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ABSTRACT 

Toward the Implementation of Analog LDPC Decoders for Long Codewords 

Shahaboddin Moazzeni 

Error control codes are used in virtually every digital communication system. 

Traditionally, decoders have been implemented digitally. Analog decoders have been 

recently shown to have the potential to outperform digital decoders in terms of area and 

power/speed ratio. Analog designers have attempted to fully understand and exploit this 

potential for large decoders. However, large codes are generally still implemented with 

digital circuits. Nevertheless, in this thesis a number of aspects of analog decoder 

implementation are investigated with the hope of enabling the design of large analog 

decoders. 

In this thesis, we study and modify analog circuits used in a decoding algorithm known 

as the sum-product algorithm for implementation in a CMOS 90 nm technology. We 

apply a current-mode approach at the input nodes of these circuits and show through 

simulations that the power/speed ratio will be improved. Interested in studying the 

dynamics of decoders, we model an LDPC code in MATLAB's Simulink. We then apply 

the linearization technique on the modeled LDPC code in order to linearize the decoder 

about an initial state as its solution point. Challenges associated with decoder 

linearization are discussed. 
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We also design and implement a chip comprised of the sum-product circuits with 

different configurations and sizes in order to study the effect of mismatch on the accuracy 

of the outputs. Unfortunately, testing of the chip fails as a result of errors in either the 

packaging process or fabrication. 
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Chapter 1 

Introduction 

Error correcting codes play an important role in modern data transmission systems and 

digital communication channels including wireless, copper wire and also optical 

applications. The purpose of coding the information before transmitting them through a 

noisy channel is that we want to have a reliable set of information at the receiver. The 

reliability of the received bits or in fact the performance of any error control system 

depends on the complexity of the coding algorithm which is limited by the well-known 

statistical limit called the Shannon Channel Capacity [1]. Channel capacity is considered 

as the ultimate rate of communication [2]. There has been a lot of effort among designers 

to somehow achieve this limit by discovering new coding techniques. 

One of the first error-controlling codes which can correct a significant number of 

errors due to the additive Gaussian noise channel is the Turbo Code. Once this code was 

discovered in 1993 [3], designers tried to produce other types of codes based on Turbo 

codes. They showed that there are other sorts of error controlling codes like Low Density 

Parity Check codes discovered by Gallager [4] and Block Turbo codes which achieve the 

performance fairly close to the Shannon Capacity [5, 6, 7, and 8]. 

In the implementation of decoders, designers have dealt with several issues such as 

complexity, power consumption, are and speed. A serially implemented decoder must 
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sequentially process each bit of information through the decoding procedure for many 

times to achieve good performance. In this way, iterative decoding would be time 

consuming and therefore high-speed decoding cannot be achieved. The frequency of 

clocking the data must be increased to obtain large data rates and this would burn more 

power. The concept of parallel implementation hence emerged as an alternative approach 

for performing high-speed iterated estimation of transmitted messages. 

Parallel architectures have their own problems. However a very high speed decoding 

could be achievable as a result of the large parallel implementation. On the other hand it 

may require a lot of chip area due to the complexity of wiring in digital decoders which 

results in an increased fabrication cost and again high power consumption. 

It was soon discovered that Analog circuits can resolve the issue of complexity in 

digital decoders since very difficult computations can be implemented by very simple 

analog circuits. However there would still be the same number of blocks in an analog 

decoder as in a digital decoder. For this reason, many researchers focused their research 

on analog decoders to eliminate the complexity and high power dissipation of digital 

circuits and to profit from the energy and area efficient advantages of analog decoders. 

Since by its very nature decoding is non-linear [70], it involves non-linear analog 

circuits to implement decoding operations. Certain analog implementation of weak 

inversion transistors can be used to implement the required non-linear operation. Analog 

circuits in this region are in fact turned off and the drawn current from the circuit is very 

small. 

Attracted to the new area of analog decoding, researchers were interested to explore 

and fully exploit their potentials. Analog Viterbi decoders [17], [18] were the first 

2 



constructed decoders which outperformed digital implementations by a wide margin [9, 

10, 11, 12, and 13]. After Viterbi decoders, iterative codes such as Turbo codes [3], 

LDPC codes [4], [6] and similar codes [14], like Block Product codes [15] were 

implemented using analog iterative decoders [32, 37, 40, and 57]. 

In their investigations, researchers noticed that several important algorithms in the area 

of error-control coding, signal processing, and computer science can be explained as 

instances of a general algorithm which operates through message passing on a graph 

called a factor graph. This algorithm is called the sum-product algorithm [4], [21] and 

several soft-information algorithms such as the Bahl-Cocke-Jelinek-Raviv or (BCJR) 

algorithm [16] are shown to be instances of this general algorithm. The sum-product 

algorithm operates on soft messages which are described in terms of probability 

distributions [22, 23, 24, and 25]. 

Complexity in digital implementations of iterative Turbo codes and low-density parity 

check codes arises from the complexity of real-number arithmetic of sum-product 

modules. In contrast, once the sum-product algorithm is implemented with analog 

circuits, iterations no longer exist and the decoder will be considered as just a continuous-

time network which stabilizes when a transmitted codeword has been detected. 

Many works have been done in the area of analog decoding. However when compared 

to digital implementations of similar codes, analog decoders have demonstrated an 

evident superiority in terms of area and power consumption, yet one cannot find as large 

codes as have been constructed with digital circuits. The reason can be explained as 

follows. Since as mentioned before, most analog decoding circuits are composed of 

transistors that operate in weak-inversion mode (although there are analog decoders that 
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are not in subthreshold region), and by knowing the fact that in this mode, bandwidth is 

low due to the low drive currents of analog circuits, therefore the throughput (speed) of 

analog decoders is inherently low. Nevertheless designers have overcome this obstacle 

through parallelism. 

A problem with parallel implementation is that the wirings between the modules of 

sum-product circuit become important. Since the number of sum-product circuit modules 

increases with the code length, wiring different modules that could be millimeters apart 

for a large code involves taking into account the unwanted wiring capacitances which 

will have significant effect on the throughput of decoder. Accordingly, any attempt in 

order to reduce this effect which corresponds to an increase in the convergence speed of 

the analog decoder would be valuable. One way to reduce the effect of long wires could 

be the use of buffers to feed the signals. 

There are other reasons for not having very large analog codes including the effect of 

mismatch, lack of automation tools, imperfections of analog circuits and absence of 

reliable simulation tools for predicting throughput and performance of decoder. 

1.1 Physical implementations of Analog Decoders 

The earliest physical implementations of analog decoders appeared in 1998 when 

Hagenauer presented the first actual analog decoder [20]. In 1999 Lustenberger, Loeliger 

et. al published the results for the second fabricated chip [19]. Right after them, in 2000 

Moerz, Hagenauer et. al published another real chip results [26]. In all these chips, 

bipolar junction transistors performed the decoding operation. However, they gave the 

idea in their papers that subthreshold design also would be possible. 
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In 2001, Chris Winstead et al. designed a fully-CMOS analog decoder chip [27]. In his 

thesis, he claimed that his chip has demonstrated micropower analog decoding in a 

standard CMOS process. In the same year Lustenberger reported a larger BiCMOS 

analog decoder which employed digital to analog converters at the input in order to 

simplify the testing however it failed to function correctly [28]. In 2001, again Chris 

Winstead fabricated a new design of analog decoder circuit including an array of serial to 

parallel sample and hold capacitors [29, 30]. 

Gaudet and et. al. were the pioneers in designing the first analog Turbo decoder in 

2002 [31] which followed by a complete report for the implemented chip in 2003 [32]. 

Their Turbo code had a coded length of 48 bits and employed multiple serial input 

channels which made it possible for the decoder to perform well at higher speeds. 

Exploiting the high speed characteristics of SiGe transistors, in 2002, Mores et. al. 

designed a very high speed analog decoder up to 10 Gbit/sec, however, it implemented a 

small, weak code [33]. One year later, Huang et. al. from the University of Virginia 

proposed a high speed SiGe analog Turbo decoder, but due to the failure in their digital-

to analog converters at the input, their design was not successful [34,35]. 

In 2002, the work results of several research groups comprising of researchers at 

Torino, Padova, and ST Microelectronics led to a design of an analog Turbo decoder used 

for magnetic recording channels with a codeword length of 500 bits [36]. A revision of 

the aforementioned decoder was done by Amat et. al. in 2003 by implementing a standard 

Turbo decoder of 120 length. The fabricated design of this Turbo decoder which was the 

largest and best performing analog decoder until that date, was published in 2004 [37]. 
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The other significant work on the implementation of analog decoding circuits was the 

40 bit length CMOS analog Block Turbo decoder proposed by Perenzoni et. al in 2003 

[38]. Their implemented decoder circuit used a serial analog input interface circuit and 

16-bit digital output interface. It also included variable gain amplifiers (VGAs) in order 

to adjust the gain according to the signal to noise ratio of the channel. 

Chris Winstead in collaboration with researchers at the University of Utah reported the 

measurement results for their analog Turbo product decoder in 2004 [30]. This decoder 

which had been already proposed in 2001 [24] showed a superior performance over 

known digital designs. 

The concept of low-voltage analog decoder circuit took place in 2004 by Nguyen and 

other researchers at the University of Alberta [22] where for the first time, previously 

used high power supplies for analog decoders were replaced with the energy efficient 

power supplies of less than one volt. In the same year, Gioulekas, Birbas and Biliouis 

designed a low power high speed analog Turbo decoder as one of the first decoders in 

SiGe technology however to the author of this thesis it is unknown if the implementation 

results were successful [39]. 

In the recent years, the area of analog decoding has witnessed numerous valuable 

works. For instance, in 2005, Hemati and Banihasehmi demonstrated a CMOS analog 

Min-Sum iterative decoder for an LDPC code [40]. At that time all previously reported 

analog decoders were based on the exponential characteristic of bipolar or subthreshhold 

MOS transistors. The proposed circuit was capable of being used for strongly inverted 

CMOS analog decoders. The implementation results and error correcting performance of 
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the chip in steady state was close to simulation results based on continuous-time iterative 

decoding and exceeded that of conventional discrete-time decoding. 

In 2006, Amat. et. al. and other prominent researchers in this field, proposed a fully 

analog iterative decoder for a serially concatenated, convolutional code [41]. Their 

proposed decoder was reconfigurable in both block length and code rate. They also 

reported the behavioural analysis as well as the impact of precision and mismatch on the 

performance of their decoder. Amat. et. al., Bendetto and others attempted a CMOS 

analog decoder for the block length 40 UMTS Turbo code in 2006 [42]. The 

implementation of the rate-1/3 UMTS turbo code is defined by the 3GPP standard. They 

also presented a discrete-time model of analog decoding networks which allows very fast 

simulations as well as predicting complex chip performance in very short time, however 

the latter has been verified through circuit-level simulations yet this model may give 

circuit optimization guidelines for complex analog decoder for which circuit-level 

simulations is impossible. In 2007, Winstead, Gaudet and Schlegel presented a technique 

for testing analog iterative decoders [43]. They employed digital circuit inside their chip 

as self-testing equipment which lowered the cost and the complexity compared to 

alternative mix signal built-in self test techniques. Although this technique was not 

feasible at the system level, they clearly showed that their decoder core was able to detect 

catastrophic errors in microseconds. 

A novel semi iterative analog Turbo decoding algorithm and its corresponding 40 bits 

up to 2432 bits decoder architecture configurable were presented in 2007 by Mattieu 

Arzel and other researchers [44]. The proposed algorithm benefited from a partially 

continuous exchange of extrinsic information in order to improve decoding speed and 
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correction performance. They also showed that the on-chip area is one tenth of 

conventionally fully parallelized analog slice turbo decoder. 

In 2008, the first integrated realization of a convolutional decoder employing the 

modified feedback decoding algorithm (MFDA) was presented by Billy Tomatsopoulos 

and Andreas Demosthenous [45]. The designed decoder uses an analog current-mode 

computational core and features low-complexity and low-power consumption. Chip 

measurements were successful and the authors claimed that this approach can be easily 

extended to the design of an all-analog, soft-decision convolutional decoder. 

In order to estimate the performance of decoders including digital and analog, 

designers compare them in terms of size, speed, power and speed to power ratio which is 

consumed energy for a decoded bit. Table 1.1.1 summarizes the implemented or 

synthesized digital and analog iterative decoders from the earliest to very recent. 
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Table 1.1.1: Summary of published iterative Digital and Analog decoders 
Reference 

[47] 

[48] 

[49] 

[50] 

[51] 

[52] 

[53] 

[54] 

[55] 

[56] 

[19] 

[26] 

[27] 

[32] 

[37] 

[30] 

[22] 

[40] 

[57] 

[57] 

[41] 

[42] 

[43] 

[44] 

[45] 

Year 

1995 

2002 

2002 

2003 

2003 

2004 

2004 

2006 

2007 

2008 

1999 

2000 

2000 

2003 

2004 

2004 

2004 

2005 

2005 

2005 

2006 

2006 

2007 

2007 

2008 

Analog/ 

Digital 

Digital 

Digital 

Digital 

Digital 

Digital 

Digital 

Digital 

Digital 

Digital 

Digital 

Analog 

Analog 

Analog 

Analog 

Analog 

Analog 

Analog 

Analog 

Analog 

Analog 

Analog 

Analog 

Analog 

Analog 

Analog 

Decoding Type 

PCCC Turbo 

3GPP Turbo 

LDPC 

3GPP Turbo 

PCCC Turbo 

3GPP Turbo 

3GPP Turbo 

TDMP LDPC 

LDPC 

LDPC 

Tailbiting BCJR 

Tailbiting BCJR 

Tailbiting BCJR 

PCCC Turbo 

3GPP Turbo 

Tailbiting BCJR 

Hamming Decoder 

LDPC 

Tailbiting BCJR 

Turbo Product 

SCCC 

UMTS Turbo 

Hamming 

Semi iterative Turbo 

Convolutional 

MFDA 

Code Length 

2048 

5114 

2048 

5114 

432 

2048 

5114 

2048 

1024 

1944 

9 

8 

4 

16 

40 

4 

4 

8 

11 

121 

Up to 2400 

40 

4 

Up to 2432 

Up to 1024 

Technology 

0.8um 

0.18um 

0.16um 

0.18um 

0.18um 

0.13um 

0.18um 

0.18um 

90um 

O.lum 

0.8um 

0.25um 

0.5um 

0.35um 

0.35um 

0.5um 

O.lum 

0.18um 

0.18um 

0.18um 

0.18um 

0.35um 

0.18um 

0.25um 

0.6um 

Size 

(mm2) 

78.32 

9 

52.5 

14.5 

14.7 

1.07 

0.6 

14.3 

5 

7.39 

1.19 

1.68 

2.25 

1.386 

4.07 

0.083 

0.043 

0.57 

0.0266 

2.85 

36 

9 

0.138 

37 

0.5 

Speed 

(bit/sec) 

40M 

2.5M 

1G 

24M 

75.6M 

5M 

5M 

640M 

3.2G 

250M 

100M 

160M 

20M 

13.3M 

2M 

2M 

444K 

80M 

135M 

1G 

100M 

2M 

3.7M 

310K 

1M 

Power 

(W) 

1.6 

306m 

690m 

1.45 

657m 

6.63m 

63m 

787m 

-

76m 

50m 

20m 

3.33m 

185m 

7.6m 

lm 

283u 

5m 

2.69m 

86.1m 

40m 

10.3m 

13m 

12.48m 

2.45m 

J/bit 

160n 

123n 

690p 

60n 

8.7n 

1.3n 

12.6n 

1.23n 

-

304p 

500p 

125p 

165p 

13.9n 

3.8n 

500p 

0.64n 

60p 

20p 

86p 

400p 

11.2n 

3.5n 

40n 

2.45n 
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From the table there is not a significant superiority in terms of chip area, total power 

consumption and power to speed ratio of the analog decoders compared to the digital 

decoders especially for large codes, yet analog implementation have the potential to excel 

the digital decoders in the mentioned aspects. That is ignoring the block length for a 

particular code, the analog designs outperform their digital counterparts in terms of size, 

power and power/speed by several orders of magnitude. However, there is still a 

limitation in the block length for the analog implementations due to the wiring 

complexity and the issue of speed. Most of the industrial applications deal with larger bit 

lengths (i.e. a few thousand). In order to remedy this problem some designers have 

attempted hardware solutions like reusing analog hardware and performing the 

interleaving in the digital domain [44], [46] and by doing so they significantly lowered 

the complexity of the component decoder. 

1.2 Contributions of the Thesis 

The present work can be observed from two aspects. Firstly in this thesis, the basic 

circuits for an iterative analog de 

coder based on the sum-product algorithm, which are equality and check nodes, have 

been redesigned in 90 nm technology. The original transistor-level design of such 

circuits is illustrated in [57]. After a complete study and a thorough survey on the 

designed circuits in 0.18 (am technology, the two circuits were resized for a new 

technology. In this survey, the effect of mismatch on the outputs of individual block with 

different sizing was also studied which followed by implementing a chip comprised of 

these circuits. 
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Apart from the chip design experience which can be considered as a physical 

contribution of this thesis, the main contributions of this thesis are the following 

theoretical contributions: 

> Applying a technique used in current mode circuits to improve the speed of 

analog decoders. This technique can also be applied to other analog circuits for 

which the input impedance is quite high and therefore the speed is low. The input 

impedance of the equality and check nodes plays an important role in determining 

the decoding speed since as a result of wiring these circuits in a real decoder, 

large wiring capacitance can be added to the input nodes which may have a 

significant effect on the overall speed. Hence it seems essential to somehow lower 

this input impedance. It is shown in this thesis that current mode techniques can 

be applied to solve this issue. 

> Having the dimensions for the layout of an individual equality and check node, 

the worst case wiring capacitance for the longest path in a large code has been 

estimated. 

> Applying the linearization technique to a given LDPC decoder with intent to 

better study the dynamics of decoders. Thus far there has been no such analytical 

expression in the literature. It is assumed that by merely having the //-matrix for a 

particular code such as LDPC code and by modelling the interconnecting wiring 

capacitances as well as the input impedances of every block as RC circuits, one 

can write the linearized equations which is supposed to provide the required 

information regarding the dynamics of the system. In fact, the concept of state-

space has been employed in the linearization of the non-linear LDPC decoder. It 
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turned out though that the initial state of the linearized decoder affects the 

decoding operation that is for the uniform probability mass as the initialization 

point the decoder fails to function properly. Initial states other than this point 

(expect other valid codewords which has not been studied in this work) would 

also mislead the decoding from its correct direction. 

1.3 Order of the Thesis 

Chapter 2 of this thesis gives a brief review on the fundamental of error-control coding 

and decoding algorithms in a digital communication channels including the principle 

definitions and basic theorems of coding theory. The tanner graph is also presented as a 

graphical representation of codes which is used to satisfy the parity check constraints 

between the bits of a codeword. An introduction to typical decoding algorithms including 

the sum-product and min-sum algorithms is given. Furthermore, a summary of the known 

error-controlling codes such as Turbo codes, LDPC codes and Block Turbo codes is 

presented. The structure of regular and irregular LDPC codes is discussed and a general 

mathematically-graphically described procedure for decoding LDPC codes based on the 

sum-product algorithm is presented. 

In Chapter 3, translinear circuits and principles of CMOS translinear circuits are 

introduced. Two fundamental nodes for realizing the sum-product algorithm or the 

canonical CMOS sum-product circuits (equality and check nodes) are shown. The 

modified circuits of equality and check nodes for an LDPC decoder based on Winstead's 

thesis [57] in 90 nm technology are presented. The author has already designed and 

implemented a chip comprising various configurations for the equality and check nodes 
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with different transistors sizes to observe the effect of mismatch on the performance of 

these nodes. However, the chip failed to work properly due to possible problems in 

layout, packaging bounding, etc. 

Chapter 4 presents a technique which is normally used in current mode circuits to 

improve the speed of analog decoders. This approach is in fact a modified current-mirror 

circuit with an OTA in feedback used to lower the high input impedance of basic current-

mirrors in the circuits of analog decoder thereby improving the speed. 

In Chapter 5, the author simulates an LDPC decoder in the MATLAB by expressing 

the parity equations of its //-matrix and by taking into account the delay between the 

nodes of the corresponding factor graph. Moreover by applying the linearization 

technique for non-linear systems, it is attempted to linearize the LDPC decoder around a 

linearization point. The idea of linearization finally results in a failure due to a problem 

with the initialization point which is illustrated thoroughly at the end of this chapter. 

Chapter 6 presents the test plan for the implemented chip which is already introduced 

in Chapter 3 and explains what simple measurements suggested that something is not 

right with the chip. Finally, Chapter 7 gives conclusions and proposes future work. 
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Chapter 2 

Error-Control Codes and Decoding 

Algorithms 

2.1 Digital communication channels 

Any digital communication channel is prone to be corrupted by noise. Thus the receiver 

should have the capability to somehow detect and correct the errors. An error-control 

decoder is one of the important components in a digital receiver which is used to perform 

this task. 

Typically the transmitting device encodes data by adding parity-check information. If 

we assume the number of data bits as k, the encoder would add-up n-k parity bits so that 

the total number of encoded bits of information becomes n. This encoded information is 

then sent through a channel to the receiving device. Due to the noisy structure of the 

channel, the receiving information will no longer be the same as the original one. For 

example, in an additive white Gaussian noise (AWGN) channel which is of great interest 

in communication systems, the received message at the receiver is the original distinct 

bits of information plus a zero-mean, Gaussian distributed noise, thus a decoder is 

employed in this system to generate a good estimation of the original encoded 
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information message. Fig 2.1.1 depicts a model for a digital communication system 

where u and x represent the information and encoded messages respectively, n is the 

additive noise of the channel and r is the channel observation by the receiver. The 

complete model of a communication system may include some extra components such as 

a modulator and a demodulator at the transmitter and the receiver sides respectively, 

however they are not included in our discussion. 

n 

Fig 2.1.1: A model for a digital communication system 

In order to have an estimation on the channel observation r, two types of error-control 

algorithms can be employed; soft-decision and hard-decision algorithms which will be 

studied here. 

2.1.1 Soft and Hard decision algorithms 

In a hard decision algorithm, a decoder must judge on every single bit after digitizing the 

received data from the channel. In other words, error detection in this kind of receiver 

will be made after an analog to digital conversion has been done on the received analog 

information with one bit of resolution. 
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Unlike hard decision algorithm, the soft decision algorithm either use more than one 

bit of resolution or keep the analog nature of r, while translating the analog information 

into probability format. The decoder could detect the error by performing probability 

calculations on these soft information bits. 

2.1.2 Probability, Likelihood ratio and Log-likelihood ratio Domains 

In soft decision receivers, there are three main distinct domains in which decoding is 

defined; probability, likelihood and log-likelihood domains. 

In the probability domain, information bits are treated as zero and one probabilities of 

p0 and p] respective for performing probability calculation in the soft decision 

Pn 
algorithm. The ratio of —- for every bit is defined as the likelihood ratio (LR) and this 

Pi 

representation domain is called the likelihood ratio domain. Finally, the Napierian 

logarithm of the likelihood ratio ln(—-) is presented in the log-likelihood ratio (LLR) 

Pi 

domain. The application of each of these domains will be discussed later in the thesis. 

Let's consider antipodal transmissions such as Binary Phase-Shift Keying (BPSK) 

modulation in an Additive White Gaussian Noise (AWGN) channel. Each element of n 

would then have a Gaussian distribution with mean ±1 and variance No/2, where No is the 

power density of the channel's noise. Then it can be shown that the log likelihood ratio 

(LLR) for the received sample n has the following equation [57]. 

ln(L±) = JLr=Xl (2.1.1) 
Pi Wo 
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LLR and probability representation domains are related 

equations: 

e~x< 

"' = i77^ 

2.1.3 The Shannon Capacity 

In communication theory, the Shannon capacity or the Shannon limit is presented as a 

statistical limit for the transmission rate of a specific channel. Claude Shannon showed in 

1948 that in order to achieve a reliable transmission over a noisy channel by employing 

error-control codes, the transmission rate of information bits should not be greater than 

the channel's capacity which is called the Shannon limit [58]. The performance of error-

control codes are preferred to be close to this limit. Turbo codes and LDPC codes are 

known as Shannon capacity approaching codes. 

2.2 Linear Block Codes 

A linear block code refers to a block code which is defined in a linear space. For example 

if X] and x^ are two different codewords in the space of a linear block code, xj = x\ + & 

also belongs to this space. Here, we limit our discussion to binary linear block codes for 

which the addition is defined in the binary domain. Even number of l's add up to 0 while 

odd number of l's in binary addition gives 1. 
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2.2.1 G and H matrices 

Based on the communication system model presented in Fig 2.1.1, an encoder is located 

at the transmitter side in order to convert binary vector u to another binary vector x in the 

linear code space. For this reason a Generator matrix or G-matrix is used to map the 

uncoded vector u to a codeword. 

If u is a I x k binary vector and G is a k x n matrix where n is the number of bits in a 

codeword, then the matrix product would form a / x / i codeword vector x in the new 

space. 

x = u. G (2.2.1) 

The coding procedure is done by adding parity bits to the input bits in a logical manner 

which also defines the code rate for specific coding algorithm. The term code rate or 

information rate is defined by ratio of the non-redundant bits of information to the total 

bits of information. For example if the code rate is k/n, the code generator may generate a 

total of n bit of data where only n-k of them are redundant. 

At the receiver, we need to recover the original bits of information u. Thus, a decoder 

must detect the errors caused by the channel noise and perform the best estimation on the 

received bits. Parity check matrix or H-matrix for the a linear block code is defined based 

on G matrix and satisfies G.HT = 0. Therefore, for any codeword x we must have 

x.HT = 0 (2.2.2) 

In order to find the transmitted codeword, several algorithms have been presented which 

will be discussed in Section 2.3. 
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2.2.2 Factor and Tanner graphs 

One common way to graphically represent the linear space of codewords is through 

factor graphs on which the Boolean constraint functions are satisfied. Below a simple 

factor graph for the following constraint is shown. / (x, y, z) = fi (x, y, z).f2(x, y, z) has 

been presented through its factor graph in Fig 2.2.1. It is observed that a factor graph is 

comprised of two distinct nodes; variable nodes and constraint nodes which are located 

at the top and at the bottom respectively. They are also intermediate lines called edges 

which connect different nodes of the graph based on the constraint functions. 

w 
Fig 2.2.1: A simple factor graph corresponding to/(x, y, z) =fj (x, y, z)f2(x, y, z) 

By convention, variable nodes are preferred to be connected to only one constraint 

node. In order to satisfy this rule, we modify the factor graph by adding new constraint 

nodes called the equality nodes such that there will be only one edge between each 

variable node and its corresponding equality node. This new graphical representation is 

called a Normal graph [59] and is depicted in Fig 2.2.2. 
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Fig 2.2.2: The normal graph off(x, y, z) =fi (x, y, z)./2U y, z) 

If the parity-check equation for a binary block code is presented through the factor and 

the normal graph, we will come up with new graphical representations called a Tanner 

graph and a Normalized Tanner graph respectively. Since for a codeword x to be verified 

by the decoder, x.HT = 0, the Tanner graph will be the constraint graph for H. For 

instance assume that a parity check matrix H is as below: 

H 

1 

0 

0 

0 

1 

0 

1 

1 

0 

0 

0 

1 

0 

1 

1 

0 

0 

0 

1 

0 
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1 
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0 

1 

0 

1 

1 

0 

0 

0 

1 

0 

1 

1 

0 

0 

0 

1 

0 

1 

1 0 1 0 0 0 1 

It turns out that there are seven parity check equations for this //-matrix which are 

derived by multiplying every row of x by HT. For example the first equation which 

corresponds to the first row of H or the first column of HT would be xj + xj + X4 = 0. This 

implies that constraint nodes at the bottom of the Tanner graph should be replaced by 

binary addition or Exclusive-OR nodes since we deal with only 0 and 1 bits in 
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communication systems. These parity nodes whose function is to check the parity 

equation are known as check nodes. The corresponding normalized Tanner graph for the 

above //-matrix has been shown in Fig 2.2.3. 

Fig 2.2.3: The normalized Tanner graph for the presented //-matrix 

2.3 Some popular Error-Control Codes 

In this section some of the widely used error-control codes will be briefly presented. 

2.3.1 Turbo Codes 

The introduction of the original turbo codes has been as early as 1993 when Parallel 

Concatenated Convolutional Codes (PCCC) was presented [3]. After that many other 

classes of turbo code were discovered including Serially Concatenated Convolutional 

Codes and Repeat-Accumulate Codes [41]. 
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One of the most significant advantages of turbo codes is that as stated earlier, this code 

together with LDPC code has the closest performance to the Shannon limit. However, 

relative high decoding complexity as well as the inevitable latency due to wiring of such 

codes could make them inappropriate for very fast applications. 

2.3.2 Low-Density Parity Check Codes 

Low density parity check codes or LDPC codes are a class of large linear block codes. 

The name of low density comes from the fact that the density of Is is small in 

comparison with the number of Os in the //-matrix. In other words, they have a sparse 

parity check matrix. 

These codes were first introduced by Gallager in his PhD thesis in early 1960s [4]. But 

due to the complicated computations required to implement the decoder and encoder for 

such codes, LDPC codes were forgotten for a few decades. It was not until the work of 

Mac Kay [6], that the full potential of these powerful codes became well-known. 

Basically, there are two different methods to represent LDPC codes; matrix and 

graphical representations. 

The very first LDPC codes were introduced through their parity check matrices by 

Gallager. Based on [62], a Gallager code (LDPC code) is defined by (dv,dc) where dv is 

the number of Is in every column and dc is the number of Is at each row of the parity 

check matrix. For an (m x n) parity check or //-matrix, if n represents the code length, 

then the number of rows m can be found from m = ndv/dc if and only if it is a regular 

LDPC code, otherwise it is an irregular LDPC code. The (7 x 7) //-matrix example in 

Section 2.2.1 is the matrix representation for a 7-bits length regular LDPC decoder for 
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which dv and dc are both equal to 3. The iterative message passing decoding or the sum-

product algorithm which will be presented later can be directly applied to the graphical 

representation or the Tanner graph of LDPC codes. 

2.3.3 Block Turbo Codes 

There are other types of error-control codes in the literature such as Block Turbo Codes 

(BTC), which are also known as Block Product Codes. These sorts of codes have a two-

dimensional construction including simple linear block codes. BTC is iterative in nature, 

which is why the term Turbo has been used for it. Their codeword is comprised of row 

codes and column codes which finally results in a rectangular codeword structure. 

Another thing to know about BTCs is that since they are comprised of simple block 

codes, they are easy to construct. Moreover, some BTCs with very short block lengths 

have been shown to approach the Shannon limit while other iterative codes such as LDPC 

codes need to be significantly larger to approach this limit [57]. 

2.4 Introduction to Decoding Algorithms 

Among various algorithms, we are interested in two common algorithms which operate 

on factor or Tanner graphs. They are namely the sum-product algorithm and the min-sum 

algorithm which will be studied in this section. 
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2.4.1 The sum-product algorithm 

One of the well-known decoding algorithms which has been widely used by designers is 

the sum-product algorithm [21]. Since the functionality of this algorithm is based on 

probabilities which are also known as soft messages or beliefs, it is often referred to 

probability algorithm. Shannon capacity approaching codes such as Turbo and LDPC 

codes are often decoded based on this algorithm. 

Most sum-product factor graphs are comprised of nodes each having three edges. 

Nodes with more than three edges can be replaced with the cascade of several nodes 

having only three edges. More than three edges nodes can be modified to the cascade of 

several three edges nodes. The sum-product algorithm computes the overall conditional 

probabilities by calculating or processing local constrains at every node iteratively. That 

means for every single equality node or check node in a sum-product circuit, local 

processing should be performed in order to satisfy the specific constraint related to that 

node. If we assume a three-edge node having two inputs x, y and one output z as shown in 

Fig 2.4.1, the local constraint associated to this node would be/fjc, y, z) = 0. 

• * H 

• * • 

f(x,y,z)=0 ± • 

Fig 2.4.1: Function node and its associated constraint 

In a factor or Tanner graph of the sum-product algorithm, the function of equality and 

check nodes must be defined in the three aforementioned domains. If Pi and Po denote 
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the probabilities of one and zero for every edge of the graph in probability domain, the 

equality node is defined as 

P0z=rjP0xPoy (2-4.1) 

Pu=nPuPly (2A2) 

1 
where 7 is a positive constant for which P0z + Plz =1 and thereby T] = 

P P + P P 

And for a check node we have 

P*t=P*Ay+PxAy (2-4-3) 

Pu=PlAy+P0Ay (2-4.4) 

P 
If we substitute — of every edge by Y in the likelihood ratio domain, the above equations 

"\ 

can be rewritten as: 

for the equality nodes and 

Yz=YxxYy (2.4.5) 

Y7 = x-± (2.4.6) 
Y +Y 

x y 

for the check nodes. 

A Similarly by replacing ln(—-) with X in the log-likelihood ratio domain, one will arrive 
"1 

at the following expressions for equality and check nodes respectively. 

Xz=Xx+Xy (2.4.7) 

Xz -2tanh" ' ( tanh(X ; [ /2)xtanh(Xv /2)) (2.4.8) 
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So far we have defined the local constraints for the two function nodes (i.e. equality 

and check nodes). Before presenting the algorithm lets introduce some notation. 

• Variable nodes and received messages are denoted as v, and y, respectively. 

• The equality nodes are presented as g, while the check nodes are indicated asfi. 

• Probability of the received information bits through variable nodes is shown as 

Pi which is equal to the probability of individual variable node provided that 

the particular j , has been received by that node. Thus we can use the following 

notation for Pi as the probability of being one at the input: Pi = P(vi = 11 v,). 

• Down going messages from the equality node g, to the check node^ is labeled 

as qij. 

• Upcoming message from check node^ to equality node g, is denoted as r,,. 

fj fJ 

Fig 2.4.2: Illustrating the sum-product algorithm; a) Step 2, b) Step 3 

The sum-product algorithm can be described through following steps: 
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1. All variable nodes and their subsequent equality nodes send their q^ messages to 

the corresponding check nodes. Since this is the first iteration of the algorithm and 

no information other than the probabilities of received bits are available, therefore 

qij (1) = Pi and qij (0) = 1 - P,. Note that even if the initially received information 

bits from the channel form a valid codeword, they should be passed down to the 

check nodes since no hard decision can be made as this point. 

2. Once all the check nodes receive qy messages, they calculate their response 

messages r,, back to the equality nodes. For a three-edge check node (fj), we 

assume qx. and q2j each including the probabilities of zero and one as the two 

inputs coming from different equality nodes. The output probability of zero r.,. (0) 

which goes back to the corresponding equality node (gi) can be found based on 

(2.4.3) as: 

0,(°) = 9i,a)?2j(0) + <7„(0te2,(l) (2.4.9) 

If in the above equation we replace qtj (0) = 1 - <?u (1) and q2j (0) = 1 - q2j (1), one 

would end up with the following formula: 

0,(0) = ̂  + | a - 2 ? u ( l ) ) ( l - 2 ? 2 ; ( l ) ) (2.4.10) 

Consequently for check nodes with more than two edges (2.4.10) can be extended 

as: 

rii(0)=^ + \ll(l-2<lrj(V) (2-4.11) 

and 

r,(l) = l - r , (0 ) (2.4.12) 
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Equations (2.4.11) and (2.4.12) compute the returning messages to the equality 

node gi by calculating sum of the products for all qrj's except qtj which has also 

been illustrated in Fig 2.4.2a. 

3. At this point, two updates must be done. Firstly, the down going messages from the 

equality nodes that is shown graphically in Fig 2.4.2b must be computed through 

following equations: 

qij(0) = rjij(\-Pi)llrJ,i(0) (2.4.13) 

qij(\) = 1-^.(0) (2.4.14) 

where 7]^ is a positive constant to ensure that qtj (0) + qtj (1) = 1. 

At this step the first iteration is completed. Now the decoder will also update its 

current estimation of variable v, based on the following equations. 

a(0)=^(i-^no/(°) <2-4-15) 
je Si 

fi1-0) = ^ « l l r / ' ( 1 > (2A16) 

Hard decision will be made by comparing <2,(1) and <2,(0) and by voting for the 

bigger one. This is usually done within the analog comparators at the output of the 

decoder. 

fl if Q,(X)>Qt(0) 
v,. =\ ' ' (2.4.17) 

[0 else 

Upon matching of the estimated codeword to the valid codeword and hence 

fulfilling the parity check equation, decoding algorithm may terminate at this 

stage, otherwise go to step 2. Here, we say that if one iteration was enough, then 
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the initially received bits of information have been a valid codeword that can be 

decoded at this step. However, if more than a single iteration was required for this 

algorithm, it means that the error-correction needs to be done prior to the final 

hard-decision. 

The above explained algorithm is the basis of the sum-product algorithm used in 

decoders either analog or digital. 

2.3.2 The min-sum algorithm 

Another graphically based decoding algorithm is the min-sum algorithm that can be 

performed with minor modification to the sum-product algorithm [60]. The min-sum 

algorithm is also known as a variant of the maximum-likelihood (ML) sequence decoding 

rather than the a posteriori probability (APP) decoding which is the most straightforward 

applications of the sum-product algorithm. The reader could study about ML and APP 

algorithms in [57]. If we assume that / indicates the number of iteration in the min-sum 

algorithm which is positive, then the messages passing between equality node (g,) and 

check node ifj) are given in the log-likelihood ratio domain by [40]: 

qV=Pi+ 5 V M ) (2.4.18) 

r? = 
(0 

n •"'£"(<) min(lo("l) (2.4.19) 

where sign(.) function is -1 for negative numbers and is +1 for non-negative numbers. 
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Note that although the same notation as in the sum-product equations has been applied 

in (2.4.18) and (2.4.19), here the variables should be considered as log-likelihood values. 

The output of individual variable node will be updated after each iteration just as in the 

sum-product algorithm. A hard decision will be made upon satisfying the valid codeword 

which determines the termination of decoding or up to given maximum iteration number. 

The variable nodes are updated by the following equation: 

Q ( / ) = P i + y y M ) (2.4.20) 

Other types of decoding algorithms exist, most of which are based on the sum-product 

algorithm. As an example, Margin propagation (MP) algorithm that is presented in [61] 

can be used for approximating the log-sum factors in a conventional sum-product based 

LDPC decoding algorithm. It was also shown in [61] through simulations that BER 

performance of margin propagation based LDPC decoders is nearly identical to the sum-

product decoders and is superior to the min-sum LDPC decoders. 

In the following chapters we will study the analog implementation of the sum-product 

algorithm which was introduced here. Throughout the rest of the thesis, we will be more 

concerned about the dynamics of the analog circuits used in the analog decoders. 
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Chapter 3 

Analog sum-product circuits 

For an analog decoder based on the sum-product algorithm, equality and check nodes 

with reasonable precision and speed must be designed. In order to have a correct hard 

decision on the decoded data, the individual block of equality or check node must deliver 

its output to the following block with a reasonable accuracy. Also, the timing delay 

associated with each of these nodes can affect the total convergence speed of the decoder. 

Therefore, designing equality and check nodes are of great importance. 

In this chapter, a complete procedure for the design of the canonical sum-product 

circuits, equality and check nodes is presented. Here, circuits presented in [57] that are in 

0.18// m technology are modified for 90 nm technology. The effect of mismatch on the 

outputs of individual blocks with different sizing will be studied. At the end of this 

chapter, we will present the internal view of an implemented chip comprising equality 

and check nodes with different topologies and sizes that unfortunately failed to function 

properly, as we discuss later in Chapter 6. 

Before explaining the design procedure, we are going to study the operating regions of 

a MOS transistor. Later, we will introduce the Translinear principle and Translinear 

circuits which are the basis for the analog sum-product circuits. 
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3.1 MOS transistor operation regions 

Three regions of operation can be defined for MOS transistors including strong inversion, 

weak inversion also called the sub-threshold region, and the moderate-inversion region. 

A three terminal MOS transistor is shown in Fig 3.1.1. Here we are going to have a quick 

review of each of the mentioned regions. 

D 

1 ' 

s 

Fig 3.1.1: Basic MOS transistor 

3.1.1 Strong inversion region 

A MOS transistor is in strong inversion region once its gate-source voltage is greater than 

the threshold voltage (i.e. Vgs » Vth). Hence the transistor is said to be ON which means 

a channel has been made between the drain and source terminals. 

If in this condition the drain-source voltage becomes high enough so that Vds > Vgs -

Vth, then we say the transistor is saturated and the current is governed by: 

ID=\MC0X^(vgs-Vlh)
2 (3.1.1) 

Where W and L represent the width and length of the transistor and ju &ndC0X are the 

mobility of the carriers and the oxide capacitance, respectively. 
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For Vds < Vgs - Vth, MOS transistor is not saturated anymore and behaves as a voltage 

dependant resistor which is linear for very small drain-source voltages. 

3.1.2 Weak inversion region 

When Vgs of an NMOS transistor is below the threshold voltage it can be either in weak 

or moderate inversion region. Designers have separated the weak and moderate inversion 

regions by defining the device's specific current Is such that when the device current is 

less than one-tenth of Is, so the transistor is in weak inversion and if it is between one-

tenth of Is and ten times Is it is in the moderate inversion region. Yet, there is not an exact 

boundary between these two regions. For very low gate-source voltages (Vgs « V,h) the 

transistor is said to be in (deep) weak inversion region where most of the current flow is 

due to diffusion and for gate-source voltages close to the threshold voltage (Vgs ~ Vth) it is 

in moderate inversion region which is something between the weak and strong inversion. 

In the weak inversion region, transistor current ID is governed by [57]: 

ID ~I0e
nUT(\-e nUT) (3.1.2) 

C +C 
where IQ is a small constant current which is related to Is , n = — — is often called 

the subthreshold slope factor andCdepis the depletion capacitance. Finally Ur=kT/q ~ 

25mV is the thermal voltage. 

It is obvious that for sufficiently large V^, (3.1.2) will be reduced to: 

v 
/ D = V " y r (3.1.3) 
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This condition is often referred to saturation region in weak inversion and is determined 

when V^is sufficiently larger than 4UT -100 mV(i.e. 200 mV). 

For small Vds the transistor is no longer in saturation or in other word is unsaturated in 

the weak inversion. Therefore the second term in (3.1.2) cannot be ignored and 

consequently Ip is comprised of two currents opposite directions; forward current // 

which is the desired current and reverse current Ir. 

ID=I0(e
nU' -enU*) = If-Ir (3.1.4) 

3.2 The translinear principal 

The translinear principle states that in a translinear loop containing translinear devices, 

the product of clockwise currents is equal to the product of counter-clockwise currents. 

Translinear devices may include BJT and MOS transistors in weak inversion [63]. In this 

thesis MOS transistors operating in weak inversion are assumed to be the translinear 

devices which follow the translinear principle while arranged in a loop of gate source 

voltage drops. There must be an equal number of Vgs rises as V^ drops. This is the 

conventional translinear principle. However there is also a voltage-translinear principle 

when all transistors in the loop are biased in strong inversion [63]. 

Consider the circuit configuration of Fig 3.2.1. Writing the KVL equation in the loop 

will give: 

- v g , i + v „ 2 - v , , 3 + v , , 4 = 0 (3.2.1) 

If all MOS transistors in the loop are biased in weak inversion while saturated, based 

on (3.1.3) one can write (3.2.1) as: 
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• nUT ln(-^-) + nUT ln(^-) - nUT ln(-^-) + nUT ln(—) = 0 (3.2.2) 

V3=V4 (3.2.3) 

1 
h 

' U 

l~ 
12 

h 

Fig 3.2.1: A basic translinear loop 

Equation (3.2.3) reveals the translinear principle in a translinear loop containing 

translinear MOS transistors. 

3.3 The canonical sum-product circuits 

Analog decoding based on the sum-product algorithm deals with probabilities as 

interacting signals such that each signal represents probabilities of a variable being 1 and 

0. The structures of canonical sum-product circuits are shown in Fig 3.3.1 and 3.3.2. Fig 

3.3.1 is showing the standard equality node and Fig 3.3.2 presents a canonical check-

node. As it is observed, each circuit is comprised of two inputs and one output which are 

in current mode. Taking into account the probabilities of 1 and zero for individual input 

and output we will have a total of 4 inputs and 2 outputs. 
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The sum-product circuits of Fig 3.3.1 and 3.3.2 can be seen as an application of basic 

Gilbert cells comprised of several translinear loops [64]. Based on the translinear 

principal, the intermediate currents for equality nodes are found as below: 

1 xQ + l x\ 

* z\(eq_node) ~ ~j ~~. {5.5.1) 
1 xO + I x\ 

And for the check nodes are: 

, _ ^oSo +Ix\*y\ n ~ -, 
1 zO(ch_node) ~ f , {J.J.J) 

j _ 'xJyO +IxJy\ r- - .. 
1 zHch_node) ~ . . V - 5 - - 3 - ^ 

*x0 + * xl 

Equations (3.3.1) to (3.3.4) differ slightly from the equations (2.3.1) up to (2.3.4) for 

equality and check nodes. The use of renormalization circuits at the top of the two nodes 

makes it possible to derive the complete equations. Since the renormalization circuits are 

in fact translinear circuits, therefore according to the governing principle we have the 

following equations for both nodes: 

1z0^1z\ 
'aM=TJ&Jr- (3-3-5) 

1 oufl iM,t=-rjU7- (3-3-6) 

where Iu is the global unit current used to boost the attenuated currents of ho and hi 

thereby calibrating the output currents to change from 0 to Iu (0 for zero output current 

and Iu for the maximum output current). This calibration is often known as 

renormalization. 
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Fig 3.3.1: Canonical sum-product circuit (Equality node) 
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Fig 3.3.2: Canonical sum-product circuit (Check node) 

As a result by combining the equations (3.3.1) to (3.3.6) and assuming that 

ho+h\=IyO+Iy\=Iu, the renormalized equations for equality and check nodes are found as: 
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/ = x±Jl / (3 3 7) 
'outO(.eg_node) j j ,J J u \J.J.IJ 

1 xO1 yO " t"- 'xl /yl 

* oul\(eq _node) = ~j Z ~~j ~j 'U (3.3.0) 
1 xO1 yO + ' x l ' > l 

And, 

. _ 'xO'yO +hJy\ n „ Q , 
1outO(ch_node) ~ j ^ J . J . ^ ; 

1 outKch _node) j \D.J.l\J) 

As discussed earlier in order to have the above formulas, we must first make sure that 

MOS transistors in the translinear circuits are in the weak inversion region. Also for the 

canonical sum-product circuits all the transistors are assumed to be in saturation [57]. For 

this reason Vref (N) and Vref (P) are used to provide a high enough voltage at drain of M1 

and a low enough voltage at drain of M15 respectively. By adjusting these two voltage 

sources, Ml and M15 will be kept in saturation. 

Winstead [57] showed in his thesis that the minimum bias voltage required for the 

equality or check node to function properly can be approximately found through the 

following formula for the 0.18 urn technology: 

Vdd>0A2V + Vref + VTOP +^L\n(-^—) (3.3.11) 

K 100/tA 

where Vref =Wd -Vref (P), UT is the thermal voltage, and K and VTOP are process dependent 

parameters. In deriving above the equation it has been assumed that to maintain 

saturation the Vds of every transistor has to be greater than 4UT. 
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3.4 Low-voltage sum-product circuits 

Fig. 3.4.1 shows the low-voltage topology of the canonical sum-product circuits which 

allows Vref (N) and VW (P) to be zero and Vdd respectively. The required supply voltage 

in this topology is lower than that if a canonical circuit as presented by Winstead in his 

thesis [57]. Eliminating the reference voltages causes Ml and Ml5 to become 

unsaturated. Therefore translinear equations for the modified topology would include 

extra parameters due to the reverse currents of Ml and Ml5. As an example for the low 

voltage equality node we will have: 

/ = IxoI>° (3 4 1) 
IzO(eq_node) , , t , j \J.^.l) 

1 xO + l x\ + ' yO 

j x\ y\ ,~ . 2) 

1 xO + * x\ "'" l y\ 

Since in (3.4.1) and (3.4.2) the denominator is no longer the unit current, dummy 

transistors, M3 and M4 are added to the circuit so that the normalized equations are 

maintained. 

(3.4.1) 
j _ ';e(K.yO 

zO(eq_node)- j . . . 
1 xO T l x\ T i . y 0 T l y\ 

j _ ' x l ' y l 

1 xO ^ ' xl ^ ' y] T i y 0 

_ ' j O ' y O 

21 u 

' J t l ' yl 

21 y 
(3.4.2) 
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Fig 3.4.1: Low-voltage equality and check nodes including the dummy transistors 

Low-voltage sum-product topology will be employed in the circuits of Chapter 4. 

3.5 Design procedure of the sum-product circuits 

Here we are going to explain the design procedure of the canonical sum-product circuits, 

equality and check nodes in the 90 nm CMOS technology. 

For any differential pair to function symmetrically it seems reasonable to have 

identical loads at both sides. From Fig 3.3.1 it is clear that M6 and M8 are directly 

connected to Vdd while their corresponding differential pairs M9 and M5 are connected to 

M-ef (P) through diode-connected PMOS transistors and thus the equality node is not 

exactly symmetrical. By adding pull-up diode-connected PMOS loads, MUpi and MUp2 as 

shown in Fig 3.5.1 and by connecting their sources to Vref (P) instead of Vdd, it is 

expected to have symmetrical results for probabilities of one and zero. Four pairs of 
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current-mirror circuits are distinguishable at the inputs of both equality and check nodes. 

The input diode-connected transistors are used to mirror the input probabilities which are 

in terms of currents to the circuit. 

The first thing which might come to mind in the design of such circuits is that for an 

accurate transmission of the input data to the decoder core, current-mirror circuits must 

function satisfactorily. This means that the mirrored current has to be very close to the 

input current and this involves a sufficient Vds for Ml which is provided by Vref (N) to be 

around 200 mV as well as quite large Ws and L's to avoid mismatch and the effect of ro. 

However, the former will not be the case for the low-voltage topology as Ml would be 

unsaturated. On the other hand, since in an analog decoder it is the ratio of the 

probabilities of zero and one that matters and knowing that the renormalization circuits 

calibrate the output probabilities with respect to the unit current, exact mirroring at the 

inputs will not be that important. Nevertheless the effect of mismatch on the output 

currents should not be underestimated and needs to be studied. 
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Fig 3.5.1: Symmetrical equality node by adding diode-connected PMOS loads 
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3.5.1 Range of input and output currents 

The range of variations for the input currents must be determined such that all transistors 

remain in weak inversion region for a complete decoding. For this reason a current-mirror 

circuit has been simulated in 90 nm technology with arbitrary values for W and L (W = 

1.2 urn and L = 1 um) having enough Vds for the second transistor to stay saturated by 

varying the input current (here Vds = 200 mVj. This model has been shown in Fig 3.5.2 

and the result of simulation has been presented in Fig 3.5.3. 

vQ! 

©• 
I 

)vds=200mV 

Fig 3.5.2: Current-mirror circuit used to determine the range of input current 

, x 1 0 lin Vs. Vgs for an NMOS transistor in 90 nm technology 
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12 0.14 0.16 0.18 0.2 0.22 

Fig 3.5.3: Plot of /,-„ versus Vgs for an NMOS diode-connected transistor in 90 nm 

technology with W = 1.2 um and L - 1 um of a current-mirror circuit where Vds for the 

second transistor has been set to 200 mV 
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It was found that the current-mirror circuit will be kept in the sub-threshold region 

where the gate source voltage is far below the nominal threshold voltage (VTON = 200 

mV) while the input current changes from 0 to 100 nA. Recall that in the deep weak-

inversion region we have 
1 8n 

ID nUT 

This can be verified in Fig 3.4.3 that in the deep 

g 1 
weak inversion region —— = 32.7 = , where typical value of n = 1.2 and UT = 25 

ID nUT 

mV. However for input current close to 100 nA the transistor may no longer be operating 

in deep weak inversion region and thus the above equation will be just an approximation 

in moderate inversion region. 

Plot of (gm/lin) Vs. Vgs for an NMOS transistor in 90 nm technology 
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Fig 3.5.4: Plot of (gm//in) versus Vgs for the diode-connected NMOS transistor 

with W= 1.2 um and L = 1 urn in 90 nm technology 

The conclusion that one can draw from Fig 3.5.3 and Fig 3.5.4 is that 100 nA would be 

appropriate to keep an NMOS diode-connected transistor with W = 1.2 um in weak 
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inversion. Since the current is directly proportional to the size of transistor (—), therefore 

the transistor will still remain in weak-inversion if its current and W are doubled 

simultaneously. Assuming that in our discussion Iu= 100 nA represents the probability of 

1, consequently 0 A would represent the probability of 0. 

From the decoding point of view, the output of an equality node would be 1 if and only 

if both of its inputs are 1 while the output of a check node is 1 if and only if one of its 

inputs is 1 and the other is 0. Now if both inputs are having the 0.5 probability, so does 

the output of the equality and check node. If one of the inputs is 0 and the other is 1, we 

expect the equality node to have a similar behavior as 0.5 probabilities, since in the latter 

the equality node is unable to determine whether the result would be zero or one. The 

latter case is known as when the inputs are going to opposite extremes. However, this, as 

will be seen from simulations later, causes inaccuracies in the result of the equality node 

so that the output will not be exactly 0.5. 

3.5.2 Adjusting the reference voltages 

As explained earlier, in the canonical circuits of equality and check nodes there are two 

reference voltages which keep Ml and M15 in saturation. It is reasonable to set VW (N) 

and Vref (P) for the uniform probability mass (i.e. 0.5 input and output probabilities) since 

this is the typical initialization point for every decoder before the real data has been 

received, although other initialization points may be used as will be discussed in Chapter 

5. 
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Having Iu= 100 nA, the input current are set to 50 nA which must result in the same 

50 nA current at the outputs. From simulations, Vref (N) = 120 mV has been found for a 

bias voltage of Vdd = 600 mV which satisfies (3.1.11) and brings Ml in saturation. M15 

and Ml6 on the other hand has to be sized so that its current remains constant and equal 

to the unit current all the time. Therefore to avoid the undesired impact of variations in 

the Vds of Ml5 on the unit current, firstly its length (L) has been chosen larger than that 

of the other transistors and secondly Vref (P) is adjusted so that the output currents are 

both equal to 50 nA. Simulations showed that this voltage is different for equality and 

check nodes of the same size. 

3.5.3 Accuracy of results at the extremes 

For an equality node as discussed earlier as the inputs approach the opposite extremes 

(i.e. one input goes to zero while the other reaches Iu), one would find inaccurate results 

due to imbalance branches in the equality node. Assume that ho = 0 and IyO =100 nA. 

This leads to h\ = 100 nA and /yi = 0. It may be deduced that based on the translinear 

principal ho = h\ = 0.5, however based on the equality node of Fig 3.1.1 or 3.5.1, the 

paths which lead to generating ho and hi are not identical and therefore the output 

currents /outo and /outi will not be exactly 50 nA as it is expected. 

If ho and IyO are separately varied from 0 to Iu = 100 nA, then the output probability of 

one (Iouti) would be derived from the simulation as shown in Fig 3.5.5. The equality node 

has been designed to have an accurate result when IxO = IyO - 50 nA which results in IoutO 

= lout] = 50 nA as labeled on the figure. The other four values are for cases when the 

input currents reach the two extremes, 0 and 100 nA. It can be seen that the outputs are 
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very close to 0 and 100 nA as expected while inputs are 0 or 100 nA respectively, 

however whenever the inputs are approaching the opposite extremes, the expected output 

of 50 nA cannot be obtained accurately. Although this is not a serious problem in 

decoders, yet we refer this issue to the inaccuracy at the extremes. 

1x0 (nA) lyO (nA) 

Fig 3.5.5: Results of simulation for the output probability of 1 in the equality node 

when the input probabilities of 0 are varied from 0 to 100 nA 

3.5.4 The effect of Mismatch 

One of the important factors in analog designs which affects the behavior of the circuit is 

the device mismatch. Ideally, we assume that transistors of equal length and width exhibit 

the same properties, while practical situations tell another story. Mismatch is caused by 

process variation. One kind of mismatch is difference in length and width of the transistor 

which are produced during the fabrication process. 

48 



The other sort of mismatch is the difference in threshold voltage caused by the random 

variations in the doping level of the channel and gate [69]. It has been shown that the 

most effect of the device mismatch in weak inversion operation mode region comes from 

threshold voltage mismatch [65]. This results in the current matching error. 

The device mismatches can be considered as a random variable with normal 

distribution having zero mean and the variance which depends on the size of the 

transistor. 

It has been shown [65] that the variance of threshold voltage mismatch is found by, 

4 2 

<72(AVr) = —H— (3.5.1) 
7 WxL 

where A^ is the technology dependant matching parameter and it is about 5 (mVxum) 

for 90 nm technology. 

Small variations of the threshold voltage would cause the current to change slightly 

since: 

AID=gmAVT (3.5.4) 

Dividing both sides of (3.5.1) by drain current we have: 

*LD- = 12L&VT (3.5.3) 
1 D ' D 

Equations (3.5.1) and (3.5.3) suggest that by increasing Wand L of the transistors for a 

specific drain current, one can lower the current variation and thereby reduce the effect of 

mismatch on the output result. 

To see the effect of mismatch on the accuracy of the output currents, Monte Carlo 

analysis has been done in the equality node for 100 iterations of process variation and 

mismatch. Wand L for all transistors except M15 and M16 are assumed to be 1.2 urn and 
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W 2 
1 um respectively. M15 and M16 both have — = —. Ideally if we set IyO=Iyl=50 nA, by 

La ZJ 

increasing ho from 0 to 100 nA which causes hi to drop from 100 nA to 0, the output 

probability of 1 is expected to change as in Fig 3.5.5, however due to the mismatch it is 

found as shown in Fig 3.5.6. 
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Fig 3.5.6: Simulation results for 100 iterations of process variation and mismatch 

for the equality node with _ = _ 

If the widths and lengths of all transistors (expect M15 and Ml6) are doubled, a better 

result would be anticipated. As seen from the new simulation results of Fig 3.5.7, it is 

obvious that the output currents of the equality node are more condensed and therefore 

the effect of mismatch has been reduced to some extent. 
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Fig 3.5.7: Simulation results for 100 iterations of process variation and mismatch 

for the equality node with _ = — 
L 2 

3.6 Structure of the Chip 

In this section we are going to explain the structure of our chip. The main goal to 

implement the sum-product circuits is to measure the accuracy of results as well as the 

effect of mismatch and to compare them with the results of simulation. For this reason 64 

equality and check nodes with different configurations and sizes have been implemented. 

The chip also contains voltage-to-current converters, input and output switches and a 

digital circuit which will be discussed. 
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3.6.1 Blocks 

In this chip there are 64 equality and check nodes with different sizing and configuration. 

These nodes are arranged in groups of 8 similar blocks each containing 8 nodes and is 

depicted in Fig 3.6.1. The first 4 nodes in each block are the equality nodes and the rest 

are the check nodes. The arrangement of each block is as follows: 

7" node: 2-input equality node with small W's and L's (1.2 urn and 1 um respectively) 

2" node: 2-input equality node with doubled W's and L's (2.4 um and 2 um 

respectively) 

3nd node: 3-input equality node with small W's and L's (1.2 um and 1 um respectively) 

4th node: 3-input equality node with doubled W's and L's (2.4 um and 2 um respectively) 

5th node: 2-input check node with small W's and L's (1.2 um and 1 um respectively) 

6th node: 2-input check node with doubled W's and L's (2.4 um and 2 um respectively) 

7nd node: 3-input check node with small W's and L's (1.2 um and 1 urn respectively) 

8th node: 3-input check node with doubled W's and L's (2.4 um and 2 um respectively) 

Note that 3-input nodes are composed by cascading two stages of 2-input nodes. Input 

and output switches will select one of these nodes to be measured at a time. 
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3.6.2 Voltage-to-Current converters 

Sum-product circuits are current-mode devices whose inputs and outputs are in current 

format. However, in a digital receiver the received data which has been corrupted by 

noise of the channel has analog nature in terms of voltage. Hence there must be a 

converter prior to the decoder to convert the received voltage mode signals to current 

mode probabilities for equality and check nodes. 

Since the minimum and maximum input current of the sum-product circuit cannot be 

less than zero and greater than lu, therefore the voltage-to-current (V2I) converters must 

be designed for which the output is between 0 and lu. The converter circuit is in fact a 

differential pair as shown in Fig 3.6.1 where the transistors must operate in the sub­

threshold region so that the following relationship between the input voltages and output 

currents is established. 

I0=emn) (3.6.1) 

/1=e"(V"'/2) (3.6.2) 

If we take Napierian logarithm from both sides of the above equations we get 

I nA) = \n(e(Vin/z+Vin,2)) = ln(ev;") = Vin (3.6.3) 

Equation (3.6.3) is referred to the duality between the current-mode probability domain 

and the voltage-mode log-likelihood ratio [57]. Having/, +10 = Iv, (3.6.3) can be 

rewritten as: 

/0 - /, = Iv tanh(vm/2) (3.6.4) 
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Fig 3.6.2: A differential pair served as the voltage to current converter at the input 

Since we have a combination of two-input and three-input equality and check nodes in 

the chip, so a maximum of three voltage-to-current converters are required to provide all 

the input currents. Selecting one of the 64 nodes at a time will be done through input and 

output switches. 

3.6.3 Input and Output Switches 

PMOS Pass-Transistor-Logic (PTL) transistors are employed at the input and output to 

select between the nodes. Gates of these transistors are fed by the address corresponding 

to each node. Fig 3.6.3 shows how a single node is going to be selected through input 

switches. Note that this figure is showing the selecting procedure for one of the inputs 

which belongs to one of the nodes out of 64 nodes in the chip. Since all of these nodes 
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require at least two input currents, therefore the structure of two of the input switches are 

as Fig 3.6.3. However in order to provide the third inputs for thirty two 3-input nodes, we 

need a total of 32 switches which are arranged in two rows of four switches after the third 

voltage to current converter. 

From one of the 
V to I converters " irJ. J IM or l M 

HCJ H ^ HCj HCJ H ^ HC[ HC] H(^ 

H^ H ^ HCJ HtJ HCj HC^ HCj H ^ 

Selected 
node 

Fig 3.6.3: Configuration of one set of input switches used to feed one of the inputs 

(probability of one or zero) which belongs to one of the 64 nodes in the chip 

Similar switches but with an inverse configuration as shown in Fig 3.6.4 must be used 

after the nodes to read the output currents coming from individual nodes. 

Selected 
node 

H q ^ HCJ HCJ HCJ HCJ HC^ H ^ 

°HC, HCJ HCJ Hf^ HC| HCJ HCJ HCJ 

| louti or louto 

Fig 3.6.4: Configuration of one set of output switches (probability of one or zero) coming 

from the output of one of the 64 nodes in the chip 
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3.6.4 Digital circuit 

Digital input data is delivered to a digital circuit comprised of flip-flops and shift-register 

circuits on the rising edges of clock. Output of the digital part is the address to the 

switches which selects the nodes based on Table 3.6.1. 

Table 3.6.1: Input data and corresponding selected nodes 
Block 

1 

2 

3 

4 

Data 
000000 
000001 
000010 
000011 
000100 
000101 
000110 
000111 
001000 
001001 
001010 
001011 
001100 
001101 
001110 
001111 
010000 
010001 
010010 
010011 
010100 
010101 
010110 
010111 
011000 
011001 
011010 
011011 
011100 
011101 
011110 
011111 
100000 

Selected node 
nothing(For Calibration Only) 

2-input equality node with doubled W's and L's 
3-input equality node with small W's and L's 

3-input equality node with doubled W's and L's 
2-inputs check node with small W's and L's 

2-inputs check node with doubled W's and L's 
3-inputs check node with small W's and L's 

3-inputs check node with doubled W's and L's 
2-input equality node with small W's and L's 

2-input equality node with doubled W's and L's 
3-input equality node with small W's and L's 

3-input equality node with doubled W's and L's 
2-inputs check node with small W's and L's 

2-inputs check node with doubled W's and L's 
3-inputs check node with small W's and L's 

3-inputs check node with doubled W's and L's 
2-input equality node with small W's and L's 

2-input equality node with doubled W's and L's 
3-input equality node with small W's and L's 

3-input equality node with doubled W's and L's 
2-inputs check node with small W's and L's 

2-inputs check node with doubled W's and L's 
3-inputs check node with small W's and L's 

3-inputs check node with doubled W's and L's 
2-input equality node with small W's and L's 

2-input equality node with doubled W's and L's 
3-input equality node with small W's and L's 

3-input equality node with doubled W's and L's 
2-inputs check node with small W's and L's 

2-inputs check node with doubled W's and L's 
3-inputs check node with small W's and L's 

3-inputs check node with doubled W's and L's 
2-input equality node with small W's and L's 
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5 

6 

7 

8 

100001 
100010 
100011 
100100 
100101 
100110 
100111 
101000 
101001 
101010 
101011 
101100 
101101 
101110 
101111 
110000 
110001 
110010 
110011 
110100 
110101 
110110 
110111 
111000 
111001 
111010 
111011 
111100 
111101 
111110 
111111 

2-input equality node with doubled W's and L's 
3-input equality node with small W's and L's 

3-input equality node with doubled W's and L's 
2-inputs check node with small W's and L's 

2-inputs check node with doubled W's and L's 
3-inputs check node with small W's and L's 

3-inputs check node with doubled W's and L's 
2-input equality node with small W's and L's 

2-input equality node with doubled W's and L's 
3-input equality node with small W's and L's 

3-input equality node with doubled W's and L's 
2-inputs check node with small W's and L's 

2-inputs check node with doubled W's and L's 
3-inputs check node with small W's and L's 

3-inputs check node with doubled W's and L's 
2-input equality node with small W's and L's 

2-input equality node with doubled W's and L's 
3-input equality node with small W's and L's 

3-input equality node with doubled W's and L's 
2-inputs check node with small W's and L's 

2-inputs check node with doubled W's and L's 
3-inputs check node with small W's and L's 

3-inputs check node with doubled W's and L's 
2-input equality node with small W's and L's 

2-input equality node with doubled W's and L's 
3-input equality node with small W's and L's 

3-input equality node with doubled W's and L's 
2-inputs check node with small W's and L's 

2-inputs check node with doubled W's and L's 
3-inputs check node with small W's and L's 

3-inputs check node with doubled W's and L's 

Table 3.6.1 takes into account 63 out of 64 nodes. It had been decided to measure the 

timing delay in the first node by applying a step input and observing how fast the output 

would change. However due to the difficulty in applying an accurate step current the 

speed measurement test was ignored. 

Since the inputs to the chip are voltages and the output of every node is in the current-

mode, therefore there is a need to measure the input and output currents. This chip is 

designed so that by selecting the all zero data (as shown in the table) the input current 
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(Output of the V2I converter) can be plotted with respect to the applied voltage. As a 

result the input currents are calibrated prior to the actual measurement. To measure the 

output current on the other hand, a relatively large resistance of about 10 K-ohm is 

required at the output to convert the current to voltage. Such a large resistance at the 

output is needed since the output current is expected to be in the range of 0 to 100 nA, 

therefore in order to be measured by a good voltmeter having sufficient input impedance, 

the corresponding voltage must be in a reasonable range. Although this may cause speed 

limiting issues due to a large dominant pole at the output, it is convenient for dc 

measurements. We will explain in Chapter 6 what simple measurements indicated that 

something is not right with the chip and so the measurement process fails. 
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Chapter 4 

Application of Active Current Mirrors to 

Improve the Speed of Analog Decoders 

A version of this chapter in published in Ref. [71] 

This chapter will focus on the issue of speed reduction and delays due to the wirings in 

large codes based on the sum-product algorithm and particularly large LDPC codes. In 

previous chapters the structure of equality nodes and check nodes as the modules of the 

sum-product circuit were presented. It is observed that the current-mirror circuits used at 

the input of these nodes plays a key role in generating the delay in a circuit of analog 

decoder. For an analog decoder to function properly, transistors must operate in weak 

inversion region. Though this region of operation gives rise to low transconductance, and 

correspondingly high input resistance, the intrinsic speed of individual nodes is adequate, 

owing to the small capacitance of the input transistors. However, for large codes, as the 

number of nodes increases, wiring the modules that are millimeters apart generates large 

wiring capacitance which has significant effect on the throughput of an analog decoder. 

Increasing the bias currents of all branches in a large analog decoder will 

proportionally increase its bandwidth. However, since both speed and power will increase 
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equally, this approach fails to improve the power/speed ratio. Selectively doubling the 

currents as well as the sizes of only the input diode-connected transistors of a module as a 

second approach involves doubling the currents and sizes of that of the subsequent 

module for accurate decoding operation. Thus, increasing the speed of the decoder will 

be at the expense of large total power dissipation although an improved power/speed ratio 

would be achieved. 

Current-mode design approaches provide a variety of useful features such as 

improving the bandwidth [66], [67]. An alternative approach to solve the issue of speed 

in large analog decoders is to replace the basic current-mirrors at the input nodes with 

active current mirrors and benefit from the current-mode technique to improve the 

power/speed ratio. 

We are going to first present a large LDPC code and estimate the largest possible 

wiring capacitance for this code which corresponds to the worst case spacing between the 

modules of the related Tanner graph. The power/speed ratio or the power delay product 

for a block of equality node in this code will be simulated for three cases; with the basic 

mirrors, with the boosted (bias currents as well as sizes) input and output mirrors and 

with the active mirrors at the input. Consequently, it turns out that the final approach is 

more practical and more beneficial to be employed in analog decoder circuits. 

4.1 A Large LDPC code 

A (3, 6) LDPC code defined by a (512 x 1024) //-Matrix is considered for this example. 

This requires 1024 equality nodes and 512 check nodes having 3 and 6 edges connected 

to each node, respectively. Taking into account one extra edge for the received 
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information, each equality node would have a total of 4 connected edges. If d indicates 

the number of edges connected to a bidirectional node, then it can be verified that there 

must be 2>{d-2) two-input unidirectional nodes within each d-edges node [43]. As a result, 

6 unidirectional equality nodes and 12 unidirectional check nodes are used in the blocks 

of equality and check nodes. 

Due to some confusion with the correct //-Matrix, we initially did all the simulations 

on the transpose of the aforementioned code. That is, our //-Matrix was a (1024 x 512) 

for which the number of equality and check nodes are 512 and 1024, while the connected 

edges to every equality and check node are 6 and 3 respectively. By taking into account 

the one extra edge for the equality nodes, there will be a total of 7 edges connected to 

each equality node. However, later we came to this conclusion that the extracted LDPC 

code with the number of its equality nodes less than that of check nodes may not be 

practical. 

It is worth mentioning though that the above confusion will not affect on the 

conclusion of this work which is the application of active current mirrors in improving 

the speed of analog decoders. So, for the employed //-Matrix there are 15 unidirectional 

equality nodes and 3 unidirectional check nodes in each block of equality and check 

nodes. This is shown in Fig 4.1.1. It is observed that in a block of equality nodes, there 

are 7 separate edges for the inputs as well as for the outputs and each output is generated 

by the other 6 inputs. In the block of check nodes there will be 3 input edges and 3 output 

edges and every output is produced by the other 2 inputs. 
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A(ln) 

B(in) 

C(in) 

D(in) 

E(in). 

F(inV 

G(ln)-

J(out) 

l(out) 

H(out) 

Block of Equality nodes 

Fig 4.1.1: Blocks of equality and check node for a large LDPC code 

and a sample connection between them 

In Fig 4.1.1, the equal sign (=) denotes an equality node and addition sign (+) indicates 

a check node. Although the inputs and outputs of the block of equality and check nodes 

are currents, the internal signals (e.g., el, XI, etc) are gate voltages generated by current 

mirrors. The circuits of unidirectional equality and check nodes are designed based on the 

low-voltage sum-product topology described in [57]. These nodes have current-mirror 

circuits at their inputs. A sample connection between two different nodes in equality and 

check nodes is also depicted in Fig 4.1.1. 

The total power dissipation for a 7-input equality node was found to be P; = 0.9 u,W 

with a supply voltage of 400 mV. Also the timing delay generated by each of the input 

mirrors was simulated as Di_noioad = 3.0 ns. This is the delay between a step input current 
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applied to A(in) and the measured output of the corresponding mirror el which crosses 

the 63 % of its final value. 

For the complete LDPC decoder however, 512 blocks of equality nodes and 1024 

blocks of check nodes would be needed. An estimate for the decoder's required area is 

shown in Fig 4.1.2. Perhaps, we could have used other floor plans which are more 

optimized in terms of area and spacing, however this block diagram was preferred for the 

sake of simplicity. In this Figure, each black box, represent a block of equality or check 

nodes which are repeated in rows and columns. Individual unidirectional equality and 

check nodes have the same dimension of 26 |J.m x 13 (j.m. Assuming 0.2 |0,m for the width 

of wires as well as for the spacing between them and noting that each single edge of Fig 

4.1.1 is in fact two wires comprised of probabilities of one and zero, the longest wire 

which is required to connect the farthest equality and check nodes together can be 

approximated as: 

Lmax = 2457 + 2080 +1248 + (2496 - 2080)/2 ~ 6400 film 

This corresponds to the worst case estimation for a wiring capacitance of about 

Cw = 500 fF if only Metal 1 is being used. Note that by using higher levels of metal, one 

can have lower wiring capacitance as a result of having the capacitances in parallel. It 

was figured out that the added wiring capacitance due to 1 mm extension with Metal 1 is 

79.5 fF while this would be 62.5 fF and 56.15 fF with Metal 2 and 3 layers respectively. 
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16*5*26um=2080um 

E 
00 

CM 

E1 

CO 

* 
co * 
CM 
CO 

512 equality node blocks 

1024 check node blocks 

96*26um=2496um 

Fig 4.1.2: Approximate block diagram for a large LDPC decoder 

4.1.1 The input resistance of a current-mirror circuit 

A simple current mirror is shown in Fig 4.1.3. The input resistance of such a circuit can 

be found as: 

Rin=(—Wr0) = - (4.1.1) 
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where gm is the transconductance of Ml and ro is the drain-source resistance which can 

be neglected compared t o — , 
o m 

lin 

To a low 
^^ Impedance 

node 

Riri 

M1 

! ' • 

M2 

Fig 4.1.3: Basic current-mirror circuit used at the inputs of an equality or check node 

with the modeled wiring capacitance Cw 

Ignoring the wiring capacitance, the total capacitance at the input node is: 

CT = Cin = Cgsi + Cm + Cgbl + Cgs2 +Cgd2+ Cgb2 (4.1.2) 

Recalling that in analog decoder circuits based on the sum-product algorithm, all 

transistors must be operating in the weak-inversion or sub-threshold region. Therefore the 

current and consequently the transconductance gm would be small. As a result the 

dominant pole or the -3dB point will be determined from the input node: 

1 _ 8m 
f- 3dB (4.1.3) 

InR.C. 27tC, 
in in in 

Therefore, the circuit will have a moderate intrinsic speed. However, by taking into 

account the existing wiring capacitance Cw, the bandwidth is limited significantly since: 
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J-idB 2nCT 27C(Cm+Cw) 

If the worst case capacitance of 500 fF is to be placed at the input node of the current-

mirrors shown in Fig 4.1.1, the timing delay will be found as Di_maxioad = 279 ns for the 

input mirror which reveals a considerable extra delay due to wiring. Note that in our 

discussion we are assuming particular dimensions for the transistors (i.e. W = 1.2 urn and 

L = 0.5 urn). 

Similar results appear from the small signal circuit of the basic mirror shown in Fig 4.1.4. 

Ku,=(gm\-sCgd2)vgs (4.1.5) 

v„ = - ^ — (4.1.6) 

And so the transfer function is: 

i£SL= 8mi-sCgd2 ^ 7 ) 

hn S ml +1/>"01 + S C T 

Based on (4.1.7), it turns out that the circuit has got one low-frequency pole and one 

high-frequency, right-half-plane zero. If we ignore the very small 1/ r0l comparing to the 

small gml we get the same result as in (4.1.4) for the -3dB bandwidth of the basic 

current-mirror circuit. 
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Fig 4.1.4: Small signal circuit of the basic current-mirror 

The effect of wiring capacitance on the -3dB bandwidth for a simple current-mirror 

circuit is shown in Fig 4.1.5. Based on the above definitions, —— shows the ratio of the 

wiring capacitance with respect to the total input capacitance without the wiring. In this 

Figure, the worst case estimated capacitance of Cw = 500 fFand the corresponding speed 

of 483.4 KHz is also indicated. It should be mentioned that the achieved bandwidth 

without any wiring capacitance has been found to be around 53 MHz! 
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Plot of -3dB Bandwidth vs. Cw/Cin in the basic current-mirror circuit 

Fig 4.1.5: Plot of -3dB Bandwidth vs. CwICin for the basic 

current-mirror circuit in the equality node 

4.1.2 Total delay in a block of equality nodes 

For the total delay in a block of equality nodes, Fig 4.1.1, several paths which connect the 

input and outputs together are considered. The longest path from A(in) to G(out) involves 

five equality nodes each generating delay whereas the shortest path from F(in) to G(out) 

consists of only one equality node. We further define the delay of the longest path with 

the basic current-mirrors as Dijongest and the delay of the shortest path as Di_shortesL 

Ignoring the effect of the wiring capacitance, it was found through simulations that 

Dijongest_noioad = 79.48 ns and Di_shorteSt_noioad = 14.35 ns. However, when the worst case 

estimated wiring capacitance is to be taken into account, these values will change to 

Dijongest_maxioad = 388 ns and Di_shorteSi_maxioact = 316 ns which once more indicates a large 

delay and so a reduction in the speed due to wiring. 
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4.1.3 Block of equality nodes with Boosted circuits 

As mentioned before, one way to speed up the analog decoder is by boosting the bias 

currents and transistor sizes of just the input mirror branches. In order to maintain the 

right decoding operation we need to do so for the output diode-connected transistors as 

well since as shown in Fig 4.1.1, the output diode connected transistors are in fact the 

input transistors for the subsequent blocks. In this case, the total power dissipation of the 

equality nodes block could be large though it is not doubled. Therefore the power/speed 

ratio of the block will be slightly improved. 

The input bias currents, A(in) up to G(in) and the corresponding diode connected 

transistors of the block of equality nodes are increased by a ratio of k = 6. Consequently 

the output bias currents, A(out) to G(out) and related output transistors (as the inputs of 

next blocks) should be boosted by the same ratio. The total power dissipation in this case 

is found to be P2 = 3.12 |J.W which is about 3 times the dissipated power for the normal 

case. However the timing delay of the input current-mirror circuit in the presence of the 

wiring capacitance is reduced to D2_maxioad = 46.85 ns. Also using the boosted circuits, 

the total delay of the blocks of equality nodes for the longest and the shortest paths are 

changed to D2_iongest_maxioad = 132.11 ns and D2_shoneSt_maxioad = 64.3 ns. 

As a figure of merit, the power/speed ratio or the power delay product for the shortest 

path is 203.7 fj. This is somewhat less than that of normal case which is 284.4 fj. 

Therefore the power/speed ratio is said to be improved slightly. 
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4.2 Block of equality nodes with modified input current-

mirrors 

In this Section, a current-mode technique is applied to the basic current-mirrors of a 

block of equality nodes in order to improve the speed. 

4.2.1 Modified current-mirror circuit 

Fig 4.2.1 shows a modified topology for the traditionally used current-mirror circuit at 

the input of the equality or check node. It is composed of a negative feedback loop using 

an operational transconductance amplifier (OTA). In this figure, Vref is the reference 

voltage of the OTA which is used to keep Ml in the saturation region. 

U 

Rir 
cw ; 

M1 

To a low 
\ . <>j^jlmpedance 

" DT/Ji I , n o d e 

M2 

R, out 

Fig 4.2.1: Modified current-mirror circuit with the OTA feedback 

Based on the small signal analysis of this circuit shown in Fig 4.2.2, the input resistance 

is found as: 
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R;„ = 
1 

l/rol+Gm8mlRo 

(4.2.1) 

where Gm is the transconductance of the OTA and Rou, is the output resistance of the 

amplifier used to convert the output current to voltage. 

Jout 

Cgd2 

w M / y 9m2Vgs T o 2 

1 

=*=c„ 

Fig 4.2.2: Small signal circuit of the modified current-mirror 

It is clear from (4.2.1), that the input resistance for the modified current-mirror circuit 

can be reduced by increasing the transconductance Gm, hence the -3dB bandwidth will 

be improved. Fig 4.2.3 shows the plots of -3dB bandwidth for different ratios of Gm I g ml 

as functions of the input wiring capacitance. Again in this picture, the corresponding 

bandwidths for the derived worst case capacitance of CM, = 500fFare pointed out. 

However, this may give rise to low phase margin problems for the modified current-

mirror since there will be two high impedance nodes in the loop in this case: one at the 

drain of Ml and the other at the gates of Ml and M2. As a result, the poles may be close 
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to one another, lowering the phase margin. Nevertheless by choosing the right values for 

Gm, Roul, and Cw, acceptable phase margin could be achievable. In our discussion, the 

phase margin is always greater than 50°. 

Plots of -3dB Bandwidth vs. Cw/Cin for the enhanced current-mirror circuit 

Cw/Cin 

Fig 4.2.3: Plots of -3dB Bandwidth vs. Cw I Cin for the modified 

current-mirror circuit in the equality node 

4.2.2 Design of the OTA circuit in the modified current-mirror 

The schematic of the OTA circuit has been shown in Fig 4.2.4. It is designed such that all 

the transistors are in weak-inversion. Sizes of transistors, values of Vref and hias2 must be 

chosen so that Ml, M3, and M4 are saturated (i.e. Vds = 200 mV) while operating in the 

sub-threshold region. Note that saturation of M2 is not required since the low-voltage 

sum-product topology has been used in the design of the individual equality nodes [57]. 

To control the transconductance of the OTA, hiasi is increased with respect to the input 
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current (/,„) of Ml which will be shown to be the same as increasing the ratio of Gm I g 

FC 
Cw -

~L, ,J~ 
M5 M6 

M3 

"1 
© 

M1 t — 

3 L L ± r 
^^j** To a Low 
t ^ ^ " ^ Impedance 

! | U node 

LI 

Fig 4.2.4: Modified topology for the current-mirror circuit 

showing the schematic of the OTA 

V =V +V 

It is worth mentioning that without M7, M4 would go into triode. Therefore by 

adjusting IbiaS2 one can set the gate-source voltage of M7 such that M4 is saturated: 

(4.2.2) 

Small signal analysis of the above OTA is explained in Fig 4.2.4. Since for transistors 

in weak-inversion gm = —̂— where n is the slope factor and UT is the thermal voltage, we 
nUT 

have: 
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v„ 
bias\ 

v„„=o 

ffm3,4*in _ _ * P3.4 

y,„ " 8miA ~ nUT " 2n£/r 
(4.2.3) 

Based on (4.2.3), it is observed that by increasing luasi in Fig 4.2.4, the 

transconductance of the OTA will be increased and so the parameter —— can be 
9mi 

interpreted as the ratio of currents of Ml and hiasi in the OTA. 

lout=gmVin 

Vin/2 

Fig 4.2.5: Small signal analysis of the OTA circuit 

4.2.3 Calculation of the Power/Speed ratio 

The ultimate goal of our study is to find a reasonable solution to the issue of speed in 

large decoders which yields an enhanced power/speed ratio. Obviously there are several 

approaches for this reason other than those discussed in this Chapter. We have claimed 

that our suggested current-mode technique can satisfy the above mentioned goal. In order 

to prove this, the input basic current-mirror circuits of the block of equality nodes shown 

in Fig 4.1.1 are replaced with the enhanced mirrors. 
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In designing the OTA circuits, in addition to the design requirements presented in 

section 4.2.2, we allowed the total power dissipation of the total block in this case 

denoted as P3 twice Pi that is P3 = 2 x Pi = 2 x 0.9 u,W = 1.8 u,W with the same supply 

voltage of 400 mV providing that most of the power is dissipated by the input enhanced 

mirrors rather than by the decoding part itself. Note that choosing P3 to be twice Pi is just 

an arbitrary choice. 

It was found that by adjusting Gm I gml = 3, the aforementioned conditions are met. 

On the plots of Fig 4.2.3 this point corresponds to a -3dB bandwidth of 2 MHz for an 

input modified current-mirror circuit which is about 4 times the bandwidth of the basic 

mirror in the presence of the worst wiring capacitance. This was also verified by applying 

a step current at the input of the modified mirror that gave rise to a timing delay of 

D3_maxload = 6 4 . 3 n s . 

Regarding the total delay of the block of equality nodes, it was obtained that 

D3jongest_maxioad = 164 ns and D'3 shortestjnaxioad = 80 ns for the longest and the shortest paths 

respectively. 

The results of the equality nodes block with the basic, boosted and modified mirrors 

have been summarized in Table 4.2.1. From this table, it can be seen that the active 

current mirrors improve the power delay product for the 7-input equality nodes block for 

both the shortest path and longest path through the node. The improvement is most 

significant for the shortest path through the node (-50%). However, with the boosted 

circuits, there is no considerable improvement. 
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Table 4.2.1: Summary of results for the equality nodes block with the basic, boosted and 

modified mirrors in a large (6,3) LDPC analog decoder 

Quantity 

Input mirror Delay (ns) 

Shortest Path Delay (ns) 

Longest Path Delay (ns) 

Total power dissipation 

P(input mirrors)/P(total) 

Power Delay Product, 

Shortest Path (fj) 

Power Delay Product, 

Longest Path (fj) 

Basic Block 

for Cw= 0 

3.0 

14.4 

79.5 

0.9 

-

-

-

Basic Block 

for O 5 0 0 fF 

279 

316 

388 

0.9 

30% 

284.4 

349.2 

Block with 

Boosted mirrors 

for CH,=500 fF 

46.85 

64.3 

132.11 

3.12 

53% 

203.73 

412.18 

Modified 

Block 

for C„,=500 fF 

64.3 

80.0 

164 

1.8 

68% 

144 

294.2 

4.3 Conclusion 

To reduce the effect of wiring capacitance on the speed of an analog decoder circuit, a 

current-mode technique was applied. This technique was employed in the current-mirror 

circuits of a block of equality nodes for a large LDPC code defined by a (512 x 1024) H-

matrix. Having estimated the worst case wiring capacitance for the code, a significant 

reduction in the speed of basic current-mirrors was observed. However, replacing the 

basic mirrors with the enhanced topology showed that the achieved speed in the block of 

equality nodes is more than twice the speed with the basic current-mirrors, while the total 

power dissipation is doubled for the modified case. Thus an improvement in the 
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power/speed ratio for the complete decoder is expected if the basic mirrors are replaced 

with the enhanced mirrors. 
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Chapter 5 

Non-Linear vs. Linearized LDPC decoder 

A decoder by its very nature is a non-linear circuit whose output is not a linear function 

of inputs [70]. Soft decision receivers dealing with the information probabilities reveal 

this nonlinearity through the non-linear blocks of equality and check nodes. It was 

already observed that these parity-check nodes or constraint nodes have to perform non­

linear functions such as multiplication and division in the sum-product algorithm. 

Theoretical dynamic analysis which leads to determining the convergence speed of the 

analog iterative decoders has been provided by some researchers such as Hemati and 

Banihashemi in [68]. In particular they showed iterative decoding as a fixed point 

problem and demonstrated a model for continuous-time iterative decoding by including 

first order RC circuit between the equality and check nodes. Finally they applied a 

numerical method to convert the obtained differential equations to iterative method for 

solving the fixed point problem. In their survey, the initial values for the edges in the 

decoder prior to applying the real received information corresponded to uniform a priori 

probabilities (the 0.5 probability for all edges). 

In this Chapter, we are going to define the equality and check nodes by their respective 

equations. Further we assume a uniform propagation delay (i.e. first order RC circuit) due 

to the wiring capacitances and the input resistances of these nodes between the equality 
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and check nodes. The corresponding Tanner graph to the //-matrix of Chapter 2 which 

defines a regular LDPC code has been applied for this purpose. 

Later in this Chapter, we will consider the nonlinear LDPC decoder as a nonlinear 

system in the state space. Thus following the linearization technique in the state space, 

we try to linearize the aforementioned decoder which might help in dynamic analysis of 

the system. The simulations have been done in MATLAB's Simulink environment. 

5.1 Non-Linear LDPC decoder 

Fig 5.1.1 depicts the Tanner graph for a regular LDPC code with the //-matrix presented 

in Chapter 2. A parallel first order RC circuit has been also taken into account as the 

uniform distribution delay between the equality and check nodes. Note that in our 

simulations, the RC circuit has been normalized (i.e. RC = lsec). 

Furthermore, we label the edges entering and leaving a check node by /j and y^ and 

those of an equality node by gt and xt respectively, where i varies from 1 to the number 

of edges (in this graph 21). It is also assumed that the processing delays for individual 

nodes are zero. By establishing the required equations for the nodes, one can model the 

LDPC decoder in the MATLAB Simulink environment. 
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R7 R6 R5 R4 R3 R2 R1 

Parallel RC Circuit 

Fig 5.1.1: Tanner graph for a regular LDPC code with the parallel RC delay circuit 

In the above graph, variable nodes are fed by the received information bits R7-R1, 

however the final estimated output coming out of the graph is not shown here. The G-

matrix for the corresponding LDPC code is as below: 

G = 
1 0 0 1 0 1 1 
0 1 0 1 1 1 0 

L0 0 1 0 1 1 1. 

The original information messages to get decoded are: 

M = [0 0 0], m = [0 0 1], m = [0 1 0], m = [0 1 1], 

W5=[100],W6=[101],WZ=[1 10],l*8 = [l 1 ! ]• 

Thus based on (2.2.1) their respected codewords are as follows: 

* i= [0 0 010 0 0 0], 32 = [0 0 110 1 1 1], a = [ 0 1 Oil 1 1 0], x4 = [0 1 HI 0 0 1], 

x j = [ 1 0 0 l l 0 1 1],*5 = [1 0111 1 0 0 ] , x z = [ l 1 0101 0 1 ] , x 8 = [ l 1 HOOl 0] 

It can be seen that the code rate in the above codewords is 3/7 meaning that only three of 

the information bits are useful and the rest four are redundant. 
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We are going to simulate the modeled decoder to see how the output bits are 

converged to a true codeword. For this purpose, xj_ and M are transmitted through the 

AWGN channel with BPSK modulation and the signal to noise ratio (SNR) has been set 

to 1 dB. The decoder has been initialized with the uniform probability mass (all 0.5 

probability) prior to decoding. Fig 5.1.1 and Fig 5.1.2 show how the decoder converges 

to codewords xi and ^respectively. 
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Probabilities of the output messages showing how the decoder converges to codeword x1 
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Fig 5.1.1: Output probabilities of 1 for the simulated LDPC decoder showing the 

convergence to the zero codeword x± 
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Probabilities of the output messages showing how the decoder converges to codeword x6 

Fig 5.1.2: Output probabilities of 1 for the simulated LDPC decoder showing the 

convergence to the zero codeword x6 

5.2 Linearized LDPC decoder 

Linearization is an effective method for approximating the output of a nonlinear function 

y - f(x) at any x = a based on the value and slope of the function at x = b, given that/fxj 

is continuous on [a,b] (or [b,a]) and that a is close to b. Briefly, linearization 

approximates the output of a function near x = a. If Sx represents small variations of x 

around x = a, then the nonlinear function y =f(x) can be written as below: 

y = /(*) =/(«0+g * Sx + -T-T * S2x + 
dX2 y = „ 

(5.2.1) 

where higher order terms can be ignored as they decay. 

In this section the LDPC decoder will be considered as a nonlinear control system in 

the state space. It is intended to linearize the LDPC decoder by applying linearization 
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technique. The result of this survey could be to predict the behavior of the decoder at 

small vicinity around the initialization point and to estimate the decoding speed by 

having the poles and zeroes of the linear system. 

5.2.1 State-space matrices 

In order to linearize the LDPC decoder, first of all we provide the equality and check 

equations in the likelihood ratio domain where f(p0,Pi) = #(Po>Pi) = ^(Po>Pi) = ~ 
Pi 

for every edge of the graph. Since there is a total of 21 parity check equations, we will 

end up with two large (21 x 1) matrices [*j]2i*iand [yj2i*i f° r which x(ga,gb,Rc) = 

1 4- f f 

dadb^c ar*d y(fa>fb) = % b respectively. In the recent definitions, a, b, and c are the 
fa+fb 

labels which represent three individual edges either for the equality nodes or the check 

nodes. 
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[*i]21*l — 

9x39x9^7 

949x6^6 

989x0^4 

929ibR(, 

97920^5 

9xx9x4^3 

9s92oRs 

939x0^4 

9is9n^2 

#308^4 

9b9x4^3 

9iz92\Ri 

9x9x9^7 

9e9ixR3 

9<i9l7^2 

0204^6 

99915^2 

912921^1 

9x9x3^7 

9597^5 

•9X29X8^X-

(5.2.2) 

1 + / 2 / 3 1 

[yJzm = (5.2.3) 

• / 1 9 + / 2 0 J 

Further,/0, g0 and R0 are assumed to be the initialization points around which one can 

linearize the above nonlinear functions. 

85 



[ydzi.i = \yi]\fj=f0 + 
dy_ 

an fi=fo 
l5fj]2ui (5.2.4) 

21*21 

[*i]21*l — l*i-llo/=Oo "*" 
dx 
dg , }'9j=9o 

* fe]2l*l + 

21*21 

dx 
dR, 

Rj=R0 

[6Rj]7tl (5.2.5) 
21*7 

We are interested in deriving a general matrix which describes all the relationships 

between the edges of the Tanner graph for small deviations from the initialization point. 

Hence by ignoring the first terms in (5.2.4) and (5.2.5) and expressing y± and xt as Syt 

and Sxt respectively, the linearized functions are reduced to: 

[SYihui = C * [Sfj]21tl (5-2.6) 

[SXi]2U1 = A * [8gj]2ltl + B * [8Rj]7tl (5.2.7) 

where A = dx 
d9j 

9j=9o 
,B = 

21*21 

dx 
dR, 

Rj=Ro 
and C = 

21*7 

dy 

df "/r/.J 21*21 

Taking into account the first order RC delay circuit between the equality and check 

nodes, the transfer functions from xi to fi and from yi to gi would be: 

\fi\ = £t (5-2.8) 

[yd 
\St] = l+RCs (5.2.9) 

Consequently by replacing the above transfer functions in (5.2.4) and (5.2.5), we arrive at 

the following equations: 

[ir] = £ ^ - [^]) -»£[*/«] =Tc(A* VSt] + B * Wi] ~ Wt\) (5-2.10) 

And, 

[ f ] = £(fo] - [*]) -£ [** ] = £(C * [*/d " [**]) (5.2.11) 
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If we normalize the above expressions with respect to— , the equations can be 
RC 

rearranged as below: 

Sf 
. 4 2 t l

 L L ' J 42*42 LOf l ,J 4 2* 1
 LUJ42*7 

where / is a (21 * 21) Identity matrix. 

r-/ i l l , r£ 5/ 
5#J ~ M c - /J _ i 4 t o t ' [o ] " Also for the sake of simplicity we further define 

Btot,SR = \J. 

->X = Atot * X + Btot * U -» (5/ - 4 t0 t)X = X0 + B tot[/ 

-+X = (SI- Atotr\X0 + BtotU) (5.2.13) 

and ^0 = 

equation. 

~ ° is the initial condition or the linearization point for the above state space 

5.2.2 The issue of linearization point 

Thus far we have linearized a nonlinear LDPC decoder and derived the state space 

equation, however the choice of linearization point would be still of a concern. Here we 

are going to study the issue associated with the linearization point. 

Let us assume that the uniform probability mass has been applied to the edges of the 

graph as the initialization point. This point would be also used to linearize the LDPC 

decoder, that is why we call it as the linearization point. The uniform probability mass as 

mentioned earlier requires all edges to have a probability of 0.5. This requirement would 

be translated to having a value of 1 in the likelihood domain. Therefore based on (5.2.6) 

and (5.2.7), A, B, and C can be defined as below: 
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A = 

0 0 0 
0 0 0 
0 0 0 
0 1 0 
0 0 0 
0 0 0 
0 0 0 
0 0 1 
0 0 0 
0 0 1 
0 0 0 
0 0 0 
1 0 0 
0 0 0 
0 0 0 
0 1 0 
0 0 0 
0 0 0 
0 0 0 
1 0 0 
0 0 0 

0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 

B 

0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 

= 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 

Ll 

0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
1 
0 
0 
0 
0 

0 
0 
1 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
1 
0 
0 
0 
0 

0 
0 
1 
0 
0 
0 
0 
1 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
1 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 

0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 

0 
1 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 

0 1 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
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0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
1 0 
0 0 
0 1 
1 0 

1-1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
o-l 21 

0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

*7 

0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 

0 
1 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

ind C 

0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 

= 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
1 

0 

1 0 0 
0 0 0 
0 0 0 
0 0 0 
0 1 0 
0 0 0 
0 1 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 1 
1 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 1 
0 0 0 
0 0 0 
0 0 0 21*21 

Note: The reader can easily derive these matrices by taking derivations from [5xi]2i*iand 

[5yi]2i*iwith respect to Qj, /}, and Rj at the linearization point g0 = f0 = R0 = 1. 
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Since C was found to be zero at the uniform probability mass linearization point, then 

the output messages from the check nodes will not have any sensitivity to the small input 

variations and therefore 8yt = 0. Consequently the linearized decoder will not work 

properly. This issue is raised from the fact that f0 has been set to 1 which causes C = 

dy 

dfj 
/ y = 1 

to be equal to zero. Therefore in order to avoid this problem we may 
21*21 

change the linearization point. This can be done only by setting f0 and R0 to any value 

except 1 while g0 could be still set to 1. It is worth mentioning that fQ or the initial down 

going messages from the equality nodes to the check nodes would have the same value as 

R0 since all the upcoming messages have been already set to 1. 

By setting Rt = ft = 2 as a new linearization point the existing problem would be 

sorted out, however as we will see a new problem in the decoding procedure may occur. 

For this new setting the probability of being 1 for down going edges of the Tanner graph 

is pi = 0.3 while that of upcoming edges is still pj = 0.5. Now if one the seven input 

bits in the linearized decoder slightly increases around the linearization point, the affected 

down going edge is expected to have same slope as in the corresponding non-linear 

LDPC decoder at the beginning. This fact has been shown in Fig 5.2.1. 
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Downgoing messages for the Linearized and Non-linear decoders at the beginning due to small variations 
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Fig 5.2.1: Same slopes for the down going messages in linearized and non-linear 

decoders due to small variations of the input bits 

However the upcoming messages have different slopes at the beginning based on 

5.2.2. 

Upcoming messages for the Linearized and Non-linear decoders at the beginning due to small variations 

Fig 5.2.2: Different slopes for the upcoming messages in linearized and non-linear 

decoders due to small variations of the input bits 
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It should be noted that the functionality of linearized decoder depends on the small 

variations of input /?; whereas in a real decoder the edges may divert from their initial 

values even if the inputs are not changed at all. In our example the down going edges are 

initialized to ft = 2 which means that p0 = 2/3 and pt = 1/3 in the probability domain. 

In this condition, if the received samples are equal to the initial values, then the decoder 

will converge to the zero codeword. This is in contrast with the linearized decoder where 

a small variation to the inputs must occur in order to start the decoding process. 

Finally we conclude the application of linearization technique in decoders. Every 

nonlinear system can be linearized around a solution provided that the whole system is 

stable at that solution point, otherwise the output of the system may change even if there 

is no perturbation at the input. For the decoder case, in order to fulfill the above 

requirement we need all the edges to have a uniform probability mass (i.e. the 0.5 

probability) as the linearization point since at this point the decoder would remain stable 

unless one of the input bits changes around that point. It was shown that some of the 

parameters in the linearized decoder around the uniform probability mass become zero 

which is undesirable and so the uniform probability mass cannot be the right solution 

point for applying the linearization technique. Note that other valid codewords could also 

be taken as the stable solutions and therefore the linearization may work around those 

points, however we will postpone this to our future work. 
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Chapter 6 

Testing the chip 

Testing a chip could be a time consuming process. It may include thinking of a 

reasonable test plan, designing a test board, writing the appropriate program for the tester, 

etc. Meanwhile there is always the inevitable concern of failure in the operation which 

might be difficult to track down. In Chapter 3, we talked about the details of our chip. 

Unfortunately the testing of the chip failed! 

6.1 The internal view of the Chip 

As explained earlier, in our chip we have a total of 64 blocks including the equality and 

check nodes as well as the input and output switches and digital circuits. Moreover, it 

contains two other designs, unrelated to this work. Fig 5.1.1 shows how the layout of our 

design which is located in the left half has been separated from other parts of the chip. 

A large rectangular shape can be distinguished on the layout view of Fig 6.1.1 which is 

the body of our design and is composed of our 64 blocks. At the top and the bottom of 

this rectangle, the input and output switches as well as the voltage to current converters 

are located. The digital part of the design has been also laid out at the left side of the 64 

blocks. A pad ring can be seen all around the left half of the layout which is used for the 
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analog and digital inputs and outputs. Dimensions for every part of the design have been 

summarized in Table 6.1.1. 

Fig 6.1.1: The layout of the chip with our design at the left 

Table 6.1.1: Area distribution of the chip 

The whole The 64 The digital One of the The input The Output 

chip blocks circuit V2I circuits switches switches 
Area (mm ) 0.086 0.0014 0.0002 0.0045 0.0026 
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The complete layout has been inserted inside a thin quad flat pack (TQFP) package 

with 52 pins. Fig 6.1.2 depicts the bonding diagram between the individual pads of the 

ring and the package pins. The labeling on the outer edge of the package indicates that 

only 22 out of 52 pins of the TQFP-52 package are going to be used for our test. 

*pSE3 
Esd_sub Gnd Vdd Vcm Ibias Vdifl Vdif2 Vdif3 

HilliMi•»!!!• • l i i l w n l » I M M ^ I ^ ^ I W I V N * I M » M . » I * . « » I ^ » M * * » * < » * » I I . « ~ « « « W I I P nmWMiiH i 

i • • • • ! • iii i n i >i m w i ' n j i i i n * MV^nrt^n^ffV 

"M*M|>mi#wMMM 

IzO Iz1 

t* 

Fig 6.1.2: Bonding diagram of the chip in the TQFP-52 package 

6.1.1 Arrangement of the pins 

The input and output pins in the bonding diagram of Fig 6.1.2 are organized as follows: 
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1. Input current sources: Iu, Ibias, ho, hi 

Iu and Ibias are both the global unit currents used in the sum-product circuits. The former 

is the current source which has been employed in the equality and check nodes (i.e. the 

64 blocks) of Chapter 3 while the latter is the unit current applied to the voltage to current 

converter of Fig 3.6.2. 

ho, hi had been already supposed to provide the input probabilities of 0 and 1 for the first 

block which is an equality node. However, as mentioned earlier the speed test was 

ignored. 

2. Input V o l t a g e sources : {Vdd, Vmybias, Vcm, Vrefn, Vrefp), (Vdifl, VdiJ2, Vdifl), (elk, data) 

The first group of the voltage sources includes Vdd as the largest voltage source in the 

design which is used for both analog and digital circuits. Vmybias on the other hand is the 

bias voltage for equality and check nodes. Vcm is one of the input voltages in the 

differential pair used in the voltage to current converters of Fig 3.6.2. Vrefn and Vrefp are 

the reference voltages in the canonical sum-product circuits 

The second group contains the three differential voltages Vdifl, Vdif2, Vdifi which are used 

in the three V2I converters. 

There are also two digital inputs for the digital circuit which are elk and data. 

3 . O u t p u t Cur ren t s : IdelayO, Idetayl, IzO, hi 

IdelayO and Idelayi are ignored as they are the output nodes used in the speed test, ho and hi 

are the output currents indicating the probabilities of 0 and 1 for the selected block. 

The Esd_sub pins which are used to protect the circuit against the electrostatic discharge 

are normally grounded. 
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6.1.2 The Test plan 

Since we are going to do a DC measurement test, our test plan will be as below. The 

Teradyne Tester in the Mixed Signal Lab located at the McGill University has been used 

for this purpose. Based on Table 3.6.1 which matches the input data to the selected node, 

there will be 64 choices. Initially, the first data would be used in order to calibrate the 

output current to the applied voltage. 

a) Before measurement, all ground as well as esd_sub pins must be connected to the 

common ground. Vdd and Vmybias pins are set to 1.2 V and 600 mV respectively which 

must give the expected currents of -143 uA and -3.1 uA. The common mode voltage, 

Vcm pin will be connected to 395mV voltage source. Initially Vdifl, Vdif2, and Vdif3 pins 

are connected to 395 mV. The voltage at the Iu = 100 nA pin is expected, based on the 

simulation to be near 430 mV. It was turned out from the simulation that setting Ibias to 

86 nA with the expected voltage of 220 mV will provide a full range of output current 

changing from 0 to 100 nA. It is also worth mentioning that the direction of current for lu 

is from inside the chip to the outside world while this is the opposite for Ibias. 

b) The Clk pin is fed by a pulse generator as a clock alternating between 0 and 1.2 V. The 

period of the clock is set to 1 fi sec. Then the input data consisting of 6 consecutive bits 

will be switched in on the rising edges of the clock to select one of the 64 nodes based on 

the Table 6.1.1. 

c) Inputting the all zero data within the 6 clock pulses let us calibrating the input voltages 

Vdifl, Vdifl or Vdif3 with their corresponding currents. The input currents are anticipated 

to change as shown in Fig 6.1.3 if Vdifl varies from 0.2 V to 0.6 V. 

96 



x iQ
7 lin Vs. Vdif 1 showing the probabilities of zero and one 

0.9 

0.8 

0.7 

_ 0 . 6 

< 0.5 

~ 0.4 

0.3 

0.2 

0.1 

°0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 
Vdif 1 (volts) 

Fig 6.1.3: Variations of the input currents with respect to Vdifl 

d) After the calibration part, one of the remaining 63 nodes in the block will be selected 

based on Table 3.6.1. We set Vrefti = 120 mV for all nodes. However Vrefp must be set 

according to the selected node that is for the equality (2-inputs or 3-inputs) nodes, Vrefp 

= 406 mV and for the check nodes Vrefp = 432 mV. For each of the selected nodes Vdifl, 

is changed according to the corresponding current which was derived from the 

calibration. We already mentioned that we place two 10 kQ resistors at the output nodes, 

IzO and hi. Using a multimeter with high input impedance, we will measure the voltages 

across the two output resistors. By running this procedure for all 63 nodes and saving the 

results, our test will be terminated. 

6.2 Measurement process 

Based on what presented above as a test plan, we provide all the required input voltages 

and currents for the chip and write several testing programs in Visual Basic. For the four 
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input current sources of Iu, Ibias, ho, and hi which are in the range of nano-meters, 

Keithley 2400 Source Meters are employed. Note that however ho and hi were supposed 

to be used in the speed test which was ignored later on, these two pins have been 

internally connected to two individual diode connected NMOS transistors with W = 1.2 

urn and L - 1 urn and therefore could be ideal for running simple measurements which 

prove that the chip is alive. All of the input voltages have been connected within two 

connectors of type SAMTEC-150-01-L-D-VS to the motherboard of the Teradyne tester. 

The first connector takes care of the DC inputs Vdd, Vmybias, Vcm, Vrefti, Vrefp, Vdifi, Vdifi, 

and Vdi/3 while the other one is used to provide digital signals elk, data. 

Fig 6.2.1 shows the testing environment in the Mixed Signal Lab at McGill University 

with the test board mounted on the Teradyne tester. The Fluke voltmeter used to measure 

the voltages across the output 10 kQ resistors has got an input impedance of lM-ohm 

which seems enough for our purpose. The programs are run through the computer shown 

in the left of the picture. On the test board of Fig 6.2.2, a black clamshell socket for the 

chip can be seen. The two connectors located beneath the test board are mounted on the 

tester. Four BNC connectors used for the four input currents and a sample connection 

within the coaxial cable are also shown in the picture. 
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Fig 6.2.1: The Mixed Signal Lab at McGill University 

Fig 6.2.2: The test board mounted on the Teradyne tester 
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6.2.1 Simple measurements 

In one of the programs, we simply set the required input voltages through the tester and 

expect to measure them on the test board using the voltmeter. It was figured out that the 

ground pins on the test board for some of the chips are showing relatively high voltages 

(i.e. around 8 mV or even more!) whereas for only three of them the ground pin has got 

1.2 mV which is tolerable. This phenomenon made us believe that there might to be a 

problem with the chips. 

Further examining the chips, we noticed that ho and Vrefr are internally short-circuited. 

This unexpected situation made us more curious about an internal failure inside the chip. 

Yet, we performed another measurement to check the healthiness of the chips. In this 

measurement, we only applied Vdd, Vrefr, ho and hi to obtain the V-I characteristics of 

the two diode-connected transistors for whose source are connected to Vrefr. Applying 

Vdd is vital for the pad ring of the chip. By increasing the input currents of ho and hi, we 

expect the gate-source voltage of the two diode-connected transistors to vary close to the 

simulation results of Fig 3.5.3. It is worth mentioning that since currents are low, hence 

the input impedance of the diode-connected transistors could be large and so comparable 

to the input impedance of the fluke voltmeter. Therefore voltage measurement in this case 

can be done directly through the Keithley devices. 

It turned out that since ho and Vrefr are mistakenly short-circuited inside the chips, so 

the gate-source voltage of the related diode-connected transistor drawing ho does not 

change at all. For the other diode-connected transistor drawing hi from the current-

source, we observed an unstable change in the gate-source voltage while increasing ho 
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from 10 nA to 100 nA which was far from our expectations. Increasing the input current 

to higher values in the range of uA didn't really help and the problem still existed. 

Since the above simple measurements could not fulfill our expectations, therefore we 

concluded that there might be something wrong with the chip. Later, running the 

calibration test and measuring constant values (near the zero voltage) across the output 

resistors showed that the chip is not functioning properly which might be due to a 

problem in the layout or in the packaging process and hence the test cannot be continued. 
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Chapter 7 

Conclusion and Future Works 

The goal of this thesis was to study the analog decoding circuits. For this reason we 

focused on a specific algorithm used in decoding (i.e. the sum-product algorithm) and 

studied the behavior of the sum-product circuits namely the equality and check nodes. In 

our survey, we observed the effect of mismatch on the equality node's outputs as well as 

its behavior in the extremes. 

We found out that in the literature large codes are still preferred to be designed by 

digital circuits rather than with analog circuits. This was partly explained here using the 

large unwanted capacitance due to the wirings of the nodes in large codes. To solve the 

problem we applied a current-mode approach to lower the input impedance of the input 

transistors in each node. For this reason the basic diode-connected transistors at the input 

of each node which has significant input impedance due to the wiring, was replaced by an 

active current-mode circuit. By designing the OTA as the active part of the new circuit, 

we showed through simulation that the achieved speed in this case is more than twice 

with the basic current-mirrors while the power is only doubled. Thus an improvement in 

the power/speed ratio of the complete analog decoder is expected. 
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Later, in order to study the dynamic behavior of decoders we modeled a simple LDPC 

code in the MATLAB Simulink. We tried to linearize the non-linear LDPC decoder 

around its initial state as a known solution point. At this point, the effect of initialization 

point was studied and it was deduced that there is no initialization point at which the 

linearized decoder can function properly. 

The implementation of our designed chip comprising of equality nodes and check 

nodes with different sizes and configuration was an unfortunate in this work. After a time 

consuming attempt for testing the chip, finally it was figured out that the chip has not 

been packaged correctly or there might have been a problem in the layout. 

Future works in this area may include both practical and theoretical research. As a 

practical point of view, firstly one may need to open the chips for debugging purposes. 

Further small tests which can be performed in order to debug the internal problems of the 

chip would be to check if the digital part functions properly. This can be done by simply 

measuring the voltages of the address bits which corresponds to the selected node. 

Moreover, as a future plan of chip design, one can draw the layout of the blocks of 

equality and check nodes studied in Chapter 4 but this time for the correct H-Matrix of 

1024 bits length LDPC code in order to see the effect of wiring capacitance on the delay 

between the two connected blocks and observe how the modified blocks can practically 

solve this issue. For this reason, the new chip could be comprised of two designs. In the 

first design, a basic block of equality node is wired up to a basic block of check node to 

get the worst case length. In the second design, the diode-connected transistors at the 

input of these blocks will be replaced by the modified circuits including our designed 

OTA. 
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As a theoretical aspect of the future work, following questions should be answered 

regarding the implementation of a large analog decoder: 

• How large an analog decoder should be to actually outperform the large 

digitally implemented decoders in terms of area and power/speed ratio as well 

as the uncoded bit length? 

• How does the total speed of a decoder relate to its code length? 

• What are the limitations of implementing large analog decoders and how can 

they be mitigated? 

• Can we linearize the LDPC decoder around valid codewords as stable 

solutions? 

To answer the above questions, first we need to compare the digital and analog designs 

of same code. By comparing the BER for a specific SNR as well as the area and 

power/speed ratio for the two designs we can predict how these values would change for 

large codes. We may want to simulate both digital and analog designs of a moderate code 

and see how the result would change. 

Thus far we realized that wiring the modules of a large analog decoder could have a 

significant impact on the decoder speed. There might be other issues related to the 

complexity of the wirings in large analog decoders that can be studied in the future. 

Furthermore, our suggested modified current-mirror circuit that was shown to remedy 

this issue to some extent, may have practical limitations which needs to be carefully 

analyzed. 
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In Chapter 6 of this thesis, we successfully modeled a small LDPC code in the 

MATLAB Simulink environment. In the future, we plan to model a larger LDPC code for 

which the performance results is available. We need to find the simplest way to modify 

the existing model for a large code. Consequently, the comparison results would be more 

helpful in studying the dynamics of decoders. 

Moreover, we are going to linearize the LDPC decoder of Chapter 6 around other valid 

codewords as stable solution points and simulate the linearized decoder versus the non­

linear decoder to see if they have same slopes for both up-coming and down-going edges. 
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