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ABSTRACT 

Condition Based Maintenance Using Proportional Hazards Model 

Bai Rong Wu 

Condition-based maintenance (CBM) is an advanced maintenance strategy in which 

maintenance actions are scheduled based on both the age data and condition monitoring 

information. Proportional Hazards Model (PHM) is a powerful statistical tool for 

estimating the equipment failure rate under condition monitoring. Effective CBM using 

PHM can decrease the overall maintenance costs by reducing unnecessary scheduled 

preventive maintenance actions. 

In CBM using PHM, main optimization objectives including minimizing maintenance 

costs and maximizing equipment reliability typically conflict to each other. But the 

reported research only focuses on single-objective. In this thesis, we propose a multiple-

objective CBM optimization approach based on physical programming, which can 

systematically balance the tradeoff between the optimization objectives and find the 

optimal solution that best represents the decision maker's preference on the objectives. 

In CBM using PHM, the accuracy of parameter estimation greatly affects the accuracy of 

the model in representing and predicting the equipment health condition. Traditional 

optimization methods such as Newton's methods are inaccurate because they can only 

find local optimal value in parameter estimation. In this thesis, we develop an approach 
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based on Genetic Algorithms (GA) for PHM parameter estimation and this approach can 

improve the accuracy of parameter estimation significantly. 

To illustrate the proposed approaches, we conduct two case studies using real-world 

vibration monitoring data, shearing pump bearings in a food processing plant and Gould 

pump bearings at Canadian Kraft Mill. The proposed approaches contribute to the general 

knowledge of condition based maintenance, and have the potential to greatly benefit 

various industries. 
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Chapter 1 

Introduction 

1.1. Introduction to Condition Based Maintenance 

With the rapid growth of modern technology, maintenance plays a more and more 

important role in many industries. In some industries such as aerospace industry and 

energy industry, reliability and maintenance are one of the most critical issues since a 

tiny failure may result in inestimable loss even fatal disaster. In recent decades, people 

pay more attention to research in maintenance and reliability. Maintenance is defined as 

"all activities aimed at keeping an item in, or restoring it to, the physical state considered 

necessary for the fulfillment of its production function." (Jardine & Tsang, 2006). 

Traditional maintenance technique is basically breakdown maintenance, also called 

corrective maintenance, reactive maintenance and unplanned maintenance. It is limited to 

repair actions or item replacement caused by failures. The predominant characteristic of 

early maintenance is reactive since it only reacts to faults or failures. 

A more recent maintenance technique is time-based preventive maintenance (also called 

planned maintenance). It is proactive maintenance, which sets schedules to inspect or 

perform preventive maintenance instead of just reacting to failures. One time-based 

preventive maintenance method is constant-interval based preventive replacement 

method, in which failure replacements are performed immediately after failures occur and 

preventive replacements are performed at constant intervals, say every 6 months. The 
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optimization problem is to find the optimal preventive replacement interval to minimize 

the total expected replacement cost in the long run. Another time-based preventive 

maintenance method is the age-based replacement method, in which preventive 

replacements are performed when the component reaches a pre-specified age, and the 

optimization problem is to find the optimal preventive replacement age. The time-based 

maintenance technique is an improvement compared to early maintenance techniques, but 

at the same time makes the cost of preventive maintenance higher and higher. Eventually, 

preventive maintenance cost has become a heavy financial burden of many industrial 

companies. Therefore, more effective maintenance approaches such as condition based 

maintenance (CBM) are being adopted to solve the problem of high preventive 

maintenance cost, and to prevent unexpected failures at the same time. 

CBM is a maintenance process which decides maintenance actions using the information 

collected through condition monitoring. It is based on the understanding that a piece of 

equipment goes through multiple degraded states before failure. The health conditions 

can be monitored and predicted, and optimal maintenance actions can be scheduled for 

preventing equipment breakdown and minimizing total operation and maintenance costs. 

(Tian et al., 2009) CBM attempts to avoid unnecessary maintenance tasks by taking 

maintenance actions only when there is evidence that the failure is approaching. 

CBM has been widely used in many fields, such as aerospace industry, mining industry, 

petroleum industry, and power generation industry. CBM may use condition monitoring 

data collected from oil analysis, vibration analysis, fuel consumption, environmental 

conditions, and so on, to make maintenance decision. Oil analysis is the spectrometric 

analysis of metal particles in oil samples generally gathered from an engine's or 
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transmission's lubricating oil, while vibration analysis means the spectral analysis of 

vibration signals collected at certain positions on rotating equipments, etc. 

There are three key steps in CBM process: data acquisition, data processing and 

maintenance decision-making step, as shown in Figure 1. Data acquisition step is to 

collect the data related to system health. Data processing step is to process and analyze 

the acquired data. In maintenance decision-making step, effective maintenance policies 

will be obtained based on the analyzed information (Jardine et al., 2006). 

( ° a t a Acquis i t ion) E^Pa ta Processing) ^ p S n M a k f n g ) 

Figure 1 CBM process steps 

A CBM program consists of two main categories of maintenance techniques: diagnostics 

and prognostics. Diagnostics focus on faults detection, isolation and identification when 

they occur, while prognostics attempts to predict faults or failures before they occur. 

Diagnostics is posterior event analysis and prognostics is prior event analysis. 

Prognostics is apparently more effective than diagnostics since prognostics endeavors to 

prevent faults or failures, or at least has prepared spare parts and planned human 

resources ready for the problems, and thus avoids additional unplanned maintenance cost. 

Nevertheless, diagnostics cannot be neglected for the reason that prognostics is 

impossible to be 100% sure to predict faults and failures. Besides, diagnostic can help 

improve prognostics in the way that diagnostic information can be useful for preparing 

more accurate event data and hence building better CBM model for prognostics. In 

addition, diagnostic information can be used as valuable feedback information for system 

redesign. A CBM program can be used to do both diagnostics and prognostics, or either 
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one of them. And the above three CBM steps should be followed regardless of what the 

objective of a CBM program is. 

A CBM optimization approach using proportional hazards model (PHM) has been 

developed, and has also been developed into the CBM optimization software EXAKT 

(Banjevic et al., 2001). EXAKT has been successfully implemented in many industries, 

including mining industry, food processing industry, utility industry, manufacturing 

industry, and so on. The main idea of CBM optimization approach using PHM is to 

determine an optimal replacement policy for minimizing long-run replacement cost. In 

this approach, the maintenance cost is calculated based on PHM and a risk threshold 

control limit policy. PHM is a valuable statistical procedure to estimate the risk of failure 

of a component or equipment when it is under condition monitoring. CBM using PHM 

can significantly decrease maintenance cost by reducing the number of unnecessary 

scheduled preventive maintenance operations. The basics of PHM will be summarized in 

Chapter 2 and the principles of CBM optimization approach using PHM will be discussed 

in Chapter 3 and Chapter 5. 

1.2. Research Motivation 

In CBM optimization, major objectives such as maximizing reliability and minimizing 

maintenance costs are often conflicting to each other. The previous research can only deal 

with single optimization objective. Sometimes minimizing cost is the only optimization 

objective while in the other times maximizing reliability, or minimizing failure 

probability, is the only optimization objective. When maintenance cost is set as the 

optimization objective, reliability may be used as a constraint. However, the disadvantage 
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of single-objective optimization is that we cannot systematically investigate the tradeoff 

between the optimization objectives and find the optimal solution that best represents the 

preference of decision maker (DM) on the optimization objectives. To handle this 

situation, we propose a multi-objective CBM optimization approach based on the 

physical programming method. Thus, all the critical objectives can be systematically 

balanced and the global optimal maintenance policy can be determined. 

In CBM using PHM, fitting the PHM is a vital step and the effectiveness of the optimal 

maintenance policy greatly depends on the accuracy of parameter estimation. Traditional 

optimization methods, such as the BFGS Quasi-Newton method, are currently used to 

perform optimization in parameter estimation using maximum likelihood method 

(MLM). These methods are also used in the commercial software EXAKT which are 

widely used in many industries. Nevertheless, traditional optimization methods have an 

evident limitation, that is, only local optimization value can be found using these 

methods. In our research we discover genetic algorithm (GA) is a very powerful 

optimization approach with two key advantages. (1) Global optimization ability. GA has 

been recognized as one of the most effective approaches in searching for the global 

optimal solution. (2) Flexibility in modeling the problem. GA has no strict mathematical 

requirements, such as derivative requirement, on the objective functions and constraints. 

The only requirement is that the objective functions and constraints can be evaluated in 

some way. (Tian & Zuo, 2006) In this thesis, we apply GA to solve the optimal problem 

in parameter estimation using maximum likelihood methods thus to improve the accuracy 

of parameter estimation. With accurate PHM parameters, we will be able to build an 

accurate model representing the relationship between the failure rate and the age and 
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condition monitoring measurements, based on the event and inspection data we have 

collected. Thus, we can accurately evaluate the costs and reliability corresponding to a 

certain CBM policy, and find the optimal policy through optimization. 

1.3. Research Contributions 

In this thesis, we concentrate on the study of CBM optimization using PHM. The 

contributions of this thesis are summarized as follows. 

• We propose a multi-objective CBM optimization approach based on physical 

programming, a multi-objective optimization method which has been 

demonstrated to be very effective in various fields. The physical programming 

method is an effective approach to capture the decision makers' preferences on 

the objectives by eliminating the iterative process of adjusting the weights of the 

objectives, and it is easy to use since decision makers just need to specify 

physically meaningful boundaries for the objectives. Using the proposed 

approach, the multi optimization objectives involved in CBM optimization, such 

as minimizing maintenance cost and maximizing reliability, can be systematically 

balanced and the optimal solution can be achieved. 

• We develop an approach based on genetic algorithms for PHM parameter 

estimation. While the existing parameter estimation method reported in the 

literature can only achieve local optimal values, the proposed GA approach has 

much better global optimization capability. Our results show that the proposed 

GA approach can improve the accuracy of parameter estimation significantly. 

Accurate cost and reliability assessment of the CBM policy can be achieved 
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because of the use of more accurately estimated PHM parameters, which is 

significant for obtaining the optimal CBM policy and for budget allocation. 

• Case studies are conducted using real-world vibration monitoring data, which is 

collected from shearing pump bearings in a food processing plant and from 

bearings on a group of Gould pumps at a Canadian Kraft pulp mill company. 

These case studies have demonstrated the effectiveness of the proposed 

approaches. 

1.4. Thesis Organization 

The rest of this thesis is organized as follows: 

• In Chapter 2, we conduct a detailed literature review on the PHM, and give a brief 

introduction to some advanced PHM. 

• In Chapter 3, we introduce the basic principles of PHM based CBM optimization 

approach including PHM construction, assumptions and implementing procedures 

of the approach. 

• In Chapter 4, we investigate the utilization of the physical programming approach 

to transform a PHM based CBM multi-objective optimization problem into 

single-objective problem, thus we can systematically balance the objectives and 

determine the optimal policy. We also conducted a real world case study to 

illustrate the approach. 
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• In Chapter 5, we explore the approach of applying of GA to improve the accuracy 

of parameter estimation using maximum likelihood method. A real world case 

study is also given to illustrate the proposed approach. 

• In Chapter 6, we conduct another real world experiment to further demonstrate 

that GA can actually improve parameter estimation significantly. 

• Finally, in Chapter 7, we draw a conclusion from our research and present several 

directions of future work. 
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Chapter 2 

Literature Review on Proportional Hazards Model 

Nomenclature 

t : age of equipment 

Z : (z,,..., zk), vector of the covariates 

yi : covariate coefficient for covariate i 

A0 (•) : baseline hazard rate 

Since the proportional hazards model (PHM) was introduced in 1972 by D. R. Cox, it has 

been utilized in many fields such as biomedicine (Xu & Gamst, 2007, Dahlberg & Wang, 

2007, Kumar & Energi Ab, 1999), politics (Box-Steffensmeier & Zorn, 2001), 

transportation, crime and so on. It is especially widely used in the field of biomedicine 

and thousands of papers related to this topic can be found. But the research and 

application of applying PHM in maintenance field have not yet come to maturity. From 

1990s, interest in applications of the PHM in this field has greatly increased and it has 

begun to be adopted in maintenance in diverse areas, such as aircraft engines, machine 

tools, power transmission cables, etc. These applications can be classified into two main 

categories: maintenance optimization and reliability analysis. Applications in 
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maintenance optimization are using PHM to combine the age data with the condition 

monitoring data thus to determine the optimal maintenance policy. Maintenance 

optimization can improve system reliability and reduce overall maintenance costs. 

Applications in reliability analysis focus on applying PHM in the measurement and 

prediction of the reliability of components and systems considering different operation 

conditions. The components can be mechanical components, electronics components, 

software and other types. 

The most important reason that the PHM is more effective than previous approaches is 

that it considers not only time data but also condition data which influence the health of 

the component or equipment. In maintenance optimization, PHM can effectively estimate 

the risk of failure of equipment under condition monitoring. For reliability engineering, 

the reliability data is collected under different conditions. For instance, in maintenance 

optimization, PHM takes into account the event data (failure data and suspension data) as 

well as inspection data (vibration data or oil analysis data such as the parts per million 

(PPM) of iron or lead found in oil). In reliability analysis, examples may be equipment 

being used by different operators or under different temperature and humidity. All the 

environment conditions may have influence on the reliability characteristics of the 

equipment and should be considered. These inspection data and environment conditions 

are called covariates and they cannot be ignored when we deal with the maintenance 

optimization and reliability analysis problems. In a word, the PHM takes into account the 

age data as well as the condition monitoring data; the effects of different covariates 

influencing the time to failure of a system can be estimated in this model. PHM has been 
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found to be a valuable statistical procedure to estimate the risk of failure of equipment 

when it is under condition monitoring. 

2.1. PHM basic Model and Extensional Models 

a) The basic model of PHM 

The basic model of PHM (Jardine & Tsang, 2006) combines a baseline hazard function 

with a component including all the covariates which influence the time to failure, as 

follows: 

h(t,Z(t)) = — 
V 

- 1 
<J1j 

(2-1) 

where h(t,Z(t) denotes the hazard value or failure rate and it means the conditional 

probability of failure at time t, given the values of z, (t), z2 (£),...,zm (t). The first part of 

this model is a baseline hazard function fi/^it/riY'1, which takes into account the age of 

the equipment at the inspection point of time, given the values of parameters (3 and rj. 

(m 
The second part exp ^ yjzi (t) takes into account the covariates, (z, (t), z2 (t),..., zm (t)), 

v <=i y 

which are the key factors influencing the health of equipment, and their associated 

weights, yx,y2,...,ym. 

b) Nonparametric models 

The basic model of PHM which was just discussed is a parametric model. We have to 

identify their lifetime distribution before we can build the parametric models. But 
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sometimes the lifetime data follows a complex lifetime distribution and cannot be easily 

indentified. In this situation, nonparametric models (Shyur et al., 1999, Prasad & Rao, 

2002) appear to be a more effective approach, although parametric models are more 

effective than nonparametric models when lifetime data exactly follows a certain lifetime 

distribution. So the major advantage of nonparametric models is that they are totally 

distribution-free. The most general form of the nonparametric model used in the 

reliability field to analyze the lifetime data of components or equipments is given as 

follows (Shyur et al., 1999): 

A(t;z) = g(/?-z)-A0( t) (2-2) 

and the notations are listed as follows: 

A(t; z) : hazard rate at time t when the applied stress is z , 

A0 (t) : baseline hazard rate at time t, 

z : covariate vector (applied stresses), 

g{P • z) : relative risk function in the model. 

c) Semi parametric models 

Merrick et al. (2003) developed a semi parametric inference using a Mixture of Dirichlet 

Processes (MDP) approach, which is summarized as follows: 
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( r j ^ Z ^ / f c l ^ . Z , ) , 
(0. I G)~G, 

' (2-3) 
oG)~DP(G0,M), 

where / ( f , | Z,) = A ^ t ^ e ^ e - ^ ' 6 ^ (2-4) 

t, 
Ao (2-5) 

0 

The continuous function 6*,) is the baseline failure rate where 0j is the vector of 

unknown parameters specific to the zth equipment. Uncertainty about the 0 / s is described 

by specifying a prior distribution G . If the form of G is known but the hyper parameters 

are unknown, this class of problems is referred to as the hierarchical Bayes problems. If 

the form of G is unknown, then uncertainty about G must be modeled. One way to 

model this uncertainty is to describe uncertainty about G by a Dirichlet process prior 

denoted by G ~ DP(G0,M), Where G0 is the baseline prior and M is the strength of 

belief parameter. n{fi) denotes a parametric prior for the covariate effects (5. Research 

work on semi parametric models can also be found in some other papers (Kobbacy et al., 

1997, Kvam & Pena, 2005, Ishwaran & James, 2007, Horowitz & Lee, 2004, Cius & 

Nikulin, 2005, Bagdonavicius & Nikulin, 1997). 

d) The proportional intensity model (PIM) 

When Cox introduced PHM in 1972 he also mentioned proportional intensity model 

(PIM) (Lugtigheid et al., 2007, Lugtigheid et al., 2008). The difference between these 

two models is that the PHM is used to model the hazard function of lifetime, while the 
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PIM is used to model the intensity process of failures and repairs of a repairable system. 

Both PHM and PIM include illustrative variables. But the PHM can be deemed as a 

special case of the PIM because the PHM assumes that the system is renewed as "new 

one" after failure, while the PIM doesn't need to assume that. However, it should be 

noted that in many cases the term 'PHM' is used as a synonym of 'PIM'. After Cox's 

papers were published in 1972, the PHM was quickly and widely applied in the field of 

biomedicine, and in maintenance and reliability from 1980s, whereas the PIM only 

gained interest starting from early 1990s. 

e) The additive hazards model (AHM) 

Models with a hazard rate h{t\z) = h0 (t) + g(z) is called additive hazards model (AHM) 

(Pijnenburg, 1991, Badi 'A et al., 2002, Newby, 1994), where h0 (t) is the baseline hazard 

function, and g(z) is a function of explanatory variables z which does not need to be 

positive in order to have h((; z) > 0. After considering all the restrictions such as the 

baseline hazard rate hx has been supposed to be identical in all intervals, the additive 

hazards model is defined as follows (Pijnenburg, 1991): 

h{f, n(t), zn(l)) = h] s (t - tn(l)) + Pizn(f) (2-6) 

where n{t) is the number of repairs up to time t, /3s is a vector of stratum-specific 

regression coefficients and hx s is a stratum-specific baseline hazard function. 

f) Accelerated life testing (ALT) model 
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Accelerated life testing (ALT) (Shyur et al., 1999, Elsayed et al., 2006, Elsayed & Zhang, 

2007, Wang & Kececioglu, 2000, Zhao & Elsayed, 2005, Finkelstein, 2003, Mazzuchi et. 

Al, 1989 ) is a model built on the base of the PHM. It is used to obtain failure time data 

quickly under high stress levels in order to predict product life performance under design 

stress conditions. The assumption that covariates (applied stress) act multiplicatively on 

the failure time, or linearly on the log (failure time) is necessary for accelerated life 

testing models. Denote the failure time of a unit under a vector of covariates z by T, and 

the failure time under normal stress by T0. The accelerated life testing models assume 

that T0 = ezPT. Let A(t;z)be the hazard function at time t for z . Then the hazard 

function of the accelerated life testing models can be expressed in terms of a baseline 

hazard function /t0(-) as follows (Elsayed et al., 2006): 

A(t;z) = A0 (exp (z* P)t) exp(z' P) (2-7) 

The accelerated life testing models are equivalent to the class of linear models for 

Y = In T = In T0 - z'/? with its error density function defined corresponding to 

what A0 (t0) implies. Ordinary linear regression methods can be used to estimate /?, but it 

is difficult to include censored data in these methods. 

g) Extended hazard regression (EHR) model 

The extended hazard regression (EHR) model is used as a general model and includes the 

PHM and accelerated life testing models as special cases. It can be applied to create an 

accelerated life testing model with different types of stress loading. It provides a full 

likelihood approach to the estimation of the PHM and accelerated life testing models 
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while at the same time allowing for tests of the basic assumptions such as failure times or 

failure rates proportionalities. And extended hazard regression model can provide a 

broader framework for analysis. Generally speaking, extended hazard regression model 

cover a wide range of applications. For example, crossing survival curves are allowed in 

the accelerated life testing but not in the PHM. 

The general expression of the extended hazard regression model is shown as follows 

(Shyur et al., 1999): 

X{t\Z) = g,{aTZ)X0[gl{fiTZ)t] (2-8) 

and the notations are listed as follows: 

t : inspection time 

z, : applied stress (covariate) i,j = \,...,k 

Z : (zj ,...,zk), vector of the covariates 

X(t | Z) : hazard rate for a given Z 

U ) : baseline hazard rate 

g, (x), g2 (x) : positive functions, equal to 1 at x = 0 

: regression coefficient i,j = l,...,k 

A : regression coefficient i,j = \,...,k 

a,P : vectors of regression coefficients 
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k : total number of applied stresses and their interactions 

U+ : U+ =U for U>0;U+ = 0 for U<=0 

Elsayed et al. (2006) proposed a new model called the extended linear hazard regression 

(ELHR) model by generalizing the extended hazard regression (EHR) model and 

proportional hazards linear (PHL) model; here the PHL model expands the PHM in a way 

that considers a time by covariate interactions. The ELHR model function is described as 

(e.g., with one covariate) 

A(t; z) = /t0 ( t e { p ^ ' ) z e ( w ' ) z ) (2-9) 

h) Bivariate proportional hazards model 

When the studied unit experiences more than one event or when there exists some natural 

grouping of subjects, the lifetime data is no longer univariate but multivariate. 

Multivariate failure time data is also referred to as correlated or clustered failure time 

data. Statistical analysis of such data needs to account for intracluster dependence. The 

following is a bivariate PHM using vector hazard rate. In this model the covariates under 

study have different effects on two components of the vector hazard rate function 

(Sankaran & Sreeja, 2007). 

M', I t j ^ ) = tj)eiStj)l,i,j = 1,2,/ * j. (2-10) 

where, z is a x 1 covariate vector, /?.(^.)is the pi xl parameter vector, Ai(tj \tj,z) 

is the hazard function of the pair of lifetimes. T - (Tx, T2) given the covariate vector z , 
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and A0i (tj \ tj), i, j = 1,2, i * j is an unspecified baseline hazard function. When j3. ( t }) is a 

zero vector, the covariates has no effect on the hazard functions. Research on PHM with 

bivariate current status data can also be found in (Wang et al., 2008). 

2.2. Applications of PHM 

In 1980s research work focused on PHM application in maintenance optimization and 

reliability engineering appeared. From 1990s, interest in PHM applications in this field 

has greatly increased and it has begun to be adopted in industry in diverse areas, such as 

mining industry, automobile industry, power generation industry, semiconductor 

industry, papermaking industry, petroleum industry, aircraft engines industry (Jardine & 

M), construction industry (Metal, 2004), electronic components industry (Bendell et al., 

1991), locomotive diesel engines industry (Jardine et al.) and many other industries. 

These applications can be classified into two main categories: condition based 

maintenance optimization and reliability analysis. 

2.2.1. Applications in condition based maintenance optimization 

Applications in maintenance optimization combine the age data with the condition 

monitoring data in the PHM. In these applications the effects of different covariates 

influencing the time to failure of the components are considered thus the optimal 

maintenance policy can be determined to minimize the maintenance cost. Research 

studies focused in PHM applications in maintenance optimization are summarized as 

follows: 
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Jardine et al. (2008) described the development of an optimal predictive maintenance 

program for critical pump bearings in the food processing industry. Measurements are 

taken in three directions for the bearings under investigation: axial, horizontal and 

vertical. In each of these directions, the velocity spectrum was obtained in five frequency 

bands. In addition, overall velocity and acceleration are also measured in the three 

directions. Therefore there were altogether 21 covariates in this PHM model. 

Significance analysis was taken to reduce the covariates and three covariates were found 

out to be necessary: VEL#1 A (band 1 velocity in the axial direction), VEL#1 V (band 1 

velocity in the vertical direction), and VEL#2A (band 2 velocity in the axial direction). 

Assuming the inspection interval is 20 days, the transition probability matrices for the 

three covariates were estimated. Based on all this information, the optimal CBM 

replacement policy was determined. The results showed that, comparing to the failure 

replacement only policy, the optimal policy could achieve 84.5% of cost savings. 

EXAKT (Makis & Jardine, 1992) is a commercial software widely used in industry for 

CBM decision making. It was developed by Optimal Maintenance Decision Inc. 

(OMDEC). Jardine et al. (2003) used the EXAKT software to build a condition based 

maintenance optimization model for the interpretation of inspection data from a nuclear 

reactor station. The data set included the information of 11-year period from 1990 

onwards. In the nuclear reactors, hydro-dyne seals perform a vital function, and they can 

prevent the leakage of heavy water from the reactor. So site engineers would like to 

optimize the preventive seal replacement intervals in order to minimize the overall failure 

and maintenance costs. Therefore PHM based statistical decision methodology was 

applied to determine the optimal moment at which to perform proactive maintenance. In 
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this case, two types of data were used to determine the optimal CBM policy: inspection 

data and events data. Inspection data is referred to the condition monitoring data (called 

covariates) which affect the health of each hydro-dyne seal along with the date of 

inspection and the corresponding working age of the seal. The event data comprises the 

dates and working ages at particular events, including beginning event (the installation of 

a new seal), failure event (the failure of a seal), and suspension event (the replacement of 

a seal that has not yet failed). A proportional hazards model was fitted to the data by the 

maximum likelihood method and the LeakRate was found out to be the only significant 

covariate. Finally the optimal replacing policy was determined and around 52.5% saving 

may be realized over the current replace-on-failure policy. 

Lin et al. (2006) proposed the application of a principal components proportional hazards 

regression model in CBM optimization. They gave two examples to illustrate this 

application. The oil analysis data set of the first example was collected from 

transmissions on haul trucks in a mining company. After a series of analysis, the original 

11 covariates: sodium (Na), potassium (K), iron (Fe), aluminum (Al), titanium (Ti), 

phosphorus (P), zinc (Zn), calcium (Ca), magnesium (Mg), molybdenum (Mo) and 

vanadium (V) were reduced to six significant covariates: Fe, Al, Ti, Mg, Mo and V. 

Three models (SW, PC 23 and PC_236) were built and compared. The final results 

suggested that the PHM PC_23 and the corresponding optimal replacement policy 

performed better than the other two models for the transmissions in this example. The 

other example was vibration analysis data set taken from a pulp and paper company. This 

data set contains event records and vibration measurements collected from water pumps 

every month. The pumps basically work 24 h per day, 7 days per week. Vibration signals 
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were taken at seven different locations. For each vibration signal, the overall amplitude 

and the amplitude for six different frequency bands were recorded. So, altogether there 

are 49 covariates recorded. Preliminary correlation analysis was applied to eliminate the 

covariates and the 49 original covariates were transformed into 49 principal components. 

The final model included only one covariate, the fifth principal component (model 

PC_5). At the same time, a 'simple' Weibull model (model SW) without considering 

covariates was also built for comparative study purpose. The result of comparison of 

these two models indicated that the model PC_5 is a reasonably excellent model. 

PHM was also utilized by Vlok et al. (2002) to determine the optimal replacement policy 

for a vital item which is subject to vibration monitoring. In their study they chose 

circulating pumps in a coal wash plant as the research case. The lifetime data was 

collected during a period of 2 years. Their study shows that, even with some problems in 

the collected data, vibration measurements can be used in proportional hazards modeling 

and that a useful decision policy can be obtained. 

In the research by Rao & Prasad (2001), the PHM was used to analyze failure data and 

plan maintenance intervals for material handling equipments in mining industry, such as 

loaders, trucks, dozers, dumpers and etc. In this paper PHM was applied to model the 

repairable equipment whose performance is affected by concomitant variables. Graphical 

methods were used to calculate maintenance intervals. 

Kobbacy et al. (1997) proposed a heuristic approach for implementing the PHM to 

schedule future preventive maintenance actions on the basis of the equipment's full 

condition history. An example based on data for four similar pumps used in four different 
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plants was taken to illustrate their approach. This approach can be applied to repairable 

systems and does not require any restrictive assumption such as renewal regarding the 

quality of corrective work or planned maintenance. The main assumption in this approach 

is that lives of components following preventive maintenance or corrective operation 

depend on covariates values measured at points in time just before the maintenance work, 

and that lengths of these lives are conditionally independent. There were altogether 8 

covariates: (a) age (age), (b) average preventive maintenance (PM) interval (avintpm), (c) 

total number of failures (nofails), (d) total number of PMs (pmno), (e) total down time of 

all PMs (tdtpm), (f) total man hours of all PMs (tmhpm), (g) time since last corrective 

work (tslco), (h) time since last PM (tslpm). After detailed analysis, three covariates, 

nofails, tslco and tslpm, were selected for preventive maintenance and the model was 

built as: A = ApmQ(t)exp(0.034nofails-0.0026tslco + 0.002Stslpm); two covariates, 

tmhpm and tslco, were selected for corrective operation (CO) and the model was built as: 

Ko - Ko,o (0 exp(0.03 Itmhpm - 0.0047tslco). Their study results indicated a higher 

availability for the recommended schedule than the availability resulting from applying 

the optimal preventive maintenance intervals as suggested by using the conventional 

stationary models. 

2.2.2. Applications in reliability analysis 

Applications in reliability analysis are applying PHM in the measurement and prediction 

of the reliability of component or equipment by using covariates to describe different 

operating conditions. Research studies focused on PHM applications in reliability 

analysis are summarized as follows: 
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Elsayed & Chan (1990) used PHM to estimate thin oxide dielectric reliability and time-

dependent dielectric breakdown hazard rates. These models are distribution free since no 

assumptions need to be made about the failure time distribution. However, there is a 

necessary assumption that the hazard rate functions for various devices when tested at 

various stress levels are proportional to one another. The need for proportionality can be 

relaxed by using time-dependent explanatory variables or stratified baseline hazard rates. 

In this approach, two groups of models are considered: group one ignores interactions 

between temperature and electric field while group two considers several forms of 

interaction. 

Elsayed et al. (2006) applied extended linear hazard regression (ELHR) model to study 

the time-dependent dielectric breakdown of thermal oxides on n-type 6H-SiC using 

laboratory data. The ELHR model was extended from the extended hazard regression 

(EHR) model by generalizing the extended hazard regression model and proportional 

hazards linear (PHL) model; here the PHL model expands the PHM in a way that it 

considers covariate interactions. Their results suggest that the reliability of oxides on 6H-

SiC will be satisfactory for long-term operation only if the oxide field is kept below 5 

MV/cm at temperatures up to 150°C. So their research effectively concluded SiC MOS 

(metal-oxide-semiconductor) devices from many high-temperature applications although 

SiC has a high inherent temperature capability. 

Kumar et al. (1992) used PHM to examine the effects of two different designs and 

maintenance on the reliability of a power transmission cable of an electric mine loader. In 

this paper, 6 covariates were excluded out of 8 covariates and only the cable type (z,) and 

the first repair (z2) were found to have a significant effect on the hazard rate of the 
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cable. The plotting of the estimated log-cumulative hazard rates showed that the hazard 

rate for the cable type B is less than the cable type A . Base on these results they 

suggested that cable type B be used so that unplanned interruption of production can be 

reduced. 

The study of Prasad & Rao (2002) involved failure data of an electro-mechanical 

equipment in an underground coal mine. The failures due to electrical problems (z,), 

compressed air (z2) and cable fault (z3) were found to be significant. The maximum 

likelihood method was used to estimate the parameters and a PHM was built with the 

data set. The results indicated that the failure rate due to electrical problems was 19% 

more than compressed air problems and 42% more than cable fault problems. Thus 

additional attention should be paid to reduce the failures due to electrical problems. In 

this paper, they gave another example of thermal power unit to study the reliability of 

repairable systems considering the effect of operating conditions. In this case, the failure 

time data was collected through a long period of four years, and the failures due to 

boiler (z,), electrical (z2) and turbine (z3) were selected as significant covariates. A 

PHM model was built with the data set to optimize preventive maintenance interval in the 

thermal power unit. 

Campean et al. (2001) presented a general PHM based methodology for automotive 

systems life prediction modeling. This approach aimed to establish a correlation among 

the degradation mechanism, the real world customer usage profile and the rig life testing. 

An example of development of a life model for the camshafit-timing belt was given to 

illustrate this approach. In this example, tooth shear fatigue mechanism led to the 
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common cause failure mode and the covariates were found to be the tooth deflection and 

belt operating temperature. The contribution of building this timing-belt model is that it 

can directly establish a correlation between damage accumulation in real world 

conditions and belt life testing under laboratory conditions. Practically it can be used 

either as a life prediction tool for different usage profiles, or as a risk assessment tool in 

establishing the service interval. 

In the paper of Eliashberg et al. (1997), PHM was utilized to calculate the reserve for a 

time and usage indexed automobile warranty. Purchased time and used mileage are 

selected as concomitant variables. 

The PHM is also used in multi-sample reliability modeling. In the paper of Mudholkar & 

Sarkar (1999), the analysis of multi-sample data was illustrated using the bus motor 

failure. Multi-sample reliability data are often found in the monitoring of repair-reuse 

systems. The PHM based multi-sample reliability model follows distributions with 

unimodal and bathtub hazard functions, yields a broader class of monotone hazard rates, 

and can be analyzed and computed in a simple way. Generally, it can be used for 

proportional hazards modeling in comparative studies of lifetime data from several 

populations. 

Gasmi et al. (2003) developed a PHM based statistical model of complex repairable 

systems. These systems are observed to operate in either loaded or unloaded mode. In 

most cases, a system is in loaded operation. But sometimes the system is placed in an 

unloaded status even though it is mechanically still running. It is assumed that the failure 

intensity of an unloaded operation is lower than loaded operation because the operating 
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intensity is reduced in the unloaded mode. In their research, a PHM was used to capture 

this potential reduction in failure intensity due to switching of operating models. A case 

in the B. C. Hydro Power was used to illustrate this model. The data was collected from a 

specific turbine in this power station in a period of one year. Altogether 466 sojourns (the 

time between two actions) were recorded, of which 142 ended with failure (140 in loaded 

mode and 2 in unloaded mode). There were also 60 major repairs, 88 minor repairs and 

the remaining data were minimal repairs (the unit was stopped due to being taken offline 

and was restarted when needed). The purpose of building this model is to quantify the 

impacts of performing these repair actions on the failure intensities. 

JoWiak (1992) developed an approach to utilize PHM in reliability analysis of 

microcomputer systems. In this approach, he examined the influence of two concomitant 

variables, temperature and mean daily user's exploitation time of the system, on system 

reliability and found that the PHM with Weibull baseline failure rate had considerable 

potential for estimating equipment failure rate in the presence of time-dependent and 

time-independent concomitant variables. He recommended that PHM should be used 

more frequently in this field of engineering reliability. The fully parametric PHM allows 

engineers to examine the relative influences of equipment age and covariates on 

equipment failure, including only those covariates which have a statistically significant 

effect on time to failure. 

Ansell & Phillips (1997) used PHM to represent the repairable data from the hydrocarbon 

industry. The data set consisted of two parts: (1) failure data in a pipeline arising from a 

set of different causes; (2) information supplied on a daily basis on average temperature 

and the stress the system was under. Using the two covariates, stress and temperature, 



several models were built to fit the data set. Residuals based diagnostic techniques using 

PHM and graphical methods were used in this paper to interpret these repairable data. 

2.3. Introduction to CBM Software EXAKT 

EXAKT is a software package for CBM data pre-processing, proportional hazards 

modeling and maintenance decision making and is designed to address complex real 

world problems. EXAKT (Makis & Jardine, 1992) was developed by Optimal 

Maintenance Decision Inc. (OMDEC) (www.omdec.com) which is founded by the 

Centre for Maintenance Optimization and Reliability Engineering (C-MORE) in the 

Department of Mechanical and Industrial Engineering at the University of Toronto. The 

fundamental papers for the development of the first version of EXAKT were the papers 

by Makis and Jardine (1992) and Banjevic et al. (2001). This software uses available 

inspection and event data, such as recent oil or vibration data histories obtained from 

equipment condition monitoring, to build a Weibull PHM off-line, determines the 

optimal preventive replacement policy, and then processes the data obtained from an on-

line condition monitoring system to make optimal maintenance decisions. EXAKT uses 

the basic model of PHM which is introduced earlier. EXAKT has been widely applied in 

many different industrial areas such as electrical utility industry, food process industry, 

mining industry, nuclear industry, defense sector, construction sector, and petrochemical 

industry. Its customers are found all over the world including ABB, BP Australia, DEI -

Maryland, USA, SKF, Oceana Sensor Technologies, USA, Hydro One, Canada, 

Maritime Platforms Divisions, Australia, Cerrejon Coal, Columbia, Profertil, Argentina, 

PT Inco, Indonesia, Kobe Steel Co, Japan, etc. 
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Chapter 3 

Principles of Condition Based Maintenance Using 

Proportional Hazards Model 

Nomenclature 

h : hazard value (failure rate) 

t : equipment age 

J3,rj: PHM parameters 

yi: covariate coefficient for covariate i 

z,. (t): covariate i value at time t 

PHM based CBM is a maintenance process which decides maintenance actions using the 

information collected through condition monitoring. The objective of PHM based CBM 

is to avoid unnecessary maintenance tasks by performing maintenance actions only when 

there is evidence that failure is approaching. By reducing the number of unnecessary 

scheduled preventive maintenance operations, the CBM optimization approach using 

PHM can significantly decrease maintenance cost if it is appropriately established and 

effectively implemented. 
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This chapter mainly discusses the basic principles of CBM optimization using PHM 

including PHM construction, assumptions and implementing procedures of the approach. 

In CBM optimization process using PHM, Weibull distribution function PHM is used to 

model the data. PHM is a valuable statistical procedure to estimate the risk of failure of a 

component or equipment when it is under condition monitoring. The most important 

advantage of PHM is that it considers the age data as well as the condition monitoring 

data thus optimal maintenance actions can be effectively scheduled. The PHM function 

combines the baseline hazard function and the covariates together. The age of the 

equipment is the main variable while the condition information can be considered as a 

series of covariates. 

3.2. Assumptions 

In the CBM approach using PHM, we consider a parametric PHM with Weibull baseline 

hazard function as the model for the hazard function. This model is also known as 

Weibull parametric regression model. There are two important assumptions for the CBM 

approach using PHM. 

Assumption 1: The lifetime data of the items are independent and identically distributed 

and follow a Weibull distribution. 

3.1. Methods 

P ( t \ h{t,Z(t)) = — -
ri\ri) 

T./MO 
(3-1) 
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Assumption 2: An item is replaced with a new one either because of failure or of 

suspension, and the system is restored to a "new one" after replacement. 

3.3. Procedures 

There are six steps to perform CBM based on PHM, which are described as follows: 

Step 1 Significance analysis 

Identify the best set of covariates which are significantly influencing the hazard rate of 

the equipment. 

Step 2 Parameter estimation. 

Estimate the PHM parameters based on the inspection and event data using the maximum 

likelihood method. 

Step 3 Transition probability matrix development. 

Determine transition probability matrix based on the covariates values history for future 

covariates prediction. 

Step 4 Cost data estimation. 

Estimate the preventive cost and failure cost respectively based on the historical data. 

Step 5 CBM optimization. 

Perform optimization and determine the optimal risk threshold corresponding to the 

lowest cost per unit of time, and thus the optimal CBM policy. 

Step 6 Deploy the CBM optimization policy. 
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Apply the optimal CBM policy in maintenance practice: perform preventive replacement 

when the risk K x h(t,z(t)) at the given inspection point of time is greater than the 

optimal threshold value d *; perform failure replacement if failure occurs between two 

inspection points of time. 
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Chapter 4 

CBM Optimization Considering Multi-Objective 

Nomenclature 

g. : class function of design objective/ 

g. : value of design objective i 

gn, ...,gi5' boundary values of preference ranges for design objective i 

d : risk threshold value 

R(d) : reliability function 

C(d) : cost function 

C : preventive cost 

C+K : failure cost 

CBM optimization objectives such as maximizing reliability and minimizing 

maintenance costs are often conflicting to each other. As mentioned in Chapter 1, the 

current method can only deal with single optimization objective. Either minimizing 

maintenance cost or maximizing reliability is set as the only optimization objective, while 
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the other objective can only be used as a constraint. So it is difficult to systematically 

investigate the tradeoff between the optimization objectives and find the optimal solution 

that best represents the decision maker's preference on the optimization objectives. 

In our research, we find out the application of the physical programming approach can 

deal with the multi-objective optimization problem. Physical programming is an effective 

multi-objective optimization approach developed in (Messac, 1996). It presents two 

major advantages (Tian et al., 2009): (1) it is an effective approach to capture the 

decision maker's preferences on the objectives by eliminating the iterative process of 

adjusting the weights of the objectives, and (2) it is easy to use in that decision makers 

just need to specify physically meaningful boundaries for the objectives. 

In this chapter, we propose an approach based on physical programming to deal with the 

multi objectives involved in CBM optimization, that is, the cost objective and the 

reliability objective. 

4.1. Multi-objective CBM Optimization Using Physical 

Programming 

4.1.1. Review on physical programming 

Physical programming (Messac, 1996) is a multi-objective optimization tool that 

explicitly incorporates the decision maker's preferences on each design metric into the 

optimization process. Within the physical programming procedure, the design metrics are 

classified into four classes: smaller is better (i.e., minimization), larger is better (i.e., 

maximization), center is better, and range is better. A class function is a function of a 

design objective. The value of a class function represents the preference of the designer 
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on the objective function value, and the smaller the class function value is, the better. 

There are two types of class functions, soft class functions and hard class functions, as we 

can see in Figure 2 (Messac, 1996), the soft class functions are additive constituent 

components of the aggregate objective function (to be minimized) of the optimization 

model while the hard class functions only work as the constraints. For each type of class 

function, preference falls under four classes; three of which are shown in Figure 2. 

(1) Class-1: Smaller-Is-Better (SIB), 

(2) Class-2: Larger-Is-Better (LIB), 

(3) Class-3: Center-Is-Better (CIB), 

(4) Class-4: Range-Is-Better (RIB). 
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For Classes 1 -H or 2-H, the designer must provide a single scalar value that defines the 

boundary of the feasible space; for Class 3-H two values are needed. For soft class 

functions, five values are required for Classes 1 -S or 2-S while nine values are needed for 

Classes 3-S. Consider for example the case of class-1 soft class function (class 1-S), the 

qualitative meaning of the preference function is depicted in Figure 3. The value of the 

design metric, g., is on the horizontal axis, and the corresponding class function, g., is on 

the vertical axis. A lower value of the preference function is better than a higher value 

thereof. 

Class 1-S 

Figure 3 Qualitative meaning of soft class function 

Physical programming allows the decision maker to express ranges of different levels of 

preference with respect to each design metric with more flexibility and specificity than by 

simply declaring minimize, maximize or equal to. For Class 1-S, shown in Figure 3, the 

ranges are defined as follows. 

Highly desirable range: g: < gn , 

Desirable range: gn < g. < gi2, 
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Tolerable range: gj2 < gt < gi3, 

Undesirable range: gi3 < g, < gl4, 

Highly undesirable range: gi4 < gi < g,5, 

Unacceptable range: g, > gi5. 

The parameters gn through gj5 are physically meaningful constants associated with each 

design metric i . What the design maker needs to do in the physical programming 

framework is just to specify the values of the parameters gn, gj2, gi3, gi4, and gj5 for 

each design metric i , and the class function can be completely determined by these 

parameters. 

The range limits define the intra-criteria preference, while the "One vs. Others" criteria 

rule (OVO rule) describe the inter-criteria preference. Suppose there are two options: (1) 

full reduction for one criterion across a given preference range, say, the tolerable range; 

(2) full reduction for all the other criteria across the next better range, say, the desirable 

range. The OVO rule decides that option (1) is preferred over option (2). For example, 

assume that we have four criteria to be minimized, criterion 1 to 4. We say that the 

reduction of criterion 1 from the right boundary to the left boundary of the tolerable range 

is preferred over the reductions of criterion 2, 3, and 4 all from the right boundary to the 

left boundary of the desirable ranges. The OVO rule is built into the generated class 

function of each criterion. 
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4.1.2. Physical programming based multi-objective CBM optimization 

model 

In physical programming based multi-objective optimization approach, there are two 

optimization objectives, cost and reliability. The cost objective class function is an 

increasing function, as shown in Figure 4. The lower the cost, the better it is. The values 

in the figure are just to qualitatively illustrate the cost class function. The reliability class 

function is a decreasing function of reliability value, as shown in Figure 5. The higher the 

reliability, the better it is. 

Figure 4 The cost objective class function 

Figure 5 The reliability objective class function 
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The physical programming approach transforms a multi-objective optimization problem 

into a single-objective optimization model. The soft class functions of design objectives 

are combined into the aggregate objective function/, which is to be minimized; d is the 

risk threshold value and it is the design variable in the optimization model. The physical 

programming based optimization model for CBM optimization problem is given as: 

min f{d) = log10 { I [ i , (R(d)) + gc (C(</))]} 

s.t. (4-1) 
R>R0,C<C0 

d> 0 

The cost and reliability values with respect to a given risk threshold value d can be 

calculated using the method developed by Banjevic et al. (2001). The objective function 

values are used to further calculate the corresponding class functions. The aggregate 

objective function can then be calculated and optimized to find the optimal risk threshold 

value d*. Therefore multi-objective optimization problem can be formulated as a single-

objective optimization problem. 

4.2. Case Study 

In this section, an example of condition based maintenance of shear pump bearings in a 

food processing plant will be used to illustrate the proposed approach, as shown in Figure 

6 and Figure 7. Details of this case can be found in (Banjevic et al., 2001). The objective 

is to find an optimal condition based replacement policy to minimize the long-run 

expected replacement cost per unit of time, and to improve reliability, given the condition 

monitoring data (vibration data) and replacement histories. 
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Figure 6 Shear pump 

Figure 7 Bearing 

In this case, totally 21 (=3+3*5+3) vibration measurements were collected using 

accelerometers, including vibration data in axial, horizontal and vertical directions for the 

overall velocity (3), velocities in 5 bands (3*5=15) and acceleration in three directions (3). 

There are 25 histories in the recorded data, including 13 failure replacements (ended with 

failure) and 12 preventive replacements (ended with suspension). Using the software 

EXAKT (Banjevic et al., 2001), the significance analysis was performed, and three 

significant covariates were identified: VEL#1 A (band 1 velocity in the axial direction), 

VEL#1 V (band 1 velocity in the vertical direction), and VEL#2A (band 2 velocity in the 
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axial direction). The PHM parameters can thus be estimated using EXAKT, which are 

77 = 1584,/? = 4.992,/, = 5 . 8 3 1 , = 36.55,^ = 24.05, and the resulting hazard function 

is given as follows: 

V 
e(rsIA(')+r2z2A(0+rsiy«)) 

4.992 f ^ 4 . 9 9 2 - 1 
(4-2) 

1584 v1584y 

(5.831z1 / ( (/)+36.55Z2J< ( 0 + 2 4 . 0 5 3 , , , ( / ) ) 

To calculate the cost and reliability measure, we need to specify the transition probability 

matrix and EXAKT can be used to estimate the transition probability matrices for the 

three covariates. The transition probability matrix indicates the probabilities of a 

covariate in different ranges at the next inspection time given its current range. Assuming 

the inspection interval is 20 days, the transition probability matrices for covariate 

VEL#1 A, VEL#2A VEL#1V are shown in Table 1, Table 2 and Table 3 respectively. 

These matrices can be used to predict future covariate values. Take the transition 

probability matrix for VEL l A as an example, if the covariate value falls in the first 

range (0 to 0.035266) at current inspection point, then at next inspection point of time the 

probability of covariate value falling in the same range is 0.765522. 

Table 1 Transition probability matrix for covariate VEL#1 A 
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VEL_1A 
| | | i | | i i JS gSrQR 

r \ ^ J V ^ . . • m VEL_1A 

(^0765522) 0.214501 0.0187137 0.00123314 3.01141 e-005 

VEL_1A 

• 0.0419512 0.809202 0.134907 0.0134952 0.000445182 

ftmSSm 0.00436408 0.160862 0.683157 0.144277 0.00734044 
' t wfi'' /»' f"*v 0.000138356 0.00774194 0.0694142 0.838071 0.0846349 

0 0 0 0 1 

Table 2 Transition probability matrix for covariate VEL#2A 

rfFl ?A SB 0.018036 
to 0.047428 

ll.Ul/ M . 
to 0.11356 

0.11356 
to 0.394788 

Ahove 
0.394788 

0.579321 0.371903 0.0459901 0.00269327 9.27563e-005 

t'&U'l-j -xl.TXiA} 0.0852781 0.731248 0.168793 0.0140551 0.000625567 

0.0114118 0.182657 0.691931 0.10703 0.00696988 

f"..-' -SfRr,"f?.}":; 0.0023802 0.0541698 0.381196 0.499451 0.0628029 

0.000559654 0.0164605 0.169477 0.428769 0.384734 

Table 3 Transition probability matrix for covariate VEL#1 V 

VEL_1V T ^ n T J / 

^ 0.718524 

H H T I J M T L * 

0.241787 0.0374241 0.00223751 

l u T ^ O i 1 

2.65316e-005 

•>: • 0.11716 0.662394 0.202472 0.0177508 0.000223795 

~Mri*r,H~J!< - ' 0.0185641 0.207274 0.665316 0.107402 0.00144433 

U J § " f _XJ. 0.00428184 0.0701032 0.414337 0.503996 0.0072825 

0.00365418 0.0636111 0.401023 0.524133 0.00757917 

After the transition probability matrices are obtained, we need to estimate the preventive 

replacement cost and failure replacement cost. Based on the expertise and previous 
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experience the preventive replacement cost (C) is estimated to be $1,800, and the failure 

replacement cost (C+K) is $16,200, so K can be calculated to be $14,400. 

To use physical programming, we need to specify the boundary values for each objective 

to indicate the preferences on the objectives. Suppose the specified boundary values for 

cost and reliability are given as follows: 

Cost: [gC] > Sc2' Sa' 8ca > §cs > ] = 0,12,15,20] (4-3) 

Reliability: [gRl ,gR2 ,gRi ,gR4 ,gR5, ] = [0.99,0.98,0.95,0.90,0.80] (4-4) 

Using the optimization function in Malab optimization toolbox, the optimal solution can 

be obtained as follows: 

d* = 10.79$ / day, C* = 10.48$ / day, R* = 0.9915 (4-5) 

So the optimal threshold value d* is 10.79$/day, which means if the risk, that is penalty 

cost K times the hazards value (K x h(t,Z(t)), exceeds 10.79$/day at the inspection point 

of time, the preventive replacement should be performed. With the optimal maintenance 

policy, the average maintenance cost is estimated to be 10.48$/day and the reliability of 

the component is around 0.9915. From these results we can see that the optimal cost falls 

into the tolerable range, and the optimal reliability is in the highly desirable range. The 

optimization results can reflect the designer's preferences on the objectives, and the 

tradeoff between the two design objectives. 

Next we will investigate another set of boundary values in which the requirement on the 

reliability objective has been improved: 
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Cost: [gci >gc2>gc3>gc4>gc5>] = t8*10,1 2,1 5,20] (4-6) 

Reliability: [gn.gR2, gR3, g*4 ,gRS,] = [0.99999,0.999,0.995,0.99,0.95] (4-7) 

Conducting the optimization, we can obtain the following optimal solution: 

d* = 3.4897$ / day, C* = 11.22$ / day, R* = 0.9973 (4-8) 

So for the new set of boundary values, the optimal risk threshold value d* is 3.4897$/day, 

the optimal maintenance cost is 11.22$/day and the component reliability is 0.9973. 

Comparing with the previous results, when there is a higher requirement on reliability, 

the optimal risk threshold value d* decreases. Both of the optimal cost and optimal 

reliability fall into the tolerable ranges, in order to make the best tradeoff between these 

two objectives. The optimization results reflect the change in the designer's preferences. 

In this chapter, we investigate the application of the physical programming approach to 

deal with the multi-objective CBM optimization. We conduct a real world shear pump 

bearing case study to illustrate the proposed approach. Based on these research results we 

can conclude that using the proposed physical programming based multi-objective CBM 

optimization approach, the decision maker can systematically and effectively make good 

tradeoff between the cost objective and reliability objective. 
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Chapter 5 

PHM based CBM Optimization Using Genetic 

Algorithms 

Nomenclature 

L : likelihood value 

/ ( t ) : probability density function (PDF) 

R(t) : reliability function 

F{tr) - F(t,) : likelihood function term for interval and left censored data 

nE : number of exact failure data 

nR : number of right failure data 

n, : number of interval and left censored data 

<b(d) : average cost per unit time 

d : risk threshold level 

C : preventive replacement cost 
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K : penalty cost 

C + K : failure replacement cost 

Q(d) : failure probability 

W(d) : expected time until replacement 

Parameter estimation is very critical in PHM based CBM optimization process. The 

precision of parameter estimation greatly affects the accuracy of the model in 

representing and predicting the equipment health condition. Traditional optimization 

methods such Newton's methods or BFGS Quasi-Newton method can only find local 

optimization value. Genetic algorithms (GA) can achieve much better results since it has 

the advantage of global optimization ability and flexibility in modeling the problem 

without any strict mathematical requirements. In this chapter, we will present a GA 

approach for PHM parameter estimation using maximum likelihood method. 

5.1. Review on Genetic Algorithms 

GA is adaptive method which is developed based on the genetic processes of biological 

organisms. They are very effective in solving optimization problems. GA involves 

converting design parameters into genes. Simple parameters such as only Yes or No can 

be simply denoted by genes of 0 and 1, while those more complex parameters can be 

alphabets or numbers other than binary. 

The basic idea is that natural populations evolve over many generations according to the 

principles of natural selection and survival of the fittest. GA is able to "evolve" solutions 

to real world problems by mimicking this process (Busetti). 
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5.1.1. Basic mechanism of GA 

In GA, a population is firstly created by randomly generating a group of individuals. 

Each individual represents a possible solution to a given problem. The individuals in the 

population are then evaluated by given a score based on how well they perform at the 

given task. According to their fitness, individuals are selected by the rule of the higher 

the fitness, the higher the possibility of being selected. Two individuals are then 

randomly selected to exchange part of their elements to create one or more offspring; 

next the offspring are mutated randomly. This process continues until an appropriate 

solution has been found or a certain number of generations have passed, depending on the 

practical requirements. Generally there are five steps described as follows (Skinner): 

Step 1: Population. Generate a group of individuals at random to create a population. 

Step 2: Evaluation. Evaluate the individuals based on how well they perform at the given 

task, which is called fitness. 

Step 3: Selection. The most common type of selection is 'roulette wheel selectionIn this 

selection, individuals are given a likelihood of being selected which is in proportion to 

their fitness. And then individuals are selected randomly based on these likelihood and 

create a new population. 

Step 4: Crossover. Two individual are then selected from the new population randomly 

and create offspring. The most common crossover is single point crossover. In single 

point crossover, a locus is chosen at which the remaining elements are exchanged from 

one parent to the other. An example is given as follow. 
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Parent 1 Parent 2 

1 0 0 1 1 0 1 1 1 1 0 0 1 0 1 0 1 0 1 0 

Offspring 1 

1 0 0 1 1 0 1 1 0 0 1 1 1 0 0 1 0 0 1 0 

1 0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 0 1 0 

Offspring 2 

1 0 1 0 0 1 1 1 1 1 0 0 1 0 1 0 1 0 1 0 

Figure 8 Crossover example 

In Figure 8, we can see the offspring 1 takes first section of the chromosome from parent 

1 and second section from parent 2, while the offspring 2 takes first section of the 

chromosome from parent 2 and second section from parent 1. In single point crossover, 

the point at which the chromosome is broken is selected randomly and only one crossover 

point exists. Crossover is not usually applied to all pairs of individuals selected, which 

gives each individual a chance of passing on its genes. The probability of crossover 

occurring is around 20% to 60%. 

Step 5: Mutation. To ensure that the individuals are not all exactly the same, the selected 

elements can either be changed by a small amount or replace it with a new value. Only a 

small chance of mutation is allowed and the probability is usually between 0.5% and 

10%. However, mutation is important in GA which can guarantee genetic diversity within 

the population. A visual example for mutation is shown in Figure 9. In this figure, we can 

see the 13th gene '0' is selected and mutated to '1'. 
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Before 
Mutation 11100101011 10101010 

After 
Mutation 11100101011 0101010 

Figure 9 Mutation example 

5.1.2. Strength and weakness 

GA is a very powerful optimization approach with two key advantages. (1) Global 

optimization ability. GA has been recognized as one of the most effective approaches in 

searching for the global optimal solution (2) Flexibility in modeling the problem. GA has 

no strict mathematical requirements, such as derivative requirement, on the objective 

functions and constraints. The only requirement is that the objective functions and 

constraints can be evaluated in some way. GA is also suitable for dealing with those 

problems including discrete design variables. (Tian & Zuo, 2006). 

Although GA is easy to implement and is powerful for solving difficult problems, it has 

the disadvantage of being time-consuming. GA usually requires relatively more time to 

achieve the global optimization value because it has to evaluate each individual in the 

whole population and perform the genetic process for many generations, e.g. 500 

generations or more. 

5.1.3. Applications 

GA works effectively on quickly finding a reasonable solution to a complex problem by 

searching through a large and complex search space. They are most effective in a search 

space for which little is known. GA has been widely used in many fields such as 
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industrial design by parameterization, scheduling, network design by construction, 

routing, time series prediction, database mining, control systems, artificial life systems, 

and molecular conformation in chemistry. If classified by technique, GA has many 

applications, including binary chromosomes for set membership and function 

optimization, real-valued chromosomes for function optimization, order-based 

chromosomes for optimization by construction, tree-based chromosomes for genetic 

programming, decision theory, database mining, etc. and domain-specific chromosomes 

for specialized solutions to particular problems. 

5.2. Parameter Estimation Using the Maximum Likelihood 

Method in Reliability Analysis 

Maximum likelihood parameter estimation is to determine the parameters that maximize 

the likelihood of obtaining the sample data. 

The following is the conventional likelihood function, which is applied to reliability 

analysis involving only events data but no condition monitoring data. 

L = n / ( ' , ; 0) • n ; 0) • n ; 0) - F{ta M (5-1) 
1=1 ;=1 1=1 

There are four types of data: exact failure data, right censored data, left censored data and 

interval censored data. Left censored data can be considered special case of interval 

censored data. Some examples of different types of data are given in the Figure 10 and 

Table 4. Unit 1 is left censored data: we know this unit failed before 100 hours but we 

don't know the exact failure time. Unit 2 is exact failure data since it failed exactly at 110 

hours. Unit 3 is interval censored data: it is known that this unit failed in the interval 
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between 40 hours and 140 hours but the exact failure time is unknown. Both of Unit 4 

and 5 are right censored data: Unit 4 was suspended at 120 hour and Unit 5 was 

suspended at 180 hours when they were still working. 

Unit 1 

Unit 2 

Unit 3 

Unit 4 

Unit5 

< r, 

2 

> n 

Figure 10 Examples of different types of data 

Table 4 Examples of different types of data 

Unit No. Failure Time 
(Hours) 

Failure Time 
(Hours) Data Type 

1 0 100 Left censored 
2 110 Exact 
3 40 140 Interval censored 
4 120+ Right censored 
5 180+ Right censored 
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5.3. Parameter Estimation Using the Maximum Likelihood 

Method for PHM 

Condition based maintenance optimization process using PHM considers inspection data 

as well as events data. The effects of different covariates influencing the time to failure of 

equipment can also be estimated thus the model will more accurately represent the health 

condition of the equipment. In CBM using PHM, two types of replacements occur 

according to the optimal maintenance policy: failure replacement and preventive 

replacement. Failure replacements generally cost more than preventive replacements. 

Failure replacement is performed when the component is ending with failure. Preventive 

replacement takes place when the component still works and is ending with suspension. 

For example, in the case of shear pump bearings in a food processing plant which was 

discussed in Chapter 4, there are altogether 25 histories recorded; 13 of them are failure 

replacements and 12 of them are preventive replacements. In a failure or suspension 

history, vibration measurements were collected at different inspection points, and the 

vibration measurements are used as covariates in PHM. By deploying the optimal policy 

some of the items are replaced on schedule when they are still working while the others 

fail before schedule. 

To estimate the parameters in PHM using maximum likelihood method, three steps are 

required. 

Step 1: Find the likelihood function 

(5-2) 
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where n\ denotes the number of failure histories, and 112 denotes the number of suspension 

histories. The first component considers the failure histories and the 
1=1 

second component J~[S{tj,Z(tj)) represents the suspension histories. For the failure 
j=1 

histories, a parametric proportional hazards model can be built as follows: 

h(t,Z(t)) = I t 
, fi > 0,rj > Q,yk >0 (5-3) 

For the suspension histories, a survival model can be built as follows: 

S(t,Z(t)) = e _ „-H(t,Z(t)) _ e 0' (5-4) 

Let k=\,2... m, where m denotes the number of significant covariates; z* is the kth 

covariate value, jk is the corresponding weight, 

i=1, 2... n\, where ti\ denotes the number of failure histories, 

y-1 , 2... «2, where «2 denotes the number of suspension histories, 

<7=0, 1, 2...ry, where r7is the number of inspection points in the jth suspension 

history, 

0 < tJQ <tn <... < tjr - tj are the actual inspection points in the jth suspension 

history. 
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So the survival value of jth suspension history can be described as follows: 

S(tj,Z(tj)) = e 
-H(tj,Z(tj)) 

J 

J h(tj,Z(tj))dx 

= e 0 

f . m 
La r „ , Irk'kM 
J?7 7 

-2 f <7=0 1 ji 
d\-

(5-5) 

... 1 m 

V j I 

, ?=o 

r / ft ^ 

Thus the likelihood function in (5-2) can be expended as: 

L{/3, T?,r) = f \ h{t, Z(f, ) ) f [ S(t J, Z(t J)) 
i=1 7=1 

(-H(tj,z(tj))) 

i=l 7=1 

= f l -
iJ-rjyrjj 

( t . Y E W ^ 
n < 7=1 

f . V" 

7=1 

(5-6) 

Step 2: Take log of the likelihood function 
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O-1 

^ fi\ "i m "2 
LnL = In S - + ( / ? - l ) £ l n W J - Z X " 

I rk'kVj) Ou+0 
7 

1=1 (=1 *=1 

(5-7) 

Step 3: Perform optimization and find fj,j3,yx,y2,...,ym to maximize LnL 

Currently, traditional optimization methods such as Newton's methods are used to find 

the optimal parameters. Matlab optimization toolbox was developed based on traditional 

optimization methods and it can be used to implement these optimal problems. The 

commercial software EXAKT was also developed based on traditional optimization 

methods, and the software EXAKT is currently being used in many industries. But there 

is a big disadvantage of traditional optimization method, that is, it can only find the local 

minimum values. In our research, GA is found to have much better global optimization 

capability. In Section 5.6, we will conduct a case study to illustrate the parameters 

estimation approach using GA. 

5.4. Summary of the GA Approach for PHM Parameter 

Estimation 

From Section 5.3, the PHM parameter estimation optimization model can be summarized 

as follows: 
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max LnL = l n f ^ - 1 + (/? - 1 ) Y In ^ 
Ki) <=1 u 

"l m «2 
I rkzk(<j) 'j(q+1) 

7 (5-8) 
i=l k=1 

S.t. 

/?>0, 7>0 . 

The design variables are rj, J3,y},y2,...,ym , totally m+2 design variables. And the 

objective function to be maximized is LnL, the logarithm of the likelihood function, and 

it can be evaluated using Equation (5-7) based on the inspection and event data available. 

In the GA approach, the decimal encoding is used, since all the design variables are 

taking real values. We use the roulette-wheel selection scheme, one-point cross operator 

with cross rate of 0.25, and even mutation operator with mutate rate of 0.1. The GA 

optimization process will be stopped when a certain pre-specified generation number, say 

1000, is reached. 

5.5. Transition Probability Matrix Development 

As discussed in Chapter 4, the purpose of estimating the transition probability matrix is to 

predict future covariate values. It is more convenient to estimate first the transition rates 

and then calculate the transition probabilities. The transition rates can be estimated using 

occurrence/exposure rates as follows: 

n 

(5-9) 
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where is the number of all transitions from state i —* state j occurred over the interval 

[s/, 57+1] in the sample, and At is the total length of time that the state i is occupied over the 

interval [si, s/+i] in the sample. 

After the transition rates are calculated, the transition probability matrix can then be 

calculated as follows: 

where P is the transition probability matrix, A is the transition rates matrix, k is the 

inspection interval. 

5.6. Optimal Maintenance Policy 

The method for calculating the cost and reliability values in the CBM optimization using 

PHM was described in (Makis & Jardine, 1992, Banjevic et al., 2001). The basic theory 

of this approach can be described in the following way: if the observed risk K x h(t, z(t)), 

h(t, z{t)) is hazard rate and K is penalty cost, at the given inspection point of time is 

greater than a certain threshold value d, preventive replacement action should be taken; 

otherwise operation can continue. Nevertheless, there is also possible that failure occurs 

between two inspection points of time. In that case, failure replacement will be performed. 

Thus, the objective of the CBM optimization using PHM is to find the optimal threshold 

value of the hazard rate to minimize maintenance cost. It is generally necessary to 

P = A* 

A = 2̂1 2̂2 "" (5-10) 
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identify the optimal threshold if the hazard rate is an increasing or at least non-decreasing 

function of time t. Actually, in many cases, the covariates show increasing trend. It is 

unnecessary to find the optimal value if the hazard rate is not an increasing function of 

time t. In this approach, the expected long run average cost per unit time is a function of 

the threshold risk level d, which is shown as follows: 

C(1 - Q ( d ) ) + (C + K)Q(d) _C + KQ(d) 
W{d) W(d) 

where O(J) is the expected average cost per unit time and it is a function of the 

threshold risk level d , C is the preventive replacement cost and C + K is the failure 

replacement cost. Q(d) is the probability that failure replacement will occur, and 

Q(d) = P(Td>T) (5-12) 

Td = inf{f > 0: Kh(t,z(t) > d)} (5-13) 

here, Td is the preventive time at the risk level d . W(d) denotes the expected time until 

replacement, regardless of whether it is a preventive action or a failure replacement, that 

is W(d) = E(rmn{Td, T}). If the hazard rate is non-decreasing, for example if /? > 1 and 

all covariates are non-decreasing and covariate parameters are positive, then the optimal 

risk level, d *, can be determined with the fixed-point iteration method to get 

®(J*) = minrf>0 0(<i) = d *. If the hazard rate is not monotonic, then the fixed-point 

iteration does not work, andminrf>0,O(<f) should be found by direct search. Numerically 

more convenient is a forward version of that procedure, which can be suitably adjusted 
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for nonmonotonic hazard rates. Once the optimal risk level, d *, is determined the item is 

replaced at the first moment t when 

I 
rj 

V p-1 
d * exp (rZ(t))>— (5-14) 
K 

Under a CBM using PHM optimization policy, the reliability of the component or system 

is defined as the probability of performing preventive replacements, which is the 

probability of preventing failure from occurring. Thus, the reliability objective R can be 

calculated using the following equation: 

R = l-Q(d) (5-15) 

5.7. Case Study 

In this section, a real world case of shear pump bearings in a food processing plant is 

used to illustrate the proposed GA based parameter estimation approach. Details of the 

case can be found in section 4.2. 

The objective of the PHM based CBM optimization process is to find an optimal 

replacement policy to minimize total expected replacement cost, given the condition 

monitoring data (vibration data) and replacement histories. Parameter estimation is a 

critical step in performing the CBM optimization process and the accuracy of parameter 

estimation greatly influencing the effectiveness of CBM optimization. 

Using the software EXAKT (Banjevic et al., 2001), the significance analysis was 

performed, and three significant covariates were identified: VEL#1 A (band 1 velocity in 
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the axial direction), VEL#1 V (band 1 velocity in the vertical direction), and VEL#2A 

(band 2 velocity in the axial direction), as shown in Table 5. 

Table 5 Significant analysis for shear pump bearing data 

i-ftitiu-fe e-il-Oi-. 
fSjsji .•• 

Scale 1584 - 643.4 - - - - 322.5 2845 

Shape 4.992 Y 1.173 11.58 1 0.0006656 - 2.693 7.291 

VELJA 5.831 Y 1.101 28.03 1 0 340.8 3.672 7.99 

VEL_2A 36.55 Y 6.641 30.29 1 0 M86e+015 23.53 49.57 

VEL 1V 24.05 Y 5.434 19.59 1 0 2.792e+010 13.4 34.7 

5.7.1. The maximum likelihood method and the parameter estimation 

results using EXAKT 

In this case, there are 25 histories in the shear pump bearing data, including 13 failure 

replacements (ended with failure) and 12 preventive replacements (ended with 

suspension). According the procedures of maximum likelihood method, firstly, the 

likelihood function is identified as follows: 
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13 12 

m r?,r) = T \ Ktt, Z(tt » n S ( t j , Z ( t j ) ) 
i=1 

13 12 

7=1 

7=1 

(-H(tj,z(tj))) 

i=l 

f / Y"1 
» a. *=1 1 I 0 

V ) 
n« 
7=1 

(5-16) 

M 7 v 

f * Y_1 i w - ) - i > 
r-? * * l r q=o 

7=1 

"Vl1 L/k'kCj) ^ ,k=1 
,A=1 

FT lj(q+1) P FT- } 

I N J s 1 , 

where z'=/, 2... 73, there are 13 failure histories. 

j=l, 2... 12, there are 12 suspension histories. 

k=l, 2, 3, there are 3 significant covariates, which are VEL#1 A (band 1 

velocity in the axial direction), VEL#1 V (band 1 velocity in the vertical 

direction), and VEL#2A (band 2 velocity in the axial direction); zk is the 

kth covariate value jk is the corresponding weight. 

q=0, 1, 2...rj, rj is the number of inspection points in the jth suspension 

history. 

0 < tJ0 <tjX <. . . < t = tj are the actual inspection points in the j 

suspension history. 

Secondly, we may take log of the likelihood function 

•th 
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LnL = ln(£) + (/? - + EE W , ) " E 
i=i 7 i=i *=i 

= In + ( /?- ! )£ In 
13 A 13 3 

7=1 0 

( = 1 v>7/ 

12 

/=1 k=\ y=l 

jCg+D I I 'ji (5-17) 

Finally, we can perform optimization and find J], /?, , > ̂ 3 to maximize LnL. 

Currently this optimization problem is solved by traditional optimization methods such as 

BFGS Quasi-Newton method; the commercial software EXAKT also uses the traditional 

optimization method to perform optimization. Using EXAKT the parameters are 

estimated as 7 = 1584,/? = 4.992, ft = 5.83 l,y2 = 36.55,y3 = 24.05, and the PHM are 

built as follows: 

h(t,Z(t)) = — 
1 

r. 

v/y 
4.992 ( t ^ 4.992-1 

1584 v1584y 

(5-18) 

5.7.2. Parameter estimation results using GA 

As presented previously, tradition optimization methods are limited to local optimization. 

To improve accuracy of parameter estimation, next we will apply GA to perform the 

optimization find the global optimal parameters. 

In this case, there are five parameters to be estimated: r\ (scale parameter), P (shape 

parameter), yi (covariate weight for VEL l A), 72 (covariate weight for VEL_2A), and 73 

(covariate weight for VEL_1 V). Based on previous experience, the ranges of the 

parameters value can be set as follows: 
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r|: 0-5000 

P: 0.01-100 

y,: 0.01-100 

y2: 0.01-100 

y3: 0.01-100 

and the length of chromosome is set 20, thus each parameter length is 4 respectively. 

Considering the tradeoff between estimating accuracy and program running time, the 

population size is decided as 100 and genetic processes will be explored for 800 

generations. 

The following is the PHM built with the parameters estimated using GA: 

h(t, Z(0) = - ( V - ' e ( / > ( 0 + r ( 0 ) 

77 7 (S 
_ 1 0 . 5 2 t y 0,52-1 (17 .89z ] A ( ( ) + 3 3 . 0 4 z ^ ( ( )+98.85z | K ( ;)) 

3396.5 3396.5 

Table 6 Likelihood value comparison between GA and EXAKT 

^sParameter 

MethodX. 
n P 7 i 7 2 7 3 

Likelihood 
Value: LnL Change 

Genetic 
Algorithms 3396.5 10.52 17.89 33.04 98.85 -11.5825 

87.0359% 
EXAKT 1584 4.992 5.831 36.55 24.05 -89.3427 

87.0359% 
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From Table 6, we can find that the logarithm of the optimal likelihood function value, 

LnL, is -89.3427 using EXAKT, while it is -11.5825 using GA. Since the maximum 

likelihood method is used to estimate the parameters, the greater the likelihood value the 

better. Thus we can conclude that genetic algorithms can significantly improve the 

accuracy of parameter estimation. 

5.7.3. CBM optimization results 

In this case there are altogether 25 histories including 216 inspection data points. 

Assuming the observation interval is 20 days, the transition probability matrices can be 

obtained using EXAKT, which are already displayed in section 4.2. 

Based on the previous history and expert experience, the preventive replacement cost C is 

estimated to be $1,800, and the failure replacement cost C+K is $16,200 for this case. 

Thus we have the penalty cost K equals to $14,400. 

Finally the CBM optimization policy can be determined using the estimated parameters, 

transition probability matrices and cost data information. Using the parameters estimated 

by the software EXAKT, which is TJ = 1584,/? = 4.992,ft = 5.831,ft = 36.55,ft = 24.05, 

the optimal maintenance policy is: 

d* = 16.43 85$/day, C* = \0AQ12>$I day,R* = 0.9883 (5-20) 

Adhering to this optimal policy, the average preventive replacement interval is 189.1377 

days. The cost versus risk threshold plot is given in Figure 11, in which the risk threshold 
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value is given in logarithm scale. We can see the optimal maintenance cost is around 

10.4073 $/day. 

Cost per unit time 

Figure 11 Cost per unit of time based on parameters estimated by EXAKT 

Next we will calculate the optimal policy based on the parameters obtained using genetic 

algorithms, which are: 7 = 3396.5,/? = 10.52,ft = 17.89,^ = 33.04, = 98.85. The 

optimal maintenance policy is determined as: 

d* = 8.9799$ / day, C* = 7.1481 $ / day, R* = 0.9982 (5-21) 
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Cost per unit time 

Risk: ln(d) ($/day) 

Figure 12 Cost per unit of time based on parameters estimated by GA 

The cost versus risk threshold plot in this case is given in Figure 12, in which the risk 

threshold value is given in logarithm scale. We can see the optimal maintenance cost is 

around 7.1481$/day. Performing the optimal policy, the average preventive replacement 

interval will be 254.4501 days. 

In the previous section, we conclude that GA can improve parameters estimation 

significantly, which means parameters estimated using GA are accurate while parameters 

obtained by EXAKT are inaccurate. Inaccuracy in the PHM parameters will lead to the 

inaccuracy in CBM policy assessment and in the CBM optimization results. In Table 7, 

we can see there are great differences between the CBM optimization results using GA 

and using EXAKT. The difference between the optimal risk threshold values is 45.37%, 

and the difference between the average maintenance cost values is 31.32%. Thus, we can 
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clearly see the importance of obtaining the accurate PHM parameters using GA, because 

it will greatly affect the accuracy in PHM based CBM policy assessment and finding the 

optimal policy, and it will also affect maintenance related decisions such as budget 

planning. 

Table 7 CBM optimization results comparison between GA and EXAKT 

\ Resutls 

Method 

Risk 
Threshold 

($/day) 

Average 
Maintenance 

Cost 

($/day) 

Reliability 

Average 
Replacement 

Interval 

(day) 

Genetic 
Algorithms 8.9799 7.1481 0.9982 189.1377 

EXAKT 16.4385 10.4073 0.9883 254.4501 

Changes 45.37% 31.32% 1% 25.67% 

In this chapter, we propose a parameter estimation approach using genetic algorithms 

based on the fact that genetic algorithms has the advantage of global optimization while 

the traditional optimization methods are limited to local optimization. A case study of 

shear pump bearing in a food processing plant is given to illustrate the proposed 

approach. We can conclude that applying genetic algorithms to perform optimization in 

parameter estimation using maximum likelihood method can significantly improve the 

accuracy of parameter estimation. It will also improve the accuracy in PHM based CBM 
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policy assessment and finding the optimal policy, and thus enable better informed 

maintenance related decision making such as budget planning. 
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Chapter 6 

Canadian Kraft Mill Pump Bearing Case Study 

Nomenclature 

L : likelihood value 

d : threshold risk level 

C : preventive replacement cost 

K : penalty cost 

C + K : failure replacement cost 

In this chapter, another real world case of Gould pump bearings at Canadian Kraft Mill 

(Stevens) is presented to further demonstrate the proposed parameter estimation approach 

using GA. 

6.1. Case Introduction 

Canadian Kraft Mill is a large kraft pulp mill with 400 employees and it produces over 

300,000 tons of kraft pulp each year. Pulp produced in this mill is used to make facial 

tissues, paper towels and similar products. Facing tough competition in the pulp and 

paper market, Canadian Kraft Mill has to focus on the key objectives of bringing costs 

down and production up. Condition based maintenance optimization approach using 
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proportional hazards model can help decreasing the maintenance cost. OMDEC who has 

developed the commercial software EXAKT took care of this project. 

Kraft Mill was confronted with a critical problem of high incidence of unpredicted 

failures among a small group of its fleet of Gould pumps. Hence eliminating or 

substantially reducing the frequency of pump failure was evidently the key objective. 

The units being examined were Gould 3175L pumps which were used 24/7. Bearings 

were critical components of these pumps, as shown in Figure 13 (Stevens). Failure of 

bearing definitely caused the pump failure, and bearing failure is shown in Figure 14 

(Stevens). 

Figure 13 Gould 3175L pumps bearings (Stevens) 
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Figure 14 Gould pump bearing failure (Stevens) 

Important data including event data, operating starts, out-of-service intervals and failure 

dates were extracted from the CMMS work history database. After sorting up these data, 

two categories of data were obtained, that is, event data and inspection data. There were 

three types of event data: beginning event, failure event and suspension event. For 

inspection data, 56(=8*5+8*l+8*l) vibration measurements were recorded. For each 

pump, seven measurements were analyzed - 5 different vibration frequency bands (8*5), 

and the overall vibration reading (8*1) plus the bearing's acceleration data (8*1). 

Altogether 36 bearing histories were examined in 8 pump locations, including 12 failures 

and 24 suspensions. 

With all these important data collected by OMDEC ready, now we can perform the PHM 

based CBM optimization process and further testify the parameter estimation accuracy 

using GA over EXAKT. 
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6.2. Case Study 

Using the software EXAKT, we can perform the significance analysis for the 56 vibration 

measurements. Only two covariates were identified to have significant influence on the 

health of bearings: PlH_Par5 (band 5 vibration frequency in Pump location P1H), and 

PI V_Par5 (band 5 vibration frequency in Pump location PI V). 

Table 8 Significant analysis for Kraft Mill data 

Scale 2707 - 507.3 - - - 1713 3702 
Shape 2.879 Y 0.6196 9.195 T|CL0ro426™~ - 1.664 4.093 

P1H_Pai5 24.87 Y 6.405 15.07 1 [0.0001034 5.311 e+010 12.31 37.42 
P1V_Pat5 42.56 Y 13.67 9.689 1 | 0.001854 3.039e+018 15.76 69.36 

6.2.1. The maximum likelihood method and the parameter estimation 

results using EXAKT 

In this case, 36 histories were collected from the 8 pump locations: 12 of them are failure 

replacements (ended with failure) and the other 24 histories are preventive replacements 

(ended with suspension). Using maximum likelihood method, firstly the likelihood 

function is defined as follows: 

12 24 

L(J3, rj,r) = l l h{tt, Z{tt » n S{tj, Z{tj)) 
«=i j=i 

12 24 

/•=i 7=1 

= f l l 
M '7 

f t . Y Z W . ) A -jKu,zj(u)du 
r > 
7=1 

(6-1) 
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where i=l, 2... 12, 12 failure histories were recorded. 

j=l, 2... 24, 24 suspension histories were recorded. 

k=l, 2, 2 significant covariates are identified, which are PlH_Par5, and 

PI V_Par5; zt is the k!h covariate value; yk is the corresponding weight. 

q=0, 1, 2...rj, rj is the number of inspection points in the jth suspension 

history. 

0 < tJ0 < tjX <... < tjrj = tj are the actual inspection points in the j 

suspension history. 

Secondly, we may take log of the likelihood function 

•th 

LnL In 
k7! y 

+ ( j 3 - i ) j r i n f — 1 + 1 ; x ( O - I j w * , (*>«& 
1=1 K7? J i=1 k=\ i=1 n 7=1 0 

= In 
v7y 

12 f 12 2 

+ 0 5 - 1 ) 2 i n ^ + 1 1 r M O - t * 
/=) J (=1 *=1 7=1 

7"' I r*z*«/) 

J "U 
(6-2) 

Finally, we should perform optimization to search &,P,y x ,y 2 to maximize LnL. 

Parameters estimated by EXAKT are rj = 2101,p = 2.879, ̂  = 24.81, y2 = 42.56 and the 

PHM is built as follows: 

2.879 
2707 

T] T] 

/ X 2.879-1 
' t ^ 

v2707 j 

(6-3) 
(24.87z f (()+42.56zy>IK (()) 
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6.2.2. Parameter estimation results using GA 

Now we will apply GA to perform optimization and search for the optimal PHM 

parameters. Four parameters need to be estimated in this Gould pump bearing case: r\ 

(scale parameter), P (shape parameter), yi (covariate weight for PlH_Par5), 72 (covariate 

weight for PI V_Par5). The ranges of the parameters value are set as follows according to 

the knowledge from history: 

r|: 0-5000 

p: 0.01-100 

y,: 0.01-100 

y2: 0.01-100 

The length of chromosome is set as 16 and each parameter length is 4 respectively. 

Similar to the previous shear pump bearing case, the population size is set as 100 and 

genetic processes will be explored for 800 generations because of the tradeoff between 

estimating accuracy and program running time, 

The PHM parameters estimated using GA and the corresponding hazard function is given 

as follows: 

77 7 (6-4) 
_ t 2.2-1 e m z n H ( t ) + ( , s z P W ( t ) ) 

4999.5 4999.5 

Table 9 shows the comparison of parameters estimated using EXAKT and GA. 
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Table 9 Likelihood value comparison between GA and EXAKT 

n P Yi 7 2 
Likelihood 
Value LnL Change 

Genetic Algorithms 4999.5 2.2 100 65 15.9410 

126.45% 
EXAKT 2707 2.879 24.87 42.56 -60.2576 

126.45% 

From the Table 9 we can clearly see, the likelihood value obtained using GA is much 

greater than using EXAKT. Since the maximum likelihood method is used to estimate the 

parameters, the greater the likelihood value the better. Hence we can further confirm on 

the conclusion that parameter estimation accuracy can be significantly improved by using 

GA. 

6.2.3. CBM optimization results 

This case embraces 36 histories including 12 failure histories and 24 suspension histories, 

and 774 inspection data points are recorded. Assuming the observation interval is 28 days, 

the transition probability matrices can be obtained using EXAKT as follows: 

Table 10 Transition probability matrix for covariate PlH_Par5 

P1H_Par5 . .gBHSfijTj S I ' f n r -
M E T T f f l K j 

iSlllllllPM i M MTpC'I ̂  5 k f̂fiSiî f! 0.776222 0.207444 0.0160789 0.000248641 5.96986e-006 

" V ' K V f 0.049508 0.821906 0.125604 0.00288893 9.3213e-005 

' 1 0.00384598 0.125887 0.830708 0.0377024 0.00185645 

J 0.000176079 0.0085723 0.111622 0.797526 0.0821037 

: 0 0 0 0 1 
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Table 11 Transition probability matrix for covariate PI V_Par5 

P1V_Par5 H l i S l l I l i l BBIfflBI 
• v , 

•fftfj lPjnBB 
WJESSMMB 

H 3 C S I S E 
Pvrff lMfwflf 

M S n i j H j l l l 

: tt-t-.&SIfrtS ! 0.760227 0.225498 0.0140633 0.000209625 2.15812e-006 

i y ; S R j e ^ f f i j y ^ X • 0.051723 0.843089 0.102875 0.00228106 3.13955e-005 
- ,-y- V . f ' . ^ l f'rYs 

} iV -i J x vi^-Jiyi . 0.00348354 0.111098 0.847167 0.0374689 0.00078289 

I. fK JSiifSiE; G ^ y f f i 0.000139623 0.00662383 0.100751 0.855864 0.0366211 

0 0 0 0 1 

Using history information, the preventive replacement cost C is estimated to be $4,000, 

and the failure replacement cost C+ATis $12,000 for this case. Thus the penalty cost K 

equals to $8,000. 

Eventually, the CBM optimization policy can be determined using the estimated 

parameters, transition probability matrices and cost data information. Using the 

parameters estimated by the software EXAKT, which are: 

7 = 2707,/? = 2.879, ft =24.87,f t =42.56, 

the optimal maintenance policy is obtained as: 

d* = 4.6940$ / day, C* = 9.2730$ / day, R* = 0.9945 (6-5) 

With this optimal policy, the average preventive replacement interval is 44.2748 days. 

The cost versus risk threshold plot is given in Figure 15, in which the risk threshold value 

is given in logarithm scale. We can see the optimal maintenance cost is around 9.2730 

$/day. 
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Cost per unit time 

Risk: ln(d) ($/day) 

Figure 15 Cost per unit of time based on parameters estimated by EXAKT 

Now we will calculate the optimal policy based on the parameters obtained using genetic 

algorithms, which are: 77 = 4999.5,/? = 2.2,/, = 100, y2 = 65. The optimal maintenance 

policy is then determined as: 

d* = 27.8931$/day, C* = 12.9444$ / day, R* = 0.9864 (6-7) 
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Cost per unit time 

Figure 16 Cost per unit of time based on parameters estimated by GA 

The cost versus risk threshold in this case is plotted in Figure 16, in which the risk 

threshold value is given in logarithm scale. From Figure 16, the optimal maintenance cost 

is shown as around 12.9444$/day. Based on the optimal policy, the average preventive 

replacement interval will be 43.4031 days. 

In the previous section, we once again conclude that GA can improve parameters 

estimation significantly; therefore parameters estimated using GA are accurate while 

parameters obtained by EXAKT are inaccurate. The consequence of inaccurate PHM 

parameters is that the CBM policy assessment and the CBM optimization results will also 

be inaccurate. In Table 12, we can see there are great differences between the CBM 

optimization results using GA and using EXAKT. The difference between the optimal 

risk threshold values is 494.23%, and the difference between the average maintenance 
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cost values is 39.59%. Thus, obtaining the accurate PHM parameters using GA is really 

vital in CBM optimization process. The reason is that the accuracy of PHM parameters 

will greatly affect the accuracy in PHM based CBM policy assessment and finding the 

optimal policy, and it will also affect maintenance related decisions such as budget 

planning. 

Table 12 CBM optimization results comparison between GA and EXAKT 

\ Resutls 

Method 

Risk 
Threshold 

($/day) 

Average 
Maintenance 

Cost 

($/day) 

Reliability 

Average 
Replacement 

Interval 

(day) 

Genetic 
Algorithms 27.8931 12.9444 0.9864 43.4031 

EXAKT 4.6940 9.2730 0.9945 44.2748 

Changes 494.23% 39.59% 0.81% 1.97% 

In this chapter, another real world case of Gould pump bearing in Canadian Kraft Mill is 

conducted to further demonstrate the parameter estimation approach using genetic 

algorithms which is proposed in Chapter 5. This case confirms the conclusion drawn in 

Chapter 5, which is that applying genetic algorithms to perform optimization in 

parameter estimation using maximum likelihood method can significantly improve the 

accuracy of parameter estimation. It will also improve the accuracy in PHM based CBM 

policy assessment and finding the optimal policy, and thus enable better informed 

maintenance related decision making such as budget planning. 
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Chapter 7 

Conclusion and Future Work 

7.1. Conclusion 

Condition-based maintenance (CBM) is an advanced maintenance strategy in which 

maintenance actions are scheduled based on both the age of the equipment and the 

information collected through condition monitoring. CBM process inspects the 

equipment's condition periodically and performs preventive replacements only when 

necessary to minimize maintenance cost. Proportional hazards model (PHM) is a 

powerful statistical tool for estimating the failure rate of a piece of equipment which 

considers both the age of the equipment and condition monitoring data. Hence the PHM 

based CBM optimization approach can represent and predict the equipment health 

condition more accurately, thus it is able to reduce unnecessary scheduled preventive 

maintenance actions hence reduce the overall maintenance costs. In this thesis, we 

proposed two approaches: multi-objective CBM optimization approach based on physical 

programming and genetic algorithms based approach for PHM parameter estimation. 

Both these two approaches are found to be able to improve current PHM based CBM 

process. 

Multi-objective CBM optimization approach based on physical programming 

In PHM based CBM optimization, main optimization objectives such as minimizing 

maintenance costs and maximizing equipment reliability are often conflicting to each 

other. Currently only single-objective optimization can be achieved, thus we cannot 
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systematically investigate the tradeoff between the optimization objectives and find the 

optimal solution that best represents the decision maker's preference on the optimization 

objectives. 

Physical programming presents two major advantages: (1) it is an effective approach to 

capture the decision maker's preferences on the objectives by eliminating the iterative 

process of adjusting the weights of the objectives, and (2) it is easy to use in that decision 

maker just needs to specify physically meaningful boundaries for the objectives. The 

physical programming based approach is able to transforms a multi-objective 

optimization problem into a single-objective optimization model. The decision maker can 

systematically and effectively determine an optimal balance between the cost objective 

and reliability objective. A real world case of shear pump bearing in a food processing 

plant was conducted to illustrate the proposed approach. 

Genetic algorithms based approach for PHM parameter estimation 

In PHM based CBM optimization, the accuracy of parameter estimation has a great 

influence on the effectiveness of the optimal maintenance policy. Currently only local 

optimal values can be obtained in parameter estimation using maximum likelihood 

method. Therefore the CBM optimal maintenance policy obtained based these incorrect 

parameters is also inaccurate, which affect obtaining the true optimal CBM policy. 

GA is a very powerful optimization approach with two key advantages: (1) global 

optimization ability, and (2) flexibility in modeling the problem. Applying GA to solve 

the optimal problem in parameter estimation using the maximum likelihood method can 

improve the accuracy of parameter estimation significantly. It will also improve the 
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accuracy in PHM based CBM policy assessment and finding the optimal policy, and thus 

enable better informed maintenance related decision making such as budget planning. A 

real world case of shear pump bearing in a food processing plant and another real world 

case of Gould pump bearing in Canadian Kraft Mill were used to validate the proposed 

approach. 

7.2. Future Work 

Based on the research elaborated in this thesis, further studies can be conducted in the 

following directions. 

• Develop an approach using advanced PHM models in CBM optimization process 

to improve current approach using basic PHM model. 

• Investigate the application of artificial neural network technologies in the CBM 

optimization using PHM. 

Conduct more experiments to further test the physical programming based 

approach and the genetic algorithms based approach. 

Apply the developed approaches to address CBM problems in various engineering 

systems, such as aircraft systems and wind energy systems. 
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