ENHANCEMENTS TO JML AND ITS EXTENDED
STATIC CHECKING TECHNOLOGY

PERRY ROLAND JAMES

A THESIS
IN
THE DEPARTMENT
OF

COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

JuLy 2009

(© PERRY ROLAND JAMES, 2009

Library and Archives Bibliothéque et
Canada Archives Canada

"~ Published Heritage Direction du
Branch Patrimoine de F'édition

395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada .
Your file Votre référence
ISBN: 978-0-494-63424-0
Our file Notre référence
ISBN: 978-0-494-63424-0
NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author’s permission.

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'internet, préter,
distribuer et vendre des théses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

L’auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése. Ni
la thése ni des extraits substantiels de celle-ci
ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Canada

Conformément a la loi canadienne sur la
protection de la vie privée, quelques

formulaires secondaires ont été enlevés de

cette thése.

Bien que ces formulaires aient inclus dans
la pagination, il n'y,aura aucun contenu
manquant.

Abstract

Enhancements to JML and Its Extended Static Checking
Technology

Perry Roland James, Ph.D.
Concordia University, 2009

Formal methods are useful for developing high-quality software, but to make use
of them, easy-to-use tools must be available. This thesis presents our work on the
Java Modeling Language (JML) and its static verification tools.

A main contribution is Offline User-Assisted Extended Static Checking (OUA-
ESC), which is positioned between the traditional, fully automatic ESC and inter-
active Full Static Program Verification (FSPV). With OUA-ESC, automated the-
orem provers are used to discharge as many Verification Conditions (VCs) as
possible, then users are allowed to provide Isabelle/HOL proofs for the sub-VCs
that cannot be discharged automatically. Thus, users are able to take advantage
of the full power of Isabelle/HOL to manually prove the system correct, if they
so choose. Exploring unproven sub-VCs with Isabelle’s ProofGeneral has also
proven very useful for debugging code and their specifications.

We also present syntax and semantics for monotonic non-null references, a
common category that has not been previously identified. This monotonic non-
null modifier allows some fields previously declared as nullable to be treated like

local variables for nullity flow analysis.

iii

To suppbrt this work, we developed JML4, an Eclipse-based Integration Ver-
ification Environment (IVE) for the Java Modeling Language. JML4 provides in-
tegration of JML into all of the phases of the Eclipse JDT’s Java compiler, makes
use of external API specifications, and provides native error reporting. The verifi-
cation techniques initially supported include a Non-Null Type System (NNTS),
Runtime Assertion Checking (RAC), and Extended Static Checking (ESC); and
verification tools to be developed by other researchers can be incorporated; JML4
was adopted by the JML4 community as the platform for their combined research
efforts.

ESC4, JML4’s ESC component, provides other novel features not found before
in ESC tools. Multiple provers are used automatically, which provides a greater
coverage of lJanguage constructs that can be verified. Multi-threaded generation
and distributed discharging of VCs,. as well as a proof-status caching strategy,
greatly speed up this CPU-intensive verification technique. VC caches are known
to be fragile, and we developed a simple way to remove some of that fragility.

These features combine to form the first IVE for JML, which will hopefully

bring the improved quality promised by formal methods to Java developers.

iv

Acknowledgments

This thesis would not have been possible
without the love and encouragement of my family.

I would also like to thank

Dr. Patrice Chalin for the sure guidance, professionalism, interest, dedication,
and friendship demonstrated during our years working together.

George for all the fruitful discussions and for his friendship during our studies.

Stuart for his help with TAing and for setting up and maintaining the server
hardware.

Leveda for her help with the implementation of the distributed provers.

Dan, Steve, Rajiv, Kianoush, Fred, and Asif (as well as all the above) for their
camaraderie as part of the DSRG.

The Faculty of Engineering and Computer Science for awarding me with their
Graduate Scholarship. .

The Graduate School for granting me the Doctoral Thesis Completion Award.

The Québec Fonds de Recherche sur la Nature et les Technologies for the
funding provided.

Contents

List of Figures xiii
List of Tables , : xvi
List of Acronyms | xvii
1 Introduction 1
1.1 Problemstatement 4

1.2 Contributions o e 5

1.3 Thesis Organization e e e e e e e e e e e e e 8

2 Background and Related Work 9
2.1 Concepts and Related Projects e e 9
2.1.1 Verification-Centric Software Engineering 9

2.1.2 Asseftions, Design by Contract,andBISLs 11

2.1.2.1 Assertions R |

2.1.2.2 Design by Contract(DbC) 12

2.1.2.3 Behavioral Interface Specification Languages ... 14

2.1.3 ToolsupportforDbCandBISLs 15

2.1.3.1 Runtime Assertion Checking (RAC) 15

2.1.3.2 Full Static Program Verification (FSPV) 16

2.1.3.3 Extended Static Checking (ESC) 17

22 JML:Languageand ToolSupport 19
221 language.............. e e e e e e 20
2.2.2 JMLCheckerandCompiler 23
223 JMLURDItii et 25
2.24 ESC/JavaandESC/Java2 26

2.2.4.1 IssueswiththeProvers. 29
225 FSPVwith]ML 29
2251 LOOP e e e e e 30
2252 Jack. e 30

2.3 VCSE: BISLs and International Research Projects 31

231 OtherBISLs 31

23.1.1 Caduceus/WHY..................... 32

23.12 Eiffel e 32

2313 Omnibus 34

2314 Spec#. e e 35

2.3.2 International Academic and Commercial Research 38

2321 Mobius. L 39

2.3.2.2 Verified Software Initiative 39

3 JMLA4: An Integrated Verification Environment for JML 41

3.1 Motivation for Complementary Verification 42
3.1.1 IntroductiontoCaseStudy. 43
3.1.2 Summary e e e e e e e e 45

- 3.2 AFrameworkfora]MLIVE. 46
321 Introduction 46
3.2.2 Background and Goals 47

vii

3.2.2.1 FirstGenerationTools 48

3.2.2.2 Goals for Next-Generation Tool Bases 50
323 JMI4A e e . 51
3.2.3.1 ArchitecturalOverview 52
3.2.3.2 Overvew of Compilation Phases 54
3.2.3.3 Lexical Scanning, Parsing, andthe AST 55
3.2.3.4 Type Checking and Flow Analysis 59

3.2.3.5 Instrumentation for Runtime Assertion Checking . 63

3.23.6 StaticCecking. 64

3.23.7 TestingFramework e e 64

324 RelatedWork.o oo ittt 64
3241 JML3 L ... b6

3242 JML5 67

3.2.4.3 JavaApplet Correctness Kit (JACK) 68

3244 ESC/JAVA2Plug-in 69

3245 Summaryo e e e e 70

3.3 Early Results and Validation of Architectural Approach 70
33.1 Useof]ML4 71
3.3.1.1 Third-PartyFeatures 72

3.3.2 Validation of Architectural Approach 73

333 Summary................. 74

4 [ESC4: AModern ESC for Java 76
4.1 GeneratingVCs e 78
4.1.1 Introduction, 78
4.1.2 Control-FlowGraph Translator 80

| 4121 GCLanguage and Control-Flow Graph 81

viil

4.1.2.2 FromtheJDTsASTtoESC4’s 83

4.1.2.3 Removing Control-Flow Statements 86
4124 FinalDesugaring 90
4.1.2.,5 Passification. 90

4.1.2.6 Final words on Generating the CFG Program 94

413 VCGenerationttt 95

4.2 DischargingVCs L 96
421 Proverback-end......... o L. 96

4.2.2 Returningtoourexample 100

4.2.3 Reducing Prover Invocations 103

4231 Caching 103

4232 AMoreRobustCache 104

4.24 PostProcessingResults 105

5 ESC Enhancements 106
5.1 EnhancedESCinESC4 106
51.1 OVerview ot i e e e e e e 106

5.1.2 ESC4Enhancements 107

5.1.2.1 Arithmetic quantifiers 108

5.1.2.2 Restoring First-Class Status of Quantified Expres-

SIONS e e e e e 111

5.1.2.3 Non-linear arithmetic 111

513 RelatedWork. 112
5.1.3.1 ESC/JavaandESC/Java2................ 112

5.1.3.2 Spec#, VCC,and HOL-Boogie 113

5.1.3.3 KrakatoaandCaduceus 115

5134 SPARK 116

514 Summary.ttt e 116

5.2 Offline User-Assisted Extended Static Checking 117
5.2.1 Exampleof OUA-ESC 119
5.2.2 DischargingHelperLemmas. 122
5.2;3 Summary............. | ... 123

Distributed and Multithreaded Verification 124

6.1 Multi-threading 125

6.2 Distributed VCProcessing 127

6.3 Proverservice 129

6.4 Validation i 130
6.4.1 OtherTools............ e e e e e e e e e e 133

6.4.1.1 Compilation. 133

6.4.1.2 Interactive, distributed theorem proving for pro-

gram verification, 134

6.5 Summary e e e e 134
Language Enhancement: Monotonic Non-null 136
71 UsesofNull 137
711 Fields i 137
712 Methods e 138
7.1.3 Parameters. oo 138
7.4 Statistics I 139

7.2 MonotonicNon-null 142
73 Summaryl e e e e e e e e 145
Conclusions 146
8.1 Summary e e 146

8.2.1 Preparing ESC/Java2fortheVSR 148
8.22 JMIA e e e 148
823 ESC4, [149
824 OUA-ESC. i it 149
8.2.5 Distributed DischargingofVCs 150
Bibliography 164
A Soundness and Completeness Proof for VC-Splitting Algorithm 165
Al Introduction 165
A.2 VCLanguage and Splitting Algorithm 165
A3 Semantics 166
A.4 Auxilliary Lemmas About foldrandmap 166
A.5 Auxilliary Lemmas for InductionSteps 168
A.6 Soundness and Completeness 170
B BISLs and BISL Tools for Java 171
Bl Jass e e 171
B.2 Jcontract and Jtest from Parasoft 171
B.3 iContractandiContract2 172
B4 OVal...... e e 172
B5 Contractd] e e e 172
B.6 jContractor e 173
B.7 C4) . e e e e e 173
B.8 Self-Testable ClassesforJava 173
B9 Summary o e 174

C SPARK

D RAC-ing ESC/Java2

D.1 OriginoftheCaseStudy e

D.2 Compiling ESC/Java2 Source withthe JMLRAC

D.2.1 AST Node Invariants Not Established by Constructors
D.2.2 Internal AST Node Instances vs. AST Node Class Invariants .
D.2.3 Specification and Polymorphic Structures

D.2.4 Internal Literal Instances vs. Literal Class Invariants

E Early Validation: Non-null Type System

E.l
E.2

E3
E.4

Motivation e
TheCaseStudy. e e e e e e e e e e

E.2.1 Verification and Validation of Annotations

xii

177

180
180
181
181
183
185
187

List of Figures

© o0 ~N O O e W N~

N b e e et e = e e e e
O W o N e W= O

Stages of ESC/Java processing [Flanagan etal,2002] 27
High-level packageview 53
Packages customized tosupport]ML4 54
JDT/JML4 compilationphases 55
Customizing the JDT lexerandparser 56
Lexer code for nullitykeywords 57
JikesPG grammar productionso 0oL 58

Part of the AST hierarchy(org.eclipse. jdt.internal.compiler.ast) . 59

Code generation example for runtime checking of a cast (to non-null) 63

JML-JDTunittest e e e e e 65

JML5 example specification 68
ScreenshotofJML4 B 71
DataflowinESC4, 77
ESC4’s processingstages 79
ESC4 reporting a problem with ADS . i e e 80
abs in Dijkstra’s GClanguage e 81
absas aControl-FlowGraph 82
Sugared-StatementLanguage 84
Fully sugared versionofabsasaCFG 85
Acyclic-Statement Language 86

xiii

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Translation ofawhileloop 89

Desugared-Statement Language 90
FinalCFGLanguage 90
Weakest precondition for passive statements 95
VCProgramforabs, 96
ESC4’sproverback-end, 97
Simplify encoding of the problemsub-VC 101
CV(C3 encoding of the problemsub-VC 102
Isabelle encoding of the problem sub-VC e 102
Assertions that ESC/Java2 cannotverify 107
Arithmetic quantified expression 109
Definition of “sum” from IsabelleUBP 110
Computing x3 with shifts and additions 112
Calculating the integer squareroot 120
A proof for a VC from the code in Figure34 121
ESC4’s distributed proverback-end 128
Deployment 129
Time(s)vs.Cores e 132
Testing of a field against null is useless in multithreaded programs . 139

An idiom for testing fields against null (that is thread safe) 140
An objecttestinEiffel o o L. 140
A monotonicnon-nullmethod 143
Same code desugaredtostandardJML 143
Example of C4J Annotation 176
SPARK example showing core annotations 178

xiv

46

- 47

48
49
50
51

52
53
54
55

56

Run-time assertion violation reported by ESC/Java2 compiled with

the]MLRAC i .. . 182
Excerpt from javafe/ast/PrimitiveType.java 183
Declaration of 1ength field for arrays in javafe.tc.Types 184
Excerpts from GenericVarDecl and FieldDecl of javafe.ast 184

RAC error: violation of PrimitiveType maker method precondition. . 185

Sample (invalid) solution: excerpts from PrimitiveType and Esc-

PrimitiveTyPe . . v v v v v v v v e e e e e e e e e e e e e e e e e e e 186
Excerpt of correct redesign of PrimitiveType, partl 187
Excerpt of correct redesign of PrimitiveType,part2 188
Definition of javafe.ast.LiteralExpr'smaker andacalltoit 189

JMLA4 reporting non-null type system errors in a method too big for
ESC/Java2toverify 191

Code except from the escjava.Mainclass 192

List of Tables

—

© &0 N OO G = w0

A Comparison of possible next-generation JMLtools l. . 70
VCsdischarged withprovers 131
Timingresults e 131
Proportion of nullable fields that are monotonic non-null 140
Status of JavaDbCProjects 174
Comparison of Features of Java DbC Projects 175

Examples of Annotations from Java DbC Projects’ Documentation . 175
General statistics of study subjects and their encompassing projects 193

Distribution of the number of declarations of reference types 194

List of Acronyms

ADT
AST
ATP
BISL
CbC
CFG
CIL
CPU
DSA
ESC
FSPV
GC
HOL
IDE
ITP
IVE
JDT
JML
KLOC
NNTS
OUA-ESC
00
RAC
SOFL
VC
VCSE
VDM
VSI
WP

Abstract Data Type

Abstract Syntax Tree

Automated Theorem Prover

Behavior Interface Specification Language
Correctness by Construction
Control-Flow Graph

Common Intermediate Language

Central Processing Unit

Dynamic Single Assignment

Extended Static Checking

Full Static Program Verification

Guarded Command

Higher-Order Logic

Integrated Development Environment
Interactive Theorem Prover

Integrated Verification Environment

Java Development Toolkit

Java Modeling Language

Kilo Lines of Code

Non-Null Type System

Offline User-Assisted ESC

Object Oriented

Runtime Assertion Checking

Structured Object-Oriented Formal Language
Verification Condition
Verification-Centric Software Engineering
Vienna Development Method

Verified Software Initiative

Weakest Precondition

xvii

Chapter 1

Introduction

Despite our increasing dependence on software, its general quality remains low.
The defects that remain in delivered software cause a range of problems, from
simple daily annoyances to the more significant losses of money or even lives.
The U.S. Department of Commerce estimated that the impact to the American
economy of faulty software in 2002 was $60 billion [Hoare, 2003b]. Since Intel’s
loss of nearly half a billion dollars because of a faulty division algorithm in a Pen-
tium processor in 1994, formal methods have been successfully used to a much
larger extent in hardware design [Schumann, 2001]. It is generally believed that
the increased use of formal methods in software development would also result
in increased quality [Liu, 2004].

The formal software-development techniques referred to in this thesis are the
use of formal specifications to express the meaning of a piece of software and the
formal verification that a given piece of code correctly implements its specifica-
tion. Specification languages differ from implementation languages in that they
are more abstract and allow for the description of what is to be computed without
regard for how the computation is to be carried out. Formal verification makes

use of theorem provers, either fully automated or interactive [Liu, 2004].

Even though the use of formal methods in software development is seen as
potentially beneficial, the associated costs are generally perceived as too high
for use in non-safety-critical applications [Schumann, 2001]. Among the reasons
for the prohibitive cost of using these quality-enhancing techniques are the lack
of tool support and the specialized training required. These issues are being ad-
dressed by the research community on two fronts: by providing appropriate tools
that ease the burden on software developers and by developing methodologies
that allow for the incremental adoption of formal techniques in software written
using mainstréam languages.

Rushby gives four levels of rigor in the application of formal methods [1993].

1. Without formal methods, specifications are written in prose or pseudo-code,

and any analysis is either informal or by means of testing.

2. A slight improvement over this includes the use of mathematical notation
in comments (or other documentation) for more succinct and precise ex-

pression.

3. By using a formal specification language, automated tool support, such as

for type checking, becomes possible.

4. At the most rigorous level, a formal specification language that both has a
full semantics and is amenable to formal proofis used in a “comprehensive

support environment.”

Extending this notion one step further leads to a Verifying Compiler, as described
in Hoare’s proposed Grand Challenge 6 [Hoare, 2003b]. A Verifying Compiler is
one that can “check the correctness of the programs that it compiles” [Hoare,
2003b]. Just as automated checking of syntax and types has eliminated entire

categories of runtime exceptions, extending this checking to include behavioral

2

aspects of programs should greatly reduce the number of semantic errors in code. -
Much of the necessary theory for program verification has been developed over
the past half century. Theorem provers are now sophisticated enough—and com-
puters are now fast enough—to make the Verifying Compiler possible [Hoare,
2003b]. Both the Verifying Compiler and the Grand Challenge 6 projects have
been subsumed into the Verified Software Initiative (VSI)! [vsi, 2008].

Some existing tools can be seen as early Verifying Compiler prototypes includ-

ing those supporting
e SPARK [Barnes, 2006],
. Omhibus [Wilson et al., 2005],
e Spec# [Barnbett et al.,, 2005], and
e JML [Leavens et al., 1998]

The first two work with a severely restricted subset of an existing language so
that complete specifications can be given and verified using existing techniques,
while the last two are ongoing research projects whose eventual goal is the ability
to fully specify programs written in a mainstream language.

Promoting incremental adoption of formal techniques precludes forcing de-
velopers to change their programming language, so the Java Modeling Language
(JML) was created to bring formal techniques to Java developers. JMLSs syntax
and semantics are similar to those of Java, allowing the user to specify both the
interface and behavior of Java code [Leavens and Cheon, 2005). Current tool sup-
port for JIML includes Runtime Assertion Checking (RAC), Extended Static Check-
ing (ESC), Full Static Program Verification (FSPV), as well as unit-testing tools and

documentation generators for specification browsing [Burdy et al., 2005b].

'A full list of acronyms can be found on page xvii.

3

JML has been the focus of many research groups for some years, but there is
still much to be done to make its use mainstream. The JML language is still evolv-
ing, and there are open issues related both to its soundness and its ability to spec-
ify all constructs found in the full Java language. A more pressing problem is that
the current generation of JML tools are separate, non-interacting, command-line
programs. Providing easy access to these tools through a modern Integrated De-
velopment Environment (IDE) should encourage their wider adoption. The re-
search addressed by this thesis aims to enhance both the JML language and its
tool support to help ease the adoption of formal methods by mainstream Java
developers. As such, this work contributes to Hoare’s Verifying Compiler Grand

Challenge.

1.1 Problem statement

JML is the de facto specification language for Java [Kiniry et al., 2006]). Its ini-
tially stated goals included for it to be “capable of being given a rigorous, formal
semantics, and [it] must also be amenable to tool support” [Leavens et al., 2000].

Despite this, two main obstacles remain that prevent JML from being used by

mainstream developers:

¢ the JML language has well recognized deficiencies [Chalin et al, 2006}, and

o the original JML command-line driven tool set is showing its age—not yet

fully supporting Java 5 despite its having been released several years ago.

Deficiencies in the design of JML itself, prevent developers from writing compre-
hensive specifications for real-world programs. Like anyone else, developers are
more likely to use easy-to-access tools with which they can interact in familiar

ways.

1.2 Contributions

oM@V dybpwv GAtyov xapndv aviyayov
(From much chaff I have taken up only a little harvest)

— Greek proverb

It has been our intent to remove some of the barriers to the widespread adoption

of JML by developers by

¢ [tool] developing an Eclipse-based framework within which an enhanced

JML tool set could be built,

¢ [technique] developing improved verification tools incorporating the latest
theoretical advances and verification techniques as well as novelties devel-

oped in the context of this thesis, and

¢ [language] enhancing the JML language rendering it more expressive or

complete.

In particular, we make the following novel contributions:

OUA-ESC [technique] A main contribution of this thesis is the introduction of a
new form of static verification called Offline User-Assisted ESC (OUA-ESC),
which is positioned between the traditional, fully automatic ESC and in-
teractive FSPV. With OUA-ESC, automated theorem provers are used to
discharge as many VCs as possible, then users are allowed to provide Is-
abelle/HOL proofs for the sub-VCs that cannot be discharged automatically

(Section 5.2).

e Thus, users are able to take advantage of the full power of Isabelle/HOL

to manually prove the system correct, if they so choose.

5

e Exploring unproven sub-VCs with Isabelle’s ProofGeneral has proven

very useful for debugging code and their specifications.

Monotonic non-null [language] Monotonic non-null fields are a common cate-
gory that has not been previously identified. Once they are initialized, they
remain non null, but unlike non-null fields, they are not necessarily initial-
ized during construction. (Section 7.2). We proposed syntax and semantics
of this reference modifier for inclusion in JML. Support for it was imple-
mented as part of the Non-Null Type System that we added to Java’s com-

piler, including both static analysis and runtime checks.

Faster ESC [technique] We introduce two main ways of making the CPU-inten-

sive verification technique of ESC faster:

e Multi-threaded generation and distributed discharging of sub-VCs are

used to speed up the ESC processing (Chapter 6).

¢ Proof-status caching is also used to reduce the number of calls to the-
orem provers, thus reducing the time needed for already-verified code

(Section 4.2.3)

While neither of these techniques is novel, their application in the context

of ESC is.

Reducing fragility of VC caching [technique] Proof-status caches are normally
susceptible to small changes in their corresponding source code, since the
stored VCs contain source-code position information. We propose some

simple ways to eliminate this (Section 4.2.3.2).

Enhanced ESC [technique] When ESC4 is unable to discharge the VC for an en-

tire method, it breaks that VC into smaller pieces (sub-VCs) and sends these

6

to several provers (Section 4.2). (Appendix A shows an Isabelle/HOL proof
that this decomposition is sound and complete.) One of the consequences
of this splitting is that better error reporting is achieved: We are often able to
report the subexpression that causes an assertion to fail instead of indicat-
ing the entire asserted expression (Section 4.2.1). We also improve usability

by indicating provably false assertions.

JMLA [tool] To be able to carry out the work underlying the previously iden-
tified contributions, we needed to develop a suitable platform. The result was
JML4, which is an Eclipse-based Integrated Verification Environment for JML
(Chapter 3). It is the only proposal evaluated by the JML community that satisfies
all of its goals for a next-generation of tools. Developers expect an Integrated De-
velopment Environment (IDE) to provide (at a minimum) a syntax-sensitive edi-
tor, compiler, debugger, and documentation processor as well as support for unit
testing and a help facility. Providing access to JMLSs tools through Eclipse makes
its adoption more likely. This framework provides a common base on which the
diverse teams working on JML tools can build.

Once the foundational support for JML was implemented atop Eclipse, we be-
ganworking on the next generation of verification tools. The first provided a rudi-
mentary Runtime Assertion Checking by emitting executable bytecode to check
some of the JML annotations. Then a separate compiler phase was added just
before code generation that allows for static verification. Others in our research
group are developing a Full Static Program Verification component [Chalin et al.,
2008a, Karabotsos et al., 2008}, but our work on static verification has focused on

ESC4, an the Extended Static Checker component of JML4.

ESC4 [technique] & [tool] ESC4 is a complete rewrite of (part of) the func-
tionality provided by ESC/Java2 [Cok and Kiniry, 2005]. ESC4 is a quickly evolv-
ing research platform that provides support for some constructs not supported
in the earlier tool (Section 5.1).

Verified Software Repository Candidate Part of the motivation for developing

'JML came from our use of the then-current tools to begin preparing ESC/Java2

for inclusion into the Verified Software Repository (Section 3.1 and Appendix D).

1.3 Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 covers both back-
ground material necessary for understanding later chapters and related work
done by others. Chapter 3 presents the development of JML4, its motivation,
its architecture, and validation of its validity. Chapter 4 presents the architecture
of ESC4, principly how VCs are generated and discharged. Chapter' 5 presents
some of the benefits of using multiple provers, including Offline User-Assisted
ESC. Chapter 6 discusses ESC4’s multi-threaded generation and distributed dis-
charging of VCs, and initial timing results are presented. Chapter 7 discusses
Monotonic non-null references. We conclude in Chapter 8 by summarizing the

. work covered in this thesis and presenting future work.

Chapter 2

Background and Related Work

In Section 2.1 we provide a background for the research that will be presented in
later chapters as well as survey related work that targets Java. JML and related
work for languages other than Java are treated in Sections 2.2 and 2.3, respec-
tively. A survey of tools for use with Java other than JML can be found in Ap-

pendix B

2.1 Concepts and Related Projects

2.1.1 Verification-Centric Software Engineering

There are two main approaches to Verification-Centric Software Engineering: the

use of

e Behavioral Interface Specification Languages (BISLs) or their lightweight

subsets and

e Correctness by Construction (CbC).

As mentioned in the introduction, the formal development techniques to be in-
vestigated in this thesis deal with the formal specification of the meaning of code
and the formal verification that the code correctly implements its specification.
Such specifications are written using a BISL, in our case the Java Modeling lan-
guage (JML).

CbC is an approach to formalization that is more widely used for the devel-
opment of safety-critical systems and is exemplified by VDM [Bjerner and Jones,
1978, Jones, 1990] and the B Method [Abrial, 1996]. In these methods, a formal
model of an entire system (or subsystem) is developed during the requirements-
gathering phase. This abstract model then undergoes a series of refinements to
eventually reach an implementation in code. Each refinement step requires a
proof that properties of interest in both the input and output models are equiv-
alent [Potter et al., 1996]. CbC techniques have a very high up-front cost, since
a full formal model must be developed very early and the necessary proofs are
often nontrivial. SOFL was developed as an attempt to miﬁgate some of these
concerns [Liu et al., 1998, Liu, 2004], but we feel that it is still too heavyweight to
be widely adopted by industry.

Another group of methods for software development that was not studied are
those in which source code is automatically generated from specifications. Per-
fectDeveloper is among these [Carter et al., 2005]. We ignored these methods
since we wanted to take advantage of the redundancy in having two complemen-
tary statements of the intended behavior of the system. Because of the difference
in the two languages (i.e., specification and programming), it is unlikely that a de-
veloper would introduce the same error in both. Without two kinds of artifacts,

we cannot usefully exploit this redundancy [Clarke and Rosenblum, 2006].

10

The approach that we have chosen is lightweight compared to CbC. As dis-
cussed further in the next chapter, BISLs are an extension of simple assertions
and Design by Contract (DbC). Even though JML and other BISLs can be used
to fully specify the behavior of code, and therefore can be considered more than
lightweight, they can be used to exploit the lightweight approach of their ante-
- cedents—while using the same tools. This allows for the gradual introduction of
formalization, as permitted by cost and training constraints. Once initial benefits
are seen, it is hoped that more complete specification and validation would fdl-
low. This is in sharp contrast to CbC approaches, in which most of the cost comes
early and there is not an obvious path to ease developers into formalization.

In the remainder of this section we define BISLs in the context of lightweight
verification. An in-depth exploration of JML is given in Section 2.2. An overview

of other BISLs for Java can be found in Appendix B.

2.1.2 Assertions, Design by Contract, and BISLs

BISLs are an extension of the notation that supports Design by Contract (DbC),

which is itself an extension of program assertions.

2.1.2.1 Assertions

Assertion statements are found in many mainstream languages and are com-
monly used by programmers [Chalin, 2005]. Hoare notes that “An assertion is a
Boolean formula written in the text of a program, at a place where its evaluation
will always be true—or at least, that is the intention of the programmer” [Hoare,
2003a]. Many languages that support assertions also allow the developer to pro-

vide a text message to be output if the assertion fails. In Java these take the form

assert p “useful message about p not holding”;

11

The use of assertions as a means of checking code against its expected be-
havior has a long history. One of the first recorded attempts is found in Turing’s
“Checking a Large Routine” [Turing, 1949]. This short paper provides a set of
assertions that should hold at various points during the execution of a factorial
function that performs multiplication by repeated addition. The routine is also
shown to terminate by indicating a value that must decrease after each iteration
and by showing that the iteration stops when this value reaches zero. One of the
main differences in the process suggested in this foundational paper from that

advocated today is that Turing’s assertions were to be checked by hand.

2.1.2.2 Design by Contract (DbC)

Floyd-Hoare Logic provides a means of reasoning about blocks of code [Hoare,

1969]. These are expressed as a triplet with the form

{P}Q{R}

Dijkstra notes that we can think of these three time-related steps “input; manip-
ulation; output” [Dahl et al., 1972]. Hoare gave the reading, “If the assertion P
is true before initiation of a program @), then the assertion R will be true on its
completion” [Hoare, 1969]. When each construct in a language, including com-
position, is specified in this manner it becomes possible to describe the meaning
of the code @ in terms of the environment P in which it was run.

There are two forms of correctness: total and partial. Partial correctness of
() in this case means that if () terminates then R will hold. Total correctness of
() means that it is both partially correct and terminates [Winskel, 1993]. In the
example by Turing mentioned above, total correctness is shown, whereas if the
routine had not been shown to terminate then it would-only have been a proof of

its partial correctness.

12

Floyd-Hoare Logic was adapted and popularized under the name Design by
Contract (DbC) by Meyer in the Eiffel programming language [Meyer, 1997]. DbC
is a relatively easy-to-learn style of specification in which methods are annotated

with contracts in the form of two kinds of assertions [Meyer, 1995]:

¢ preconditions that must hold before a method is called and

e postconditions that are guaranteed to hold after a method terminates.

Before calling a method, a client must first ensure that the precondition holds.
In return for this, the method guarantees that the postcondition will hold. Post-
conditions often need to refer to the value of a variable before the execution of a
method and the value it returns, and mechanisms are usually provided to access
these (e.g., \old(x) and \result in JML). Classes can be annotated with invari-
ants, which are properties that must be seen to hold at all times by client code.
Invariants can be thought of as being checked in conjunction with all pre- and
postconditions.

DbC allows for blame to be assigned when a contract is violated (i.e., when
an assertion does not hold). If a method’s precondition doeé not hold when it
is called, the client code is to blame. If a method is called when its precondi-
tion holds and yet it is unable to satisfy its postcondition then the method itself
contains an error [Meyer, 1997]. This blame assignment depends on the not-
‘necessarily-valid assumption that the specification is correct.

Inheritance is an important concept in Object-Oriented (OO) programming,
and for programs that make use of inheritance to be easily understood, subtypes
must be substitutable for their supertypes. This requirement is known as the
Liskov substitution principle and is ensured in DbC by limiting the kinds of con-
tracts that can be made for inherited methods: Preconditions are not allowed to

be strengthened, and postconditions are not allowed to be weakened [Liskov and

13

file:///resuit

Wing, 1994]. Overriding methods may weaken preconditions (i.e., require less)
and to strengthen postconditions (i.e., deliver more). One of the great benefits of
behavioral subtyping for static verification is that even programs with complex
inheritance hierarchies can be handled modularly. More specifically, verifica-
tion tools only have to ensure that (i) at a method-call site, the calling method
is correct with respect to the statically declared type of the target, and (ii) that
all overriding methods honor the overridden method’s contract. This separation
eliminates the need for the reasoning about a method call to know about all (or
any) subclasses of the method target’s dynamic type, so client code does not have

to be reverified when subtypes are added to a system [Dhara and Leavens, 1996].

2.1.2.3 Behavioral Interface Specification Languages

DbC allows for the specification of much of a method’s behavior, but not all. In
addition to what is possible with DbC, Behavioral Interface Specification Lan-
guages (BISLs) are able to express which fields a method may modify as well
as the exceptions it may throw and the conditions under which these may be
thrown. While DbC can specify the behavior of individual methods, it lacks the
ability to clearly specify the aggregate behavior of a module. CbC methods pro-
vide for the specification of modules as a consequence of their specification of
the entire system. BISLs fill this abstraction gap between CbC and DbC in that
they allow for the specification of methods and modules. Leavens notes that “[a]
behavioral interface specification describes both the details of a module’s inter-
face with clients, and its behavior from the client’s point of view” [Leavens et al.,
1999]. They are not meant to specify entire systems, but their strength lies in
their ability to capture “detailed design decisions or documentation of intended

behavior” of modules [Leavens et al., 1999].

14

2.1.3 Tool support for DbC and BISLs

While there is quite a lot of tool support for development using BISLs in general
and JML in particular [Burdy et al., 2005a], the three main classes of tools from a
verification point of view are Runtime Assertion Checking (RAC), Full Static Pro-

gram Verification (FSPV), and Extended Static Checking (ESC).

2.1.3.1 Runtime Assertion Checking (RAC)

“Beware of bugs in the above code; I have only proved it correct, not

tried it.” — Donald Knuth

It is often useful to have a dynamic check of the code and its specification,
even though a static proof of correctness would be for all possible executions and
the dynamic check is only for a given set of inputs. For example, if a static verifi-
cation tool is unable to show that a routine is corréct, the problem could be either
a limitation in the tool’s deductive abilities or that the specification and code do
not match. Checking some specific cases is often enough to either expose an er-
ror in the code or its specification or to boost confidence in their correctness so
that contimiing to search for a proof is worthwhile.

Tools that support Runtime Assertion Checking (RAC) instrument the code
with an executable version of its specification. A method’s preconditions and
its class’s invariants are checked before its body is executed, and its postcondi-
tions and invariants are checked after the body terminates. Executing the in-
strumented code allows the detection and pinpointing of the location of contract
violations, even if the violation does not cause an error visible to the user. RAC
may be used at any stage, from initial development to “debugging, testing, and

production use” [Clarke and Rosenblum, 2006].

15

Unit testing has become an important and common part of software develop-
ment in recent years, but developing tests is both difficult and time consuming.
Merging unit testing with formal techniques introduces the possibility of storing
the description of the intended behavior of a piece of code in both its specifica-
tion and its unit tests. To both eliminate this unnecessary duplication and ease
the burden on the test writer, the specifications can be used to create test oracles:
Each data type is given an associated set of values, either defaults or as provided
by a developer. Permutations of these values are provided as inputs to a method.
If a combination of parameters violates the method’s preconditions then it is ig-
nored. If the precondition is satisfied then it can be considered a proper test and
the postcondition is checked upon the method’s termination [Cheon and Leav-

ens, 2001].

2.1.3.2 Full Static Program Verification (FSPV)

“Program testing can be used to show the presence of bugs, but never

to show their absence.” — Edsger Dijkstra

Full Program Verification has as its goal to formally prove the correctness of an
implementation with respect to its specification. To do this, a compiler-like tool
converts the annotated source to proof obligations whose discharge equates to
such a proof. FSPV tools may use automated theorem provers to discharge most
proof obligations, but in general, interactive theorem provers are still needed to
discharge them all [van den Berg and Jacobs, 2001].

Van den Berg and Jacobs give many advantages of automating program verifi-
 cation: “Theorem pIovers are very precisé, they can do lots of, often boring proof
steps in a few seconds, they keep track of the list of proof obligations which are

still open, and do a lot of bureaucratic administration for the user” [van den Berg

16

and Jacobs, 2001]. For the proof obligations to be correct, the translation tool
must be based on a formal semantics of both the programming and specification
languages. Once the tool has been shown to be correct, it can quickly and accu-

rately produce the complex proof obligations [van den Berg and Jacobs, 2001}.

2.1.3.3 Extended Static Checking (ESC)

FSPV is theoretically capable of finding all errors in a éystem, but it is very expen-
sive. To use FSPV, the program must be specified in great detail, the user of the
theorem prover must have quite a bit of specialized training to be able to guide
the theorem prover, and each set of proofs takes time to develop. This led in the
early 1970s to the introduction of a level of verification between FSPV and sim-
ple type checking known as Extended Static Checking (ESC) [Detlefs et al., 1998].
ESC is a compiler-like analysis that can find many kinds of common errors that
are not detectable by type checkers or tools that do not make use of specifica-
tions, such as lint.

As stated earlier, the goal of FSPV is to show that a program is completely cor-
rect with respect to its specification. The goal of ESC tools is quite different: They
are meant to find mistakes in the code, either discrepancies between the code
and its specifications or runtime exceptions that may be thrown and not han-
dled [Flanagan et al., 2002].

A developer can quickly and easily find significant errors by using ESC. Flana-
gan et al. note that the “static detection of many errors ...is undecidable” in the
general case, but that experience has shown that enough errors can be caught for

this verification approach to have value [Flanagan et al., 2002].

17

Unsoundness is built into ESC tools, as each is known to not try to detect
certain errors. For example, none of those reviewed below try to detect out-of-
memory errors. Similarly, time limits are usually placed on how long a theorem
prover is allowed to work with each Verification Condition (VC). When the time
limit is reached, the search for a counterexample ends, but it is still possible that
the VC is invalid [Leino, 2001].

ESC is usually performed by analyzing the code and its specifications, gener-
ating VCs from these, and using an automated theorem prover to discharge the
VCs by showing that their negation is false. If a VC cannot be discharged then
there is a potential problem to report, but, because of the incompleteness of ESC
tools, the problem could be the result of an incomplete specification. Likewise,
the theorem prover’s inability to prove that a VC'’s negation is false does not nec-
essarily mean that the corresponding code is correct, since automated theorem
provers are known to not be able to prove all that is true [Flanagan ez al., 2002].

The theorem prover used in ESC must be completely automatic. That is, the
Automatic Theorem Prover (ATP) must require no interaction with the user. As
we have seen, interactive theorem provers require specialized training to use
them. Also, interaction would reduce the likelihood of the tool being used as
often. Leino notes that the lack of interaction is not an unacceptable burden on
automated theorem provers for ESC since the VCs to be checked are large but not
“mathematically deep” {Leino, 2001]. |

Since ESC works by deduction instead of by monitoring actual runtime be-

havior, it is necessary to distinguish between two types of assertions:

e Assumptions, which can be taken as givens or that the ESC tool is not ex-

pected to be able to prove and

18

e Assertions, which the tool must either show to hold or report in warning

messages.

ESC/Moula-3, the forerunner of ESC/Java and ESC/Java2, introduced modular
checking as a means of limiting the amount of the system that must be analyzed
at one time [Flanagan et al., 2002]. This is achieved by processing each method
individually. To check a method, its preconditions are first assumed. Then each
- statement in its body is checked for possible runtime errors, such as null-pointer
dereferences and out-of-bounds array indexes. Any method calls within the one
being analyzed are replaced with their contracts. The called method’s precondi-
tions are asserted (to ensure that the method being analyzed complies with its
side of the contract), and its postconditions are assumed (since analyzing that
method is outside the analysis’s current scope) [Flanagan et al., 2002]. This al-
lows library code whose implementation is unknown—but whose behavior has
been specified—to be reasoned about. Moreover, the tool can “check the uses
and implementations of a class without needing all its future subclasses” [Leino,
2001] Loops, as expected, cause problems for ESC systems, and there is much
work currently underway to address this issue {Flanagan et al., 2002, Barnett and

Leino, 2005, Leino and Logozzo, 2005].

2.2 JML: Language and Tool Support

The Java Modeling Language (JML) is a BISL that Was designed for use by Java de-
velopers having only modest mathematical training [Leavens et al., 1999]. JMLs
syntax is similar to that of Java, and its annotations are given in specially format-
ted comments [Leavens and Cheon, 2005]. Leavens, Baker, and Ruby state that

JML is “more expressive ...than Eiffel and easier to use than VDM and Larch,”

19

and it combines the best features of these other approaches. Compared to the
Larch BISLs, JML is simpler and easier to understand since its syntax provides a
level of familiarity to Java developers. Use of the Larch specification language re-
quires that developers learn a new notation for assertions that is quite different
from Java [Leavens et al., 1998].

JML can document both the interface provided by Java code and its behavior,
so it is well suited to documenting detailed designs. Interface specifications in-
clude annotations on declarations with extended type information, such as that
used by universal types or the non-null type system. The behavioral specifica-
tions often specify pre- and postconditions that state properties that should hold
when the Java code is executed as well as which—and under what conditions—
exceptions may be thrown by the code. In keeping with its goal to allow for in-
cremental adoption, JML allows specifications to range from being detailed and
complete to being as little as a‘single clause giving a single property [Leavens et
al., 2000].

Sevefal tools have been developed that process JML-annotated code. These
tools provide support for Runtime Assertion Checking (RAC), Extended Static
Checking (ESC), Full Static Program Verification (FSPV), automatic discovery of
invariants, automated unit testing, and documentation generation [Burdy et al.,
2005b].

In the following subsections we present the JML notation and provide an over-

view of existing JML tools for dynamic checking and static verification.

2.2.1 Language

Design by Contract (DbC) is only one type of specification possible with JML, as

JML allows specification-only declarations, which give it the full expressiveness

20

of model-based languages such as Larch BISLs or VDM. JML hides the mathe-
matical objects used in modeling, such as sets and sequences, behind Java in-
terfaces in a standard library that can be imported. Specification developers are
thus relieved of the burden of creating or fully understanding the specifications
of these library classes. This allows them to access the power of Larch-style speci-
fications without requiring the same mathematical sophistication [Leavens et al.,
1998].

JML provides a notation for the detailed design of Java classes and interfaces.
JML notation is given in comments that start with an “at sign” (i.e., either //@
or /*@ ...e+/). An advantage of JML over Larch is that Java syntax is used for
the assertion clauses instead of another specification language. The expressions
are pure Java expressions extended with quantifiers and other logical constructs
[Leavens et al., 1998]. A pure expression is one that has no side effects [Barnett
et al.,, 2004]. Meyer reconimends that Eiffel assertion clauses be pure, but the
compiler does not enforce this [Meyer, 1997], while the JML type checker enforces
purity [Bafnett et al., 2004]. |

Specifications in JML can be at any level of detail that is needed, from a few
properties to full specification. To support this, JML has the concept of light-
weight and heavyweight specifications. If certain keywords are used (such as
normal behavior OI exceptional behavior) then the specification is considered to
be heavyweight. In the absence of these keywords, the specification is considered
to be lightweight. If a heavyweight specification is given, it is taken that the en-
tire behavior has been described and meaningful default values are used for any
missing clauses. On the other hand, if a lightweight specification is given then

missing clauses are usually taken as being not specified.

21

Very few keywords are needed to write lightweight DbC specifications. Class
invariants are introduced with invariant. requires precedes preconditions and
ensures precedes postconditions. Any class fields to be modified in a method can
belisted in amodifiable clause. The o1d notation, borrowed from Eiffel, is used to
refer to the pre-state of a variable [Leavens et al., 1998]

JML supports abstract models in the form of specification-only members. In
the JML comments, data members marked with the keyword model are not imple-
mented, but are treated within the specification as normal fields. The keyword
initially introduces an assertion about the state of a model field after the class’s
constructor has been executed. depends and represents can be used to show the
relation of model fields to implementation fields. A depends clause indicates that
a model field may change when an implementation field changes value, and a
represents clause indicates how it will change [Leavens et al., 1998]

Redundancy similar to that provided by Larch’s code implies sections can be
included in aJML specification. invariant redundantly, requires redundantly, and
ensures redundantly introduce assertions that the specifier believes should be de-
ducible from other specifications. for_example clauses give specific values. These
can be given either as checks for the validity of the specification or for documen-
tation purposes [Leavens et al., 1998].

Behavioral subtyping is ensured by specification inheritance: A class inherits
its supertypes’ invariants as well as the specifications of their non-private meth-
ods and fields. An overriding method’s preconditions are or-ed with those of its
ancestors, and its postconditions are guarded with an implication of its precon-
dition and and-ed with those of its ancestors [Leavens et al., 1998]. The style of
behavioral subtyping produced by this form of specification inheritance is known

as weak behavioral subtyping [Dhara and Leavens, 1996].

22

Many other features are commonly used, such as quantifiers, summation and
count operators, visibility restrictions, data groups, and initial attempts at speci-
fying concurrency [Leavens et al., 1998]. Java’s type system has been expanded to
support non-null types [Chalin and James, 2007] and a universe type system [Di-
etl and Miiller, 2005]. The first holds the promise of eliminating null-pointer ex-
ceptions, while the latter aims to ease the burden of static analysis by adding
structure to the runtime heap.

The JML language is capable of specifying much of the behavior of Java code,
including memory usage limits and maximum virtual-machine cycles taken by a
method. To reduce the demands on tools that support JML, several language lev-
els were introduced. These range from a minimal set of constructs that every tool
should support at Level 0 to esoteric and experimental constructs at the highest
levels [Leavens et al., 2008]. We aim to co‘ncentrate on the features in Level 0,

along with an examination of the concepts of purity and immutability.

2.2.2 JML Checker and Compiler

One of the advantages that comes from having JML as common language for
collaboration is the wide variety of tools that have been produced that support
it [Burdy et al., 2005b}. As was seen in the previous subsection, when a single per-
son or group devélops their own notation, tool support is usually limited to the
immediate confines of their research interests. Our research area is verification-
centric software development, so our interest lies in the tools that support RAC,
ESC, and FSPV.

The first tool developed for JML was jml, a syntax and type checker [Burdy ez
al., 2005b}. Some of the other JML tools do not provide meaningful output if the

code being analyzed would not pass this Checker.

23

The JML Compiler, jmlc, instruments JML-annotated code with executable
versions of the specifications to provide RAC. Because of the limitations of au-
tomated reasoning systems, RAC currently provides a more practical method of
program verification than either ESC or FSPV.

When a method is called, its precondition is checked. If this fails, a precon-
dition-violation exception is thrown. (This is known as an entry precondition;
violation exception, to distinguish it from an internal one, which is caused by
a precondition failure for a method called from within this method’s body) A
method either terminates nofmally or by throwing an exception. If it terminates
normally, the method’s post condition is checked. If an exception is thrown, the
exceptional post conditions are checked. Any old expressions in the post condi-
tions are evaluated during the checking of the precondition and cached in local
variables until needed. Following Eiffel’s lead, the RAC does not check the con-
tracts associated with method calls from within an assertion.

When compiling a method n, it is renamed, for example, to orig$m. A wrapper
method with name n is generated that performs the runtime checks. When the
original method is called by a client, this wrapper method is executed instead.
First, the method’s precondition and invariant are checked. If either fails then
the appropriate precondition violation exception is thrown. If both succeed, the
oﬁginal method origs$m is called inside a try block. If it terminates normally then
the return value is stored in a Qariable local to the wrapper method and the post
conditions are checked. If the original method throws an exception then the ex-
ceptional postcondition is checked and, depending on the outcome, either the
original exception is thrown or the original exception is wrapped in a postcon-

dition violation exception, which is then thrown. Finally, the class invariants are

24

checked again and, if this succeeds, the value returned by orig$m is returned by
the wrapper.

Thé RAC supports the execution of quantifiers. For integral types, every mem-
ber of the type can be tested. For reference types, all the objects of that type that

have been instantiated are used [Cheon and Leavens, 2002].

2.2.3 JMLUnit

JMLUnit was developed as a way to exploit both JML annotations and the JUnit
unit-testing framework to automate much of the work involved in writing unit
tests [Cheon and Leavens, 2001]. After a developer supplies examples of each of
the data types used as targets or parametérs of the methods in a class, the JUnit
framework is used to evaluate tests created from the JML specification.

Two files are generated for each Java type T:

e T_JML TestData, which contains data to be used in the test cases. This file
must be edited by a developer to provide representative sets of each data

type passed as a parameter to T's methods.

e T_JML_Test, which contains the test oracle. That is, “It holds the code for run-
ning the tests and for deciding test success or failure” [Cheon and Leavens,

2001].

The test-oracle class is implemented as a subclass of the test-data class. The
test-oracle class is the test driver. That is, it selects the data to' be used and calls
the method under test on the selected target with the selected parameters. This
method call is wrapped in a try / catch block. If an entry precondition-violation
exception is caught then the data selected does not make a meaningful test. If

an internal precondition- or a postcondition-violation exception is thrown then

25

an error has been detected and the test has failed. If any other type of exception
is thrown then the test has passed, since if the exception had not been part of
its specification then it would have caused a postcondition-violation [Cheon and
Leavens, 2001].

Some of our recent work was to allow the many test-data files to access a sin-
gle repository for common types (e.g., int, String) instead of forcing these to be
copied into every class that makes use of them. This also simplifies the mainte-
nance of the test-data files since they may need to be regenerated when a class’s

methods’ signatures change to include new types.

2.2.4 ESC/Java and ESC/Java2

Since ESC/Javaz2 is similar to a compiler in that it transforms the source language
into another form (followed by other processing), it is no surprise that ESC/Java’s
architecture is a pipeline in which each stage can be analyzed independently (see
Figure 1). “The front end produces abstract syntax trees (ASTs) as well as a type-
specific background predicate for each class whose routines are to be checked.
Thé type-specific background predicate is a formula in first-order logic encoding
information about the types and fields that routines in that class use” [Flanagan
et al., 2002].

Once the AST is produced, each method body is translated into a sugared ver-
sion of Dijkstra’s Guarded Command (GC) language [Flanagan et al., 2002, Leino
etal, 1999]. To allow for modular checking, method calls are replaced with trans-
lations not of the implementations of the called method but of their specifica-
tions. This permits client code to not be reverified when method implementa-
tions change, as long as their original speciﬁcations are maintained and adhered

to [Flanagan etal., 2002].

26

Annotated Java Program

— FrontEnd |

Type- Abstract Syntax Trees
specific | | Translator | (ASTs)
Bﬂ%kgl'ﬁillﬂd Guarded C01n§11ands
redicate | VC Generator | (GCs)
Verification Conditions
Theorem Prover] (¥C9)
Universal Prover Results

Background | Postprocessor |
Predicate
(UBP) Output 10 User

Figure 1: Stages of ESC/Java processing [Flanagan et al., 2002]

The sugared language was found to be useful “in managing complexity and
maximizing flexibility” [Leino ez al., 1999]. Examples of these benefits include the
ability to defer the action of command-line options and the handling of method
calls [Flanagan et al., 2002, Leino et al., 1999]. Another difference from Dijkstra’s
language is that commands may throw exceptions instead of always terminating
normally or erroneously [Flanagan et al., 2002].

This first translation to GCs is the source of much of the incompleteness and
unsoundness of the tool. For example, integers are modeled as having infinite
precision, and loops are not handled rigorously. Since overflow is not consid-
ered, later stages of analysis will not know that there are cases in which the sum
of two positive integers can result in a value less than zero. Instead of ignoring
unspecified loops (i.e., those without a variant and invariant), they are unrolled
one-and-a-half times (i.e., the loop is replaced by a check of the condition, the
body, and a second check of the condition). “This misses errors that occur only

in or after later iterations of a loop” [Flanagan et al., 2002]. Recent changes to

27

ESC/Java2 cause the user to be alerted when soundness or incompleteness is in-
troduced [Kiniry et al., 2006].

After a method body has been translated to a single primitive GC, a Verifica-
tion Condition (VC) is produced. A VC “is a predicate in first-order logic” [Flana-
gan et al., 2002] whose validity ensures that the corresponding code “satisfies its
correctness property” [Flanagan and Saxe, 2001]. VCs are generated with an opti-
mized version of the weakest-precondition calculus [Flanagan et al., 2002]. This
optimization reduces the size of VCs from being potentially exponential in size
of the method to being quadratic worst-case and almost linear in most éommon
cases [Flanagan and Saxe, 2001].

Three pieces are needed by the theorem prover to show the validity of a meth-

od R defined in class T":

¢ a universal background predicate (UBP), which gives properties of Java se-

mantics
¢ atype-specific background predicate (BPr), which gives properties of T
e VCg, which is the VC produced from R

For each method R, the automated theorem prover is tasked with showing

that
UBP A BPr = VCpx

This formula holds exactly when R is correct with respect to its specification. If
the prover is able to show the negation of this formula then a counterexample
context is usually output. If the prover takes more than a given amount of time on
a method (the default limit is five minutes) then the processing for that method

is halted and appropriate output is produced [Flanagan et al., 2002].

28

Alast step involves making the theorem prover’s output understandable to the
user. VCs that are discharged should cause no message to the user, while those
that are not should cause helpful warnings, including the type and location of

problem, to be output [Flanagan et al., 2002].

2.2.4.1 Issues with the Provers

ESC/Java2 has until now used Simplify as its automated theorem prover. Simplify
was originally developed for use by ESC/Modula 3 and was used in the ESC/Java
project [Flanagan et al., 2002].

Simplify is an automated theorem prover with decision procedures that are
well suited to deal with equality and arithmetic, and it works by refutation. Val-
idating a conjecture P means searching for variable assignments that allow the
negation of P to be true [sim, 2000]. This refutation is the source of the counterex-
amples mentioned earlier. The theory behind Simplify dates to the 1970s [Leino,
2001], and much work has been done in the area since then.

One of the limitations of Simplify stems from its making a strong distiction
between terms and formulas. Certain expressions are only allowed in formulas

and not in terms. We will see examples of these in Section 5.1.

2.2.5 FSPV with JML

Surprisingly many tools have been developed that support FSPV with JML. Jack
and Loop, two tools that were developed for proving the correctness of smart card
applets, are discussed below. Other tools in this category include Bandera [ban,

2009], Jive [Meyer et al., 2000], KeY [Ahrendt et al., 2005], and Krakatoa [kra, 2009].

29

2.2.,5.1 LOOP

Loop is a tool that converts JML-annotated Java to theories for PVS. Itis written in
58,000 lines of OCaml, an OO dialect of ML. After lexing and parsing stages pro-
duce an AST, an inheritance-resolving pass “establishes relations between classes
by resolving unknown types” [van den Berg and Jacobs, 2001] and marks overrid-
den methods and hidden fields as such. Type checking resolves overloaded oper-
ators and methods by giving versions with explicit types. Once the AST has been
fully decorated, it is converted to abstract logic syntax (ALS), a form frbm which it
is “easy to generate output for any theorem prover that provides (at least) higher
order logic” [van den Berg and Jacobs, 2001]. Pretty printers were originally de-
veloped that produce output for PVS and Isabelle, but Isabelle support for JML
has since been dropped [Jacobs and Poll, 2003]. To reduce the amount of user in-
teraction required, the proof strategies of PVS have been expanded [van den Berg
and Jacobs, 2001].

Loop “uses a shallow embedding of Java in PVS.” This has made it possible to
prove the soundness (but not the cbmpleteness) “of all the programming logic
[used]” [Jacobs and Poll, 2003]. It also causes the proof to be carried out at the
semantic instead of at the syntactic level. This results in the user having to know
how the Java and JML semantics were encoded in PVS in addition to the general

expertise of guiding proofs in PVS.

2.2.5.2 Jack

Jack is a set of tools integrated into Eclipse that was developed by Gemplus for
FSPV of a subset of Java and JML. The Jack converter translates JML-annotated
Java to a form usable by tools that support the B Method, specifically the auto-

mated and interactive theorem provers that are included with the Atelier B. Each

30

Java class is translated into a single B machine in which the class’s inheritance
hierarchy has been flattened and other classes’ members are in-lined. B lem-
mas are generated whose proof indicates that the class’s invariants always hold
and its methods’ postconditions are guaranteed by their preconditions and bod-
ies [Burdy and Requet, 2002]. The Atelier B automated prover is able to discharge,
on average, 80% of proof obligations. While it was a goal for the tool to be sound
and complete, shortcomings in the weakest-precondition calculus used make it
impossible to prove that the lemmas corresponding to method specifications are
“necessary and sufficient to ensure the correctness of the [code)” [Burdy et al.,
2003].

Jack differs from other FSPV tools for JML in that it both makes use of an
automated theorem prover and provides an easy-to-use interface to an interac-
tive theorem prover. Instead of requiring users to learn the B notation, lemmas
and their proof status are converted back to Java for presentation. A goal for the
project is to eventually allow fuller access to the interactive theorem prover, but
as of [Burdy er al., 2003], only two forms of “indicating a false hypothesis” are
supported. Until this goal is realized, users must either manually prove the left-
~ over lemmas in the Atelier B interactive prover or accept that the tool provides

only a more rigorous form of ESC.

2.3 VCSE: BISLs and International Research Projects

2.3.1 Other BISLs

In this subsection we look at four non-Java approaches to VCSE. A fifth, SPARK, is
covered in Appendix C. It may be of interest to note that the Simplify automated

theorem prover mentioned in the discussion of Caduceus/WHY, Omnibus, and

31

Spec# is the same one used by JMLs ESC/Java2, but it has no relation to the Sim-

plifier tool that is discussed with SPARK.

2.3.1.1 Caduceus/WHY

Caduceus [Fillidtre et al., 2008] is a tool for the static verification of C programs
annotated with contracts similar to those of JML. Verification in Caduceus is es-
sentially a three-step, manﬁal process: C programs are first translated into the
language of the Why system [Fillidtre, 2008], then Why is used to translate VCs
into the language of a user-selected prover. The supported provers include Sim-
plify, CVC3, and Isabelle/HOL that are used by ESC4 as well as PVS, Coq, Z3, and
others. Finally, the user runs or interacts with the selected prover inorder to dis-
charge the VC proof obligations. The user is left to interpret any prover output, in-
cluding tracking undischarged VCs back to the source. Such an offline approach
to verification is like that adopted by the JML4 FSPV Theory Generator [Chalin
et al., 2008a, Karabotsos et al., 2008] and contrasts with ESC4’s fully automated

mode of extended static checking.

2.3.1.2 Eiffel

Eiffel is the language and design methodology that introduced tight integration
of DbC with a programming language [Meyer\, 1997]. Eiffel was originally defined
by Bertrand Meyer in 1986 and made into a ECMA standard (ECMA-367) in June
2005 and an ISO standard (ISO-25436) in June 2006 [Mey, 2007]. The term De-
sign by Contract is a trademark of Interactive Software Engineering, a company

founded by Meyer [bui, 2008].

32

Eiffel is a pure object-oriented language (i.e., “everything is an object” in Eif-
fel) that supports multiple inheritance and generic types. Eiffel is meant to pro-
duce simple and clear code. As an example, methods can only have a single entry
point and a single exit point [Meyer, 1997].

Eiffel has a non-null type system. In its terminology the null value is called
void, a nullable type is called a detachable type, and a non-null type is called
an attached type. References are taken to be attached unless explicitly marked
as detachable. Classes must define a default constructor that eliminates the de-
fault found in other languages of initializing object references to void. A unique
feature of Eiffel is its Object Test, which combines a Boolean expression and a
variable declaration. It has the form {x: T} exp, where x is a read-only variable
being declared of attached type T and initialized with the non-void value of exp.
The Object Test returns true exactly when exp evaluates to non-void [Mey, 2005].
Meyers claims that Eiffel is the first language to remove the possibility of throwing
a null-pointer exception [Meyer, 2005].

Eiffel only provides RAC, as static verification was seen as unattainable be-
cause of the limitations both of theorem provers and of the expressiveness of Eif-
fel assertions. Assertions are executable Boolean expressions augmented only
with the o1d construct. Other constructs that would be needed for full program
specification, such as quantifiers, are not supported, as one of the design goals of
the language was for it to be simple and easy to use. The recommendation that
assertions not have side effects is not enforced by the language [Meyer, 1997].

Behavioral subtyping is enforced by Eiffel’s simple rules for contract inheri-
tance. A subclass’s invariant is and-ed with those of its superclasses. An over-
riding method’s pre- and postcondition are or-ed and and-ed, respectively, with

those of the overridden method [Meyer, 1997].

33

2.3.1.3 Omnibus

Wilson et al. describe Omnibus as being “designed to be superficially similar to
Java but easier to formally reason about” [Wilson et al., 2005]. It compiles to Java
bytecode and is aimed at component developers, who can use the code’s speci-
fication as part of its documentation. One of the main differences between Om-
nibus and Java is that the former uses value semantics (as in many functional
languages) while the latter uses reference semantics (as in most imperative lan-
guages). Other simplifications include the lack of static data, exceptions, inter-
face inheritance, arithmetic overflow, and concurrency [Wilson et al., 2005]. Be-
cause of these simplifications and other reasons, it is unlikely that Omnibus will
be widely adopted by industry.

Because of the restricted nature of the language, Wilson et al. were able to rela-
tively easily provide support for ESC and FSPV. A custom IDE was developed that
make easier these and other development activities. Among the results of their
research is the discovery of problems that arise when reasoning about a class that
uses another class that was verified with another method. Several guidelines are
provided to avoid or minimize these problems [Wilson et al., September 2005].

Each of fhe source files in an Omnibus project has an associated verification
policy that gives the level of verification required for it, which can be RAC, ESC,
or FSPV. After being parsed and type checked, each file is analyzed by the static
verifier. The source is translated into the logics of the theorem provers, as re-
quired by the verification policy. Simplify and PVS are the two theorem provers
used for ESC and FSPV, respectively. Simplify, being fully automated, provides
a complier-like interface. PVS requires the user to interactively (i.e., manually)

guide the proofs {Wilson et al., 2006). |

34

2.3.1.4 Spec#

Spec# is Microsoft’s extension to C# that aims to increase software quality [Bar-

nett et al., 2005]. It is composed of

e the Spec# programming language, a superset of C# that includes a BISL (and

therefore support for DbC),

e the Spec# compiler, which includes an annotated library and is integrated

with Microsoft’s Visual Studio, and
¢ the Boogie static program verifier, which performs ESC.

C# is a language developed by Microsoft that has many similarities to Java.
A key developer of Spec#, K. Rustan M. Leino, is one of the original developers
of ESC/Java, so it is not surprising that the lessons learned from that experience

“were put to use in developing Spec#. Similar to JML, method contracts may con-
tain pre- and postconditions, indications of the exceptions that may be thrown,
and data membefs that may be assigned to. Spec# has a non-null type system,
but arrays cannot be declared to have elements of non-null types.

Behavioral subtyping is enforced in Spec#, but its specification inheritance is
quite different from that of JML. Preconditions cannot be added, but additional
postconditions are allowed. Additional exceptional postconditions can only be
given for exceptions in the overridden method’s throws set. Frame conditions

~cannot be changed with a modifies clause but can be effectively reduced in a
postcondition. |

Inheritance of contracts from interfaces is even more different since this in-
troduces the difficulties inherent with multiple inheritance. Both normal and
exceptional postconditions are combined in the same way as when they are in-

herited from classes, “but the inherited specifications must have identical throws

35

sets” [Barnett et al., 2005]. Frame conditions from an interface must be a super-
set of that of the class’s implementation. Inheritance of multiple preconditions is
not allowed. |

Unlike in JML, in which invariants are required to hold only on entry to and
exit from non-helper methods, invariants in Spec# are required to hold every-
where except within expose blocks. For example, the code of S in expose(o) { S;
} may violate o’s invariant as long as it is restored before S terminates. By de-
fault, exposing an object o means exposing the invariants of all classes up to o’s
static type. To expose more, expose (o upto T) can be used. An object must be
exposed for its fields to be modified. Spec# also supports object ownership (sim-
ilar to that found in JMLs universe type system), and an object o’s owner can only
change when o is exposed.

As mentioned earlier, Spec# has been integrated with Vi.sual Studio, Micro-
soft’s IDE. Its tool support includes a compiler that provides RAC capabilities and
Boogie, which provides ESC capabilities. The Spec# compiler’s integration with
Visual Studio enables the editors to provide syntax highlighting and code com-
pletion. In addition, ESC is called when a source file is edited, allowing for stati-
cally detected contract violations to be underlined in red, the same way that syn-
tax errors are. The compiler’s output is Microsoft’s Common Intermediate Lan-
guage (CIL) bytecode, with the specifications stored as metadata in a language-
independent format.

To support RAC, “Spec# preconditions and postconditions are turned into in-
lined code” [Barnett et al., 2005]. This results not only in more efficient code
than that produced by JMLSs jmlc, but it also eliminates the need for the addi-

tional methods introduced by jmlc. A method that checks the invariant is added

36

to each class. Extra fields (e.g., that indicate ownership and to which level the in-
variant holds) “are added to the super-most class that uses Spec# features within
each subtree of the class hierarchy” [Barnett et al., 2005]. Not all specified be-
havior is checked by the RAC. For example, Spec#’s RAC does not enforce that an
object whose field is modified must be exposed. The code from specifications is
separated so that tools can distinguish between contract and non-contract code.
Spec#’s ESC tool is Boogie. The first step it performs is translating CIL into
BoogiePL, “a simple language with procedures whose implementations are basic
blocks consisting mostly of four kinds of statements: assignments, asserts, as-
sumes, énd procedure calls” [Barnett et al., 2006]. VCs are generated after several
transformations have been applied to the BoogiePL code. These VCs are pro-
cessed by Simplify, the same automated theorem prover used by ESC/Java2—
work was underway some time ago to replace Simplify with Zap [Hunt et al.,
2005], a theorem prover developed by Microsoft, but there is no indication that
this has yet been done [spe, 2007]. Integration with Visual Studio provides for the
outputs of the theorem prover to be presented to the user in terms of the origi-
nal source code. Thus, the only interaction programmers have with Boogie is by
editing source code [Barnett et al., 2006].
 The ESC performed by Boogie has quite a few differences from that of JML’s
ESC/Java2. For example, some loop invariants can be inferred automatically, and
loops are handled “in a way that preserves the soundness of the analysis” [Barnett
etal., 2005]. Because of the difficulty of reasoning about loops using the weakest-
precondition (WP) analysis proposed by Dijkstra [Dijkstra, 1976}, ESC/Java un-
rolls loops a fixed number of times, but this introduces unsoundness [Flanagan

et al., 2002]. Barnett and Leino provide a sound method of analyzing loops that

37

is much simpler than Dijkstra’s [Barnett and Leino, 2005]. It does this by cut-
ting loops into acyclic segments and adding appropriate assume and assert state-
ments before using WP to generate VCs. Essential to their process is the avail-
ability of strong-enough loop invariants, thus their motivation for automatically
inferring them.

Spec# is still a research prototype, but it appears that Microsoft may have
plans for embracing a VCSE methodology. Bill Gates in 2002 called software veri-
fication the “Holy Grail of computer science” [Jones et al., 2006]. Spec# has many
of the features needed to increase the quality of software developed for the .Net
platform. It has been extended to form Sing# by adding the low-level constructs
needed to develop the Singularity operating system [Hunt et al., 2005] [Fihndrich
et al., 2006). If operating systems are now seen as beneficial targets of formal de-
velopment, can office suites and more mundane software be far behind?

Many development systems ha\}e been created in recent years that show that
VCSE is a possibility. Great benefit can be had from tools and techniques that al-
ready exist, but there is much work that can be done to increase the likelihood
that these will actually be used by mainstream developers. The next subsec-
tion mentions some academic and government-sponsored research initiatives to

make that happen.

2.3.2 International Academic and Commercial Research

In addition to the projects mentioned above, two international projects deserve

mention: The Mobius project and the Verified Software Initiative.

38

2.3.2.1 Mobius

The European Union has supported software verification for years. The Verifi-
Card project, which started in January 2001, was tasked with “[developing] tools
for the specification and verification of the Java Card platform and its applica-
tions” [Ver, 2007] because of the perceived growth in the markets for Smart Cards.
The many deliverables that were produced during the three-year mandate in-

clude

e aformal semantics for subsets of Java, including pJava [Nipkow et al., 2000]

and Bali [Nipkow et al., 2005],
¢ aformal specification of the Java Card API, and

o the LOOP too]), the first FSPV for an important subset of Java [van den Berg
and Jacobs, 2001]

Part of the current Mobius project builds on the lessons learned with Verifi-
Card and has as its goal “develop the technology for establishing trust and se-
curity for the next generation of global computers” [mob, 2009]). The 16 mem-
bers of the Mobius Consortium share a budget that is a little less than 7 million

Euro [Kiniry, 2007].

2.3.2.2 Verified Software Initiative

Hoare has made a case for the Verifying Compiler to be taken up as a Grand Chal-
lenge for Computer Science [Hoare, 2003b]. Some of the criteria for a project to
be worthy of being a grand challenge include that it be fundamental, astonishing,
revolutionary, understandable, inspiring, useful, feasible, and historical. These
are exemplified in previous grand challenges from other fields, which include

putting a man on the moon, proving Fermat’s last theorem, and mapping the

39

human genome. Both the Verifying Compiler and the Grand Challenge 6 projects
have been subsumed into the Verified Software Initiative (VSI) {vsi, 2008].

Most of the necessary pieces for building a Verifying Compiler already ex-
ist. Powerful automated and interactive theorem provers are now able to run on
hardware fast enough to make the problem solvable [Hoare, 2003b]. The missing
pieces and their integration into an easy-to-use system seem to be within reach.

The International Federation for Information Processing (IFIP) has held two
conferences on Verified Software: Theories, Tools, Experiments (VSTTE). Most of
these conferences’s participants will initially be part of the VSI working group.

“The goal of the [VS]] is to establish software verification as a practical and
cost-effective technology for ensuring that software is the most trusted compo-
nent of any software-based system.” [vsi, 2008] We believe that a Verifying Com-
piler will have as great an impact on development methodologies as did unit-
testing frameworks such as jUnit. VCSD has the potential to radically change our

expectations of software quality.

40

Chapter 3

JML4: An Integrated Verification

Environment for JML

In this chapter we present JM14, an Eclipse-based Integrated Verification Envi-
ronment for JML.

To motivate the need for such a system, we give our experience using first-
generation tools in concert to provide complementary verification of a non-triv-
ial system in Section 3.1. The purpose of this case study was to show that differ-
ent verification techniques can be complementary: Each tool and technique has
weaknesses that may be compensated for by another.

A big lesson learned from this experience was that while using complemen-
tary techniques is useful, it is too difficult with the then-existing tools for ordinary
developers to make use of it. This further motivated us to create a simmpler way
for developers to access JML tools. Section 3.2 introduces our solution: JMLA4.
JM14 is an Eclipse-based IVE framework that provides—among other things—a
common frontend for use by other JML tools.

An initial validation of our approach is presented in Appendix E. There we

describe the use of J]ML4’s Non-Null Type System to gather usage information

4]

that validated Dr. Chalin’s claim that references should have a default nullity of
non-null. (This study lead to an examination of the uses of null references in Java,
and these results are presented in Section 7.)

After the foundation was in place, work began on developing static verifica-

tion tools atop JML4. Theses efforts are presented in the next part Chapter 4.

3.1 Motivation for Complementary Verification!

“By three methods we may learn wisdom: First, by reflection, which is

noblest....” — Confucius
“Speed can make up for a lot of things.” — Roland Bailey

This section motivates the need for JML4, discussed in the next section, by de-
monstrating that the verification of non-trivial programs is best achieved when
complementary techniques are used together.

Here we present a case study in the use of jmlc, the JML Runtime Assertion
Checker (RAC) compiler, on ESC/Java2, an extended static checker for Java. The
purpose of this case study was to show that different verification techniques can
be complementary: Each tool and technique has weaknesses that may be com-
pensated for by another. We believe that overall product quality is maximized by
the use of such complementary verification tools. In this study, the use of the JML
RAC allowed us to uncover deeper problems with the design of ESC/Java2 than
was possible with static analysis alone. Some problems that were found with the

RAC are discussed, along with tentative and implemented solutions.

1This section is based on [Chalin and James, 2006].

42

3.1.1 Introduction to Case Study

The two main components of the Verified Software Initiative [(UKCRC), 2006,
Woodcock, 2006] are the Verifying Compiler (VC) project and the Verified Soft-
ware Repository (VSR). A Verifying Compiler is envisioned as a tool to be used by
mainstream developers to statically prove that a program is correct. The VSR is
meant to hold, among other things, examples of early VC prototypes and “chal-
lenge codes,” i.e., realistic programs in the form of source code, specifications,
and documentation that will be usable as benchmarks for the purpose of exercis-
ing proposed VC candidate technologies [Bicarregui et al., 2006].

This section reports on our initial work in preparing the first-generation verifi-
cation tools of the Java Modeling Language (JML) [Leavens et al., 2008} as poten-
btial candidates for inclusion in the VSR. Since the verification tools themselves
are written using JML-annotated Java, they can serve as challenge codes as well.
More precisely, this section presents a case study on the use of the JML Run-time
Assertion Checker (RAC) compiler jmlc on ESC/Java2, an extended static checker
for Java. ESC/Java2 checks Java source against its specifications, which are ex-
pressed using JML.

The main goal of this section is to show that overall product quality is maxi-
mized by the use of complementary verification tools. For example, routine ap-
plication of ESC/Java2 to itself has resulted in the elimination of common coding
and specification errors. The strength of ESC/Java2 is that it performs fully auto-
mated verification and offers a familiar compiler-like interface to developers. As
is typical with fully automatic checkers, it has compromised completeness and
soundness for efficacy. On the other hand, use of the JML RAC allows specifiers to

verify (albeit at runtime) most assertions, and hence can achieve a much higher

43

degree of completeness. As a consequence, use of the JML RAC has allowed us to
uncover more problems with the design of ESC/Java2.

The JML RAC and ESC/Java2 offer a familiar, compiler-like interface and con-
duct verification fully automatically and tend to be the main verification tools
used by JML developers. When both tools are used during development, the fol-
lowing informal process has proven useful: Use is first made of ESC/Java2 to elim-
inate obvious errors. When a specification becomes too involved, ESC/Java2 will
report that it is unable to prove, e.g., that a method body satisfies its contract. In
this case, one must resort to using the JML compiler. Even though some asser-
tion expressions are not executable (e.g., some forms of quantified expression),
the RAC can generally check more specification statements than ESC/Java2. The
caveat, of course, is that the compiled code must be run so that as many input
cases as possible are exercised. Another tool, JMLUnit, can be used as a test or-
acle, automatically creating JUnit test cases from JML specifications. In the next
subsection we explain how we made use of the JML RAC to fﬁrther verify the con-
tracts of the ESC/Java2 application classes.

Unfortunately, the separate command-line tools are too unwieldy for the ben-
efits of complementary verification techniques to be realized by general pro-
grammers. This motivated the development of JML4, which we shall see in the
next section.

The detail of the case study can be found in Appendix D, but a summary is

given in the following section.

44

3.1.2 Summary

Use of the JML RAC enabled us to uncover significant design flaws and inconsis-
tencies that ESC/Java2 was unable to report (either due to its unsoundness or in-
completeness). Trying to detect these through a manual code review would have
been very tedious. Having a tool with another verification approach allowed us
to rapidly see problems buried in the code. As expected, the problems that the
RAC reported were non-trivial: ESC/Java2 had already been run on itself, and the
trivial problems this exposed had been dealt with.

The issues raised by the RAC had deep implications (e.g., violations of behav-
ioral subtyping). Careful engineering analysis of both the specification violations
and the related source code allowed us to resolve the issues without falling into
deeper traps.

This next step in our verification efforts allowed us to uncover design issues in
the ESC/Java2 front end and type system whose resolution resulted in a system
that has highef consistency between its specification and implementation.

We continued to run RAC-instrumented versions of ESC/Java2 to uncover fur-
ther bugs, and these are detailed in [Chalin et al., 2008d]. We hope to see ESC4
used to analyze the source for the JML Compiler, as it also has a large JML-anno-
tated code base. Using the tools iteratively to analyze both themselves and each
other should allow their quality to be enhanced, hence making them more likely
potential candidates for inclusion in the Verified Software Repository.

This case study showed that different verification techniques could be com-
plementary: Each tool and technique has weaknesses that may be compensated
for by another. But it also highlighted the difficulty in using the first-generation

of tools to acomplish this.

45

The next section presentes JML4, a framework for an Integrated Verification

Environment (IVE) for JML.

3.2 A Framework for a JML IVE?

“It is the framework which changes with each new technology and not

just the picture within the frame.” — Marshall McLuhan

The previous section demonstrated that verification of sizable programs is
best achieved when different technologies are used together. Unfortunately, de-
velopers trying to do this with first-generation JML tools must use separate com-
mand-line applicationé and deal with problems like the tools accepting slightly
different and incompatible variants of JML. Tool consolidation has become vital.
This section presents the architecture and design rationale behind JMLA4, our pro-
posal for an Eclipse-based Integrated Verification Environmént (IVE). As a proof-
of-concept, JMLA4 first enhanced Eclipse with JMLs non-null type system and the
ability to read JML API library specifications. In addition to the basic features
expected from an IDE, JML4 provides RAC and allows easy integration of inde-
pendently developed static-analysis components, such as ESC4 that is presented
in Part 4. A discussion of other consolidation efforts and emerging tools is also

given.

3.2.1 Introduction

In the previous section, we confirmed (among other things) how RAC and ESC are
most effective when used together, particularly when it comes to the verification

of sizable systems. Unfortunately, this is more challenging than it should be; one

2This section is based on [Chalin et al., 2007].

46

of the key reasons being that the first-generation tools accept slightly different
and incompatible variants of JML—sadly this is the case for practically all of the

current JML tools. The top factors contributing to the current state of affairs are

e partly historical—the tools were developed independently, each having its

own parser, type checker, etc. and
¢ partly due to the rapid pace of evolution of both JML and Java.

Not only does this last point make it difficult for individual research teams to
keep apace, it also results in significant and unnecessary duplication of effort.

For some time now, the JML community has recognized that a consolidation
effort with respect to its tool base is necessary. In response to this need, three pro-
totypical next-generation tools have taken shape: JML3, JML4, and JML5. This
paper is an introduction to the architecture and design rationale behind JML4.
After discussing the goals to be achieved by any next-generation JML tool base
in Section 3.2.2, we move to the treatment of JML4 in Section 3.2.3. Section 3.2.4
presents a discussion and comparison of JML4 with its siblings JML3 and JML5
as well as other tools like the ESC/Java2 plug-in and the Java Applet Correctness
Kit (JACK). In Section 3.3 we present some of the extensions to JML4 and other

validation of its architectural approach. A summary is given in Section 3.3.3.

3.2.2 Background and Goals

In this subsection we discuss the main goals to be satisfied by any next-gener-
ation tool base for JML. Before doing so, we give a brief summary of JML:s first

generation of tools and why they are not ideal for continued use.

47

3.2.2.1 First Generation Tools

The first generation JML tools éssentially consist of

e The Common3 JML tool suite, also known to developers as JML2, which in-

cludes the JML RAC compiler and JmlUnit [Burdy et al., 2005b],
o ESC/Java2, an extended static checker [Cok and Kiniry, 2005], and

e LOOP a full static program verifier [van den Berg and Jacobs, 2001].

Of these, IM‘L2 is the original JML tool set. ESC/Java2 and LOOP initially used
their own annotation language, though they quickly switched to use JML.

Being independent development efforts, each of the tools mentionéd above
has its own Java/JML front end including scanner, parser, abstract syntax tree
(AST) hierarchy, and static analysis code. This is a considerable amount of dupli-
cate effort and code (on the order of 50-100K source lines of code (SLOC)). This
became evident as JML evolved, but the main hurdle which has yet to be fully ad-

dressed in the first-generation tools is the advent of Java 5 (especially generics).

Lessons learned from JML2 We would like to benefit as much as possible from
the lessons learned from the development of the first generation of tools, espe-
-cially JML2 which, from the start, has been the reference implementation of JML.
JML2 was essentially developéd as an extension to the MultiJava (MJ) compiler.

By extension, we mean that

o for the most part, M] remains independent of JML

e many JML features are naturally implemented by subclassing MJ features
and overriding methods (e.g., abstract syntax tree notes with their associ-

ated type checking methods);

3Formerly known as the lowa State University (ISU) JML tool suite.

48

e in other situations, extension points (calls to methods with empty bodies)
were added to M]J classes so that it was possible to override behavior in

JML2.

We believe that this approach has allowed JML2 to be successfully maintained
as the JML reference implementation since 2002 by an increasing developer pool
(there are currently 49 registered developers). Since we wish to follow this ap-
proach, we should determine what, if anything, went wrong. We believe that a
combination of factors, including the advent of a relatively big step in the evolu-
tion of Java (including Java 5 generics) and the difficulty in finding developers to
upgrade MJ. Hence our approach in JML4 has been to repeat the successful ap-
proach adopted by JML2 but to ensure that we choose to extend a Java compiler

that we are confident will be maintained (outside of the JML community).

Evolution of IDEs Another important point to be made about the first genera-
tion of JML tools is that they are mainly command-line tools, though some de-
velopers were able to make comfortable use of them inside Emacs, which some
consider an early IDE. |

With a phenomenal increase in the popularity of modern IDEs like Eclipse,
it seems clear that to increase the likelihood of getting wide-spread adoption
of JML, it will be necessary to have its tools operate well within one or more
popular IDEs. In recognition of this, early efforts have successfully provided ba-
sic JML tool support through Eclipse plug-ins, which mainly offer access to the

command-line capabilities of the JML RAC or ESC/Java2.

49

3.2.2.2 Goals for Next-Generation Tool Bases

We are targeting mainstream industrial software developers as our key end users.
From an end-user point of view, we strive to offer a single Integrated (Develop-
ment and) Verification Environment (IVE) within which they can use any de-
sired combination of RAC, ESC, and FSPV technology. No single tool currently
offers this capability for JML. In addition, user assistance by means of the auto-
generation of specifications (or specification fragments) should be possible (e.g.,
based on approaches currently offered by tools like Daikon [Ernst et al., 2007],
Houdini [Flanagan and Leino, 2001], and JmlSpec [Burdy et al., 2005b}).

Since JML is essentially a superset of Java, most JML tools will require, at a
minimum, the capabilities of a Java compiler front end. Some tools (e.g., the
RAC) would benefit from compiler back-end support as well. One of the impor-
tant challenges faced by the JML community is keeping up with the accelerated
pace of the evolution of Java. As researchers in the field of applied formal meth-
ods, we get little or no reward for developing or maintaining basic support for
Java. While such support is essential, it is also very labor ihtensive. Hence, an
ideal solution would be to extend a Java compiler, already integrated within a
modern IDE, whose maintenance is assured by a developer base outside of the
JML research éommunity. If the extension points can be judiciously chosen and
kept to a minimum then the extra effort caused by developing on top of a rapidly
moving base can be minimized.

In summary, our general goals are to provide
e abase framework for the integrated capabilities of RAC, ESC, and FSPV
e in the context of a modern Java IDE whose maintenance is outside the JML

community

50

¢ byimplementing support for JML as extensions to the base support for Java
so as to minimize the integration effort required when new versions of the

IDE are released.

A few recent projects have attempted to satisfy these goals. In the next subsec-
tion, we describe how we have attempted to satisfy them in our design of JML4.

The other projects are discussed in Section 3.2.4.

3.2.3 JML4
JMLA4 initially enhanced Eclipse 3.3 with
¢ scanning and parsing of hullity modifiers,

e enforcement of JMLs non-null type system, both statically and at runtime,

and

¢ the ability to read and make use of the extensive JML API library specifica-

tions.

This subset of features was chosen so as to exercise some of the basic capabilities

that any JML extension to Eclipse would need to support. These include

e recognizing and processing JML syntax inside specially marked comments,

both in *. java files as well as «. jml files;
e storing JML-specific nodes in an extended AST hierarchy;,
e statically enforcing a modified type system, and

¢ providing for runtime assertion checking (RAC).

51

Also, the functionality added by the chosen subset of features is useful in its own
right, somewhat independent of other JML features (i.e., the capabilities form a
natural extension to the existing embryonic Eclipse support for nullity analysis).

In the remainder of this subsection, we present how we extended Eclipse to
support JML, appealing at times to the specific way in which the JML4 features

described above have been realized.

3.2.3.1 Architectural Overview

Eclipse Eclipse is a plug-in-based application platform. An Eclipse applica-
tion consists of the Eclipse plug-in loader (Platform Runtime component), cer-
tain common plug-ins (such as those in the Eclipse Platform package) along with
application-specific plug-ins. Well known bundlings of Eclipse plug-ins include
the Eclipse Software Development Kit (SDK) and the Eclipse Rich Client Platform
(RCP). Although Eclipsé is written in Java, it does not have built-in support for
Java. Like all other Eclipse features, Java support is provided by a collection of
plug-ins—called the Eclipse Java Development Tooling (JDT)—offering, among
other things, a standard Java compiler and debugger.

The main packages of interest in the JDT are the ui, core, and debug. As can
be gathered from the names, the core (non-UI) compiler functionality is defined
in the core package; Ul elements and debugger infrastructure are provided by the
components in the ui and debug packages, respectively. One of the rules of Eclipse
development is that public APIs must be maintained forever. This API stability
helps avoid breaking client code. The following convention was established by
Eclipse developers: only classes or interfaces that are not in a package named

internal can be considered part of the public API. Hence, for example, the classes

52

org.eclip sejdt org.jmlspecs.
. eclipsejdt

.
ui I ui
f——
core I core I

de bug

— i

Eclipse Platform +Workbench
*\Workspace
Platform «Team
Runtim e +«Hep

Figure 2: High-level package view

for the JDT’s internal AST are found in the org.eclipse. jdt.internal.compiler.-
ast package, whereas the public version of the AST is (partly) reproduced under
org.eclipse. jdt.core.dom. For JML4, we have generally made changes to internal
components (to insert hooks) and then moved most of the JML-specific code to

org.jmlspecs.eclipse.jdt.

JML4 At the topmost level, JML4 consists of customized versions of the org.-
eclip‘se. jdt.ui and org.eclipse. jdt.core packages (details given below) that are
used as drop-in replacements for the official Eclipse JDT core and ui. These pack-
ages are shown in bold in Figure 2.

The complete list of packages that have been customized is given in Figure 3.
From this list we can note, among other things, that we have also customized
the batch compiler so that JML4 can be used from the command line as well as
within the Eclipse GUI. This allows tools based on JML4 to be used both interac-
tively and in batch-processing scripts. Most of the JML-specific modules in the
replacement for the org. jmlspecs.eclipse.jdt plug-in are subclasses of the Ab-
stract Syntax Tree (AST) node hierarchy, which we examine in greater detail in

Section 3.2.3.3, and a few utilities that help with external specifications.

53

org/eclipse/jdt
/core
/compiler
/internal/compiler
/ast
/batch
/codegen
/flow
/1lookup
/parser
/internal/core
/builder
/search/indexing
/util

Figure 3: Packages customized to support JML4

3.2.3.2 Overvew of Compilation Phases

The main steps of the compilation process performed by JMI14 are illustrated in
Figure 4. In the Eclipse JDT (and JML4), there are two types of parsing: in addi-
tion to a standard full parse, there is also a diet parse, which only gathers signa-
ture information and ignores method bodies. When a set of JML annotated Java
files is to be compiled, all are diet parsed to create (diet) ASTs containing initial
type information, and the resulting type bindings are stored in the lookup envi-
ronment (not shown) .(Then each Compilation Unit (CU) (i.e., source file) is fully
parsed to fill in its methods’ bodies. During the processing of each CU, types that
are referenced but not yet in the lookup environment must have type bindings
created for them. This is done by first searching for a binary (x.class) file or, if
not found, a source (x. java) file. Bindings are créated directly from a binary file,
but a source file must be diet parsed and added to the list to be processed. In
both cases, the bindings are added to the lookup environment. If JML specifica-

tions for any CU or referenced type are contained in a separate external file (e.g.,

54

JML+Java
(*.java
v
| Diet Parsing |

J, diet AST

(Full) Parsing
\}/ AST

. Diet Referenced
Type Checking &+ Parsing € types (* java)
P \I/
External Spec Diet < Spec files
Merge Parsing [~ 1™ 2va)
W
Flow Analysis

Static Verification
(incl. ESC)

\L AST (+ proof status)

Code Generation
(incl. RAC code)
13

o=]

Figure 4: JDT/JML4 compilation phases

a x. jml file), then these specification files are diet parsed and the resulting infor-
mation merged with the CU AST (or associated with the binding in the case of a
binary file). Finally, flow analysis and code generation are performed. We antici-
pate that extended static checking will be treated as a distinct phase immediately
following flow analysis.

In the remaining subsections we cover some aspects of JML4 compilation in

more detail.

3.2.3.3 Lexical Scanning, Parsing, and the AST

In this subsection we describe some of the particularities of the scanner and

parser as well as the approach we have taken to adapting them to support JML.

55

1
org.eclipsejdtinternalcompilerparser

-

DSRG &
scrpt e

/|
Parser code
fragments

arser table|l,
fragments

i

canne
java

JikesPG

/[Terminal &~
Tokens
java

Figure 5: Customizing the JDT lexer and parser

Figure 5 provides an overview of the main parser components as well how they

are generated; components in bold are those that have been customized in JML4.

Scanning Since all of JML is contained within specially marked comments, the
principle modification to the lexical scanner was to enhance it to recognize JML
annotations. This is currently handled using a Boolean field that indicates wheth-
er the scanner is in a JML annotation or not. Adding support for new keywords -
requires a little more work than usual since the JDT’s scanner is highly optimized
and hand crafted. Keywords, for example, are identified by a set of nested case
statements based on the first character of a lexeme and its length. Figure 6 il-
lustrates part of the code added for the recognition of the non_ nul1 and nullable
tokens. To make life easier for developers working on JML4, JMLs keywords are
stored in a HashMap, which maps them to the internal token values. To add new
JML keyword simply requires adding one line of code that adds an entry to this

map.

Parsing The JDT'’s parser is auto-generated from a grammar file (java.g) us-

ing the Jikes Parser Generator (JikesPG) (see Figure 5). Instead of producing a

56

switch (datalindex]) {
case ’'n’ : //non_null nullable \ldots
switch(length) {

case 8:
if (data[++index] == ’0?)
if ((data[++index] == ’n’)
&& (data[++index] == ’_?)
&& (data[++index] == ’n’)
&& (data[++index] == ’u’)

&& (data[++index] == ’1’)
&& (data[++index] == 1)) {
return TokenNamenon_null;

} else
return TokenNameldentifier;
else if ((data[index] == ’u’)

&& (data[++index] == ’1°)

&& (data[++index] == ’1’)

&& (data[++index] == ’a’)

&& (data[++index] == ’1b’)

&& (data[++index] == ’1°’)

&& (data[++index] == ’e’)) {

return TokenNamenullable;

Figure 6: Lexer code for nullity keywords

complete parser as a single unit, the JikesPG creates resource files and code frag-
ments that must be incorporated into various other files. We have automated the
parser-generation process with a script; the grarﬁmar and script reside in a top-
level grammar directory within the JDT core project, while the Scanner and Parser
are in the compiler’s internal parser directory. As mentioned earlier, there are two
forms of parsing: diet parsing, which only gathers signature information, and full

parsing. Both are driven by the same grammar file and use the same Parser class.

57

file:///ldots

Nullity — ’nullable’
Nullity — ’non_null’

ReferenceType ::= Nullity ClassOrInterfaceType
/.$putCase consumeReferenceType(); $break ./

Figure 7: JikesPG grammar productions

Grammar On a positive note, the grammar file, java.g, closely follows the
Java Language Specification [Gosling et al., 2005}. Somewhat more of a challenge
is dealing with the lack of JikesPG documentation. Even though the JikesPG is
hosted on SourceForge, the site contains no documentation. To our knowledge
the only up-to-date documentation is part of a (master’s) thesis written in Ger-
man [Witté, 2003]. (LPG, apparently a successor to the JikesPG project, is also
hosted on SourceForge and has documentation, but it is unclear how different
these two applications are. LPG appears to be part of a larger IBM initiative
named SAFARI which is described to be “A Meta-Tooling Platform for Creating
Language-Specific IDEs”. This sounds promising, but SAFARI has yet to be re-
leased.)

The java.g grammar file has sections defining Terminals, Aliases, and Rules.
Aliases are used to give readable names to terminals formed from punctuation.
An example of production rules for adding support for nullity modifiers to ref-
erence types is given in Figure 7. Three rules are shown, and both “~>" and
“::=" can be used to separate a non-terminal from its definition. Semantic ac-
tions come after the production rule between ‘/.” and ‘./’ markers. $putCase
and $break are macros that output case and break statements for the production.
Most—if not all—of the semantic actions in the JDT grammar are single calls to

methods that are defined in the Parser class. This JDT convention helps to both

reduce the size of the grammar file and increase its readability.

58

: 2\ ArrayQualifledTypeReference k}—-{JmlAname!lﬂeéTypeRmrem |
'Quanﬁedrypenererenm H—E_{Jmlnuaﬂmvmﬂnhmncn l :
| Exprossion K}-{TypeRaference Kt | JMLTypoRsforonce Kjm = — — -:. ——————————— .:
. JmiSingleTypeRefarence | :
N i 1

SingleTypeReference K|

[

Figure 8: Part of the AST hierarchy(org.eclipse. jdt.internal.compiler.ast)

Parser Token Stacks Unlike other auto-generated parsers, those generated
by JikesPG do not provide a token stack, and this must be handled in the hand-
written code. The consuneToken() method is called as each token is processed,
and it is used to store information about the current token onto various stacks.
Witte provides a summary of the eight stacks maintained by the JDT’s parser
[Witte, 2003, §3.4.3.3].

Other than modifying the methods corresponding to grammar-rule reduc-
tions, the most prominent change to the parser is the replacement of calls to

constructors JDT AST nodes by those of JML-specific AST subclasses.

Abstract Syntax Tree Hierarchy The Abstract Syntax Tree (AST) hierarchy for
JMLA4 is obtained by subclassing JDT AST nodes as needed. An illustration of how
this is done is given in Figure 8. For example, JML type references are like Java
type references except that they have additional information such as nullity. As
can be seen, since Java does not allow multiple inheritance, adaptations of the

AST can be a bit more involved than merely subclassing.

3.2.3.4 Type Checking and Flow Analysis

Type resolution and checking is performed by invoking the resolve () method on
a compilation unit. Similarly, flow analysis is performed by the analyseCode ()

method. Addition of JML functionality is achieved by inserting “hooks” into the

59

http://JiWi.rypgBefere.ncB

previously mentioned methods (i.e., methods with empty bodies in the parent
class that are then overridden in JML-specific AST nodes). Our hope is that such
hooks will be ported back into the Eclipse JDT, something the JDT developers
have confirmed is feasible provided we can demonstrate that no public APIs are

changed and that there is little or no impact on runtime performance.

Merging of External Specifications Between type resolution and flow analy-
sis, the compiler checks for external specification files (e.g., . jml files) corre-
sponding to the file being compiled. If one is found, it is parsed and any an-
notations are added to the corresponding declarations. Binary types (i.e., those
found in «.class files) whose specifications are needed are handled differently.
For these, the system searches for both a source and external specification file.
Also, since binary types do not have declarations, but only bindings, information
cannot be easily attached to them. For now, we store the specification informa-
tion about fields and methods of binary types in a cache that is managed by the

JmlBinaryLookup class.

Non-null Type System " JML4’s non-null type system is similar to that presented
in [Fdhndrich and Leino, 2003]. That is, each Java reference type T is replaced
with a pair of types, nullable T and non.null T, with nonnull T a subtype of
nullable T. We have initially left out support for generic types and concérn for
the initialization soundness issues addressed with raw types. Work is underway
to address these (see, e.g., [Cok, 2008]), but work has yet to be started to address
the handling of arrays (e.g., array elements are currently restricted to having the
same nullity as the arrély‘ reference, and assignment of arrays is invariant with

respect to nullity).

60

It was much easier to add a non-null type system to the JDT than it was to the
JML2 Checker. This is partly due to the intra-procedural nullity analysis already
implemented in the JDT, but even more so because of the ease of adding nullity
information to the AST. The JDT’s nullity analysis was only concerned with lo-
cal variables and method parameters, as the latter are implemented in the AST
as a subclass of local variables. In the JML2 Checker, it was necessary to modify
every AST node that contained a reference to a type to also store its nullity. In
the JDT, each mention of a type in the source code is reflected in the AST with
a node that is a subclass of TypeReference. These were replaced with instances
of subtypes of Jml1TypeReference, which simply add a Nullity field. The nullity
of a method’s return type is stored in a MethodDeclaration, and that of all other
typed items is stored in subclasses of AbstractVariableDeclaration. Since much
of the type-checking and flow-analysis code makes ﬁse of bindings and not dec-
larations, modifications were made so that each FieldBinding and MethodBinding
created for a source file stores a reference to its declaration.

Once nullity information was easily accessible, the intra-procedural nullity
checking only needed to be modified slightly to add the checking of fields and
return types. All dereferences were already guarded during flow analysis by a
call to Expression’s checkNPE method. This method originally ignored cases in
which the reference being checked was not to a local variable (or method pa-
rameter), so it was modified to also complain when the reference was neither to
a local (or parameter) nor declared to be non-null. This required the addition of
an isDeclaredNonNull method to Expression that was overridden in only a small
number of its subclasses. We also had to ensure that nullity declarations and in-
formation were in fact used. For example, since originally their nullity was taken

to be unknown, the declared nullity of a method’s parameters must be explicitly

61

initialized before doing flow analysis on it. Also, local variables were originally set
to definitely null, non-null, or unknown, and this was changed so they are either
definitely non-null or potentially null.

Assignment was the only case for which there was no built-in support. There
are two forms of assignment: explicit assigninent to a variable and parameter
binding during a method call. Assignment of a reference is only allowed if the 1hs
is declared to be nullable or the rhs is known to be non-null. Checking method
parameters only required a straightforward change to the behavior of the class
messageSend: Before doing the original flow analysis, a check is made to deter-
mine if the Expression representing an actual parameters can be assigned to the
corresponding formal Argument. When an assignment would not be allowed, an

error is reported.

Problem Reporting Eclipse has a sophisticated error reporting subsystem that
supports flexible filtering controlled by compiler preferences that are based on
individual compiler options and option groups. Nonetheless, adding support for
a new problem (i.e., something that can translate into an error or warning to the
user) requires only small additions to the compiler’s problem reporter and the
addition of some minor glue in the form of int and String constants.

Any violations of the non-nuli type system are reported using the JDT’s prob-
lem-reporting mechanisms. This requires adding a new method to the Problem-
Reporter class for each kind of problem. These pass the necessary information to
an inherited handle method, which presents the problems in the GUI by, among
other things, underlining the offending code in yellow or red and adding an entry
in the Problen view (see Figure 12). When using the JDT’s batch compiler, han-
dling a problem causes information to be sent to the standard output (see the

expected output in Figure 10).

62

public static void generateNullityTest(CodeStream codeStream,
String exceptionType, String msg) {

BranchLabel nonnullLabel = new BranchLabel(codeStream);
codeStream.dup();
codeStream.ifnonnull(nonnullLabel);
codeStream.newClassFromName (exceptionType.toCharArray(), msg);
codeStream.athrow();
nonnullLabel.place();

Figure 9: Code generation example for runtime checking of a cast (to non-null)

3.2.3.5 Instrumentation for Runtime Assertion Checking

Code generation is performed by each ASTNode’s generateCode () method. Its Code-
Stream parameter provides methods for emitting JVM bytecode and hides some of
the bookkeeping details, such as determining the generated code’s runtime stack
usage. Hence, supporting runtime checking is relatively straightforward.

As an example, consider Figure 9, which shows the code from JmnlCastExpres-
sion for checking a cast to non-null. This method tests the top element on the
stack against null and throws an excéption if it is. First, a label that will be used
as a jump target is created. Then, the value on top of the runtime stack is dupli-
cated so that a copy will remain after the execution of the next instruction, which
removes the top element and jumps to the given target if the value popped is not
null. A new exception of the given type is constructed, with the given message
as its parameter, and placed on the runtime stack. The next statement throws the
item on the top of the stack. Finally, the label for the conditional jump’s target is

placed after the exception-throwing code.

63

3.2.3.6 Static Cecking

Hooks have been provided to invoke static checking between the compiler’s calls
to analyseCode () andbgenerateCod_e(). Currently, support is provided for ESC/-
Java2, ESC4, and FSPV-TG [Chalin et al., 2008a]. In addition to providing warn-
ings to the user, this allows static checking subsystems to manipulate the AST
before bytecode is generated, possibly removing checks for properties that have

been proven to always hold. More details are provided in Chapter 4.

3.2.3.7 Testing Framework

Unit tests of both the compile timev and runtime checking have been developed.
The compile-time tests have been integrated into the JDT’s unit-testing frame-
work, and an example can be seen in Figure 10. To create a new set of tests, a
subclass of AbstractRegressionTest is created. Compiler options can be set by
overriding the getCompilerOptions() method. The names of the individual test
methods begin with the word test, which is usually followed by an (ordinal) test
number and a descriptive name. The body of the test is often a single method
call, to either runPositiveTest Or runNegativeTest, depending on whether any re-
sulting bytecode is to be executed or not. The source of the code to be compiled

isin-lined as a String, as is any expected output.

3.2.4 Related Work

In this subsection we provide a brief discussion of the tools which have either po-
sitioned themselves as next-generation JML tools or at least could be considered

potential candidates.

64

public void test_0004_AssignmentExpression() {
this.runNegativeTest(
new String[] {
"AssignmentExpression. java",
"/x@ nullable by default */\n" +

" \Il "oy
n \Il LIS
" \Il " o4

' "class AssignmentExpression {\n" +
" /%@ non_null */ String non = \"hello\"; //$NON-NLS-1$\n" +
" /+Q@ nullable */ String able = null;\n" +
"\n" +
" void m1(/#@non nullsx/ String s) { this.non = s; }\n" +
" void m2(/*@nullablex/ String s) { this.non = s; } //error\n" +
" void m3(/+@non nullx/ String s) { this.able = s; }\n" +
" void m4(/+@nullablex/ String s) { this.able = s; }\n" +
" void m7(/*@non nullx/ String s) { if (s!=null) this.non = s; }\n" +
" void m8(/+*@nullablex/ String s) { if (s'=null) this.non = s; }\n" +
" void m9(/*@non nullx/ String s) { if (s!=null) this.able = s; }\n" +
" void m10(/+@nullablex/ String s) { if (s!=null) this.able = s; }\n" +

‘P

M \n" +

"1. ERROR in AssignmentExpression.java (at line 10)\n" +

" void m2(/*@nullablex/ String s) { this.non = s; } //error\n" +
v mrmmmemneees \n" +
"Possible assignment of null to an L-value declared non null\n" +

"2. ERROR in AssignmentExpression.java (at line 13)\n" +

" void m7(/*@non nullx/ String s) { if (s!=null) this.non = s; }\n" +

" \n" +

" The variable s cannot be null; it was either set to a non-null value " +
"or assumed to be non-null when last used\n" +

"3. ERROR. in AssignmentExpression.java (at line 15)\n" +

" void m9(/+@non_ nullx/ String s) { if (s!=null) this.able = s; }\n" +

" ~\nu +

"The variable s cannot be null; it was either set to a non-null value " +
"or assumed to be non-null when last used\n" +

Y

Figure 10: JML-JDT unit test

65

3.24.1 JML3

The first next-generation Eclipse-based initiative was JML3, created by David
Cok. The main objective of the project was to create a proper Eclipse plug-in,
independent of the internals of the JDT [Cok, 2007]. In addition, JML3 goals in-
cluded: providing functionality similar to that made available by command line
tools (e.g. checker, RAC, ESC), “classic Eclipse UI enhancements” for JML (e.g.
syntax highlighting), as well as support for generation of specifications. Consid-
erable work has been done to develop the necessary infrastructure, but there are
growing concerns about the long term costs of this approach.

Due to the closed non-extensible nature of the public JDT extensions points,
Cok had to write a separate parser for the entire Java language and AST. As was
mentioned earlier, the JDT creates two AST structures, one internal (using nodes
from org.eclipse.jdt.internal.compiler.ast) and the other part of the public
API (org.eclipse.jdt.core.dom). The public AST is generated from the internal
version, but this conversion is one way. JML annotations are parsed with a cus-
tom parser. This JML parser is applied only to the comments found in the source
code. The resulting JML AST nodes are used to decorate the original JDT DOM
AST, and a second step is needed to match the JML AST nodes to the correct JDT
AST nodes.

. Cok notes that “JML3 [will ﬁeed] to have its own name/type/resolver/checker
for both JML constructs [and] all of Java...” in additidn to the duplicated parser
and AST [Cok, 2007]. Since one of the main reasons for integrating JML with
Eclipse was to escape vfrrom providing support for the base Java language, this is a

key disadvantage.

66

3.24.2 JML5

An annotation apparatus was introduced in Java 5 for decorating classes, fields,
and methods with meta-data. JMLS5 is a project, recently initiated at Iowa State
University, with the goal to replace JML specifications in Java comments with an-
notations. Such a change will allow JML:s tools to use any Java 5 compliant com-
piler.

An example of a JML5 specification is shown in Figure 11. It illustrates the use
of a JML declaration modifier (espec_public) on the two fields a and b to make
them accessible to specifications in other classes. The two fields are constrained
to being positive through the definition of two invariants. These are enclosed
within an eInvariantDefinitions annotation because a declaration cannot cur-
rently have multiple annotations of the same type. Method specifications are
enclosed within @SpecCase(...) annotations. Here, the method n has a normal-
behavior heavyweight specification case, as denoted by the Type . normal_behavior
attribute. Type.exceptional behavior and Type.behavior, both with their usual
meaning, are also defined in JML5. The absence of a type attribute indicates a
lightweight specification. Multiple specification cases can be defined with the
@Also annotation.

Unfortunately, the use of annotations has important drawbacks as well. Java’s
current annotation facility does not allow for annotations to be placed at all lo-
cations in the code at which JML can be placed. JSR-308 (Annotations on Java
Types) is addressing this problem as a consequence of its mandate [Ernst and
Coward,], but any changes proposed would only be present in Java 7 and would
not allow support for earlier versions of Java [Ernst and Coward,]. Additionally,
provisions would have to be made to allow for the conversion of the extensive

JML libraries to be accessible to the new tools.

67

class Tester {
private @spec_public int a;
private @spec_public int b;
@InvariantDefinitions ({

@Invariant(value = ‘‘a > 0’’, msg = ‘‘a is positive’’),
@invariant(value = ‘b > 0’’, msg = ‘‘b is positive’’)
P
@SpecCase(type = Type.normal_behavior,
requires = "n.length == 27,

ensures = "a == @old(a)+n[0] & b == @old(b)+n[1]")
public @Pure bool m(int @NonNull [] n) {a+=n[0]; b+=n[1];}

}

Figure 11: JML5 example specification

3.2.4.3 JavaApplet Correctness Kit (JACK)

The Java Applet Correctness Kit (JACK) is a proprietary tool for JML annotated
Java Card programs initially developed at Gemplus (2002) and then taken over by
INRIA (2003) [Barthe et al., 2007]. It uses a weakest precondition calculus to gen-
erate proof obligations that are discharged automatically or interactively using
various theorem provers [Burdy et al., 2003].

JACK'’s main goals are that (1) it should be supported in an environment fa-
miliar to developers and (2) it should be easy for Java developers to verify their
own code [Burdy et al., 2003]. The first goal is accomplished by providing JACK as
an Eclipse plug-in and the second by providing developers with a proof obliga-
tion viewer. This viewer is used to communicate the proof obligations along with
their associated JML and Java code to the user. To further facilitate ease of use,
these proof obligations are displayed in the Java/JML Proof Obligation Language
(JPOL). JPOL shares its syntax with Java and JML thus hides theorem prover spe-

cific syntax.

68

The proof obligations are discharged using one of the supported automated
and interactive provers, currently the B prover, Coq, PVS, and Simplify. Through
the Jack proof viewer a user can see the proof obligation in either JPOL or the
prover’s native representation. Through this viewer, user interaction is limited to
identifying false hypotheses or showing invalid execution paths in the code. If the
user is has the required expertise, then the proof obligations native to a specific
theorem prover are displayed and the user can interactively attempt to discharge
them.

While JACK is emerging as a candidate next-generation tool (offering features
unique to JML tools such as byte code verification [Burdy et al., 2007]), being a

proper Eclipse plug-in, it suffers from the same drawbacks as JML3.

3.2.4.4 ESC/JAVA2 Plug-in

An Eclipse plug-in was developed for ESC/Java2 with the latest release dating to
February, 2005 [Cok et al., 2007]. It provides functionality similar to that of the
command line tool. Additionally, code and specification elements responsible
for verification violations are highlighted and associated with useful error mes--
sages in a fashion similar to other Java warnings.

To construct this plug-in, the code base of ESC/Java2 is packaged into a .jar
file. Provided a Java file is being edited, optidns are available to the user to stat-
ically verify the code. Upon the user’s invocation, the environment is prepared
and a top-level method is called that causes the Java source file to be parsed and
a verification condition (VC) to be generated and fed to the prover. Violations are
then reported in Eclipse.

Simply put, this is a wrapper for the command line tool. Parsing is done using

the ESC/Java2 parser. Nevertheless, this is an improvement to the command line

69

Table 1: A Comparison of possible next-generation JML tools

ESC/Java2
JML2 | JML3 | JML4 | JML5 Plug-in | JACK
any | ESC/Java2
Base Name M] | JDT | JDT |Java7+ | and]DT | JDT
Compiler / | Maintained
IDE (supports X v v v X! v
Java > 5)
Reuse/extension of base
(e.g. parser, AST) vs. 4 X v X X X
copy-and-change
Tool RAC v v/ v/ V) N/A N/A
Support ESC N/A | (V) 2] N/A v v/
FSPV N/A | V) V) N/A N/A v/
MJ = MultiJava, JDT = Eclipse Java Develoment Toolkit

N/A = not possible, practical or not a goal, (v') = planned
! ESC/Javaz2 is currently being maintained to support new verification function-
ality, but its compiler front end has yet to reach Java 5.

tool simply because it integrates ESC/Java2 with Eclipse and makes it even easier
to verify code.
- 3.2.4.5 Summary

Table 1 presents a summary of the comparison of the tools that have been sug-
gested as possible foundations for the next generation of support for JML. As
compared to the approach taken in JML4, the main drawback of the other tools
is that they are likely to require more effort to maintain over the long haul as Java

continues to evolve due to the looser coupling with their base.

3.3 Early Results and Validation of Architectural Ap-
proach

“All the proof of a pudding is in the eating.” — William Camden

70

Java NullityEuamples;’s

puhiic clasé X {

Z /%@ non _null */ Object m;
b s - _"»'(3 ’E. . >
4 m:Object |} 3 void ml (/"B nulliskle */X %} {
}g ml(x) Ha 4 Object o = x.m:
; ’ & i == * %
~a 2y if (o null) { /* */)

}

void m2 {/*R nulliable */X x) {
Object o = {/*@ {(non null X; %/ x).m;
o.hashCode () ;

My oo

i errors,” .'3 warnmgs, 0 mfos ' V.
* Description < :

El % Warnings (3 |tems)
4 & non_null field m may not have been exphcltly |n|t|ahzed o
A The varlable xmay benull - ‘ Ilne 4
set to a non-null value line 5

||ne1

_ The variable o cannot be nul; |I: was €

| witable | smart Insert | ;12 |

Figure 12: Screenshot of J]ML4

3.3.1 Useof]ML4

JML4 was used to validate our proposal that JMLs non-null type system should
be non-null by default [Chalin and James, 2007] (summarized in Appendix E).
It was used to produce RAC-enabled versions of five case studies (totaling over
470K SLOC), which were then used to execute those systems’ extensive test suites.
This exercise gave us confidence in the runtime checking and the processing
of the JML API specifications. A screenshot of the edit-time and compile-time

checking of nullity annotations is illustrated in Figure 12.

71

Initial support fo Static Checking, including Extended Static Checking and
Full Program Verification have been built atop JML4. ESCA4 is discussed in Chap-
ter 4, and the Full Static Program Verification-Theory Generator is described, e.g.,

in [Chalin et al., 2008a] and [Chalin et al., 2008b].

3.3.1.1 Third-Party Features

As mentioned in Section 3.2.2.2, one of the main goals for JM14 is for it to serve
as a platform for other research groups. Since success of JML4 will be measured
in part by how easily researchers (other than those working on the JML JDT core)
can extend JML4. We have already seen some encouraging signs of success, as

others have built upon JMLA4:

RAC Yoonsik Cheon’s research group at the University of Texas at El Paso is in the
process of building a full scale RAC implementation based on JM14 [Sarcar,

2009].

Symbolic execution and test generation: Serum/Kiasan Robby and his team at
Kansas State University are making use of JML4 as a front-end to the Bo-
gor/Kiasan symbolic execution system and the associated KUnit test gener-

ation framework [Deng et al., 2007].

Specification execution Tim Wahls is extending JML4 to enable the execution
of specifications through the use of constraint programming [Krause and

Wabhls, 2006, Catano and Wahls, 2009].

Boogie backend for IML4 A group of senior-year Software-Engineering students
are developing a static verification system using JML4 as the front end and
targeting Boogie as the backend, which they have named JML4/Disco. This

should component should allow JM14 to leverage the extensive work done

72

at Microsoft. At this time, Boogie is only available under MS-Windows, and
its source is not available. The first point can be addressed using wine [win,
2009], and there has been some talk about making Boogie an opensource

project.

3.3.2 Validation of Architectural Approach

JMLA4, like JML2, is built as a closely integrated and yet loosely coupled extension
to an existing compiler. An additional benefit for JML4 is that the timely com-
piler base maintenance is assured by the Eclipse Foundation developers. Hence,
as compared to JML2, we have traded in committer rights for free maintenance; a
choice which we believe will be more advantageous in the long run. Losing com-
mitter rights means that we must maintain our own version of the JDT code. Use
of the SVN vendor-branch feature has made this manageable.

While we originally had the goal of creating JML4 as a proper Eclipse plug-in,
only making use of public JDT APIs (rather than a replacement plug-in for the -
JDT), it rapidly became clear that this would result in far too much copy-and-
change code; so much so that the advantage of coupling to an existing compiler
was lost (e.g., due to the need to maintain our own full parser and AST). Nonethe-
less we were also originally reluctant to build atop internal APIs, which contrary
to public APIs, are subject to change—with weekly releases of the JDT code, it
seemed like we would be building on quicksand. Anticipating this, we estab-
lished several conventions that make merging in the frequent JDT changes both

easier and less error prone. These include

¢ avoiding introducing JML features by the copy-and-change of JDT code, in-

stead we make use of subclassing and method extension points;

73

e bracketing any changes to our copy of the JDT code with special comment

markers.

Following these conventions, incorporating the regular JDT updates since the

fall of 2006 (to our surprise) has taken less than 10 minutes, on average.

3.3.3 Summary

The idea of providing JML tool support by means of a closely integrated and yet
loosely coupled extension to an existing compiler was successfully realized in
JML2. This has worked well since 2002, but unfortunately the chosen Java com-
piler is not being kept up to date with respect to Java in a‘timely manner. We pro-
pose applying the same approach by extending the Eclipse JDT (partly through
internal packages). Even. though it is more invasive than a proper plug-in so-
lution, using this approach we have demonstrated that it was relatively easy to
enhance the type system and provide RAC support.

Other possible next-generation JML tools have been considered [Chalin et al.,
2007], but all seem to share the common overhead of maintaining a full Java
parser, AST, and type checker separate from the base tools they are built from.
This seems like an overhead that will be too costly in the long run. We are cer-
tainly not claiming that JML4 is the only viable next-generation candidate but
are hopeful that this thesis has demonstrated that it is a likely candidate.

The first JML4 prototype served as a basis for discussion by some members of
the JML consortium, and eventually it came to be adopted as the main avenue
to pursue in the JML Reloaded effort [Robby et al, 2008]. A JML Winter School
followed in February 2008, during which members of the community were given

JML4 developer training [Leavens, 2009, Wiki]. Since then, JML4’s feature set has

74

been enhanced, in particular, with support for next-generation ESC (see Chap-
ter 4) and FSPV components.

Even though JMLA4’s approach is curreﬁtly more invasive than a proper plug-
in design, using this approach we have since 2006, been able to (i) maintain
JML4 despite the continuous development increments of the Eclipse JDT, and
(ii) demonstrate, through the recent addition of the JML SV, that JML4’s infras-
tructure is capable of supporting the full range of verification approaches from
RAC to FSPV. Hence, we are hopeful, that JML4 will be a strong candidate to act
as a next-generation research platform and industrial-grade verification environ-
ment for Java and JML.

In the next chapter we discuss ESC4, JML4’s Extended Static Checking com-

ponent.

75

Chapter 4

ESC4: A Modern ESC for Javal

In the previous chapters, we saw the need for an Interactive Verification Environ-
ment (IVE) that provides easy access to various forms of verification. We also saw
a realization of this in JML4, an Eclipse-based IVE for JML, and its usefulness was
demonstrated.

In this chapter and following two we examine ESC4, JML4’s first static verifi-
cation component. Its goal is to provide a complete rewrite of the functionality
of ESC/Java2 while taking into account the advances that have been made in the
years since the earlier tool’s development. As a starting point, we leverage the
JML4 compiler front end and use the abstract syntax tree (AST) that is produced
as input to ESC4. This is an immediate improvement over ESC/Java2, which has
its own compiler front end that must be maintained. ESC4 does not incur the
cost of building the AST, since it is produced as part of the normal compilation
process.

This chapter examines ESC4’s architecture. Chapter 5 points out some of the
design decisions made in the development of ESC4 that allow it to verify code that

previous tools cannot. It also introduces Offline User-Assisted ESC (OUA-ESC), a

This chapter is based on [James and Chalin, 2009b).

76

from front-end, after
Static Analysis phase

AST !
External
* : to Eclipse
CFG Trans : Proof
* | Coordinator
VC Gen : Server
Proof I
Coordinator
v
Local ATP
Post Processor SOCALALES

AST

decorated
with proof
status

Figure 13: Data flow in ESC4

novel form of static verification. We end the discussion of ESC4 in Chapter 6 with
"a presentaﬁon of a way of speeding up the system: a multi-threaded, distributed
version of ESCA4.

Figure 13 shows the dataflow in ESC4. The processing begins by translating a
method’s AST, including its contract and body, first to a passive, acyclic Control-
Flow Graph (CFG) and then to a Verification Condition (VC). If a method’s VC
can be shown to be true then the method body conforms to its contract; other-
wise, there may be a violation. ESC4 uses theorem provers to try to automatically
discharge VCs. When the theorem provers are unsuccessful, either because the
VC is invalid or simply because the theorem provers are not powerful enough to

find the proof automatically, contract violations are reported using Eclipse’s error

7

reporting infrastructure. This allows users to navigate to verification failures as
easily as they do for syntax errors.

In the following sections, we will look more in-depth at how ESC4 carries out
each of the steps in Figure 13. We begin by looking at its architecture. In Sec-
tion 4.1 we look into the intermediate languages and visitors that are used to pro-
duce VCs. In Section 4.2 we look at the various techniques ESC4 uses to discharge

those VCs.

4.1 Generating VCs

“It can scarcely be denied that the supreme goal of all theory is to make
the irreducible basic elements as simple and as few as possible with-
out having to surrender the adequate representation of a single datum
of experience.”

and “Make things as simple as possible, but not simpler.”)

— Albert Einstein

4.1.1 Introduction

In this section we look at the architecture of ESC4’s VC-generating front end,
while the next section presents the VC-discharging back end. '

ESC4 is implemented as a compiler stage between JML4’s flow analysis and
code generation. If the compiler’s front end finds any errors (e.g., syntax or typ-
ing) in a class then ESC4 does not process it. The ESC4’s processing stages are
shown in Figure 14. Each method’s AST is converted first to a Control-Flow Graph
(CFG) as described in [Barnett and Leino, 2005]. This approach allows for the

straightforward translation of while loops and other control-flow structures to an

78

l AST of Src & Specs
| CFG Translator |
desugared, passified, acyclic CFG program
| VC Generator
! VC in TP independent lang
TP Back-end |

! Result
UBP | Post Processor |
{ Errors & warnings

Figure 14: ESC4’s processing stages

acyclic control-flow graph. Dynamic Single Assignment is used to remove side
effects. Using a weakest-precondition calculus, the passive, acyclic graph that
represents an entire method and its specification is converted to a single Verifi-
cation Condition (VC). |

The first stages of ESC4 can be thought of as a compiler, or automated trans-
lator, that converts the JML-annotated Java code to VCs. Like many compilers,
the architecture of ESC4 is a series of pipes and filters. The various stages trans-
form the source, in our case the JML-decorated JDT AST for a single method, first
to a CFG language then into a VC that can be processed by a theorem-prover
back end, the ProverCoordinator. Finally, the results of the theorem provers are
presented to the user in the form of errors and warnings. The first two boxes in
Figure 14 are expanded in the followi‘ng subsections. To illustrate their effects,
we use a running example, the method shown in Figure 152. This method is sup-
posed to return the absolute value of the value passed to it. Its contract’s lack of
a precondition shows that this method should behave properly for any int as in-
put. The contract further shows that the value returned will be both non-negative

and either equal to the value passed in or its additive inverse. We see that the first

*We ignore the special treatment needed to handle the largest negative value to avoid over-
complicating this example.

79

:

*@ ensures ‘resuL;MNﬁ 0;
@ ensures \result == x || \result ==
@¥y
public static int gbs(int x) {
if (x »>= 0)
return x;
else
return x;

% Problems ¢ . @ Javadoc X Declaratmn, 22 Consolew'f ey

2'errors, 0 warnings, 0 others

Descnptlon

v £ Errors (2 ltems)
€ Possible assertion failure - 1 - (Postcondition).

& Possible assertion failure - 1 - (Postcondition). (proved false)

B
e e e T e e

f Writable E Smart insert | 5:3

Figure 15: ESC4 reporting a problem with abs

postcondition is not respected. Indeed, the second return statement is at fault. In
the following subsections we will see how ESC4 generates a VC that can be used

to determine that the method body does not respect its contract.

4.1.2 Control-Flow Graph Translator

Dijkstra’s Guarded Command (GC) language [Dijkstra, 1976] is commonly used
as an intermediate language for ESC tools. We instead use for our translation
Control-Flow Graphs (CFGs), which are core to the approach presented in [Bar-

nett and Leino, 2005]. Whereas Dijkstra’s original formulation works well for

80

file:///result
file:///result

ifx>0—abs:= x

[x<0-— abs:=—x

fi;

if abs>0A (abs=xVvabs=-—Xx) — skip
[- (abs> 0 A (abs=xV abs = — X)) — abort
fi

Figure 16: abs in Dijkstra’s GC language

structured code, the new approach also works with unstructured code. Normally,
Java is seen as a structured language, but some common constructs are inher-
ently unstructured, such as breaking or continuing from the middle of loops, re-
turning from methods at arbitrary pointé, and handling exceptions. We examine

this CFG form before presenting our translation to it.

4.1.2.1 GCLanguage and Control-Flow Graph

The translation of our example code into Dijkstra’s GC language is shown in Fig-
ure 16. Note that the square brackets ([]) introduce a nondeterministic choice.
In our example, this choice is between two guarded statements, exactly one of
whose guard can be true. The guards are the predicates before the arrows (—),
and the second guard is simply the negation of the first. In addition to if and £i,
the keywords skip and abort are also introduced. skip has no effect and causes
processing to continue to the next statement. abort causes the evaluation to stop.
Statements are separated by the semicolon (;). The first if block corresponds to
the body, and the second to the postcondition. If no path through the GC code
ends in abort then the code satisfies its contract.

The approach presented by Barnett and Leino can be used to analyze unstruc-
tured code. To do this, they work with a Control-Flow Graph (CFG) in which

the nodes are blocks of code that can end with nondeterministic jumps to other

81

start: x@122%0 :: int;
return@0%$0 :: int;
assume: (True & True);
goto: [then$1, else$1]
then$1l: assume: x@122%$0 > 0;
assume: return@0%$0 == x@122%0;
goto: [return]
else$l: assume: = (x@122$0 > 0);
assume: return@0%$0 == x@122%0;
goto: [return]
return: assert(Postcondition): True & ((return@0$0 > 0) &
((return@0%$0 == x@122%$0) ? True :
(return@0%0 == —x@122%$0)));

goto: ||

Figure 17: abs as a Control-Flow Graph

blocks. Instead of guards, abort, and skip, they use assume and assert statements.
A guard x — is replaced with assume z. If an assume’s predicate evaluates to false,
its execution blocks, but does not otherwise cause problems. If the predicate of
an assert statement evaluates to false then the whole computation fails. If no
path through the CFG leads to an assert statement that fails then the code satis-
fies its contract.

The final form of our example as a CFG program is shown in Figure 17. The
first block, named start, begins by declaring some local variables of type int.
The formal parameter x is treated as a local variable, as is the value returned by
the method, which is stored in the variable named return. The first number after
the Variable names gives the character position for the variable’s declaration. It
is added to make the variable name unique and is needed when there are multi-
ple variables with the same name. The second number is the incarnation, which

will be explained below in Section 4.1.2.5. The implicit precondition and class

82

invariant are handled by start’s assume statement. The first statement in the orig-
inal code is an if, which is translated as a nondeterministic jump to the then and
else blocks. Since the names for these blocks are automatically generated, they
are suffixed with counters to make them unique. Both these blocks begin with
an assume: the then block assumes the if’s original predicate, and the else block
assumes its negation. The body of each of these blocks is the translation of the
original return statement and a jump to the return block. The return block as-
serts the postcondition, which includes the implicit class invariant.

This translation is not made in a single step, so we now go through the four
smaller steps necessary to realize the full transformation. The CFG Translator
converts the input”AST to a desugared, acyclic, passified CFG program using a

sequence of Visitors [Gamma et al., 1995].

e The first step is to remove some unnecessary complexities of the JDT’s AST
by translating a method to a fully sugared CFG program. (Syntacic sugarings

let us delay making some choices until later.)

¢ Next, statements that affect control flow (e.g., ifs and loops) are removed to

produce an acyclic CFG program.
e A separate step removes any remaining sugarings.

e Finally, a transformation to a Dynamic Single Assignment (DSA) form pro-
duces an even simpler CFG program that contain only assumes, asserts, and

gotos.

4.1.2.2 From the JDT’s AST to ESC4’s

The first step towards producing the final CFG program is to translate the JDT’s

AST to a highly sugared form that removes much of the information not needed

83

SugaredStmt : := assert Expr | assume Expr | break loopLabel
| continue loopLabel | exprStmt Expr | goto blockld
| if Expr SugaredStmt SugaredStmt
| postcondition Expr | precondition Expr | return [Expr]
| sequence SugaredStmt SugaredStmt | varDecl name type
| while loopLabel Expr SugaredStmt '

Figure 18: Sugared-Statement Language

for ESC. A grammar for the fully sugared language is shown in Figure 18, where
the expressions Expr are all those allowed by Java and JML (except for a few, as
mentioned below). This translation is done by the Ast2SugaredvVisitor. This step
also removes some of the unnecessary éomplexity of the JDT’s AST. For example,
the JDT contains nodes for qualified (i.e., dot separated) names and single names
inspired by the source syntax instead of more abstract nodes such as for fields and
local variables. This stage replaces the JDT’s Single- and QualifiedNameReferences
with SugaredVariables and SugaredFieldReferences. Also, short-circuiting con-
junctions (z%) and disjunctions (||) are replaced with equivalent conditional ex-
pressions (7:). All unlabeled loop statements are given an explicit label name,
and all default continue and break statements are made to reference this name.
References to the JML keyword \result are replaced with references to the new
local variable return, which is given a declaration source location of 0. More de-
tails are provided below.

Loop statements, continues, and breaks can be labeled statements in Java,
and we provide default labels for those that were left unlabeled. Removing loops
in the next step is then made simpler since all loops and SugaredBreak and Sug-
aredContinue statements will have labels.

Except as noted above, this step is an almost literal translation. At this stage,

control-flow statements such as loops are encoded as simple statements. Formal

84

file:///resuit

start: x@122:: int;
return@o :: int;
SugaredPrecondition: True & True;
SugaredIfStatement: x@122 > 0
then: [return: x@122]
else: [return: x@122]
goto: [return]
return: SugaredPostcondition: True & ((return > 0) &
[(return@0 == x@122) ? True :
(return@0 == —x@122)])
goto: []

Figure 19: Fully sugared version of abs as a CFG

parameters are treated the same as other local-variable declarations, except their
declarations come at the very beginning of the CFG program and are followed by
the method’s precondition, which contains the class’s invariant. In our example,
these two predicates are the implicit True (See Figure 19).

Exactly two blocks are produced in this step. The first is given the name start
and contains declarations of the formal parameters, assumption of the class’s in-
variant and the method’s precondition, the translation of the body, and finally a
goto [return]. The second block is given the name return and consists of asserting
the class’s invariant and method’s postcondition.

One kind of statement in the JDT’s AST is a Block, which contains an array
of statements. In the case this array is null, it is translated as assert True. When
there is more than a single element in .the array, each of the elements is converted,
and the resulting list is folded into a SugaredSequence statement. .

Alllocal variables and formal parameters are made unique by associating with

them the location of their declaration. Java does not allow two local variables

85

AcyclicStmt : := assert Expr | assume Expr | exprStmt Expr
| goto blockld | havoc I-value
| sequence AcyclicStmt AcyclicStmt
| varDecl name type

 Figure 20: Acyclic-Statement Language

with the same name to be in scope at the same time, but non-nested scopes can
have variables with the same name.

while statements can be labeled statements in Java, so we provide a label for
unlabeled loops. Similarly, labels are provided for unlabeled break and continue
statements. Removing loops in the next step is made simpler since all loops and
SugaredBreak and SugaredContinue statements have labels. Care must be taken so
that breaks and continues from nested loops are labeled correctly.

Conditional-And (&) and Conditional-Or (||) Operator expressions are trans-
lated to Conditional-Operator (7:) expressions. This reduces slightly the number
of expressions that must be supported in later stages.

The second step is to convert the fully sugared program to an acyclic Control-

Flow Graph with sugared GCs in the blocks that form the nodes.

4.1.2.3 Removing Control-Flow Statements

Once we have a start block that cbntains the fully sugared version of the method
body, we remove control-flow statements so that the result is a CFG whose nodes
are blocks that end in goto statements. In addition, we remove loops in a way that
is sound and complete, per [Barnett and Leino, 2005]. A grammar for the acyclic
language is shown in Figure 20, where the expressions Expr are the same as in
the sugared-statement language. Note that there are many fewer constructs in

this language, but a havoc statement has been added. This step’s transformation

86

is performed by the DesugarLoopVisitor. Key to this translation is the use of loop
invariants. Loop invariants are properties that must hold before a loop is entered
and after each iteration of the loop.

Some statements and most expressions are passed through unchanged by this
stage. SugaredPreconditions and SugaredPostconditions are replaced with appro-
priate assume and assert statements. Sequences of expressions are handled in a
special way because most of the constructs that are not passed through will be
converted to blocks that end in gotos. As is shown below, many new blocks are
created for each loop or if statement.

A SugaredIfStatement is replaced with goto [then, else], .and new blocks are
created for the two branches as well as for a rendezvous point after the statement.
The then block is prefaced with an assumption of the condition, and the else
block with its negatién. A missing else clause is replaced with an empty state-
ment, which is translated as assert True. Both blocks end with goto [afterIf],
where afterIf contains the statements following the original if statement. In
our example, the afterIf block is not reachable, sd it was not shown. As can be
imagined, it would only contain the command goto [return].

Loops are a little more complicated to translate than ifs. Luckily, we are able
to handle them more easily than in [Barnett and Leino, 2005] because we start
from structured loops. Since the original technique takes as input the equivalent
of bytecode, care must be taken to identify all jumps to loop heads. In Java, only
the three loop statements can be used to create loops, and only continue state-
ments and the end of the loop bodies can cause a jump to the loop head.

During this transformation, a new kind of statement is introduced, the havoc,

which has the effect of giving its arguments arbitrary values. For example, after

87

the statement havoc x, we know nothing about the value stored ih x except that it
is a value allowed by its declared type.

A SugaredWhileStatement is replaced with an assertion of its invariant and a
jump to the loop header. The loop header is a point where the invariant must
hold, and all jumps to the beginning of the loop are to this header. New blocks
are created for the loop header, the loop body, for the code after the loop, and for
break targets. The loop header havocs the targets of the loop (i.e., variables and
fields that are assigned to in the loop condition and body) and then goes non-
deterministically to either the body or after block. The body block assumes the
loop condition and loop invariants, stores the value of any loop variant expres-
sions, the translation of the loop body, asserts the loop invariant and checks that
the variant functions decreases. It ends with a goto [], indicating that it is a dead
end. It is only evaluated to ensure that the body restores the loop invariant and
decreases any loop variants. For any loop variant that is given, we add an implicit
invariant that its value is nonnegative. The after block assumes the loop invari-
ant and the negation of the loop condition and ends with a goto [breakTarget].
break statements are translated to goto [breakTarget]. continue Statements are
similar to the end of a loop body block and are translated as such. This is shown
schematically in Figure 21.

return statements with a value are translated to the sequence return@0 = ezpr;
goto [return|, where ezpr is the value returned. Those without a value are simply
translated as goto [return]. |

Each formal parameter v that appears in the postcondition is replaced with its
prestate value, which is encoded as \o1d (v).

Method calls are not removed in this phase but during passification (see Sec-

tion 4.1.2.5).

88

codeBefore

maintaining invariant;

loop_variant variant;

while (condition) {
body;

}

codeAfter
(a) Original loop

translation of codeBefore
assert invariant;
goto [header]
header: havoc fargets;
assume [nvariant;
goto [body, after]
body: store variant
assume condition;
translation of body
assert nvariant;
check variants
goto []
after: assume — condition;
goto [breakTarget]
breakTarget: translation of codeAfter

(b) Acyclic Control-Flow Graph

Figure 21: Translation of a while loop

89

SimpleStmt : := assert Expr | assume Expr | exprStmt Expr
| goto blockld | havoc l-value
| sequence SimpleStmt SimpleStmt
| varDecl name type

Figure 22: Desugared-Statement Language

CfgStmt : := assert Expr | assume Expr
| goto blockld | sequence CfgStmt CfgStmt
| wvarDecl name type

Figure 23: Final CFG Language

4.1.2.4 Final Desugaring

ESC/Java2 makes heavy use of compiler-option specific desugarings to delay as
long as possible the decision of how to translate certain constructs, depending
on how the user has configured the verification session [Leino et al., 1998]. Cur-
rently no desugarings of this kind are performed in ESC4, but we leave open the
possibility that future enhancements of this sort will be wanted. A grammar for

the fully desugared language is shown in Figure 22.

4.1.2.5 Passification

The final step in producing the CFG program from a method is to remove all side
effects. A grammar for the fully desugared, acyclic, passive, CFG-statement lan-
guage is shown in Figure 22. Unlike Java expressions, the CFG’s Ezpr are not al-
lowed to have side effects, so all assignments and method calls are replaced with
passive versions that contain only assumes and asserts. This is done by trans-

forming it to a Dynamic Single Assignment (DSA) form.

90

Passification to DSA is also discussed briefly in [Barnett and Leino, 2005],
where an optimization is given that in some cases reduces the number of incar-
nations needed for some 1-values. (In this subsection we use the term l-values
to refer to all kinds of expressions that can appear on the left-hand side of an as-
signment expression, such aslocal variables, field references, and array accesses)

The input to the passification stage is an acyclic CFG program, which consists
of a set of blocks and the name of the start block. Blocks have a name, a (possibly
compound) statement, and a list of following blocks. To make processing easier,
we determine for each block a set of parent and children blocks. Blocks are also
augmented with an incarnation map, which stores a mapping from assignables
(i.e., variables, fields, and arrays) to the set of integers representing the incarna-
tions with that assignable’s latest value. A set is used so that multiple incarnations
can be allowed to have the latest value, and this extra information can be used
to reduce the number of incarnations and extra synthetic assumptions needed
when reconciling blocks.

The first step in passification is performing a topological sort (see, e.g., [Cor-
men et al., 1990, §23.4}) of the CFG program’s blocks. This produces an ordering
of the nodes in which a block comes before any of its children. We then iterate

through the sorted list of blocks performing the followiﬁg three steps:

1. If the current block has more than a single parent then reconcile the par-

ents’ incarnation maps.

2. Set the information in the current block’s incarnation map to that of its par-

ents.
3. Perform a DSA transformation on each statement in the current block.
We now look at each of these in more detail.

91

Reconciling the parents’ incarnation maps is a more step. First, we must find
all of the l-values mentioned in the current block’s parents’ blocks. We then it-
erate over this set, vs, of 1-values. For each l-value, if the parent blocks share a
common incarnation then that incarnation is used. Otherwise, we must create a
new incarnation that is larger than any parent’s incarnation for that 1-value and

update each of the parent blocks by

1. adding to each parent an assumption that the 1-value with the new incarna-

tion is equal to that parent’s largest incarnation and
2. adding the new incarnation for the l-value to the parent’s incarnation map.

Setting the information in the current block’s incarnation map to that of its
parents means setting the incarnation of each l-value in vs to the largest incar-
nation mentioned in the intersection of the incarnation sets from the parents for
this 1-value. Because of the reconciliation of the parents’ maps, this intersection
will not be empty. If'a block has no parents, which is the case for the starting
block and unreachable blocks, then its incarnation map is left empty by these
first two steps.

Transformation a statement to DSA form gives an explicit incarnation to all

variable references, and all assignments of the form
x:=F
are replaced with assume statements of the form
assume I == F,

where k is an explicit incarnation that is larger than any incarnation = may have
had after processing E. If the assignment expression’s subexpressions have em-

bedded assignments, these are passified and included as assumptions before the

92

statement currently being visited. This is done by storing a side-effect list, which
stofes the assumptions (and assertions, as we shall see below when discussing
method calls) that need to be made before the current statement.

As an example, consider an assignment expression with an incarnation map

with i and k both mapped to {0}.
i= G+ 5 (=K / 10

If the called method m() does not have an assignable clause then we translate this
expression to the following:

assume i; =iy + 1

assume k; = kg — 1

assert Myrecondition

assume My,s¢condition

assume iy = ip * Ky / Mycgyyy

Method calls are replaced with a new variable holding the result. The decla-
rations and initializations of new binding variables to hold the evaluation of the
actual parameters are added to the side-effect list, followed by the assertion of the
method’s precondition (and any necessary invariants) with the method’s formal
parameters replaced with the new binding variables. This substitution is per-
formed by a SimpleSubstVisitor. Any variables mentioned in the called method’s
assignable clause have their incarnation replaced with a new, larger one before
processing the post condition. This havocking of assignable targets has the effect
of allowing the modified variables to take on any values, restrained only by the
method’s postcondition. The assumption of the invariants and the postcondition

are similarly added to the side-effect list. Note that it is not necessary for there

93

to be an explicit assignment to the result’s variable, since the only knowledge we
can have about its value comes from assuming the method’s postcondition.

ESC4 supports both JMLs logical and arithmetic quantified expressions. The
logical quantifiers are the universal and existential, and the arithmetic quan-
tifiers include sum, min, max, and number_of. Declarations for these expressions’
bound variables are added to the side-effect list. Before passifying the range and
body of the quantified expression, the contents of the side-effect list are stored in
a local variable, and the list is emptied. The range and body’s side effects, which
can only be caused by method calls, are formed into an expression that is made
to irriply the body, giving a new body. The side-effect list is restored before return-
ing the result of passifying the quantified expression, which is itself a quantified
expression. In the case of the universal quantifier, the range is made to imply the
new body, while for the existential, the range is conjoined to it.

Condiﬁonal expressions (i.e., those with the form a ? b : ¢) requires a bit more
work than some other expressions. After passifying each of its three parts, the
side-effect list is stored to local variables. Copies of the incarnation map that re-
sults from passifying the condition are made so that identical maps can be used
to passify the two alternative expressions. If either of these passification steps
detects side effects, the incarnation maps must be reconciled, similar to what is
- done when joining two parent blocks. This reconciliation ensures that the maxi-

mum incarnation for each assignable on both branches is the same.

4.1.2.6 Final words on Generating the CFG Program

The steps in this subsection described the transformation of an AST to a desug-

ared, passified, acyclic Control-Flow Graph program. The only statements that

94

wplassert P,Q)=P A Q
wp(assume P, Q) =P — @
wp(S;T, Q) = wp(S, wp(T, Q))

Figure 24: Weakest precondition for passive statements

remain in the language are for variable declarations, assertions, assumptions, se-
quencing, and gotos. The following will discuss the transformation to a Verifica-

tion Condition.

4.1.3 VC Generation

The Verification-Condition Generator converts a CFG program to a VC. In com-
parison to the AST language, the CFG language processed in this stage is minus-
cule. Using a weakest-precondition calculus, we compute a VC for each method.
The conversion provided in [Barnett and Leino, 2005] is reproduced in Figure 24.
Note that the infix simicolon (’;’) is used to form the sequence of two statements.

For each block with label A and body S, an auxiliary variable is introduced A4,

with the form

Aok = wp(Sv /\ Bok)

BeSucc(A)
. Let us call this block equation definition A..

The VC for a method is formed from the conjunction of these definitions im-
plying the auxiliary variable for the starting block. To enable the most flexibility
for the Theorem-Prover Back End, we leave the VC in this VC Program form. The
VC Program, or list of block equations, for our running example is shown in Fig-

ure 25. The VC is then
(start$be A else$1$be A then$1$be A return$be) — start$ok.

In the next section we see how ESC4 discharges VCs once they are generated.

95

start: return@0%$0 :: int;

x@122%$0 :: int;

(TrueAnTrue) — (then$1$0kA (else$1$0kATrue)))
else$l: (- x@122%0 > 0)) — ((return@0$0 == x@122%$0)— (return$okATrue))
then$l: x@122%$0 > 0)— ((return@0%$0 == x@122$0) — (return$okATrue))
return: ((TrueA((return@0$0 > 0)A

((return@0$0 == x@122$0) ? True : (return@0%$0 == —x@122%$0))))ATrue)

Figure 25: VC Program for abs

4.2 Discharging VCs

“Logic and mathematics seem to be the only domains where self-evi-
dence manages to rise above triviality; and this it does, in those do-
mains, by a linking of self-evidence on to self-evidence in the chain

reaction known as proof.” — Willard van Orman Quine

In the previous section we saw how ESC4 generates VCs from the AST it takes
as input. In this section we will see how those VCs are discharged and failures

reported to the user.

4.2.1 Prover back-end

A class diagram for the Prover back-end is shown in Figure 26. A configurable
Prover Coordinator is used to discharge VCs. It obtains a proof strategy from a
factory whose behavior is governed by compiler options. The default strategy is a
sequence of two strategies: The first tries to prove the entire VC using a single Au-
tomated Theorem Prover (ATP). If it fails, the second, ProveVcPiecewise, is used.
Both use adapters to access the theorem provers. These adapters hide the mecha-

nism used to communicate with the provers. They use visitors to pretty print the

96

IProverCoordinator ProverStrategyFactory

Vi

sirterface» “Z S !
IPreverStrategy 2=
+provefin VeProgram)

I, SN

(N
ProveEntireVc{ (ProveVcPiscowise| [ProveStrategySeq

Hprove{in Ve

T I

| N

! ProverAdapter

bo—-3

7Y

i i i
CVC3Adapter] [SimplityAdapter| [isabelleAdapter

Figure 26: ESC4’s prover back-end

VC to produce input for each ATP’s native language. To eliminate wasting time
re-discharging a previously discharged VC (or sub-VC), the strategies can make
use of a VC cache, which is persisted. A Universal Background Predicate (UBP)
is needed for each of the provers being used. A UBP is a collection of definitions
that provide the semantics of Java and JML.

ProveVcPiecewise implements 2D VC Cascading: VCs are broken down into
sub-VCs, giving one axis of this 2D technique, and proofs are attempted for each
sub-VC using each of the supported ATPs, giving the second axis [James and
Chalin, 2009c].

The conjuhction of the set of sub-VCs is equivalent to the original VC. Dis—
charging all of the sub-VCs shows that the method is correct with respect to its
specification. Any sub-VCs that cannot be discharged reflect either limitations of

the provers or faults in the source.

97

The splitting is done by recognizing that VCs are sequences of implications
and conjunctions in which the atomic conjimcts are (usually) generated from
assertions in the CFG program and implications from assumptions. The impli-
cations are distributed over the conjunctions to form a set of implications whose

conjunction is equivalent to the original VC. For example, a VC of the form
a — (b&c)

is converted to the set

{a — b,a — c}.

Each of the resulting sub-VCs represents a single acyclic path from the method’s
precondition, through its implementation to an assertion. An Isabelle/ HOL proof
that this decomposition is sound and complete can be found in Appendix A. Next
we remove the sub-VCs that end in — T'rue, since these are trivially valid. As a
final step, we replace all but the final implication with conjunctions: i.e., we con-
vert sub-VCs of the form

(a—b) —c

to

(anb) — ¢

Instead of reporting an entire assertion as failing, we try to identify the small-
est possible responsible subexpression. This helps users more quickly locate and
correct the problem. To do this, we split not only conjunctions generated dur-
ing translation and VC generation but also the conjunctions in the source code.

Initially, we naively split conditional conjunctions (&&) in the same way as logical

98

(i.e., non-short circuiting) conjunctions (&), but this led to incorrect error report-

ing. For example, consider the assertion
assert x == 3 && y == x + 3.

The second conjunct should never be reported as unprovable if the first conjunct
is unprovable. Since the second conjunct should only be reported as unprovable
if the first conjunct is true, the second conjunct should be prefixed with this im-

plication. Thus, the conditional conjunction should be translated as
a&d&b =ak&k(a — b).

Once the method’s VC hés been split into sub-VCs, we try to show that it is
valid by passing it in turn to Simplify, CVC3 and Isabelle/HOL. By far, Simplify
is the fastest of these three, when it is able to discharge a VC, and it is the first
that ESC4 uses. Before invoking Isabelle, we try a novel technique: We negate the
sub-VC'’s consequent and try to validate this new sub-VC using Simplify. That is,

if the original sub-VC has the form

/\AZ‘—>C

then the new sub-VC has the form

/\ Az — C.

If successful, we know not only that the original sub-VC is invalid, but also that
this invalidity is not due to a lack of power on the part of the ATPs used. This
extra information is passed to the user. This is usually a faster operation than

invoking Isabelle, and since it is easy for programmers to write the negation of

99

the expression wanted, it is useful to know when it occurs. Only after all other
attempts fail is Isabelle invoked.

Isabelle, which is more commonly used as an interactive theorem prover, is
used as an ATP by having it use a hard-coded proof strategy®. Isabelle is much
slower than the other two provers, but this is compensated for by its being able to
discharge many VCs that other ATPs cannot. Section 5.2 describes another way

that the power of Isabelle is used in ESC4.

4.2.2 Returning to our example

In this subsection we look at how ESC4 produces the warnings shown in Figure 15
from the VC program we derived in the previous section (see Figure 25).

As mentioned above, the default strategy used by the Prover Coordinator is to
first try to verify the entire VC program. Since there is a known problem with the
code, we are not surprised that Simplify is unable to verify it.

Splitting the VC program produces 4 sub-VCs, all with return and x declared

to be of type int:

1. A ((True A True), (— (x@122%0 > 0)), (return@0$0 == x@122%$0))

— (return@0$0 == x@122$0) ? True : (return@0$0 == (- x©@122%0))

2. A ((True A True), (— (x@122$0 > 0)), (return@0$0 == x@122$0))

— (return@o$0o > 0)

3. A ((True A True), (x@122$0 > 0), (return@0$0 == x@122$0))

— ((return@0$0 == x0@122%$0) ? True : (return@0$0 == (- x©122%$0))

4. A ((True A True), (x@122$0 > 0), (return@0$0 == x@122$0))

— (return@o$o > 0)

3For now, “by (simp add: nat_number | auto | algebra)+” isused.

100

(IMPLIES (AND (AND (EQ |@true| |@true|)
(EQ |@true| |@true|))
(NOT (EQ |@true| (integralGE |x@122$0| 0)))
(EQ |etrue| (integralEQ |return@0$0| {x@122$0))))
(LBLNEG |Postcondition@114| (LBLNEG |eq@37_48|
(EQ |@true| (integralGE |return@0$0| 0)))))

Figure 27: Simplify encoding of the problem sub-VC

All of these are provable by Simplify except the second. For this sub-VC, the
Simplify source generated is shown in Figure 27. It is an implication in which
the antecedent is a conjunction of the assumptions, and the consequent, a post-
condition, is an assertion. Simplify outputs that this is invalid and reports the
labels |eq@37_48| and |Postcondition@114|. If no other ATP is able to discharge this
sub-VC, these will be used to produce an error or warning to the user that the
Precondition that starts at source position 114 may not hold because of the ex-
pression at position 37-48. Variables are not declared, and integral comparisons
are made with predicates defined in the Simplify UBP, which we take wholly from
the ESC/Java2 distribution. LBLNEG introduces a label that is output if the enclos-
ing expression contributes to the whole expression not being verifiable.

After Simplify is seen to fail, CVC3 is tried. The much more human-readable
CVC3 source generated for the problem sub-CV is shown in Figufe 28. For CVC3,
the variables must be declared before their use, and the sub-VC is presented as a
query. Integral comparisons are native operations.

After CVC3 is seen to fail, we try to show the negation of the sub-VC using Sim-
plify. The Simplify source is identical to that shown in Figure 27 except that the

Postcondition label is wrapped in “(LBLNEG |not@37.48| (NOT...)).” Since Simplify

101

return$0$0 : INT ;
x$122%0 : INT ;

QUERY ((((TRUE AND TRUE) AND
(NOT (x$122$0 >= 0)) AND
(return$0$0 = x$122%$0)
) => (return$0$0 >= 0)));

Figure 28: CVC3 encoding of the problem sub-VC

theory Thesis_abs_2 imports ESC4 begin
lemma main: ‘‘([| (True & True); (~ ((x.122.0::int) >= (0::int)));
((return_0.0::int) = (x_122_0::int))|]
= ((return.0.0::int) >= (0::int)))’’
by (simp add: nat_number | auto | algebra)+

Figure 29: Isabelle encoding of the problem sub-VC

P

is able to show this negated version to be valid, the original sub-VC is provably
false, and this is indicated in the second line of the error shown in Figure 15.
Since the truth value of the sub-VC has been determined, the ProveVcPiece-
wise strategy will not invoke Isabelle, but for the sake of illustration, we continue
on. The Isabelle/HOL source generated for the problem sub-CV is shown in Fig-
ure 29. Variables do not need to be declared, but all terms are given with their
types, even litterals. The UBP is stored in the ESc4 theory, which also imports the
theory Main. The double square brackets (]| ... ||) expression can be read as the

conjunction of its semicolon-separated subexpressions.

102

4.2.3 Reducing Prover Invocations

Isabelle’s power comes at the cost of it being slower than the other ATPs used. It
is not uncommon for it to take 10 times longer than Simplify to process a VC, but
itis able to discharge whole classes of VCs that Simplify cannot. Even though the
other ATPs are faster than Isabelle, they are much slower than simple manipu-
lations of in-memory data structures or simple checks of the file system. ESC4
uses several techniques to help offset the theorem provers’ cost by eliminating

unnecessary invocations of them.

4.2.3.1 Caching

Since ESC4 is run every time that a method is saved and successfully compiled, it
is important that it be as quick as possible. To help with this goal and to eliminate
redundant calls to the theorem provers, once a VC has been proven, it is stored
in a persisted cache. Before sending a VC to any of the ATPs, the system checks
if the VC cache already contains it. If so, it is diséharged immediately. If it is
not found but a prover is able to show that it holds true, then it is added to the
cache. Isabelle is currently the last prover in our prover chain. If it is not able to
discharge a VC then some information is left in the file system that indicates this
situation. If this indication is present, then none of the theorem provers is able-
to prove it, and we can immediately return this faijlure status.

The cache stores the text of the VC as a HashSet. The cache is stored to the
file system on a per-compilation-unit basis. Since there are relatively few VCs in
each instance of the cache, the lookup time is insignificant. This cache is con-

sulted before calling any of the ATPs. Also, the ProverCoordinator leaves some

103

information in the file system so that it can determine whether Isabelle was pre-
viously unable to discharge a VC. This eliminates invocations of Isabelle that are

known will fail.

4.2.3.2 A More Robust Cache

VCs are fragile with respect to source-code edits. Information about expressions’
source-code positions is added to identifiers in the generated VCs, and this po-
sition information is used for two purposes: for error reporting and for making
identifiers unique. Unfortunately, having position information in the VCs is a
major source of brittleness of both the VC cache and the Offline User Assisted
ESC (OUA-ESC) process [James and Chalin, 2009c]. With it, adding even a sin-
gle character to the source file would cause the text of the cache entry or gen-
erated lemma to change. To avoid this, we plan to remove position information
whenever possible from lemmas in both the VC cache and the lemmas sent to Is-
abelle. This will not cause a problem with error reporting because only VCs that
are true are stored in the cache and because we use the problems that are indi-
cated by Simplify to provide error reporting. Making identifiers unique, can be
partially addressed by only including the position information if the same iden-
tifier is used more than once in a given sub-VC (e.g., if two quantifiers’ bound
variables share the same name). A further optimization would be to replace an
absolute position with a relative position (so, e.g., the two aforementioned bound
variables would be suffixed with _1 and _2 instead of their character positions).
Another novel technique is used to keep from having Isabelle waste time try-
ing to discharge a VC that is easily proved false. Before invoking Isabelle, a faster
ATP is used to try to prove its negation (or rather, the negation of the original as-

sert). For example, if the original VC has the form (p — ¢) then ESC4 tries to

104

show (p — - ¢). If this modified VC can be shown to be true then the original
VC must be false?, and this extra information can be reported to the user. It is
often useful to know that an assertion is false rather than just that the theorem

prover was unable to prove it true.

4.2.4 Post Processing Results

Once the Prover Coordinator has finished processing a VC program, it returns a
result, which can be either “valid” or information about a specification violation.

These latter include
1. the kind of assertion that failed (e.g., in-line assertion or postcondition),

2. the source starting and ending positions of the offending assertion expres-

sion,

3. the source starting and ending position the failure was detected (not always

present),
4. the name of the sub-VC, which we will see a use for in Section 5.2, and
5. an indication if the sub-VC was proved false.

In this chapter we have seen how ESC4 processes the AST provided to it by
JMLA4 to verify code and alert the user of specification violations. In the next
chapter, we will look at some examples of code that ESC4 is able to verify that

other static-analysis tools cannot.

“or contain a contradiction, which would mean either the specification introduced a contra-
diction or the assertion corresponding to the VC is unreachable.

105

Chapter 5

ESC Enhancements

In this chapter we examine some of the enhancements that allow ESC4 to verifiy
code that similar tools cannot. Section 5.1 provides some of the benefits of multi-

prover support. Section 5.2 presents Offline User-Assisted ESC.

5.1 Enhanced ESC in ESC4!

“Take the best that exists and make it better.” — Henry Royce

5.1.1 Overview

- Extended Static Checking (ESC) tools, such as ESC/Java2 [Cok and Kiniry, 2005],
provide a simple-to-use, compiler-like interface that points out common pro-
gramming errors by automatically checking the implementation ofa class against
its specification. Even though ESC/Java2 is the de facto ESC tool for the Java Mod-
eling Language (JML) [Leavens et al., 2008}, it has some important limitations.
For example, it ié unable to verify the assertions shown in Figure 30, which con-

tain

I This section is based on [James and Chalin, 2009aj}.

106

1. numeric quantifiers,
2. quantified expressions in certain positions, and

3. non-linear arithmetic.

assert 6 == (\product int i; 0 < i && i < 4; i);
assert (E; ? F; : (\forall int i; i > 0; i != 0));
maintaining b == 3x(x-c)*(x-c);

Figure 30: Assertions that ESC/Java2 cannot verify

In fact, the second of these limitations, as well as others, exists even in more mod-
ern ESC tools like Spec#’s Boogie program verifier [Barnett et al., 2005]. We be-
lieve that ESC4 is the first ESC tool that can automatically verify all of these.

In this section we report on work done to overcome these limitations in ESC4.
In the next subsection we report some examples of methods that ESC4 is able to

verify but that ESC/Java2 cannot. Related Work is described in Section 5.1.3.

5.1.2 ESC4 Enhancements

In this subsection we describe some of the enhancements made to ESC4. In gen-
eral, we do so by presenting examples of specifications that ESC/Java2 is unable
to verify? but that ESC4 can handle. The mechanisms by which the verification
is made possible are also described. In particular, we explain the following en-

hancements: support for
e numeric quantifiers,

o quantified expressions anywhere a boolean expression is allowed, and

2Most are also beyond the capabilities of Boogie, as will be explained in Section 5.1.3.

107

file:///product
file:///forall

e non-linear arithmetic.

In addition, we also briefly comment on ESC4’s ability to report assertions that

are provably false.

5.1.2.1 Arithmetic quantifiers

Besides existential and universal quantifiers, JML supports the generalized nu-
meric quantifiers \sum, \product, \min, \max, and \num_of. Like the logical quan-
tifiers, these have one or more bound variables, an optional expression limiting
the range of these variables, and a body expression. An operator is folded into all
values the body expression can take on when the range expression is satisfied. As

expected, the expression
(\sum int i; 3 < i & i < 7; i)

evaluates to 15 (i.e., 4 + 5+ 6).

ESC/Java2 uses Simplify as its underlying Automated Theorem Prover (ATP).
ESC4, however, makes simultaneous use of a range of ATPs, currently Simplify,
CVC(C3, and Isabelle/HOL. ESC/Java2 translates numeric quantified expressions
as uninterpreted constants since Simplify is unable to cope with them. ESC4 does
so as well for Simplify and CVC3, but since Isabelle is able to work with expres-
sions in higher-order logic, ESC4 faithfully translates all quantified expreésions
for it. As a result, many methods that use them can be verified automatically.

Figure 31 shows how compactly the specification for the factorial function can
be expressed. Without numeric quantifiers it would be difficult® to express such

a contract.

31f not impossible, given that it is unclear what the semantics of recursive method contracts
are in JML.

108

file:///product
file:///num_of

//@ requires n >= 0;
//@ ensures \result == (\product int i; 1 <=1 & i <= n; i);
public static int factorial(int n) {

int result = 1, j = 1;

//@ maintaining result == (\product int i; 1 <=1 & i <= j-1; i);

//@ maintaining 1 <= j;

//@ decreases n-j+l;

while (j '= n+1)

result *= j++;
return result;

Figure 31: Arithmetic quantified expression

Numeric quantified expressions are translated into one of two forms, depend-
ing on the syntactic form of the range. If explicit bounds can be determined, then
the expression is translated into an Isabelle function call that is very amenable to

use in automatic verification. For example, the JML expression
(\sum inti; a <=1 &i<=b; E(i))
would be translated into Isabelle as
suma b (M. E(i))

The Universal Background Predicates (UBPs) [Flanagan et al., 2002] in ESC4 are
- prover-specific collections of definitions that provide the semantics of Java and
JML. The definition of “sum,” the summation function from the UBP for Isabelle,
is shown in Figure 32. This UBP also contains some lemmas for dealing with —1
and nats, which are needed e.g., in loop invariants. Note that the range is shown

as having type int = int, which is a function from int to int. This function is

109

file:///result
file:///product
file:///product

fun sum _helper ::
“nat = int = (int = int) = int”
where
“sum_helper 0 lo body = 0”
| “sum_helper (Suc n) lo body =
(body (int n + lo)) + (sum_helper n lo body)”

fun sum : “int = int = (int = int) = int”
where
“sum lo hi body =

sum_helper (nat (hi - lo + 1)) lo body”

Figure 32: Definition of “sum” from Isabelle UBP

formed as a lambda expression whose single bound variable is that of the quan-
tified expression. | |

When ESC4 cannot determine a numeric range, Isabelle’s set-comprehension
notation [Nipkow et al., 2002, §6.1.2] is used, which allows the translation to cap-

ture the full meaning of the original JML expression. Hence, the JML expression
(\sun int i; R(i); £(i))
would be expressed as the Isabelle expression
S{E®M1 RE)}

While lemmas containing the set-comprehension form are not easily discharged
automatically, Section 5.2 describes how verification conditions (VCs) can be

manually discharged.

110

5.1.2.2 Restoring First-Class Status of Quantified Expressions

As shown in the second assertion in Figure 30, ESC4 allows quantified expres-
sions to appear in conditional expressions. Simplify makes a strong distinction
between formulas and terms, and permitting quantifiers only as formulas. The
implementation in Simplify’s UBP of conditional expressions, including condi-
tional conjunctions and disjunctions (i.e., & and —), requires that their subex-
pressions be terms. ESC4 uses an only slightly modified version of ESC/Java2’s
UBP for Simplify [Flanagan et al., 2002}, so its use of Simplify has the same re-
striction. The other ATPs used by ESC4 do not have this limitation, as their in-
put languages provide support for conditional expressions. This permits ESC4 to

treat quantified expressions as first-class expressions.

5.1.2.3 Non-linear arithmetic

Figure 33 shows a JML-annotated method that computes the cube of its inte-
ger parameter using only shifts (multiplication by 2) and additions [Kolman and
Busby, 1986]. This method is an interesting example for verification because it is
far from obvious that its body respects its simple contract.

Without adequate tool support for static verification, extensive testing would
be needed to build confidence in the method’s correctness. ESC/Java2 is unable
to verify this method because its underlying ATP, Simplify, is unable to reason
about non-linear arithmetic. This is true of most ATPs. Instead of relying on a
single theorem prover, ESC4 simultaneously uses a range of theorem provers (see
Section 4.2). For our Cube example, Simplify is able to discharge all of the VCs
except for the ones Corresponding to the last two loop invariants, which Isabelle
is able to discharge automatically. Since all of the VCs can be discharged by at

least one of the ATPs, ESC4 is able to verify that the method is correct.

111

/1@ requires x > 0;
/1@ ensures \result == x x X * X;
public int cube(int x) {

int a = 1,
b = 0;
int ¢ = x
z =0
//@ maintaining a == 3x(x-¢) + 1;
//@ maintaining b == 3x(x-c)*(x-c);
//@ maintaining z == (X-C)*(x-C)*(X-C);

/1@ decreasing c;
while (c > 0) {
Z += a + b;

b += 2xa + 1;
a+= 3;
c—;

}

return z;

}

Figure 33: Computing x3 with shifts and additions

5.1.3 Related Work
5.1.3.1 ESC/Java and ESC/Java2

ESC/Java2 [Cok and Kiniry, 2005] is the successor to the earlier ESC/Java project
[Flanagan et al., 2002], the first ESC tool for Java. ESC/Java’s goal was to provide a
fully automated tool to point out common programming errors. The cost of being
fully automated and user friendly required that it be—by design—neither sound
nor complete. Soundness was lost by not checking for some kinds of errors (e.g.,
arithmetic overflow of the integral types is not modeled because it would have
required what was felt to be an excessive annotation burden on its users). ESC/-
Java provides a compiler-like interface, but instead of translating the source code

to an executable form, it transforms each method in a Java class to a VC that is

112

file:///result

checked by an ATP. Reported errors indicate potential runtime exceptions or vi-
olations of the code’s specification. “The front end produces abstract syntax trees
(ASTs) as well as a type-specific background predicate for each class whose rou-
tines are to be checked. The type-specific background predicate is a formula in
first-order logic encoding information about the types and fields that routines in
that class use” [Flanagan et al., 2002]. The ESC/Java2 project first unified the orig-
inal program’s input language with JML before becoming the platform developed

by many research groups.

5.1.3.2 Spec#, VCC, and HOL-Boogie

Spec# is Microsoft’s extension to C# for supporting verified software [Barnett et

al., 2005]. It is composed of

¢ the Spec# programming language, a superset of C# enriching it with sup-

port for Design by Contract
¢ the Spec# compiler, which includes an annotated library, and
e the Boogie static verifier, which performs ESC.

The Spec# system is among the most advanced ESC tools currently available. A
key developer of Spec#, K. Rustan M. Leino, is one of the original developers of
ESC/Java, so it is not surprising that the lessons learned from that experience
were put to use in developing Spec#.

We translated the JML code in Sections 5.1.1 and 5.1.2 into Spec# and tested
them with version 1.0.2041 1.0 (11 April 2008) under Visual Studio 2008. We were
surprised at the results. Of the three assertions in Figure 30, only the first was

correctly handled, while the second caused the IDE to throw an exception. When

113

processing the example thaf showed ESC4’s ability to indicate that a subexpres-
sion is provably false, Spec# is only able to detect that the assertion is violated.
That s, it is unable to identify the offending subexpression or to indicate that the
expression is definitely false.

Leino and Monahan [Leino and Monahan, 2007] report a way to handle arith-
metic quantifiers using ATPs. This addition was enough to allow the simple ex-
ample in the first assertion in Figure 30 to be verified, but not the example in
Figure 31.

Bdhme, Leino, and Wolff [B6hme et al., 2008] report on HOL-Boogie, an exten-
sion of Isabélle/ HOL that can be used in place of the Z3 ATP in the regular Boogie
toolchain. Currently it is used in the VCC toolchain, but the Spec# system could
be modified to make use of it. This addition would have the possibility of allow-
ing Spec# to verify most of the examples presented in this section, although the
verification would require manual proofs, as there is no indication that Isabelle
is used as an ATP.

HOL-Boogie does not provide proof-status feedback to the IDE (i.e., Visual-
Studio). Our approach does provide such feedback, with the goal of being able to
do the proofs within the JML4 IVE, thus delivering a more satisfying user experi-
ence.

Like ESC4, HOL-Boogie supports splitting a method’s VC into sub-VCs, which
it then tries to discharge using Z3 and Isabelle/HOL. Unlike ESC4, this splitting is
done by Isabellé, which itself makes calls to Z3. Any user-supplied proofs are not

used to discharge the corresponding sub-VCs.

114

5.1.3.3 Krakatoa and Caduceus

Krakatoa [kra, 2009] is an FSPV tool for JML-annotated Java classes. Originally
designed to generate theories for the Coq theorem proven it has recently be-
ing modified to output programs for the Why tool [Fillidtre and Marche, 2007].
Caduceus [Fillidtre et al., 2008] is similar to Krakatoa, but it verifies C programs
annotated with contracts similar to those of JML. Verification in Krakatoa or Ca-
duceus is essentially a three-step, manual process: C programs are first translated
into the language of the Why system [Filliatre, 2008], then Why is used to translate
VCs into the language of a user-selected prover. |

Why is multi-tool Verification Condition (VC) generator. The input syntax
of Why is a Why program. A Why program may contain assignment, loop, and
conditional statements, as well as function declarations. Additionally it supports
throwing and catching exceptions and has limited support for expressions with
side-effects. It supports annotations for function declarations and loop state-
ments.

The Why tool transforms input programs into VCs using a weakest precondi-
tion semantics proven sound using the pen and paper approach [Filliatre, 2003].
The output is one or more theories for a number of provers. These include the
automated Simplify, Z3, Yices, and CVC3; and the interactive Coq, Isabelle, and
PVS. '

Finally, the user runs or interacts with the selected prover inorder to discharge
theVC proof obligations. The user is left to interpret any prover output, including
tracking undischarged VCs back to the source. Such an offline approach to ver-
ification is like that adopted by the JML4 FSPV Theory Generator [Chalin et al,,
2008a, Karabotsos e al., 2008] and contrasts with ESC4’s fully automated mode

of extended static checking.

115

Like ESC4, Caduceus treats quantified expressions as first-class expressions.
In addition to function calls being allowed in specifications, a construct called
predicates allows the definition of specification-only functions.

The ATPs used by the Why tool cannot reason about numeric quantifiers or
non-linear arithmetic, so code that makes use of them could not be verified au-

tomatically. The interactive prover would allow them to be proved manually.

5.1.3.4 SPARK

The SPARK toolset [Barnes, 2006] also provides support for discharging VCs us-
ing both a fully automatic and an interactive prover. A report generator is used
to combine the results of the verification process to provide information about
the status of a program’s verification. All of these tools are stand-alone and are

invoked from the command-‘line. (See also Appendix C.)

5.1.4 Summary

In this section we presentéd several examples of code that ESC4 is able to ver-
ify and that other commonly used ESC tools are not. ESC4 can verify code that
uses numeric quantifiers. Unlike other ESC tools, ESC4 does not limit quantified
expressions to being the only expression in an assertion. Also, we believe that
ESC4 is the first ESC tool for JML that can verify code that uses non-linear arith-
metic. It is able to do these things because it uses a variety of ATPs, where one is
able to compensate for the weaknesses of the others. VCs that can be proved to
never hold are reported as such to users. Those that are proved true are cached
to eliminate unnecessary invocations of the theorem provers.

ESC4 is a quickly evolving research platform. Even though there are things it

can do that ESC/Java2 cannot, there is much more that ESC/Java2 can do that

116

ESC4 does not yet do. To close this gap, we are continuing to flesh out ESC4’s
capabilities to more fully support Java and JML.
In the next section, we present Offline User-Assisted ESC, which we believe is

another powerful addition to static verification.

5.2 Offline User-Assisted Extended Static Checking*

“The moment we want to believe something, we suddenly see all the
arguments for it, and become blind to the arguments against it.” —

George Bernard Shaw

In addition to overcoming the limitations described in the previous section,
ESC4 has other enhancements. Most notably, it introduces a new category of
static verification, called Offline User-Assisted ESC (OUA-ESC), that falls between
the fully automated classical ESC and interactive Full Static Program Verification
(FSPV).

Offline User-Assisted ESC (OUA-ESC) is a novel form of static veriﬁcation that
lies between the fully automatic classical ESC (which is incomplete) and interac-
tive and complete FSPV. OUA-ESC enables a developer to take advantage of the
full power of Isabelle as an interactive theorem prover to discharge a VC that can-
not be discharged automatically. Once the proof has been. written, ESC4 makes

-use of it during subsequent compilation cycles, enabling Isabelle to act as an ATP
over the user-supplied proof. Hence, OUA-ESC allows JMI4’s static verifier to
take advantage of the full power of Isabelle—in conjunction with user-supplied
proofs—as one of its automatic theorem provers, thus increasing the ESC4’s com-

pleteness to the same level achievable by FSPV.

4This section is based on [James and Chalin, 2009c¢].

117

To do so, skeleton Isabelle theory files are created for any VCs that Isabelle is
unable to discharge. If the user provides a valid proof for the lemmas in those
files then the next compilation cycle’s invocation of ESC4 will use the provided
proof instead of the default proof strategy. If Isabelle is able to prove the lemma
then the VC is taken as discharged. OUA-ESC opens up the possibility of verify-
ing many more methods than would be possible using only ATPs, and without
forcing users to provide proofs if they are not so inclined.

With the addition of this ability to make use of arbitrarily complex proof tech-
niques, ESC4 is able to discharge any VCs that are produced, limited only by the
capabilities of Isabelle and the skills and needs of the user. If the user does not
want to manually discharge a VC, the lemma file can still prove useful, as it con-
tains a trace of the method from the precondition through the body to an asser-
tion that is reported as not holding.

Isabelle’s automatic simplification commands, while not enough to prove the
lemma, are usually able to reduce the original, quite large, lemma to subgoals
that show only the missing facts that would allow the proof to go through. Often

these smaller forms are

¢ obviously true and just require a little manipulation for Isabelle to recognize

their truth,

e obviously false and lead to a search in the VC for clues to the error in the

source code, or

¢ surprisingly false and lead to the modification of specifications to allow the

necessary information to be available.

The last case is most apparent when assumptions are missing, such as method

preconditions or loop invariants.

118

Both of the automatic Isabelle commands quickcheck and refute can provide
counterexamples that are often helpful in determining where the code or specifi-
cation is incorrect by pointing out why Isabelle thinks the lemma is false. Learn-
ing just a little bit about Isabelle and ProofGeneral is enough to allow the gather-
ing of a lot of useful information about an undischarged VC. In addition to the
normal simplification procedures, the 2008 release of Isabelle [isa, 2008] includes
the sledgehammer command [Paulson and Susanto, 2007], which can automat-
ically search for some slightly more sophisticated proofs. When the sledgeham-
mer finds a proof, a proof script is provided that can be used as a user-supplied
proof.

Once a proof for a VC has been accepted by Isabelle, it can be used by ESC4

on future runs.

5.2.1 Example of OUA-ESC

As an example, consider the method in Figure 34, which computes the integer
“square root Newton’s method®. The ATPs used by ESC4 are able to discharge 14
of the 19 sub-VCs generated for this method. For each of the remaining 5 sub-
VCs, a separate .thy file is output. If a proof were given then ESC4 will be able to
discharge the corresponding sub-VC during the next compilation cycle. The first
of the 5 unproven sub-VCs corresponds to the loop invariant x < (y + 1) * (y + 1)
not holding on entry to the loop and is encoded as the main lemma shown in
Figure 35. We next examine the contents of this file and how we created a proof

of the sub-VC.

5This is an adaptation of an example given in the Why distribution [why, 2008].

119

public class IntSqrt {
//@ requires x >= 0;
//@ ensures \result x \result <= x;
//@ ensures x < (\result + 1) x (\result + 1);
public static int sqrt(int x) {

if (x == 0) return 0;
if x <= 3) return 1;
inty=x

intz=x+1) /2

//@ maintaining z > 0 && y > 0;

//@ maintaining z == X / y +Vy) / 2;
//@ maintaining x < (y + 1) x (y + 1);
//@ maintaining x < (z + 1) = (z + 1);
//@ decreasing vy;

while (z < y) {

y=12
z=x/z+2)/ 2

}

return y;

bl

Figure 34: Calculating the integer square root

The theory file shown in Figure 35 starts by stating its name and importing the
ESC4, the Isabelle/HOL-specific Universal Background Predicate (UBP), a collec-
tion of theorem and function definitions that can be used in proofs. Two lem-
mas follow: the second (main) is the one created by ESC4 that states the VC that
could not be discharged. The first (helper) was added later, as described below.
The proof originally left by ESC4 for main was the Isabelle keyword oops, which
causes Isabelle to stop processing the lemma and ignore it. The VCs stored in
the theory files are not very user-friendly, but having the ProofGeneral parse the
lemma causes it to be pretty printed as the single subgoal to be discharged. This
causes unnecessary typing information to be removed, and the structure of the

expression is shown through proper indentation.

120

file:///result
file:///result
file:///result
file:///result

theory IntSqrt-sqrt-1

imports ESC4

begin

lemma helper: (0:int) < x==>x<(x+ 1) x (x + 1)

by (metis addl-zle-eq eq-iff-diff-eq-0 int-one-le-iff-zero-less

linorder-not-less mult-less-cancel-left2 order-le-less-trans
order-less-le-trans pordered-ring-class.ring-simps(27) ring-class.ring-simps(9)
zadd-commute zle-addl-eq-le zle-linear zless-addl-eq zless-le)

lemma main: ([| (True & ((x-162-0::int) >= (0 :: int))); (~ ((x-162-0:int) = (0 =
int))); (~ ((x-162-0::int) <= (3 :: int))); ((y-227-0::int) = (x-162-0::int)); ((z-240-0::int)
= ((((x-162-0::int)) + ((1 == int)))) div ((2 == inp))))|] ==> ((x-162-0::int) <
(((((y-227-0::int)) + ((1 = int)))) * ((((y-227-0::int)) + ((1 :: int)))))))

apply (auto)

apply (simp add: helper)

done

end

Figure 35: A proof for a VC from the code in Figure 34

To prove this lemma, we opened its file in ProofGeneral, removed the oops,
and started our proof by applying auto. The sub-VC'’s original lemma is not very
user friendly, but auto is usually able to simplify it greatly. In this case, the single

subgoal left is simply

X<3=x< (X+1)*(x+1).

We copied and pasted this subgoal as a separate helper lemma above the main
lemma. If we could prove this helper then Isabelle would be able to prove the
main lemma using its simplification procedures.

As a general rule, we first try to find a proof for helper lemmas using Isabelle’s
sledgehammer command [Paulson and Susanto, 2007] to find a Metis proof. Me-
tis [met, 2008] is an ATP that tries to prove lemmas using a given list of of theo-

rems. Isabelle’s sledgehammer command tries to find such a list automatically.

121

When this command is able to find a proof, it can be copied and pasted directly
into the proof script.

Unfortunately in our case, sledgehammer failed to find a proof. We noticed
that the helper lemma could be generalized by changing the implication’s an-
tecedent from

x<3

to

x>0,

which was enough to allow sledgehammer to find a Metis proof. Once the helper
lemma was proved, we were able to prove the main lemma by adding the helper
to the facts used by the simplificaiton procedure.

If sledgehammer is unable to find a proof for a useful helper lemma, it may
still be provable manually by crafting an explicit proof. The Isar language [Wen-
zel, 1999] provides a structured way of expressing proofs in a form that is similar
to pen-and-paper proofs but that can still be checked by Isabelle. We comment

more about the relevance of Isar in the next subsection.

5.2.2 Discharging Helper Lemmas

Being able to provide both Metis and Isar proofs fits nicely into an iterative de-
velopment cycle. Initially, developers may only be interested in knowing that the
lemma holds true, and a slegehammer-provided Metis proof is sufficient since
there is no concern for the readability or maintainability of the proof. This is es-
pecially true during active development, as the lemmas needed for a method may
change frequently. Also, Metis proofs may be unstable over time, as the heuristics

that the Metis prover uses to find a proof from a list of theorems could be subject

122

to change. As the system becomes more stable, it may be of interest to develop
an explicit Isar-style proof as this may give insights into the problem domain.

In our example, a Metis proof was found for the helper that we could copy
and paste into the theory file. Executing the proof of this particular helper lemma
takes a long time, but once it and the original lemma are proved inside ESC4, the
sub-VC is stored in the method’s VC cache and Isabelle is not asked to prove it

again.

5.2.3 Summary

Offline User-Assisted ESC provides users who are willing to put in the effort of de-
veloping proofs with a way to verify much more code than classical ESC, which
relies solely on ATPs, can. This benefit is provided without the burden of forcing
users who are not willing (or able) to generate the needed proofs with doing any-
thing extra. The end result is an overall verification technique that offers a level
of completeness in verification that is proportional to the effort the end user is

willing to invest (and this is usually proportional to the criticality of the code).

123

Chapter 6

Distributed and Multithreaded

Verification!

Divide ut imperes. (Divide so that you may rule.) — Roman maxim
Many hands make light work. — English proverb

Applying ESC to industrial-scale applications has been difficult because of
the time existing tools require to generate and discharge VCs. In this chapter we
highlight the enhancements that have been added to ESC4 that reduce the time
needed to verify JML-annotated Java code.

While small classes can be verified in seconds with previous ESC tools, larger
programs of 50 KLOC can sometimes take hours to verify. We believe that this
is an impediment to widespread adoption of ESC: Being used to modern incre-
mental software development models, developers have come to expect that the

compilation (and ESC) cycles are very quick.

e We take advantage of the inherent modularity of the verification techniques

underlying ESC [Leino, 1995] to analyze the methods in a given compilation

IThis chapter is based on [James et al., 2008].

124

unit in parallel. This is possible because the ESC analysis done for a given

method is independent of that for any others. (Section 6.1)

e We take advantage of ESC4’s proof strategies to develop distributed dis-
charging so that non-local resources can be used to reduce the time to verify

a set of classes. (Section 6.2)

e The previous two points are achieved by means of OS-independent proof
services: If an executable version of a given prover is not available for a
given platform, that prover can be exposed through a service and used re-

motely as if it were local. (Section 6.3)

Tools exist for verifying distributed and multi-threaded code, but we have not
found another verifier that makes use of these techniques to speed up its own
analysis. We believe that ESC4 is the first fully automatic static-verification tool

to do so.

6.1 Multi-threading

The biggest gains in speed in ESC4 come from making use of all available CPU
resources. Using the arguments in Leino’s thesis, Toward Reliable Modular Pro-
grams [1995], it can be shown that each JML-annotated method in a system can
be verified independently of the others. Where there are no dependencies, it is
possible to introduce concurrency.

First-generation tools such as ESC/Java [Flanagan et al., 2002] and ESC/Java2
[Cok and Kiniry, 2005] were written before'multi-threaded‘ and multi-core com-
puters were commonplace. Multi-threading operating systems were already a-

vailable then, but writing the code to use them would have only increased its

125

complexity without making the processing any faster. This encduraged a seri-
alized approach to the problem, even though the modular nature of ESC is in-
herently parallelizable. Today, however, multiple-core machines are becoming
the norm. Each thread could, in theory, run on its own core and thus reduce
the time needed to verify a system to the most time needed to verify a single
method. While the number of cores needed to achieve this level of speedup
will not be available in the foreseeable future, having such small-grained units
of work should make efficient scheduling easier for the operating system and/or
virtual machine.

Modifying ESC4 to take advantage of ESC’s inherent concurrency simply re-
quired adding a thread pool: Instead of processing each method sequentially; we
packaged the processing (the body of an inner loop) as a work item and added it
to the thread pool’s task list. Finally, we added a join point to wait until all of the
work for a compilation unit’s methods finished before ending the ESC phase for
it. This last step is necessary because the results of ESC may be used during code
geheration.

Version 3.4 of the Eclipse Java compiler added the ability to compile individ-
ual source files concurrently using multiple threads [mul, 2008]}. Since ESC4 and
JMLA are built on top of this compiler, all we had to do to gain this benefit was to
ensure that JML4 is thread safe.

The vast majority of the time doing ESC is spent discharging VCs. Specifically,
it is the underlying theorem provers that use the most time. For this reason, most
ESC tools only make use of a single ATP per verification session. As mentioned
above, ESC4 uses three by default, and 2D VC Cascading can cause those three to
be invoked multiple times for each method. Just as the methods in a class can be

verified in parallel, the sub-VCs for a method can be discharged in parallel. We

126

just need to put a join point so that we know when the processing of a method’s
VC has finished.
This gives ESC4 3 layers of parallelism: source files, methods within those

files, and sub-VCs for those methods.

6.2 Distributed VC Processing

Once we were able to take advantage of all of the CPU resources on a local ma-
chine, it became interesting to ask if we could make use of resources on remote
machines. The design of ESC4’s Prover Coordinator led to quick discovery of a
few deployment scenarios for the distributed discharging of VCs. It was easy to
support distributed provers by adding new strategy communication infrastruc-

ture.

1. Prove whole VC remotely. The first deployment scenario offloads the work
of the Prover Coordinator for an entire method. This was done by devel-
oping a new subclass of IProverStrategy that sends the VC generated for a
method to a remote server for processing. (see Fig. 6.2). A Prover Coordina-
tor is instantiated on the remote server along with its strategies. We initially
haditbehave like alocal Prover Coordinator and discharge the VC itself with

its own local provers.

2. Prove sub-VCs remotely. A second deployment scenario was to split the VC
into sub-VCs and send each of them off for remote discharging. This was
done by extending the ProveVcPiecewise strategy discussed in Section 4.2.1

and having it use remote services to discharge the sub-VCs in parallel.

3. Doubly Remote Prover Coordinator. Combining these two approaches,

so that the remote Prover Coordinator itself delegates the responsibility for

127

«interface»
IProverStrategy

+prove(in VcProgram)

ProveEntireVc| [ProveVcPiecewise| {ProveStrategySeqi |ProveVcDistributed

+prove(in Vc)

Figure 36: ESC4’s distributed prover back-end

discharging the sub-VCs to remote services by using the ProveVcPiecewise-
Distributed strategy, provides yet another alternative. A deployment view

can be seen in Fig. 37.

Scenario 1 uses the least bandwidth, since only the original VC is transmit-
ted. Scenario 2 uses the next least, although it can be exponentially more than 1.
Scenario 3 uses the most, the sum of 1 and 2, but it is split into two groups: the
same is used between the local machine and the remote Prover Coordinator as in
1, and between the remote Prover Coordinator and its servers as in 2.

Splitting a VC into sub-VCs can cause exponential growth in size, since these
sub-VCs each represent a single acyclic path from the method’s precondition,
through its implementation to an assertion. As a résult, scenarios 1 and 3 would
be preferred over 2 when the remote machines are not on the same local area net-
work. Scenario 3 can be thought of as providing the best parts of the other two:
low bandwidth requirements to reach the prover service, and 2D VC Cascading.
In addition, scenario 3 is the most likely to be used whenv a large farm of servers
is available or when the Prover Coordinator service provides a fagade that hides

" load balancing and other details from ESC4.

128

Prover Coordinator
Service

i
JMLA o

ATP1

Figure 37: Deployment

6.3 Prover service

Independent of the strategy used, the proving resources may be local or remote.
The initial prover adapters communicated with local resources using Java’s Pro-
cess mechanism. After facing some difficulties installing some provers on all of
our development platforms, we hit on the idea of Prover Services.

The adapters that use the provers locally can be taken as base classes to sub-
classes that access them remotely. Part of the purpose of the adapter classes is
to hide the interface with the provers. Applying the same concept lets us hide
whether the prover is hosted locally or on a remote machine.

This has the advantage of making the provers OS independent. If a prover is
needed on an OS for which there is no executable, it can be hosted on another
machine with the appropriate OS and an adapter can hide the extra communica-

tion needed to access it.

129

6.4 Validation

To confirm that our approach produces speedups, we performed some prelimi-
nary timing tests. The source tested was a single Java class with 51 methods. For
this code, ESC4 produced 235 VCs. Table 2 shows the number of times each of
provers was invoked. Simplify was able to discharge over 80% of the VCs. It was
also able to show as false almost 80% of those that were indeed false (23 + 6). In
this sample, CVC3 was not able to prove any of the VCs that Simplify was also
unable to prove, and Isabelle was needed for just over 5% of the original VCs.

We ran the test with two deployment scenarios, both based on the Doubly
- Remote Prover Coordinator described in Section 6.2. In the first, the Prover Co-
ordinator was hosted on the same PC as ESC4. In the second, it was hosted on a
faster remote machine.

ESC4 was run on a 2.4 GHz Pentium 4. The Prover Coordinator was hosted
either locally to the ESC4 machine or on a 3.0 GHz Pentium 4. Neither of these
machines’ CPUs is hyperthreaded. The provers were hosted on servers, each with
a 2.4 GHz Quad-core Xeon processor. The timing results are shown in Table 3.
Each entry in the last two columns is the average of three test runs, which were
made after an initial run with the configuration being tested to remove initializa-
tion costs. Even so, the timings varied from 0.5 s to 1.6 s. Network usage may
account for some of this variation.

For comparison, running the test with the Prover Coordinator and provers
were all on the same PC as ESC4 took 72 s. It should be noted that when using
remote provers, the CPU of the local machine stayed at 100% during the first few
seconds and then dropped to below 20% while gathering the results. When the
Prover Coordinator was on a separate machine, that machine’s CPU was never

went above 50%.

130

Table 2: VCs discharged with provers

Prover No. VCs | No. Proved | (%)
Simplify 235 193 82
CvC3 42 0 0
Negation® 42 23 55°
Isabelle 19 13 68
failed 6

¢ Simplify used to prove the negation of the

VC

® 80% of all false

Table 3: Timing results

Time (s) with
No. No. | Prover Coordinator
servers cores | local remote
1 4 26.6 26.4
2 8 16.9 16.2
3 12 12.8 13.3

The data gathered indicate that there is little difference between hosting the
Prover Coordinator locally or remotely. We had thought that hosting it remotely
would allow the VCs to reach the provers faster, thus giving a greater speedup.
Surprisingly, as more processing cores were made available, it was actually faster
to send the VCs directly. Further testing will hav‘e to be done to confirm this. For
the sample shown, the timing difference between the two scenarios is within the
range of error.

A function from the number of processors used to the time taken to analyze
a given piece of code can be derived by applying simple algebra to Amdahl’s
law [Amdahl, 1967, Krishnaprasad, 2001]. It should have the form |

C
t=C+—,
n

131

56 3\

Tine (s)
e

30

20 T

Figure 38: Time (s) vs. Cores

where C; is the time taken to complete the portion that cannot be serialized and
C, is the time for the portion that can. Replacing » with 4 and 8 cores and ¢ with
the times for the remote Prover Coordinators gives a system of 2 linear equation

with 2 unknowns. Solving this system gives

76.0
=744 227
n

The experimental result of 13.3 s for 12 cores is within the error range of the pre-
dicted time of 13.7 s. The curve and data are shown in Figure 38.

These initial results with up to 12 cores suggest that over 90% of the ESC anal-
ysis is amenable to parallelization. One question that future study will have to
address is, “Can the 7.4 s that was not parallelized by using distributed provers
be made parallelizable by hosting ESC4 on a multi-core machine?” Contained in
the serial part is the JDT’s front-end generation of the AST and ESC4’s generation
of VCs from it.

After adding 12 cores, the serial portion takes longer than the portion that

is parallelized. We did not test the generation of VCs on a multi-core system.

132

Doing so may show that at least part, and maybe even most, of this segment is

parallizable.

6.4.1 Other Tools

As noted in the introduction, we have not been able to find other existing tools
that make use of distributed or parallel processing to enhance fully automatic
program verification. Two related aspects of the work presented here have been
previously examined: multi-threaded, distributed compilation and interactive,
distributed theorem proving for program verification. These are discussed in the

following subsections.

6.4.1.1 Compilation

As mentioned in Section 6.1, Eclipse 3.4 supports mutithreaded compilation of
Java programs. The Gnu make command gmake has a --jobs [==n] option that ex-
ecutes up to n build tasks concurrently. If an integer n is not supplied then as
many tasks are started as possible [gma, 2006]. Microsoft’s Visual C++ compiler
has the “Build with Multiple Processes” option (/MP) that launches multiple com-
piler processes. If no argument is given, the number of effective processors is
used. The number of effective processors is the number of threads that can be
executed simultaneously and considers the number of processors, cores per pro-
cessor and any hyperthreading capabilities.

Several open-source projects and commercial products are available that can
distribute the tasks in a build process to networked machines. These only launch
a process on a remote machine and do not make use of a service-based approach.

Open-source projects include distcc [dis, 2008] and Icecream [ice, 2006]. Xoreax

133

sells a prbduct called IncrediBuild [inc, 2008] that coordinates distributed builds

from within with Microsoft’s VisualStudio.

6.4.1.2 Interactive, distributed theorem proving for program verification

Vandevoorde and Kapur describe the Distributed Larch Prover (DLP), “a distrib-
uted and parallel version of LB, an interactive prover” [Vandevoorde and Kapur,
1996] . Like LB, DLP is not an ATP, as users must guide the proof-discovery process.
It achieves parallelism by allowing users to simultaneously try several techniques
to prove a subgoal. This is done by distributing the attempts among computers
on a network. Some automation is provided by heuristics that chose the infer-
ence methods to be launched in parallel.

Hunter et al. attempt to use distributed provers to increase the adoption of
formal techniques in industry [Hunter et al., 2005]. Like the DLP, their approach
requires interaction, but their goal is to reduce that interaction. Reducing the
amount of user interaction would reduce the cost of using formal tools to prove
software correct and thus remove one of the impediments to its more widespread
use. A user interacts with software agents that try to automatically prove a goal.
User interaction is needed when one of these agents is unable to automatically

prove subgoals.

6.5 Summary

Applying ESC to industrial-scale applications has been difficult because of the
time required. Invoking a theorem prover for every method in a system is compu-
tationally expensive. We attacked this by applying the divide-and-conquer strat-

egy to allow processing by multiple computing resources, both local and remote.

134

Generating and discharging the VC for Java methods is a problem that can be
easily decomposed into many independent tasks. This makes it very amenable
to multi-threading and distributed processing. Given the power of today’s desk-
top PCs, most of an organization’s desktop computers’ CPUs are under-utilized.
Installing a distributed proving service on these machines would allow the orga-
nization’s developers to tap into existing resources without requiring the acquisi-
tion of additional hardware.

The Eclipse JDT compiler is able to process multiple source files in parallel.
We showed how we modified ESC4 to support verifying multiple methods in par-
allel. Similarly, a method’s sub-VCs are discharged in parallel. Because of the
potential reduction in time to verify a system, it became useful to explore dis-
tributed prover resources. This in turn led to exposing individual provers as dis-
- tributed resources. All of these combined make the verification of Java programs
scalable: The time ESC4 needs to verify a system should be inversely proportional

to the CPU resources made available to it.

135

Chapter 7

Language Enhancement: Monotonic

Non-null!

“The obscure we see eventually. The completely obvious, it seems,

takes longer.” — Edward R. Murrow

In this chapter we describe a follow-up to the analysis of the case study pre-
sented in Appendix E. One of our goals was to see if we could further reduce the
use of nullable types. While our initial investigation allowed us to conclude that
75% of declarations of reference types are non-null, a natural follow-up question
was: Can the remaining uses of nullable be categorized and if so, which more
semantically meaningful categories exist aside from nullable?

In Section 7.1, we examine the uses of nullable references. We noticed that
over half of the nullable fields in our sample follow what we call a monotonic
non-null pattern. As a contribution, we define in Section 7.2 monotonic non-
null types and describe the benefits of their use, particularly in the context of

multithreaded programs. We also describe our enhancement to the JML4 IVE

'This chapter is based on [Chalin et al., 2008c].

136

that supports this new concept through the introduction of the JML type modifier

eventually non_null.

7.1 Uses of Null

In the following we share our insights on the uses of nullable for fields, method

return types, and method parameters that were found in our case study.

7.1.1 Fields

One of the first categories that we noticed, mainly because of its prevalence, was
that some fields are not initialized during construction, but later on. A large
group of these fields are only ever assigned non-null values. Once these fields are
set to a non-null value, they remain non-null. This happens, for example, when
fields are lazily initialized, as is the case for the theUniqueInstance field of the Sin-
gleton pattern [Gamma et al., 1995]. We call this group monotonic non-null since
their non-null status is monotonic.

Another use of nullable references is at the end of an object’s life cycle. Ref-
erences to large objects (or objects that refer to a large number of other objects,
such as a tree) are often declared nullable so that the reference can be set to null
when the object is no longer needed. This is necessary in Java to reduce memory
usage and avoid what is often referred to as memory leaks in Java [Bloch, 2001,

‘Item 5].

Generally, the use of nullable fell into two groups: those that are monotonic

non-null (i.e., those that are non-null once initialized, but that are not initialized

until after object construction) and those that freely move between holding null

137

and non-null values during their lifetimes. The latter are similar to ML’ option

type [Paulson, 1991}, which is defined as
datatype ’a option = None | Some ’a

It is interesting to note that the Nice language used the keyword option instead of

nullable [Bonniot, 2005].

7.1.2 Methods

Methods return null either because it is a valid return value or to indicate that a

valid object could not be returned for a number of reasons:

e initialization of an object has not been completed, hence some of its meth-

ods return null,
e an error occurred,

e no value corresponding to the parameters was found, e.g., in a database

query or search of a data structure, or
¢ the end of a recursive data structure was reached, e.g., in a linked list.

All of these can be considered as cases of methods having an Option type. In the
first two cases, methods could throw an exception instead of returning null. In

other cases, the Null Object pattern [Fowler, 1999] could be applied.

7.1.3 Parameters

Method parameters were the only category of reference in which it was not pos-
sible to determine a meaningful refinement in the use of nullable types. That is,

in all cases a null value either was a valid value for a setter method (e.g., for the

138

if (this.f = null) {
this.f.g...// possible NPE;
/1 field can be changed by another thread

}

Figure 39: Testing of a field against null is useless in multithreaded programs

purpose of resetting a nullable field) or indicated a don’t care or not applicable
parameter. In the latter case, overloading the method to only require parameters

of interest would eliminate the need for a nullable parameter.

7.1.4 Statistics

Most of the time, nullable references can be avoided using the Null Object pat-
tern, Java’s exception mechanism, or overloaded functions. Nonetheless, our
empirical study shows that, on average, developers would use them for approxi-
mately one reference out of four. The most interesting usage of null that we iden-
tified was the monotonic non-null use for fields. Nullable fields are best avoided
because it is not possible, in general, to reason statically about their nullity status
in the context of multithreading. The problem is illustrated in Figure 39: whilea
nullable field can be tested for null in one thread, another thread can change that
field’s value between a test against null and a dereference. A Java programming
idiom that allows one to safely test and then use the non-null value of a field is
illustrated in Figure 40. This idiom is so common that a special syntax was in-
troduced in Eiffel to address it; an Eiffel program fragment equivﬁlent to the one
of Figure 40 is given in Figure 41. Notice how the syntactic shorthand allows the

local variable declaration to be embedded inside the if’s condition.

139

F f0;
if ((fO = this.f) '= null) {
f0.g...// safe

}

Figure 40: An idiom for testing fields against null (that is thread safe)

if f0: F Current.f then
f0.g...// safe
end

Figure 41: An object test in Eiffel

It is in the light of these examples that one can see the benefit of declaring
fields as monotonic non-null; i.e., for monotonic non-null fields, the test in Fig-
ure 39 would be sufficient to guard against potential null dereferences in the then
clause of the if statement. In fact, from the point of view of flow analysis, mono-
tonic non-null fields can be treated like method parameters, for which the nullity
status can always be determined. In reviewing our case-study subjects a second
time, we noted that approximately 60% of nullable fields were monotonic non-
null. Details, per project of our study, are shown in Table 4.

The concept of monotonic non-null applies not only to fields but also to meth-
od return values to a certain extent. An obvious group of methods that return a

monotonic non-null value is the getter methods for monotonic non-null fields.

Table 4: Proportion of nullable fields that are monotonic non-null

JML | ESC/ Eclipse | Sum or

Checker | Java2 | SoenEA | Koa TS | JDT Core | Average

Mono non-null 11 14 9 9 15 58
Option type 3 13 4 12 7 39
Total 14 27 13 21 22 97
% Mono non-null 78.6% | 51.2% | 69.2% | 42.9% 68.2% | 59.8%

140

This is just one case of pure methods that may initially return null but after suffi-

cient initialization always return a non-null value.

141

7.2 Monotonic Non-null

In the previous section, we introduced a group of nullable references we call
monotonic non-null. This concept has been implemented, through the use of the
eventually non null keyword in JML4 [Chalin et al.,, 2007] [Chalin et al., 2008a].
Field declarations annotated with this modifier are not guaranteed to be initial-
ized to a non-null value by their declaring class’s constructors, but like non_nul1
fields, they are not allowed to be assigned a nullable value. Monotonic non-null
references behave like non-null references once they have been assigned to. Be-
cause of this, we are able to treat them as non-null after a simple test against null.

While mdnotonic non-null fields share some similarities with non-null fields
of a Raw or existentially Delayed object, as described in [Fdhndrich and Leino,
2003] and [Fahndrich and Xia, 2007], they are a more general and flexible con-
cept. Like our monotonic non-null fields, non-null fields of an instance of a Raw
or Delayed type can be null until they are assigned to but, in contrast, an instance
of a raw or delayed type must become cooked before the end of the constructor’s
body is reached. An instance is cooked if all of its non-null fields have been as-
signed non-null values. Hence, a main difference is that Raw or Delayed is a
type qualifier that applies to a class type and it influences the semantics of all
non-niull member fields of that type. Monotonic non-null is a per-field qualifier.
Thus, monotonic non-null fields can remain null beyond the end of an object’s
constructor’s body, and if the object has more than one monotonic non-null field
then the nullity status of each can change independently. While in the general
setting of multithreaded programs this construct can help to provide safety from

NullPointerExceptions, it does not eliminate the possibility of race conditions.

142

/*#@ eventually non_null */ Object f;

/*@ ensures \result == this.f; */

/*@ pure */ /*#@ eventually_non_null */ Object m() {
return this.f;

}

Figure 42: A monotonic non-null method

/*@ nullable */ Object f;
//@ constraint \old(f) != null ==> {!= null;
/1@ constraint \old(m()) != null ==> m() != null;
/ /@ ensures \result == this.f;
/*@ pure nullable */ Object m(){
return this.f;
}

Figure 43: Same code desugared to standard JML

In addition to field declarations, methods return types can also be annotated
as eventually non_null. Once such a method returns a non-null value, it is guar-
anteed to never again return null. As we mentioned earlier, getter methods for
eventually non null fields are obvious candidates. Figure 42 shows such a meth-
od?. Monotonic non-null methods can be desugared using, in particular, JMLs
constraint clause as shown in Figure 43. A constraint clause, also called a his-
tory constraint, expresses properties that must hold between any visible state
(whose values are captured Via’the \old () operator) and all visible states that fol-
low it [Leavens et al., 2008, §8.3]. Since eventually non null is a type modifier,
desugaring it into a constraint on the field is not strong enough, i.e., it is only an

approximation of its true meaning.

2The # before the @ in the first line indicates JML4-specific annotation.

143

file:///result
file:///result

Parameters are better behaved than fields in that their initial values are fixed
at the point of call and flow analysis can track their nullity status within the meth-
od body. As a result, monotonic non-null is not a useful modifier for formal pa-
rameters. The type parameters of generic types can also take nullity attributes,
but we have not come across a case in which it would be useful to have these be
eventually_ non_null instead of nullable.

~ Arrays whose elements are marked as non_nu11 but whose declaration does not
have an initializer are almost always meant to have eventually non null elements.
This is one possible solution to the problem of determining an ending point for
their initialization [Fahndrich and Leino, 2603] .

We have added compile-time and runtime checking of eventually non_null
fields to the JML4 compiler [Chalin et al., 2007]. Static checking is accomplished
by simply disallowing an assignment of a value not known to be non-null® to
such afield. At runtime, a contract-violation error is thrown when the right-hand
side of an assignment to a field declared to be eventually non_null evaluates to
null. Checking that the value returned by a method is eventually non null is be-
yohd the abilities of the type system, and would have to be performed, e.g., by
extended static checking using the desugaring that was given earlier. Runtime
checking would r(;quire keeping an extra Boolean field, initialized to false, that
to indicate whether the method has returned non-null. When an eventually_-
non null method terminates, if the value to be returned is null but the Boolean
field indicates that a non-null value has already been returned then a contract

violation error should be thrown. If the value to be returned is non-null then the

"~ Boolean field is set to true.

3Note that this is a distinct category from values known to be null.

144

7.3 Summary

Based on an analysis of the usage of nullable types, we discovered the prevalence
of monotonic non-null: Almost 60% of the nullable fields in our study were of this
type. We demonstrated how the use of monotonic non-null types could be bene-
ficial, particularly in the context of multithreaded programs. Monotonic non-null
types have been partially implemented in JML4 and are available through the use

of the eventually non null type modifier.

145

Chapter 8

Conclusions

“Chaque chose que nous voyons en cache une autre, nous désirons
toujours voir ce qui est caché par ce que nous voyons.”

(Everything we see hides another. We always want to see that which is
hidden by what we see.)

— René Magritte

8.1 Summary

The work presented in this thesis falls in five main areas, each with subprojects.
1. We explored a Non-Null Type System (NNTS) for JML.

e After quantifying relative usages of nullable and non-null references,
e we analyzed the uses of nullable references, and

e we introduced syntax and semantics for new nullity modifier for dec-

larations of reference types.

146

e We implemented a NNTS within Eclipse’s Java compiler, including full
support for the monotonic non-null modifier. This support was later

extended to RAC and ESC.
2. We laid the foundations of JML4, an Eclipse-based IVE for JML.
e It became the basis for the JML Community’s second generation of
tools.
e We led aJML Winter School to train other researchers to work on JMLA.

3. We developed ESC4, a from-scratch rewrite of (a subset of) ESC functional-
ity for JML4. Notable features include

e improved coverage by allowing verification of some constructs similar
tools cannot
¢ improved completeness with 2D VC Cascading and

e improved usability by indicating provably false assertions.
4. We sped up the processing of ESC4

¢ by using multiple threads to generate VCs in parallel and
¢ by using non-local prover resources to distribute VC discharging.
e Preliminary validation was reported.
e Proof-status caching was used to reduce the time to reverify code.
— We proposed ways of reducing the fragility of the cache by remov-
ing source-position information from the items stored cache.

5. A novel form of ESC was introduced: Offline User-Assisted ESC, which

e improves completeness by allowing users to take advantage of the full

power of Isabelle and

147

¢ helps when debugging code and specifications by isolating unprovable

propositions.

Even after Java falls from common use, many of these contributions will re-

main vaild.

8.2 Future Work

“To explain all nature is too difficult a task for any one man or even for

any one age.” — Isaac Newton

8.2.1 Preparing ESC/Java2 for the VSR

Continuing to run RAC-instrumented versions of ESC/Java2 will uncover further
bugs and design issues. ESC/Java2 can be used to analyze the source for the JML
Compiler, as it also has a large JML-annotated code base. Using the tools itera-
tively to analyze both themselves and each other should enhance their quality,
hence making them more likely potential candidates for inclusion in the Verified

Software Repository.

8.2.2 JML4

There is still much work to be done on JML4. The parser recently reached sup-
port for JML language-level 2, but the type-resolution and static-analysis phases
have yet to reach level 0. Once the compiler front end is done, it will be necessary
to propagate support for JML constructs into the RAC, ESC, and FSPV compo-
nents. Fairly pressing is the handling of JML4’s math modes, which should be

reexamined and fully implemented.

148

We had thought that completion of the front end would also mark a milestone
after which developers of other JML tools would be able to explore the possibility
of integrating their tools within the JML4 framework, but as mentioned in Sec-
tion 3.3.1.1, some groups are already using JML4 as their front end. Other inter-
ested researchers should be encouraged to contribute to this effort and incorpo-
rate their verification components.

JML4-based second-generation versions of existing tools, such as JmiUnit (see
Section 2.2.3), could be developed. JML4 could be extended to support more
advanced IDE functionality.such as specification refactoring, browsing, folding,

and navigation.

8.2.3 ESC4

ESC/Java2 can verify many constructs that ESC4 cannot. To close this gap, ESC4
should more fully support Java and JML. Full support for fields and arrays is
currently missing from ESC4, and these will be needed before any substantial
amount of code can be analyzed. ESC4 currently treats Java’s integral types as
unlimited precision, but once JMLs math modes are supported, this should be
corrected. Since Simplify does not support limited integral types, another ATP
would have to be found that could provide information about VCs that cannot be
discharged.

The interfaces to the theorem provers are very inefficient and could be made

much quicker. Also, other more powerful ATPs, such as Z3, could be supported.

8.2.4 OUA-ESC

The VCs stored in the Isabelle theory files are not very user-friendly, and future

work is unlikely to make them more palatable. Simply having Isabelle parse the

149

lemma causes it to be pretty printed as the single subgoal to be discharged. This
causes unnecessary typing information to be removed, and the structure of the

expression is shown through proper indentation.

8.2.5 Distributed Discharging of VCs

We modified ESC4 to take advantage of many local and non-local computing re-
sources. The implementation was done to quickly get a usable and stable frame-
work in place, without much regard for optimization. While we are pleased with
the initial results, there are ample opportunities for improvement. These in-
clude using more efficient communication mechanisms to interact with remote
resources. Load balancing and other techniques from service-oriented architec-
tures are obvious candidates for consideration. Some of these are being investi-
gated by a SOEN 490 Capstone group.

After making the obvious enhancements, timing studies could be conducted
to evaluate the deployment scenarios mentioned in this paper, varying the num-
ber and kinds of local and remote resources as well as the characteristics (speed

and reliability) of the network.

150

Bibliography

[Abrial, 1996]].-R. Abrial. The B-book: Assigning programs to meanings. Cam-
bridge University Press, New York, NY, 1996.

[Ahrendt et al., 2005] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert,
Richard Bubel, Martin Giese, Reiner Hdhnle, Wolfram Menzel, Wojciech
Mostowski, Andreas Roth, Steffen Schlager, and Peter H. Schmitt. The KeY
tool. Software and System Modeling, 4:32-54, 2005.

[Amdahl, 1967] Gene M. Amdahl. Validity of the single processor approach to
achieving large scale computing capabilities. In Proceedings of AFIPS Confer-
ence, pages 79-81, San Francisco, CA, 1967.

[ban, 2009] Papers. http://bandera.projects.cis.ksu.edu/papers/index.
shtml, 2009. :

[Barnes, 2006] John Barnes. High Integrity Software: The SPARK Approach to
Safety and Security. Addison-Wesley, Boston, MA, 2006.

[Barnett and Leino, 2005] Mike Barnett and K. Rustan M. Leino. Weakest-
precondition of unstructured programs. In PASTE '05: The 6th ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools and engineering,
pages 82-87, New York, NY, 2005. ACM Press.

[Barnett et al., 2004] M. Barnett, W. Naumann, and Q. Sun. 99.44% pure: Useful
abstractions in specifications, 2004.

[Barnett et al., 2005] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte.
The Spec# programming system: An overview. In Gilles Barthe, Lilian Burdy,
Marieke Huisman, Jean-Louis Lanet, and Traian Muntean, editors, CASSIS
2004: Construction and Analysis of Safe, Secure, and Interoperable Smart De-
vices, International Workshop, Marseille, France, March 10-14, 2004, Revised
Selected Papers, volume 3362 of Lecture Notes in Computer Science, pages 49—
69. Springer, 2005.

[Barnett et al., 2006] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Ja-
cobs, and K. Rustan M. Leino. Boogie: A modular reusable verifier for object-
oriented programs. In Formal Methods for Components and Objects (FMCO)

151

http://bandera.projects.cis.ksu.edu/papers/index

2005, Revised Lectures, volume 4111 of LNCS, pages 364-387. Springer-Verlag,
2006.

[Barthe et al,, 2007] G. Barthe, L. Burdy, J. Charles, B. Grégoire, M. Huisman, J.-
L. Lanet, M. Pavlova, and A. Requet. JACK: A tool for validation of security
and behaviour of Java applications. In FMCO: Proceedings of 5th International
Symposium on Formal Methods for Components and Objects, Lecture Notes in
Computer Science. Springer-Verlag, 2007.

[Bicarregui et al., 2006]]J. C. Bicarregui, C. A. R. Hoare, and J. C. P. Woodcock. The
verified software repository: A step towards the verifying compiler. Formal
Aspects of Computing, 18(2):143-151, 2006.

[Bjorner and Jones, 1978] Dines Bjorner and Cliff B. Jones, editors. The Vienna
Development Method: The Meta-Language, volume 61 of Lecture Notes in Com-
puter Science. Springer, 1978.

[Bloch, 2001] joshua Bloch. Effective Java Programming Language Guide.
Addison-Wesley, 2001.

[Bohme et al., 2008] Sascha Bohme, Rustan Leino, and Burkhart Wolff. HOL-
Boogie — An interactive prover for the Boogie program verifier. In Proceed-
ings of the 21th International Conference on Theorem proving in Higher-Order
Logics (TPHOLs 2008), LNCS 5170. Springer, 2008. Also available as http:
//www-wjp.cs.uni-sb.de/publikationen/boehme tphols 2008.pdf.

[Bonniot, 2005] Daniel Bonniot. The Nice Programming Language. http://
nice.sourceforge.net, 2005.

[bui, 2008] Building bug-free 0O-O software: An introduction to Design by
Contract. http://archive.eiffel.com/doc/manuals/technology/contract/,
2008.

[Burdy and Requet, 2002] Lilian Burdy and Antoine Requet. JACK: Java applet
correctness kit. In 4th Gemplus Developer Conference, November 12-14 2002.

[Burdy et al, 2003] Lilian Burdy, Antoine Requet, and Jean-Louis Lanet. Java ap-
plet correctness: A developer-oriented approach. In Proceedings of the Inter-
national Symposium of Formal Methods Europe (FME'03), volume 2805 of Lec-
ture Notes in Computer Science, pages 422-439, 2003.

[Burdy et al, 2005a] Lilian Burdy, Yoonsik Cheon, David Cok, Michael D. Ernst,
Joe Kiniry, Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. An overview of
JML tools and applications. Software Tools for Technology Transfer, 7(3):212-
232, June 2005.

152

http://archive.eiffel.com/doc/manuals/technology/contract/

[Burdy et al., 2005b] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D.
Ernst, Joseph R. Kiniry, Gary T. Leavens, K. Rustan M. Leino, and Erik Poll.
An overview of JML tools and applications. International Journal on Software
Tools for Technology Transfer (STTT), 7(3):212-232, 2005.

[Burdy et al., 2007] Lilian Burdy, Marieke Huisman, and Mariela Pavlova. Pre-
liminary design of BML: A behavioral interface specification language for Java
bytecode. In Fundamental Approaches to Software Engineering (FASE 2007),
volume 4422 of Lecture Notes in Computer Science, pages 215-229. Springer-
Verlag, 2007.

[c4j, 2007] C4J: DBC for Java. Design by Contract for Java made easy. http://
c4j.sourceforge.net, 2007.

[Campbell-Kelly, 1989] Martin Campbell-Kelly, editor. The early British computer
conferences. MIT Press, Cambridge, MA, 1989.

[Carter et al., 2005] Gareth Carter, Rosemary Monahan, and Joseph M. Morris.
Software refinement with perfect developer. In SEFM ’05: Proceedings of
the Third IEEE International Conference on Software Engineering and Formal
Methods, pages 363-373, Washington, DC, 2005. IEEE Computer Society.

[Catano and Wahls, 2009] Nestor Catano and Tim Wahls. Executing JML specifi-
cations of Java Card applications: A case study. In ACM SAC 2009 (24th Annual
ACM Symposium on Applied Computing), 2009.

[Chalin and James, 2006] Patrice Chalin and Perry R. James. Cross-verification
of JML tools: An ESC/Java2 case study. In VSTTE '06: Proceedings of the 2006
workshop on Verified Systems: Theories, Tools, Experiments, August 2006.

[Chalin and James, 2007] Patrice Chalin and Perry R. James. Non-null references
by default in Java: Alleviating the nullity annotation burden. In Proceedings
of the 21st European Conference on Object-Oriented Programming (ECOOP,
Berlin, Germany, 2007.

[Chalin et al., 2006] Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and Erik
Poll. Beyond assertions: Advanced specification and verification with JML and
ESC/Java2. In Formal Methods for Components and Objects (FMCO) 2005, Re-
vised Lectures, volume 4111 of LNCS, pages 342-363. Springer-Verlag, 2006.

[Chalin et al., 2007] Patrice Chalin, Perry R. James, and George Karabotsos. An
integrated verification environment for JML: Architecture and early results. In
SAVCBS '07: Proceedings of the 2007 Workshop on Specification and Verification
of Component-Based Systems, pages 47-53, 2007.

[Chalin et al., 2008a] Patrice Chalin, Perry R. James, and George Karabotsos.
JML4: Towards an industrial grade IVE for Java and next generation research

153

http://

platform for JML. In VSTTE '08: Proceedings of the 2008 Conference on Verified
Systems: Tools, Techiniques, and Experiments, 2008.

~ [Chalin et al., 2008b] Patrice Chalin, Perry R. James, and George Karabotsos. Us-
ing Isabelle/HOL for static program verification in JML4. In Proceedings of
TPHOLs: Emerging Trends, pages 1-8, August 2008.

[Chalin et al., 2008c] Patrice Chalin, Perry R. James, and Frédéric Rioux. Reduc-
ing the use of nullable types through non-null by default and monotonic non-
null. IET Software Journal, 2008. '

[Chalin et al., 2008d] Patrice Chalin, Perry R. James, Frédéric Rioux, and George
Karabotsos. Towards a verified software repository candidate: Cross-verifying
a verifier. Technical Report ENCS-CSE-DSRG-TR 2008-001b, Dependable Soft-
ware Research Group, Concordia University, Montreal, Quebec, 2008.

[Chalin, 2005] Patrice Chalin. Logical foundations of program assertions: What
do practitioners want? Technical Report 2005-002, Computer Science De-
partment, Concordia University, June 2005. Also available as http://www.cs.
concordia.ca/$"sim$chalin/papers/TR-2005-002-r2.pdf.

[Cheon and Leavens, 2001] Yoonsik Cheon and Gary T. Leavens. A simple and
practical approach to unit testing: The JML and JUnit way. Technical Report
01-12, Department of Computer Science, Iowa State University, 2001.

[Cheon and Leavens, 2002] Yoonsik Cheon and Gary T. Leavens. A runtime as-
sertion checker for the Java Modeling Language (JML). In Hamid R. Arab-
nia and Youngsong Mun, editors, Proceedings of the International Conference
on Software Engineering Research and Practice (SERP '02), Las Vegas, Nevada,
June 24-27, 2002, pages 322-328. CSREA Press, June 2002. Also available as
ftp://ftp.cs.iastate.edu/pub/techreports/TR02-05/TR.pdf.

[Clarke and Rosenblum, 2006} Lori A. Clarke and David S. Rosenblum. A histor-
ical perspective on runtime assertion checking in software development. SIG-
SOFT Softw. Eng. Notes, 31(3):25-37, 2006.

[Coffee, 2006] Peter Coffee. eweek labs review: Jtest8. http://wuw.eweek.com/
article2/0, 1895,2032589, 00.asp, October 2006.

[Cok and Kiniry, 2005] David R. Cok and Joseph Roland Kiniry. ESC/Java2: Unit-
ing ESC/Java and JML. In Construction and Analysis of Safe, Secure, and Inter-
operable Smart Devices, volume 3362/2005 of LNCS, pages 108-128. Springer
Berlin, 2005.

[Cok et al., 2007] David R. Cok, E. Hubbers, and E. Rodriguez. Esc/Java2 Eclipse
Plug-in. http://sort.ucd.ie/projects/escjava-eclipse, 2007. ’

154

ftp://ftp.cs.iastate.edu/pub/techreports/TR02-05/TR.pdf
http://sort.ucd.ie/projects/escjava-eclipse

[Cok, 2007} David R. Cok. Design Notes (Eclipse.txt). http://jmlspecs.svn.
sourceforge.net/viewvc/jmlspecs/trunk/docs/eclipse.txt, 2007.

[Cok, 2008] David R. Cok. Adapting JML to generic types and Java 1.6. In
SAVCBS '08: Proceedings of the 2008 workshop on Specification and verification
of component-based systems, 2008.

[Con, 2008] Contract4j. http://www.contract4j.org, 2008.

[Cormen et al., 1990] Thomas H. Cormen, Charles E. Leiserson, and Ronald L.
Rivest. Introduction to Algorithms. The MIT Press, Cambridge, MA, 1990.

[Dahl et al, 1972] Ole-Johan Dahl, Edsger Wybe Dijkstra, and Charles
Antony Richard Hoare. Structured Programming Academinc Press, Inc.,
New York, NY, 1972.

[Deng et al., 2007] Xianghua Deng, Robby, and John Hatcliff. Kiasan/KUnit: Au-
tomatic test case generation and analysis feedback for open object-oriented
systems. Technical report, Kansas State University, 2007.

[Detlefs et al., 1998] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and
James B. Saxe. Extended static checking. Technical Report 159, Compaq SRC,
Palo Alto, CA, December 1998. '

[Dhara and Leavens, 1996] Krishna Kishore Dhara and Gary T. Leavens. Forcing
behavioral subtyping through specification inheritance. In ICSE "96: Proceed-
ings of the 18th international conference on Software engineering, pages 258—
267, Washington, DC, 1996. IEEE Computer Society.

[Dietl and Miiller, 2005] Werner Dietl and Peter Miiller. Universes: Lightweight
ownership for JML. Journal of Object Technology (JOT), 4(8):5-32, 2005. Also
available as http://www. jot.fm/issues/issue 2005 10/articlel.pdf.

" [Dijkstra, 1976] Edsger Wybe Dijkstra. A Discipline of Programming. Prentice-
Hall, Inc., Englewood Cliffs, NJ, 1976.

[dis, 2008] distcc: A fast, free distributed C/C++ compiler. distcc. 6rg, 2008.

[Ernst and Coward,] M. Ernst and D. Coward. Annotations on Java Types.
JCPorg, JSR 308. October 17, 2006.

[Ernst et al., 2007] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen Mc-
Camant, Carlos Pacheco, Matthew S. Tschantz, and Chen Xiao. The Daikon
system for dynamic detection of likely invariants. Science of Computer Pro-
gramming, 69(1-3):35-45, December 2007.

155

http://jmlspecs.svn
http://JCP.org

[Fdhndrich and Leino, 2003] Manuel Fihndrich and K. Rustan M. Leino. Declar-
ing and checking non-null types in an object-oriented language. In OOP-
SLA ’03: Proceedings of the 18th annual ACM SIGPLAN conference on Object-
oriented programing, systems, languages, and applications, pages 302-312,
New York, NY, 2003. ACM Press.

[Fahndrich and Xia, 2007] Manuel Fihndrich and Songtao Xia. Establishing ob-
ject invariants with delayed types. In OOPSLA '07: Proceedings of the 22nd an-
nual ACM SIGPLAN conference on Object oriented programming systems and
applications, pages 337-350, New York, NY, 2007. ACM.

[Fahndrich et al., 2006] Manuel Fihndrich, Mark Aiken, Chris Hawblitzel, Orion
Hodson, Galen Hunt, James R. Larus, and Steven Levi. Language support for
fast and reliable message-based communication in Singularity OS. SIGOPS
Oper. Syst. Rev., 40(4):177-190, 2006.

[Filliatre and Marché, 2007] Jean-Christophe Fillidtre and Claude Marché. The
Why/Krakatoa/Caduceus platform for deductive program verification. Com-
puter Aided Verification, pages 173-177, 2007.

[Filliatre et al., 2008]].-C. Fillidtre, T. Hubert, and C. Marché. The Caduceus veri-
fication tool for C programs: Tutorial and reference manual. http://caduceus.
1ri.fr, 2008.

[Filliatre, 2003] Jean-Christophe Fillidtre. Verification of non-functional pro-
grams using interpretations in type theory. Journal of Functional Program-
ming, 13(4):709-745, 2003.

[Filliatre, 2008]].-C. Fillidatre. The WHY verification tool: Tutorial and reference
manual. http://why.1lri.fr, 2008.

[Flanagan and Leino, 2001] Cormac Flanagan and K. Rustan M. Leino. Houdini,
an Annotation Assistant for ESC/Java. In FME '01: Proceedings of the Interna-
tional Symposium of Formal Methods Europe on Formal Methods for Increasing
Software Productivity, pages 500-517, London, UK, 2001. Springer-Verlag.

[Flanagan and Saxe, 2001] Cormac Flanagan and James B. Saxe. Avoiding expo-
nential explosion: Generating compact verification conditions. In POPL '01:
Proceedings of the 28th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pages 193-205, New York, NY, 2001. ACM Press.

[Flanagan et al., 2002] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge,
Greg Nelson, James B. Saxe, and Raymie Stata. Extended static checking for
Java. In PLDI '02: Proceedings of the ACM SIGPLAN 2002 Conference, pages
234-245, New York, NY, 2002. ACM Press.

156

http://lri.fr

[Fowler, 1999] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[Gamma et al., 1995]) Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design patterns: Elements of reusable object-oriented software.
Addison-Wesley Professional, Boston, MA, 1995.

[gma, 2006] Parallel - GNU ‘make’. http://www.gnu.org/software/automake/
man"discretionary--"-"-"ual/make/Parallel.html, 2006.

[Gosling et al., 2005] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The
Java Language Specification, Third Edition. Addison-Wesley, Boston, MA, 3
edition, 2005.

[Hoare, 1969] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576-580, 1969.

[Hoare, 2003a] C. A. R. Hoare. Assertions: A personal perspective. IEEE Annals of
the History of Computing, 25(2):14-25, 2003.

[Hoare, 2003b] C.A.R. Hoare. The verifying compiler: A grand challenge for com-
puting research. Journal of the ACM, 50(1):63-69, 2003.

[Hunt et al., 2005] Galen Hunt, James Larus, Martin Abadi, Mark Aiken, Paul
Barham, Manuel Fahndrich, Chris Hawblitzel, Orion Hodson, Steven Levi,
Nick Murphy, Bjarne Steensgaard, David Tarditi, Ted Wobber, and Brian Zill.
An overview of the Singularity project. Technical Report MSR-TR-2005-135,
Microsoft Research, Redmond, WA, 2005.

[Hunter et al., 2005] Chris Hunter, Peter Robinson, and Paul Strooper. Agent-
based distributed software verification. In ACSC '05: Proceedings of the Twenty-
eighth Australasian Conference on Computer Science, pages 159-164, Dar-
linghurst, Australia, 2005.

[ice, 2006] Icecream - openSUSE. http://en.opensuse.org/Icecream, 2006.

[iCb, 2001] iContract: Design by Contract in Java. http://www. javaworld.com/
javaworld/jw-02-2001/jw-0216-cooltools.html, 2001.

lico, 2007] iContract2.org: Design by Contract for Java. http://www.icontract2.
org, 2007.

linc, 2008] IncrediBuild by Xoreax Software - Distributed Visual Studio Builds.
http://wuw.xoreax.com/"discretionary--"-"-"solutions vs.htm, 2008.

[isa, 2008] Isabelle. http://isabelle.in.tum.de, 2008.

157

http://www.gnu.org/software/automake/
http://en.opensuse.org/Icecream
http://iContract2.org
http://www.xoreax.com/%22discretionary--%22-%22-%22solutions'vs.htm

[Jacobs and Poll, 2003] B. P. E Jacobs and E. Poll. Java program verification at
Nijmegen: Developments and perspective. Technical Report NIII-R0318, Ni-
jmegen Institute of Computing and Information Sciences, September 2003.

[James and Chalin, 2009a] Perry R. James and Patrice Chalin. Enhanced ex-
tended static checking in JML4: Benefits of multiple-prover support. In ACM
SAC 2009 (24th Annual ACM Symposium on Applied Computing), 2009.

[James and Chalin, 2009b] Perry R. James and Patrice Chalin. Esc4: A modern
caching ESC for Java. In SAVCBS '09: Proceedings of the 2009 workshop on Spec-
ification and verification of component-based systems, 2009.

[James and Chalin, 2009c] Perry R. James and Patrice Chalin. Faster and more
complete extended static checking for the Java Modeling Language. Journal of
Automated Reasoning, 2009. to appear.

[James et al., 2008] Perry R. James, Patrice Chalin, Leveda Giannas, and George
Karabotsos. Distributed, multi-threaded verification of Java programs. In-
SAVCBS '08: Proceedings of the 2008 workshop on Specification and verification
of component-based systems, 2008.

~[jas, 2007] Jass: Homepage. http://csd.informatik.uni-oldenburg.de/~jass,
2007.

[jCo, 2008] jContractor: Design by Contract for Java. http://jcontractor.
sourceforge.net, 2008.

{Jézéquel et al., 2001] Jean-Marc Jézéquel, Daniel Deveaux, and Yves Le Traon.
Reliable objects: Lightweight testing for OO languages. IEEE Softw., 18(4):76—
83, 2001.

Jones et al., 2006] Cliff Jones, Peter O’'Hearn, and Jim Woodcock. Verified soft-
ware: A grand challenge. Computer, 39(4):93-95, 2006.

[Jones, 1990] CIliff B. Jones. Systematic software development using VDM (2nd -
ed.). Prentice-Hall, Upper Saddle River, NJ, 1990.

[jsr, 2008]A JSR 308: Annotations on Java types. http://pag.csail.mit.edu/
jsr308, 2008.

[Karabotsos er al., 2008] George Karabotsos, Patrice Chalin, and Leveda Giannas.
Total correctness of recursive functions using JML4 FSPV. In SAVCBS '08: Pro-
ceedings of the 2008 workshop on Specification and verification of component-
based systems, November 2008.

[Kiniry et al., 2006] Joseph R. Kiniry, Alan E. Morkan, and Barry Denby. Sound-
ness and completeness warnings in ESC/Java2. In SAVCBS '06: Proceedings of

158

http://csd.informatik.uni-oldenburg.de/~jass
http://jcontractor
http://pag.csail.mit.edu/

the 2006 Workshop on Specification and Verification of Component-Based Sys-
tems, pages 19-24, New York, NY, 2006. ACM Press.

[Kiniry, 2007] Joseph Roland Kiniry. private communication, March 2007.

[Kolman and Busby, 1986] B Kolman and R C Busby. Discrete mathematical
structures for Computer Science (2nd ed.). Prentice-Hall, Inc., Upper Saddle
River, NJ, 1986.

[kra, 2009] Krakatoa. http://krakatoa.lri.fr, 2009.

[Krause and Wabhls, 2006] Ben Krause and Tim Wahls. jmle: A tool for execut-
ing JML specifications via constraint programming. In L. Brim, editor, For-
mal Methods for Industrial Critical Systems (FMICS '06), volume 4346 of Lec-
ture Notes in Computer Science, pages 293-296, New York, NY, 2006. Springer-
Verlag. Also available ashttp://users.dickinson.edu/~wahlst/papers/tool.
pdf.

[Krishnaprasad, 2001] S. Krishnaprasad. Uses and abuses of Amdahl’s law. The
Journal of Computing in Small Colleges, 17(2):288-293, 2001.

[Leavens and Cheon, 2005] Gary T. Leavens and Yoonsik Cheon. Design by
contract withJML. ftp://ftp.cs.iastate.edu/pub/leavens/JML/jmldbc. pdf,
2005. Draft, available from jmlspecs.org.

[Leavens et al., 1998] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A
Java Modeling Language. In Formal Underpinnings of Java Workshop, 1998.
(at OOPSLA'98).

[Leavens et al., 1999] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A
notation for detailed design. In Haim Kilov, Bernhard Rumpe, and Ian Sim-
monds, editors, Behavioral Specifications of Businesses and Systems, pages
175-188. Kluwer Academic Publishers, 1999.

[Leavens et al., 2000] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Prelim-
inary design of JML: A behavioral interface specification language for Java.
Technical Report 98-06i, Department of Computer Science, lowa State Uni-
versity, 2000.

[Leavens et al., 2008] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon,
Clyde Ruby, David R. Cok, Peter Miiller, Joseph R. Kiniry, and Patrice Chalin.
JML reference manual. http://www. jmlspecs.org, 2008.

[Leavens, 2009] Gary T. Leavens. The Java Modehng Language (JML). http://
www. jmlspecs.org, 2009.

159

http://jmlspecs.org
http://
http://www.jmlspecs.org

[Leino and Logozzo, 2005] K. Rustan M. Leino and Francesco Logozzo. Loop in-
variants on demand. In Proceedings of the the 3rd Asian Symposium on Pro-
gramming Languages and Systems (APLAS’05), volume 3780 of Lecture Notes in
Computer Science, Tsukuba, Japan, November 2005. Springer-Verlag.

[Leino and Monahan, 2007] K. Rustan M. Leino and Rosemary Monahan. Auto-
matic verification of textbook programs that use comprehensions. In FTfJP '07:
Proceedings of the 9th Workshop on Formal Techniques for Java-like Programs,
2007.

[Leino et al., 1998] K. Rustan M. Leino, Raymie Stata, James B. Saxe, and Cormac
- Flanagan. Java to guarded commands translation. Technical Report ESCJ 16¢,
Compagq, 1998. Available from the ESC/Java2 website.

[Leino et al., 1999] K. Rustan M. Leino, James B. Saxe, and Raymie Stata. Check-
ing Java programs via guarded commands. Technical Report 1999-002, Com-
paq Systems Research Center, Palo Alto, CA, May 1999.

[Leino, 1995] K. Rustan M. Leino. Toward reliable modular programs. PhD thesis,
California Institute of Technology, Pasadena, CA, 1995.

[Leino, 2001] K. Rustan M. Leino. Extended static checking: A ten-year perspec-
tive. In Informatics - 10 Years Back. 10 Years Ahead., pages 157-175, London,
UK, 2001. Springer-Verlag.

[Liskov and Wing, 1994] Barbara H. Liskov and Jeannette M. Wing. A behavioral
notion of subtyping. ACM Transactions on Programming Language Systems,
16(6):1811-1841, 1994.

[Liu et al., 1998] Shaoying Liu, A. Jeff Offutt, Chris Ho-Stuart, Mitsuru Ohba, and
Yong Sun. SOFL: A formal engineering methodology for industrial applica-
tions. IEEE Trans. Softw. Eng., 24(1):24-45, 1998.

[Liu, 2004] Shaoying Liu. Formal Engineering for Industrial Software Develop-
ment: Using the Sofl Method. Springer-Verlag, Berlin, 2004.

[met, 2008] Metis theorem prover. http://www.gilith.com/software/metis,
2008.

[Mey, 2005] EiffelWorld Column by Dr. Bertrand Meyer. http://wuw.eiffel.
com/general/monthly column/2005/April.html, 2005.

[Mey, 2007] EiffelWorld Column by Dr. Bertrand Meyer. http://wuw.eiffel.
com/general/monthly " column/2007/01.html, 2007.

[Meyer et al,, 2000] J. Meyer, P Miller, and A. Poetzsch-Heffter. The
JIVE systemm—implementation description. http://www.informatik.
fernuni-hagen.de/pi5/publications.html, 2000.

160

http://www.gilith.com/software/metis
http://www.eiff
http://www.eiff
http://www.informatik

[Meyer, 1995] Bertrand Meyer. Object success: Aa manager’s guide to object orien-
tation, its impact on the corporation, and its use for reengineering the software
process. Prentice-Hall, Inc., Upper Saddle River, NJ, 1995.

[Meyer, 1997] Bertrand Meyer. Object-Oriented Software Construction. Prentice-
Hall, Inc., Upper Saddle River, NJ, second edition, 1997.

[Meyer, 2005] Bertrand Meyer. Attached types and their application to three
open problems of object-oriented programming. In Andrew P. Black, editor,
ECOOP 2005 - Proceedings of the 19th European Conference on Object-Oriented
Programming, Glasgow, UK, volume 3586 of Lecture Notes in Computer Science,
pages 1-32. Springer, 2005.

[Mitchell et al., 2002] Richard Mitchell, Jim McKim, and Bertrand Meyer. Design
by contract, by example. Addison Wesley Longman Publishing Co., Inc., Red-
wood City, CA, 2002.

[mob, 2009] Mobius: Webhome. http://mobius.inria.fr, 2009.

[mod, 2007] Nabble: JML5 proposal and Modern Jass. http://www.nabble.com/
JML5-Proposal-and-Modern-Jass-t3156880.html, 2007.

[mul, 2008] Bug 142126 - utilizing multiple CPUs for Java compiler. https:
//bugs .eclipse.org/bugs/show bug."discretionary--"-"-"cgi?id=142126,
2008.

[Nipkow et al., 2000] Tobias Nipkow, David Von Oheimb, and Cornelia Pusch.
pJava: Embedding a programming language in a theorem prover. In Founda-
tions of Secure Computation. Volume 175 of NATO Science Series F: Computer
and Systems Sciences., 10S, pages 117-144. 10S Press, 2000.

[Nipkow et al., 2002] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel.
Isabelle/HOL — A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS.
Springer, 2002.

[Nipkow et al., 2005] Tobias Nipkow, David von Oheimb, Cornelia Pusch, and
Gerwin Klein. Project bali. http://isabelle. in.tum.de/Bali, 2005.

[ova, 2007] http://oval.sourceforge.net, 2007.
[par, 2009] Parasoft homepage. http://www.parasoft. com, 2009.

[Park, 1992] Robert E. Park. Software size measurement: A framework for count-
ing source statements. Technical Report CMU/SEI-92-TR-20, CMU, Software
Engineering Institute, Pittsburgh, PA, October 1992.

161

http://inria.fr
http://eclipse.org/bugs/show
http://isabelle.in.tum.de/Bali
http://oval.sourceforge.net

[Paulson and Susanto, 2007] Lawrence C. Paulson and Kong Woei Susanto.
Source-level proof reconstruction for interactive theorem proving. In Klaus
Schneider and Jens Brandt, editors, Theorem Proving in Higher Order Logics:
TPHOLs 2007, LNCS 4732, pages 232-245. Springer, 2007. Also available as
http://www.cl.cam.ac.uk/~1p15/papers/Automation/reconstruction.pdf.

[Paulson, 1991] Lawrence C. Paulson. ML for the Working Programmer. Cam-
bridge University Press, 1991. ~

[Potter et al., 1996] Ben Potter, David Till, and Jane Sinclair. An Introduction to
Formal Specification and Z. Prentice-Hall, Upper Saddle River, NJ, 1996.

[Rioux, 2006] Frédéric Rioux. Effective and efficient design by contract for Java.
Master’s thesis, College of Engineering and Computer Science, Concordia Uni-
versity, Montreal, Quebec, 2006.

[Robby et al., 2008] Robby, Patrice Chalin, David R. Cok, and Gary T. Leavens. An
evaluation of the Eclipse Java Development Tools (JDT) as a foundational basis
for JML reloaded. jmlspecs.svn:/reloaded/planning, 2008.

[Rushby, 1993] John Rushby. Formal methods and the certification of critical
systems. Technical Report SRI-CSL-93-7, Computer Science Laboratory, SRI
International, Menlo Park, CA, December 1993. Also issued under the title
Formal Methods and Digital Systems Validation for Airborne Systems as NASA
Contractor Report 4551, December 1993.

[Sarcar, 2009] Amritam Sarcar. Runtime assertion checking support for JML on
Eclipse platform. In CAHSI 2009 (3rd. Annual Meeting for Computer Alliance
for Hispanic Serving Institutions), pages 79-82, 2009.

[Schumann, 2001} Johann M. Schumann. Automated Theorem Proving in Soft-
ware Engineering. Springer-Verlag, New York, NY, 2001.

[sim, 2000] Simplify theorem-prover. http://research.compaq.com/SRC/esc/
Simplify.html, 2000.

[spe, 2007] Spec# home. http://research.microsoft.com/specsharp, 2007.

[stc, 2007] STclass: A contract based built-in testing framework (CBBT) for Java.
http://www-valoria.univ-ubs.fr/stclass, 2007.

[Turing, 1949] Alan M. Turing. Checking a large routine. In Report on a Con-
ference on High Speed Automatic Computation, pages 67-69, Cambridge,
UK, June 1949. University Mathematical Laboratory, Cambridge University.
Reprinted in [Campbell-Kelly, 1989, 70-72]. Also available as http://wuw.
turingarchive.org/browse.php/B/8.

162

http://www.cl.cam.ac.uk/~lpl5/papers/Automation/reconstruction.pdf
http://research.microsoft.com/specsharp
http://www-valoria.univ-ubs.fr/stclass
http://www

[(UKCRC), 2006] UK Computing Research Committee (UKCRC). Grand chal-
lenges for computer research, 2006.

[van den Berg and Jacobs, 2001] Joachim van den Berg and Bart Jacobs. The
LOOP compiler for Java and JML. In Proceedings of the Tools and Algorithms
for the Construction and Analysis of Software (TACAS), volume 2031 of Lecture
Notes in Computer Science, pages 299-312. Springer, 2001.

[Vandevoorde and Kapur, 1996] Mark T. Vandevoorde and Deepak Kapur. Dis-
tributed Larch Prover (DLP): An experiment in parallelizing a rewrite-rule
based prover. In RTA '96: Proceedings of the 7th International Conference
on Rewriting Techniques and Applications, pages 420-423, London, UK, 1996.
Springer-Verlag.

[Ver, 2007] Project-lemme:verificard. http://ralyx.inria.fr/2003/Raweb/
lemme/uid72.html, 2007.

[vsi, 2008] The verified software initiative. http://qpq.csl.sri.com/vsr/vsi.
pdf/view, 2008.

[Wenzel, 1999] Markus Wenzel. Isar - A generic interpretative approach to read-
able formal proof documents. In TPHOLs '99: Proceedings of the 12th Interna-
tional Conference on Theorem Proving in Higher Order Logics, pages 167-184,
London, UK, 1999. Springer-Verlag.

[why, 2008] Why: software verification platform. http://why.1ri.fr, 2008.

[Wilson et al., 2005] Thomas Wilson, Savi Maharaj, and Robert G. Clark. Om-
nibus: A clean language and supporting tool for integrating different assertion-
based verification techniques. In Proceedings of REFT 2005, Newcastle, UK,
July 2005.

[Wilson et al., 2006] Thomas Wilson, Savi Maharaj, and Robert G. Clark. Push-
button tools for application developers, full formal verification for component
vendors. Technical report, Department of Computing Science and Mathemat-
ics, University of Stirling, Stirling, Scotland, December 2006.

[Wilson et al., September 2005] Thomas Wilson, Savi Maharaj, and Robert G.
Clark. Omnibus verification policies: A flexible, configurable approach to
assertion-based software verification. In SEFM’'05, The 3rd IEEE International
Conference on Software Engineering and Formal Methods, September 2005.

[win, 2009] WineHQ - Run Windows applications on Linux, BSD, Solaris and Mac
OS X. http://www.winehq.org, 2009.

[Winskel, 1993] Glynn Winskel. The formal semantics of programming lan-
guages: an introduction. MIT Press, Cambridge, MA, 1993.

163

[Witte, 2003] M. Witte. Portierung, Erweiterung und Integration des Object-
Teams/Java Compilers fiir die Entwicklungsumgebung Eclipse, 2003. Tech-
nische Universitit Berlin.

[Woodcock, 2006} J. C. P. Woodcock. Grand Challenge 6: Dependable Systems
Evolution, 2006.

164

Appendix A

Soundness and Completeness Proof
for VC-Splitting Algorithm!

theory Vc2Vcs imports Main begin

A.1 Introduction

ESC4 produces a single VC for each method to be verified. We would like to split
unprovable VCs into a collection of sub-VCs, the conjunction of which is equiv-
alent to the original. This Appendix describes the decomposition algorithm as
well as provides a proof that it is sound and complete.

A.2 VC Language and Splitting Algorithm
typedecl BExp

datatype VC =
VelfvCVC

| VeAnd VC VC

| VeAndAnd VC VC

| VcOther BExp

The VC language that we work with in this Appendix contains only conjunc-
tion, implication, and undefined Boolean expressions. Two forms of conjunc-
tion are supported: logical and conditional. The former always evaluates both

'This Isabelle/HOL 2009 proof [James and Chalin, 2009c] is available online at
http://jmlspecs.svn.sourceforge.net/viewvc/jmlspecs/jml4/trunk/org.eclipse. jdt.
core/notes/esc4/Vc2Vcs.thy

165

file:///VcAndVCVC
http://jmlspecs.svn.sourceforge.net/viewvc/jmlspecs/jml4/trunk/org.eclipse.jdt

operands, while the latter only evaluates its second operand if the first evaluates
to True.

fun distribImp :: VC = VC list where
distribImp (VcIf a b) = map (Vclf a) (distribImp b)
| distribImp (VcAnd a b) = distribImp a @ distribImp b
| distribImp (VcAndAnd a b) = distribImp a @ map (Vclf a) (distribImp b)
| distribImp (VcOther b) = [VcOther b)

The VC splitting is accomplished by distributing implications over the con-
junctions, while keeping the conditional definition of the conditional conjunc-
tion. This special treatment was needed to provide proper error reporting.

A.3 Semantics

consts M’:: BExp = bool

To be able to show that our approach is sound and complete, we must first
give meaning to VCs. Since VcOther is meant to be an uninterpreted boolean
expression, its meaning is given by the uninterpreted function M".

fun M :: VC = bool where
M (Vclfxy) = (Mx) — (My))
| M (VeAnd xy) = (M x) A (My))
| M (VcAndAnd xy) = ((Mx) A (My))
| M (VcOther x) =M'x

The definition of M for VcAndAnd could have been written as
(Mx) A (Mx — MYy)),

but in a two-valued logic this is equivalent to the definition given. This is shown
by the following lemma.

lemma (M x) A(My)) =((Mx) A(Mx — My))
by (rule iffl, simp-all)

A.4 Auxilliary Lemmas About foldr and map

To make the proof of the main theorem easier, we first prove some properties
about HOLSs foldr and map functions.

Itis useful to be able to move one of the conjuncts from the base expression of
the foldr expression to the outside. This is similar to HOLs List.foldr_add_assoc.

lemma foldr-conj-assoc:
shows (foldrop A zs (x AN y)) = (x A (foldrop A zs y))
by (induct zs) (simp, ruleiffl, simp-all)

166

For the whole foldr expression to be True, the base expression must be True.

lemma foldr-conj-base:
shows foldr (op A o M) xs base = base
by (induct xs) simp-all

If the VcIf’s antecedant evaluates to False then the whole foldr expression is
True. _

lemma foldr-negM: o
shows (— M vcl) = foldr (op A o M o VcIfvcl) vc2 True
by (induct vc2) simp-all

If the VciIf's antecedant evaluates to True then the whole foldr expression de-
pends on the value of the consequent.

lemma M-Vclf-cong:
shows M vcl = foldr (op A o M o Vclfuel) vc2 True = foldr (op A o M) vc2 True
by (induct vc2) simp-all

The simplification procedure can introduce) expressions, but it is sometimes
easier to remove them before proceeding.

lemma foldr-lambda: _
shows foldr (Avc. op A (M vc)) ves base = foldr (op A o M) vcs base
by (induct vcs) simp-all

foldr-append is defined in HOLs List.thy, but sometimes it is easier to work
with an appended list than a nested foldr. Care must be taken that the result of
applying this lemma not be undone, since foldr-append is defined as a simp rule.

lemma foldr-unappend:
shows foldr f xs (foldr fys base) = foldr f (xs Q ys) base
by (induct xs) simp-all

If a foldr expresion with the given second parameter evaluates to True for a
list, it must also evaluate to True for sublists. Two particular sublists are of inter-
est.

lemma foldr-append-left:
shows foldr (op A o M) (xs Q ys) True = foldr (op A o M) (xs) True
by (induct xs) simp-all

lemma foldr-append-right:

shows foldr (op A o M) (xs Q ys) True = foldr (op A o M) (ys) True
by (induct ys) (simp, rule foldr-conj-base, simp)

167

A.5 Auxilliary Lemmas for Induction Steps

A few final lemmas are useful to simplify the induction steps in the proofs of the
soundness and completeness lemmas.

lemma mVclf:
assumes foldr (op A o M) (distribImp vcl) True =—> M vcl
foldr (op A o M) (distribImp vc2) True => M vc2
foldr (op A o M) (distribImp (VcIf vcl vc2)) True
shows M (Vclfvcl vc2)
proof (cases M vcl)
case True
thus M (Vclf vel ve2)
using assms by (simp add: foldr-map M-Vclf-cong)
next case False
thus M (Vclfvel ve2)
using assms by (simp add. foldr-map)
qed ‘

lemma mVcAnd:
assumes foldr (op A o M) (distribImp vcl) True =—> M vcl
foldr (op A o M) (distribImp vc2) True => M vc2
foldr (op A o M) (distribImp (VcAnd vcl vc2)) True
shows M (VcAnd vcl vc2)
proof —
have foldr (op A o M) (distribImp vcl) (foldr (op A o M) (distribImp vc2) True)
using assms by simp
hence append: foldr (op A o M) (distribImp vcl Q distribImp vc2) True
by (simp only: foldr-unappend)
hence foldr (op A o M) (distribImp vcl) True
by (rule foldr-append-left)
hence M vcl
using assms by simp
moreover have foldr (op A o M) (distribImp vc2) True
using append by (rule foldr-append-right)
hence M vc2
using assms by simp
ultimately show M (VcAnd vcl vc2)
by simp
qed

168

lemma mVcAndAnd:
assumes foldr (op A o M) (distribImp vcl) True => M vcl
foldr (op A o M) (distribImp vc2) True = M vc2
foldr (op A o M) (distribImp (VcAndAnd vcl vc2)) True
shows M (VcAndAnd vcl vc2)
proof (cases M vcl)
case True
hence foldr (op A o M) (distribImp vcl) (foldr (op A o M) (distribImp vc2) True)
using assms by (simp add: foldr-map M-Vclf-cong)
hence foldr (op A o M) (distribImp vc2) True
by (simp only: foldr-unappend foldr-append-right)
hence M vc2 (
using assms by simp
thus M (VcAndAnd vcl vc2)
using prems by simp
next case False
thus M (VcAndAnd vcl vc2)
using assms by (simp add: foldr-map foldr-negM)
ged

lemma distribVclf:
assumes M vcl = foldr (op A o M) (distribImp vcl) True
M vc2 = foldr (op A o M) (distribImp vc2) True
M (Vclf vel ve2)
shows foldr (op A o M) (distribImp (Vclf vcl vc2)) True
proof (simp add: foldr-map, cases M vcl)
case True
thus foldr (op A o M o Vclfvcl) (distriblmp vc2) True
using assms by (simp add.: foldr-map M-Vclf-cong)
next case False
thus foldr (op A o M o Vclfvcl) (distribImp vc2) True
using assms by (simp add: foldr-map foldr-negM)
ged

169

A.6 Soundness and Completeness

Showing the soundness of our splitting algorithm amounts to showing that if the
conjunction of the evaluations of the sub-VCs is true then the original VC eval-
uates to true. Showing the algorithm’s completeness is showing the converse.
Thus, showing that the decomposition is both sound and complete is simply
showing the implication in both directions.

lemma soundness:
shows foldr op A (map M (distribImp vc)) True = Mvc
proof (simp only: foldr-map, induct vc)
case (VcIf vcl ve2)
thus M (Vclfvcl vc2)
by (rule mVclf)
next case (VcAnd vcl vc2)
thus M (VcAnd vcl vc2)
by (rule mVcAnd)
next case (VcAndAnd vcl vc2)
thus M (VcAndAnd vcl vc2)
by (rule mVcAndAnd)
next case (VcOther b)
thus M (VcOther b)
by simp
qed

lemma completeness:
shows M vc = foldr op A (map M (distribImp vc)) True
proof (simp only: foldr-map, induct vc)
case (Vcifvcl ve2)
thus foldr (op A o M) (distribImp (Vclf vcl vc2)) True
by (rule distribVcif)
next case (VcAnd vcl vc2)
thus foldr (op A o M) (distribImp (VcAnd vcl vc2)) True
by (simp add: foldr-lambda)
next case (VcAndAnd vcl vc2)
thus foldr (op A o M) (distribImp (VcAndAnd vcl vc2)) True
by (simp add: foldr-lambda foldr-map M-Vclf-cong)
next case (VcOther b)
thus foldr (op A o M) (distribImp (VcOther b)) True
by simp
qed

theorem sound-and-complete:
shows foldr op A (map M (distribImp vc)) True = M vc
using soundness completeness ..

end

170

Appendix B
BISLs and BISL Tools for Java

Several existing projects have added support for DbC to Java, and we provide an
overview in this Appendix. To prevent excessive repetition, we note beforehand
points of commonality:

o All of the approaches support pre- and postconditions as well as class in-
variants and a mechanism for accessing the old and return values in post-
conditions.

e Only RAC is supported, and there is usually little distinction made in the
available documentation between the tool and the notation.

Exceptions to these two points will be noted. Summary tables follow the descrip-
tions.

B.1 Jass

Jass was developed as part of Detlef Bartetzko’s master’s work. It is the most com-
plete of the approaches discussed in this section. In addition to the basic DbC
constructs, Jass provides support for quantifiers, simple assertions (checks), loop
variants and invariants, rescue blocks with retry for dealing with exceptions, and
trace assertions. Behavioral subtyping is optional in Jass, and to enable it, a class
must implement a certain interface. Jass is implemented as a preprocessor, and
there are 3 levels of severity for a contract violation, including ignoring it, logging
it, and throwing an exception [jas, 2007].

B.2 Jcontract and Jtest from Parasoft

Very little detailed information is publicly available from Parasoft. Jcontract is a
system for providing DbC for Java. It comes with a replacement for javac, called
dbc_javac, that generates instrumented bytecode. In addition to the standard

171

DbC annotations, support is provided for concurrency checks, simple assertions,
and outputting debug or trace information. The behavior on contract violation
can be configured to either log it to a file or to throw an exception. A related
product, Jtest provides static enforcement of style rules. It can also generate test
cases and test data, and can use Jcontract specifications as an oracle [par, 2009].
A five-seat Server-Edition license costs US$ 50,000 [Coffee, 2006].

B.3 iContract émd iContract2

iContract2 is the open-source continuation of iContract, which was developed by
the now-defunct Reliable-Systems.com [ico, 2007]. It is used for the Java exam-
ples in Design by Contract, by Example [Mitchell et al., 2002]. The original source
code foriContract no longer exists, and the distributed bytecode was decompiled
to restart the project. DbC annotations are included in Javadoc comments and
may contain quantifiers and implications. Invariants are not checked for pri-
vate methods or for finalize methods. Contracts from supertypes are checked,
but behavioral subtyping is not correctly implemented as preconditions can be
strengthened (i.e., an overriding method’s precondition is formed from the con-
junction of the overridden method’s precondition and the one explicitly given).
RAC is implemented as a preprocessor that converts annotated Java to instru-
mented Java before using a standard Java compiler to produce bytecode. iCon-
tract2 only supports up to Java 1.4 [iCo, 2001, ico, 2007].

B.4 OVval

OVal is an open-source project that uses Java 5 annotations and Aspect] to im-
plement an unusual variant of DbC. Instead of having explicit pre- and postcon-
ditions, member fields and method parameters and non-void return types are
annotated with constraints. When methods that are marked with either Pre- or
PostValidateThis are called, the constraints are checked at the appropriate time
on all fields as well as actual parameters or return value, respectively [ova, 2007].

B.5 Contract4]

Contract4] is an open-source project supported by Aspect Research Associates.
Contracts are specified using Java 5 annotations, and Aspect] is used to weave
these into the bytecode. Invariants are inherited from supertypes, but not meth-
od contracts, which the documentation suggests must be manually copied to
subclasses. An empty precondition is shorthand for all of the method’s param-
eters to be non-null [Con, 2008].

172

http://Reliable-Systems.com

B.6 jContractor

jContractor is a recently revived open-source project. Contracts are specified in
methods that follow a given naming convention and visibility scheme. These
methods return a Boolean value to indicate whether or not their property holds.
The framework throws an exception when any of these methods returns false.
As an alternative to including contract code inside the class being specified, an
additional class containing only contracts can be given. The tool uses reflec-
tion to instrument bytecode. Behavioral subtyping seems to be correctly imple-
mented [jCo, 2008].

B.7 C4]

C4] is an open-source project developed by Jonas Bergstrom that also uses byte-
code instrumentation of contracts given in specially named methods and classes.
Ensuring behavioral subtyping was one of his motivating goals, but this system
seems to be one of the most difficult to use. In addition to the extra classes that
must be written, old values must be saved manually in the precondition’s method
if they are to be accessed in the corresponding postcondition. Simple asserts are
used to do the actual checking in the examples given. Invariants are not checked
for methods that are marked as pure, but their purity is not verified [c4j, 2007].

B.8 Self-Testable Classes for Java

STclass is a collaborative project of three French universities that combines DbC
and unit testing. Originally iContract was used to provide DbC, and while the cur-
rent version uses the same DbC annotations, it includes an independently devel-
oped tool for instrumentation. Also, the testing framework used is not JUnit but
their own. Additional annotations are provided for the description of unit tests
and suites. During instrumentation, each class is augmented with a main method
that executes its unit tests. Tests and contracts are inherited from supertypes.
The version of the system described in [Jézéquel et al., 2001] makes use of muta-
tion testing techniques to evaluate the quality of a class’s test suite, but there is no
mention of this in the current documentation [stc, 2007]. There was also earlier
mention of automated generation of test data from the specification and using
the specifications to generate an oracle [Jézéquel et al, 2001], but again, neither
of these is reported in the current documentation [stc, 2007].

173

Table 5: Status of Java DbC Projects

Last | Main- Form of How
Inception | Release | tained | Annotations Processed
Jass 1999 2005 Yes | incomments | Preprocessor
Jcontract || .
& Jtest Yes
iContract ~2000 No in Javadoc | Preprocessor
iContract2 2006 Yes inJavadoc | Preprocessor
Oval 2005 2007 Yes metadata
Contract4] 2005 2007 Yes metadata
jContractor 1999 2003 No methods Aspect]
C4] 2006 Yes methods
STclass 2006 Yes
B.9 Summary

Several existing projects have added support for DbC to Java, but none has yet
reached the sophistication of lightweight JML (see Chapter 2.2). Of these, only
Jass and Jcontract/Jtest appear to be useful beyond initial dabbling with DbC.
Jcontract/Jtest is a proprietary system, so we are unable to consider it for collabo-
ration. There has been talk in recent months about a future version of Jass uniting
with JML, but this has mainly been in the context of moving JML specifications
from comments to Java metadata annotations, as introduced in Java 5 [mod,
2007]. Java’s current annotation facility does not allow for annotations to be lo-
- cated at all syntactic positions where JML annotations can be placed. JSR-308
(Annotations on Java Types) is addressing this problem as a consequence of its
mandate, but any changes proposed would only be present in Java 7 [jsr, 2008].

174

Table 6: Comparison of Features of Java DbC Projects

Impli- | Quati- Pre/ | Class | Obj. | Behavioral
cation | fiers | Purity | Post | Inv. | Inv. | Subtyping
Jass v v X v X v v
Jcontract & Jtest v v v ? v v
PreConds
iContract v v X v ? v anded
PreConds
iContract2 v v X v ? v anded
Oval X X X v X v X
Contract4] X X Xa v ? v X
jContractor X X X v X v X
C4] X X X e X v v
STclass v v X v ? v v

“A method marked as pure in Contract4] indicates that the class invariant is not checked on
entry and exit. This can be automatically detected in some cases.

Table 7: Examples of Annotations from Java DbC Projects’ Documentation

[' | Sample Annotation
Jass @ensure 'isEmpty(); Old.count = count-1;
Jcontract & Jtest || @ensure return != null
iContract @post b@pre implies return > 0
iContract2 @post b@pre implies return > 0
@post (expr="_this.amount > _old",
OVal old="_this.amount",
: lang="groovy")
Contract4] @Post ("$return != null®)
protected boolean size_
jContractor Postcondition(int Result) {
return Result >= 0;
}
C4] see Figure 44. :
STclass @post return implies hasExits()

175

@ContractReference(contractClassName = "DummyContract")
public class Dummy

{

protected List m_stuff = new LinkedList();

public int addItem(Object item)

{

m_stuff.add(item);
return m_stuff.size();

}
}

public class DummyContract extends ContractBase<Dummy>

{

public DummyContract(Dummy target)

{

super (target);

}

public void classInvariant()

{

assert m_target.m_stuff != null;

}

public void pre_addItem(Object item)

{

super.setPreconditionValue("1list-size", m_target.m_stuff.size());

}

public void post_addItem(Object item)
{
assert m_target.m_stuff.contains(item);
int preSize = super.getPreconditionValue("list-size");
assert preSize == m_target.m_stuff.size() - 1;
assert m_target.m stuff.size() == super.getReturnValue();

}
}

Figure 44: Example of C4J Annotation

176

Appendix C

SPARK

SPARK [Barnes, 2006] was developed by Program Validation Limited (later ac-
quired by Praxis Critical Systems Limited) for the implementation of safety-crit-
ical avionics and rail-control systems. It has now been used in other domains
where high integrity is required. These include “finance, communications, med-
icine”, and automotive systems. SPARK is a subset of Ada extended with anno-
tations in comments that increase the expressiveness of interfaces and provide
support for DbC. The subset was chosen to be amenable to ESC and FSPV yet
useful for writing industrial applications. A methodology is provided that helps
ensure the correctness of systems developed with SPARK.

Many Ada constructs are not supported in SPARK, such as implementation
dependent constructs. SPARK systems, like those in Ada, are made from pack-
ages and subprograms. Two kinds of subprograms are distinguished based on
whether they return a value: functions do, and procedures do not. SPARK func-
tions are not allowed to have side effects. Abstract Data Types (ADTs) can be de-
fined and extended, but polymorphism and dynamic dispatch are not supported
because of the difficulty of statically reasoning about them. Generics, pointers,
unchecked casting, exceptions, overloading, and aliasing are similarly banned.
Recursion and dynamic storage allocation from the heap are forbidden so that
an upper bound can be statically determined for the time and memory require-
ments of a system. ' ,

Despite these limitations, SPARK has many useful features including allow-
ing compound types (i.e., records or structures) as function return types and un-
constrained (i.e., unbounded) array types as parameters. SPARK also has some
features not found in all mainstream languages, such as enumerated types and
subranges of numeric and enumerated types.

There are two kinds of annotations in SPARK:

e Core annotations for flow analysis and visibility control and

¢ Proof annotations for expressing contracts and to guide proof tools.

177

Procedure Add(X: in Integer);

—# global in out Total, Grand_Total;

—# derives Total from Total, X &

—# : Grand_Total from Grand_Total, X;

Figure 45: SPARK example showing core annotations

Quantifiers over numerics and enumerations are provided with the keywords for
all and for some. Proof functions, similar to JMLs model methods, can be de-
fined and used in annotations.

In Ada, parameters are marked with one of three modes:

e in— the parameter may be read, but should not be modified
e out — the parameter may be modified, but should not be read
e in out — the parameter may be both read and modified.

SPARK changes the meaning of these by replacing may with must and should not
with must not. Similarly, global (i.e., package-level) variables that are accessed
in a subprogram must be included in its header and given a mode. Further, a
derives clause can be given that shows which variables are used in the computa-
tion of out and in out parameters and globals. An example from [Barnes, 2006]
showing the use of these constructs is shown below.

Since SPARK is a proper subset of Ada, any standard compiler can be used.
Unlike the other languages discussed in this in Section 2.3.1, there is no support
for RAC, since static verification is used to show that errors, including contract
violations, cannot happen at runtime. Tools provided by Praxis include the

o Examiner

Simplifier
Proof Checker |

Proof Obligation Summarizer (POGS).

The Examiner and POGS are written in SPARK itself, and the Simplifier and the
Proof Checker are written in Prolog.

In addition to syntax and type checking and ensuring that only constructs in
the SPARK subset are present, the Examiner is used to provide three levels of ver-
ification rigor. The first is data-flow analysis, in which it checks that parameters
and globals conform to their declared modes, that variables are not read before
being initialized, and that all assigned variables are later used. Information-flow
analysis checks if derives clauses are correct. Finally, the Examiner can produce
a .vcg file that contains VCs to check the remaining annotations, and these can

178

be discharged either formally by the Simplifier and Proof Checker or manually by
human reviewers.

As with ESC for JML and Spec#, subprogram calls are replaced with specifica-
tions and not implementations. The Examiner handles loops in a manner similar
to that of Spec# (see above), but it does not do any checking for termination. The
Examiner is able to detect and warn if a loop is stable (i.e., if none of the variables
in the condition are modified in the body).

The Simplifier incorporates an automated theorem prover that usually dis-
charges most of the VCs generated by the Examiner. The VCs related to run-
time errors, such as array-bounds errors, are always simple enough for it to verify.
Many of the VCs related to contracts are also trivial, but this group may contain
some that are beyond its reasoning ability. The Simplifier’s output is a log file and
an .siv file, which contains unproved VCs. '

The Proof Checker is an interactive theorem prover that can be used to dis-
charge the VCs left by the Simplifier. As with other FSPV tools, the user must
guide the proof, while the tool keeps track of subgoals that remain to be proved.
Users can extend the set of strategies and rules used by the Proof Checker.

The POGS tool is used to reduce the various outputs of the other three tools to
a single report that gives the status of verification process, including a list of any
VCs that remain unproved.

179

Appendix D
RAC-ing ESC/Java2!

This Appendix presents the details of a case study in which we compiled and ran a
RAC-enabled version of ESC/Java2. Section D.1 describes the compilation of the
ESC/Java2 source with the JML RAC. Section D.2 covers the main design issues in
ESC/Java2 that have been uncovered by using the JML RAC.

D.1 Origin of the Case Study

The case-study was initiated in the summer of 2005 by Dr. Patrice Chalin and
Dr. Joseph Kiniry. Prior to that time, the ESC/Java2 source had not been com-
piled with the JML RAC. Because of the historical differences in input languages
between ESC/Java2 and the JML Checker and RAC, it took approximately four
developer-weeks for them to make the necessary updates to source code of ES-
C/Java2 for it be acceptable to the Checker. This makes the ESC/Java2 source able
to be compiled with the RAC. Most of these changes were due to slight incom-
patibilities between the syntax accepted by the JML compiler and that used in the
source files. A few bugs were removed from (or, more accurately, enhancements
were made to) the repository of API specifications (e.g., java.lang, java.lang.-
util, etc.) that are distributed with ESC/Java2.

The exercise also allowed them to uncover and file reports on 8 bugs in the
JML RAC. A major problem, which was not resolved until later by Frédéric Ri-
oux as part of his Master’s research, prevented the JML RAC from creating instru-
mented . class files for three classes because the checking code had a try/catch
block that is larger than the limits allowed by the JVM [Rioux, 2006]). With this
problem overcome, we were able to compile the 550 classes of the ESC/Java2 ap-
plication with jmlc in a little over 7 minutes (on a 2 GHz P4). These classes are
distributed over 3 main packages:

e javafe, a common front end used by ESC/Java2 and other tools, such as
Houdini [Flanagan and Leino, 2001].

'This appendix is based on [Chalin and James, 2006].

180

e escjava, a package that builds on the services provided by the Javafe to im-
plement the extended static checking functionality.

e junitutils, various support utilities, particularly with automated testing.

D.2 Compiling ESC/Java2 Source with the JML RAC

In the subsections that follow, we detail some of the major problems reported by
ESC/Java2 when running the RAC compiled version. Note that all of these errors
were identified during static initialization. That is, these errors report inconsis-
tencies between the static initialization code and the JML specifications of the
ESC/Java2 classes. The errors are presented essentially in the order in which they
were discovered. As was mentioned above, we will see that the errors identified
have fairly deep design implications.

D.2.1 AST Node Invariants Not Established by Constructors

The first error to be reported by the RAC-instrumented ESC/Java2 is shown in
Figure 46. We see that the class invariant (JMLInvariantError) of the PrimitiveType
class was violated on exit (i.e., during the verification of the postcondition) of the
PrimitiveType constructor (represented by jinit;). We will soon see why ESC/-
Java2 did not report this error.

The violation occurred at line 128 of the file Primitivetype.java. This file is
part of the collection of javafe Abstract Syntax Tree (AST) node classes. An ex-
cerpt of the file is given in Figure 47. The figure shows only one sample invariant
clause (constraining the value of the tag field) at the start of the file. A static make ()
method and the problematic constructor are also shown. At line 128, we see that
the body of PrimitiveType () is empty. Its associated Javadoc comment explains
why. Apparently, a fundamental design decision for the AST node class hierar-
chy had been to have all AST nodes created via maker methods (generally named
make ()). The maker methods first invoke a default constructor having an empty
body and then proceed to initialize the object fields. The AST node instance re-
turned by this maker method is meant to satisfy its class invariant.

Of course, class invariants are meant to hold for all instances of the class in-
cluding those created by default constructors with empty bodies. Since this is
clearly not the case for the AST node constructors, use is made of the ESC/-
Java2 nowarn pragma. This pragma allows developers to instruct ESC/Java2 to
ignore certain kinds of errors—e.g., invariant errors in the case of PrimitiveType.
As a reminder to developers of the obligation to establish the class invariant af-
ter calling the default constructor, a specification-only (ghost) variable named
“I_will establish invariants_afterwards” was created. We see in Figure 47 how
the make () method uses the default constructor, sets the instance fields, and sets
the special-purpose ghost variable to true. While there are a number of solutions

181

Exception in thread "main" org.jmlspecs.jmlrac.runtime.JMLInvariantError:

by method PrimitiveType.jinit;@post

File "Javafe/java/javafe/ast/PrimitiveType.java", line 128, character 15
regarding specifications at

File "Javafe/java/javafe/ast/PrimitiveType.java", line 35, character 17 when
’tag’ is O

>this’ is [PrimitiveType tmodifiers = null tag = O loc = 0]

at javafe.ast.PrimitiveType.checkInv$instance$PrimitiveType (PrimitiveType.java:958)
at javafe.ast.PrimitiveType.;init;(PrimitiveType.java:210)

at javafe.ast.PrimitiveType.internal$makeNonSyntax(PrimitiveType.java:97)

at javafe.ast.PrimitiveType.makeNonSyntax(PrimitiveType. java:3029)

at javafe.tc.Types.internal$makePrimitiveType(Types.java:154) ’

at javafe.tc.Types.makePrimitiveType(Types.java:4016)

at javafe.tc.Types.jclinit; (Types.java:19)

at escjava.Main.;jinit;(Main.java:78)

at escjava.Main.compile(Main. java:215)

at escjava.Main.main(Main.java:177)

Figure 46: Run-time assertion violation reported by ESC/Java2 compiled with the
JML RAC

to this problem, the simplest was to eliminate the default constructor in favor of
constructors that establish invariants right from the start. In doing so, we sim-
plified the design by consolidating the instance creation process, eliminating the
I_will establish_invariants_afterwards variable and the nowarn pragma. In this
way, both ESC/Java2 and the JML RAC can process the resulting specifications.
While our new design impacted almost two hundred classes, most of the changes
were confined to AST node generation routines and templates.
We note that there are generally two main reasons for using nowarn pragma:

1. When a specifier believes something to be true but the verifier is unable
to confirm its truth. In such a case, the RAC facility can confirm that the
specification does indeed hold at runtime for the exercised test cases.

2. When a specifier knows something to be false, but wants to ignore it for
the moment and continue making progress (in verifying other parts of the
program). The RAC will catch these violations and prevent the system from
being usable.

It would be helpful to developers if all nowarns were commented with the rea-
son for their presence. Instances of (2) should be resolved as quickly as possible
so that all of our tools can be used in support of our development efforts. It would
appear that the case treated in this subsection is an instance of (2)—maybe there
was a belief that the use of non-default constructors was not feasible, when in
fact it turns out to be straightforward.

182

public class PrimitiveType extends Type

{
/@ invariant (tag == TagConstants. BOOLEANTYPE || ...); */

public int tag;

/1@ requires (tag == TagConstants. BOOLEANTYPE || ...);

//@ ensures ...

public static /+@ non_null %/ PrimitiveType
make(TypeModifierPragmaVec tmodifiers, int tag, int loc)

{

/1@ set I will_establish_invariants_afterwards = true;
PrimitiveType result = new PrimitiveType();
result.tag = tag;

result.loc = loc;

result.tmodifiers = tmodifiers;

/...

return result;

}

[k

* Construct a raw PrimitiveType whose class invariant(s) have not

* yet been established. It is the caller’s job to initialize the

* returned node’s fields so that any class invariants hold.

*

//@ requires 1 will_establish_invariants_afterwards;

protected PrimitiveType() {} //@ nowarn Invariant,NonNulllnit; // xx LINE 128 x*x

Figure 47: Excerpt from javafe/ast/PrimitiveType .java

D.2.2 Internal AST Node Instances vs. AST Node Class Invariants

The next two problems reported by the RAC are related to the creation of an in-
ternal field for the length of arrays (namely, lengthFieldDecl), itself of type int
(Figure 48). The violations were, firstly, of the invariant of GenericVarDecl that
type.syntax be true (i.e., that the type be an AST node read from a file, not an
internally created type like Types. intType)—see Figure 49. The second violation
had to do with the 10c1d of the Fied1Decl maker method: it was required to be dif-
ferent from Location.NULL. Of course, neither of these conditions is satisfied by
the call to maker () in Figure 48.
. After some analysis, and two unsatisfactory attempts, the solutions we imple-
mented was to create a new maker method and constructors for FieldDecl and

183

public static /+@ non_null x/ FieldDecl lengthFieldDecl
= FieldDecl.make(..., lenld, Types.intType, Location.NULL,...);

Figure 48: Declaration of 1ength field for arrays in javafe.tc.Types

package javafe.ast;

. public abstract class GenericVarDecl extends ASTNode

{

public /x@ non_null @+/ Type type;
//@ invariant type.syntax;

-

public class FieldDecl extends GenericVarDecl implements ...

{

/1@ requires locld != javafe.util.Location.NULL;
//@ ensures \result !'= null;
public static FieldDecl make(...,

~ /«@ non_null @«/ Type type,
int locld, ...

/..

Figure 49: Excerpts from GenericVarDecl and FieldDecl of javafe.ast

GenericVarDecl that do not take a location. These would set the GenericVarDecl’s
locId to Location.NULL. To capture the idea of an internal field, an isInternal()
method was added to GenericVarDecl. This method returns true exactly when
the location is not equal to Location.NULL. Because of these changes, FieldDecl’s
new maker method no longer mentions location, and the old one remains un-
changed. The invariant of GenericVarDecl, FieldDecl’s super class, was changed
to reflect that syntax is true exactly when isInternal() is false. To reflect that
there are no internal AST nodes of subclasses other than GenericvVarDecl (namely,

184

file:///result

Exception in thread "main" org.jmlspecs.jmlrac.runtime.JMLInternalPreconditionError:
by method PrimitiveType.makeNonSyntax regarding specifications at
File "Javafe/java/javafe/ast/PrimitiveType.java", line 78, character 16 when
’tag’ is 247
at escjava.Main.compile(Main. java:4138)
at escjava.Main.internal$main(Main. java:118)
at escjava.Main.main(Main.java:3479)

Figure 50: RAC error: violation of PrimitiveType maker method precondition

FormalParaDecl and LocalVarDecl), all other AST node classes have !isInternal ()
as an invariant.

D.2.3 Specification and Polymorphic Structures

A very interesting design problem that runtime assertion checking highlighted
involved (a violation of) behavioral subtyping [Liskov and Wing, 1994]. As men-
tioned above, Java’s primitive types are represented using instances of Primi-
tiveType. This class belongs to the javafe package, which is common to tools that
need a Java front end. Primitive types are distinguished by a tag attribute. The
maker methods require that a valid tag be used when creating a new instance of
PrimitiveType, and an invariant ensures that the tag remains valid. A valid tag is
defined in PrimitiveType to be one of ten given tag values. The tags themselves
are defined in the class javafe.ast.TagConstants.

As was mentioned earlier, the escjava package makes use of services of the
Java front-end package. In particular, it makes direct use of the PrimitiveType
class to define ESC/Java2- and JML-specific primitive types such as lockset and
\bigint. To do so, new tags are defined in escjava.ast.TagConstants. Unfortu-
nately, the static creation of, e.g., the escjava lockset primitive type results in a
violation of the PrimitiveType maker method’s precondition (see Figure 50) since
the maker is given a tag value that is not one of the expected ten “valid” values.

One approach considered was to define a subtype of javafe.ast.Primitive-
Type named escjava.ast.EscPrimitiveType and represent the ESC/Java2 and JML
primitive types with instances of this new class. Unfortunately, the semantics of
class invariants and the enforcing of behavioral subtyping in JML make it impos-
sible to write any useful class contracts for PrimtiveType and EscPrimitiveType in
such a case (even if, for example, we use an auxiliary boolean method isvalid-
Tag). The problem is illustrated in Figure 51. The first problem to be noticed is
that it is difficult to choose an appropriate class invariant restricting the value of
tag. E.g., it cannot be limited to only javafe tags, otherwise EscPrimitiveTypes
could not be created. We cannot say in javafe.ast.PrimitiveType that the le-
gal tags also include those of the escjava.ast package since this would create
circular dependencies between javafe and escjava. Similarly, notice how the

185

file:///bigint

package javafe.ast;

public class PrimitiveType extends Type {
//@ invariant (tag == TagConstants. BOOLEANTYPE || ...); /] 22?
public int tag;

//@ requies 222
protected PrimitiveType(\ldots, int tag, int loc) {
this.tag = tag;

}
}

package escjava.ast;
public class EscPrimitiveType extends PrimitiveType
{
//@ requires (x tag is a valid javafe tag or an esc tag x);
protected EscPrimitiveType(\ldots, int tag, int loc) {
/l tag might not be a valid PrimitiveType tag!
super(tmodifiers, tag, loc);

Figure 51: Sample (invalid) solution: excerpts from PrimitiveType and Esc-
PrimitiveType

EscPrimitiveType constructor invokes the PrimitiveType constructor (via super).
For this call to be permitted, what precondition must the PrimitiveType construc-
tor have with respect to its tag parameter?

Instead of trying to work with the untenable solution consisting of two classes,
we decided to extract an abstract superclass and allow both the Java front end
and ESC tools to implement the abstract method defined in this superclass while
inheriting the rest of its functionality. The superclass has both a code and model
version of an isvalidTag method. By specifying that the code version’s result is
the same as the model version’s, we are able to statically verify the invariant that
isValidTag always returns true.

The two concrete subclasses (namely, JavaFePrimitiveType and EscPrimitive-
Type) have implementations of isValidTag that compare against the appropriate
values in each case. Their makers and constructors require that the tag value
passed to them be valid, as determined by their local versions of isValidTag. Since
the value passed to the makers and constructor is valid, and since this value is

186

file:///ldots
file:///ldots

package javafe.ast;
public abstract class Pr1m1t1veType
{ |
//@ public model instance int _tag;
//@ pure model boolean specisValidTag(int tag);

//@ ensures \result == speclsValidTag(_tag);
/+@ pure =/ public abstract boolean isValidTag();

//@ public invariant isValidTag()';

//@ ensures \result == _tag;
/«@ pure x/ public abstract int getTag();

Figure 52: Excerpt of correct redesign of PrimitiveType, part 1

stored as the type’s tag, the invariant can be statlcally shown to hold. This solu-
tion is illustrated in Figures 52 and 53.

D.2.4 Internal Literal Instances vs. Literal Class Invariants

The next reported by the RAC was similar to previous errors in which the class
had an invariant that was too strict. In this case, the LiteralExpr used to define
the internal constants for true and false violated the invariant that their 1ocation
be valid. Since these values are not defined in code, they do not have a valid
location. This appeared to be a valid use of LiteralExpr, so the specification was
taken to be incorrect.

Instead of removing altogether the offending requ1rement that the location
never equal the constant Location.NULL, a second maker (namely, makeNonSyntax,
which follows the naming used in PrimitiveType) was added that does not take a
location. This is compatible with common practice of introducing factory meth-
ods for the same type but building ob]ects for different purposes [Bloch, 2001,
item 1].

187

file:///result
file:///result

package escjava.ast;
public class EscPrimitiveType extends PrimitiveType
{

/+@ spec_public x/ private int tag;

//@ public represents _tag <- this.tag;

/+@ public normal _behavior
@ ensures \result == (JfePrimitiveType.isValidTag(tag) ||
@ tag == TagConstants.LOCKSET || ...);
@x/
public static /«@purex/ boolean isValidTag(int tag) {
return (JfePrimitiveType.isValidTag(tag) ||
tag == TagConstants2.LOCKSET || ...);
}

/+@ also
@ public normal_behavior
@ ensures \result == EscPrimitiveType.isValidTag(tag);
@x/
public /x@purex/ boolean isValidTag() {
return isValidTag(tag);

}

/x@ public normal_behavior
@ ensures \result == EscPrimitiveType.isValidTag(tag);
@ public model pure boolean speclsValidTag (int tag) {
@ return EscPrimitiveType.isValidTag(tag);
@}
@x/

/+@ protected normal_behavior
@ requires EscPrimitiveType.isValidTag(tag);
@ ensures this.tag == tag && ..;
@x/

protected /«@purex/ EscPrimitiveType(..., int tag, int loc) {
this.tag = tag; ...

}

}

Figure 53: Excerpt of correct redesign of PrimitiveType, part 2

188

file:///result
file:///result
file:///result

from LiteralExpr. java

//@ requires loc != javafe.util.Location.NULL;
public static /x@non_null«x/ LiteralExpr make(int tag, Object
‘ value, int loc) {

from AnnotationHandler.java

public final static LiteralExpr T = (LiteralExpr)
FlowInsensitiveChecks.setType(LiteralExpr.make(
TagConstants. BOOLEANLIT, Boolean.TRUE,
Location.NULL),
Types.booleanType);

Figure 54: Definition of javafe.ast.LiteralExpr’s maker and a call to it

189

Appendix E

Early Validation: Non-null Type
System!

The Section 3.2 presented the architecture of JML4. In this Appendix we show
how we used its core functionality, including its ability to use JML API library
specifications and the Non-Null Type System, to annotate and type check a non-
trivial amount of Java source code. This allowed us to gather statistics in support
of Dr. Chalin’s proposal that reference types be non-null by default.

We conducted an empirical study of 5 open-source projects totaling 700 KLOC
that confirmed the hypothesis that on average 75% of reference declarations are
meant to be non-null by design. Guided by these results, Dr. Chalin proposed the
adoption of a non-null-by-default semantics. This new default has advantages of
better matching general practice, lightening developer annotation burden, and
being safer. This new default was implemented in JML4, which supports the new
semantics and can read the extensive AP] library specifications written in the Java
Modeling Language (JML). In a second phase of the empirical study, we analyzed
the uses of null and noted that over half of the nullable field references are only
assigned non-null values. Details of this second part are discussed in Section 7.

E.1 Motivation

One of JMLA4’s first and most fully developed features was support for JMLs non-
null type system [Chalin and James, 2007]. This, coupled with the tool’s ability to
read the extensive JML API library specifications, renders it quite effective at stat-
ically detecting potential null-pointer exceptions (NPEs). Early on, JML4 was en-
hanced to support Extended Static Checking (ESC) through the integration of ES-
C/Java2 [Cok and Kiniry, 2005]. While each verification technique has strengths

'This appendix is based on [Chalin et al., 2008c].

190

v java ~ ESCTools/Escjavajjava/escjava/Malinjava - Eclipse SDK
Hle Edrt Source Refactor Nawgate Search Pro;ect Run Wlndow Help

EOuthne 23 . = E

l‘*&aes{v»

PO y pL

E
i
7% 1mitialization of dot format ¥/ |
fw.write{*digraph G {\n");

fw.write (vgg old2Dot());

" |Potential null pointer access: The variable veg may be null at this locatlon

i D L;;q >ESCTools

LR D o YO Y | N «)

€7 JmldaDemo

.] Press 'F2' for focus.|:
L Soen4d32 .f,:a’--seau.n p javdum. 3°

N S ssate S s

Writable i Smart Insert |

Figure 55: JML4 reporting non-null type system errors in a method too big for
ESC/Java2 to verify

and weaknesses, the integration of complementary techniques into a single veri-
fication environment brought about a level of synergy that was not otherwise be
achievable.

As a concrete example of the kind of verification-technique synergy that JML4
achieves, consider the code fragment given in Figure 55, an excerpt from ES-
C/Java2’s escjava.Main class. JML4 correctly reports that a dereference of vcg in
processRoutineDecl() could result in an NPE.

ESC/Java2 is routinely run on itself, but this error was not detected before
because analyzing processRoutineDecl (), whose body has 386 lines of code, is be-
yond the capabilities of ESC/Java2. It gives up on attempting to verify the method
because the verification condition generated for it is too big. Several errors that
arise under similar circumstances were identified in ESC/Java2 source by JMLA4. .

As another example, consider the static options() method of escjava.Main,
which returns a reference to ESC/Java2’s command-line options (see Figure 56).
This method is used throughout the code (272 occurrences), and its return value
is directly dereferenced even though the method can return nui1.

JMLA4 reports the 250+ NPEs related to the use of this method, but ESC/Java2
does not because another detected error prevents it from determining that the
method can return null. In this particular case, it is a possible type-cast vio-
lation. ESC/Java2 is more susceptible than ordinary compilers to the effects of
one error masking others. This makes the more resilient, though less powerful,
complementary verification capabilities of other techniques, such as those im-
plemented in JML4, more effective.

Our preliminary use of JML4 demonstrated that fixing some kinds of errors
(e.g., nullity type errors) allows ESC/Java2 to push its analysis further, helping
expose yet more bugs in code and specifications. This leads to uncovering further
nullity type errors, and the process iterates.

191

package escjava;
public class Main extends javafe.SrcTool {

public static Options options() {
return (Options)options;
}

public String processRoutineDecl(...) {

~ VcGenerator veg = null; ...
try {
... /l possible assignment to vcg
} // multiple catch blocks
catch (Exception e) {

}

fw.write(vcg.old2Dot()); / <<< possible NPE

Figure 56: Code except from the escjava.Main class

E.2 The Case Study

Table 8 provides the number of files, lines of code (LOC) and source lines of code
(SLOC) [Park, 1992] for our study subjects as well as the projects of which they are
subcomponents.

. E.2.1 Verification and Validation of Annotations

We used two complementary techniques to ensure the accuracy of the nullity
annotations that we added. First, we compiled each of the study subjects using
JMLA4 with RAC enabled and then ran it against each project’s standard test suite.
Nullity RAC ensures that a non-null declaration is never initialized or assigned
null, be it for a local variable, field, parameter, or method return declaration. In
some cases, the test suites are quite large (e.g., on the order of 15,000 tests for the
Eclipse JDT, 50,000 for JML, and 600 for ESC/Java2). While the number of tests
for ESC/Javaz is lower, some of the individual tests are big (e.g., the type checker

192

Table 8: General statistics of study subjects and their encompassing projects

Encompassing | Common | ESC Eclipse

Project — JML | Tools | SoenEA Koa JDT | Total
Tools

of files 831 455 52 459 4124 | 5921
LOC (K) 243 124 3 87 1018 | 1475
SLOC (K) 140 75 2 , 62 660 939

Study JML | ESC/ KoaTally | Eclipse
Subject — Checker | Java2 | SoenEA | Subsystem | JDT Core | Total
of files 217 216 52 29 1130 | 1644
LOC (K) 86 63 3 10 560 722
SLOC (K) 58 41 2 4 365 470

is run on itself). In addition, we ran the RAC-enabled version of ESC/Java2 (i.e., a
version that performed runtime checks of ESC/Java2’s nullity annotations) on all
files in the study samples; the increased number of checks of ESC/Java2’s nullity
annotations increased our confidence in their correctness. Though testing can
provide some level of assurance, coverage is inevitably partial and depends highly
on the scope of the test suites.

When applying the second technique, we also made use of the ESC/Java2
static analysis tool. In contrast to runtime checking, static analysis tools can ver-
ify the correctness of annotations for “all cases” (within the limits of the com-
pleteness of the tool), but this greater completeness comes at a price: In many
cases, general method specifications (beyond simple nullity annotations) needed
to be written to eliminate false warnings.

Using these techniques we were able to identify about two dozen (0.9%) in-
correctly annotated declarations—excluding errors we corrected in files outside
of the sample set. With these errors fixed, tests passing, and ESC/Java2 not re-
porting any nullity warnings, we are very confident of the accuracy of the final
annotations.

E.2.2 Statistics Tool

To gather statistics concerning non-null declarations, we created a simple Eclipse
JDT abstract syntax tree (AST) visitor which walks the Java AST of the study sub-
jects and gathers the required statistics for relevant declarations. A previous at-
tempt at this study made use of an enhanced version of the JML checker which
both counted and inferred nullity annotations using static analysis driven by ele-
mentary heuristics. For our work, we decided instead to annotate all declarations
explicitly and use a simple visitor to gather statistics. This helped us eliminate

193

one threat to internal validity that arose due to completeness and soundness is-
sues of the enhanced JML-checker-based statistics-gathering feature.

E.3 Study Results

A summary of the statistics of our study samples is given in Table 9. As is cus-
tomary, the number of files in each sample is denoted by » and the population
size by N. Note that for SoenEj, 11 of the files did not contain any declarations
of reference types, so the population size is 41 = 52 —- 11. We exclude such files
from our sample because it is not possible to compute the proportion of non-null
references for files without any declarations of reference types. We see that the
total number of declarations that are of a reference type (d) across all samples is
2839. The total number of such declarations constrained to be non-null (m) is
2319. The proportion of non-null references across all files is 82%.

We also computed the mean, z, of the proportion of non-null declarations
on a per file basis (z; = m;/d;). The mean ranges from 79% for the Eclipse JDT
Core, to 89% for the JML checker. Also given are the standard deviation (s) and
a measure of the maximum error (F) of our sample mean as an estimate for the
population mean with a confidence level of 1 — o« = 95%. The overall average and
weighted average (based on N) for u,,;, are 80% and 74%, respectively. With this,
we can conclude with 95% certainty that the population means are above i, =
74% in all cases. As explained earlier, we were conservative in our annotation ex-
ercise, hence it is quite possible that the actual overall population mean is greater
than this.

We conclude that the study results clearly support the hypothesis that in Java
code, over 2/3 of declarations that are of reference types are meant to be non-
null. In fact, it is closer to 3/4. ’

- Table 9: Distribution of the number of declarations of reference types

JML | ESC/ Eclipse | Sum or

Checker | Java2 | SoenEA | Koa TS | JDT Core | Average

n 35 35 41 29 35 175

N 217 216 41 29 1130 1633

> d; 420 | 989 231 566 633 2839
>omy 362 | 872 196 424 465 2319
Somy/ > d; 86% | 88% 85% 75% 73% 82%
mean (z) 89% | 85% 84% 80% 79% 83%
std.dev.(s) 0.14 | 0.22 0.28 0.26 0.24 -
E (a=5%) 44% | 6.8% - - 7.7% -
pomin =T — E 85% | 78% 84% 80% 71% 80%

194

E.4 Summary

In this section, we report on a novel study of five open projects (totaling over
722 KLOC) taken from various application domains. The study results show that
on average, one can expect approximately 75% of reference type declarations to
. be non-null by design in Java. We believe that this report was originally made
at a timely point, as we are witnessed the increasing emergence of static analysis
(SA) tools using non-null annotations to detect potential null-pointer exceptions.
Before too much code is written under the current nullable-by-default seman-
tics, it would be preferable that Java be adapted, or at least a standard non-null
annotation-based extension be defined, in which declarations are interpreted as
non-null by default. This would be the first step in the direction of an apparent
trend in the modern design of languages with pointer types, which is to support
non-null types and non-null by default [Chalin et al., 2008c].

One might question whether a language as widely deployed as Java can switch
nullity defaults. If the successful transition of Eiffel is any indication, it would
seem that the switch can be achieved if suitable facilities are provided to ease
the transition. We believe that JML4 offers such facilities in the form of support
for project-specific as well as fine-grained control over nullity defaults (via type-
scoped annotations). Until standard (Java 5) nullity annotations are adopted via
JSR 305, we have designed JML4 to recognize JML-style nullity modifiers, thus al-
lowing the tool to reuse the comprehensive set of JML API specifications (among
other advantages). Adding nullity annotations is time consuming. By adopting
JML-style nullity modifiers we also offer developers potentially increased pay-
back, in that all other JML tools will be able to process the annotations as well—
including the SA tool ESC/Java2 and JmlUnit, which generates JUnit test suites
using JML specifications and annotations as test oracles.

195

