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Abstract 

Resource Allocation and Optimal Release Time in Software Systems 

Arash Zaryabi Langaroudi 

Software quality is directly correlated with the number of defects in software systems. As the 

complexity of software increases, manual inspection of software becomes prohibitively expensive. 

Thus, defect prediction is of paramount importance to project managers in allocating the limited 

resources effectively as well as providing many advantages such as the accurate estimation of 

project costs and schedules. This thesis addresses the issues of statistical fault prediction modeling, 

software resource allocation, and optimal software release and maintenance policy. 

A software defect prediction model using operating characteristic curves is presented. The 

main idea behind this predictor is to use geometric insight in helping construct an efficient predic­

tion method to reliably predict the cumulative number of defects during the software development 

process. Motivated by the widely used concept of queue models in communication systems and 

information processing systems, a resource allocation model which answers managerial questions 

related to project status and scheduling is then introduced. Using the proposed allocation model, 

managers will be more certain about making resource allocation decisions as well as measuring the 

system reliability and the quality of service provided to customers in terms of the expected response 

time. Finally, a novel stochastic model is proposed to describe the cost behavior of the operation, 

and estimate the optimal time by minimizing a cost function via artificial neural networks. Further, 

a detailed analysis of software release time and maintenance decision is also presented. 

The performance of the proposed approaches is validated on real data from actual SAP projects, 

and the experimental results demonstrate a compelling motivation for improved software quality. 
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CHAPTER 1 I 

Introduction 

Testing a software product during its development cycle yields a wealth of information that can be 

used to support the decision processes involved to finally bring the product to the customer [1-3]. 

In more detail, the testing process generates messages that identify potential software defects [4-6]. 

These messages are archived, and software companies have a wealth of historical records about 

them. 

Software quality is directly correlated with the number of defects in software systems. As the 

size and complexity of software increases, manual inspection of software becomes prohibitively 

expensive. Thus, defect prediction is of paramount importance to project managers in allocating the 

limited resources effectively, and it also provides many advantages such as the accurate estimation 

of project costs and schedules as well as improving product and process qualities. Selecting an 

appropriate defect predictor is a key practical issue [7] because many modeling approaches have 

been proposed in the literature including reliability growth models [8-11], Bayesian models [5], 

and artificial neural networks. Most of these models are built using historical defect data and are 

expected to generalize the statistical patterns for unseen projects. Thus, collecting defect data from 

past projects is the key challenge for constructing such predictors. 
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Chapter 1. Introduction 

Software systems are mostly developed by different teams under different environments. One 

of the biggest problems in software development process is to apply optimal strategies on the 

process to have reliable and cost effective software. There is a wide spread disagreement among 

software engineers about the appropriate effort to be devoted to software testing before release. 

Such conflict is attributed to resource constraints and time-to-market considerations. It is well-

known that more pre-release development and testing on systems can reduce future development 

costs and result in higher software quality. On the other hand, the pressure to deliver an operational 

product quickly can frequently affect the resource allocation among development phases or within 

one of the phases. Unfortunately, nowadays all these decisions are made intuitionally. However, 

human's brain is not able to take into account all the effecting parameters at the same time. Besides, 

human judgements are biased. Hence, there is a high demand for a strategic, mathematically 

proven approach for these decisions. 

In order to have a reliable and cost effective software knowledge about the number of expected 

failures in a software at any stage is a very valuable asset. It provides essential information for 

decision making in many software development activities, such as cost analysis, resource alloca­

tion, and release and maintenance time decision. It is also useful to obtain a software reliability 

measure. In addition, having the optimal decisions will result in software quality increase. 

The major part of this thesis is devoted to methods for optimal policies in software development 

processes. The first problem addressed in this thesis is software defect prediction using operating 

characteristic curves and Laplace trend statistic. The main idea behind our proposed technique is to 

use geometric insight in helping construct an efficient and fast prediction method to accurately pre­

dict the cumulative number of defects at any given stage during the software development process. 

On the other hand, using queuing theory and predictive models we introduce a resource allocation 
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model which answers managerial questions related to project status and scheduling. Using the 

proposed model, managers will be more certain in making resource allocation decisions from one 

project to the other. This model can also be used to measure the system reliability and quality of 

service provided to customers in terms of expected response time. Then, we introduce a novel 

stochastic model for optimal software testing and maintenance policy. We develop a discrete-time 

stochastic model in discrete operation condition, where the software testing environment and the 

operational environment are characterized by a environmental factor. In addition, we present a 

systematic study of fault detection and correction processes. In our model, we consider the fault 

correction time to estimate the optimal software release and maintenance time which takes into 

account the environmental factor and imperfect fault removal. More precisely, the total expected 

cost is formulated via the discrete type of software reliability models based on the difference be­

tween operational environments, imperfect fault removal, and fault correction process to remove a 

fault. To the best of our knowledge, there is no available method in the literature to find the optimal 

release and maintenance time of a software product by taking into account these assumptions. 

Real data from actual SAP projects is used to illustrate the effectiveness and the much im­

proved performance of the proposed methods in comparison with existing approaches. Although 

additional research efforts might provide a more detailed analysis of the predicted defects, the 

results presented in this thesis provide a compelling motivation for improved software quality. 

1.1 Framework and Motivation 

Software Quality Assurance (SQA) is defined as a planned and systematic approach to the eval­

uation of the quality of and adherence to software product standards, processes, and procedures. 
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SQA includes the process of assuring that standards and procedures are established and are fol­

lowed throughout the software acquisition life cycle. Compliance with agreed-upon standards and 

procedures is evaluated through process monitoring, product evaluation, and audits. Software de­

velopment and control processes should include quality assurance approval points, where an SQA 

evaluation of the product may be done in relation to the applicable standards. 

One of the many challenges faced when attempting to build a business case for software process 

improvement is the relative lack of credible measurement data. If a company does not have the data 

to build the business case, then it does not have the improvement project to get the data. It is the 

classical chicken-and-egg dilemma. The motivation behind this thesis is to implement statistical 

models for predicting software defects using available defect data and use this data to find the 

optimal strategies in software production. The practitioners collect software defect data during 

software development processes but the decision support power of the collected data is wasted in 

most of the organizations. These defect data combined with the data of other features become 

a well-suited repository for using Bayesian statistics and machine learning techniques to predict 

future defects. Furthermore, these prediction models can be used to systematically define the best 

possible strategies in software production. 

1.1.1 What are software defects? 

A software engineer's job is to deliver quality products for their planned costs, and on their com­

mitted schedules. Software products must also meet the user's functional needs and reliably and 

consistently do the user's job. While the software functions are most important to the program's 

users, these functions are not usable unless the software runs. To get the software to run reliably, 

however, engineers must remove almost all its defects. Thus, while there are many aspects to 
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software quality, the first quality concern must necessarily be with its defects. 

The reason defects are so important is main reason of customer dissatisfaction. Defects are 

inevitable because people make a lot of mistakes. In fact, even experienced programmers typically 

make a mistake for every seven to ten lines of code they develop. While they generally find and 

correct most of these defects when they compile and test their programs, they often still have a lot 

of defects in the finished product. 

Some people mistakenly refer to software defects (faults) as bugs. When programs are widely 

used and are applied in ways that their designers did not anticipate, seemingly trivial mistakes 

can have unforeseeable consequences. As widely used software systems are enhanced to meet 

new needs, latent problems can be exposed and a trivial-seeming defect can truly become dan­

gerous. While the vast majority of trivial defects have trivial consequences, a small percentage 

of seemingly silly mistakes can cause serious problems. Since there is no way to know which of 

these simple mistakes will have serious consequences, we must treat them all as potentially serious 

defects, not as trivial-seeming "bugs". 

The term defect or fault refers to something that is wrong with a program. It could be a 

misspelling, a punctuation mistake, or an incorrect program statement. Defects can be in programs, 

in designs, or even in the requirements, specifications, or other documentation. Defects can be 

redundant or extra statements, incorrect statements, or omitted program sections. A defect, in fact, 

is anything that detracts from the program's ability to completely and effectively meet the user's 

needs. A defect is thus an objective thing. It is something you can identify, describe, and count. 

Failure, is when a defect becomes active or in other words we face that defect. 

Simple coding mistakes can produce very destructive or hard-to-find defects. Conversely, many 

sophisticated design defects are often easy to find. The sophistication of the design mistake and the 
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impact of the resulting defect are thus largely independent. Even trivial implementation errors can 

cause serious system problems. This is particularly important since the source of most software 

defects is simple programmer oversights and mistakes. While design issues are always important, 

initially developed programs typically have few design defects compared to the number of simple 

oversights, typos, and goofs. To improve program quality, it is thus essential that engineers learn 

to manage all the defects they inject in their programs. 

1.1.2 Software reliability growth models 

Achieving highly reliable software from the customers perspective is a demanding job for all soft­

ware engineers and reliability engineers. [12] summarizes the following four technical areas which 

are applicable to achieving reliable software systems, and they can also be regarded as four fault 

lifecycle techniques: 

1. Fault prevention: to avoid, by construction, fault occurrences. 

2. Fault removal: to detect, by verification and validation, the existence of faults and eliminate 

them. 

3. Fault tolerance: to provide, by redundancy, service complying with the specification in spite 

of faults having occurred or occurring. 

4. Fault/failure forecasting: to estimate, by evaluation, the presence of faults and the occur­

rences and consequences of failures. This has been the main focus of software reliability 

modeling. 

Fault prevention is the initial defensive mechanism against unreliability. A fault which is never 

created costs nothing to fix. Fault prevention is therefore the inherent objective of every software 
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engineering methodology. Fault prevention mechanisms cannot guarantee avoidance of all soft­

ware faults. When faults are injected into the software, fault removal is the next protective means. 

Two practical approaches for fault removal are software inspection and software testing, both of 

which have become standard industry practices in quality assurance. 

When inherent faults remain undetected through the inspection and testing processes, they will 

stay with the software when it is released into the field. Fault tolerance is the last defending line 

in preventing faults from manifesting themselves as system failures. Fault tolerance is the survival 

attribute of software systems in terms of their ability to deliver continuous service to the customers. 

Software fault tolerance techniques enable software systems to (1) prevent dormant software faults 

from becoming active, such as defensive programming to check for input and output conditions 

and forbid illegal operations; (2) contain the manifested software errors within a confined boundary 

without further propagation, such as exception handling routines to treat unsuccessful operations; 

(3) recover software operations from erroneous conditions, such as checkpointing and rollback 

mechanisms; and (4) tolerate system-level faults methodically, such as employing design diver­

sity in the software development. Finally if software failures are destined to occur, it is critical to 

estimate and predict them. Fault/failure forecasting involves formulation of the fault/failure rela­

tionship, an understanding of the operational environment, the establishment of software reliability 

models, developing procedures and mechanisms for software reliability measurement, and analyz­

ing and evaluating the measurement results. The ability to determine software reliability not only 

gives us guidance about software quality and when to stop testing, but also provides information 

for software maintenance needs. 

Software reliability may be the most important quality attribute of software, due to the fact that 

it quantifies software failures during the software development process. Software reliability models 
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usually make a number of common assumptions, as follows. (1) The operation environment where 

the reliability is to be measured is the same as the testing environment in which the reliability model 

has been parameterized. (2) Once a failure occurs, the fault which causes the failure is immediately 

removed. (3) The fault removal process will not introduce new faults. (4) The number of faults 

inherent in the software and the way these faults manifest themselves to cause failures follow, at 

least in a statistical sense, certain mathematical formulae. 

There are essentially two types of software reliability models: 

• those that attempt to predict software reliability from design parameters 

• those that attempt to predict software reliability from test data 

The first type of models are usually called "defect density" models and use code characteristics 

such as lines of code, nesting of loops, external references, input/outputs, and so forth to estimate 

the number of defects in the software. The second type of models are often called software reliabil­

ity growth models (SRGMs) since the number of faults (as well as the failure rate) of the software 

system reduces when the testing progresses, resulting in growth of reliability. These models at­

tempt to statistically correlate defect detection data with known functions such as an exponential 

function. 

Each software defect encountered entails a significant cost for software companies. Hence the 

knowledge of the number of defects in a software product during its lifecycle is a very valuable as­

set. Being able to estimate the number of defects will substantially improve the decision processes 

in software lifecycle like time to release and maintenance time. In addition, the production process 

of the software can be considerably improved by employing a prediction model that reliably the 

number of defects. 
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During the development process of software, many defects may be introduced and often lead 

to critical problems and complicated breakdowns of computer systems [1]. Thus there is a high de­

mand for controlling the quality and reliability of software development process. As an evaluation 

for software reliability, number of defects can be used. In the traditional software development 

environment, software reliability evaluation provides useful guidance in balancing reliability, time 

to market and development cost [2]. Therefore, there is a greater than ever demand for prediction 

the quality and reliability of software. 

Among all SRGMs, a large family of stochastic reliability models are based on a non homo­

geneous Poisson process, which is known as NHPP reliability models, has been widely used to 

track reliability improvement during software testing. These models enable software developers 

to evaluate software reliability in a quantitative manner. They have also been successfully used to 

provide guidance in making decisions such as when to terminate testing the software or how to 

allocate available recourses. However, software development is a very complex process and there 

are still issues that have not yet been addressed. 

Software fault and failure reports are available in three basic forms: 

1. Sequence of ordered failure times 0 < ti < t2 < . •. < tn 

2. Sequence of failure times T; where TJ = £* — U-x, i = 1 , . . . , n 

3. Cumulative number of faults. 

The general NHPP software reliability growth model is formulated based on the following 

assumptions: 

• The occurrence of software faults follows an NHPP with mean value function m(t) 

and failure intensity function A(£). 
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• The software fault intensity rate at any time is proportional to the number of remaining 

faults in the software at that time. 

• When a software fault is detected, a debugging effort takes place immediately. 

Let {N(t),t > 0} denote a counting process representing the cumulative number of faults 

detected by the time t, and m(t) = E[N(t)} denote its expectation. The failure intensity \(t) and 

the mean value functions of the software at time t are related as follows 

m(t) = / X(s)ds 
Jo 

and 

dm{t) 
\{t). 

dt 

The cumulative number of faults detected at time t follows a, Poisson distribution with time-

dependent mean value function as follows 

P{N(t)=n} = 1^t^e-mit\ n = 0,1,2,...,oo 

The software reliability, i.e., the probability that no failures occur in (s, s + t) given that the last 

failure occurred at testing time s is 

R(t\s) = exp[-(m(t + s) - m(t))] 

The mean value function m(t) is nondecreasing with respect to testing time t under the bounded 

condition 771(00) — a, where a is the expected total number of faults to be eventually detected. 

Knowing its value can help us to determine whether the software is ready to be released to the 

customers and how much more testing resources are required. It can also provide an estimate 

of the number of failures that will eventually be encountered by the customers. The mean value 
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Model name 

Log-linear 

Exponential (Goel-Okumoto) 
Weibull (Generalized Goel-Okumoto) 

Power law 

S-shaped 

m(i) 
exp(a + pt) 

0 
Q[1 - exp(-0t)] 

a[l - exp(-pa)} 

( = ) ' 

a[l-(l+pt)exp(-pt)} 

X(t) 

exp(a + Pt) 

apexp{-Pt) 
ap-yf-lexv{-Pt~t) 

aP'Hexp(-pt) 

Table 1.1: NHPP models. 

function can be expressed as follows 

m(t) = aF(t), 

where F(t) is the cumulative distribution function. Hence, 

X(t) =aF\t) = [a-m(t)}: 
F'{t) 

[a-m(t)}p(t), 
' 1 - F(t) 

where p(t) is the failure occurrence rate per fault of the software, or the rate at which the individual 

faults manifest themselves as failures during testing. The quantity [a — rn(t)] denotes the expected 

number of faults remaining. The failure occurrence rate per fault (also known as hazard function) 

Pit) 
\{t) 

m(oo) — m{t) 

can be a constant, increasing, decreasing, or increasing/decreasing. 

Table 2.1 and Figure 1.1 show examples of NHPP models with different failure intensity func­

tions X(t; 6), where 6 = (a, (3). 

1.1.3 Operating characteristic curves 

A statistical test provides a mechanism for making quantitative decisions about a process or pro­

cesses [13]. The intent is to determine whether there is enough evidence to "reject" a conjecture or 
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Figure 1.1: Illustration of failure intensity functions. 

hypothesis about the process. The conjecture is called the null hypothesis. Not rejecting may be a 

good result if we want to continue to act as if we "believe" the null hypothesis is true. Or it may be 

a disappointing result, possibly indicating we may not yet have enough data to "prove" something 

by rejecting the null hypothesis. A classic use of a statistical test occurs in process control studies, 

and it requires a pair of hypotheses: 

H0 : a null hypothesis 

Hi : an alternative hypothesis 

The null hypothesis is a statement about a belief. We may doubt that the null hypothesis is true, 

which might be why we are "testing" it. The alternative hypothesis might, in fact, be what we 

believe to be true. The test procedure is constructed so that the risk of rejecting the null hypothesis, 

when it is in fact true, is small. This risk, a, is often referred to as the significance level of the test. 

By having a test with a small value of a, we feel that we have actually "proved" something when 
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we reject the null hypothesis. The risk of failing to reject the null hypothesis when it is in fact 

false is not chosen by the user but is determined, as one might expect, by the magnitude of the real 

discrepancy. This risk, (3, is usually referred to as the error of the second kind. Large discrepancies 

between reality and the null hypothesis are easier to detect and lead to small errors of the second 

kind; while small discrepancies are more difficult to detect and lead to large errors of the second 

kind. Also the risk (3 increases as the risk a decreases. The risks of errors of the second kind are 

usually summarized by an operating characteristic curve (OC) for the test [13]. 

1.1.4 Bayesian statistics 

Bayesian inference is statistical inference in which evidence or observations are used to update or 

to newly infer the probability that a hypothesis may be true. The name "Bayesian" comes from the 

frequent use of Bayes' theorem in the inference process [14,15]. Bayesian inference uses aspects 

of the scientific method, which involves collecting evidence that is meant to be consistent or in­

consistent with a given hypothesis. As evidence accumulates, the degree of belief in a hypothesis 

changes. With enough evidence, it will often become very high or very low. Thus, proponents 

of Bayesian inference say that it can be used to discriminate between conflicting hypotheses: hy­

potheses with a very high degree of belief should be accepted as true and those with a very low 

degree of belief should be rejected as false. However, detractors say that this inference method 

may be biased due to initial beliefs that one needs to hold before any evidence is ever collected. 

Bayesian inference uses a numerical estimate of the degree of belief in a hypothesis before 

evidence has been observed and calculates a numerical estimate of the degree of belief in the 

hypothesis after evidence has been observed. Bayesian inference usually relies on degrees of 

belief, or subjective probabilities, in the induction process and does not necessarily claim to provide 
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an objective method of induction. Nonetheless, some Bayesian statisticians believe probabilities 

can have an objective value and therefore Bayesian inference can provide an objective method of 

induction. Bayes' theorem adjusts probabilities given new evidence in the following way: 

P(E\H0)P(H0) 
P(H0\E) = ^ , 

where 

• H0 represents the null hypothesis that was inferred before new evidence, E, became 

available. 

• P{H0) is called the prior probability of Ho. 

• P(E\H0) is called the conditional probability of seeing the evidence E given that the 

hypothesis H0 is true. It is also called the likelihood function when it is expressed as 

a function of Ho given E. 

• P(E) is called the marginal probability of E: the probability of witnessing the new 

evidence E under all mutually exclusive hypotheses. It can be calculated as the sum 

of the product of all probabilities of mutually exclusive hypotheses and corresponding 

conditional probabilities: Y, P(E\H)P(HZ). 

• P(H0\E) is called the posterior probability of H0 given E. 

The factor P(E\H0)/P(E) represents the impact that the evidence has on the belief in the hypoth­

esis. If it is likely that the evidence will be observed when the hypothesis under consideration is 

true, then this factor will be large. Multiplying the prior probability of the hypothesis by this factor 

would result in a large posterior probability of the hypothesis given the evidence. Under Bayesian 

inference, Bayes theorem therefore measures how much new evidence should alter a belief in a 

hypothesis. Bayesian methods aim at assigning prior distributions to the parameters in the model 

in order to incorporate whatever a priori quantitative or qualitative knowledge we have available, 
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and then to update these priors in the light of the data, yielding a posterior distribution via Bayes 

Theorem. The ability to include prior information in the model is not only an attractive prag­

matic feature of the Bayesian approach, but it is also theoretically vital for guaranteeing coherent 

inferences. 

1.1.5 Neural networks in software reliability growth modeling 

Neural networks are composed of simple elements operating in parallel [16,17]. These elements 

are inspired by biological nervous systems. As in nature, the network function is determined 

largely by the connections between elements. We can train a neural network to perform a particular 

function by adjusting the values of the connections (weights) between elements. Commonly neural 

networks are adjusted, or trained, so that a particular input leads to a specific target output. The 

network is adjusted, based on a comparison of the output and the target, until the network output 

matches the target. Typically many such input/target pairs are used, in this supervised learning, 

to train a network. Neural networks have been trained to perform complex functions in various 

fields of application including pattern recognition, identification, classification, speech, vision and 

control systems. Neural networks are learning mechanisms that can approximate any non-linear 

continuous functions based on the given data. The goal of using neural network is to approximate 

a non-linear function that can receive a vector X = [x\, ...,xn) in Rn and has a output vector 

Y = (yi,..., ym) in Rm. Hence, we define the network as follows: 

Y = F(X) (1) 

The elements of Y(yk) are given by 

yk=gih + J2w°jkhA , k = l,...,M (2) 
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where wQ-k is the output weight from the hidden layer node j to the output layer node k, hj is the 

output of the hidden layer j , bk is the bias of the output node k, and g is the activation function in 

output layers. The hidden layer values are given by 

h^fU + ^wlxA, j = l,...,H (3) 

where w\- is the input weight from the input layer node i to the hidden layer node j , Xi is the value 

at input note i, bj is the bias of node j , and / is the activation function in the hidden layer. 

1.1.6 Software resource allocation 

Modern complex software systems are mostly developed incrementally with different components 

by different teams under different environments [18]. In such a situation estimating the cost of a 

product is not an easy task. Another problem in software engineering is how to quantitatively mea­

sure the quality of the software. Most of the software quality measurements are based on counting 

the defects found in a software systems. These approaches are typically developer-oriented. Opti­

mal software resource allocation is one of the most important applications of defect prediction and 

SRGMs. Several research efforts have been conducted in this field and most of them are based on 

SRGMs and defect prediction [19-23]. 

1.1.7 Optimal software release time 

In order to make the business a success, developing high quality products is of paramount impor­

tance. In a software development project, it is important to know when to stop software testing and 

deliver the software to the market [24]. 
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1.2 Thesis Overview and Contributions 

The organization of this thesis is as follows: 

Q The first Chapter contains a brief review of essential concepts and definitions which we will 

refer to throughout the thesis, and presents a short summary of material relevant to soft­

ware defect prediction methods, Bayesian statistics, operating characteristic curves, neural 

networks, resource allocation, and optimal software release time. 

Q In Chapter 2, we present a software defect prediction model using operating characteristic 

curves and Laplace trend statistic [25]. The main idea behind our proposed technique is to 

use geometric insight in helping construct an efficient and fast prediction method to accu­

rately predict the cumulative number of defects during the software development process. 

Experimental results illustrate the effectiveness and the much improved performance of the 

proposed method in comparison with the Bayesian prediction approaches. 

D In Chapter 3, we introduce a new resource allocation model that answers managerial ques­

tions related to project status and scheduling [26]. Using the proposed model, managers will 

be more certain about making resource allocation decisions. This model can also be used to 

measure the system reliability and the quality of service provided to customers in terms of 

the expected response time. Experimental results illustrate the effectiveness of the proposed 

method in the software development process. 

D In Chapter 4, we develop a discrete-time stochastic model for optimal software testing and 

maintenance policy, where the software testing environment and the operational environment 

is characterized by an environmental factor [27]. We present a systematic study of defect 
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detection and correction processes. In our model, we consider the defect correction time 

to estimate the optimal software release and maintenance time which takes into account the 

environmental factor and the imperfect fault removal. More precisely, the total expected cost 

is formulated via a discrete-type software reliability model based on the difference between 

operational environments, imperfect defect removal, and defect correction process. 

• In the Conclusions Chapter, we summarize the contributions of this thesis, and we propose 

several future research directions that are directly or indirectly related to the work performed 

in this thesis. 
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I 
CHAPTER 

Predictive Operating Characteristic Curves 

In this chapter, we introduce a software defect prediction model based on the concept of operating 

characteristic curve and Laplace trend statistic. The idea is to use operating characteristic curves 

in statistical quality control and a geometric approach to construct an efficient, fast, and accu­

rate prediction method to estimate the cumulative number of software defects during the software 

development process. The experimental results demonstrate the effectiveness and the improved 

performance of the proposed method in comparison with the Bayesian prediction approaches. 

2.1 Introduction 

Knowledge about the number of expected defects in a software product at any stage provide es­

sential information for decision making in many software development activities, such as cost 

analysis, resource allocation in testing and release decision time. The aim of software reliability 

growth modelling (SRGM) is to explain the behavior of software testing process caused by faults. 

Most existing SRGMs only model fault detection processes with unrealistic assumptions such as 

perfect debugging. In this report, we use an improved SRGM with more accuracy and realistic 
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assumptions. 

During the development process of computer software systems, many software defects may 

be introduced and often lead to critical problems and complicated breakdowns of computer sys­

tems [1]. Hence, there is an increasing demand for controlling the software development process 

in terms of quality and reliability. Software reliability can be evaluated by the number of detected 

faults. A software failure is defined as an unacceptable departure of program operation caused by a 

software fault remaining in the software system [2,3]. In the traditional software development en­

vironment, software reliability evaluation, which shorten development intervals and reduce devel­

opment costs, provides useful guidance in balancing reliability, time-to-market and development 

cost [6]. Hence, there is an increasing demand for prediction the quality and reliability of software. 

Several software reliability prediction models have been proposed in the literature for esti­

mating system reliability, but all these kinds of models make unrealistic assumptions to ensure 

solvability [2,8-11,19,28,29]. These unreasonable assumptions have limited the applications of 

these models [5,7]. 

Bayesian statistics provide a framework for combining observed data with prior assumptions 

in order to model stochastic systems. Bayesian methods aim at assigning prior distributions to the 

parameters in the model in order to incorporate whatever a priori quantitative or qualitative knowl­

edge we have available, and then to update these priors in the light of the data, yielding a posterior 

distribution via Bayes's Theorem [15]. The ability to include prior information in the model is not 

only an attractive pragmatic feature of the Bayesian approach, but it is also theoretically vital for 

guaranteeing coherent inferences. 

Motivated by the widely used concept of operating characteristic (OC) curves in statistical 

quality control to select the sample size at the outset of an experiment [13], we propose in this 
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chapter a software defect prediction technique using OC curves in order to predict the cumulative 

number of failures at any given time. The core idea behind our proposed methodology is to use 

geometric insight in helping construct an efficient and fast prediction method to accurately predict 

the cumulative number of failures at any given time. 

The layout of this chapter is organized as follows. In the next Section, a problem formulation 

is stated. In Section 2.3, we briefly review some Bayesian prediction models that will be used for 

comparison with our proposed approach. In Section 2.4, we propose a new prediction algorithm 

based on OC curves. In Section 2.5, we present experimental results to demonstrate the much 

improved performance of the proposed approach in the prediction of software defects. Finally, 

some conclusions are included in Section 2.6. 

2.2 Problem Formulation 

Usually the fault reports are available in three basic forms: 

1. in the form of a sequence of ordered time of occurrences 

0 < £i < t2 < . .. < tn 

2. in the form of a sequence of interfailure times Tj where r, = U — £*_! for i = 1 , . . . , n 

3. in the form of cumulative number of failures detected by a time N(ti). 

Failure^) and interfailure (r(j))times are related by 

3 = 1 

The cumulative number of failures defines a non homogeneous Poisson process (NHPP) with 

failure intensity or rate function X(ti) which is a function of time. The mean value function m{ti) = 
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E(N(ti)) of the process is given by m(ti) = JQ' \{u)du. Moreover, the probability of having K 

failures in an interval is: 

P(N(tj) - N(U) = K) 

(m(ti) — m(ti))K . , , , . . . . 
= V K31 , exp(-(mfo) - m(*0)). 

This is equal to say N(t + s) — N(t) is a Poisson distributed with expected value 

tj 

X(u)du = m(tj) — m(ti). 

where A(t) is the time dependant intensity. Hence, the number of failures in any interval [U,tj) 

defines a NHPP. 

According to ANSI, Software Reliability is defined as the probability of failure-free software 

operation for a specified period of time in a specified environment [57]. Although Software Re­

liability is defined as a probabilistic function, and comes with the notion of time, we must note 

that, different from traditional Hardware Reliability, Software Reliability is not a direct function 

of time. Electronic and mechanical parts may become "old" and wear out with time and usage, but 

software will not rust or wear-out during its life cycle. Software will not change over time unless 

intentionally changed or upgraded. Software reliability R(tj\ti) is defined as the probability that 

no software failure is detected in the time interval (t^U + tj), given that the last failure occurred 

at testing time ti, and it is given by 

R{tj\ti) = exp(-(m(ti + tj) -m(ti))). 

It is worth pointing out that if the failure intensity function is time-independent, then the cu­

mulative number of failures N(tz) defines a homogeneous Poisson process (HPP). 
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Model name 

Log-linear 

Exponential 

Power law 

m(t) 

exp(a + bt) 
b 

o(l — exp(-6i)) 

(9' 

X(t) 

exp(a + bt) 

abexp(-bt) 

a \aj 

Table 2.1: NHPP models. 

Note that the interfailure times may have non-exponential distributions, and hence the cumula­

tive number of failures N(U) would define a general renewal process. 

The problem addressed in this section may now be concisely described as follows: Given the 

historical failure times data T> = {ti,... ,tn} and its corresponding cumulative number of failures 

data A/" = {N(ti), • • -, N(tn)}, find the predicted cumulative number of failures at any given time 

t. 

2.3 Prediction using Bayesian Statistics 

Scientific experimental or observational results generally consist of (possibly many) sets of data. 

Bayesian statistics uses both prior and sample information. Usually something is known about 

possible parameter values before the experiment is performed. 

We model the failure times using an NHPP with a parameterized failure intensity function 

X(t;0), where 6 is a vector of unknown parameters which can be obtained by historical data. 

Table 2.1 shows examples of NHPP models with different failure intensity functions X(t; 6), where 

0 = {a,b). 

Bayesian methods aim at assigning prior distributions to the parameters 9 is the model in order 

to incorporate whatever a priori quantitative or qualitative knowledge we have available, and then 

to update these priors in the light of the data, yielding a posterior distribution via Bayes's Theorem. 
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The ability to include prior information in the model is not only an attractive pragmatic feature of 

the Bayesian approach, but it is also theoretically vital for guaranteeing coherent inferences. 

2.3.1 Predictive density 

Consider the problem of making prediction for a new failure time t without any measurements 

on the predictors for any of the individuals so that the dataset is just given by V = {ti,... ,tn}. 

That is, we want to determine p(t\T>), the probability density function of the new failure time 

conditioned on the observed failure times. The function p(t\T>) is referred to as predictive density 

of a new failure time and may be written in integral form as 

P(t\v) = J p(t\v,e)P(e\v)dd, 

where p(0\V) is the posterior distribution of 0 given by 

r)(Rw\ = p(pl°)p(g) = {K=1p(u\9)}p(e) 
P[ ' ) P(P) HnLMu\e)}p(9)dff 

and p(0) is the prior distribution which represents information available about the unknown pa­

rameters. The prior estimate provides a means of combining exogenous information with observed 

data in order to estimate parameters of a probability distribution. It is convenient to choose sim­

ple forms of prior distributions which result in computationally tractable posterior distributions. 

Hence, the posterior distribution is found by combining the prior distribution p{6) with the proba­

bility p(V\9) of observing the data given the parameters. The probability p(V\6) is also called the 

likelihood function of the data and it is given by 

n 

p(v\9) = l\p(u\e), 
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where 

p(ti\0) = A(^;0)exp t - X(u;9)du) 

assuming that the failure times data are independent and identically distributed (iid). The likelihood 

function is the probability of observing the given data as a function of 9. 

Hence, the Bayesian approach consists of three main steps: 

1. Assign prior distributions to all the unknown parameters. 

2. Determine the likelihood of the data given the parameters. 

3. Determine the posterior distribution of the parameters given the data. 

Maximum Likelihood is a statistical estimator that can be used to estimate a models unknown 

parameters values from data. The maximum likelihood estimate (MLE) of 9 is that value of 9 

that maximizes the likelihood function p(V\9) or equivalently that maximizes the log-likelihood 

function: 

log(p(P|0)) 

and it is the value that makes the observed data the most "probable". 

2.3.2 Bayesian prediction 

The Bayesian prediction approach proposed in [4] is based on the power law model shown in 

Table 2.1. The parameter b of the power law model may be estimated as follows 

Ett^og{N(tn)/N(t)r 
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and the predicted cumulative number of defects N(t) at time t is given by 

ft \lfb 

N(t) = N(tn)l-F(2t,2tnn)j , (1) 

where 7 = P{xi < Xy,n}> an<^ ^{2t, 2tn; 7) denotes the 7 percentage point of the F-distribution 

with 2t and 2tn degrees of freedom. 

2.3.3 Bayesian prediction using MCMC 

Markov chain Monte Carlo (MCMC) methods (which include random walk Monte Carlo meth­

ods), are a class of algorithms for sampling from probability distributions based on constructing a 

Markov chain that has the desired distribution as its equilibrium distribution. The state of the chain 

after a large number of steps is then used as a sample from the desired distribution. The quality of 

the sample improves as a function of the number of steps. 

If we draw samples 0^\ . . . , 9^ from the posterior distribution p{0\T>), then the predictive 

density may be approximated as follows 

N N 

P(t\v)« J>(^,0«)P(0«|p) = -J2p(t\v,oW). 

1 = 1 1 = 1 

The samples 0 ( 1 ) , . . . , 0 ^ are draws from the posterior distribution of 8, and may be obtained 

using Markov chain Monte Carlo (MCMC) simulation algorithms [14,56]. 

For the Bayesian prediction approach using MCMC, the predicted cumulative number of de­

fects N(t) at time t is also given by Eq. (5) where b is estimated using the MCMC algorithm [14]. 

The algorithm of MCMC estimate parameters b consists of the following steps: 

1. Using MCMC to simulate each parameter distribution. 
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2. Estimate the maximal likely value of parameter distribution which gives us the value of 

expected parameter. 

2.4 Proposed Method 

2.4.1 POC curve 

Consider the two-sided hypothesis 

HQ : t = tk 

H\ : t ^ tk 

where H0 and Hi are the null and the alternative hypotheses respectively. 

Define x2
a k

 a s t n e percentage value of the chi-square distribution with k degrees of freedom 

such that the probability that the chi-square distribution x\ exceeds this value is a, that is 

P{xl > xl,k) = a = P{reject#0 |#ois true}, 

where a € (0,1) is the probability of type I error (also referred to as the significance level). In 

other words we can be 100(1 — a)% confident about the result. 

Note that in probability theory and statistics, the chi-square distribution are k independent, 

normally distributed random variables. 

Suppose t = tk + S, where 6 > 0 (we have the same result for 5 < 0) then HQ is false and Hi 

is true. Hence, the distribution of the test statistic 

z = Xt-h 
V2k 

27 



has a mean value equal to 5/\2k, and a type II error will be made only if —xa/2 — % < Xa/2-

That is, the probability of type II error 0 = Pjaccept H0\H0 is false} may be expressed as 

p = * xit - -f= - * -4 , t 
W V 2 ' V2A;, 

where $ is the cumulative distribution function of Xt-

The function 0(t) is evaluated by finding the probability that the test statistic Z falls in the 

acceptance region given a particular value of t. 

An operating Characteristic (OC) curve is a graph used to determine the probability of accept­

ing lots as a function of the lots or processes quality level when using various sampling plans. In 

other words the operating characteristic (OC) curve of a test is the plot of 0{t) against t. Note that 

given the OC curve parameters 0, a, k, and S, we can derive the predicted cumulative number of 

defects at time t as follows 

N{t) = (^r) (x^+xw)2- (2) 

Figure 2.1 depicts a plot of the cumulative number of defects using OC curves. 

The above method does not take into account the historical data to predict. To overcome this 

limitation, we propose a predictive operating characteristic (POC) curve where the predicted cu­

mulative number of defects at time t is calculated as follows 

and the parameter p is given by (see Figure 2.2) 

\N(t), ift<tn 

[N(tn), iftn<t<T. 

28 



^ 

4 

3.5 

3 

2.5 

2 

1.5 

1 

0.5 

0 

X10 

-

• ' 

^^ 

' ' 

y< 

0 10 20 30 40 50 60 70 

t 

Figure 2.1: Illustration of cumulative number of defects using OC curves. 

T 

V = N(t) V = N(tn) 

Figure 2.2: Illustration of the p parameter in the POC curve. 

2.4.2 Laplace trend analysis 

One of the drawbacks of POC prediction method is its inability to predict accurately the cumulative 

number of defects when the software is not stable, that is when the software does not have a 

reliability growth yet. To circumvent this limitation, we used a weighted Laplace trend to validate 

the reliability and stability of the software before using POC for defect prediction [40]. 
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Suppose we wish to test the following hypotheses: 

H0 : HPP 

#1 : NHPP 

where H0 and Hi are the null and the alternative hypotheses respectively. 

Under the null hypothesis, we define the Laplace trend as: 

where &i is a component of the vector 9 such that its value makes the intensity function A(£; 9) time 

independent. 

With type I error probability a, we have the following interpretation of the Laplace trend value: 

• U < —za: reliability growth (stable system behavior). 

• U > za: reliability deterioration (non-stable system). 

• —za < U < za: stable reliability (in control behavior). 

where za is the upper a percentage of the standard normal distribution Z such that P{Z > za) = 

a. If H0 is true, the distribution of the Laplace test statistic approximately follows standard normal 

distribution JV(0,1). 

Note that Laplace trend analysis is used to determine whether the pattern of defects is signif­

icantly changing with respect time or not. To have a better analysis we may also rise a weighted 

Laplace test statistic as discussed in [41]. However, for simplicity we focus on the standard Laplace 

test statistic. 

Now we try to find a "Laplace trend stopping increase" point (t = ts) as shown in Figure 2.3. 

We can start using the POC curve when Laplace trend starts to decrease (t = ts,..., T) because at 

this point the behavior of the system becomes stable and therefore we have reliability growth. 
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Figure 2.3: Laplace Factor vs. Defect Time. 

2.4.3 Improved POC curve 

In a real software project, removal of one defect might cause other defects in the system. In 

addition, the defect causing the failure cannot be removed immediately. In the improved POC 

curve approach, we can incorporate these assumptions to be able to predict the behavior of the 

software in a better way. 

To overcome the problem of imperfect debugging, we assume that when a defect occurs and 

the correction process has been performed the defect is repaired with a probability p, in which case 

the defect rate is reduced by X(t). Otherwise the number of defects in the software and the defect 

rate remains the same. Therefore, the total number of expected occurrence of a defect in the system 
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is 1/p. Hence, the predicted cumulative number of defects in the system at time t becomes 

Moreover, if the information of defect detection process and defect correction process is available, 

we can model the defect detection process separately from the defect correction process. On the 

other hand, due to the fact that a defect can be removed only after its detection; it is more appropri­

ate if the defect correction process to be delayed defect detection process. For simplicity we can 

assume for each detected defect takes the same amount of time A. Hence, given the defect rate 

\(t), the intensity of defect correction is given by 

[ 0 t< A 
K(t) = { 

I \{t- A) t > A 
Hence, the predicted cumulative number of corrected defects in the system at time t is given by 

Nc(t) = -N(t- A) (5) 
V 

With these improvements, we can now describe and predict the software defect behavior in its 

life cycle. 

2.5 Experimental Results 

We tested our proposed method on real software datasets (DS I and DS II) that were taken from 

SAP development systems. These datasets contains monthly software defects that were recorded 

for a period of 60 and 59 months as shown in Table 2.2 and Table 2.3 respectively. 

In all the experiments, we use a probability of type I error a = 0.01. The value of 7 was set to 

\-a. Figure 2.4 and Figure 2.5 depict the cumulative number of defects versus defect time (month) 

during a software life cycle. 
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Month (u) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

N(U) 
17 
39 
53 
87 
106 
140 
165 
286 
359 
412 
461 
555 
654 
747 
836 
926 
989 
1,049 
1,103 
1,152 
1,182 
1,213 
1,225 
1,266 
1,306 
1,331 
1,363 
1,443 
1,495 
1,737 

Month (ti) 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

N(U) 
2,217 
2,430 
2,586 
3,884 
4,099 
4,385 
5,104 
8,074 
10,120 
12,618 
16,715 
21,606 
24,592 
27,789 
29,739 
30,843 
32,011 
32,599 
33,010 
33,707 
34,103 
34,426 
34,736 
34,903 
35,110 
35,261 
35,440 
35,614 
35,763 
35,876 

Table 2.2: Software defect data (DS I). 

Figure 2.6 and Figure 2.7 displays Laplace factor vs. Defect Time, and it clearly illustrates after 

the 45th month for DS I and after the 15th month for DS I, the Laplace trend starts to decrease. 

2.5.1 Qualitative evaluation of the proposed method 

In this subsection, we present simulation results where the Bayesian prediction method [4] and the 

POC curve algorithm are applied to the software failure dataset (DS I) and also to the truncated 
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Month (ti) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

N(U) 
3 
5 
19 
30 
74 
115 
543 
1,379 
3,372 
7,272 
11,434 
14,291 
17,429 
18,806 
21,625 
24,201 
26,096 
27,221 
28,395 
29,105 
29,553 
30,133 
30,712 
32,111 
32,894 
33,476 
34,209 
34,499 
34,658 
34,781 

Month (U) 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

N(U) 
34,909 
35,055 
35,129 
35,198 
35,269 
35,339 
35,421 
35,556 
35,617 
35,664 
35,707 
35,789 
35,852 
35,922 
35,951 
35,974 
36,004 
36,032 
36,047 
36,292 
36,374 
36,448 
36,469 
36,510 
36,521 
36,574 
36,606 
36,617 
36,631 

Table 2.3: Software defect data (DS II). 

software failure data (DS II). Laplace trend starts to decrease, meaning that software reliability 

starts to grow. Based on our extensive experimentation, we decided to start applying the model 

from this point. Figure 2.8 through Figure 2.11 show the prediction results of the proposed POC 

curve in comparison with the Bayesian approaches for both datasets DS I and DS II. These results 

indicate that our method outperforms the Bayesian techniques used for comparison. Moreover, the 

proposed method is simple and easy to implement. 
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Figure 2.4: Cumulative Number of Defects vs. Defect Time (DS I) 

2.5.2 Quantitative evaluation of the proposed method 

Denote by N0(t) and Np(t) the observed and the predictive cumulative number of failures re­

spectively. To quantify the better performance of the proposed predictive method in comparison 

with the Bayesian approaches, we computed three goodness-of-fit measures: the skill score, the 

Nash-Sutcliffe model efficiency coefficient, and the relative error between the observed T0 x 2 data 

matrix 

V0 = {(t,N0(t)):t = l,...T0}, 

and the predicted Tp x 2 data matrix 

Vp = {(t,Np(t)):t = l,...Tp}. 

Note that the size of observed data matrix V0 may not be equal to the size of the predicted data 
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Figure 2.5: Cumulative Number of Defects vs. Defect Time (DS II) 

matrix Vp, and hence an intersection step is necessary to pair up the observed data to the predicted 

data. This intersection function is setup to pair up the first column in the observed data matrix 

and the first column in the predicted data matrix. Data values are located in the second column of 

both matrices. More precisely, we create a subset of matched data Vm = {£, N0(t), N0(t) : t — 

1, . . . Tm} that would be used to compute the following goodness-of-fit measures: 

1. Skill Score: it is a error statistic that is used to quantify the accuracy of prediction models, 

and it defined as follows 

SS=1 
RMSE 

°N0 

where RMSE is the root mean square error between the observed and the predicted data, and 

aNo is the sample standard deviation of the observed data. 
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Figure 2.6: Laplace Factor vs. Defect Time (DS I). 

5 5 = 1 
±Eh(N0(t)-Np(t)Y 

The model prediction is better, when the value of the skill score SS is closer to one. When 

SS is less than zero, the model predictions are poor and the model errors are greater than 

observed data variability. 

2. Nash-Sutcliffe model efficiency coefficient: is an indicator of the model's ability to predict 

about the 1:1 line between the observed and the predicted data, and it is defined as follows 

Eh(N0(t) - Np(t))
2 

1 -
YEMt)-N0) 

The Nash-Sutcliffe model efficiency coefficient is a statistic similar to the skill score in that 

the closer to one the better the model prediction. A value of E = 1 indicates that the model 
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Figure 2.7: Laplace Factor vs. Defect Time (DS II). 

prediction is perfect, and if the value of E is equal to or less than zero, then the model 

prediction is considered poor. 

3. Relative error: it measures how close a model is estimated with respect to the actual data. 

The relative error(RE) is defined as 

Np(t) - N0(t) 
RE 

N0(t) 
t = 1 T 

The values of the three goodness-of-fit measures for all the experiments are depicted in Figure 2.12 

through Figure 2.17, which clearly show that the proposed method gives the best results indicating 

the consistency with the subjective comparison. 
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Figure 2.8: Comparison of the prediction results for known 46 months history DS I. 

Skill Score 
Bayesian 
Bayesian MCMC 
OC curve 

DS I 

0.3964 
0.5426 
0.9377 

DS II 

0.4031 
0.628 
0.7877 

Table 2.4: Skill score results. 

2.6 Conclusions 

In this chapter, we introduced a new method for software defects prediction using operating char­

acteristic curves and Laplace trend statistic. The core idea behind our proposed technique is to 

reliably predict the cumulative number of defects during the software development process. The 

Nash-Sutcliffe 
Bayesian 
Bayesian MCMC 
OC curve 

DS 1 

0.6295 
0.7872 
0.9961 

DSII 

0.6259 
0.8547 
0.9527 

Table 2.5: Nash-Sutcliffe score results. 
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Figure 2.9: Comparison of the prediction results for known 55 months history DS I. 

prediction accuracy of the proposed approach is validated on a real software failure data using 

several goodness-of-fit measures. The experimental results clearly show a much improved perfor­

mance of the proposed approach in comparison with the Bayesian prediction methods. 
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Figure 2.10: Comparison of the prediction results for known 20 months history DS II. 
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Figure 2.11: Comparison of the prediction results for known 40 months history DS II. 
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Figure 2.12: Skill score results for DS I. 

Figure 2.13: Skill score results for DS II. 
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Figure 2.14: Nash-Sutcliffe model efficiency coefficient results for DS I. 

Figure 2.15: Nash-Sutcliffe model efficiency coefficient results for DS II. 
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Figure 2.16: Relative error results for DS I. 
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Figure 2.17: Relative error results for DS II. 
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CHAPTER D I 

Resource Allocation using Queuing Theory 

Most software quality measurement techniques are based on counting defects found in a software 

system, resulting in their impracticability to estimate the human-resource cost of maintenance 

and/or predict the reliability of a future product. In this chapter, we propose a queuing theory-

based model for resource allocation in software development. The main objective is to model 

software management and maintenance during the system test, alpha test, and the beta test phases 

of a software system. The proposed model answers managerial questions related to project status 

and scheduling, and also provides a quantitative measure of the software. 

3.1 Introduction 

There is a wide spread disagreement among software engineers regarding the appropriate effort to 

be devoted to software testing before release. Such conflict is attributed to resource constraints and 

time-to-market considerations. It is well-known that more pre-release development and testing on 

systems can reduce future development costs and result in higher software quality. On the other 

hand, the pressure to deliver an operational product quickly can frequently affect the resource 
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allocation among development phases or within one of the phases. 

Software systems are mostly developed by different teams under different environments. One 

of the problems in such environments is quantitative measurement of the software quality. Mod­

em complex software systems are mostly developed incrementally with different components by 

different teams under different environments, making the estimation of the cost of a product a 

difficult task. In particular, component-based software engineering [42,43] has drawn remark­

able attention in developing cost-effective and reliable applications to meet short time-to-market 

requirements. Furthermore, Lyu et al. [44] formulated the system-testing problem as a combinato­

rial optimization problem with known attributes of the system components in multiple-application 

environment. Optimized resource allocation problems have been widely studied using dynamic 

programming [45], integer programming [46], non-linear optimization [33], and heuristic tech­

niques [35,47]. These methods are mostly series-parallel redundancy allocation problems, where 

either reliability is maximized or the total system testing effort/cost is minimized. 

Another problem in software engineering is how to quantitatively measure the quality of the 

software. Most software quality measurements are based on counting the defects found in a soft­

ware program. A defect is defined as an unacceptable departure of program operation caused by 

a software defect remaining in the software system [48]. Recently, Luo et al. [49] introduced a 

weighted Laplace test statistic for software reliability growth modelling which not only takes into 

account the activity in the system but also the proportion of reliability growth within the defect 

prediction model. These approaches are, however, developer-oriented, and do not provide useful 

estimates of the human-resource cost of maintenance or predictions of the reliability of a future 

product. 

Motivated by the widely used concept of queueing theory in communication and information 
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processing systems, to design the system in terms of layout, capacities and control, we introduce 

in this chapter a resource allocation model which answers managerial questions related to project 

status and scheduling. Using the proposed model, managers will be more certain in making re­

source allocation decisions from one project to the other. This model can also be used to measure 

the system reliability and the quality of service provided to customers in terms of the expected 

response time. 

The remainder of this chapter is organized as follows. In section 3.2, a problem formulation 

is stated followed by a brief review of queueing models. In Section 3.3, we describe the proposed 

resource allocation model and analyze the results. In section 3.4, we present experimental results 

to demonstrate the effectiveness of the proposed method in resource allocation. And finally, we 

conclude in section 3.5. 

3.2 Problem Formulation 

We assume that customers and quality assurance (QA) defect reports are in the queue, and that 

the developers take the defects from the queue according to the queue principle in order to fix 

them. The queue represents the defect report database, and the service facility for the maintenance 

team or the QA team. Roughly speaking, a queuing model may be defined in terms of three 

characteristics: the input process, the service mechanism, and the queue discipline [16,17]. 

3.2.1 Queueing models 

We assume that the inter-arrival time of defects has an exponential distribution with the defect rate 

of a monotonically decreasing function of time. To model the system's behavior over a time period 
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(e.g. weeks or months), we can use the average defect rate that is derived from the data collected 

during that period instead of the instantaneous defect rate. We assume that fixing a defect also has 

an exponential distribution with a constant fixing rate. 

It is worth pointing out that according to the characteristics of the queue, these assumptions 

may vary, but for simplicity we assume a Poisson-distributed arrival time and an exponentially-

distributed fixing rate. 

M/M/l queues 

One of the classical queue models is the M/M/l queue with exponential inter-arrival times with 

mean 1/A , exponential service times with mean 1/p and a single server [16, 17]. Defects are 

served on a first-come first served basis. The following condition should be satisfied 

P = \ ^ = \/V<1, (1) 

otherwise, the queue length will be overloaded (i.e. more defects present in the queue). The 

quantity p is the fraction of time the server (developer team) is busy which is also referred to as the 

utilization factor. This can be a key factor in management of development resources. The model 

provides the following attributes of the system: 

*_ and L A2 

/U — A ' q fi(fj, — A) 
pn = (1 -p)npn, L = - - , andL, = — ^ (2) 

where pn is the probability of having n defect reports in the system, L is the expected number of 

defect reports in the system (system length), and Lq is the expected number of reports in the queue 

(queue length). Using the identity L = AT, where T is the expected response time (i.e. waiting 

time + service time) we obtain 

T = - ^ - r , (3) 
(J, — A 
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On the other hand, the time that a defect report waits in the queue is given by 

9 A tifjjL-xy 
(4) 

QA Report Faults 

Queue of Fault Reports Developers Fixing Faults 

Users report faults 

Figure 3.1: M/M/l Resource allocation model. 

M/M/c queues 

In the case of a M/M/c queue, we have c parallel identical servers (developers) [16, 17], and 

defects are also served on a first-come first served basis. Similarly, the following condition should 

be satisfied 

1 Iru \ 
(5) 

1/c/x A 
p = T7T = — < !• 1/A cfj, 

The M/M/c model assumes the support of several developers, where c is the number of developers 

in a team. In most cases M/M/c is more realistic than M/M/l due to the fact that usually more 

than one developer are fixing the defects, resulting in a much better performance compared to the 

M/M/l model. Furthermore, the M/M/c model provides the following attributes of the system 

Pn £ 
\n=Q 

+ n\ c\{l-p) 
(6) 
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L = Lq + r, and Lq =-^-—^p0 (7) 

where the parameter r is given by r = X/p,. 

Similar to the utilization factor in M/M/l, the parameter p is a key factor for management of 

resources in the system. Also, we can easily find the response time and the waiting time, which 

provide good measures for the quality of service. 

QA Report Faults 

Users report faults 

Queue of Fault Reports 

Developers Fixing Faults 

Developers Fixing Faults 

Developers Fixing Faults 

Developers Fixing Faults 

Figure 3.2: M/M/c Resource allocation model. 

3.3 Proposed Approach 

3.3.1 Priorities of defect reports 

In software systems, we usually have different types of defects which depend on their priorities. 

Defect arrival rates and defects fixing rates of different types of defects are not identical. In addi­

tion, they will be fixed in a different order. 

Assume that we have a single server M/M/l with r types of defects, the type i defects arrive 
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according to a Poisson distributed stream with the rate \ , i = 1 . . . r. Note that we can easily 

extend it to the M/M/c model [16,17]. The service time and residual service of a type i defect is 

denoted by Bi and Ri respectively [16,17]. Type I defects have the highest priority; type II defects 

have the second highest priority and so on. 

There are basically two kinds of priorities: 

1. Non-preemptive priority, in which higher priority defects may not interrupt the service time 

of low priority defect and will remain in the queue until the service time of the lower priority 

defects has been completed. 

2. Preemptive-resume priority, in which interruptions are allowed. After serving the higher 

priority defects, serving the interrupted defect will be resumed at the point it was interrupted. 

Let Tl be the mean waiting time of a type i defect in the queue. Then, we have 

• For non-preemptive priority: 

Ti = T.^PjEjRj) 
9 ( l - ( p 1 + . . . + P l ) ) ( l - ( P i + .-. + PI-1)) 

and 

T = T; + E(Bi) 

where T% is the mean service time of a type i defect in the queue, and pi = XiE{Bl), i — 

1 r 

• For preemptive-resume priority: 

Ti = S)=iPj£(f l j ) 

* ( l - ( p 1 + . . . + p i ) ) ( l - ( / , 1 + . . . + P i_1)) 

and 

Ti = Tq +
 EW ' 

q l - ( p 1 + . . . + p^1) 
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Note that the parameter p = Xw=i P»> which shows the utilization of the resources, should be less 

than one. 

3.3.2 Defect report rate estimation 

For simplicity, we assume that the number of defect reports per month follows a straight-line 

regression model given by y = (30 + p±x + e, where p0 and /?i are unknown parameters referred to 

as intercept and slope respectively, and £ is a random error with mean zero and variance a2. The 

{e} are also assumed to be independent and identically distributed (i.i.d.) random variables. 

Suppose that we have n pairs of observations (yi: x,), where i = 1 , . . . , n. These observations 

may be used to estimate the unknown parameters pQ and P\ of the linear regression model using 

the method of least square. The estimates of these unknown parameters are obtained by solving 

the least-square normal equations, and are given by 

/3i = § ^ and p0 = y - p l X (8) 

where 
.. n 1 n 

= - V x n y = - V y 2 (9) 
n *-^ n 

i=\ t=l 

n 

Sxx = ^2{xi - x)2, and Sxy = ^ ^ ( x , - x). (10) 
i= l i= l 

These estimates need no prior knowledge about the initial number of defects in the system 

when the system test starts. The average defect rate within the interval [ti,t2] may be estimated as 

follows 

\ = —i—[\p1t + p0)dt (11) 
l2 — h Jtl 
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The use of linear regression to estimate the defect report rate has the advantage that the estimate 

of the initial defect rate is not needed. However, this estimation is not robust. 

Using queueing theory for resource allocation in software systems relies strictly on defect 

prediction. The better prediction of defect rates the more robust the model works. Unlike linear 

regression, expectation-maximization (EM) algorithms are more robust in defect prediction [38]. 

Also, the inter-arrival time in the EM model can be any type of distribution. Hence, according to 

the environment of the system we can use the defect prediction model introduced in [39], which 

robustly fits the environment. 

3.3.3 Defect fixing rate estimation 

Assume that the time of fixing a defect has an exponential distribution with fixing rate /i. Each 

developer's defect fixing rate is based on his/her capability which we refer to as productivity of a 

developer. This productivity can be measured either by the project manager (team leader) or from 

the historical data of work (e.g. amount of time required to fix defects over total number of defects 

fixed by a developer). 

Let Hi and pi be the full rate of defect fixing and the proportional ratio of time that the z-th 

developer spends in fixing the defects respectively. The fixing rate of the i-th developer is inVi- So 

if the team has c developers, then the fixing defect rate is given by 

c 

i=l 

Note that adding up these fixing rates is not very realistic because the summation process does 

not follow the linear model. For example, if two developers are working on the same error, then 

their joint productivity is less than adding their individual productivities when they are working 
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separately. To overcome this limitation, we assume that there is only one developer at a time who 

is serving a defect report. 

3.3.4 Analyzing the utilization factor 

The utilization factor p shows the fraction of time developers are busy fixing defects. Hence, a high 

value of p indicates that all the resources are busy fixing defects before release time. If p > 1 then 

the rate of defect reports are higher than the capacity of resources (developers). A project manager 

should not try to make the utilization factor too high (p = 1 or even close to 1 e.g. 0.98). This will 

make the process risky. In other words, a minor change like adding new requirements may delay 

the release schedule. 

By applying the queue model and simulating the system, the question of how much personnel 

resources should be reallocated to other projects can be answered. 

3.3.5 Bottleneck of personnel resource allocation 

By assuming that each defect report can be served by a developer at a time, the rate of fixing 

defects can be improved by increasing the number of resources using Eq. (12), which helps find 

the bottleneck of personnel resource allocation and which can also be used to make decisions 

about the changing of personnel resource among teams. However, experience shows that adding 

new developers to ongoing projects will not necessarily reduce the development time. 
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3.3.6 Evaluating the quality of service 

The quality of service is usually judged in terms of customer satisfaction. Therefore, there is a 

need to compute the team's expected response time to the customers' defect reports. As mentioned 

earlier, the response time is a good measure for quality of service. 

Note that the overall fixing rate is assumed to be equal to p and that the service is provided by 

the principe of the queue. 

3.3.7 Improving the quality of service 

Having a high utilization factor (e.g. p = 0.99) adds risks to the release schedule and results 

in a long response time for customers. Hence, we need to add more resources or extend the 

project schedule. Extending the project schedule does not improve the response time if p does 

not change. However, adding more resources improves the expected response time and makes the 

release schedule less risky and more precise. Consequently, if the system is stable (p is unchanged), 

we should make sure that there are less beta testers and less defect reports in order to avoid an 

overloaded defect report. We can increase the number of testers as thus increase the defect report 

rate A as soon as the system becomes more stable. 

3.4 Experimental Results 

To test the performance of the proposed resource allocation model, we used a real software defect 

dataset that was taken from a SAP development system. This data contains monthly software 

defects that were recorded in the period of 60 months as shown Figure 3.3 and Figure 4.5. 

The defects and fixes per month are chosen due to the fact that the variances of them in a day 
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are much bigger than the variances in a month. According to our data the average defect rate and 

the standard deviation of the sample are equal to A = 597.93 and 1074.2 respectively. Also the 

average fixing rate is /i = 600.83 with a standard deviation of 1053. 

5000 

30 40 50 60 

Number of Months 

Figure 3.3: Number of defects per week. 

As can be seen in Figure 3.3, the number of defects is volatile. Also note that it will not be 

possible to fix more defects per period if we take into consideration the engineer capabilities of the 

developers. 

3.4.1 Analysis 

The average defect rate and the standard deviation are 597.93 and 1074.2, and the fixing defect 

fixing rate is 600.83 with a standard deviation of 1053, in a period of 60 months. So in this case 

A = 597.93 and JJ. = 600.83. Hence the fraction of time that resources are busy (utilization factor) 
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Figure 3.4: Number of fixes per week. 

70 

is p za 0.99 which shows that the manager used 99% of software team resources. Thus it is risky, 

that is only a minor change like adding new requirements will delay the release schedule. Note that 

in our case the release date is at the end of the 60-th month. From Figure 3.3 and Figure 4.5, we can 

see that the number of defect reports after the 60-th month is approximately zero. For example, 

if the release time is in the 60-th month, then 4.06% of our resources will be free as illustrated 

in Figure 3.5, and therefore we can assign them to other projects. Further, Figure 3.5 shows the 

amount of personnel resources that can be reallocated to other projects if the release time is after 

the 60-th month. This is mainly due to the fact that the defect report rate is decreasing, whereas 

the fixing rate remains approximately at the same level. 

Suppose that we have 12 teams of developers, and according to our data each one can fix 

p/c = 50.071 defects per month. Note that in our case we cannot define the fixing rate of each 
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Figure 3.5: Release schedule and reduced resources. 

developer or team separately but if we had enough data about the work of each developer or team 

we would find its fixing rate ^j and the condition will be 

A 
(13) Ei=iMt" 

Selecting the appropriate model is usually based on the way the developers are assigned and work 

on the defect report. According to our assumption that each defect report is getting served by one 

developer at a time, the M/M/c model is more realistic because developers are working on differ­

ent defects at the same time. Note that the expected response time has not improved whereas the 

waiting time has, simply because the mean serving time for each defect has increased. Figure 3.6 

shows that the number of defects in the queue is decreasing, whereas the number of defects in the 

system is increasing. And in Figure 3.7 we can see how of the response time and the mean waiting 

time are changing. 
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system. 

Note that number of developers in Figure 3.6 and Figure 3.7 is equal the number of servers 

with overall fixing rate of fi, meaning that we are not adding more developers. 

3.5 Conclusions 

The proposed resource allocation methodology in this chapter helps estimate the need for new 

developers and resources for future projects. Applying queuing theory to model software manage­

ment and maintenance helps verify the progress of the testing phase and estimate its cost. Also, 

decisions can be made about changes in the employees early rather than letting the product miss 

the schedule deadline. The selection of a queuing model is organization-based. In other words we 

need to analyze an organization and find which model fits the best. For example if an organization 
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Figure 3.7: Mean response and mean waiting times versus number of developers working on the 
system. 

considers developers as one team, then the M/M/l model would fit the organization. Also note 

that we need to have a good estimation of defects in order to make better decisions. If we find the 

defect report rate, the fixing rate, and also if we decide which model is suitable, then we can use a 

simulation program to analyze our queue. 
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CHAPTER T - : : . I 

Optimal Release and Maintenance Policy 

In this chapter, we propose a novel stochastic discrete model to describe the cost behavior of the 

operation, under the assumptions of difference between the software testing environment and the 

operational environment, imperfect debugging and non-instantaneous fault removal. Then, we es­

timate the optimal time, which minimizes the relevant cost criterion, via artificial neural networks. 

Further, we present some fault correction models in software development which are based on 

general fault detection models, followed by introducing our cost function, which incorporates both 

fault-correction and detection models. Also, we provide a detailed analysis of the software release 

and maintenance decision. This procedure is simple and very useful in practical applications. In 

the experimental results, we demonstrate how to find numerically the joint optimal testing and 

maintenance policy, combined with the testing period and the planned maintenance limit. 

4.1 Introduction 

There is a wide spread disagreement among software engineers about the appropriate effort to be 

devoted to software testing before release and/or how much time should be spent on maintenance. 
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It is well-known that more pre-release development and testing on systems can reduce future de­

velopment costs and therefore result in higher software quality. On the other hand, the pressure to 

deliver an operational product quickly can make the stakeholder more satisfied. 

The determination of optimum software release time may be formulated as an optimization 

problem. To analyze this optimization problem, different criteria should be identified. If the re­

quirement is a fault-free software or any other reliability goal, then the problem is to determine 

the minimal testing time in order to reach the reliability requirement. However, if the cost of soft­

ware is considered then the optimal release time should be determined through an appropriate cost 

function to be used for minimizing the total expected software cost. 

Given that testing all executable paths in a general program is not practically possible, it is 

therefore difficult to detect and remove all faults remaining in a software during the testing phase. 

Hence, the software failure may occur in the operational phase. It is common to provide main­

tenance service during the period of fixing software faults that are causing failures. In order to 

perform the maintenance phase, the management cost should be reduced as much as possible, but 

at the same time the human resources should be utilized effectively. The problem of determining 

the maintenance period is of paramount importance from the practical point of view. However, this 

problem has received less attention and only a few solutions have been proposed [42]. 

Software reliability growth models (SRGM) provide essential information for decision mak­

ing in many software development activities, such as cost analysis, resource allocation in testing 

and release decision time. The aim of software reliability growth modelling (SRGM) is to ex­

plain the behavior of software testing process caused by faults. Most existing SRGMs only model 

fault detection processes with unrealistic assumptions such as perfect debugging and immediate 

fault correction. In this report, we use an improved SRGM by taking into account more realistic 
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assumptions in the model. 

In this section, we focus on the optimal software testing and maintenance policy motivated by 

K. Rinsaka et al. [42]. We develop a discrete-time stochastic model in discrete operation condition, 

where the software testing environment and the operational environment is characterized by a envi­

ronmental factor [43]. In addition, we present a systematic study of fault detection and correction 

processes. In our model, we consider the fault correction time to estimate the optimal software re­

lease and maintenance time which takes into account the environmental factor and imperfect fault 

removal. More precisely, the total expected cost is formulated via the discrete type of software 

reliability models [43,44] based on the difference between operational environments, imperfect 

fault removal, and fault correction process to remove a fault. To the best of our knowledge, there 

is no available method to find the optima) release and maintenance time of a software product by 

taking into account these assumptions. 

The rest of this chapter is organized as follows. In Section 4.2, we describe our assumptions and 

problem formulation. In Section 4.3, the proposed method is introduced. Section 4.4 evaluates the 

proposed method and presents experimental results using a real SAP dataset. Finally, we conclude 

in Section 4.5. 

4.2 Problem Formulation 

4.2.1 Assumptions 

In the sequel, we make the following assumptions: 

• If a failure occurs, then the fault causing the failure cannot be removed immediately. 

• Fault correction is imperfect, and when a fault is discovered then it is perfectly repaired 
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with a certain probability p. 

• Failure rates during testing and operational phases are different according to the envi­

ronmental factor. 

• The times to detect each software fault are independent. 

4.2.2 Defect detection and correction model 

In nonhomogeneous poisson process (NHPP)-based fault detection models, the cumulative number 

of failures N(t) defines a NHPP with rate function (also called intensity function) A(t) which is 

time dependant, and with a mean value function m(t) = E(N(t)) given by 

m{t) = / \{x)dx. (1) 

Jo 

In general, different fault detection models may be obtained by using different non-decreasing 

mean value functions m(t). The selection of a fault detection model is based on the goodness-of-

fit of the model to the underlyting software failure data. 

SRGMs are widely used to assess the fault related behavior of software systems. However, 

since most SRGMs embed certain restrictions or assumptions, selecting an appropriate model 

based on the characteristics of the software projects is often challenging. In order to choose a 

suitable model, two approaches may be adapted. The first one is to design a guideline, which 

could suggest fitting models for software projects. The second one is to select a model with the 

highest confidence after various assessments. The decision-making processes would therefore be 

a huge overhead while the software projects are huge and complicated. 

In order to reduce such an overhead, neural networks have been previously employed as an 

alternative approach that can adapt the characteristics of failure processes from the actual data set. 
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The results show that the neural network approach is good at identifying software failures [54]. 

Neural networks are composed of simple elements operating in parallel. These elements are 

inspired by biological nervous systems. As in nature, the network function is determined largely 

by the connections between elements. We can train a neural network to perform a particular func­

tion by adjusting the values of the connections (weights) between elements. Commonly neural 

networks are adjusted, or trained, so that a particular input leads to a specific target output. The 

network is adjusted, based on a comparison of the output and the target, until the network output 

matches the target. Typically many such input/target pairs are used, in this supervised learning, 

to train a network. Neural networks have been trained to perform complex functions in various 

fields of application including pattern recognition, identification, classification, speech, vision and 

control systems. 

Neural networks are learning mechanisms that can approximate any non-linear continuous 

functions based on the given data. In general, neural networks consist of three components as 

follow: 

1. Neurons: each neuron can receive signal, process the signals and finally produce an output 

signal. Figure 4.1 depicts a neuron, where / is the activation function that processes the 

input signals and produces an output of the neuron, x are the outputs of the neurons in the 

previous layer, and w are the weights connected to the neurons of the previous layer. 

2. Network architecture: the most common type of neural network architecture is called feed­

forward network as shown in Figure 4.2. This architecture is composed of three distinct 

layers: an input layer, a hidden layer, and an output layer. Note that the circles are rep­

resented as neurons and the connection of neurons across layers is called the connecting 

weight. 

65 



1 * 

1 
/ E 

T ^ ^ - ^ 

I 
Bin* 6 

neti 

f(neU) 

= i, + E",.^"-'i 

Activation Riiictinu 

Figure 4.1: Illustration of a neuron. 

Figure 4.2: Feed-forward network. 

3. Learning algorithm: this algorithm describes a process of adjusting the weights. During 

the learning processes, the weights of a network are adjusted to reduce the errors of the 

network outputs as compared to the standard answers. The back-propagation algorithm is 

the most widely employed one. In a back-propagation algorithm, the weights of the network 

are iteratively trained with the errors propagated back from the output layer. 
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The goal of using neural networks is to approximate a nonlinear function that can receive a vector 

X = (x i , . . . , xn) in W1 and has an output vector Y = (j / i , . . . , ym) in Rm. Hence, we define the 

network as Y = F(X). The components of Y are given by 

H 

Uk ,(bk + £w°jkhX /c = l,...,M (2) 

where wQ-k is the output weight from the hidden layer node j to the output layer node k, hj is the 

output of the hidden layer j , bk is the bias of the output node k, and g is the activation function in 

output layers. The hidden layer values are given by 

N 

(3) hj = fibj + ^wljxA, j = l,...,H 
^ t = i ' 

where wjj is the input weight from the input layer node i to the hidden layer node j , Xi is the value 

at input note i, bj is the bias of the hidden node j , and / is the activation function in the hidden 

layer. 

Due to the fact that the neural network approximated function can be considered as a nested 

function such as }{g{x)), it can be applied to software reliability modelling since software relia­

bility modelling is intended to build a model that explains the software failure behavior. In other 

words, if we derive a form of compound functions from a usual SRGM, then we can build a neural 

network-based model for software reliability. In this paper, we consider the logistic growth curve 

model [55]. The mean value function of this model is given by 

" • < « > - i r k * (4) 

where the parameters a, b, and k are positive real numbers. 

We can simply find the following compound functions form of the mean value function by 
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replacing k with e c as follows 

m(t) = 
1 + ke~bt 1 + e - ( M + c ) ' 

It is worth pointing that the mean value function is the composition of the following functions: 

(5) 

g(x) = bx + c, f{x) = 
1 

1 + e-
and k{x) = ax. 

Hence, we have 

m(t) = Kfigit))) = (6) I _|_ e-(bt+c) • 

Therefore, the mean value function is composed of g, f, and k. Now we derive the compound 

functions from the viewpoint of neural networks by using the basic feed-forward network as shown 

in Figure 4.2. However, the network has only one neuron in each layer as illustrated in Figure 4.3. 

Figure 4.3: Feed-forward neural network with a single neuron at each layer. 

The hidden layer input and output are given by 

hin(t) = w\xt + bx (7) 

and 

Kt) = fihiJfi) (8) 

respectively, where / (x) is the activation function in the hidden layer. The input and output of the 

output layer are j/ira(t) = w^hit) + b0 and y(i) = giymit)) respectively. 

Now, if we assume the activation functions as 

1 
/ ( * ) 1 + e"x (9) 



g{x) = x (10) 

and remove the bias in the output layer. Then, we obtain 

7/;° 

Hence, we derived the neural network via a logistic growth curve model. Note that this approach 

could be used for any other SRGM. To use the neural network-based models, the following steps 

are required: 

1. Select a model which meets the assumptions of the software project. 

2. Construct the neural network of selected models (denning bias and activation function which 

is differentiable everywhere). 

3. Using the time interval data and cumulative number of faults in the system, we train the 

network using the back-propagation algorithm. 

4. After training the network, we feed the future testing time to the network and the output is 

the forecasting number of faults in the future given time. 

4.2.3 Defect correction models 

If the information of fault detection processes and fault correction processes is available, we model 

fault detection process separately from the fault correction. On the other hand, due to the fact that 

a fault can be removed only after its detection, it is more appropriate if the fault correction process 

is considered to be related to the fault detection process. The fault correction process is assumed 
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to be a delayed fault detection process. Different models have been proposed in a variety forms for 

the time delay between these processes. This idea was proposed in [45], where a fault detection 

is modelled by a NHPP and a fault correction is assumed to have a constant delay from the fault 

detection process. This approach can be developed using different NHPP models or any other fault 

detection models like operating characteristic curves [39] for different fault detection processes. 

The difference between fault detection and correction is the time delay, which is the time spent 

to correct the detected fault. We denote this time delay by A(t). This delay can be modelled as 

deterministic or random variable, or it can be time-dependant [46]. We model the fault correction 

process by a mean value function mc(t) which can be derived from m(t) and A(t). 

Next we introduce some correction time models. 

Constant correction time: 

We assume that each detected fault takes the same amount of time to be corrected, that is A(t) = A. 

Hence, given the fault detection rate X(t), the intensity function of fault correction is given by 

I X(t) t < A 
Ac(t) = { (12) 

A ( i - A ) t > A 

Hence, the mean value function for the fault correction process is given by 

mc(t) = m(t - A), t > A. (13) 

Time dependant correction time: 

The time lag between fault detection and correction can be time-dependant [33]. When the detected 

faults become increasingly difficult to correct, the time needed to correct them becomes longer. In 
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this case, we assume a time delay as follows 

log(l + ct-c/b) 
A(t) = - ^ ^ , c<b (14) 

Therefore, the correction rate and mean value functions are as follows 

Xc(t) = X(t - A(i)) (15) 

mc(t) = / X(x - A(x))dx. (16) 

Exponentially distributed correction time: 

Usually a deterministic correction time is not realistic in practice. The software fault correction is 

closely related to humans, who are considered as an uncertainty factor. In addition, the detected 

faults are different and their appearance sequence is random in system testing. Hence, it is more 

realistic if we model the correction time with a random variable. 

The correction time is known to approximately follow an exponential distribution [33]. As 

a result, we assume that the correction time for each detected fault is a random variable with 

exponential distribution A(t) ~ exp(^t). Therefore, the correction rate and mean value functions 

are given by 

Xc(t) = E[X{t - A{t))} = X{t-x)fiexp-"xdx (17) 
Jo 

mc(t) = / Xc(x)dx. (18) 
Jo 
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4.2.4 Software cost 

In any SRGM, the modelling is not the ultimate goal. The extracted information from the analysis 

could help management make decisions regarding a software development project. Our main focus 

is on decisions of when to release the software and when to stop maintaining the software after 

release. The cost of developing the software, as the most important aspect in software business, is 

used to make such decisions. 

4.3 Proposed Method 

4.3.1 Total expected software cost 

We formulate the total expected software cost, which can occur in both testing and operational 

phases, as an optimization problem. In the operational phase, we consider two cost factors, namely 

the maintenance cost due to the software failure and the operational cost to keep the maintenance 

team. It should be noted that the operational environment after the release may differ from the 

debugging environment in the testing phase. We introduce an environmental factor r such that 

r > 0, which represents the relative severity in the operational environment, and assume that 

the times in testing phase and maintenance phase have a proportional relationship. Okamura et 

al. [43] introduced this approach to model the operational phase of the software. Also, when a 

fault is detected and the correction process is performed on the fault we assume it is repaired with 

probability p, in which case the failure rate is reduced by X(t). Otherwise, the number of faults in 

the software and the failure rate remains the same. Hence, the total number of expected occurrence 

of a fault is I/p. 
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Let T and M be the total expected cost function testing time and the maintenance time, respec­

tively. Then, we define our total expected cost of a software system as follows 

C(T, M) = - c^mJT) + - c2r \mc{M) - mc(T) 
P V L 

+ c3r mc(oo) - r(mc(M) - mc(T)) - mc{T) 

+ c4T + c5M 

where the parameters are defined as: 

• Ci > 0 is the cost for dealing with a fault in the testing phase. 

• c2 > 0 is the cost for dealing with a fault in the maintenance phase. 

• C3 > 0 is the cost for dealing with a fault after the maintenance phase. 

• c4 > 0 is the cost per unit of time in the testing phase. 

• c5 is the cost per unit of time in the maintenance phase. 

Note that, the values of these parameters may be obtained from historical data of similar projects. 

4.3.2 Optimal release and maintenance times 

Now the objective is to find the joint optimal testing period T* and the optimal planned mainte­

nance limit M* which minimize the total expected software cost C(T, M). 

We assume that the software has a limited life cycle L > 0, which a constant assumed to be 

known a priori and larger than the testing period T. In other words, the life cycle is measured from 

the point of release time T. Hence, in our proposed cost function we use T + L instead of 00. 

Since the cost function C{T, M) is a discrete function of T and M, and due to a limited life 

cycle we can therefore easily find the minimum points by searching in the range of this function. 

So, we construct a matrix, where the elements of each of its columns show the maintenance times 
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and the elements of each of its rows show the release times. We the find the minimum cost and 

consequently the optimal times by searching only through the column, the row and the diagonals 

crossing each matrix element. If the life cycle is large, then we can use generic search from an 

arbitrary starting point in the constructed matrix. 

4.4 Experimental Results 

4.4.1 Software dataset 

In this section we present a statistical analysis using a real software defect dataset that was taken 

from a SAP development system. This dataset contains monthly software defects that were recorded 

for a period of 60 months as shown in Figure 4.4. The number of fixed faults is also shown in Fig­

ure 4.5. However, there is no tag indicating a certain fault is corrected or any other information 

and we have only grouped data, which correspond to the number of faults per month. 

4.4.2 Parameter estimation 

To use different fault detection and correction models, we need to estimate the parameters of the 

model based on our observed data using maximum likelihood estimation [38,47]. In Table 1, 

the results of the estimation with the corresponding goodness-of-fit measure for all models are 

listed. As can be seen in this table, the model composed of neural network fault detection and fault 

correction process with constant correction time, provides the best fit for our dataset. 
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Figure 4.4: Number of defects per month in the period of 60 month. 

4.4.3 Model selection 

As mentioned earlier, we need to select a appropriate software fault prediction model. In our 

experiments, we have used different SRGMs to predict our software failure data. Qualitatively, we 

compared the neural network model with other SRGMs as shown in Figure 4.6. 

Denote by N0(t) and Np(t) the observed and the predictive cumulative number of failures 

respectively. To compare the methods quantitatively, we use the so-called skill-score goodness of 

fit measure between the observed T0 x 2 data matrix 

V0 = {(t,N0(t)):t = l,...T0}, 

and the predicted Tp x 2 data matrix 

Vp = {(t,Np{t)):t = l,...Tp}. 
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Figure 4.5: Number of fixes per month. 

Note that the size of observed data matrix V0 may not be equal to the size of the predicted data 

matrix Vv, and hence an intersection step is necessary to pair up the observed data to the predicted 

data. This intersection function is setup to pair up the first column in the observed data matrix and 

the first column in the predicted data matrix. Data values are located in the second column of both 

matrices. More precisely, we create a subset of matched data Vm = 1 — {t, N0(t), N0(t) : t = 

1 , . . . Tm} that would be used to compute the skill score, which is defined as follows: 

5 5 = (19) 

This goodness-of-fit measure interprets model predictability using residual error and observed vari­

ability in your data. A skill score of 1 means a perfect fit. A skill score equal to or less than zero 
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Table 4.1: Summary of paired model estimates. 

Model 

Constant Correction 

A(t) = A 
Time Dependant 

/^M _ log(l+c't-c'/6') 

Exponential 

A(i) ~ expOu) 

Estimates 

a = 36608.68 
6 = 0.27 

c = -80.90 
A = 339.23 
a = 212.89 

b = 0.02 
c = -0.09 

9 = 1.16 

d = 1.31 
a = 1559.08 

b = 0.95 
c = 32.97 
A = 0.12 

means that the model error is larger than the variability in the data, and should not be used any fur­

ther without re-evaluating the model design. As can seen in Figure 4.7, the neural network model 

gives a better goodness-of-fit than the other detection models. Hence, we use the neural network 

approach to predict the faults. Moreover, as shown in Figure 4.8 the constant correction time fits 

better to our data. Therefore, we use constant correction time with a neural network fault detection 

model. 

4.4.4 Optimal release and maintenance 

Now we calculate numerically the optimal testing period T* and the optimal planned maintenance 

limit M* based on our software fault detection and correction data. We assume that the known 

parameters in the software reliability models are estimated using maximum likelihood estimation. 

By searching through the cost matrix C(T, M), will find the minimum values for T and M that 

optimize the cost function. 
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Figure 4.6: Cumulative Number of Defects vs. Defect Time. 

As mentioned earlier, we use neural networks for the fault detection process with different 

delay functions. With our dataset, these models are applied to fit against the real data. Then, the 

skill score is calculated numerically. The results of the corresponding goodness-of-fit measure for 

all models are shown in Table 4.1. The 3D plot of the software cost matrix for constant correction 

time is shown in Figure 4.9, displaying the behavior of the total expected software cost based on 

different release and maintenance policies. The optimal release/maintenance policy is obtained by 

finding the minimum value in the matrix as depicted in Figure 4.9. 
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4.5 Conclusions 

Figure 4.7: Skill Score. 

In this chapter, the problem of optimal software release time and maintenance period based on fault 

correction process has been investigated. By considering a diversity of software projects, different 

SRGM can be used in the same way the delay could be constant, time dependant or random. 

Different models have also been compared using our data set. In the numerical experiments with 

real software fault-detection time data, we showed that the predictive performance of the optimal 

software release time using neural networks performs better than using the existing parametric 

SRGMs. Also, in our model we used more realistic assumptions such as a different severity in 

different environments and an imperfect defect removal. 
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CHAPTER U ; I 

Conclusions and Future Work 

A defect prediction solution provides a guideline to the sources of defects that might be caused 

due to programmers inability, failure in requirements collection or design mistakes. Thus, a de­

fect prediction model with source identification can give important ideas regarding the erroneous 

bottlenecks in the software development cycle. Especially, efficiency focused software develop­

ment units can benefit using defect cause information. They can take necessary precautions in a 

proactive manner. In other words, a defect focused prediction solution can also help to change the 

development methods. Such a solution or systematic approach can affect in a positive manner to 

produce less defected software. 

An important aspect of a defect prediction solution is that such a solution becomes necessary 

when there is a trade-off between to deliver earlier and to deliver with fewer defects. In today's 

software development industry, all companies and software development houses are in a severe 

competition that minimizing development tim& decreases the overall project cost [59,60]. On the 

other hand, less development and testing time also increases the defect density ratio in the final 

product. So, with this fact the executive management of the software company should require a 

quantitative indicator to find the correct point in this balance. Therefore a defect prediction solution 
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may provide the required quantitative metric to make a decision on the product delivery. The senior 

management of the software development company would be able to decide launching the product 

if the defect density level is below a certain threshold. 

This thesis has presented statistical tools to predict the cumulative number of software de­

fects, optimized resource allocation in software production life cycle, and optimal release time and 

maintenance policy that can have a huge positive impact on making the software quality assurance 

easier. We have demonstrated the performance of the proposed algorithms ori a variety of software 

defect datasets, and we compared our proposed techniques with existing methods. 

In the next Section, the contributions made in each of the previous chapters and the concluding 

results drawn from the associated research work are presented. Suggestions for future research 

directions related to this thesis are provided in Section 5.2. 

5.1 Contributions of the Thesis 

5.1.1 Predictive operating characteristic curves for software defects 

We introduced a software defect prediction model based on the concept of operating characteristic 

curve. The idea is to use Operating Characteristic (OC) curves in statistical quality control and a 

geometric approach to construct an efficient, fast, and accurate prediction method to estimate the 

number of software failures at anytime during the software development process. Our model is 

getting the information from past and present failure data to be more effective. In the experimental 

results, we demonstrate the effectiveness and the improved performance of the proposed method 

in comparison with the Bayesian prediction approaches. 
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5.1.2 Software development resource allocation using queuing theory 

We proposed a resource allocation model using queuing theory. The goal is to model software 

management and maintenance during the system test, alpha test, and the beta test phases of a 

software system. The proposed model answers managerial questions related to project status and 

scheduling, and also provides a quantitative measure of the software. Using the proposed model, 

managers will be more certain in making resource allocation decisions from one project to the 

other. This model can also be used to measure the system reliability and the quality of service 

provided to customers in terms of the expected response time. 

5.1.3 Software optimal testing and maintenance policy 

We introduce a new method to define the optimal policy in software release time and maintenance. 

We focused on the optimal software testing and maintenance policy motivated by the approach 

proposed in [42]. We also developed a discrete-time stochastic model in discrete operation con­

dition, where the software testing environment and the operational environment is characterized 

by a environmental factor. In addition, we present a systematic study of defect detection and cor­

rection processes. In our model, we consider the defect correction time to estimate the optimal 

software release and maintenance time which takes into account the environmental factor and im­

perfect defect removal. More precisely, the total expected cost is formulated via the discrete type 

of software reliability models based on the difference between operational environments, imperfect 

defect removal, and defect correction process. 
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5.2 Future Research Directions 

Several interesting research directions motivated by this thesis are discussed next. In addition to 

designing robust statistical models for software defect prediction, we intend to accomplish the 

following projects in the near future: 

5.2.1 Optimal release time using game theory 

Our proposed model to find the optimal policies on software production does not take into account 

rivalry. In other words, we hope to continue our future work by investigating a model which per­

mits competition between rival producers. This can potentially be done by using our model in 

the framework of a two-person non-zero sum game of timing. Through the series of preliminary 

results, it is shown that an optimal release policy exists as a Nash equilibrium point in the space of 

mixed strategies. Although in this model we used a classical neural network, an effort to improve 

the forecasting ability will be needed for future work. For instance, if the other environmental data 

for software testing, e.g. structural factors such as the numbers of codes, functions and modules, 

testing effort or cost such can be observed, the neural networks may carry more realistic infor­

mation processing by taking into account these factors. In addition, our model does not take into 

account rivalry. In other words, we hope to explore a new model that would permit competition 

between rival producers. This can potentially be done by using a two-person game of timing. 
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5.2.2 Machine learning approaches 

As a broad subfield of artificial intelligence (AI), machine learning is concerned with the design 

and development of algorithms and techniques that allow computers to "learn". As regards ma­

chines, one might say, very broadly, that a machine learns whenever it changes its structure, pro­

gram, or data (based on its inputs or in response to external information) in such a manner that its 

expected future performance improves. The major focus of Machine learning research is to extract 

information from data automatically by computational and statistical methods, hence, machine 

learning is closely related to data mining and statistics but also theoretical computer science. 

Machine learning usually refers to the changes in systems that perform tasks associated with 

AI. Such tasks involve recognition, diagnosis, planning, prediction, etc. The "changes" might be 

either enhancements to already performing systems or synthesis of new systems. One might ask 

"Why should machines have to learn? Why not design machines to perform as desired in the first 

place?" There are several reasons why machine learning is important. Some of these are: 

• Some tasks cannot be defined well except by example, that is, we might be able to 

specify input/output pairs but not a concise relationship between inputs and desired 

outputs. We would like machines to be able to adjust internal structure to produce 

correct outputs for a large number of sample inputs and thus suitably constrain their 

input/output function to approximate the relationship implicit in the examples. 

• It is possible that hidden among large piles of data are important relationships. 

• Human designers often produce machines that do not work as well as desired in the 

environments in which they are used. In fact, certain characteristics of the working en­

vironment might not be completely known at design time. Machine learning methods 

can be used for on-the-job improvement of existing machines designs. 
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• The amount of knowledge available about certain tasks might be too large for explicit 

encoding by humans. Machines that learn this knowledge gradually might be able to 

capture more of it that humans would want to write down. 

• Environments change over time. Machines can adopt to a changing environment 

would reduce the need for constant redesign. 

• New knowledge about tasks is constantly being discovered by humans. Continuing 

redesign of AI systems to conform to new knowledge is impractical, but machine 

learning methods might be able to track much of it. 

There are two major settings in which we wish to learn a function / : supervised and unsupervised. 

In supervised learning, we know the values of / for the m samples in the training set S. We 

assume that if we can find a hypothesis h that closely agrees with / for the members of §, then this 

hypothesis will be a good guess for / , especially if S is large. Curve fitting is a simple example 

of supervised learning of a function. In unsupervised learning, we simply have a training set of 

vectors without function values of them. The problem in this case, typically, is to partition the 

training set into subsets S i , . . . , §£ in some appropriate way. 

Our future efforts will be focused on evaluating various machine learning models to develop 

robust prediction approaches. The performance of each prediction method will be evaluated regard­

ing their precision, recall, robustness and sensitivity using confusion matrices and simulations. A 

model's precision is defined as the ratio of the number of modules correctly predicted as defective, 

or true positive (tp), to the total number of modules predicted as defective in the set (tp + fp). A 

model's recall is defined as the ratio of the number of modules predicted correctly as defective 

(tp) to the total number of defective modules in the set (tp + /„). To perform well, a model must 

achieve both high precision and high recall. 

86 



List of References 

[1] J.D. Musa, "A theory of software reliability and its application," IEEE Transactions on Soft­

ware Engineering, vol. 1, no. l,pp. 312-327, 1975. 

[2] A.L. Goel and K. Okumoto, "Time-dependent error detection rate models for software relia­

bility and other performance measures," IEEE Transactions on Reliability, vol. 28, no. 3, pp. 

206-211, 1979. 

[3] J.D. Musa, A. Iannino, and K. Okumoto, Software Reliability: Measurement, Prediction, 

Application, McGraw-Hill Book Company, 1987. 

[4] J.W. Yu, G.L. Tian, and M.L. Tang, "Predictive analyses for nonhomogeneous Poisson pro­

cesses with power law using Bayesian approach," Computational Statistics & Data Analysis, 

2007. 

[5] C.G. Bai, "Bayesian network based software reliability prediction with an operational pro­

file," Journal of Systems and Software, vol. 77, no. 2, pp. 103-112, 2004. 

[6] X. Zhang and H. Pham, "Software field failure rate prediction before software deployment," 

Journal of Systems and Software, vol. 79, pp. 291-300, 2006. 

87 



References 

[7] N.E. Fenton and M. Neil, "A critique of software defect prediction models," IEEE Transac­

tions on Software Engineering, vol.5, no. 5, pp. 675-689, 1999. 

[8] S. Yamada, M. Ohba, and S. Osaki, "S-shaped reliability growth modeling for software error 

detection," IEEE Transactions on Reliability, vol. 32, no. 5, pp. 475-485, 1983. 

[9] A.L. Goel, "Software reliability models: assumptions, limitations and applicability," IEEE 

Transactions on Software Engineering, vol. 11, no. 12, pp. 1411-1423, 1985. 

[10] M.R. Bastos Martini, K. Kanoun, and J. Moreira de Souza, "Software-reliability evaluation 

of the TROPICO-R switching system," IEEE Transactions on Reliability, vol. 39, no. 3, pp. 

369-379, 1990. 

[11] K. Kanoun and J.C. Laprie, "Software reliability trend analysis from theoretical to practical 

considerations," IEEE Transactions on Software Engineering, vol. 41, no. 4, pp. 525-532, 

1992. 

[12] M.R. Lyu, Handbook of Software Reliability Engineering, IEEE Computer Society Press and 

McGraw-Hill, 1996. 

[13] D.C. Montgomery, Introduction to Statistical Quality Control, John Wiley & Sons, 2005. 

[14] C. Robert, Bayesian Choice, 2nd Edition, Springer Verlag, NY, 2001. 

[15] W.M. Bolstad, Introduction to Bayesian Statistics, John Wiley, 2004. 

[16] R.B. Cooper, Introduction to queuing theory, Second edition, Elsevier North Holland Inc, 

1981. 



References 

[17] I. Adan and J. Resing, Queuing Theory, 

http://www.cs.duke.edu/ fishhai/misc/queue.pdf, 2001. 

[18] S. Yamada, T. Ichimori, and M. Nishiwaki, "Optimal allocation policies for testing-resource 

based on a software reliability growth model," Mathematical and Computer Modelling, vol. 

22, pp. 295-301, 1995. 

[19] J.H. Lo and C.Y. Huang, "An integration of fault detection and correction processes in soft­

ware reliability analysis," Journal of Systems and Software, vol. 79, no. 9, pp. 1312-1323, 

2006. 

[20] B.W. Boehm, C. Abts, A.W. Brown, S. Chulani, B.K. Clark, E. Horowitz, R. Madachy, D. 

Reifer, and B. Steece, Software Cost Estimation with Cocomo II, Prentice Hall PTR, 2000. 

[21] X. Cai, M.R. Lyu, K-F. Wong, and R. Ko, "Component-based software engineering: Tech­

nologies, Development frameworks, and quality assurance schemes," Proc. Asia-Pacific Soft­

ware Engineering Conferenece, pp.372-379, 2000. 

[22] W. Kozacznski and G. Booch, "Component-based software engineering," IEEE Software, vol. 

155, pp. 34-36, Sep./Oct. 1998. 

[23] M.R. Lyu, S. Rangarajan, and A.P.A. van Moorsel, "Optimal allocation of test resources 

for software reliabilitygrowth modeling in software development," IEEE Transactions on 

Reliability, vol. 51, no. 2, pp. 183-192, 2002. 

[24] C.Y. Huang and M.R. Lyu, "Optimal release time for software systems considering cost, 

testing-effort, and test efficiency," IEEE Trans, on Reliability, vol. 54, pp. 583-591, 2005. 

89 

http://www.cs.duke.edu/


References 

[25] A. Zaryabi, A. Ben Hamza, T. Bergander, and N. Mahe, "Software Fault Prediction Model­

ing," SAP Research Conference, Palo alto, CA, USA, 2008. 

[26] A. Zaryabi, T. Bergander, A. Ben Hamza, and N. Mahe, "Queing-Thoretic Approach to Soft­

ware Resource Allocation," Proc. 17th International Conference on Software Engineering 

and Data Engineering, LA, California, USA, 2008. 

[27] A. Zaryabi, A. Ben Hamza, T. Bergander, and N. Mahe, "Optimal software release and main­

tenance policy via neural networks," to be submitted, 2009. 

[28] O. Gauodin, "Optimal properties of the Laplace trend test for software-reliability models," 

IEEE Transactions on Reliability, vol. 20, no. 9, pp. 740-747, 1992. 

[29] H.E. Ascher and C.K.Hansen, "Spurious exponentiality observed when incorrectly fitting a 

distribution to nonstationary data," IEEE Transactions on Reliability, vol. 47, no. 4, pp. 451-

45, 1998. 

[30] W.R. Gilks, S. Richardson, and D. Spiegelhalter, Markov chain Monte Carlo in Practice, 

Chapman & Hall/CRC, 1995. 

[31] Y. Nakagava and S. Myazaki, "Surrogate constraints algorithm for reliability optimization 

problems with two constraints," IEEE Transactions on Reliability, vol. 30, no. 2, pp. 175-

180,1981. 

[32] K.B. Misra and U. Sharma, "An efficient algorithm to solve integer programming problems 

arising in system reliability design," IEEE Transactions on Reliability, vol. 40, no. 1, pp. 

81-91, 1991. 

90 



References 

[33] F.A. Tillman, C-L. Kwang, and W. Kuo, "Determining component reliability and redundancy 

for optimum system reliability," IEEE Transactions on Reliability, vol. 26, pp. 162-165,1977. 

[34] L. Painton and J. Campbell, "Genetic algorithms in optimization of system reliability," IEEE 

Transactions on Reliability, vol. 44, no. 2, pp. 172-178, 1995. 

[35] D.W. Coit and A.E. Smith, "Reliability optimization of series-parallel system using a genetic 

algorithm," IEEE Transactions on Reliability, vol. 45, no. 2, pp. 254-260, 1996. 

[36] B. Luong and D-B. Liu, "Resource allocation model in software development," Proc. IEEE 

Annual Reliability and Maintainability Symposium, Philadelphia, USA, 2001. 

[37] M.A. Marsan, S. Donatelli, and F. Neri, "GSPN models of multiserver multiqueue systems," 

Proc. International Workshop on Petri Nets and Performance Models, pp. 19-13, 1989. 

[38] H. Okamura, Y. Watanabe, and T. Dohi, "An iterative scheme for maximum likelihood estima­

tion in software reliability modeling," Proc. International Symposium on Software Reliability 

Engineering, pp. 246-256, 2003. 

[39] T. Bergander, Y. Luo, and A. Ben Hamza, "Software defects prediction using operating char­

acteristic curves," Proc. IEEE International Conference on Information Reuse and Integra­

tion, Las Vegas, USA, 2007. 

[40] Y. Luo, T. Bergander, and A. Ben Hamza, "Anisotropic Laplace trend to enhance software 

reliability growth modelling," Proc. International Conference on Modelling and Simulation, 

Montreal, Canada, May 2006. 

[41] Y Luo, T. Bergander, and A. Ben Hamza, "Software reliability growth modelling using a 

91 



References 

weighted Laplace test statistic," Proc. IEEE International Computer Software and Applica­

tions Conference, Beijing, China, July 2007. 

[42] K. Rinsaka, and D. Tadashi, "Discrete optimal testing/maintenance policy in a software de-

velopement project," Asia Pacific Management Review, pp. 225-232, 2005. 

[43] O. Hiroyuki, D. Tadashi, and O. Shunji, "A Reliability Assessment Method for Software 

Products in Operational Phase-Proposal of an Accelerated Life Testing Model," Trans. Insti­

tute of Electronics, Information and Communication Engineers., vol. 83-A, no. 3, pp. 294-

301,2000. 

[44] T. Kitaoka, S. Yamada, and S. Osaki, "A discrete non-homogeneous error detection rate 

model for software reliability," IECE Trans., vol. E69, no.8, pp. 859865, 1986. 

[45] N.F. Schneidewind, "Analysis of error processes in computer software," Proc. International 

Conference on Reliable Software, IEEE Computer Society Press: Los Alamitos, CA, pp. 

337346, 1975. 

[46] M. Xie, Q.P. Hu, Y.P. Wu, and S.H. Ng, "A study of the modeling and analysis of software 

fault-detection and fault-correction processes," Qual. Reliab. Engng. Int., vol. 23, pp. 459-

470, 2007. 

[47] I.J. Myung, "Tutorial on maximum likelihood estimation," Journal of Mathematical Psychol­

ogy, vol. 47, pp. 90-100, 2003. 

[48] Q.P. Hu, M. Xie, S.H. Ng, and G. Levitin, "Robust recurrent neural network modeling for 

software fault detection and correction prediction," Reliability Engineering & System Safety, 

vol. 92, no. 3, pp. 332-340, 2007. 

92 



References 

[49] Y.S. Su, C.Y. Huang, Y.S. Chen, and J.X. Chen, "An artificial neural network-based approach 

to software reliability assessment," Proc. IEEE TENCON Conference, pp. 1-6, 2005. 

[50] M. Kimura, T. Toyota, and S. Yamada, "Economic analysis of software release problems with 

warranty cost and reliability requirement," Reliability Engineering & System Safety, vol. 66, 

pp. 49-55, 1999. 

[51] G. Levitin and M. Xie, "Performance distribution of a fault-tolerant system in the presence 

of failure correlation," HE Transactions, vol. 38, no. 6, pp. 499-509, 2006. 

[52] M.C.K. Yang and A. Chao, "Reliability-estimation and stopping-rules for software testing, 

based on repeated appearances of bugs," IEEE Trans, on Reliability, vol. 44, pp. 315-321, 

1995. 

[53] P.K. Kapur, P.C. Jha, and A.K. Bardhan, "Optimal allocation of testing resource for a modular 

software," AsiaPacific Journal of Operational Research, vol. 21, pp. 333-354, 2004. 

[54] T.M. Khoshgoftaar, R.M. Szabo, and P.J. Guasti, "Exploring the behavior of neural network 

software quality models," Software Engineering Journal, vol. 10, no. 3, pp. 89-96, 1995. 

[55] M. Xie, Software Reliability Modeling, World Scientific Publishing, 1991. 

[56] W.R. Gilks, S. Richardson, and D. Spiegelhalter, Markov chain Monte Carlo in Practice, 

Chapman & Hall/CRC, 1995. 

[57] ANSI/IEEE, Standard Glossary of Software Engineering Terminology, STD-729-1991, 

ANSI/IEEE, 1991. 

93 



References 

[58] B. Littlewood and L. Strigini, "Software reliability and dependability: a roadmap," Proc. 

22nd International Conference on Software Engineering, Limerick, pp. 177-188, 2000. 

[59] RC. Pendharkar, G.H. Subramanian, and J. Rodger, "A probabilistic model for predicting 

software development effort," IEEE Transactions on Software Engineering, vol. 31, no.7, pp. 

615-624,2005. 

[60] N. Nagappan and T. Ball, "Use of relative code churn measures to predict system defect 

density," Proc. ACM1CSE conference, 2005. 

94 


