did not really facilitate understanding. 

After a few well-chosen examples, they simply became redundant. 

I bring these "lessons", and others that I have learned through my research, 

together in the last chapter of the thesis, Chapter 10. 
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CHAPTER 10 

CONCLUSIONS 

10.1 INTRODUCTION 

The theoretical framework for this chapter is based on the tourist metaphor and the ten 

implications of the metaphor presented in Chapter 2. I will look at these ten 

characteristics again in the light of my findings. At the end of the chapter, I summarize 

some methodological issues that it would be useful to take into account in further studies. 

10.2 THE TOURIST METAPHOR AND ITS IMPLICATIONS - REVISITED 

It seemed from the interviews that popularization is not a characteristic of an event or an 

activity, or even of the type of communication followed by the popularizer, but rather a 

feature of the relation of the participants with this communication. Consequently, a 

popularizer might be perceived as a teacher for some audience members, or a researcher 

for others depending on the circumstances, institutional constraints, the participants' 

cultural background, etc. Thus, the tourist metaphor should be modified accordingly. A 

business trip can be considered as tourism if the person interprets it so. If he or she 

considers the trip as tourism, he or she finishes the business-related part quickly and 

engages in tourism; then that person is a tourist. If a student perceives the field trip as 

tourism then he or she is a tourist as well. It makes more sense therefore to speak about 

"popularization relation" that a person holds with an event, or not. 
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10.2.1 Popularization of mathematics is organized action 

In view of the above notion of popularization relation, it does not have much sense to 

constrain it with fixed institutional bounds. A person can wander around a city with a 

friend who volunteered to show the most important sites, if he or she feels like a tourist. 

However, non-institutionalized tourism is pretty difficult to deal with (e.g., organize, 

evaluate). Thus, it is useful to consider only activities that are institutionalized at least to 

some extent. In Chapter 3, we have seen that popularization of mathematics is seemingly 

on the way to institutionalization. However, its institutional constraints are much weaker 

than those of teaching or of research mathematics, but also weaker than those of 

popularization of science. It is questionable whether there is any need for stronger 

institutional constraints. 

If popularization is about "selling mathematics to tourist" than one would expect 

some analogy between institutions for popularization and institutions that exist in some 

countries for promoting ethnic or national culture for the purposes of tourism. For 

example, CEPELIA is a Polish foundation for the protection, organization, development 

and popularization of the Polish folk and artistic handicraft, art, and artistic industry, both 

traditional and new55. CEPELIA stores are located in the "old town" parts of Polish cities 

and tourists visit them to buy souvenirs. The handicraft objects sold there are specially 

made for CEPELIA and while they resemble objects that used to be made by actual folk 

artists in the traditional Polish culture (e.g. tapestry, wooden sculptures, embroidered 

tablecloths, etc.), they are more or less stylized, polished, made more appealing for 

" http://www.cepelia.pl/english/fundacia.htm (Downloaded: July 24, 2009). 

http://www.cepelia.pl/english/fundacia.htm
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today's tourists, and they do not represent the full range of the traditional handicraft and 

art. Popularization of mathematics shares some aspects with institutions like CEPELIA: 

both try to protect a certain culture from extinction; their target public is tourists rather 

than experts (whether in art or in mathematics); they promote the culture by "stylizing" it 

and picking (filtering in) only some objects of the culture for display, thus creating an 

image of this culture which may be not completely accurate, but certainly appealing to 

tourists' tastes. 

There is, however, a rather important difference between institutions such as 

CEPELIA and popularization of mathematics in the order of institutionalization. 

CEPELIA is strongly institutionalized, with a central administrative organ, legalized 

statutes, stable financial resources and human resources based on a large pool of 

permanent employees and contractual craftspeople. This guarantees a steady flow of 

products and activities. These products and activities often look as if they came from the 

same mould (and many of them literally are). Nothing of that is true of popularization of 

mathematics. 1 had tried to find some "common mould" or structure, or a stable set of 

categories in the content of popularization and how it is communicated, but, as I 

explained in Chapter 4, I wasn't able to find it. It seems that popularization of 

mathematics is more like fine arts than like folk arts and crafts: each event seems to be 

unique, and requires an artist's exceptional inspiration. Artists need sponsors and 

managers and there is a market for their products (some people collect popular books in 

mathematics) but this market is not made of the kind of tourists that would go and buy 

CEPELIA type of souvenirs after their visit to "Mathland". If participation in a popular 

event in mathematics is like tourism, it is an intellectually demanding type of tourism, 
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both for the guides and for the tourists. For this reason, it cannot be strongly and centrally 

institutionalized. This kind of institution cannot survive and make plans based on a few 

authors' inspiration and volunteer organizers' free time. 

On the other hand, students of fine arts learn some techniques (that they might 

later abandon deliberately). Isn't there a way to collect such techniques for popularizers 

and make the techniques available for them to learn? It appears, however, that 

popularizers tend to act in isolation without sharing their experiences with others. There 

is a certain similarity between knowledge inherent in popularization practices and 

knowledge inherent in teaching practices. The latter is also not made public, and not 

shared. Hiebert, Gallimore and Stigler (2002) have become aware of this problem and 

proposed the creation of a repository system for collecting information about teaching 

practices that thus could be then shared by a wider community. I am not sure if such 

collection of individual practices would be a good idea in the case of popularization. 

10.2.2 Admission to a popularization of mathematics event is non-selective 

The difficulty of communication involved in popularization comes mainly from the fact 

that the audiences' backgrounds might be very varied. They arrive from a variety of 

socio-economical situations, they represent a variety of professions, and their views are 

influenced by a variety of cultures. Popularizers, however, often do not have a chance to 

gain any information about the audiences' cultural backgrounds, and about their cultural 

lenses that will inevitably filter the communication. Based on my interviews with 

randomly chosen audience members of popular talks, it seemed that even if they did not 

like mathematics, they certainly did not have a decidedly negative attitude towards it. On 
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the other hand, audience members and popularizers may interpret the situation of 

popularization in terms of a variety of different models, such as the dissemination model, 

the engagement model, etc. (SeeChapter 2). Depending on these interpretations, the 

popularizers' and audience members' expectations from the activity might be 

considerably different. Thus, it is hard to compare them. This property of a popular 

activity also complicates research, since neither the performance of the popularizer nor 

that of the audience members can be assessed in terms of predefined categories. 

10.2.3 Participation in a popularization of mathematics event is not compulsory 

Although the freedom of choosing the activity was among the defining characteristics of 

popularization, this key feature does not seem always to hold. People often do not 

participate of their own accord. They might simply accompany their friend or wife to a 

popular talk, but in some cases popularization might become a compulsory activity where 

the participation or even the understanding of the presentation is evaluated. In these 

situations the popularization relation may not hold and participants might interpret the 

popular event from the point of view of the student relation. Thus, they are not just 

strolling around some cultural sites by pleasure but want to learn about the culture. The 

situation, however, has not been designed for that. Their position might easily lead to 

failure and cause frustration instead of a positive experience with the foreign culture. 

10.2.4 Popularization of mathematics attempts to make mathematics appear attractive to 

the visitors 

Popularizers have to compete for the audience's attention; the audience is not forced by 

institutional rules to pay attention. We have seen that lecturers often use "hooks" to 
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capture (and also to maintain) attention. What can be the good hooks that can be used 

both to capture and maintain attention, and to represent the mathematical culture well? A 

good hook should have a variety of connections. Thus, a good hook, through these 

connections, makes it possible for participants to build a structure around it and possibly 

reinterpret it according to their own cultural lenses. In fact, certain characteristics of a 

good hook could be gleaned from our conjectures about reasons for including a particular 

proof in a popular book on mathematics: insight into various aspects of mathematical 

culture, for example, its history, its objects (objects and representations, methods), its 

values (utilitarian, aesthetic), and its daily life (study skills). On the other hand, hooks are 

intended to capture audience's attention and thus they should operate with a variety of 

communicative functions identified in Chapter 5, such as poetic (hooks can come from a 

word play, or aesthetically pleasing images), conative (they are intended to induce 

feelings or action), phatic (might serve as a way for building a connection between the 

popularizer and the audience, for example, by humor), or metalinguistic (reformulating 

the meaning of the hook in different ways). Choosing the right hook and communicating 

accordingly certainly requires creativity, but identifying some general characteristics of 

"good hooks" might help popularizers to design lectures. However, the characteristics of 

these hooks depend largely on the purposes of the lecturer and his or her interpretation of 

a popular activity. The lecturer could use a hook as a mnemonic device, an object to 

touch and play with, or a metaphor that is likely to induce a conceptual reconstruction. 

Designing "good hooks" for the purposes of research poses another question, namely 

how to design hooks that make it possible for a researcher to investigate audience 

members' interpretations of the hooks. 
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10.2.5 Mathematics is a culture 

Accepting that popularization involves communication about mathematical culture to 

foreigners immediately raises the question what part of the culture can be communicated 

this way. Sierpinska (1994: 161-162) suggested the use of the framework proposed by 

E.T. Hall (1959). Hall identifies three layers of culture, the formal, the informal and the 

technical. The formal level of culture is the level of traditions, rules, rituals, conventions, 

etc., i.e. elements of culture that are communicated explicitly with no justification. 

Members of the culture are strongly emotionally attached to it. The informal level is, on 

the other hand, implicit. It cannot be explicitly taught. It is learned by (consciously or 

unconsciously) imitating a model (by doing what everybody else is doing). The technical 

level of culture is learned by explicit, intentional, justified and matter-of-factual 

transmission of knowledge from one person to another. Admonition is not sufficient here. 

"Why should I do it this way" requires a serious answer and not just the "do as I told 

you" reaction. This is the level of explicit mathematics with well established formalism 

and proofs. 

Functioning effectively in a culture requires the ability to function on all three 

levels of it. To be able to function in a mathematical culture effectively, its members 

need all three types of knowledge. Applied to mathematical culture, this theory led to the 

following interpretation of the levels: 

In a 'formal' or 'technical' way we can acquire certain knowledge about mathematics, 
we can leam algorithms, some methods of proof (mathematical induction, reductio ad 
absurdum, etc.), solving some 'typical' problems, ready and written parts of a theory. 
We can be passive users of mathematics. But it is only on the informal level, by 
working with mathematicians, through 'imitation and practice', as Polya used to say, 
that we can learn to pose sensible questions, put up hypotheses, propose 
generalizations, synthetise concepts, explain and prove. 
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'Informal' knowledge and understanding are thus an indispensable support of any 
creative thinking in mathematics. On the other hand, however, this same knowledge and 
ways of understanding, as not fully conscious, and unquestioned, and drawn from 
experience in concrete situations, can guide our thinking in new situations in a way that 
will make the resolution impossible. (Sierpinska, 1994: 165) 

Learning mathematics is like acculturation to mathematical culture, and therefore 

all three levels of the culture are supposed to be learned. Popularization, however, is not 

meant to acculturate its participants. Learning about a culture as an outsider necessarily 

deprives one of access to all levels, especially to the informal level, which is the least 

explicit. Informal learning takes place through imitation while already functioning in the 

culture; participation in popular events, on the other hand, rarely gives one a chance to 

function in the mathematical culture. In the case of mathematics, tourists usually do not 

have access to the technical level, either. Since mathematical tourists usually do not 

speak the symbolic language of mathematics, the technical level is generally available 

only in a very restricted format (e.g. in the case of certain recurring types of proofs listed 

in Chapter 4). The only remaining level of the culture, namely the formal one, is usually 

transmitted in emotionally charged situations. This is rarely the case, however, in 

popularization where participants often feel as outsiders and the short contact with the 

culture (and its representatives) do not really make it possible to build emotional ties such 

as usually involved in learning on the formal level. The above suggests that learning the 

mathematical culture through popularization is, in fact, impossible. Thus, participants 

who come to a popularization event with the goal of learning mathematics directly from 

the lecture will inevitably end up being frustrated and disappointed (unless the activity 

offers a substitute for learning, for example, entertainment). 



280 

10.2.6 The visited mathematical culture must be somewhat "exotic" for the audience to 

warrant organizing a popularization of mathematics event to show it 

Interpreting popularization as a relation implies that "exotic" is not an objective 

characteristic of an event; rather, participants should perceive something exotic in the 

event. For example, Gl, who had a popularization relation with the departmental 

seminars he attended, perceived the conventional mathematical symbolism as exotic. The 

idea that different audiences perceive different things as popularization came through in 

my efforts to categorize popular books. For example, while Stewart and Golubitsky 

(1992), Fearful symmetry. Is God a geometer?56 is seen as popularization according to 

the subject classification used by mathematicians, it is categorized as part of 

metamathematics by mathematics educators, and does not even belong to mathematics 

(but to general science) in a library catalogue. 

Thus Prediger's ideas about learning mathematics as an experience with a foreign 

culture (presented in detail in Chapter 2) and their interpretation in the case of 

popularization should be revisited as follows: 

- The language of mathematics is like a foreign language: the experience with 

mathematical formalism and other special features of the mathematical language 

might not bother people in a popularization relation who think that it is 

completely normal if they do not understand it. At the same time, they seem to 

56 Categorized according to the AMS Mathematics Subject Classification 2000 as 00A05 (00A08 00A69 
92C15) which stands for General mathematics (Recreational mathematics; General applied mathematics; 
Developmental biology, pattern formation); according to The Mathematics Education Subject 
Classification it is categorized as E20190 G50 denoting Philosophy and mathematics; Miscellaneous topics 
in analysis; Transformation geometry; and according to the Library of Congress subject classification - as 
Q172.5, Symmetry (General Science). 
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feel as outsiders. For those, however, who are not in popularization relation, the 

experience of not understanding the local language might be painful and 

frustrating. 

- Intercultural misunderstandings: the conflicts between different values held by the 

popularizers and by audience members might lead inevitably to intercultural 

misunderstandings (as in the case of the role of mathematical formalism in the 

"Medial representation" lecture). For people with popularization relation, these 

misunderstandings are not a problem, because they, in a way, expect it. 

- Effects of overlapping: considering that interrelations with non-mathematical 

culture are much more common in popularization than in teaching, the effects of 

overlapping should be taken seriously in this case. While popularizers might 

become aware of these effects in the case of using natural language, they may be 

less alert in the case of visual interpretations which seem to be considered as one 

of the main communicational means. The use of images and metaphors are full of 

inherent possibilities for effects of overlapping (e.g. in the case of the 

interpretation of the image of the skeleton of the panther shown in the "Medial 

representation" lecture), especially if they are made attractive by colors and 

animations. 

- Foreignness as an experience: while the experience should not be negative for the 

mathematical tourist, it could be upsetting in certain situations. It could well be 

that, for those who otherwise do not like mathematics, popularization could 

reinforce the feeling that mathematics is the privilege of the few and that they will 

never belong to this group. It might be the case especially for audience members 
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in student relation. For them, "foreignness" induces rather negative emotions and 

the "exotic" content and organization of the material might result in the feeling 

that they are unable to learn from popularization. 

10.2.7 Popularization of mathematics involves communication between two cultures, but 

not enculturation in or acculturation to a foreign culture 

In Chapter 5 we have seen that the mathematical discourse involved in popularization is 

in many ways similar to that of teaching or research, but it is considerably different from 

both of them. In research, the main function of the language is objectivation. In teaching, 

the conative functions are used differently. The consequence for a researcher is that 

learning and understanding cannot be interpreted the same way as in teaching. The 

existing research methods and results are not applicable to studying popularization. 

Reading a popular book or understanding a popular lecture requires different skills than 

studying from a book or a lecture. 

10.2.8 There are different models of communication between popularizers and the 

audience in popularization of mathematics 

It seemed that both popularizers and audience members have more or less definite ideas 

what they expect from a popularization event and they organize it or interpret it 

accordingly. While popularizers usually consider it as a way for improving public image 

and public understanding of and public attitude towards mathematics, audience members 

see popularization as a source of inspiration for life and work, a way of distraction and 

entertainment and a place for gaining information. While in general terms there does not 

seem to be a large discrepancy between the two kinds of expectations, these differences 
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can make a big difference in the case of actual popularizers and particular audience 

members. Some "tourists" might just not get what they "expected". From a researcher's 

point of view, popularization events organized according to the different models of 

communication may result in considerably different types of understanding (if it makes 

even sense to talk about it, considering that on some cases audience members behave in a 

completely unpredictable manner as they have a freedom to do so). 

10.2.9 Popularization of mathematics has apolitical agenda 

Popularization of mathematics is often claimed as a way for improving public image and 

public attitude towards mathematics and also considered as a remedy against enrollment 

problems in mathematics departments (and also in university programs with high 

mathematical component). In fact there is no evidence for these claims and the questions 

seem more complicated than simply organizing popular events and hope that the 

problems will be solved. Certainly universities generally do not have much influence on 

global political, economic, and societal issues which seem to affect the situation. Thus 

mathematics department mainly try to change their teaching methods, perhaps build some 

connection with the job market, and organize outreach programs. However, it is very 

difficult to measure (if, at all, possible) what kind of impact they might have. 

... there would appear to be no way of evaluating how successful outreach programmes 
are generally. How many students take mathematics at university who would not have 
without an outreach programme? How many adults do not immediately scorn 
mathematics because of the experience they have had with an outreach programme? It 
is very difficult to know how to collect this or any other relevant data. (Holton et al., 
2009:12) 

Public understanding of science surveys suggest that popularization might have a 
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minor impact on public image and on "public appreciation" of science, and thus it can be 

assumed that the case is similar in mathematics. However, this impact seems rather 

insignificant compared to that of formal education (Miller, 2004: 288-290). 

It is also widely believed that showing useful applications of mathematics will 

"do the job" and the general public will hold a more positive attitude toward mathematics 

and mathematicians if they learn about the utilitarian aspects of mathematics. It would be 

worth investigating whether these assumptions are (at all) valid, or hold for the whole 

body of mathematics (and mathematicians), or they imply only a potential attitude-shift 

(if any) in the case of applied mathematics and applied mathematicians. 

10.2.10 Popularization of mathematics faces several important challenges: problems of 

communicability and translation 

Previously in this chapter, I was referring to E.T. Hall's theory of culture which proposes 

that cultures (and so mathematical culture) are learned on three levels, namely formal, 

informal and technical levels. I was saying that learning about the mathematical culture at 

all three of these levels is not accessible for audience members of popular activities. Still, 

participants of popularization events usually "bring something home" from these events. 

A tourist may get an impression of a culture (which is of course not enough to live in it). 

In what ways can some parts of the culture be translated? Looking at the three cultural 

levels more closely, we see that there might be a substitution for learning at the 

appropriate levels that could give at least a glimpse of the culture through popularization. 

Thus translations can be provided at different levels as follows: 

- Formal: the level of unquestioned values, rules, and traditions can certainly been 
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shown, however, since these aspects are usually learned by trial and error in 

emotionally charged contexts, it should be substituted by other ways, for example 

by relying heavily on communicative functions, using impressive hooks, jokes, 

etc. For example, in the case of the skeleton of the panther, simply to introduce 

the skeleton without any explanation and make a joke on the missing bones, or 

choose a picture where the skeleton itself is easy to remember, like reconstructing 

a shape based on a skeleton on an actual child's drawing. 

- Informal: learning a language in an informal way can be done by being 

confronted with different situations, thus learning words through the different 

contexts in which they are used. Presenting an application of a mathematical 

technique in different situations might give a certain access to the informal use of 

this technique by mathematicians. For example, showing skeletons of a variety of 

objects might have such an effect. 

- Technical: the explicit transmission of knowledge along with its justification is 

usually avoided in popularization since the audience is not familiar with (and 

often afraid of) the mathematical symbolism which is often necessary for 

communicating and justifying mathematical ideas. Popularizers propose a variety 

of means for overcoming this obstacle. They may try to warn their audience ahead 

of time not to expect to understand everything, as Penrose (2004). They may also 

use different substitutes of mathematical symbolism, such as colors, analogies, 

images, etc., often referring to visualization as the ultimate solution for the 

problem. ML in the "Medial representation" lecture certainly believed that the 

analogies and images are sufficient to understand the main idea even if one could 
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not make sense of the differential equation. However, in Chapter 8, we have seen 

that visualization might cause misunderstandings especially if it is used as a 

substitute for mathematical explanations, because pictures do not constitute a 

"langue", and therefore do not allow access to all discursive functions. Hence, 

they are not appropriate to provide explanations that are necessary to 

communicate cultural aspects on the technical level. 

As already mentioned a few times in the thesis translational difficulties arise 

mostly from the fact that cultural lenses of the popularizers and those of the audience 

members might be very different and popularizers generally do not have information 

about the type of audience they can expect. Thus it is not clear how the content intended 

to be communicated by the popularizer will be interpreted by the audience. The examples 

in the interviews and in the questionnaires showed that often people have very loose 

associations with the actual content presented, making unexpected connections which 

popularizers certainly do not expect to happen. Although the popularizers sometimes 

claimed that these events might serve as inspiration for the participants, they would 

certainly be quite surprised to learn about the interpretations. Thus translational 

problems, although important to be aware of, might not be such a serious issue, since they 

seem unavoidable anyway. 

In the thesis 1 tried to investigate different aspects of popularization. My research 

brought to my awareness a variety of methodological difficulties which might explain 

why there is so little research on it. 1 am not saying, however, that research on 

popularization is not possible nor that engaging in popularization is a hopeless activity, 

but certainly, this thesis offers a few caveats about both. 
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