
Resource Allocation and Optimal Release Time in
Software Systems

Arash Zaryabi Langaroudi

A Thesis

in

The Concordia Institute

for

Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science (Quality Systems Engineering) at

Concordia University

Montreal, Quebec, Canada

April 2009

© Arash Zaryabi Langaroudi, 2009

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-63324-3
Our file Notre reference
ISBN: 978-0-494-63324-3

NOTICE:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Nnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

14-1

Canada

Abstract

Resource Allocation and Optimal Release Time in Software Systems

Arash Zaryabi Langaroudi

Software quality is directly correlated with the number of defects in software systems. As the

complexity of software increases, manual inspection of software becomes prohibitively expensive.

Thus, defect prediction is of paramount importance to project managers in allocating the limited

resources effectively as well as providing many advantages such as the accurate estimation of

project costs and schedules. This thesis addresses the issues of statistical fault prediction modeling,

software resource allocation, and optimal software release and maintenance policy.

A software defect prediction model using operating characteristic curves is presented. The

main idea behind this predictor is to use geometric insight in helping construct an efficient predic­

tion method to reliably predict the cumulative number of defects during the software development

process. Motivated by the widely used concept of queue models in communication systems and

information processing systems, a resource allocation model which answers managerial questions

related to project status and scheduling is then introduced. Using the proposed allocation model,

managers will be more certain about making resource allocation decisions as well as measuring the

system reliability and the quality of service provided to customers in terms of the expected response

time. Finally, a novel stochastic model is proposed to describe the cost behavior of the operation,

and estimate the optimal time by minimizing a cost function via artificial neural networks. Further,

a detailed analysis of software release time and maintenance decision is also presented.

The performance of the proposed approaches is validated on real data from actual SAP projects,

and the experimental results demonstrate a compelling motivation for improved software quality.

lii

Acknowledgements

In the first place I would like to record my gratitude to Dr. A. Ben Hamza for his supervision,

advice, and guidance from the very early stage of this research.

I gratefully acknowledge Mr. Torsten Bergander for his advice, and crucial contribution, which

made him a backbone of this research. I also would like to thank SAP Inc. for sponsoring the

High-Profile Research Alliance Project with Concordia University, and for the financial support

during my one-year internship at SAP Labs Canada. I was very happy and proud to be part of Mr.

Bergander team and be given the chance to work on a challenging real-world industrial research

project. Next, I would like to thank the SAP Research Lab manager Ms. Nolwen Mahe for her

help throughout my internship and for supporting my work in many aspects.

Thanks to the Lab role model for hard workers Farshad Ghaderpanah, I am proud to record

that I had the opportunity to work with him. Also, it is a pleasure to express my gratitude whole­

heartedly to my cousin, Mohammad Hazemi,and his family for their kind hospitality and support.

My parents deserve special mention for their inseparable support. My Father, Mohammadrasoul,

in the first place is the person who put the fundament my learning character, showing me the joy of

intellectual pursuit ever since I was a child. My Mother, Solmaz, is the one who sincerely raised

me with her caring and gently love. Mina, thanks for being supportive and caring sister.

Words fail me to express my appreciation to Vian whose dedication, love and persistent confi­

dence in me, has taken the load off my shoulder. I owe her for being unselfishly let her intelligence,

passions, and ambitions collide with mine.

Finally, I would like to thank everybody who was important to the successful realization of

thesis, as well as expressing my apology that I could not mention personally one by one.

IV

Table of Contents

List of Figures viii

1 Introduction 1
1.1 Framework and Motivation 3

1.1.1 What are software defects? 4
1.1.2 Software reliability growth models 6
1.1.3 Operating characteristic curves 11
1.1.4 Bayesian statistics 13
1.1.5 Neural networks in software reliability growth modeling 15
1.1.6 Software resource allocation 16
1.1.7 Optimal software release time 16

1.2 Thesis Overview and Contributions 17

2 Predictive Operating Characteristic Curves 19
2.1 Introduction 19
2.2 Problem Formulation 21
2.3 Prediction using Bayesian Statistics 23

2.3.1 Predictive density 24
2.3.2 Bayesian prediction 25
2.3.3 Bayesian prediction using MCMC 26

2.4 Proposed Method 27
2.4.1 POC curve 27
2.4.2 Laplace trend analysis 29
2.4.3 Improved POC curve 31

2.5 Experimental Results 32
2.5.1 Qualitative evaluation of the proposed method 33

v

2.5.2 Quantitative evaluation of the proposed method 35
2.6 Conclusions 39

3 Resource Allocation using Queuing Theory 45
3.1 Introduction 45
3.2 Problem Formulation 47

3.2.1 Queueing models 47
3.3 Proposed Approach 50

3.3.1 Priorities of defect reports 50
3.3.2 Defect report rate estimation 52
3.3.3 Defect fixing rate estimation 53
3.3.4 Analyzing the utilization factor 54
3.3.5 Bottleneck of personnel resource allocation 54
3.3.6 Evaluating the quality of service 55
3.3.7 Improving the quality of service 55

3.4 Experimental Results 55
3.4.1 Analysis 56

3.5 Conclusions 59

4 Optimal Release and Maintenance Policy 61
4.1 Introduction 61
4.2 Problem Formulation . . 63

4.2.1 Assumptions 63
4.2.2 Defect detection and correction model 64
4.2.3 Defect correction models 69
4.2.4 Software cost 72

4.3 Proposed Method 72
4.3.1 Total expected software cost 72
4.3.2 Optimal release and maintenance times 73

4.4 Experimental Results 74
4.4.1 Software dataset 74
4.4.2 Parameter estimation 74
4.4.3 Model selection 75
4.4.4 Optimal release and maintenance 77

4.5 Conclusions 79

5 Conclusions and Future Work 81
5.1 Contributions of the Thesis 82

5.1.1 Predictive operating characteristic curves for software defects 82
5.1.2 Software development resource allocation using queuing theory 83

VI

5.1.3 Software optimal testing and maintenance policy 83
5.2 Future Research Directions 84

5.2.1 Optimal release time using game theory 84
5.2.2 Machine learning approaches 85

List of References 87

vn

List of Figures

1.1 Illustration of failure intensity functions. . 12

2.1 Illustration of cumulative number of defects using OC curves 29
2.2 Illustration of the p parameter in the POC curve 29
2.3 Laplace Factor vs. Defect Time 31
2.4 Cumulative Number of Defects vs. Defect Time (DS I) 35
2.5 Cumulative Number of Defects vs. Defect Time (DS II) 36
2.6 Laplace Factor vs. Defect Time (DS I). . . . 37
2.7 Laplace Factor vs. Defect Time (DS II) 38
2.8 Comparison of the prediction results for known 46 months history DS 1 39
2.9 Comparison of the prediction results for known 55 months history DS 1 40
2.10 Comparison of the prediction results for known 20 months history DS II 41
2.11 Comparison of the prediction results for known 40 months history DS II 41
2.12 Skill score results for DS 1 42
2.13 Skill score results for DS II 42
2.14 Nash-Sutcliffe model efficiency coefficient results for DS 1 43
2.15 Nash-Sutcliffe model efficiency coefficient results for DS II. 43
2.16 Relative error results for DS I 44
2.17 Relative error results for DS II 44

3.1 MjMj 1 Resource allocation model 49
3.2 M/M/c Resource allocation model. 50
3.3 Number of defects per week 56
3.4 Number of fixes per week 57
3.5 Release schedule and reduced resources 58
3.6 Mean queue and mean system lengths versus number of developers working on the

system 59

vni

3.7 Mean response and mean waiting times versus number of developers working on
the system 60

4.1 Illustration of a neuron 66
4.2 Feed-forward network 66
4.3 Feed-forward neural network with a single neuron at each layer 68
4.4 Number of defects per month in the period of 60 month 75
4.5 Number of fixes per month 76
4.6 Cumulative Number of Defects vs. Defect Time 78
4.7 Skill Score 79
4.8 Cumulative Number of Defects vs. Defect Time 80
4.9 Behavior of Total Expected Cost and Optimal Times 80

ix

CHAPTER 1 I

Introduction

Testing a software product during its development cycle yields a wealth of information that can be

used to support the decision processes involved to finally bring the product to the customer [1-3].

In more detail, the testing process generates messages that identify potential software defects [4-6].

These messages are archived, and software companies have a wealth of historical records about

them.

Software quality is directly correlated with the number of defects in software systems. As the

size and complexity of software increases, manual inspection of software becomes prohibitively

expensive. Thus, defect prediction is of paramount importance to project managers in allocating the

limited resources effectively, and it also provides many advantages such as the accurate estimation

of project costs and schedules as well as improving product and process qualities. Selecting an

appropriate defect predictor is a key practical issue [7] because many modeling approaches have

been proposed in the literature including reliability growth models [8-11], Bayesian models [5],

and artificial neural networks. Most of these models are built using historical defect data and are

expected to generalize the statistical patterns for unseen projects. Thus, collecting defect data from

past projects is the key challenge for constructing such predictors.

1

Chapter 1. Introduction

Software systems are mostly developed by different teams under different environments. One

of the biggest problems in software development process is to apply optimal strategies on the

process to have reliable and cost effective software. There is a wide spread disagreement among

software engineers about the appropriate effort to be devoted to software testing before release.

Such conflict is attributed to resource constraints and time-to-market considerations. It is well-

known that more pre-release development and testing on systems can reduce future development

costs and result in higher software quality. On the other hand, the pressure to deliver an operational

product quickly can frequently affect the resource allocation among development phases or within

one of the phases. Unfortunately, nowadays all these decisions are made intuitionally. However,

human's brain is not able to take into account all the effecting parameters at the same time. Besides,

human judgements are biased. Hence, there is a high demand for a strategic, mathematically

proven approach for these decisions.

In order to have a reliable and cost effective software knowledge about the number of expected

failures in a software at any stage is a very valuable asset. It provides essential information for

decision making in many software development activities, such as cost analysis, resource alloca­

tion, and release and maintenance time decision. It is also useful to obtain a software reliability

measure. In addition, having the optimal decisions will result in software quality increase.

The major part of this thesis is devoted to methods for optimal policies in software development

processes. The first problem addressed in this thesis is software defect prediction using operating

characteristic curves and Laplace trend statistic. The main idea behind our proposed technique is to

use geometric insight in helping construct an efficient and fast prediction method to accurately pre­

dict the cumulative number of defects at any given stage during the software development process.

On the other hand, using queuing theory and predictive models we introduce a resource allocation

2

model which answers managerial questions related to project status and scheduling. Using the

proposed model, managers will be more certain in making resource allocation decisions from one

project to the other. This model can also be used to measure the system reliability and quality of

service provided to customers in terms of expected response time. Then, we introduce a novel

stochastic model for optimal software testing and maintenance policy. We develop a discrete-time

stochastic model in discrete operation condition, where the software testing environment and the

operational environment are characterized by a environmental factor. In addition, we present a

systematic study of fault detection and correction processes. In our model, we consider the fault

correction time to estimate the optimal software release and maintenance time which takes into

account the environmental factor and imperfect fault removal. More precisely, the total expected

cost is formulated via the discrete type of software reliability models based on the difference be­

tween operational environments, imperfect fault removal, and fault correction process to remove a

fault. To the best of our knowledge, there is no available method in the literature to find the optimal

release and maintenance time of a software product by taking into account these assumptions.

Real data from actual SAP projects is used to illustrate the effectiveness and the much im­

proved performance of the proposed methods in comparison with existing approaches. Although

additional research efforts might provide a more detailed analysis of the predicted defects, the

results presented in this thesis provide a compelling motivation for improved software quality.

1.1 Framework and Motivation

Software Quality Assurance (SQA) is defined as a planned and systematic approach to the eval­

uation of the quality of and adherence to software product standards, processes, and procedures.

3

SQA includes the process of assuring that standards and procedures are established and are fol­

lowed throughout the software acquisition life cycle. Compliance with agreed-upon standards and

procedures is evaluated through process monitoring, product evaluation, and audits. Software de­

velopment and control processes should include quality assurance approval points, where an SQA

evaluation of the product may be done in relation to the applicable standards.

One of the many challenges faced when attempting to build a business case for software process

improvement is the relative lack of credible measurement data. If a company does not have the data

to build the business case, then it does not have the improvement project to get the data. It is the

classical chicken-and-egg dilemma. The motivation behind this thesis is to implement statistical

models for predicting software defects using available defect data and use this data to find the

optimal strategies in software production. The practitioners collect software defect data during

software development processes but the decision support power of the collected data is wasted in

most of the organizations. These defect data combined with the data of other features become

a well-suited repository for using Bayesian statistics and machine learning techniques to predict

future defects. Furthermore, these prediction models can be used to systematically define the best

possible strategies in software production.

1.1.1 What are software defects?

A software engineer's job is to deliver quality products for their planned costs, and on their com­

mitted schedules. Software products must also meet the user's functional needs and reliably and

consistently do the user's job. While the software functions are most important to the program's

users, these functions are not usable unless the software runs. To get the software to run reliably,

however, engineers must remove almost all its defects. Thus, while there are many aspects to

4

software quality, the first quality concern must necessarily be with its defects.

The reason defects are so important is main reason of customer dissatisfaction. Defects are

inevitable because people make a lot of mistakes. In fact, even experienced programmers typically

make a mistake for every seven to ten lines of code they develop. While they generally find and

correct most of these defects when they compile and test their programs, they often still have a lot

of defects in the finished product.

Some people mistakenly refer to software defects (faults) as bugs. When programs are widely

used and are applied in ways that their designers did not anticipate, seemingly trivial mistakes

can have unforeseeable consequences. As widely used software systems are enhanced to meet

new needs, latent problems can be exposed and a trivial-seeming defect can truly become dan­

gerous. While the vast majority of trivial defects have trivial consequences, a small percentage

of seemingly silly mistakes can cause serious problems. Since there is no way to know which of

these simple mistakes will have serious consequences, we must treat them all as potentially serious

defects, not as trivial-seeming "bugs".

The term defect or fault refers to something that is wrong with a program. It could be a

misspelling, a punctuation mistake, or an incorrect program statement. Defects can be in programs,

in designs, or even in the requirements, specifications, or other documentation. Defects can be

redundant or extra statements, incorrect statements, or omitted program sections. A defect, in fact,

is anything that detracts from the program's ability to completely and effectively meet the user's

needs. A defect is thus an objective thing. It is something you can identify, describe, and count.

Failure, is when a defect becomes active or in other words we face that defect.

Simple coding mistakes can produce very destructive or hard-to-find defects. Conversely, many

sophisticated design defects are often easy to find. The sophistication of the design mistake and the

5

impact of the resulting defect are thus largely independent. Even trivial implementation errors can

cause serious system problems. This is particularly important since the source of most software

defects is simple programmer oversights and mistakes. While design issues are always important,

initially developed programs typically have few design defects compared to the number of simple

oversights, typos, and goofs. To improve program quality, it is thus essential that engineers learn

to manage all the defects they inject in their programs.

1.1.2 Software reliability growth models

Achieving highly reliable software from the customers perspective is a demanding job for all soft­

ware engineers and reliability engineers. [12] summarizes the following four technical areas which

are applicable to achieving reliable software systems, and they can also be regarded as four fault

lifecycle techniques:

1. Fault prevention: to avoid, by construction, fault occurrences.

2. Fault removal: to detect, by verification and validation, the existence of faults and eliminate

them.

3. Fault tolerance: to provide, by redundancy, service complying with the specification in spite

of faults having occurred or occurring.

4. Fault/failure forecasting: to estimate, by evaluation, the presence of faults and the occur­

rences and consequences of failures. This has been the main focus of software reliability

modeling.

Fault prevention is the initial defensive mechanism against unreliability. A fault which is never

created costs nothing to fix. Fault prevention is therefore the inherent objective of every software

6

engineering methodology. Fault prevention mechanisms cannot guarantee avoidance of all soft­

ware faults. When faults are injected into the software, fault removal is the next protective means.

Two practical approaches for fault removal are software inspection and software testing, both of

which have become standard industry practices in quality assurance.

When inherent faults remain undetected through the inspection and testing processes, they will

stay with the software when it is released into the field. Fault tolerance is the last defending line

in preventing faults from manifesting themselves as system failures. Fault tolerance is the survival

attribute of software systems in terms of their ability to deliver continuous service to the customers.

Software fault tolerance techniques enable software systems to (1) prevent dormant software faults

from becoming active, such as defensive programming to check for input and output conditions

and forbid illegal operations; (2) contain the manifested software errors within a confined boundary

without further propagation, such as exception handling routines to treat unsuccessful operations;

(3) recover software operations from erroneous conditions, such as checkpointing and rollback

mechanisms; and (4) tolerate system-level faults methodically, such as employing design diver­

sity in the software development. Finally if software failures are destined to occur, it is critical to

estimate and predict them. Fault/failure forecasting involves formulation of the fault/failure rela­

tionship, an understanding of the operational environment, the establishment of software reliability

models, developing procedures and mechanisms for software reliability measurement, and analyz­

ing and evaluating the measurement results. The ability to determine software reliability not only

gives us guidance about software quality and when to stop testing, but also provides information

for software maintenance needs.

Software reliability may be the most important quality attribute of software, due to the fact that

it quantifies software failures during the software development process. Software reliability models

7

usually make a number of common assumptions, as follows. (1) The operation environment where

the reliability is to be measured is the same as the testing environment in which the reliability model

has been parameterized. (2) Once a failure occurs, the fault which causes the failure is immediately

removed. (3) The fault removal process will not introduce new faults. (4) The number of faults

inherent in the software and the way these faults manifest themselves to cause failures follow, at

least in a statistical sense, certain mathematical formulae.

There are essentially two types of software reliability models:

• those that attempt to predict software reliability from design parameters

• those that attempt to predict software reliability from test data

The first type of models are usually called "defect density" models and use code characteristics

such as lines of code, nesting of loops, external references, input/outputs, and so forth to estimate

the number of defects in the software. The second type of models are often called software reliabil­

ity growth models (SRGMs) since the number of faults (as well as the failure rate) of the software

system reduces when the testing progresses, resulting in growth of reliability. These models at­

tempt to statistically correlate defect detection data with known functions such as an exponential

function.

Each software defect encountered entails a significant cost for software companies. Hence the

knowledge of the number of defects in a software product during its lifecycle is a very valuable as­

set. Being able to estimate the number of defects will substantially improve the decision processes

in software lifecycle like time to release and maintenance time. In addition, the production process

of the software can be considerably improved by employing a prediction model that reliably the

number of defects.

8

During the development process of software, many defects may be introduced and often lead

to critical problems and complicated breakdowns of computer systems [1]. Thus there is a high de­

mand for controlling the quality and reliability of software development process. As an evaluation

for software reliability, number of defects can be used. In the traditional software development

environment, software reliability evaluation provides useful guidance in balancing reliability, time

to market and development cost [2]. Therefore, there is a greater than ever demand for prediction

the quality and reliability of software.

Among all SRGMs, a large family of stochastic reliability models are based on a non homo­

geneous Poisson process, which is known as NHPP reliability models, has been widely used to

track reliability improvement during software testing. These models enable software developers

to evaluate software reliability in a quantitative manner. They have also been successfully used to

provide guidance in making decisions such as when to terminate testing the software or how to

allocate available recourses. However, software development is a very complex process and there

are still issues that have not yet been addressed.

Software fault and failure reports are available in three basic forms:

1. Sequence of ordered failure times 0 < ti < t2 < . •. < tn

2. Sequence of failure times T; where TJ = £* — U-x, i = 1 , . . . , n

3. Cumulative number of faults.

The general NHPP software reliability growth model is formulated based on the following

assumptions:

• The occurrence of software faults follows an NHPP with mean value function m(t)

and failure intensity function A(£).

9

• The software fault intensity rate at any time is proportional to the number of remaining

faults in the software at that time.

• When a software fault is detected, a debugging effort takes place immediately.

Let {N(t),t > 0} denote a counting process representing the cumulative number of faults

detected by the time t, and m(t) = E[N(t)} denote its expectation. The failure intensity \(t) and

the mean value functions of the software at time t are related as follows

m(t) = / X(s)ds
Jo

and

dm{t)
\{t).

dt

The cumulative number of faults detected at time t follows a, Poisson distribution with time-

dependent mean value function as follows

P{N(t)=n} = 1^t^e-mit\ n = 0,1,2,...,oo

The software reliability, i.e., the probability that no failures occur in (s, s + t) given that the last

failure occurred at testing time s is

R(t\s) = exp[-(m(t + s) - m(t))]

The mean value function m(t) is nondecreasing with respect to testing time t under the bounded

condition 771(00) — a, where a is the expected total number of faults to be eventually detected.

Knowing its value can help us to determine whether the software is ready to be released to the

customers and how much more testing resources are required. It can also provide an estimate

of the number of failures that will eventually be encountered by the customers. The mean value

10

Model name

Log-linear

Exponential (Goel-Okumoto)
Weibull (Generalized Goel-Okumoto)

Power law

S-shaped

m(i)
exp(a + pt)

0
Q[1 - exp(-0t)]

a[l - exp(-pa)}

(=) '

a[l-(l+pt)exp(-pt)}

X(t)

exp(a + Pt)

apexp{-Pt)
ap-yf-lexv{-Pt~t)

aP'Hexp(-pt)

Table 1.1: NHPP models.

function can be expressed as follows

m(t) = aF(t),

where F(t) is the cumulative distribution function. Hence,

X(t) =aF\t) = [a-m(t)}:
F'{t)

[a-m(t)}p(t),
' 1 - F(t)

where p(t) is the failure occurrence rate per fault of the software, or the rate at which the individual

faults manifest themselves as failures during testing. The quantity [a — rn(t)] denotes the expected

number of faults remaining. The failure occurrence rate per fault (also known as hazard function)

Pit)
\{t)

m(oo) — m{t)

can be a constant, increasing, decreasing, or increasing/decreasing.

Table 2.1 and Figure 1.1 show examples of NHPP models with different failure intensity func­

tions X(t; 6), where 6 = (a, (3).

1.1.3 Operating characteristic curves

A statistical test provides a mechanism for making quantitative decisions about a process or pro­

cesses [13]. The intent is to determine whether there is enough evidence to "reject" a conjecture or

11

0 I —r-^- • • i i u — J

0 2 4 6 8 10 12
t

Figure 1.1: Illustration of failure intensity functions.

hypothesis about the process. The conjecture is called the null hypothesis. Not rejecting may be a

good result if we want to continue to act as if we "believe" the null hypothesis is true. Or it may be

a disappointing result, possibly indicating we may not yet have enough data to "prove" something

by rejecting the null hypothesis. A classic use of a statistical test occurs in process control studies,

and it requires a pair of hypotheses:

H0 : a null hypothesis

Hi : an alternative hypothesis

The null hypothesis is a statement about a belief. We may doubt that the null hypothesis is true,

which might be why we are "testing" it. The alternative hypothesis might, in fact, be what we

believe to be true. The test procedure is constructed so that the risk of rejecting the null hypothesis,

when it is in fact true, is small. This risk, a, is often referred to as the significance level of the test.

By having a test with a small value of a, we feel that we have actually "proved" something when

12

we reject the null hypothesis. The risk of failing to reject the null hypothesis when it is in fact

false is not chosen by the user but is determined, as one might expect, by the magnitude of the real

discrepancy. This risk, (3, is usually referred to as the error of the second kind. Large discrepancies

between reality and the null hypothesis are easier to detect and lead to small errors of the second

kind; while small discrepancies are more difficult to detect and lead to large errors of the second

kind. Also the risk (3 increases as the risk a decreases. The risks of errors of the second kind are

usually summarized by an operating characteristic curve (OC) for the test [13].

1.1.4 Bayesian statistics

Bayesian inference is statistical inference in which evidence or observations are used to update or

to newly infer the probability that a hypothesis may be true. The name "Bayesian" comes from the

frequent use of Bayes' theorem in the inference process [14,15]. Bayesian inference uses aspects

of the scientific method, which involves collecting evidence that is meant to be consistent or in­

consistent with a given hypothesis. As evidence accumulates, the degree of belief in a hypothesis

changes. With enough evidence, it will often become very high or very low. Thus, proponents

of Bayesian inference say that it can be used to discriminate between conflicting hypotheses: hy­

potheses with a very high degree of belief should be accepted as true and those with a very low

degree of belief should be rejected as false. However, detractors say that this inference method

may be biased due to initial beliefs that one needs to hold before any evidence is ever collected.

Bayesian inference uses a numerical estimate of the degree of belief in a hypothesis before

evidence has been observed and calculates a numerical estimate of the degree of belief in the

hypothesis after evidence has been observed. Bayesian inference usually relies on degrees of

belief, or subjective probabilities, in the induction process and does not necessarily claim to provide

13

an objective method of induction. Nonetheless, some Bayesian statisticians believe probabilities

can have an objective value and therefore Bayesian inference can provide an objective method of

induction. Bayes' theorem adjusts probabilities given new evidence in the following way:

P(E\H0)P(H0)
P(H0\E) = ^ ,

where

• H0 represents the null hypothesis that was inferred before new evidence, E, became

available.

• P{H0) is called the prior probability of Ho.

• P(E\H0) is called the conditional probability of seeing the evidence E given that the

hypothesis H0 is true. It is also called the likelihood function when it is expressed as

a function of Ho given E.

• P(E) is called the marginal probability of E: the probability of witnessing the new

evidence E under all mutually exclusive hypotheses. It can be calculated as the sum

of the product of all probabilities of mutually exclusive hypotheses and corresponding

conditional probabilities: Y, P(E\H)P(HZ).

• P(H0\E) is called the posterior probability of H0 given E.

The factor P(E\H0)/P(E) represents the impact that the evidence has on the belief in the hypoth­

esis. If it is likely that the evidence will be observed when the hypothesis under consideration is

true, then this factor will be large. Multiplying the prior probability of the hypothesis by this factor

would result in a large posterior probability of the hypothesis given the evidence. Under Bayesian

inference, Bayes theorem therefore measures how much new evidence should alter a belief in a

hypothesis. Bayesian methods aim at assigning prior distributions to the parameters in the model

in order to incorporate whatever a priori quantitative or qualitative knowledge we have available,

14

and then to update these priors in the light of the data, yielding a posterior distribution via Bayes

Theorem. The ability to include prior information in the model is not only an attractive prag­

matic feature of the Bayesian approach, but it is also theoretically vital for guaranteeing coherent

inferences.

1.1.5 Neural networks in software reliability growth modeling

Neural networks are composed of simple elements operating in parallel [16,17]. These elements

are inspired by biological nervous systems. As in nature, the network function is determined

largely by the connections between elements. We can train a neural network to perform a particular

function by adjusting the values of the connections (weights) between elements. Commonly neural

networks are adjusted, or trained, so that a particular input leads to a specific target output. The

network is adjusted, based on a comparison of the output and the target, until the network output

matches the target. Typically many such input/target pairs are used, in this supervised learning,

to train a network. Neural networks have been trained to perform complex functions in various

fields of application including pattern recognition, identification, classification, speech, vision and

control systems. Neural networks are learning mechanisms that can approximate any non-linear

continuous functions based on the given data. The goal of using neural network is to approximate

a non-linear function that can receive a vector X = [x\, ...,xn) in Rn and has a output vector

Y = (yi,..., ym) in Rm. Hence, we define the network as follows:

Y = F(X) (1)

The elements of Y(yk) are given by

yk=gih + J2w°jkhA , k = l,...,M (2)

15

where wQ-k is the output weight from the hidden layer node j to the output layer node k, hj is the

output of the hidden layer j , bk is the bias of the output node k, and g is the activation function in

output layers. The hidden layer values are given by

h^fU + ^wlxA, j = l,...,H (3)

where w\- is the input weight from the input layer node i to the hidden layer node j , Xi is the value

at input note i, bj is the bias of node j , and / is the activation function in the hidden layer.

1.1.6 Software resource allocation

Modern complex software systems are mostly developed incrementally with different components

by different teams under different environments [18]. In such a situation estimating the cost of a

product is not an easy task. Another problem in software engineering is how to quantitatively mea­

sure the quality of the software. Most of the software quality measurements are based on counting

the defects found in a software systems. These approaches are typically developer-oriented. Opti­

mal software resource allocation is one of the most important applications of defect prediction and

SRGMs. Several research efforts have been conducted in this field and most of them are based on

SRGMs and defect prediction [19-23].

1.1.7 Optimal software release time

In order to make the business a success, developing high quality products is of paramount impor­

tance. In a software development project, it is important to know when to stop software testing and

deliver the software to the market [24].

16

1.2 Thesis Overview and Contributions

The organization of this thesis is as follows:

Q The first Chapter contains a brief review of essential concepts and definitions which we will

refer to throughout the thesis, and presents a short summary of material relevant to soft­

ware defect prediction methods, Bayesian statistics, operating characteristic curves, neural

networks, resource allocation, and optimal software release time.

Q In Chapter 2, we present a software defect prediction model using operating characteristic

curves and Laplace trend statistic [25]. The main idea behind our proposed technique is to

use geometric insight in helping construct an efficient and fast prediction method to accu­

rately predict the cumulative number of defects during the software development process.

Experimental results illustrate the effectiveness and the much improved performance of the

proposed method in comparison with the Bayesian prediction approaches.

D In Chapter 3, we introduce a new resource allocation model that answers managerial ques­

tions related to project status and scheduling [26]. Using the proposed model, managers will

be more certain about making resource allocation decisions. This model can also be used to

measure the system reliability and the quality of service provided to customers in terms of

the expected response time. Experimental results illustrate the effectiveness of the proposed

method in the software development process.

D In Chapter 4, we develop a discrete-time stochastic model for optimal software testing and

maintenance policy, where the software testing environment and the operational environment

is characterized by an environmental factor [27]. We present a systematic study of defect

17

detection and correction processes. In our model, we consider the defect correction time

to estimate the optimal software release and maintenance time which takes into account the

environmental factor and the imperfect fault removal. More precisely, the total expected cost

is formulated via a discrete-type software reliability model based on the difference between

operational environments, imperfect defect removal, and defect correction process.

• In the Conclusions Chapter, we summarize the contributions of this thesis, and we propose

several future research directions that are directly or indirectly related to the work performed

in this thesis.

18

I
CHAPTER

Predictive Operating Characteristic Curves

In this chapter, we introduce a software defect prediction model based on the concept of operating

characteristic curve and Laplace trend statistic. The idea is to use operating characteristic curves

in statistical quality control and a geometric approach to construct an efficient, fast, and accu­

rate prediction method to estimate the cumulative number of software defects during the software

development process. The experimental results demonstrate the effectiveness and the improved

performance of the proposed method in comparison with the Bayesian prediction approaches.

2.1 Introduction

Knowledge about the number of expected defects in a software product at any stage provide es­

sential information for decision making in many software development activities, such as cost

analysis, resource allocation in testing and release decision time. The aim of software reliability

growth modelling (SRGM) is to explain the behavior of software testing process caused by faults.

Most existing SRGMs only model fault detection processes with unrealistic assumptions such as

perfect debugging. In this report, we use an improved SRGM with more accuracy and realistic

19

2

assumptions.

During the development process of computer software systems, many software defects may

be introduced and often lead to critical problems and complicated breakdowns of computer sys­

tems [1]. Hence, there is an increasing demand for controlling the software development process

in terms of quality and reliability. Software reliability can be evaluated by the number of detected

faults. A software failure is defined as an unacceptable departure of program operation caused by a

software fault remaining in the software system [2,3]. In the traditional software development en­

vironment, software reliability evaluation, which shorten development intervals and reduce devel­

opment costs, provides useful guidance in balancing reliability, time-to-market and development

cost [6]. Hence, there is an increasing demand for prediction the quality and reliability of software.

Several software reliability prediction models have been proposed in the literature for esti­

mating system reliability, but all these kinds of models make unrealistic assumptions to ensure

solvability [2,8-11,19,28,29]. These unreasonable assumptions have limited the applications of

these models [5,7].

Bayesian statistics provide a framework for combining observed data with prior assumptions

in order to model stochastic systems. Bayesian methods aim at assigning prior distributions to the

parameters in the model in order to incorporate whatever a priori quantitative or qualitative knowl­

edge we have available, and then to update these priors in the light of the data, yielding a posterior

distribution via Bayes's Theorem [15]. The ability to include prior information in the model is not

only an attractive pragmatic feature of the Bayesian approach, but it is also theoretically vital for

guaranteeing coherent inferences.

Motivated by the widely used concept of operating characteristic (OC) curves in statistical

quality control to select the sample size at the outset of an experiment [13], we propose in this

20

chapter a software defect prediction technique using OC curves in order to predict the cumulative

number of failures at any given time. The core idea behind our proposed methodology is to use

geometric insight in helping construct an efficient and fast prediction method to accurately predict

the cumulative number of failures at any given time.

The layout of this chapter is organized as follows. In the next Section, a problem formulation

is stated. In Section 2.3, we briefly review some Bayesian prediction models that will be used for

comparison with our proposed approach. In Section 2.4, we propose a new prediction algorithm

based on OC curves. In Section 2.5, we present experimental results to demonstrate the much

improved performance of the proposed approach in the prediction of software defects. Finally,

some conclusions are included in Section 2.6.

2.2 Problem Formulation

Usually the fault reports are available in three basic forms:

1. in the form of a sequence of ordered time of occurrences

0 < £i < t2 < . .. < tn

2. in the form of a sequence of interfailure times Tj where r, = U — £*_! for i = 1 , . . . , n

3. in the form of cumulative number of failures detected by a time N(ti).

Failure^) and interfailure (r(j))times are related by

3 = 1

The cumulative number of failures defines a non homogeneous Poisson process (NHPP) with

failure intensity or rate function X(ti) which is a function of time. The mean value function m{ti) =

21

E(N(ti)) of the process is given by m(ti) = JQ' \{u)du. Moreover, the probability of having K

failures in an interval is:

P(N(tj) - N(U) = K)

(m(ti) — m(ti))K . , , ,
= V K31 , exp(-(mfo) - m(*0)).

This is equal to say N(t + s) — N(t) is a Poisson distributed with expected value

tj

X(u)du = m(tj) — m(ti).

where A(t) is the time dependant intensity. Hence, the number of failures in any interval [U,tj)

defines a NHPP.

According to ANSI, Software Reliability is defined as the probability of failure-free software

operation for a specified period of time in a specified environment [57]. Although Software Re­

liability is defined as a probabilistic function, and comes with the notion of time, we must note

that, different from traditional Hardware Reliability, Software Reliability is not a direct function

of time. Electronic and mechanical parts may become "old" and wear out with time and usage, but

software will not rust or wear-out during its life cycle. Software will not change over time unless

intentionally changed or upgraded. Software reliability R(tj\ti) is defined as the probability that

no software failure is detected in the time interval (t^U + tj), given that the last failure occurred

at testing time ti, and it is given by

R{tj\ti) = exp(-(m(ti + tj) -m(ti))).

It is worth pointing out that if the failure intensity function is time-independent, then the cu­

mulative number of failures N(tz) defines a homogeneous Poisson process (HPP).

22

/ .

Model name

Log-linear

Exponential

Power law

m(t)

exp(a + bt)
b

o(l — exp(-6i))

(9'

X(t)

exp(a + bt)

abexp(-bt)

a \aj

Table 2.1: NHPP models.

Note that the interfailure times may have non-exponential distributions, and hence the cumula­

tive number of failures N(U) would define a general renewal process.

The problem addressed in this section may now be concisely described as follows: Given the

historical failure times data T> = {ti,... ,tn} and its corresponding cumulative number of failures

data A/" = {N(ti), • • -, N(tn)}, find the predicted cumulative number of failures at any given time

t.

2.3 Prediction using Bayesian Statistics

Scientific experimental or observational results generally consist of (possibly many) sets of data.

Bayesian statistics uses both prior and sample information. Usually something is known about

possible parameter values before the experiment is performed.

We model the failure times using an NHPP with a parameterized failure intensity function

X(t;0), where 6 is a vector of unknown parameters which can be obtained by historical data.

Table 2.1 shows examples of NHPP models with different failure intensity functions X(t; 6), where

0 = {a,b).

Bayesian methods aim at assigning prior distributions to the parameters 9 is the model in order

to incorporate whatever a priori quantitative or qualitative knowledge we have available, and then

to update these priors in the light of the data, yielding a posterior distribution via Bayes's Theorem.

23

The ability to include prior information in the model is not only an attractive pragmatic feature of

the Bayesian approach, but it is also theoretically vital for guaranteeing coherent inferences.

2.3.1 Predictive density

Consider the problem of making prediction for a new failure time t without any measurements

on the predictors for any of the individuals so that the dataset is just given by V = {ti,... ,tn}.

That is, we want to determine p(t\T>), the probability density function of the new failure time

conditioned on the observed failure times. The function p(t\T>) is referred to as predictive density

of a new failure time and may be written in integral form as

P(t\v) = J p(t\v,e)P(e\v)dd,

where p(0\V) is the posterior distribution of 0 given by

r)(Rw\ = p(pl°)p(g) = {K=1p(u\9)}p(e)
P[') P(P) HnLMu\e)}p(9)dff

and p(0) is the prior distribution which represents information available about the unknown pa­

rameters. The prior estimate provides a means of combining exogenous information with observed

data in order to estimate parameters of a probability distribution. It is convenient to choose sim­

ple forms of prior distributions which result in computationally tractable posterior distributions.

Hence, the posterior distribution is found by combining the prior distribution p{6) with the proba­

bility p(V\9) of observing the data given the parameters. The probability p(V\6) is also called the

likelihood function of the data and it is given by

n

p(v\9) = l\p(u\e),

24

where

p(ti\0) = A(^;0)exp t - X(u;9)du)

assuming that the failure times data are independent and identically distributed (iid). The likelihood

function is the probability of observing the given data as a function of 9.

Hence, the Bayesian approach consists of three main steps:

1. Assign prior distributions to all the unknown parameters.

2. Determine the likelihood of the data given the parameters.

3. Determine the posterior distribution of the parameters given the data.

Maximum Likelihood is a statistical estimator that can be used to estimate a models unknown

parameters values from data. The maximum likelihood estimate (MLE) of 9 is that value of 9

that maximizes the likelihood function p(V\9) or equivalently that maximizes the log-likelihood

function:

log(p(P|0))

and it is the value that makes the observed data the most "probable".

2.3.2 Bayesian prediction

The Bayesian prediction approach proposed in [4] is based on the power law model shown in

Table 2.1. The parameter b of the power law model may be estimated as follows

Ett^og{N(tn)/N(t)r

25

and the predicted cumulative number of defects N(t) at time t is given by

ft \lfb

N(t) = N(tn)l-F(2t,2tnn)j , (1)

where 7 = P{xi < Xy,n}> an<^ ^{2t, 2tn; 7) denotes the 7 percentage point of the F-distribution

with 2t and 2tn degrees of freedom.

2.3.3 Bayesian prediction using MCMC

Markov chain Monte Carlo (MCMC) methods (which include random walk Monte Carlo meth­

ods), are a class of algorithms for sampling from probability distributions based on constructing a

Markov chain that has the desired distribution as its equilibrium distribution. The state of the chain

after a large number of steps is then used as a sample from the desired distribution. The quality of

the sample improves as a function of the number of steps.

If we draw samples 0^\ . . . , 9^ from the posterior distribution p{0\T>), then the predictive

density may be approximated as follows

N N

P(t\v)« J>(^,0«)P(0«|p) = -J2p(t\v,oW).

1 = 1 1 = 1

The samples 0 (1) , . . . , 0 ^ are draws from the posterior distribution of 8, and may be obtained

using Markov chain Monte Carlo (MCMC) simulation algorithms [14,56].

For the Bayesian prediction approach using MCMC, the predicted cumulative number of de­

fects N(t) at time t is also given by Eq. (5) where b is estimated using the MCMC algorithm [14].

The algorithm of MCMC estimate parameters b consists of the following steps:

1. Using MCMC to simulate each parameter distribution.

26

2. Estimate the maximal likely value of parameter distribution which gives us the value of

expected parameter.

2.4 Proposed Method

2.4.1 POC curve

Consider the two-sided hypothesis

HQ : t = tk

H\ : t ^ tk

where H0 and Hi are the null and the alternative hypotheses respectively.

Define x2
a k

 a s t n e percentage value of the chi-square distribution with k degrees of freedom

such that the probability that the chi-square distribution x\ exceeds this value is a, that is

P{xl > xl,k) = a = P{reject#0 |#ois true},

where a € (0,1) is the probability of type I error (also referred to as the significance level). In

other words we can be 100(1 — a)% confident about the result.

Note that in probability theory and statistics, the chi-square distribution are k independent,

normally distributed random variables.

Suppose t = tk + S, where 6 > 0 (we have the same result for 5 < 0) then HQ is false and Hi

is true. Hence, the distribution of the test statistic

z = Xt-h
V2k

27

has a mean value equal to 5/\2k, and a type II error will be made only if —xa/2 — % < Xa/2-

That is, the probability of type II error 0 = Pjaccept H0\H0 is false} may be expressed as

p = * xit - -f= - * -4 , t
W V 2 ' V2A;,

where $ is the cumulative distribution function of Xt-

The function 0(t) is evaluated by finding the probability that the test statistic Z falls in the

acceptance region given a particular value of t.

An operating Characteristic (OC) curve is a graph used to determine the probability of accept­

ing lots as a function of the lots or processes quality level when using various sampling plans. In

other words the operating characteristic (OC) curve of a test is the plot of 0{t) against t. Note that

given the OC curve parameters 0, a, k, and S, we can derive the predicted cumulative number of

defects at time t as follows

N{t) = (^r) (x^+xw)2- (2)

Figure 2.1 depicts a plot of the cumulative number of defects using OC curves.

The above method does not take into account the historical data to predict. To overcome this

limitation, we propose a predictive operating characteristic (POC) curve where the predicted cu­

mulative number of defects at time t is calculated as follows

and the parameter p is given by (see Figure 2.2)

\N(t), ift<tn

[N(tn), iftn<t<T.

28

^

4

3.5

3

2.5

2

1.5

1

0.5

0

X10

-

• '

^^

' '

y<

0 10 20 30 40 50 60 70

t

Figure 2.1: Illustration of cumulative number of defects using OC curves.

T

V = N(t) V = N(tn)

Figure 2.2: Illustration of the p parameter in the POC curve.

2.4.2 Laplace trend analysis

One of the drawbacks of POC prediction method is its inability to predict accurately the cumulative

number of defects when the software is not stable, that is when the software does not have a

reliability growth yet. To circumvent this limitation, we used a weighted Laplace trend to validate

the reliability and stability of the software before using POC for defect prediction [40].

29

Suppose we wish to test the following hypotheses:

H0 : HPP

#1 : NHPP

where H0 and Hi are the null and the alternative hypotheses respectively.

Under the null hypothesis, we define the Laplace trend as:

where &i is a component of the vector 9 such that its value makes the intensity function A(£; 9) time

independent.

With type I error probability a, we have the following interpretation of the Laplace trend value:

• U < —za: reliability growth (stable system behavior).

• U > za: reliability deterioration (non-stable system).

• —za < U < za: stable reliability (in control behavior).

where za is the upper a percentage of the standard normal distribution Z such that P{Z > za) =

a. If H0 is true, the distribution of the Laplace test statistic approximately follows standard normal

distribution JV(0,1).

Note that Laplace trend analysis is used to determine whether the pattern of defects is signif­

icantly changing with respect time or not. To have a better analysis we may also rise a weighted

Laplace test statistic as discussed in [41]. However, for simplicity we focus on the standard Laplace

test statistic.

Now we try to find a "Laplace trend stopping increase" point (t = ts) as shown in Figure 2.3.

We can start using the POC curve when Laplace trend starts to decrease (t = ts,..., T) because at

this point the behavior of the system becomes stable and therefore we have reliability growth.

30

150

100

O

o
a3 50

L
ap

la
ce

o

-50

-100

f^-

" 1 I" - - 1 1

\

> v

t, \

^ V

1 1 1 i I

10 20 30
t

40 50 60

Figure 2.3: Laplace Factor vs. Defect Time.

2.4.3 Improved POC curve

In a real software project, removal of one defect might cause other defects in the system. In

addition, the defect causing the failure cannot be removed immediately. In the improved POC

curve approach, we can incorporate these assumptions to be able to predict the behavior of the

software in a better way.

To overcome the problem of imperfect debugging, we assume that when a defect occurs and

the correction process has been performed the defect is repaired with a probability p, in which case

the defect rate is reduced by X(t). Otherwise the number of defects in the software and the defect

rate remains the same. Therefore, the total number of expected occurrence of a defect in the system

31

is 1/p. Hence, the predicted cumulative number of defects in the system at time t becomes

Moreover, if the information of defect detection process and defect correction process is available,

we can model the defect detection process separately from the defect correction process. On the

other hand, due to the fact that a defect can be removed only after its detection; it is more appropri­

ate if the defect correction process to be delayed defect detection process. For simplicity we can

assume for each detected defect takes the same amount of time A. Hence, given the defect rate

\(t), the intensity of defect correction is given by

[0 t< A
K(t) = {

I \{t- A) t > A
Hence, the predicted cumulative number of corrected defects in the system at time t is given by

Nc(t) = -N(t- A) (5)
V

With these improvements, we can now describe and predict the software defect behavior in its

life cycle.

2.5 Experimental Results

We tested our proposed method on real software datasets (DS I and DS II) that were taken from

SAP development systems. These datasets contains monthly software defects that were recorded

for a period of 60 and 59 months as shown in Table 2.2 and Table 2.3 respectively.

In all the experiments, we use a probability of type I error a = 0.01. The value of 7 was set to

\-a. Figure 2.4 and Figure 2.5 depict the cumulative number of defects versus defect time (month)

during a software life cycle.

32

Month (u)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

N(U)
17
39
53
87
106
140
165
286
359
412
461
555
654
747
836
926
989
1,049
1,103
1,152
1,182
1,213
1,225
1,266
1,306
1,331
1,363
1,443
1,495
1,737

Month (ti)
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

N(U)
2,217
2,430
2,586
3,884
4,099
4,385
5,104
8,074
10,120
12,618
16,715
21,606
24,592
27,789
29,739
30,843
32,011
32,599
33,010
33,707
34,103
34,426
34,736
34,903
35,110
35,261
35,440
35,614
35,763
35,876

Table 2.2: Software defect data (DS I).

Figure 2.6 and Figure 2.7 displays Laplace factor vs. Defect Time, and it clearly illustrates after

the 45th month for DS I and after the 15th month for DS I, the Laplace trend starts to decrease.

2.5.1 Qualitative evaluation of the proposed method

In this subsection, we present simulation results where the Bayesian prediction method [4] and the

POC curve algorithm are applied to the software failure dataset (DS I) and also to the truncated

33

Month (ti)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

N(U)
3
5
19
30
74
115
543
1,379
3,372
7,272
11,434
14,291
17,429
18,806
21,625
24,201
26,096
27,221
28,395
29,105
29,553
30,133
30,712
32,111
32,894
33,476
34,209
34,499
34,658
34,781

Month (U)
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

N(U)
34,909
35,055
35,129
35,198
35,269
35,339
35,421
35,556
35,617
35,664
35,707
35,789
35,852
35,922
35,951
35,974
36,004
36,032
36,047
36,292
36,374
36,448
36,469
36,510
36,521
36,574
36,606
36,617
36,631

Table 2.3: Software defect data (DS II).

software failure data (DS II). Laplace trend starts to decrease, meaning that software reliability

starts to grow. Based on our extensive experimentation, we decided to start applying the model

from this point. Figure 2.8 through Figure 2.11 show the prediction results of the proposed POC

curve in comparison with the Bayesian approaches for both datasets DS I and DS II. These results

indicate that our method outperforms the Bayesian techniques used for comparison. Moreover, the

proposed method is simple and easy to implement.

34

S
CI

>

3

a
o

4

3.5

3

2.5

2

1.5

1

0.5

n

x 1 0 4

I i 1 1 1

^ ~ - "

f

I
J

I
_ ^

- •• • — g g g g ; . — i 1 1 : i

10 20 30
Month

40 50 60

Figure 2.4: Cumulative Number of Defects vs. Defect Time (DS I)

2.5.2 Quantitative evaluation of the proposed method

Denote by N0(t) and Np(t) the observed and the predictive cumulative number of failures re­

spectively. To quantify the better performance of the proposed predictive method in comparison

with the Bayesian approaches, we computed three goodness-of-fit measures: the skill score, the

Nash-Sutcliffe model efficiency coefficient, and the relative error between the observed T0 x 2 data

matrix

V0 = {(t,N0(t)):t = l,...T0},

and the predicted Tp x 2 data matrix

Vp = {(t,Np(t)):t = l,...Tp}.

Note that the size of observed data matrix V0 may not be equal to the size of the predicted data

35

x 10

30
Month

Figure 2.5: Cumulative Number of Defects vs. Defect Time (DS II)

matrix Vp, and hence an intersection step is necessary to pair up the observed data to the predicted

data. This intersection function is setup to pair up the first column in the observed data matrix

and the first column in the predicted data matrix. Data values are located in the second column of

both matrices. More precisely, we create a subset of matched data Vm = {£, N0(t), N0(t) : t —

1, . . . Tm} that would be used to compute the following goodness-of-fit measures:

1. Skill Score: it is a error statistic that is used to quantify the accuracy of prediction models,

and it defined as follows

SS=1
RMSE

°N0

where RMSE is the root mean square error between the observed and the predicted data, and

aNo is the sample standard deviation of the observed data.

36

250

30 40
Month

Figure 2.6: Laplace Factor vs. Defect Time (DS I).

5 5 = 1
±Eh(N0(t)-Np(t)Y

The model prediction is better, when the value of the skill score SS is closer to one. When

SS is less than zero, the model predictions are poor and the model errors are greater than

observed data variability.

2. Nash-Sutcliffe model efficiency coefficient: is an indicator of the model's ability to predict

about the 1:1 line between the observed and the predicted data, and it is defined as follows

Eh(N0(t) - Np(t))
2

1 -
YEMt)-N0)

The Nash-Sutcliffe model efficiency coefficient is a statistic similar to the skill score in that

the closer to one the better the model prediction. A value of E = 1 indicates that the model

37

150

30
Month

Figure 2.7: Laplace Factor vs. Defect Time (DS II).

prediction is perfect, and if the value of E is equal to or less than zero, then the model

prediction is considered poor.

3. Relative error: it measures how close a model is estimated with respect to the actual data.

The relative error(RE) is defined as

Np(t) - N0(t)
RE

N0(t)
t = 1 T

The values of the three goodness-of-fit measures for all the experiments are depicted in Figure 2.12

through Figure 2.17, which clearly show that the proposed method gives the best results indicating

the consistency with the subjective comparison.

38

x 10

CO
O 5

-a
O 4

CD
. Q
E
=> 3
C

CD >
_C0 2

E
E
a 1

— Original data
- Baysian

— POC curve

10 30 40

Month

Figure 2.8: Comparison of the prediction results for known 46 months history DS I.

Skill Score
Bayesian
Bayesian MCMC
OC curve

DS I

0.3964
0.5426
0.9377

DS II

0.4031
0.628
0.7877

Table 2.4: Skill score results.

2.6 Conclusions

In this chapter, we introduced a new method for software defects prediction using operating char­

acteristic curves and Laplace trend statistic. The core idea behind our proposed technique is to

reliably predict the cumulative number of defects during the software development process. The

Nash-Sutcliffe
Bayesian
Bayesian MCMC
OC curve

DS 1

0.6295
0.7872
0.9961

DSII

0.6259
0.8547
0.9527

Table 2.5: Nash-Sutcliffe score results.

39

o
CD
CD

T3

CD
. O

E

CD >
'•4—'

E
E
O

4

3.5

3

2.5

2 -

1.5

1 -

0.5

x 10

Original data
- - Baysian

POC curve

30 40

Month

Figure 2.9: Comparison of the prediction results for known 55 months history DS I.

prediction accuracy of the proposed approach is validated on a real software failure data using

several goodness-of-fit measures. The experimental results clearly show a much improved perfor­

mance of the proposed approach in comparison with the Bayesian prediction methods.

40

x10

W 3.5
o

-g 3
»4—

o

I 2
c
CD

•M 1-5

E 1
E
O 0.5

• Original data
Baysian

• Baysian - MCMC

30 40
Month

50 60 70

Figure 2.10: Comparison of the prediction results for known 20 months history DS II.

x 10

w
"o 5
CD

M—
CD

T3
'O 4
i _
CD

E
=3 3
c
CD >

JO 2

E
E

5 1

^ • • 1 1 i .

- - - Baysian
Baysian - MCMC

fa *
/ § •* ft *

•
f

/
•

•

•
•

•

10 20 30 40
Month

50 60 70

Figure 2.11: Comparison of the prediction results for known 40 months history DS II.

41

3 * 1 sd

^

Figure 2.12: Skill score results for DS I.

Figure 2.13: Skill score results for DS II.

42

Figure 2.14: Nash-Sutcliffe model efficiency coefficient results for DS I.

Figure 2.15: Nash-Sutcliffe model efficiency coefficient results for DS II.

43

LU
CD >

1

0.8

0.6

0.4

0.2

0

-a5 -0.2
a:

-0.4

-0.6

-0.8

-1

/

II
II

II
II

II

//^-—"

Sy'
y r / t

S / '
y yS s

S S '
S^S *

//~^'
- « 6 l l

^

— Baysian(46 months)

POC curve(46 months)

• •
V s

\s\l

Ik*-—^"" — — _ _ — - *

^ ^ " X
V '
V ' ^* \ . ' ^^ V <* ^s^

\ - * ' ^ ^

"
i i i

10 20 30

t
40 50 60

Figure 2.16: Relative error results for DS I.

- - — Baysian(20 months)
^—^— Baysian(40 months)

POC curve(20 months)
POC curve(40 months)

Figure 2.17: Relative error results for DS II.

44

CHAPTER D I

Resource Allocation using Queuing Theory

Most software quality measurement techniques are based on counting defects found in a software

system, resulting in their impracticability to estimate the human-resource cost of maintenance

and/or predict the reliability of a future product. In this chapter, we propose a queuing theory-

based model for resource allocation in software development. The main objective is to model

software management and maintenance during the system test, alpha test, and the beta test phases

of a software system. The proposed model answers managerial questions related to project status

and scheduling, and also provides a quantitative measure of the software.

3.1 Introduction

There is a wide spread disagreement among software engineers regarding the appropriate effort to

be devoted to software testing before release. Such conflict is attributed to resource constraints and

time-to-market considerations. It is well-known that more pre-release development and testing on

systems can reduce future development costs and result in higher software quality. On the other

hand, the pressure to deliver an operational product quickly can frequently affect the resource

45

allocation among development phases or within one of the phases.

Software systems are mostly developed by different teams under different environments. One

of the problems in such environments is quantitative measurement of the software quality. Mod­

em complex software systems are mostly developed incrementally with different components by

different teams under different environments, making the estimation of the cost of a product a

difficult task. In particular, component-based software engineering [42,43] has drawn remark­

able attention in developing cost-effective and reliable applications to meet short time-to-market

requirements. Furthermore, Lyu et al. [44] formulated the system-testing problem as a combinato­

rial optimization problem with known attributes of the system components in multiple-application

environment. Optimized resource allocation problems have been widely studied using dynamic

programming [45], integer programming [46], non-linear optimization [33], and heuristic tech­

niques [35,47]. These methods are mostly series-parallel redundancy allocation problems, where

either reliability is maximized or the total system testing effort/cost is minimized.

Another problem in software engineering is how to quantitatively measure the quality of the

software. Most software quality measurements are based on counting the defects found in a soft­

ware program. A defect is defined as an unacceptable departure of program operation caused by

a software defect remaining in the software system [48]. Recently, Luo et al. [49] introduced a

weighted Laplace test statistic for software reliability growth modelling which not only takes into

account the activity in the system but also the proportion of reliability growth within the defect

prediction model. These approaches are, however, developer-oriented, and do not provide useful

estimates of the human-resource cost of maintenance or predictions of the reliability of a future

product.

Motivated by the widely used concept of queueing theory in communication and information

46

processing systems, to design the system in terms of layout, capacities and control, we introduce

in this chapter a resource allocation model which answers managerial questions related to project

status and scheduling. Using the proposed model, managers will be more certain in making re­

source allocation decisions from one project to the other. This model can also be used to measure

the system reliability and the quality of service provided to customers in terms of the expected

response time.

The remainder of this chapter is organized as follows. In section 3.2, a problem formulation

is stated followed by a brief review of queueing models. In Section 3.3, we describe the proposed

resource allocation model and analyze the results. In section 3.4, we present experimental results

to demonstrate the effectiveness of the proposed method in resource allocation. And finally, we

conclude in section 3.5.

3.2 Problem Formulation

We assume that customers and quality assurance (QA) defect reports are in the queue, and that

the developers take the defects from the queue according to the queue principle in order to fix

them. The queue represents the defect report database, and the service facility for the maintenance

team or the QA team. Roughly speaking, a queuing model may be defined in terms of three

characteristics: the input process, the service mechanism, and the queue discipline [16,17].

3.2.1 Queueing models

We assume that the inter-arrival time of defects has an exponential distribution with the defect rate

of a monotonically decreasing function of time. To model the system's behavior over a time period

47

(e.g. weeks or months), we can use the average defect rate that is derived from the data collected

during that period instead of the instantaneous defect rate. We assume that fixing a defect also has

an exponential distribution with a constant fixing rate.

It is worth pointing out that according to the characteristics of the queue, these assumptions

may vary, but for simplicity we assume a Poisson-distributed arrival time and an exponentially-

distributed fixing rate.

M/M/l queues

One of the classical queue models is the M/M/l queue with exponential inter-arrival times with

mean 1/A , exponential service times with mean 1/p and a single server [16, 17]. Defects are

served on a first-come first served basis. The following condition should be satisfied

P = \ ^ = \/V<1, (1)

otherwise, the queue length will be overloaded (i.e. more defects present in the queue). The

quantity p is the fraction of time the server (developer team) is busy which is also referred to as the

utilization factor. This can be a key factor in management of development resources. The model

provides the following attributes of the system:

*_ and L A2

/U — A ' q fi(fj, — A)
pn = (1 -p)npn, L = - - , andL, = — ^ (2)

where pn is the probability of having n defect reports in the system, L is the expected number of

defect reports in the system (system length), and Lq is the expected number of reports in the queue

(queue length). Using the identity L = AT, where T is the expected response time (i.e. waiting

time + service time) we obtain

T = - ^ - r , (3)
(J, — A

48

On the other hand, the time that a defect report waits in the queue is given by

9 A tifjjL-xy
(4)

QA Report Faults

Queue of Fault Reports Developers Fixing Faults

Users report faults

Figure 3.1: M/M/l Resource allocation model.

M/M/c queues

In the case of a M/M/c queue, we have c parallel identical servers (developers) [16, 17], and

defects are also served on a first-come first served basis. Similarly, the following condition should

be satisfied

1 Iru \
(5)

1/c/x A
p = T7T = — < !• 1/A cfj,

The M/M/c model assumes the support of several developers, where c is the number of developers

in a team. In most cases M/M/c is more realistic than M/M/l due to the fact that usually more

than one developer are fixing the defects, resulting in a much better performance compared to the

M/M/l model. Furthermore, the M/M/c model provides the following attributes of the system

Pn £
\n=Q

+ n\ c\{l-p)
(6)

49

L = Lq + r, and Lq =-^-—^p0 (7)

where the parameter r is given by r = X/p,.

Similar to the utilization factor in M/M/l, the parameter p is a key factor for management of

resources in the system. Also, we can easily find the response time and the waiting time, which

provide good measures for the quality of service.

QA Report Faults

Users report faults

Queue of Fault Reports

Developers Fixing Faults

Developers Fixing Faults

Developers Fixing Faults

Developers Fixing Faults

Figure 3.2: M/M/c Resource allocation model.

3.3 Proposed Approach

3.3.1 Priorities of defect reports

In software systems, we usually have different types of defects which depend on their priorities.

Defect arrival rates and defects fixing rates of different types of defects are not identical. In addi­

tion, they will be fixed in a different order.

Assume that we have a single server M/M/l with r types of defects, the type i defects arrive

50

according to a Poisson distributed stream with the rate \ , i = 1 . . . r. Note that we can easily

extend it to the M/M/c model [16,17]. The service time and residual service of a type i defect is

denoted by Bi and Ri respectively [16,17]. Type I defects have the highest priority; type II defects

have the second highest priority and so on.

There are basically two kinds of priorities:

1. Non-preemptive priority, in which higher priority defects may not interrupt the service time

of low priority defect and will remain in the queue until the service time of the lower priority

defects has been completed.

2. Preemptive-resume priority, in which interruptions are allowed. After serving the higher

priority defects, serving the interrupted defect will be resumed at the point it was interrupted.

Let Tl be the mean waiting time of a type i defect in the queue. Then, we have

• For non-preemptive priority:

Ti = T.^PjEjRj)
9 (l - (p 1 + . . . + P l)) (l - (P i + .-. + PI-1))

and

T = T; + E(Bi)

where T% is the mean service time of a type i defect in the queue, and pi = XiE{Bl), i —

1 r

• For preemptive-resume priority:

Ti = S)=iPj£(f l j)

* (l - (p 1 + . . . + p i)) (l - (/ , 1 + . . . + P i_1))

and

Ti = Tq +
 EW '

q l - (p 1 + . . . + p^1)

51

Note that the parameter p = Xw=i P»> which shows the utilization of the resources, should be less

than one.

3.3.2 Defect report rate estimation

For simplicity, we assume that the number of defect reports per month follows a straight-line

regression model given by y = (30 + p±x + e, where p0 and /?i are unknown parameters referred to

as intercept and slope respectively, and £ is a random error with mean zero and variance a2. The

{e} are also assumed to be independent and identically distributed (i.i.d.) random variables.

Suppose that we have n pairs of observations (yi: x,), where i = 1 , . . . , n. These observations

may be used to estimate the unknown parameters pQ and P\ of the linear regression model using

the method of least square. The estimates of these unknown parameters are obtained by solving

the least-square normal equations, and are given by

/3i = § ^ and p0 = y - p l X (8)

where
.. n 1 n

= - V x n y = - V y 2 (9)
n *-^ n

i=\ t=l

n

Sxx = ^2{xi - x)2, and Sxy = ^ ^ (x , - x). (10)
i= l i= l

These estimates need no prior knowledge about the initial number of defects in the system

when the system test starts. The average defect rate within the interval [ti,t2] may be estimated as

follows

\ = —i—[\p1t + p0)dt (11)
l2 — h Jtl

52

The use of linear regression to estimate the defect report rate has the advantage that the estimate

of the initial defect rate is not needed. However, this estimation is not robust.

Using queueing theory for resource allocation in software systems relies strictly on defect

prediction. The better prediction of defect rates the more robust the model works. Unlike linear

regression, expectation-maximization (EM) algorithms are more robust in defect prediction [38].

Also, the inter-arrival time in the EM model can be any type of distribution. Hence, according to

the environment of the system we can use the defect prediction model introduced in [39], which

robustly fits the environment.

3.3.3 Defect fixing rate estimation

Assume that the time of fixing a defect has an exponential distribution with fixing rate /i. Each

developer's defect fixing rate is based on his/her capability which we refer to as productivity of a

developer. This productivity can be measured either by the project manager (team leader) or from

the historical data of work (e.g. amount of time required to fix defects over total number of defects

fixed by a developer).

Let Hi and pi be the full rate of defect fixing and the proportional ratio of time that the z-th

developer spends in fixing the defects respectively. The fixing rate of the i-th developer is inVi- So

if the team has c developers, then the fixing defect rate is given by

c

i=l

Note that adding up these fixing rates is not very realistic because the summation process does

not follow the linear model. For example, if two developers are working on the same error, then

their joint productivity is less than adding their individual productivities when they are working

53

separately. To overcome this limitation, we assume that there is only one developer at a time who

is serving a defect report.

3.3.4 Analyzing the utilization factor

The utilization factor p shows the fraction of time developers are busy fixing defects. Hence, a high

value of p indicates that all the resources are busy fixing defects before release time. If p > 1 then

the rate of defect reports are higher than the capacity of resources (developers). A project manager

should not try to make the utilization factor too high (p = 1 or even close to 1 e.g. 0.98). This will

make the process risky. In other words, a minor change like adding new requirements may delay

the release schedule.

By applying the queue model and simulating the system, the question of how much personnel

resources should be reallocated to other projects can be answered.

3.3.5 Bottleneck of personnel resource allocation

By assuming that each defect report can be served by a developer at a time, the rate of fixing

defects can be improved by increasing the number of resources using Eq. (12), which helps find

the bottleneck of personnel resource allocation and which can also be used to make decisions

about the changing of personnel resource among teams. However, experience shows that adding

new developers to ongoing projects will not necessarily reduce the development time.

54

3.3.6 Evaluating the quality of service

The quality of service is usually judged in terms of customer satisfaction. Therefore, there is a

need to compute the team's expected response time to the customers' defect reports. As mentioned

earlier, the response time is a good measure for quality of service.

Note that the overall fixing rate is assumed to be equal to p and that the service is provided by

the principe of the queue.

3.3.7 Improving the quality of service

Having a high utilization factor (e.g. p = 0.99) adds risks to the release schedule and results

in a long response time for customers. Hence, we need to add more resources or extend the

project schedule. Extending the project schedule does not improve the response time if p does

not change. However, adding more resources improves the expected response time and makes the

release schedule less risky and more precise. Consequently, if the system is stable (p is unchanged),

we should make sure that there are less beta testers and less defect reports in order to avoid an

overloaded defect report. We can increase the number of testers as thus increase the defect report

rate A as soon as the system becomes more stable.

3.4 Experimental Results

To test the performance of the proposed resource allocation model, we used a real software defect

dataset that was taken from a SAP development system. This data contains monthly software

defects that were recorded in the period of 60 months as shown Figure 3.3 and Figure 4.5.

The defects and fixes per month are chosen due to the fact that the variances of them in a day

55

are much bigger than the variances in a month. According to our data the average defect rate and

the standard deviation of the sample are equal to A = 597.93 and 1074.2 respectively. Also the

average fixing rate is /i = 600.83 with a standard deviation of 1053.

5000

30 40 50 60

Number of Months

Figure 3.3: Number of defects per week.

As can be seen in Figure 3.3, the number of defects is volatile. Also note that it will not be

possible to fix more defects per period if we take into consideration the engineer capabilities of the

developers.

3.4.1 Analysis

The average defect rate and the standard deviation are 597.93 and 1074.2, and the fixing defect

fixing rate is 600.83 with a standard deviation of 1053, in a period of 60 months. So in this case

A = 597.93 and JJ. = 600.83. Hence the fraction of time that resources are busy (utilization factor)

56

4500

4000

sz
c 3500 o
2
a> 3000
a .
</3

x 2500
LI­

'S
•- 2000

E
=3 1500

1000

500

i i

-

"

- • - - - l « i i B l l i l l » l B « - « .. — -

1 1

. l l l l l H

1 1

-

1

•II •III
llll nil

III Hill
H

-

-

11
IllllllHl

10 20 30 40
Number of Months

50 60

Figure 3.4: Number of fixes per week.

70

is p za 0.99 which shows that the manager used 99% of software team resources. Thus it is risky,

that is only a minor change like adding new requirements will delay the release schedule. Note that

in our case the release date is at the end of the 60-th month. From Figure 3.3 and Figure 4.5, we can

see that the number of defect reports after the 60-th month is approximately zero. For example,

if the release time is in the 60-th month, then 4.06% of our resources will be free as illustrated

in Figure 3.5, and therefore we can assign them to other projects. Further, Figure 3.5 shows the

amount of personnel resources that can be reallocated to other projects if the release time is after

the 60-th month. This is mainly due to the fact that the defect report rate is decreasing, whereas

the fixing rate remains approximately at the same level.

Suppose that we have 12 teams of developers, and according to our data each one can fix

p/c = 50.071 defects per month. Note that in our case we cannot define the fixing rate of each

57

CD
O 2 0
Z3

TO
CD

o
w
CD

a:
1 10
o
CD
0.

I I I I

X: 1
- Y: 4.064 ;
1

i t i i

I 1 1 I

1 2 3 4 5 6 7 8 9 10

Release Schedule

Figure 3.5: Release schedule and reduced resources.

developer or team separately but if we had enough data about the work of each developer or team

we would find its fixing rate ^j and the condition will be

A
(13) Ei=iMt"

Selecting the appropriate model is usually based on the way the developers are assigned and work

on the defect report. According to our assumption that each defect report is getting served by one

developer at a time, the M/M/c model is more realistic because developers are working on differ­

ent defects at the same time. Note that the expected response time has not improved whereas the

waiting time has, simply because the mean serving time for each defect has increased. Figure 3.6

shows that the number of defects in the queue is decreasing, whereas the number of defects in the

system is increasing. And in Figure 3.7 we can see how of the response time and the mean waiting

time are changing.

58

210

O

205

<2 200
o
Q.
0)

rr
a> 195

"G 190

185

• Number of Reports in the Queue

• Number of Reports in the System

6 8 10 12 14
Number of Developers

16 20

Figure 3.6: Mean queue and mean system lengths versus number of developers working on the
system.

Note that number of developers in Figure 3.6 and Figure 3.7 is equal the number of servers

with overall fixing rate of fi, meaning that we are not adding more developers.

3.5 Conclusions

The proposed resource allocation methodology in this chapter helps estimate the need for new

developers and resources for future projects. Applying queuing theory to model software manage­

ment and maintenance helps verify the progress of the testing phase and estimate its cost. Also,

decisions can be made about changes in the employees early rather than letting the product miss

the schedule deadline. The selection of a queuing model is organization-based. In other words we

need to analyze an organization and find which model fits the best. For example if an organization

59

0.355

0.35

0.345

0.34

cz o
. 0.335

E

0.33

0.325

0.32

0.315

1 Mean Response Time

Mean Waiting Time

2 4 6 8 10 12 14 16 18 20
Number of Developers

Figure 3.7: Mean response and mean waiting times versus number of developers working on the
system.

considers developers as one team, then the M/M/l model would fit the organization. Also note

that we need to have a good estimation of defects in order to make better decisions. If we find the

defect report rate, the fixing rate, and also if we decide which model is suitable, then we can use a

simulation program to analyze our queue.

60

CHAPTER T - : : . I

Optimal Release and Maintenance Policy

In this chapter, we propose a novel stochastic discrete model to describe the cost behavior of the

operation, under the assumptions of difference between the software testing environment and the

operational environment, imperfect debugging and non-instantaneous fault removal. Then, we es­

timate the optimal time, which minimizes the relevant cost criterion, via artificial neural networks.

Further, we present some fault correction models in software development which are based on

general fault detection models, followed by introducing our cost function, which incorporates both

fault-correction and detection models. Also, we provide a detailed analysis of the software release

and maintenance decision. This procedure is simple and very useful in practical applications. In

the experimental results, we demonstrate how to find numerically the joint optimal testing and

maintenance policy, combined with the testing period and the planned maintenance limit.

4.1 Introduction

There is a wide spread disagreement among software engineers about the appropriate effort to be

devoted to software testing before release and/or how much time should be spent on maintenance.

61

It is well-known that more pre-release development and testing on systems can reduce future de­

velopment costs and therefore result in higher software quality. On the other hand, the pressure to

deliver an operational product quickly can make the stakeholder more satisfied.

The determination of optimum software release time may be formulated as an optimization

problem. To analyze this optimization problem, different criteria should be identified. If the re­

quirement is a fault-free software or any other reliability goal, then the problem is to determine

the minimal testing time in order to reach the reliability requirement. However, if the cost of soft­

ware is considered then the optimal release time should be determined through an appropriate cost

function to be used for minimizing the total expected software cost.

Given that testing all executable paths in a general program is not practically possible, it is

therefore difficult to detect and remove all faults remaining in a software during the testing phase.

Hence, the software failure may occur in the operational phase. It is common to provide main­

tenance service during the period of fixing software faults that are causing failures. In order to

perform the maintenance phase, the management cost should be reduced as much as possible, but

at the same time the human resources should be utilized effectively. The problem of determining

the maintenance period is of paramount importance from the practical point of view. However, this

problem has received less attention and only a few solutions have been proposed [42].

Software reliability growth models (SRGM) provide essential information for decision mak­

ing in many software development activities, such as cost analysis, resource allocation in testing

and release decision time. The aim of software reliability growth modelling (SRGM) is to ex­

plain the behavior of software testing process caused by faults. Most existing SRGMs only model

fault detection processes with unrealistic assumptions such as perfect debugging and immediate

fault correction. In this report, we use an improved SRGM by taking into account more realistic

62

assumptions in the model.

In this section, we focus on the optimal software testing and maintenance policy motivated by

K. Rinsaka et al. [42]. We develop a discrete-time stochastic model in discrete operation condition,

where the software testing environment and the operational environment is characterized by a envi­

ronmental factor [43]. In addition, we present a systematic study of fault detection and correction

processes. In our model, we consider the fault correction time to estimate the optimal software re­

lease and maintenance time which takes into account the environmental factor and imperfect fault

removal. More precisely, the total expected cost is formulated via the discrete type of software

reliability models [43,44] based on the difference between operational environments, imperfect

fault removal, and fault correction process to remove a fault. To the best of our knowledge, there

is no available method to find the optima) release and maintenance time of a software product by

taking into account these assumptions.

The rest of this chapter is organized as follows. In Section 4.2, we describe our assumptions and

problem formulation. In Section 4.3, the proposed method is introduced. Section 4.4 evaluates the

proposed method and presents experimental results using a real SAP dataset. Finally, we conclude

in Section 4.5.

4.2 Problem Formulation

4.2.1 Assumptions

In the sequel, we make the following assumptions:

• If a failure occurs, then the fault causing the failure cannot be removed immediately.

• Fault correction is imperfect, and when a fault is discovered then it is perfectly repaired

63

with a certain probability p.

• Failure rates during testing and operational phases are different according to the envi­

ronmental factor.

• The times to detect each software fault are independent.

4.2.2 Defect detection and correction model

In nonhomogeneous poisson process (NHPP)-based fault detection models, the cumulative number

of failures N(t) defines a NHPP with rate function (also called intensity function) A(t) which is

time dependant, and with a mean value function m(t) = E(N(t)) given by

m{t) = / \{x)dx. (1)

Jo

In general, different fault detection models may be obtained by using different non-decreasing

mean value functions m(t). The selection of a fault detection model is based on the goodness-of-

fit of the model to the underlyting software failure data.

SRGMs are widely used to assess the fault related behavior of software systems. However,

since most SRGMs embed certain restrictions or assumptions, selecting an appropriate model

based on the characteristics of the software projects is often challenging. In order to choose a

suitable model, two approaches may be adapted. The first one is to design a guideline, which

could suggest fitting models for software projects. The second one is to select a model with the

highest confidence after various assessments. The decision-making processes would therefore be

a huge overhead while the software projects are huge and complicated.

In order to reduce such an overhead, neural networks have been previously employed as an

alternative approach that can adapt the characteristics of failure processes from the actual data set.

64

The results show that the neural network approach is good at identifying software failures [54].

Neural networks are composed of simple elements operating in parallel. These elements are

inspired by biological nervous systems. As in nature, the network function is determined largely

by the connections between elements. We can train a neural network to perform a particular func­

tion by adjusting the values of the connections (weights) between elements. Commonly neural

networks are adjusted, or trained, so that a particular input leads to a specific target output. The

network is adjusted, based on a comparison of the output and the target, until the network output

matches the target. Typically many such input/target pairs are used, in this supervised learning,

to train a network. Neural networks have been trained to perform complex functions in various

fields of application including pattern recognition, identification, classification, speech, vision and

control systems.

Neural networks are learning mechanisms that can approximate any non-linear continuous

functions based on the given data. In general, neural networks consist of three components as

follow:

1. Neurons: each neuron can receive signal, process the signals and finally produce an output

signal. Figure 4.1 depicts a neuron, where / is the activation function that processes the

input signals and produces an output of the neuron, x are the outputs of the neurons in the

previous layer, and w are the weights connected to the neurons of the previous layer.

2. Network architecture: the most common type of neural network architecture is called feed­

forward network as shown in Figure 4.2. This architecture is composed of three distinct

layers: an input layer, a hidden layer, and an output layer. Note that the circles are rep­

resented as neurons and the connection of neurons across layers is called the connecting

weight.

65

1 *

1
/ E

T ^ ^ - ^

I
Bin* 6

neti

f(neU)

= i, + E",.^"-'i

Activation Riiictinu

Figure 4.1: Illustration of a neuron.

Figure 4.2: Feed-forward network.

3. Learning algorithm: this algorithm describes a process of adjusting the weights. During

the learning processes, the weights of a network are adjusted to reduce the errors of the

network outputs as compared to the standard answers. The back-propagation algorithm is

the most widely employed one. In a back-propagation algorithm, the weights of the network

are iteratively trained with the errors propagated back from the output layer.

66

The goal of using neural networks is to approximate a nonlinear function that can receive a vector

X = (x i , . . . , xn) in W1 and has an output vector Y = (j / i , . . . , ym) in Rm. Hence, we define the

network as Y = F(X). The components of Y are given by

H

Uk ,(bk + £w°jkhX /c = l,...,M (2)

where wQ-k is the output weight from the hidden layer node j to the output layer node k, hj is the

output of the hidden layer j , bk is the bias of the output node k, and g is the activation function in

output layers. The hidden layer values are given by

N

(3) hj = fibj + ^wljxA, j = l,...,H
^ t = i '

where wjj is the input weight from the input layer node i to the hidden layer node j , Xi is the value

at input note i, bj is the bias of the hidden node j , and / is the activation function in the hidden

layer.

Due to the fact that the neural network approximated function can be considered as a nested

function such as }{g{x)), it can be applied to software reliability modelling since software relia­

bility modelling is intended to build a model that explains the software failure behavior. In other

words, if we derive a form of compound functions from a usual SRGM, then we can build a neural

network-based model for software reliability. In this paper, we consider the logistic growth curve

model [55]. The mean value function of this model is given by

" • < « > - i r k * (4)

where the parameters a, b, and k are positive real numbers.

We can simply find the following compound functions form of the mean value function by

67

replacing k with e c as follows

m(t) =
1 + ke~bt 1 + e - (M + c) '

It is worth pointing that the mean value function is the composition of the following functions:

(5)

g(x) = bx + c, f{x) =
1

1 + e-
and k{x) = ax.

Hence, we have

m(t) = Kfigit))) = (6) I _|_ e-(bt+c) •

Therefore, the mean value function is composed of g, f, and k. Now we derive the compound

functions from the viewpoint of neural networks by using the basic feed-forward network as shown

in Figure 4.2. However, the network has only one neuron in each layer as illustrated in Figure 4.3.

Figure 4.3: Feed-forward neural network with a single neuron at each layer.

The hidden layer input and output are given by

hin(t) = w\xt + bx (7)

and

Kt) = fihiJfi) (8)

respectively, where / (x) is the activation function in the hidden layer. The input and output of the

output layer are j/ira(t) = w^hit) + b0 and y(i) = giymit)) respectively.

Now, if we assume the activation functions as

1
/ (*) 1 + e"x (9)

g{x) = x (10)

and remove the bias in the output layer. Then, we obtain

7/;°

Hence, we derived the neural network via a logistic growth curve model. Note that this approach

could be used for any other SRGM. To use the neural network-based models, the following steps

are required:

1. Select a model which meets the assumptions of the software project.

2. Construct the neural network of selected models (denning bias and activation function which

is differentiable everywhere).

3. Using the time interval data and cumulative number of faults in the system, we train the

network using the back-propagation algorithm.

4. After training the network, we feed the future testing time to the network and the output is

the forecasting number of faults in the future given time.

4.2.3 Defect correction models

If the information of fault detection processes and fault correction processes is available, we model

fault detection process separately from the fault correction. On the other hand, due to the fact that

a fault can be removed only after its detection, it is more appropriate if the fault correction process

is considered to be related to the fault detection process. The fault correction process is assumed

69

to be a delayed fault detection process. Different models have been proposed in a variety forms for

the time delay between these processes. This idea was proposed in [45], where a fault detection

is modelled by a NHPP and a fault correction is assumed to have a constant delay from the fault

detection process. This approach can be developed using different NHPP models or any other fault

detection models like operating characteristic curves [39] for different fault detection processes.

The difference between fault detection and correction is the time delay, which is the time spent

to correct the detected fault. We denote this time delay by A(t). This delay can be modelled as

deterministic or random variable, or it can be time-dependant [46]. We model the fault correction

process by a mean value function mc(t) which can be derived from m(t) and A(t).

Next we introduce some correction time models.

Constant correction time:

We assume that each detected fault takes the same amount of time to be corrected, that is A(t) = A.

Hence, given the fault detection rate X(t), the intensity function of fault correction is given by

I X(t) t < A
Ac(t) = { (12)

A (i - A) t > A

Hence, the mean value function for the fault correction process is given by

mc(t) = m(t - A), t > A. (13)

Time dependant correction time:

The time lag between fault detection and correction can be time-dependant [33]. When the detected

faults become increasingly difficult to correct, the time needed to correct them becomes longer. In

70

this case, we assume a time delay as follows

log(l + ct-c/b)
A(t) = - ^ ^ , c<b (14)

Therefore, the correction rate and mean value functions are as follows

Xc(t) = X(t - A(i)) (15)

mc(t) = / X(x - A(x))dx. (16)

Exponentially distributed correction time:

Usually a deterministic correction time is not realistic in practice. The software fault correction is

closely related to humans, who are considered as an uncertainty factor. In addition, the detected

faults are different and their appearance sequence is random in system testing. Hence, it is more

realistic if we model the correction time with a random variable.

The correction time is known to approximately follow an exponential distribution [33]. As

a result, we assume that the correction time for each detected fault is a random variable with

exponential distribution A(t) ~ exp(^t). Therefore, the correction rate and mean value functions

are given by

Xc(t) = E[X{t - A{t))} = X{t-x)fiexp-"xdx (17)
Jo

mc(t) = / Xc(x)dx. (18)
Jo

71

4.2.4 Software cost

In any SRGM, the modelling is not the ultimate goal. The extracted information from the analysis

could help management make decisions regarding a software development project. Our main focus

is on decisions of when to release the software and when to stop maintaining the software after

release. The cost of developing the software, as the most important aspect in software business, is

used to make such decisions.

4.3 Proposed Method

4.3.1 Total expected software cost

We formulate the total expected software cost, which can occur in both testing and operational

phases, as an optimization problem. In the operational phase, we consider two cost factors, namely

the maintenance cost due to the software failure and the operational cost to keep the maintenance

team. It should be noted that the operational environment after the release may differ from the

debugging environment in the testing phase. We introduce an environmental factor r such that

r > 0, which represents the relative severity in the operational environment, and assume that

the times in testing phase and maintenance phase have a proportional relationship. Okamura et

al. [43] introduced this approach to model the operational phase of the software. Also, when a

fault is detected and the correction process is performed on the fault we assume it is repaired with

probability p, in which case the failure rate is reduced by X(t). Otherwise, the number of faults in

the software and the failure rate remains the same. Hence, the total number of expected occurrence

of a fault is I/p.

72

Let T and M be the total expected cost function testing time and the maintenance time, respec­

tively. Then, we define our total expected cost of a software system as follows

C(T, M) = - c^mJT) + - c2r \mc{M) - mc(T)
P V L

+ c3r mc(oo) - r(mc(M) - mc(T)) - mc{T)

+ c4T + c5M

where the parameters are defined as:

• Ci > 0 is the cost for dealing with a fault in the testing phase.

• c2 > 0 is the cost for dealing with a fault in the maintenance phase.

• C3 > 0 is the cost for dealing with a fault after the maintenance phase.

• c4 > 0 is the cost per unit of time in the testing phase.

• c5 is the cost per unit of time in the maintenance phase.

Note that, the values of these parameters may be obtained from historical data of similar projects.

4.3.2 Optimal release and maintenance times

Now the objective is to find the joint optimal testing period T* and the optimal planned mainte­

nance limit M* which minimize the total expected software cost C(T, M).

We assume that the software has a limited life cycle L > 0, which a constant assumed to be

known a priori and larger than the testing period T. In other words, the life cycle is measured from

the point of release time T. Hence, in our proposed cost function we use T + L instead of 00.

Since the cost function C{T, M) is a discrete function of T and M, and due to a limited life

cycle we can therefore easily find the minimum points by searching in the range of this function.

So, we construct a matrix, where the elements of each of its columns show the maintenance times

73

and the elements of each of its rows show the release times. We the find the minimum cost and

consequently the optimal times by searching only through the column, the row and the diagonals

crossing each matrix element. If the life cycle is large, then we can use generic search from an

arbitrary starting point in the constructed matrix.

4.4 Experimental Results

4.4.1 Software dataset

In this section we present a statistical analysis using a real software defect dataset that was taken

from a SAP development system. This dataset contains monthly software defects that were recorded

for a period of 60 months as shown in Figure 4.4. The number of fixed faults is also shown in Fig­

ure 4.5. However, there is no tag indicating a certain fault is corrected or any other information

and we have only grouped data, which correspond to the number of faults per month.

4.4.2 Parameter estimation

To use different fault detection and correction models, we need to estimate the parameters of the

model based on our observed data using maximum likelihood estimation [38,47]. In Table 1,

the results of the estimation with the corresponding goodness-of-fit measure for all models are

listed. As can be seen in this table, the model composed of neural network fault detection and fault

correction process with constant correction time, provides the best fit for our dataset.

74.

5000

4500

10 20 30 40 50
Month

70

Figure 4.4: Number of defects per month in the period of 60 month.

4.4.3 Model selection

As mentioned earlier, we need to select a appropriate software fault prediction model. In our

experiments, we have used different SRGMs to predict our software failure data. Qualitatively, we

compared the neural network model with other SRGMs as shown in Figure 4.6.

Denote by N0(t) and Np(t) the observed and the predictive cumulative number of failures

respectively. To compare the methods quantitatively, we use the so-called skill-score goodness of

fit measure between the observed T0 x 2 data matrix

V0 = {(t,N0(t)):t = l,...T0},

and the predicted Tp x 2 data matrix

Vp = {(t,Np{t)):t = l,...Tp}.

75

5000

4500

4000

c 3500

o
a> 3000

.x 2500

o
>- 2000 • a>
JQ

E
=> 1500h

1000

500

0 - - 1-—•!•••——_ l\ llllll
10 20 30 40

Month
50 60 70

Figure 4.5: Number of fixes per month.

Note that the size of observed data matrix V0 may not be equal to the size of the predicted data

matrix Vv, and hence an intersection step is necessary to pair up the observed data to the predicted

data. This intersection function is setup to pair up the first column in the observed data matrix and

the first column in the predicted data matrix. Data values are located in the second column of both

matrices. More precisely, we create a subset of matched data Vm = 1 — {t, N0(t), N0(t) : t =

1 , . . . Tm} that would be used to compute the skill score, which is defined as follows:

5 5 = (19)

This goodness-of-fit measure interprets model predictability using residual error and observed vari­

ability in your data. A skill score of 1 means a perfect fit. A skill score equal to or less than zero

76

Table 4.1: Summary of paired model estimates.

Model

Constant Correction

A(t) = A
Time Dependant

/^M _ log(l+c't-c'/6')

Exponential

A(i) ~ expOu)

Estimates

a = 36608.68
6 = 0.27

c = -80.90
A = 339.23
a = 212.89

b = 0.02
c = -0.09

9 = 1.16

d = 1.31
a = 1559.08

b = 0.95
c = 32.97
A = 0.12

means that the model error is larger than the variability in the data, and should not be used any fur­

ther without re-evaluating the model design. As can seen in Figure 4.7, the neural network model

gives a better goodness-of-fit than the other detection models. Hence, we use the neural network

approach to predict the faults. Moreover, as shown in Figure 4.8 the constant correction time fits

better to our data. Therefore, we use constant correction time with a neural network fault detection

model.

4.4.4 Optimal release and maintenance

Now we calculate numerically the optimal testing period T* and the optimal planned maintenance

limit M* based on our software fault detection and correction data. We assume that the known

parameters in the software reliability models are estimated using maximum likelihood estimation.

By searching through the cost matrix C(T, M), will find the minimum values for T and M that

optimize the cost function.

77

Q

I

O

• Origianl data
Goel-Okumoto

• delayed S-shaped
• inflection S-shaped

Weibull
Neural-Network

40 50
Month

60 70

Figure 4.6: Cumulative Number of Defects vs. Defect Time.

As mentioned earlier, we use neural networks for the fault detection process with different

delay functions. With our dataset, these models are applied to fit against the real data. Then, the

skill score is calculated numerically. The results of the corresponding goodness-of-fit measure for

all models are shown in Table 4.1. The 3D plot of the software cost matrix for constant correction

time is shown in Figure 4.9, displaying the behavior of the total expected software cost based on

different release and maintenance policies. The optimal release/maintenance policy is obtained by

finding the minimum value in the matrix as depicted in Figure 4.9.

78

1

0.9

0.8

0.7

S
co

re

o

o

ui

en

W 0.4

0.3

0.2

0.1

0

H
^M ^M • • • ^M •
/ • G<

_ j

* t-

^^^^^^^^^H

/

i

m-
• -
I -
1
1
1
1 •

I
IH__

4.5 Conclusions

Figure 4.7: Skill Score.

In this chapter, the problem of optimal software release time and maintenance period based on fault

correction process has been investigated. By considering a diversity of software projects, different

SRGM can be used in the same way the delay could be constant, time dependant or random.

Different models have also been compared using our data set. In the numerical experiments with

real software fault-detection time data, we showed that the predictive performance of the optimal

software release time using neural networks performs better than using the existing parametric

SRGMs. Also, in our model we used more realistic assumptions such as a different severity in

different environments and an imperfect defect removal.

79

1

E
=3

o

1 1 1 1 1 • • •

= = Actual Data
Neural-Network Constant Correction Time
Neural-Network Time-Dependant Correction Time

— — - Neural-Network Exponential Corrrection Time

_

_

~

/^ / ff • /
If: /

if /

// / 0 /

// 11/

///
/ J /•J^

i I i

/
/

/
/ / / / / / / / / / / / / / /

7=~*

-

-

- - ' » *
40 50

Month
90

Figure 4.8: Cumulative Number of Defects vs. Defect Time.

Maintenance Time o o

500

Release Time

Figure 43: Behavior of Total Expected Cost and Optimal Times.

80

CHAPTER U ; I

Conclusions and Future Work

A defect prediction solution provides a guideline to the sources of defects that might be caused

due to programmers inability, failure in requirements collection or design mistakes. Thus, a de­

fect prediction model with source identification can give important ideas regarding the erroneous

bottlenecks in the software development cycle. Especially, efficiency focused software develop­

ment units can benefit using defect cause information. They can take necessary precautions in a

proactive manner. In other words, a defect focused prediction solution can also help to change the

development methods. Such a solution or systematic approach can affect in a positive manner to

produce less defected software.

An important aspect of a defect prediction solution is that such a solution becomes necessary

when there is a trade-off between to deliver earlier and to deliver with fewer defects. In today's

software development industry, all companies and software development houses are in a severe

competition that minimizing development tim& decreases the overall project cost [59,60]. On the

other hand, less development and testing time also increases the defect density ratio in the final

product. So, with this fact the executive management of the software company should require a

quantitative indicator to find the correct point in this balance. Therefore a defect prediction solution

81

may provide the required quantitative metric to make a decision on the product delivery. The senior

management of the software development company would be able to decide launching the product

if the defect density level is below a certain threshold.

This thesis has presented statistical tools to predict the cumulative number of software de­

fects, optimized resource allocation in software production life cycle, and optimal release time and

maintenance policy that can have a huge positive impact on making the software quality assurance

easier. We have demonstrated the performance of the proposed algorithms ori a variety of software

defect datasets, and we compared our proposed techniques with existing methods.

In the next Section, the contributions made in each of the previous chapters and the concluding

results drawn from the associated research work are presented. Suggestions for future research

directions related to this thesis are provided in Section 5.2.

5.1 Contributions of the Thesis

5.1.1 Predictive operating characteristic curves for software defects

We introduced a software defect prediction model based on the concept of operating characteristic

curve. The idea is to use Operating Characteristic (OC) curves in statistical quality control and a

geometric approach to construct an efficient, fast, and accurate prediction method to estimate the

number of software failures at anytime during the software development process. Our model is

getting the information from past and present failure data to be more effective. In the experimental

results, we demonstrate the effectiveness and the improved performance of the proposed method

in comparison with the Bayesian prediction approaches.

82

5.1.2 Software development resource allocation using queuing theory

We proposed a resource allocation model using queuing theory. The goal is to model software

management and maintenance during the system test, alpha test, and the beta test phases of a

software system. The proposed model answers managerial questions related to project status and

scheduling, and also provides a quantitative measure of the software. Using the proposed model,

managers will be more certain in making resource allocation decisions from one project to the

other. This model can also be used to measure the system reliability and the quality of service

provided to customers in terms of the expected response time.

5.1.3 Software optimal testing and maintenance policy

We introduce a new method to define the optimal policy in software release time and maintenance.

We focused on the optimal software testing and maintenance policy motivated by the approach

proposed in [42]. We also developed a discrete-time stochastic model in discrete operation con­

dition, where the software testing environment and the operational environment is characterized

by a environmental factor. In addition, we present a systematic study of defect detection and cor­

rection processes. In our model, we consider the defect correction time to estimate the optimal

software release and maintenance time which takes into account the environmental factor and im­

perfect defect removal. More precisely, the total expected cost is formulated via the discrete type

of software reliability models based on the difference between operational environments, imperfect

defect removal, and defect correction process.

83

5.2 Future Research Directions

Several interesting research directions motivated by this thesis are discussed next. In addition to

designing robust statistical models for software defect prediction, we intend to accomplish the

following projects in the near future:

5.2.1 Optimal release time using game theory

Our proposed model to find the optimal policies on software production does not take into account

rivalry. In other words, we hope to continue our future work by investigating a model which per­

mits competition between rival producers. This can potentially be done by using our model in

the framework of a two-person non-zero sum game of timing. Through the series of preliminary

results, it is shown that an optimal release policy exists as a Nash equilibrium point in the space of

mixed strategies. Although in this model we used a classical neural network, an effort to improve

the forecasting ability will be needed for future work. For instance, if the other environmental data

for software testing, e.g. structural factors such as the numbers of codes, functions and modules,

testing effort or cost such can be observed, the neural networks may carry more realistic infor­

mation processing by taking into account these factors. In addition, our model does not take into

account rivalry. In other words, we hope to explore a new model that would permit competition

between rival producers. This can potentially be done by using a two-person game of timing.

84

5.2.2 Machine learning approaches

As a broad subfield of artificial intelligence (AI), machine learning is concerned with the design

and development of algorithms and techniques that allow computers to "learn". As regards ma­

chines, one might say, very broadly, that a machine learns whenever it changes its structure, pro­

gram, or data (based on its inputs or in response to external information) in such a manner that its

expected future performance improves. The major focus of Machine learning research is to extract

information from data automatically by computational and statistical methods, hence, machine

learning is closely related to data mining and statistics but also theoretical computer science.

Machine learning usually refers to the changes in systems that perform tasks associated with

AI. Such tasks involve recognition, diagnosis, planning, prediction, etc. The "changes" might be

either enhancements to already performing systems or synthesis of new systems. One might ask

"Why should machines have to learn? Why not design machines to perform as desired in the first

place?" There are several reasons why machine learning is important. Some of these are:

• Some tasks cannot be defined well except by example, that is, we might be able to

specify input/output pairs but not a concise relationship between inputs and desired

outputs. We would like machines to be able to adjust internal structure to produce

correct outputs for a large number of sample inputs and thus suitably constrain their

input/output function to approximate the relationship implicit in the examples.

• It is possible that hidden among large piles of data are important relationships.

• Human designers often produce machines that do not work as well as desired in the

environments in which they are used. In fact, certain characteristics of the working en­

vironment might not be completely known at design time. Machine learning methods

can be used for on-the-job improvement of existing machines designs.

85

• The amount of knowledge available about certain tasks might be too large for explicit

encoding by humans. Machines that learn this knowledge gradually might be able to

capture more of it that humans would want to write down.

• Environments change over time. Machines can adopt to a changing environment

would reduce the need for constant redesign.

• New knowledge about tasks is constantly being discovered by humans. Continuing

redesign of AI systems to conform to new knowledge is impractical, but machine

learning methods might be able to track much of it.

There are two major settings in which we wish to learn a function / : supervised and unsupervised.

In supervised learning, we know the values of / for the m samples in the training set S. We

assume that if we can find a hypothesis h that closely agrees with / for the members of §, then this

hypothesis will be a good guess for / , especially if S is large. Curve fitting is a simple example

of supervised learning of a function. In unsupervised learning, we simply have a training set of

vectors without function values of them. The problem in this case, typically, is to partition the

training set into subsets S i , . . . , §£ in some appropriate way.

Our future efforts will be focused on evaluating various machine learning models to develop

robust prediction approaches. The performance of each prediction method will be evaluated regard­

ing their precision, recall, robustness and sensitivity using confusion matrices and simulations. A

model's precision is defined as the ratio of the number of modules correctly predicted as defective,

or true positive (tp), to the total number of modules predicted as defective in the set (tp + fp). A

model's recall is defined as the ratio of the number of modules predicted correctly as defective

(tp) to the total number of defective modules in the set (tp + /„). To perform well, a model must

achieve both high precision and high recall.

86

List of References

[1] J.D. Musa, "A theory of software reliability and its application," IEEE Transactions on Soft­

ware Engineering, vol. 1, no. l,pp. 312-327, 1975.

[2] A.L. Goel and K. Okumoto, "Time-dependent error detection rate models for software relia­

bility and other performance measures," IEEE Transactions on Reliability, vol. 28, no. 3, pp.

206-211, 1979.

[3] J.D. Musa, A. Iannino, and K. Okumoto, Software Reliability: Measurement, Prediction,

Application, McGraw-Hill Book Company, 1987.

[4] J.W. Yu, G.L. Tian, and M.L. Tang, "Predictive analyses for nonhomogeneous Poisson pro­

cesses with power law using Bayesian approach," Computational Statistics & Data Analysis,

2007.

[5] C.G. Bai, "Bayesian network based software reliability prediction with an operational pro­

file," Journal of Systems and Software, vol. 77, no. 2, pp. 103-112, 2004.

[6] X. Zhang and H. Pham, "Software field failure rate prediction before software deployment,"

Journal of Systems and Software, vol. 79, pp. 291-300, 2006.

87

References

[7] N.E. Fenton and M. Neil, "A critique of software defect prediction models," IEEE Transac­

tions on Software Engineering, vol.5, no. 5, pp. 675-689, 1999.

[8] S. Yamada, M. Ohba, and S. Osaki, "S-shaped reliability growth modeling for software error

detection," IEEE Transactions on Reliability, vol. 32, no. 5, pp. 475-485, 1983.

[9] A.L. Goel, "Software reliability models: assumptions, limitations and applicability," IEEE

Transactions on Software Engineering, vol. 11, no. 12, pp. 1411-1423, 1985.

[10] M.R. Bastos Martini, K. Kanoun, and J. Moreira de Souza, "Software-reliability evaluation

of the TROPICO-R switching system," IEEE Transactions on Reliability, vol. 39, no. 3, pp.

369-379, 1990.

[11] K. Kanoun and J.C. Laprie, "Software reliability trend analysis from theoretical to practical

considerations," IEEE Transactions on Software Engineering, vol. 41, no. 4, pp. 525-532,

1992.

[12] M.R. Lyu, Handbook of Software Reliability Engineering, IEEE Computer Society Press and

McGraw-Hill, 1996.

[13] D.C. Montgomery, Introduction to Statistical Quality Control, John Wiley & Sons, 2005.

[14] C. Robert, Bayesian Choice, 2nd Edition, Springer Verlag, NY, 2001.

[15] W.M. Bolstad, Introduction to Bayesian Statistics, John Wiley, 2004.

[16] R.B. Cooper, Introduction to queuing theory, Second edition, Elsevier North Holland Inc,

1981.

References

[17] I. Adan and J. Resing, Queuing Theory,

http://www.cs.duke.edu/ fishhai/misc/queue.pdf, 2001.

[18] S. Yamada, T. Ichimori, and M. Nishiwaki, "Optimal allocation policies for testing-resource

based on a software reliability growth model," Mathematical and Computer Modelling, vol.

22, pp. 295-301, 1995.

[19] J.H. Lo and C.Y. Huang, "An integration of fault detection and correction processes in soft­

ware reliability analysis," Journal of Systems and Software, vol. 79, no. 9, pp. 1312-1323,

2006.

[20] B.W. Boehm, C. Abts, A.W. Brown, S. Chulani, B.K. Clark, E. Horowitz, R. Madachy, D.

Reifer, and B. Steece, Software Cost Estimation with Cocomo II, Prentice Hall PTR, 2000.

[21] X. Cai, M.R. Lyu, K-F. Wong, and R. Ko, "Component-based software engineering: Tech­

nologies, Development frameworks, and quality assurance schemes," Proc. Asia-Pacific Soft­

ware Engineering Conferenece, pp.372-379, 2000.

[22] W. Kozacznski and G. Booch, "Component-based software engineering," IEEE Software, vol.

155, pp. 34-36, Sep./Oct. 1998.

[23] M.R. Lyu, S. Rangarajan, and A.P.A. van Moorsel, "Optimal allocation of test resources

for software reliabilitygrowth modeling in software development," IEEE Transactions on

Reliability, vol. 51, no. 2, pp. 183-192, 2002.

[24] C.Y. Huang and M.R. Lyu, "Optimal release time for software systems considering cost,

testing-effort, and test efficiency," IEEE Trans, on Reliability, vol. 54, pp. 583-591, 2005.

89

http://www.cs.duke.edu/

References

[25] A. Zaryabi, A. Ben Hamza, T. Bergander, and N. Mahe, "Software Fault Prediction Model­

ing," SAP Research Conference, Palo alto, CA, USA, 2008.

[26] A. Zaryabi, T. Bergander, A. Ben Hamza, and N. Mahe, "Queing-Thoretic Approach to Soft­

ware Resource Allocation," Proc. 17th International Conference on Software Engineering

and Data Engineering, LA, California, USA, 2008.

[27] A. Zaryabi, A. Ben Hamza, T. Bergander, and N. Mahe, "Optimal software release and main­

tenance policy via neural networks," to be submitted, 2009.

[28] O. Gauodin, "Optimal properties of the Laplace trend test for software-reliability models,"

IEEE Transactions on Reliability, vol. 20, no. 9, pp. 740-747, 1992.

[29] H.E. Ascher and C.K.Hansen, "Spurious exponentiality observed when incorrectly fitting a

distribution to nonstationary data," IEEE Transactions on Reliability, vol. 47, no. 4, pp. 451-

45, 1998.

[30] W.R. Gilks, S. Richardson, and D. Spiegelhalter, Markov chain Monte Carlo in Practice,

Chapman & Hall/CRC, 1995.

[31] Y. Nakagava and S. Myazaki, "Surrogate constraints algorithm for reliability optimization

problems with two constraints," IEEE Transactions on Reliability, vol. 30, no. 2, pp. 175-

180,1981.

[32] K.B. Misra and U. Sharma, "An efficient algorithm to solve integer programming problems

arising in system reliability design," IEEE Transactions on Reliability, vol. 40, no. 1, pp.

81-91, 1991.

90

References

[33] F.A. Tillman, C-L. Kwang, and W. Kuo, "Determining component reliability and redundancy

for optimum system reliability," IEEE Transactions on Reliability, vol. 26, pp. 162-165,1977.

[34] L. Painton and J. Campbell, "Genetic algorithms in optimization of system reliability," IEEE

Transactions on Reliability, vol. 44, no. 2, pp. 172-178, 1995.

[35] D.W. Coit and A.E. Smith, "Reliability optimization of series-parallel system using a genetic

algorithm," IEEE Transactions on Reliability, vol. 45, no. 2, pp. 254-260, 1996.

[36] B. Luong and D-B. Liu, "Resource allocation model in software development," Proc. IEEE

Annual Reliability and Maintainability Symposium, Philadelphia, USA, 2001.

[37] M.A. Marsan, S. Donatelli, and F. Neri, "GSPN models of multiserver multiqueue systems,"

Proc. International Workshop on Petri Nets and Performance Models, pp. 19-13, 1989.

[38] H. Okamura, Y. Watanabe, and T. Dohi, "An iterative scheme for maximum likelihood estima­

tion in software reliability modeling," Proc. International Symposium on Software Reliability

Engineering, pp. 246-256, 2003.

[39] T. Bergander, Y. Luo, and A. Ben Hamza, "Software defects prediction using operating char­

acteristic curves," Proc. IEEE International Conference on Information Reuse and Integra­

tion, Las Vegas, USA, 2007.

[40] Y. Luo, T. Bergander, and A. Ben Hamza, "Anisotropic Laplace trend to enhance software

reliability growth modelling," Proc. International Conference on Modelling and Simulation,

Montreal, Canada, May 2006.

[41] Y Luo, T. Bergander, and A. Ben Hamza, "Software reliability growth modelling using a

91

References

weighted Laplace test statistic," Proc. IEEE International Computer Software and Applica­

tions Conference, Beijing, China, July 2007.

[42] K. Rinsaka, and D. Tadashi, "Discrete optimal testing/maintenance policy in a software de-

velopement project," Asia Pacific Management Review, pp. 225-232, 2005.

[43] O. Hiroyuki, D. Tadashi, and O. Shunji, "A Reliability Assessment Method for Software

Products in Operational Phase-Proposal of an Accelerated Life Testing Model," Trans. Insti­

tute of Electronics, Information and Communication Engineers., vol. 83-A, no. 3, pp. 294-

301,2000.

[44] T. Kitaoka, S. Yamada, and S. Osaki, "A discrete non-homogeneous error detection rate

model for software reliability," IECE Trans., vol. E69, no.8, pp. 859865, 1986.

[45] N.F. Schneidewind, "Analysis of error processes in computer software," Proc. International

Conference on Reliable Software, IEEE Computer Society Press: Los Alamitos, CA, pp.

337346, 1975.

[46] M. Xie, Q.P. Hu, Y.P. Wu, and S.H. Ng, "A study of the modeling and analysis of software

fault-detection and fault-correction processes," Qual. Reliab. Engng. Int., vol. 23, pp. 459-

470, 2007.

[47] I.J. Myung, "Tutorial on maximum likelihood estimation," Journal of Mathematical Psychol­

ogy, vol. 47, pp. 90-100, 2003.

[48] Q.P. Hu, M. Xie, S.H. Ng, and G. Levitin, "Robust recurrent neural network modeling for

software fault detection and correction prediction," Reliability Engineering & System Safety,

vol. 92, no. 3, pp. 332-340, 2007.

92

References

[49] Y.S. Su, C.Y. Huang, Y.S. Chen, and J.X. Chen, "An artificial neural network-based approach

to software reliability assessment," Proc. IEEE TENCON Conference, pp. 1-6, 2005.

[50] M. Kimura, T. Toyota, and S. Yamada, "Economic analysis of software release problems with

warranty cost and reliability requirement," Reliability Engineering & System Safety, vol. 66,

pp. 49-55, 1999.

[51] G. Levitin and M. Xie, "Performance distribution of a fault-tolerant system in the presence

of failure correlation," HE Transactions, vol. 38, no. 6, pp. 499-509, 2006.

[52] M.C.K. Yang and A. Chao, "Reliability-estimation and stopping-rules for software testing,

based on repeated appearances of bugs," IEEE Trans, on Reliability, vol. 44, pp. 315-321,

1995.

[53] P.K. Kapur, P.C. Jha, and A.K. Bardhan, "Optimal allocation of testing resource for a modular

software," AsiaPacific Journal of Operational Research, vol. 21, pp. 333-354, 2004.

[54] T.M. Khoshgoftaar, R.M. Szabo, and P.J. Guasti, "Exploring the behavior of neural network

software quality models," Software Engineering Journal, vol. 10, no. 3, pp. 89-96, 1995.

[55] M. Xie, Software Reliability Modeling, World Scientific Publishing, 1991.

[56] W.R. Gilks, S. Richardson, and D. Spiegelhalter, Markov chain Monte Carlo in Practice,

Chapman & Hall/CRC, 1995.

[57] ANSI/IEEE, Standard Glossary of Software Engineering Terminology, STD-729-1991,

ANSI/IEEE, 1991.

93

References

[58] B. Littlewood and L. Strigini, "Software reliability and dependability: a roadmap," Proc.

22nd International Conference on Software Engineering, Limerick, pp. 177-188, 2000.

[59] RC. Pendharkar, G.H. Subramanian, and J. Rodger, "A probabilistic model for predicting

software development effort," IEEE Transactions on Software Engineering, vol. 31, no.7, pp.

615-624,2005.

[60] N. Nagappan and T. Ball, "Use of relative code churn measures to predict system defect

density," Proc. ACM1CSE conference, 2005.

94

