
FAULT RECOVERY IN DISCRETE-EVENT SYSTEMS

WITH INTERMITTENT AND PERMANENT

FAILURES

GANESH KORAGINJALA

A THESIS

IN
THE DEPARTMENT

OF

ELECTRICAL & COMPUTER ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF APPLIED SCIENCE

(ELECTRICAL & COMPUTER ENGINEERING) AT

CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

APRIL 2009

© GANESH KORAGINJALA, 2009

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-63170-6
Our file Notre r§f6rence
ISBN: 978-0-494-63170-6

NOTICE:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

• + •

Canada

ABSTRACT

Fault Recovery in Discrete-Event Systems with Intermittent and

Permanent Failures

Ganesh Koraginjala

As systems grow more complex to cater to demanding operational requirements, they

tend to suffer from increasing component failures. It is important to minimize the effect

of these failures on the overall performance of these systems. In this thesis, fault

recovery using discrete event systems theory is studied.

It is assumed that the plant can be modeled as a finite state automaton, and that is

prone to failures. For this study all events are assumed observable and the extension to

the case of partial observation is left for future research. The problem of the synthesis of

fault recovery procedures is studied. In particular, the cases are studied in which the

plant may return to normal operation. This could be either because the failures are

intermittent or because the plant has the capacity to repair or reset. Both of the above

cases are studied in this thesis.

It turns out that the problem is an instance of the problem of robust nonblocking

supervisory control for countably infinite number of plants. The objective of the thesis is

to obtain maximally permissive solution for the above problem. It is shown that the

iii

desired supervisor can be obtained as the maximally permissive solution of a robust

control problem involving a bounded number of plants. Furthermore, an iterative

procedure is provided to solve the original problem involving an infinite number of

plants. The procedure is guaranteed to converge in a bounded number of steps. Several

examples are provided to illustrate the proposed procedures.

IV

Acknowledgments

I, sincerely, appreciate the help and support of my supervisor, Dr. Shahin Hashtrudi Zad

and thank his continuous support and encouragement throughout this research. I also

would like to thank my friends, Mohsen Azizi, Mani Mesgarpourtousi and Nathalia Parra

for helping me in carrying out this research through completion.

v

Table of Contents

List of Figures ix

List of Tables xiii

Abbreviations xiv

1. Introduction 1

1.1 Introduction 1

1.2 Literature Review 5

1.3 Thesis Contributions 8

1.3 Thesis Outline 9

1.4 Conclusion 10

2. Background Review 11

2.1 Introduction 11

2.2 Automata 12

2.3 Supervisory Control 15

2.4 Robust Supervisory Control 22

2.5 Conclusion 23

vi

3. Problem Formulation 24

3.1 Introduction 24

3.2 Plant Model 29

3.3 Problem Statement 32

3.4 Example 40

3.5 Conclusion 42

4. Solution to Fault Recovery Problem 43

4.1 Introduction 43

4.2 Maximally Permissive Solution 45

4.3 Example 54

4.4 Conclusion 58

5. Application Examples 59

5.1 Introduction 59

5.2 Simplified Propulsion System (SPS) 60

5.2.1 Setup of SPS 61

5.2.2 DES Models 63

5.2.3 Plant Models 65

5.2.4 State Specifications 67

5.2.5 Plant Modifiers 68

5.2.6 Modified Plant Models 69

vii

5.2.7 Supervisors 71

5.3 Extended Propulsion System (EPS) 74

5.3.1 Setup of EPS 74

5.3.2 DES Models 76

5.3.3 Plant Models 78

5.3.4 State Specifications 78

5.4 Automatic Resource Allocator (ARA) 83

5.4.1 Setup of ARA 83

5.4.2 DES Models 85

5.4.3 Plant Models 87

5.4.4 Supervisors . . 90

5.5 Conclusion. . 90

6. Conclusions and Future Research 93

6.1 Conclusions 93

6.2 Future Research 95

Bibliography 97

viu

List of Figures

Fig. 1.1: General control structure for plant G and supervisor S 3

Fig. 2.1: Traditional control loop 16

Fig. 2.2: Plant Model 20

Fig. 2.3: Partial model of the supervisor 20

Fig. 2.4: Partial model of the supervisor .21

Fig. 2.5: Partial model for the supervisor 21

Fig. 2.6: Supervisor S 21

Fig. 3.1: Different modes of the system (plant and diagnoser) 26

Fig. 3.2: Furnace System with three pipes 27

Fig. 3.3: Control loop (C: Plant; S: Supervisor) 29

Fig. 3.4: Normal and Recovery state sets 30

Fig. 3.5: Plant G assuming one failure mode (p = 1) 35

Fig. 3.6: Expanded transition graph Gex 36

Fig. 3.7: Expanded states showing the events counter 37

Fig. 3.8: Plant (G) 40

Fig. 3.9: Plant under supervision of a standard supervisor (SSK/G) 41

ix

Fig. 3.10: Plant under supervision of a robust supervisor (SR0bus/G) 41

Fig. 4.xl: Plant G 55

Fig. 4.x2: GN-GO 55

Fig. 4.x3: Gm = Go- 56

Fig. 4.x4: G(NR)N =Gi 57

Fig. 4.x5: System under supervision V[IG 57

Fig. 4.x6: V* / Gl 58

Fig. 5.1: Setup for SPS 61

Fig. 5.2: Valve (SPS) (Full Mode) 64

Fig. 5.3: Pilot (SPS) 64

Fig. 5.4: Pyro-valve (SPS) 65

Fig. 5.5: Engine (SPS) 65

Fig. 5.6: Complete model of SPS (GL) 66

Fig. 5.7: SPEC: Specifications (SPS) 68

Fig. 5.8a: GN (State-based plant in normal mode) 69

Fig. 5.8b: GN (States renamed) 70

Fig. 5.9: Partial model for G 71

Fig. 5.10: Supervisor: V* 71

Fig. 5.11: Supervisor: V*. 72

x

Fig. 5.12: Supervisor V[73

Fig. 5.13: Setup for EPS 75

Fig. 5.14: Model for pilot (EPS) 77

Fig. 5.15: Models for all valves (EPS) 77

Fig. 5.16: Engine models (EPS) " 78

Fig. 5.17: SPEC1 (Normal mode) (EPS) 79

Fig. 5.18: SPEC2 (Normal mode) (EPS) 80

Fig. 5.19: SPEC3 (Normal mode) (EPS) 80

Fig. 5.20: SPEC4 (Normal mode) (EPS) 80

Fig. 5.21: SPEC5 (Normal mode) (EPS) 80

Fig. 5.22: Recovery specifications (EPS) 81

Fig. 5.23: Extract from G (Plant in recovery mode: EPS) 82

Fig. 5.24: Setup for ARA 83

Fig. 5.25: User A (ARA) 86

Fig. 5.26: User B (ARA) 87

Fig. 5.27: Rl (ARA) 87

Fig. 5.28: R2 (ARA) 87

Fig. 5.29: Complete model of ARA (G) 88

Fig. 5.30: Normal mode Plant (ARA) (GN) 89

Fig. 5.31: Normal mode Supervisor: V* 90

xi

Fig. 5.32: Recovery mode Supervisor: V* 91

Fig. 5.33: ARA under supervision 91

xn

List of Tables

Table 5.1: Event list for SPS 63

Table 5.2: Event list for EPS 76

Table 5.3: Event list for ARA 85

Xll l

Abbreviations

DES : Discrete Event System

LQR : Linear Quadrant Regulator

IH : Infinite Horizon

FH/ : Finite Horizon /

xiv

Chapter 1

Introduction

1.1 Introduction

As systems grow more complex to cater to demanding operational requirements, they

suffer from increasing component failures. It is important to minimize the effect of these

failures on the overall performance of these systems. In this thesis, we study fault

recovery using discrete event systems theory. We consider a specific case wherein the

systems are capable of returning to normal operation from failure modes of operation.

The task of designing and implementing control policies for these large systems under

various failure scenarios is very complex and computationally expensive. Large

manufacturing systems, space systems, and communication systems are all examples of

discrete event systems (DES). A DES model of a spacecraft propulsion system may have

1

millions of states to deal with. Failure scenarios are defined by number of failures, types

of failures, and times of occurrences of these failures .

A failure can be an event occurring at any level of system dynamics and cause the

system to malfunction or show degraded performance or shutdown completely. A failure

can be permanent or nonpermanent. An example for a permanent failure can be a broken

shaft in a motor system wherein a nonpermanent failure can be a short circuit in power

system network. A permanent failure keeps the system in failure mode indefinitely

whereas a nonpermanent failure keeps the system in failed mode for some duration only

and then it may disappear.

These large systems are usually controlled for reasons such as: to

i. Avoid unwanted behaviour (safety requirements)

ii. optimize use of resources

iii. obtain optimum performance

iv. provide reconfiguration and/or alternative operational paths in case of

failures

For example, in a manufacturing system, a controller (supervisor) can be used to

prevent buffer overflow/underflow. The effect of a controller is, in general, restrictive on

the system's behaviour. The system or process to be controlled is called the 'plant.' We

assume that this plant can be modeled as a state machine and that this plant contains finite

number of states.

1 In this thesis, a failure and a fault carry same meaning and are used interchangeably.

2

In DES theory, the events that happen in the plant are represented as symbols and the

set of all possible sequences of symbols generated by a particular plant is called the

language of the plant. In the theory of supervisory control of Ramadge- Wonham (RW), a

DES supervisor is capable of restricting the plant behaviour by restricting the language

generated by the plant within pre-specified limits. These limits are called specifications

and are set forth by the safety and performance requirements.

The following control loop depicts the control structure where the supervisor 5" reads

the sequence generated by the plant (s = crla2...(Jn) and then enables only events to be

generated by the plant (S(s)).

S(s) , °

s

s =

Fig. 1.1: General control structure for plant G and supervisor S

In the above control structure, the supervisor S is in a feedback loop with the plant G.

The supervisor monitors the event dynamics in the plant and then sends commands (in

terms of enabled events) to the plant to ensure that the plant generates only those event

strings stipulated by the specifications.

Generally, the specifications are given in terms of legal and illegal event strings.

However, it is possible to represent these specifications in terms of safe and unsafe states.

In that case, the supervisor can work in a state feedback fashion and limits plant

behaviour only to the safe states stipulated by state specifications.

A return-to-normal event is defined in the recovery mode of the plant. When this event

occurs, the plant moves back from recovery mode to normal mode. This event effects the

dynamics of the plant directly. The plant actually moves from a state in the recovery

mode states to a state in normal mode states. After moving back to normal states, the

plant may experience a different settling of normal mode states and exhibit different

normal behaviour. A simple example is presented in Chapter 3. Designing the DES

supervisor to effectively implement the control policies considering these changes in

dynamics is a complicated task. The problem considered in this thesis can be summed up

as, "Designing a supervisor to control a plant when the plant is capable of returning to

normal mode from recovery mode."

The return-to-normal event may occur in two cases. The first is when the failures are

intermittent and the return-to-normal events correspond to "failure-correct" events.

"Failure-correct" events are uncontrollable (i.e., can not be disabled or enabled by the

supervisor). The second case is when the plant has the capacity to either repair the faulty

components (or replace them) or "reset" itself to normal operation. In this case, return-

to-normal events are "recovery-action" events, and controllable (i.e., can be enabled or

disabled by the supervisor). Due to the difference in the controllability properties of

return-to-normal events as mentioned above, the nonblocking specification (i.e., the

ability to prevent deadlocks and livelocks) of the resulting control problem will be

different.

4

In the next section, we review some relevant articles in the literature.

1.2 Literature Review

There are certain frameworks and techniques used for fault recovery in discrete event

systems as reported in literature. These frameworks consider permanent failures and do

not expect the plant to return to normal mode from recovery modes. There were no

studies reported in open literature about how to compute supervisors for plants which are

capable of returning to normal modes of operation from recovery modes through well

defined return-to-normal events.

In [17], a model-based programming method is provided to perform reconfiguration of

fault recovery. This method tracks the present state of the system, diagnoses the fault and

provides reconfiguration. A version of this framework is used in a deep space probe

(Deep Space One, DS1) by NASA. In this setup, the most likely present state of the plant

is continuously estimated (by a 'model-based executive,' called Titan). This program,

then generates a sequence of control actions to move the plant to more desired state

dictated by specifications.

In [6], adaptive supervisor synthesis algorithms are presented. The algorithm does two

parts: learning and repairing. A supervisor is computed that is capable of reconfiguring

itself in supervising a team of robots. In particular, robots switch offline due to failure

events and the algorithms learn and repair the supervisor to control the new set of robots.

When a robot goes offline, the learning algorithm deletes the events which belong to the

5

failed unit alone from the previous supervisor, and then the repair algorithm restores the

fractured automaton. However, the article does not deal with the case when new units

dynamically join the team. The authors report this aspect as possible future research.

In [16], a weaker notion of fault-tolerance is considered to be sufficient in some

applications. As such, following any fault, the system is guaranteed to reach a recovery

state from where the subsequent behaviours are subsumed by those that are possible from

a nonfaulty state. Necessary and sufficient conditions for existence of a weakly fault-

tolerant supervisor are given. However, this particular supervisor will not provide a

viable solution for mission critical applications such as spacecraft. Also, the category of

applications for which this supervisor can be used effectively is not provided.

[5] deals with systems particularly with multiple resources failures. This article

considers supervisory control for deadlock-free resources allocations, in manufacturing

systems. This reference is of particular interest since, in the setup considered, the

controller must guarantee that a set of resource failures does not propagate through

blocking to stall other portions of the system. It is considered in such a way that the plant

can continue operating without the need for the failed resource. However, it will not be

the case for many practical applications. Also, a procedure to successfully separate the

failed resource from the rest of the plant has to be developed.

In [10], fault recovery problem in discrete event systems is considered. A diagnostic

system which can detect and isolate the faults with bounded delay is assumed to be

available. In this framework, the diagnostic system can be designed using any technique

6

as long as the lower and upper bounds of the delay in detecting and isolating the fault are

available. This improves the flexibility of the design. However, this framework results

in a more conservative supervisor for the fault recovery. The authors proposed a modular

switching supervisory scheme. An extension of this framework to timed DES is dealt

with in [19].

[14] mainly deals with the fault recovery in discrete event systems using observer-

based supervisors. A modular switching scheme of supervisors is proposed for fault

recovery. However, such cases where recovery to normal operation is possible, are not

considered. Two solutions are provided, one in which the recovery supervisor is in

feedback loop when the system is started in its normal mode, and another in which the

recovery supervisor is engaged only when a failure is detected and isolated.

In [12], the problem from [10] is transformed into an equivalent robust nonblocking

supervisory control problem under partial observation. A set of necessary and sufficient

conditions for the existence of a solution for the fault recovery problem are proposed. In

this framework, the fault events are unobservable but can be diagnosed. One of the main

assumptions in this framework is that the exact model of the plant in any of its

operational mode (normal, transient, and recovery) is known. Here it is assumed the

faults are permanent and as a result, the corresponding robust control problem involves a

finite set of plant models (each corresponding to a mode of operation). Here it is

assumed that the permanent fault occurs once, following which recovery actions are

taken.

7

In this thesis, we study the problem of fault recovery when return to normal

operation is possible either because the faults are intermittent or because the plant has the

capacity of repair or reset.

1.3 Thesis Contributions

The contributions of this thesis can be summarized as follows.

The problem of fault recovery in DES systems is studied when return to normal

operation is possible. Return-to-normal can be either because the faults are intermittent

or because the plant has the capacity to repair or reset.

We considered two cases of supervisory control problem, one with controllable return-

to-normal (recovery-action) events and the second one with uncontrollable return-to-

normal (fault-correct) events. In each case, the resulting supervisory control problems

will be instances of Robust Nonblocking Supervisory Control Problem of (countably)

infinite number of plants. The solution for robust control of finite number of plants is

given in [2],[13]. Here we extend some of those results to the case of infinite number of

plant models. Specifically, we looked for the maximally permissive supervisor (i.e., a

supervisor that does not disable an event unless it has to, in order to meet the design

specifications). We show that the above optimal (maximally permissive) solution can be

obtained as the maximally permissive solution of a problem involving a bounded number

of plants. Furthermore, we propose an iterative procedure for obtaining such solution.

The procedure is guaranteed to converge in a bounded number of steps.

8

Three case study problems are provided to illustrate the solution procedure.

1.4 Thesis Outline

In Chapter 2, we review the background material for discrete event systems and few

concepts used in this thesis. We study robust non-blocking supervisory control problem.

An example is given to illustrate computation of supervisors in standard (non-robust)

RW-based procedures.

Chapter 3 formulates the problem that is studied in this thesis. The problem of finding

a robust supervisor for failure recovery when the plant is capable of returning to normal

from recovery modes is given in detail. The significance of the return-to-normal events

is discussed.

In Chapter 4, we solve the fault recovery problems posed in Chapter 3. As mentioned

before, the problems are instances of Robust Nonblocking Supervisory Control of

countably infinite number of plants. We also propose iterative procedures for solving the

problems.

In Chapter 5, three application examples are solved using the design algorithm

presented. TTCT [15] has been used to carry out the computations. The simplified

propulsion system (SPS) and extended propulsion system (EPS) have uncontrollable

return-to-normal events. The automatic resource allocator (ARA) has a controllable

return-to-normal event.

9

Finally we conclude the thesis with conclusions and future research in Chapter 6.

1.5 Conclusion

In this chapter, Discrete Event Systems (DES) are introduced and the general nature of

the problem explained. The existing literature is reviewed. We reviewed the thesis

contributions and thesis outline is presented.

10

Chapter 2

Background Review

Formally, a DES can be considered as a dynamic system equipped with a discrete state

space and a state transition structure. It is a system that is asynchronous or event driven.

In this Chapter, we review some basic concepts as well as supervisory control in DES.

We also review state-based approach in DES and provide an example.

2.1 Introduction

A framework to model supervisory controllers for DES was introduced in [18] by

Ramadge and Wonham. It will be referred to as RW. RW framework is automaton-

based. The following are some salient points of this framework:

i. The framework proposes procedures that take the finite state automata models of

the plant and the design specifications and generate control structures, guaranteed

to satisfy the design specifications and eliminate blockings.

11

ii. Both the plant and controller are treated separately in this framework,

iii. The framework can characterize the solutions of the control problem in terms of

naturally definable control concepts and properties, such as controllability, and

observability.

One of the challenges that this framework faces is the computational complexity for

large-scale systems. One way to deal with this complexity is to exploit horizontal and

vertical modularity. For more details, the reader is referred to [19] and [11].

2.2 Automata

Finite State Automaton

Consider a plant modeled as a finite state automaton G, with

G = (Q,lL,8,q0,Qm)

where Q is the set of states, £ is the event set. 8 is the partial transition function

S :QXZ —>Q, q0 is the initial state, and Qm c O is the set of marked states. The

transition function defines how the plant moves from state to state driven by the events.

The marked states represent those states of plant that are significant for reasons mostly to

do with plant operation.

Let Z* denote the set of all sequences of events S and the empty sequence s. A

language over E is any subset of £*, i.e., an element of the power set Pwr(S*). Then

the definition includes both the empty language tj>, and E* itself. For language I c E * ,

12

L denotes the prefix-closure (or simply closure) of L. L is closed if L = L. For two

languages I , M c S ' , I i s M-closed if L = L fl M.

Let Z(G) = {se£* | 5(s,qo)\s defined} be the uncontrolled language generated by G

over alphabet £ . L(G) represents the set of all possible event sequences that take G from

the initial state to a reachable state. The set of all possible event sequences which take G

from the initial state to some marked state in G is represented by Lm(G). While L(G)

represents the closed behavior of the plant, Lm(G) represents the marked behavior of the

plant G.

Synchronous and Parallel Products

Complex controlled DES are directly modeled as product structures of simpler

components. Two operations that are often used in modeling the joint operations of DES

are 'product' and 'Synchronous product.'

Let Gi and G2 represent two DES with alphabets £1 and £2. In product, the two DES

synchronize the occurrence of their common events: <x = £iri£2 occurs if it is defined

and enabled in both G/ and G?. Events that are not in Eif] £2 are disabled.

In synchronous product, the DES synchronize on the common events (similar to

product). However, each may execute its own private events without any

synchronization; that is events in (£1 - £2) and (£2 - £1). The reader is referred to [18] for

more details.

13

TTCT is a software program that is used for analysis, synthesis, and verification of

DES and supervisory control in DES. [18] gives us a review of TTCT procedures.

The TTCT meet procedure computes the reachable part of product of G/ (with event

set Ei) and G2 (with event set £2) to create G3 with event set £3 = £1 n £2.

G3 = meet (G/, G2)

The sync procedure forms the synchronous product of G/ and G2 to create G3. The

event set of G3 will be £1 u £2.

G3 = sync (G/, G2)

Nonblocking Automata

G is nonblocking if for any string t e L(G), there is at least one string V such that

ts e Lm(G) . This means that from every reachable state in G, there is a path to a marked

state. This DES is said to be nonblocking if Lm(G) = L(G), where Lm(G) represents the

prefix-closure of L,„{G). Alternatively, let R(G) be the set of states of G reachable from

the initial state go-

R(G)={qeQ\3seL(G), q = S(qQ,s)}.

The set of coreachable states of G is defined according to

CR(G)={q^Q\3seZ\ S(q,s)eQJ.

Thus G is nonblocking if and only if/?(G)c CR(G).

14

2.3 Supervisory Control

Consider a plant G = (Q,I,,S,q0,Qm). It is assumed that the event set 2 can be

partitioned into controllable and uncontrollable events, i.e., Z = £t. U£„c. Controllable

events can be disabled or enabled. In this thesis, we assume all events are observable.

Let E czQ denote the set of'legal" (safe) states of the plant G. In supervisory control

theory, we want to design a supervisor S to ensure that the plant never leaves E, and the

plant under supervision is nonblocking. A supervisor monitors the sequence of

observable events generated by the plant and restricts the behavior of the plant to the

"legal" states by disabling and enabling of controllable events.

The assumption that the specification is given in terms of "legal" (safe) states is not

limiting. Problems involving "legal event sequences" can be transformed into equivalent

problems involving "legal" states as specifications by adding suitable automata

(modifiers) to capture the "history" of event sequences [18]. More detail on modifiers is

provided at the end of this section.

Based on s = av...ak <= E* generated by the plant (under supervision), and observed by

the supervisor, the supervisor can determine the state of the plant. The supervisor can be

defined as a state-feedback map S : Q —> Y where T := {L' c Z|S' 3 SJ(C}. At a state q,

S(q) is the set of events enabled by the supervisor. S interacts with G to form the closed-

loop system. The traditional control loop in DES is shown in Fig. 2.1. Note that S only

15

disables controllable events. A supervisor that never disables uncontrollable events is

called admissible (controllable).

> Plant G

Supervisor S

s =

- I
Fig. 2.1: Traditional control loop

Let L(S IG) be the language generated by the plant G under supervision of S(S IG),

and Lm(SIG) be the marked behavior. The closed behavior L(SIG) is defined

inductively as follows [Wonham]:

• e&LiSIG)

• If .v e L(S / G), a£ S(S(q0,s)), and scr e L(G), then sa e L(S IG)

• No other strings belong to L(S IG).

We then have L(S IG) c; L(G), and according to the above definition, L(S IG) is

closed. The marked behavior ofS/G is defined as

Lin(S/G) = L(S/G)f]Lm(G).

Thus Lm (SIG) consists of sequences in the marked behavior that can be generated in

system under supervision. Note that in S/G, marking is still determined by the plant G.

Abusing the notation, we let R(S/G) and CR(S/G) be the reachable and coreachable

states of the plant under supervision:

R{SIG)= {q<EQ\3seL(S/G) : q = S(q0,s)}

16

CR(S/G) = {qeQ\3s,s':seL(S/ G), ss' e L(S IG),q= S(q0, s) and 8{q, s') e Qm } .

In the supervisory control problem, the objective is to find an admissible supervisor S

such that

(i) R(S/G)^E;

(ii) R(S/G) c CR(S/G).

The former condition confines G stay inside the set of desirable states, and the

latter ensures that S/G is nonblocking. Assuming such S exists, then R(S/G) is a

controllable, nonblocking predicate, and vice versa, if a subset of E that is

controllable and nonblocking exists, then the supervisory control problem is

solvable [18].

A supervisor S is maximally permissive (optimal) if it only disables an event

when it has to. Note that in the case of full observation as in this thesis, we can

always construct an optimal supervisor [5]. However, an optimal supervisor may

not exist for the case of control under partial observation.

The supervisory control problem discussed earlier is referred as "state-based"

supervisory control problem since the design specification is given in terms of safe

(legal) states (E). An alternative, equivalent formulation of the supervisory

control problem follows a linguistic approach in which the design specification is

given in terms of a legal language (i.e., legal event sequences).

17

The solutions to the linguistic supervisory control problem can be characterized

in terms of controllable and Lm(G) -closed languages.

Definition 2.3.1. [11] A language K is called controllable with respect to the plant G if

KXucf)L(G)^K

In the linguistic approach, the supervisor is considered as a map S : S* —» T .

Let EczLm(G) be the legal language (design specification). The supervisory control

under partial observation is to find an admissible supervisor such that

Lm (5 / G) c £ (S/G satisfies E)

L^(S IG) = L(S IG) (nonblocking condition).

It can be shown that [8], [4] for K cz E, there exists an admissible supervisor S such

that

(i) Lm(S/G) = K

(ii)Z~(S IG) = L{SIG)

If and only if

K is controllable and Lm(G) -closed.

Thus the class of controllable and Lm{G)-closed languages characterizes the set of

solutions to the supervisory control problem.

Using state-modifiers, any language-based supervisory control problem can, without

any loss of generality, be converted into a state-based problem.

18

State-Modifiers

A state-modifier refines the state transition graph of the plant so that event sequences

leading to every state are either all legal or all illegal, creating a partition of states into

safe and unsafe states.

We compute the modifiers from their respective mode specifications models. To

compute a modifier, the following steps have to be followed:

1. Take the final specification for a given mode;

2. Add a dump state to it and connect each state in the plant with the dump state

using event transitions that are not defined at that particular state in the plant;

3. Finally, mark the dump state.

The plant transition structure can be modified by using the meet function from TTCT

[15]

Modified Plant = meet(plant, state-modifier)

The next section shows an example of supervisory control.

Example

Let us consider the following plant model:

19

Fig. 2.2: Plant Model

The plant has 5 states and 9 event transitions. Event cros is an uncontrollable event and

rest of the events are all controllable events. Throughout this thesis, marked states are

shown with an outgoing arrow. Also controllable events are crossed (^z>). It can be

seen that states 0 and 4 are marked. Let E be the state-based specification denoting state

2 as the unsafe state. We construct the supervisor as follows.

State 2 can be reached from states 1 and 3 through the event transitions an and<T32. The

supervisor disables these two events resulting in the following model:

Fig. 2.3: Partial model of the supervisor

It can be seen from Fig. 2.3 that the state 2 became unreachable. The following model

shows the model for the supervisor with state 2 removed:

20

Fig. 2.4: Partial model of the supervisor

It can be seen that the above model shows state 4 as unreachable. Further, we need to

remove state 4 and event a40 resulting in the following model:

OOl

<a (D

Fig. 2.5: Partial model for the supervisor

The above model shows all reachable states; however, we face the problem of blocking in

this model. Once the plant reaches state 1, it is blocked. To solve this problem, we need

to disable event croiand remove state 1 as well. The following model shows the final

supervisor S:

G30

Fig. 2.6: Supervisor S

The above design procedure can be done in a systematic way [18].

21

2.4 Robust Supervisory Control

In this thesis, we study fault recovery problems in cases where return-to-normal operation

after a fault is possible. As we will see in Chapter 3, the problem will become an

instance of robust control of an infinite number of plants. Here we review some relevant

results from literature on robust control of finite number of plants.

Consider a finite set of plants G,,...,Gn, each a finite-state automaton

n

G, = (£>,,£,, Si,q0 ,Qm) . Let E, c Lm(G,) be a set of legal languages. Let E = US,• It is
(= 1

assumed that the plant models agree on controllability of events. That is a e E, H 2y is

controllable if only if a is controllable in both G, and G, and otherwise it is

uncontrollable in both G, and Gy. The Robust Nonblocking Supervisory Control Problem

is find a supervisor S such that

(i) A„(S/G,)<=£,

(i i) Z > / G ,) = L(S/G,)

Let G be a finite state automaton with Z,(G) = U£(G,) and L (G) = U L (G(). Also
i=\ i=l

define £ = f l ^ U (Z* - 4, (3))) D 4, (G) •
7 = 1

Then 5 solves the robust nonblocking supervisory control problem if and only if there

exists K^E such that [1], [13]:

1. K is controllable with respect to G

22

2. AT is Lm(G) -closed

3. Kis G, -nonblocking (Kf]Lm(G,) = Kf]L(G,))

The following two lemmas will be useful.

Lemma 1. [13] Suppose G\ and Gi are DES over the alphabet £ with

£(G,)c L(G2) . For a supervisor S:

L(S/Gi) = L(S/G2)f)L(Gl).

Lemma 2. [1] Suppose G\ and Gi are DES over the alphabet £ with L(GX) c L(G2) and

Lm (G,) c Lm (G2) . For a supervisor 5:

4,(5/G1) = im(1s/G2)nA„(G l).

2.5 Conclusion

In this chapter, we presented various details about Discrete Event Systems relevant to this

thesis. We explained concepts such as supervisory control and robust supervisory

control. In the next Chapter, the problem studied in this is formulated.

23

Chapter 3

Problem Formulation

In this chapter, we formulate the supervisory control problem for failure recovery when

the plant can return to normal mode from recovery modes. As mentioned in Chapter 1,

return-to-normal is possible in case where either the failure is intermittent or some

mechanism exists to fully repair (replace) the faulty components. The general structure

of the plant to be controlled is described in Section 3.2. In Section 3.3, the problem

statement is established. A mathematical example is presented in Section 3.4.

3.1 Introduction

In complex control systems that comprise thousands of components, design and

implementation of control policies become extremely difficulty to manage. This is partly

due to the large size of the problems. For example, let us consider a spacecraft. The task

at hand is to design control policies that will successfully launch the spacecraft into a

particular orbit. This example is considered in detail in [17]. As an example consider a

24

spacecraft containing one science camera, and two twin engines. One of the design

specifications could be:

"Heat up both engines (standby mode). Meanwhile, turn the camera off,

in order to avoid plume contamination. When both tasks are

accomplished, thrust one of the two engines, using other engine as backup

in case of primaiy engine failure"

The control policy required to achieve this specification must be able to turn on various

heating elements, valve drives, open sets of valves and record and interpret various

sensor readings often in a predefined order. This spacecraft, as a discrete-event plant

would have millions of states, and a very large set of design specifications. Designing

and implementing supervisory control policies for this set up would be complex.

In addition to the intrinsic complexity posed by the large number of components, many

components are prone to failures. An example of a failure is for an inlet valve to a

particular engine becoming stuck-closed, and consequently, the task of firing and

achieving thrust from that particular engine becomes impossible. Supervising a complex

system such as a spacecraft with possible component failures poses considerable

difficulties in developing control policies. As a result, the development of systematic

methods for control systems has been the subject of extensive research.

Generally, failures can be permanent or intermittent. A valve becoming stuck-

closed could be an example of permanent failure and an electronic circuit becoming open

25

as a result of heating and high temperature is an example of intermittent failure.

Depending on the severity of failures, the plant either can recover (through repair or

replacement of faulty components) or continue to function at lower performance or can

be completely shut down (for safety reasons).

In this thesis, we study fault recovery in systems that can be modeled as Discrete-

Event Systems (DES). In a DES framework, occurrences of failures are modeled by

(uncontrollable) failure events. We assume that a fault diagnosis system is available to

detect and isolate the faults and report them to the supervising control system. The

combination of plant and diagnoser system can be regarded to be in one of the three

different modes: 1) Normal mode, 2) Transient mode, and 3) Recovery mode. As

depicted in Fig. 3.1, the system initiates in normal mode. Once a failure event occurs, the

system enters into the transient mode before the failure is detected by the diagnosis

system. Once the failure is detected, and isolated, the system enters into recovery mode.

Failure Detection

Normal

t
events

Transient
events

Recovciy

Retum-to-normal events

Fig. 3.1: Different modes of the system (plant and diagnoser)

The responsibility of a DES supervisor is to ensure that the plant works in accordance

with pre-determined set of design specifications (concerned with the safety of the entities

involved such as the equipment, personnel, and environment). These specifications

26

normally restrict the plant behaviour in all three modes. A supervisor should ensure that

the plant adheres to these specifications both in normal, transient, and recovery modes.

As an example, let us consider a fuel pump system feeding a furnace, which has two

primary pipes (PI, P2) and one auxiliary pipe (AUX). The system also has valves to

shut/open the flow and individual sensors to read the flow rate in each pipe. Let us

assume another flow meter reads the fuel flow rate reaching the furnace. Fig 3.2 below

shows the setup:

P1

Fuel Tank

P2

- • To Furnace

AUX

Fig. 3.2: Furnace System with three pipes

In normal mode of the operation, both primary pipes allow the fuel flow and the

auxiliary pipe is used as a backup in case of a failure in any of the primary pipes. For

simplicity, we assume that the failure can occur only in one pipe at a time. Example

specification in normal mode for this system would be as following:

'The flow rate can be between 10-20 seem (seem- Standard

Cubic Centimetres per Minute).'

An intermittent failure in this example can be complete blockage in one of the primary

pipes. This failure is assumed to be detected by a sensor rather quickly. Upon

27

occurrence of this failure, the system enters into recovery mode. The recovery mode

specifications would be:

'The flow rate should not fall below 8 seem, if it

falls below 3 seem; the system has to be shutdown.'

Recovery mode specifications are generally less restrictive than those of normal mode

(Here, in terms of required flow rate). If the flow rate falls below 8 seem, the recovery

action is to open the auxiliary pipe to boost the flow rate. If the flow rate falls below 3

seem, the system has to be shutdown for safety reasons so not to allow the furnace on

very low fuel input. When the flow rate falls below 3 seem, opening the auxiliary pipe is

not an option since the furnace faces dry run conditions and needs to be shutdown before

restarting again with full flow rate.

In this thesis, we study the design of supervisory control systems for plants that are

subject to failures. We assume that the plant may return to normal mode of operation

either because some of the failures are intermittent or because full repair (or replacement)

of faulty components is possible.

Typically some of the events are unobservable, for example, failure events are usually

unobservable. In this thesis, as a first step towards solving problems involving return-to-

normal events, we will assume for simplicity that all events are observable. The

assumption of observability of failure events means the diagnosis system can detect and

isolate failure events before the next event occurs in the plant. The extension of the

28

solutions developed in this thesis to the case of control under partial observation is left

for future research.

As a result of the assumption of observability of failure events, the transient mode

never occurs (Fig.3.1) and after a failure event the system enters the recovery mode. We

will base our solution on the Ramadge-Wonham (RW) theory of supervisory control.

Fig. 3.3 shows the control loop in which a plant G is supervised by supervisor S. S

monitors the events unfolding in the plant and at any given step, based on the sequence

generated by the plant (s), makes a decision about the disablement and enablement of

controllable events of the plant (S(s)).

G

S

s

Fig. 3.3: Control loop (G: Plant; S: Supervisor)

3.2 Plant Model

We assume that plant G can be modeled as a finite-state automaton

G = (Q,I,G,SG,q0,Om) where Q represents the set of states and S c represents the set of

events in the plant. Both the normal and recovery modes are included in this model.

The set of states can be divided into two main categories — normal, and faulty. The

states that represent the normal modes of the plant belong to the normal state set, denoted

by ' QN •' The states that represent the recovery (faulty) modes of the plant belong to the

29

recovery (faulty) state set, denoted by QR and QR = i)QR- The recovery states are
r=\

reached when different failure events occur. Fig. 3.4, below, depicts the state sets, with

failure event (ft) and return-to-normal (Sn) events, assuming single failure scenarios (i.e.,

no simultaneous occurrences of failures). Throughout this thesis, we will consider only

single-failure scenarios.

QR

Fig. 3.4: Normal and Recovery state sets

The event set S c contains two most important event sets: (1) Failure events CZf); and

(2) Return-to-normal events(S r). A failure event takes the plant from normal mode of

operation to recovery (failure) mode of operation and is an uncontrollable event. In this

thesis, all of the events including failure events are assumed to be observable. We

consider both intermittent and permanent failure events. We define return-to-normal

events for both kinds of failure events.

The return-to-normal events are those events that take the plant from recovery modes

(QR,) to normal mode of operation (QN).

30

There are two types of return-to-normal events: (a) Failure-correct events, and

(b) Recovery-action events. The set of failure-correct events is denoted by E / t . A

failure-correct event can be understood as an event that models the disappearance of a

particular intermittent failure. These events are uncontrollable and their occurrence needs

no intervention from the system, in other words, no action is required that is external to

the failed component. An example of intermittent failure can be an electronic circuit that

becomes open-circuit once it heats up. After it becomes open, it cools down, the failure

disappears and the circuit resumes operation.

Recovery-action events set is denoted by Era. These are the actions that the plant

takes (such as repair or replacement of faulty parts) to return to normal mode of

operation. Opening an auxiliary valve in response to a stuck-closed primary valve is an

example of a recovery-action event. These events are assumed to be controllable events.

The disjoint union of S / t and Sra is denoted by Er (E, = S/c L)2ra). £,. denotes the set

of all return-to-normal events.

The event set S c can be partitioned into controllable and uncontrollable event sets, i.e.

SG = Ec c U S G uc . The event set SG can also be expressed as the union of two subsets:

Ec =E U 2 / 3 where ~Lf- {fv-fp}(p > 1) represents the set of failure events, and Zp

represents the set of all other plant events (excluding the failure events). Obviously,

31

We finish this section with a note on recovery to normal events. While the

consequence of a return-to-normal event is mainly the plant moving from recovery mode

to normal mode, the dynamics of the plant are more affected because of this event.

Specifically, after a recovery event, the plant may enter a normal state that it would not

have entered if it had not experienced failure and then recovery. In other words, some

normal states are only reachable after return-to-normal event.

To elaborate on this, let us revisit the furnace system we considered in the introduction

(Section 3.1). In this example, we considered a pump system with two primary pipes and

an auxiliary pipe. When a failure (blocking of a primary pipe) occurs, the plant enters

into recovery mode. To enforce the recovery specification, we can open the auxiliary

pipe. But when the intermittent failure is rectified, i.e., blockage is cleared in the primary

pipe due to a failure-correct event and when the plant moves back to normal mode, now

in the normal mode of the plant, all three pipes are in open condition and allowing a flow

above the level required for the normal operation of the furnace.

3.3 Problem Statement

The problem considered in this thesis can be stated as "Designing a supervisor to

control a plant when the plant might return to normal modes from recovery

modes." The design of such supervisor has to consider the plant dynamics involved,

when the plant moves from recovery mode to normal mode. The two main aspects that

the supervisor has to take into consideration are:

32

a) The plant under supervision has to follow the designated specifications for

each of the plant modes; and

b) The plant under supervision should be nonblocking in all of the plant modes.

Let us elaborate on these two aspects:

Safety requirements: These requirements ensure that the plant operates safely in all of

its operational modes. The safety is achieved by restricting the plant behaviours to

specifications in all modes. The plant initially starts in normal mode. The plant under

supervision in normal mode should abide by the specifications and should not enter into

the forbidden states in normal mode. Upon occurrence of a failure, the plant enters into

recovery (faulty) mode. Consequently, the supervisor must be able to limit the plant state

only to safe states as per the specifications in recovery mode. Also this supervisor must

be able to restrict the plant only to safe normal states upon return to normal states from

recovery mode.

Nonblocking requirements: The supervisor must be able to control the plant in such a

way that nonblocking is guaranteed in all the modes. At first, the plant under

supervision in normal mode should be nonblocking. Upon occurrence of a failure, the

plant enters into recovery mode. The plant under supervision in this mode should also be

nonblocking. At this juncture, it is important to note that if a blocking situation in normal

mode can, subsequently, be cleared only by a failure, the situation in normal mode still

has to be considered as blocking. This is because we cannot count on a failure to occur to

come out of blocking. Similarly, when the plant is in recovery mode, if only an

uncontrollable return-to-normal event (failure-correct event) can clear any existing

33

blocking, the situation has to be considered as blocking, since uncontrollable return-to-

normal events in the case of intermittent failures are not guaranteed to occur and should

not be relied on for getting out of deadlocks and livelocks.

The controllability nature of return-to-normal events in a mode / presents us with two

cases:

Case 1: The return-to-normal event set E„ contains only failure-correct events,

i.e.,Sn =S/c.;Ero. =</>. (Here S/c. and Era are the failure-correct and recovery-

action event sets in mode i)

Case 2: The return-to-normal event set Zr. contains only recovery-action events,

Cases in which Sn includes both failure-correct and recovery-action events can

be dealt with using a modified version of case 2.

The need to enforce the nonblocking conditions in every recovery mode depends on

whether the mode belongs to case 1 or 2. In case 1, since the return-to-normal events set

only contains the failure-correct events and by definition these events are uncontrollable,

the nonblocking requirement has to be enforced in every recovery mode of the plant. On

the other hand, in case 2 problems the return-to-normal events set contains a few

recovery-action events, which are controllable. In this case, the nonblocking requirement

does not have to be enforced as the recovery-action events can be controlled and be made

to occur to bring the plant from the recovery mode to normal mode.

34

Let us assume for now that the plant has a single failure mode with one failure event

(p = 1). The extension of results to arbitrary p will be discussed later. Fig 3.5 below

depicts both modes of the plant:

Failure events

Normal "\ /^Recover^

(N) 1 \^^
Return-to-normal

events (r)

Fig. 3.5: Plant G assuming one failure mode (p = 1)

The plant initially starts in normal mode. In this mode, all of the components exhibit

normal behaviour of operation. When the failure event (/) occurs, the plant enters into

failure (recovery) mode (state set QR). The algorithm that is proposed in Chapter 4 is

capable of computing a supervisor for a given single-failure mode. However, a given

plant may have multiple failure modes. The algorithm proposed in Chapter 4 can be

extended to tackle these more complex problems.

As discussed, the plant continuously moves between normal modes and recovery

modes as failure events and return-to-normal events occur. In order to state the control

problem, let us consider the unraveled, expanded state transition graph of the plant G,

Gex shown in Fig. 3.6 (which is similar to a reachability tree).

35

QN,O
f

Qfu>
r

QN.I
f

QR.I

< GNR •

•^ GNRN •

Fig. 3.6: Expanded transition graph Gex

In this figure, ()v,and QRi(i = 0,1,...) denote the set of normal and recovery (faulty)

states reached after the /' return-to-normal event. Gv and GNR are the subautomata

containing states QNQ and QN0UQRfi- G(m),N and G(m),+] are the subautomata

containing states U(QN.J\JQR,J)\JQNJ and \J(QN.J\JQK,J) (»' = 0,1,2,..).
./=1 y=l

To construct the automaton Gex in Fig.3.6, formally, we can proceed as follows. First

introduce a counter for return-to-normal events (and failure events) as shown in Fig. 3.7.

Let us call the counter C. Then Gex can be formed as the product of G and C:

Gex = meet (G,C)

with QN,=QN x {/} and QRJ =QRx{i'}

Similarly, subautomata of Gex, namely, G ,• and G ,+, (/' = 0,1,...) can be formed

using the product of G and subautomata of C containing states {0,0',..../} and

{0,0',...//}.

36

2-{Ef} E-{Sr} S-{Zf} S-{Sr} I-{Ir} 2-{Zf}

^ o v-uro^urrv^rio rrv^ ,•
Fig. 3.7: Expanded states showing the events counter

With the notation given, we present the mathematical definitions for the two cases 1

and 2 discussed earlier. Let EN cz QN and ER cz QR be the set of legal states in normal

and recovery (faulty) modes (design specifications). The first problem, wherein the

return-to-normal events are uncontrollable (only failure-correct events Z / c) can,

mathematically, be defined as follows:

"Design a supervisor S such that

a) R(S/GN)czEN0

/ normal mode;
b) R(S/GN)czCR(S/GN)

after a failure event:

a) R(S/Gm)nQROcERO .
/ recovery mode;

b)R(S/Gm)czCR(S/GNR)

after a return-to-normal event:

a) R(S/GNRN)nQNAcENj x

i normal mode;
b)R(S/GNRN)czCR(S/G

NUN)

after another failure:

a) R(S I Gmw) n Q c ER

) recovery mode;
b) R(S/GNRm)c:CR(S/Gmm)

and so on. More compactly, for / > 0, we want the following:

37

} normal mode;

and

^)R(SfG Rfl)nQRJcERJ

\ recovery mode.

In the above description, R(S/GN) is the reachable part of the plant under supervision in

normal mode; CR(S/GN) is the co-reachable part of the plant under supervision.

ENj = ENx{i} represents the normal mode legal states after the in return-to-normal event

(after one failure event). Similarly, ER, = ERx{i} represents the recovery mode legal

states after i'h return-to-normal event and (/"+/)' failure event. The mathematical

description of the problem presents us with two sets of conditions. The first set, set 'a'

conditions, restrict the reachable part of the plant under supervision in normal and

recovery modes to the respective state specifications, thus ensuring safety in all modes.

The second set, set 'b ' conditions, enforce nonblocking by ensuring that the reachable

part of the plant under supervision is also co-reachable, so that the plant under

supervision can reach a marked state from any state in all modes.

The above description represents the problem when the return-to-normal events are

uncontrollable (£ r = £/L.). When some of the return-to-normal events are controllable,

i.e., Era = 2,.;!)^. * </>, we do not enforce the nonblocking requirements in recovery modes

since we can enable the return-to-normal events and expect the plant to be able to move

38

to normal mode. So the problem deals with the enforcing of both safety and nonblocking

requirements in normal modes and only safety requirements in recovery modes. The

following is the mathematical description:

"Design a supervisor S such that

a)R(S/GN)czEN0

) normal mode;
b) R(S/GN)QCR(S/GN)

after a failure event:

a) R(S/ Gm)nQRfic, ERfi } recovery mode;

after a return-to-normal event:

a) R(S/GNRN)nQNl^ENl
) normal mode;

b)R{SIGNRN)^CR{SI

after another failure:

a) R{S I Gmm)r\QRX^EKX } recovery mode;

and so on. Alternatively, for / > 0,

} normal mode;
a)R(S/G(m,N)nQN^ENl

b)R(S/G
{m>N^CR(S/G

(m^

and

a') R(S/G(m)M)nQRj^ERi } recovery mode.

We can see the problems in both cases 1 and 2 are instance of the robust control problem

for an infinite number of plant models GN ,Gm,GNIiN , In the following Chapter, we

offer solutions for the problems.

39

3.4 Example

Let us consider the following example to illustrate the details of the problem. Fig. 3.8,

below, shows the DES model of a plant (G) that contains both failure events and return-

to-normal events. Here both failure events (/) and return-to-normal events (r) are

uncontrollable and assumed to be observable.

Fig. 3.8: Plant (G)

The plant G is prone to failure at state 1. The return-to-normal event is defined both at

state 4 and 7. The following state sets show us both the safe state specifications and plant

states for both the normal and recovery modes: The unsafe states are shown in bold.

EN= {0,1,3}, QN ={0.1.2.3};

ER = {4,6,7}, QR = {4,5,6,7};

The above problem is solved based on standard (non-robust) supervisory problems and

the plant under supervision (S/G) is shown below in Fig. 3.9.

40

Fig. 3.9: Plant under supervision of a standard supervisor (Ssi/G)

It appears that the plant under supervision is nonblocking. However, note that at the

recovery (faulty) state 7, to reach a marked state (0 or 6) the occurrence of failure-correct

event r is necessary. The return-to-normal event is uncontrollable and uncontrollable

events are not be guaranteed to occur. Thus state 7 should be considered as deadlock. So

the solution based on standard supervisory methods does not provide nonblocking

guarantee. That is because, in computing this solution, the standard methods did not

consider the actual dynamics of the plant with respect to the uncontrollable failure-correct

events. Fig. 3.10 below presents the plant under supervision as per the robust control

solution computed based on the algorithm presented in Chapter 4.

Fig. 3.10: Plant under supervision of a robust supervisor (SRobus/G)

It can be seen that our solution actually provides a robust supervisor which guarantees

nonblocking both in recovery and normal modes of the plant operation. This plant

observes no blocking after return to normal mode of operation under supervision by

41

disabling the controllable transition from state 4 to state 7. The complete solution to this

example is presented in Chapter 4.

3.5 Conclusion

In this chapter, the problem of fault recovery when return to normal operation is possible,

is formulated. We presented two cases of the problems considered. In Chapter 4, we

present the solution along with the design algorithm.

42

Chapter 4

Solution to Fault Recovery Problem

In this Chapter, we will present a solution to the fault recovery problem and then develop

a computational procedure. The problem formulation is reviewed and some useful

definitions are introduced in Section 4.1. In Section 4.2, the solution for finding an

optimal (maximally permissive) solution is presented. Section 4.3 develops a

computational algorithm and provides an example.

4.1 Introduction

In Chapter 3, a supervisory control problem with return-to-normal events was presented.

Depending on the controllability of re turn-to-normal events, we identified two cases:

1) Return-to-normal events are failure-correct events and thus uncontrollable:

Sr = S/c c Suc. This is the case we encounter in dealing with intermittent

failures, and

43

2) return-to-normal events are recovery action events and assumed controllable:

We saw that the above problems are instances of robust control problem. In this

Chapter, we present a solution for the first problem. The solution for the second problem

is similar and omitted for brevity. Therefore, from now on, we will assume

Sr = "Lfc c Y.uc. In Chapter 3, the statement of the problem was given in terms of

subautomata of the expanded plant Gex. If the total number of fault and return-to-normal

returns cycles is finite, then G^will have a finite state set and the problem posed in

Chapter 3 will be a robust control problem involving a finite number of automata. The

solution to this problem (at least in a linguistic setup) is available [13]. Therefore, in this

chapter, we will assume that an unbounded number of fault and return-to-normal returns

cycles is possible in the plant (in the case of intermittent failures that is typically the

case). As a result, we have to solve a robust control problem with an infinite number of

plant models.

The problem is to find a supervisor S such that for / = 0,1,2,....

b)R(S/G^,^CR(S/G
(NR^\

ct')R(S/G(m)M)nQKic:ERj

b')R(S/G(mr>)czCR(S/G(m)M)

We refer to the following problem as the Infinite Horizon (IH) problem. We will show

that the optimal (maximally permissive) solution to the IH problem can be obtained as the

limit of the sequence formed from solutions to the following Finite Horizon problems.

44

Finite-Horizon-/ (FH1) problem: Find a supervisor S such that for 0 < / < /

a)R{SJG(m),N)^QNjc:ENj

b)R(S/G
(^,^CR^S,G,^^

and for 0 < / < / - 1

' b') R(S/G M)czCR(S/G ,+1)
' v (/«<) ' — v (NR)'+l '

Finite-Horizon-/' (FH1') problem: Find a supervisor 5" such that for 0 < /' < /

a)R(S/G(m),N)nQN,c:ENj

b">R(S/G^N^CR(S/G^N)

a')R(SIG(m)M)^QR,^ERt

b')R(S/G ,+i)czCR(S/G iH)

FH1 considers / cylces of fault and return-to-normal events whereas FH1' considers / such

cycles and the'(/+1)' failure. From now on, for convenience we use Gt and Gr to denote

G , and G
(NK)1 N (:V«)

4.2 Maximally Permissive Solution

In this section, we show that the infinite horizon problem has a maximally permissive

solution in the form of state feedback. Furthermore, this solution can be obtained as the

limit of maximally permissive state feedback solutions for the finite horizon problem (as

the length of horizon increases). We will show that the aforementioned sequence

terminates in a bounded number of steps.

45

We begin by exploring some of the properties of the solutions of IH problem.

Proposition 4.1. A supervisor S solves IH problem if and only if S solves FH1 and FH1'

problems for / = 0,1,2,

Proof follows immediately from the statement of IH, FH1 and FH1' problems. The

following lemmas state that legal sublanguages that posses the three conditions of

controllability, Lm(G) -closure and G -nonblocking characterize the solutions of IH

problem (this is similar to the case of finite number of plants in [12]).

Lemma 4.2. Let S be a solution of IH problem. Then K = Lm (SIG) will be

1. controllable with respect to G

2. Lm(G) - closed

3. G, -nonblocking and Gr nonblocking for all /" = 0,1,2,....

Proof: Define K, = L,„(S IG,) and Kr = Lm (SI Gr) for / > 0 . From lemma [1],

K^KHL^G,) and Kr = Kf]Lm(S /Gr). Also note that LW(GJ = Lm(G) and

L(Gex) = L(G).

By Prop.4.1, S is a solution of FH1 and FH1' (/>0) . Therefore, K, (resp.K,.) is

controllable with respect to Gt (resp. Gr), Lm(G,) -closed (resp. Lm(Gr)-closed) and G,-

nonblocking (Gr-nonblocking). Using the above, we can show K = \J(K,{jKr) is
/=0

controllable with respect to G, Lm (G) -closed and G, -nonblocking and Gr -nonblocking

46

(/ > 0). The proof is identical to that provided in part (2) of the proof of Thm. 9 of [13].

The proof given in [13] is for a finite number of plant models but all of derivations hold

for a countably infinite number of plants. •

Lemma 4.3. Let K cz Lm(G) and K^(/> be a sublanguage of Lm(G) containing legal

strings for IH problem. If K has the following properties

1. K is controllable with respect to G

2. K is Lm (G) -closed

3. A: is G.m),N -nonblocking and G(m)M -nonblocking (i = 0,1,..)

Then there exists a supervisor S that solves IH problem with K cz Lm (SIG).

Proof: It follows from (1) and (2) that there exists a supervisor S such that K = Lm(S IG)

and Z j S / G) = 1(5 / G). We show S solves FH1 (/ > 0).

First note that

Lm(S/G,) = Lm(S/G)nLm(Gl)

- K(Um(G,)

Thus Lm(S IGt) contains legal strings ofLm{Gt) . Regarding nonblocking property

LmiSIG,) = Lm(S/G)nLm(Gl) (By Lemma [1])

= KC\Lm{G,) (K is ^-nonblocking)

= Kr\L(G,)

= L(S/G)f]L(G,)

47

= L{SIG,)

Therefore S solves FH1. Similarly, S solves FH1', and then by Prop. 4.1, 5* solves IH

problem. •

Since controllability, Lm(G) -closure and G -nonblocking properties are closed under

union operation ([19],[13]), then assuming IH is solvable, it has a maximally permissive

solution.

Proposition 4.4. If the infinite horizon (IH) problem has a solution, then it has a

maximally permissive solution.

Proof. Follows from lemmas 4.1 and 4.2 and that controllability, Lm(G) -closure and G -

nonblocking properties are closed under union operation. a

Consider FH1 problem. This is a control problem formalized in a state-based

framework. The solution of this problem [19] is a state feedbacks': Q, —> T . Each state

Qi is a pair (q,i) with q e Q is the state of plant, / the number of failure and return-to-

normal cycles (0 < / < /) . Similarly, the solutions to FH1' are of the form S : Qr —» Y

with Qr consisting of pairs (qj1) with q eQ and 0 < /" < / . The next result shows that

even though the feedback law for FH1 and FH1' depend on q and /, the feedback law for

the maximally permissive solution for the infinite horizon (IH) problem depends only on

q (not /). This result resembles the control law in Linear Quadratic Regulator (LQR)

problem in which the solution for finite time horizon depends on the state and time but

48

the solution for infinite horizon problem depends on state only. In the following, the

state feedbacks with domain Q (the state set of G) designated by V to differentiate them

from S whose domain is subsets of Qex (the state set of Gex).

Proposition 4.5. If IH problem has a solution, then the maximally permissive solution

will be a state feedback law V* : Q -> T = (S'l E' =3 Z, \. In other words, if S* : Q,r -» T

denotes the maximally permissive solution, then Sl((q,i)) = V^(q).

Proof: We have to show that for two states (q, i) and (q, j) the control patterns for the

maximally permissive solution, that is S*M((q,i)) and Sl((q,j)) are the same. Since the

design specifications for IH are in state-based form, at any given state {q, i), the control

pattern only depends on the subautomaton of Gex reachable from the state (q, i). Now

note that the subautomata reachable from (q, i) and (q, j) are isomorphic. Furthermore,

the states of the above mentioned can be related by the following isomorphism which

preserves the legality and the original label of the state from rj((q',k)) = {q ,k + j - /) .

Therefore, S*x ((q, i)) = S*x ((q, j)) . •

Loosely speaking, the control action in IH problem depends on the possible future

behaviors of the plant and not on how many times in the past the fault and return-to-

normal cycle has occurred.

49

Now that it is established that the desired maximally permissive supervisor is in the

form of a state feedback law V*: Q —> F , let us study the subsets of the solutions of FH1

and FH1' that have the same form. So let

Vi = { V : Q -> r | F solves FH1};

Vv = { V : Q -> T | Vsolves FH1'};

^4 ={V:Q->r\ V solves IH}.

The next proposition shows that Vi and V? (if nonempty) posses maximally permissive

elements. Note that if IH is solvable, then V'x exists (by Prop. 4.4 and 4.5) and therefore

l4a^ <j> and Vi and Vi< are nonempty (by Prop. 4.1).

Another important issue is that the total number of state feedback controllers

V:Q—>F is less than or equal to |(?|x2'~c' since at any state q, there are at most 2 '

possibilities for the enablement of controllable events. Therefore |V/ |, |V/'|, \Vro\

<\Q\.^.

Proposition 4.6. If V/ (resp. V^) is nonempty, then it has a maximally permissive

* *

element % (resp. %•).

Proof: Consider two supervisors V^ ,V2 e %. Without any loss of generality we assume

that

V,\q) = Zuc for qtRtf/G,)

Vl
2(q) = ZiicforqtR(Vl

2/G,)

50

This means that the supervisor F/fresp. V2) disables all events at states that can not be

reached under its supervision. We can assume this without loss of generality since it does

not affect the closed-loop systems V,11G, and V,11G,.

Now define the merger of V,1 and V2 according to:

V, = merge (V^V'y.Q^T

It follows from the above definition that R(V, IG,) = R{V' I G,){JR(V21G,) and more

generally, R(V, IG,.) = R(V, IG,) U R(V21G,) for 0 < / < / , and

R(V,/Gr) = R(V,1 /G,)UR(V2 /G.) for 0 < / < / - l . Since V* and V2 solve FH1, then

R(V,[/G,), R{V2IG,) and R(V,1 /G,,), R(V21G,,) are controllable, nonblocking

predicates [19]. Therefore, R(V, /G,)(0 <i < /) and R(V, /G,)(0 <i < / - l) are

controllable and nonblocking. Therefore V, e Vi. Now let V* be the merger of all

elements of V/. It immediately follows that Vt will be a maximally permissive state

feedback of the form V : Q —> V . The proposition can be similarly proved for V*. n

The next result shows how IH problem can be obtained by solving a finite horizon

problem.

51

Theorem. 4.1: For / > \Q\ - 1 , V' = V^ and V', = V%„ .

Proof: Since 14 c Vi, we only need to show V' e 14> (i.e., V* solves IH problem).

Since R(V' / G) cz Q, V* IG will have at most \Q\ states. Therefore , every state in

Vj IG can be reached by a sequence of a length less than \Q\. Therefore, with in /-l

fault and return-to-normal cycles all of the reachable states of the plant i?(l^ IG) can be

visited once. In other words, for every q e R(V* IG), there exists 0<j<l such that

{q, j) e R(V* IG,) . Since V* solves FHl, then all states (q,j)eR(V*/Gl) and therefore

all q G R(V* IG) or equivalently all (q,i) e R(V* I Gex) must be legal (and satisfie the (a)

specifications in IH problem). Since V* solves FHl, R{yl IG;) is a nonblocking predicte

for 0 < / < / , a n d s o i s R(V' IGf) for 0 < / < / - l .

Now consider R(V* IG,) with / > / , and (q,k)e R(V' IG,) . If (q,k)e R{V* IG,),

then as mentioned above it must be coreachable using a sequence through legal states. If

(q,k)eR(V* /G,), then k>l + l. But there exist (q,j), 0<j<l such that

(q.j) e R(V* IG,). Since V' solves FHl, then there exists a sequence in Gs starting from

(q,j), consisting of legal states, and leading to a marked state:

(qj) -> (?p/i) -> {q2J2) -> i.q„Ja)
 w i t h q„ e S,„ • Since V* is a state feedback law

based on q only, therefore the following sequence of legal states also exists in

V]' IG,:{q,k)^{q[,j{ + k-j)^(q1,j2+k-j)^....->{qllJll+k-j). Thus

52

R(V* IG,) is nonblocking. Similarly, R(V* IG.,) is nonblocking. Therefore V* solves

IH problem. Similarly, we can show V*. solves IH problem. a

Based on the above results, instead of finding a maximally permissive solution to IH

problem, we can find maximally permissive state feedback solutions FH1 or FH1' for

/ > \Q\ - 1 . The set of state feedback solutions for FH1 (resp. FH1'), 9/ (resp. Vi) are finite

sets and can be searched recursively for desired maximally permissive answer. Note that

G/ contains (in the worst case) (/ + l)|g| states. So for / = | (? | -1, G, will have in the

worst case \Q\~ states. Instead of solving FH1 (for / >|£>j-l), we can obtain maximally

permissive sequence of solutions (for FHO, FHO', FH1, FH1',....): V^ ,VQ. ,VX' ,Vy , We

know for / > \Q\ - 1 , V* = V', =V^. It is possible that the sequence terminates faster. So

if for 0 < k < \Q\ - 1 , V*k = V*k,, (or V*k = Kj_iy), then the sequence has possibly terminated.

To check this, we obtain R(Vk IG) and if for every qeR(Vk/G), there exists

{q,i) G R(Vk I Gk), then, similar to the discussion in the proof of Thm. 4.1., Vk* = V^ and

the sequence has terminated. In practice, k would be as small as 1. In the next section,

we will discuss a simple example.

Remark: In our discussion, in this section, we assumed the plant has one failure mode (p

= 1). The discussion and solution can be extended to the case of plants with more than

one failure mode (p > 1). Assuming, single-failure scenario (i.e., one failure at a time), as

shown in Fig. 3.4., the problem and solution will be similar except that G, as introduced

53

in Sec. 4.1, correspond to the plant model with / cycles of fault and return-to-normal

events, covering sequences of/ faults from the set fault events lLf ={fl,---fp} • Gr is

defined similarly. To solve the IH problem, we can construct the sequence of solutions to

FH0,FH0', ...:V;,v;X>K>

4.3 Example

In the previous section, we arrived at an algorithm for obtaining a maximally permissive

solution for IH problem. The algorithm consists of constructing the sequence of

maximally permissive state-feedback solutions for FH1 and FH1': Vl,V*,, F,*, F,*, If

for some k, Vk=V'k,, (or Vk =V*k_u) and R(V* IG) = {q\(q,i) e R(Vk I Gk) for some

0 < / < k or (q, i') e R(V* I Gk) for some 0 < / < k -1} then Vk = V*x . The convergence is

guaranteed for k = \Q\ -1.

In the following, we consider a simple example. In Chap. 5 a more detailed example

will be discussed.

Consider the plant G given in Fig.4.xl.

54

Fig. 4.xl: PlantG

Note that only few transitions are labeled with the corresponding events that matter

most to the discussion. The unsafe states are bolded.

In G\ the normal states are QN = {0, 1, 2, 3}, and the faulty (recovery) states QR =

{4, 5, 6, 7}. Suppose states 2 and 5 are the unsafe (illegal) states. Therefore,

EN ={0,1,3}; ER ={4,6,7}.

Also note the QR = {0, 6} are the marked states.

We would like to solve the IH problem. First we solve FHO for GM = Go shown in Fig.

4.x2, with £„0={(0,0),(1,0)}.

Fig. 4.x2: GN = G0

By inspection, we see that disabling controllable event a at state (0,0) will solve the

problem. Therefore, the following state feedback law will be a maximally permissive

solution:

55

{
E-{a} q = 0

VQ (q) = ~) S otherwise

Next we solve FHO' for GNR = G0' (Fig. 4.x3), with ER0 = {(4,0'),(6,0'),(7,0')}.

*(4,0') 7^ *i 6,0'

To avoid entering illegal states (2,0) and (5,0'), events a at (0,0) and/5 at (4,0') must be

disabled. Also, by inspection the deadlock state (7,0') should be avoided and thus a at

(4,0') has to be disabled. Hence a maximally permissive state feedback supervisor is:

{
£-{«}

V0,(q)=-) ! -{« , /?}

q = 0

q = A

otherwise

Note that V0, is more restrictive than VQ

Next we solve FH1 for G (NR)N G, (Fig. 4.x4)

56

Fig. 4.x4: GmjN = G/

To avoid entering illegal states (2,0), (5,0') and (2,1), a has to be disabled at q = 0 and

P should be disabled at q = 4. Furthermore to prevent entering (7,0') which is a deadlock

state for G^R = Go; a should be disabled at 4. Thus a maximally permissive solution will

be

K(q) =
(-2-{«} g = 0

q = 4

otherwise

r* -r r*

We note that V0, = V{ . In Fig. 4.x5 and 4.x6, the closed-loop systems Vl IG and

Vx I Gx are shown.

Fig. 4.x5: System under supervision V* IG

57

Fig.4.x6: Vl'/Gl

We note that R{V* IG) = {0,1,3,4,6}

= { q\(q,i) e ^ ' / G ,) for z = 0, l}U

{qliqMeRtf/GJ}.

As in all supervisory control problems, the automaton in Fig. 4.x5 can be used as an

implementation of the supervisor as well.

4.4 Conclusion

In this chapter, an iterative solution for the problem considered in Chapter 3 is presented.

The solution has been found to be converging (in a bounded number of steps) providing a

robust supervisor. In Chapter 5, three application examples are provided.

58

Chapter 5

Application Examples

In this chapter, we consider three physical examples and solve them using the algorithm

proposed in Chapter 4. We consider a Simplified Propulsion System (SPS) in Section

5.2. In Section 5.3, we solve an extended version of SPS: Extended Propulsion System

(EPS). In Section 5.4, we solve Automatic Resource Allocator (ARA) problem.

5.1 Introduction

Discrete Event Systems theory lends itself as a better tool to solve the higher level

supervisory control problems. One of the prominent areas where DES is used is

spacecraft systems. [17] deals with few aspects of DES applications to robotic space

explorers.

59

Three physical examples are considered in this Chapter: i) Simplified Propulsion

System (SPS), ii) Extended Propulsion System (EPS), and iii) Automatic Resource

Allocator (ARA). The plant dynamics for the propulsion system examples are taken from

actual propulsion systems used in spacecraft [5, page: 129]. The dynamics for the

component interaction is taken from their operational characteristics from real propulsion

systems. [7] is referred for constructing some of the operational procedures considered

for the examples. [13, page: 164] describes various steps that are involved in operating a

spacecraft propulsion system. These steps are considered in designing the event

sequences for our propulsion system examples. In both propulsion system examples, the

return-to-normal events are uncontrollable events.

The third physical example considered is an automatic resource allocator, which can

resemble any system with two users and two resources. In this example, the return-to-

normal event is a controllable event. Also the solution can be extended to multiple users/

multiple resources systems.

5.2 Simplified Propulsion System (SPS)

In this example, we consider a spacecraft propulsion system in its simplified version. An

extended version is considered in section 5.4. We call this simplified version: SPS. SPS

represents a miniature version of a large spacecraft propulsion system such as the one

used in Galileo spacecraft [3]. SPS is a mono-propellant system. Spacecraft propulsion

systems produce the thrust required to accomplish tasks such as controlling the direction

60

of the spacecraft, inserting the spacecraft into orbit and for reactive control systems

(RCS) of spacecraft [17].

5.2.1 Setup of SPS

The simplified propulsion system (SPS) contains the following components:

1) Pilot: To initiate start and stop commands to start and stop the whole operation.

2) Pyro-valve: A pyro-valve is a regular valve operated using pyro (temperature)

techniques. Also a pyro-valve can only be operated once. The pyro-valve in SPS

is initially open and is closed to stop the flow of the propellant when required.

3) Valve: A regular valve which can be opened or closed to control the flow of the

propellant to the engine.

4) Thrust Engine: An engine that burns the propellant and produces thrust.

The following diagram shows the setup of the components for SPS:

°M o Pyrovalve

Regular Valve

Engine

Fig. 5.1: Setup for SPS

61

Note that the diagram does not include the pilot. The normal operation of the plant is

as follows: initially the pyro-valve is open and the regular valve is closed and the engine

is off. Upon receiving a start command from the pilot, the regular valve is opened to

allow the propellant to reach the engine. Subsequently, the engine is turned on by

starting the pre-heating and ignition processes. We consider all the steps involved in

turning the engine on as one event. In this state the plant generates thrust. Once the

desired mission is accomplished, the pilot sends a stop command. Upon receiving that

command, the regular valve is closed followed by turning off the engine. The pyro-valve

is not operated in the normal mode of the operation.

The failure event (/) is defined as the regular valve getting stuck in open position thus

creating a situation where the propellant is allowed to reach the engine continuously.

When this event occurs, the plant enters into failure mode which is also recovery mode.

In this mode of operation, the propulsion system keeps producing the thrust even after a

stop command is received from the pilot. We define a return-to-normal (failure-correct)

event (r) which can bring the failed valve back into normal state (open position) from

where it can be closed when a stop command is received from the pilot. Both the failure

and failure-correct events are considered to be uncontrollable as the supervisor has no

control over them. However, if this failure-correct event does not happen, we provide an

alternative way to stop the flow of the propellant when the stop command is received.

We use the pyro-valve to close the flow path for the propellant and then subsequently

turn the engine off. However, once the pyro-valve is closed, the plant is not reusable. In

propulsion systems used in spacecraft, usually, multitudes of SPS are used to create

62

sufficient redundancy in the mission operation. The next section presents the DES

models for individual components and then plant models are computed. A more complex

problem is studied in Section 5.3.

5.2.2 DES Models

In our modeling of the components of the simplified spacecraft propulsion system, we

consider the general dynamics of the components and their interaction taken from the

operational specifications of real spacecraft propulsion systems [3],[7],[9]. The

following remarks apply to all DES models in this chapter:

1) Uncontrollable events are even numbered;

2) Controllable events are odd numbered.

The following table describes all the events used in this example:

Event

1
2
3
4
5
6
7
8
9

Tag

V open
V fail
V close
V return
PV close
Start
E on
Stop
E off

Description

Valve opens
Valve stuck open (failure event)
Valve closes (failure-correct)
Return-to-normal event (r)
Pyro-valve closes
Start command from the pilot
Turns the engine on
Stop command from the pilot
Turns the engine off

Table 5.1: Event list for SPS

The following diagram shows the model for the regular valve and includes the failure

and return-to-normal (failure-correct) events.

63

1 : V_open : Opens the valve
2 : Vfail : Valve fails stuck open
3 : Vclose : Closes the valve
4 : Vreturn : Valve returns-to-normal state

Fig. 5.2: Valve (SPS) (Full Mode)

The valve is prone to failure in its open position (at state 1) leading to failed state 2. At

this state, the return-to-normal event (4) is defined. This event returns the failed valve to

normal open position (state 1). When the failure event occurs in the valve, the plant

enters into recovery mode and returns to normal mode when the return-to-normal event

occurs. As stated before, the failure and return-to-normal (failure-correct) events are

uncontrollable.

The following diagram shows the model for the pilot with uncontrollable events: 6 and

8. Due to its nature, the pilot is not controlled by the supervisor. Event 6 is a start

command to start the whole operation while event 8 is a stop command to signal

completion of the operation and initiate shutting down the propulsion system.

6,8

6 : Start: Start command from the pilot
8 : Stop : Stop command from the pilot

Fig. 5.3: Pilot (SPS)

The next model represents the pyro-valve with a single event: 5. The pyro-valve is

initially open and event 5 closes the pyro-valve. This operation is irreversible as pyro-

valves can only be operated once.

<rp

64

0 ") ^ •(l \—y 5 : PV_close : Closes the pyrovalve

Fig. 5.4: Pyro-valve (SPS)

The model for the engine is given next. Events 7 and 9 turn the engine on and off

respectively. This is a very simplified model of a real engine used in propulsion systems.

7 : E o n : Turns the engine on
9 : E_off: Turns the engine off

Fig. 5.5: Engine (SPS)

5.2.3 Plant Models

We use TTCT [15] to compute the plant model as shown in Fig 5.6 below. States 0 and 8

are marked corresponding to states when SPS is off. At state 0, engine is off, regular

valve is closed and pyro-valve is open. At 2, engine is off and both regular and pyro-

valves are closed, and at 8, engine is off, regular valve is stuck-open but the pyro-valve is

closed

65

This plant model GL represents the full model of plant including both the normal

mode as well as the recovery mode. The subscript letters denote the modes of operation

(N: Normal, R: Recovery) and the superscript L denotes the linguistic nature of this

model. It is possible to deduct the plant in normal mode only by removing the failure,

return-to-normal events and the faulty (recovery) states. The model of plant in normal

mode corresponds to the subautomaton of GL containing states {0,1,2,3,5,6,7,10}.

These linguistic based plant models are converted into state based models in Section

5.2.5.

66

5.2.4 State Specifications

First, we define the recovery mode specifications and subsequently deduce the normal

mode specifications. We present the specifications in simple linguistic sequences. This

simplifies the understanding of the restrictions on the plant behaviour. However, we

present DES models for these specifications in state-based models as explained in

Chapter 4. The following list outlines the normal mode specifications:

Ni) The operation starts when the pilot gives a start command, pyro-valve is open,

and the engine is off.

Nii) The regular valve is opened before the engine is turned on.

Niii) The termination of the operation is initiated by stop command from the pilot and

when the engine is on.

Niv) The valve is closed before the engine is turned off.

Nv) Pyro-valve should not be used in normal mode.

The following represent the specifications for recovery mode operation:

Ri) The termination of the operation is initiated by stop command from the pilot and

when the engine is on.

Rii) The pyro-valve is closed before the engine is turned off.

The DES model SPEC for both normal and recovery mode specifications is shown in

Fig. 5.7 below.

67

Fig. 5.7: SPEC: Specifications (SPS)

Note that at state 8 in SPEC, if the return-to-normal event (4) does not occur, then the

pyro-valve is closed. However, this action renders SPS not reusable.

5.2.5 Plant Modifiers

The plant modifier can be obtained by converting specification model SPEC to an

automaton with a total transition function. This is done by adding a marked dump state

'd' to SPEC and adding the transitions from all states to the dump state so that the

resulting automaton has a total transition. We use TTCT [15] to carry the computations

and the following formula is used:

Modifier = {Mark the additional state of [Complement of (Complement of

(Specification model))]}.

68

5.2.6 Modified Plant Models

First, we modify the plant model in normal mode. We use TTCT [15] to do the following

operation to find the new model:

GN = Meet (G'N , Modifier);

GN represents the state based plant model for normal mode. The following diagram

shows the state based plant model in normal mode. The states of GN axe of form (q, q')

with q being a state of G'N and q' a state of modifier. If q' = d (dump state) then (q, q') is

an illegal state. Therefore, EN = {(0,0),(0,1),(1,2),(6,3),(6,4),(3,5)}. The states of GN are

renamed and shown in Fig. 5.8b.

Fig. 5.8a: GN (State-based plant in normal mode)

69

Fig. 5.8b: G,v (States renamed)

We compute the state based plant model in recovery mode using similar procedure.

We use TTCT to meet the plant in linguistic model in recovery mode and the modifier.

The resulting model: G is shown in Fig. 5.9 below. The model G contains 25 states and

175 transitions! Note that only partial model is shown with important states named.

70

(!)

Fig. 5.9: Partial model for G

5.2.7 Supervisors

Following our algorithm presented in Chapter 4, we compute the sequence of supervisors

V'0,v;,... forSPS.

The following diagram shows the supervisor: VQ .

71

M 4

Fig. 5.10: Supervisor: V*

The recovery mode supervisor V^ is shown in Fig. 5.11.

6,8 6,8

6,8

0 W

-*i J

6,8

6,8

M 4

6,8

6,8

6,8

6,8

Fig. 5.11: Supervisor: V*w

Next, we find V* which is shown in Fig. 5.12.

4-
6,8

It can be observed that repeat occurrences of the failure event or return-to-normal

event do not add any new states to the plant model. Hence, the iteration of computing

72

supervisors (as per algorithm in Chapter 4) can be stopped here. Hence Vx = Vx and

convergence is achieved.

Fig. 5.12: Supervisor V*

The actions of the supervisor V*x can be summarized as follows. During the normal

operation, it only uses the regular valve (with the appropriate sequence). In case of

failure, if by the time stop command is issued, the failure persists, it will shutdown the

engine indefinitely following the proper sequence. In the next section, we present an

extended version of SPS. The Extended Propulsion System (EPS) also contains a

controllable return-to-normal event and more plant dynamics involved.

73

5.3 Extended Propulsion System (EPS)

In this example, we consider the extended version of simplified spacecraft propulsion

system (SPS). This extended example represents a more realistic model of spacecraft

propulsion systems. EPS is a bi-propellant system. The system uses Liquid Oxygen

(LOX) along with the main propellant. This example also represents a system wherein

return-to-normal event is an uncontrollable event (failure-correct).

5.3.1 Setup of EPS

The Extended Propulsion System (EPS) contains the following components:

1) Pilot: To initiate start and stop commands to start and stop the individual

operations involving individual engines. There are two sets of pilot

commands in the system for the two engines.

2) Valves: Regular valves to control the flow of the propellants to the engines.

There are five valves used in EPS. One of them is used as a backup valve

which is initially open. All the other valves are initially closed.

3) Thrust Engines: Two thrust engines to produce required thrust are used in

EPS. These two engines are capable of producing thrust in opposite

directions. Initially the engines are in off position.

The following diagram shows the setup of the components of EPS:

74

Subsytem I
f LOX J (FUEL J

Subsytem II

V : Valve; BV : Backup valve (initially open); E : Engine

Fig. 5.13: Setup for EPS

The setup diagram does not show the pilot. Also the fuel tanks are not part of DES

modeling in the solution presented. Valves, VI and V2 are used to control the propellant

flow to engine, El. Backup valve, BV is used as a backup for VI. Valves, V3 and V4

control the propellant flow to engine, E2. Both the engines are setup in such a way that

they produce thrust in the opposite directions. Both engines are used to accelerate or

decelerate. If El is used to accelerate then E2 can be used to decelerate in the same

direction and vice versa. Both engines are not used simultaneously but used alternatively

to cancel excessive thrust in the directions the engines are setup to produce thrust.

The normal operation of the plant is similar to that of SPS. Each engine is operated in

similar way. Upon receiving the start command from the pilot, the valves are opened

leading to that particular engine. Subsequently, that particular engine is turned on to start

producing thrust. At the discretion of the pilot, depending on need for decelerating the

first engine that is producing the thrust is stopped and the second engine is started.

75

A failure event stuck-open is assumed for VI in open position. In this situation, engine

El gets continuous supply of LOX even after the stop command is issued by the pilot.

This situation creates potential depletion of LOX. Also when it is time to run E2, there

will not be enough pressure in LOX supply due to depletion. The return-to-normal event

is defined for VI to come out of the failure mode back to normal mode and to be closed

subsequently if necessary. In the case that the return-to-normal event does not happen,

the backup valve is used to stop the flow of the LOX. Once the valve V1 returns to

normal mode and subsequently closed, the backup valve (BV) can be returned to its

normal open position. The major difference in SPS and EPS is that in SPS, once the

pyro-valve is closed, the plant can not be reused; whereas in EPS, the system is reusable.

The next section presents all the DES models for all the components in EPS.

5.3.2 DES Models

In modeling of these components, we use the same procedures used in SPS. The

following table describes all the events used in this example:

Event

1
2
3
4
5
6
7
8
9
10
11
12
13
15

Tag

VI open
VI fail
VI close
VI return
BV close
Start (PI)
BV oepn
Stop (PI)
V2 open
Start (P2)
V2 close
Stop (P2)
V3 open
V3 close

Description

Valve 1 opens
Valve 1 stuck open (failure event)
Valve 1 closes
VI Return-to-normal event (r)
Backup valve closes
Start command from the pilot for engine 1
Backup valve opens
Stop command from the pilot for engine 1
Valve2 opens
Start command from the pilot for engine 2
Valve2 closes
Stop command from the pilot for engine 2
Valve3 opens
Valve3 closes

76

17
19

21
23
25
27

V4 open
V4 close

El on
El off
E2 on
E2 off

Valve4 opens
Valve4 closes

Engine 1 turns on
Engine 1 turns off
Engine2 turns on
Engine2 turns off

Table 5.2: Event list for EPS

The following diagram shows the model for the pilot:

6,8,10,12

Fig. 5.14: Model for pilot (EPS)

The pilot may issue start and stop commands to both engine subsystems. The models

for all the valves are shown in the following diagram:

Fig. 5.15: Models for all valves (EPS)

77

All the valves share similar states either open or close except for V1, which is prone to

failure and has an additional state: fail.

The following schematic shows the models for both engines: El and E2:

Fig. 5.16: Engine models (EPS)

5.3.3 Plant Models

We use TTCT [15] to compute the plant models. Plant in normal mode comes out to

have 64 states and 1024 event transitions. Due its large size, the plant model is not

shown here. Similarly, the plant in its full mode comes out to have 192 states and 3456

event transitions. It is observed that those states are marked in which the EPS engines do

not generate thrust. The plant in its full mode is not shown here.

5.3.4 State Specifications

The specifications are presented in simple linguistic sequences. The specifications deal

with the steps to be followed in operating EPS. The following list outlines the

specifications for normal mode of operation:

(i) Each subsystem is operated only after receiving a start command from the

pilot.

78

(ii) The valves that allow LOX have to be opened first before opening the

valves that allow the fuel.

(iii) Before starting an engine, the corresponding valves must be open.

(iv) Before shutting down the engine, the corresponding valves must be closed.

(v) The following combination of valves can not be in open position

simultaneously:

a. VI and V3; and V2 and V4 (These combinations will cause depletion of

the propellants).

(vi) Both engines must not be on simultaneously.

The following DES models present the required state models to implement the above

normal mode specifications. SPEC1 and 2 model (i), (ii), (iii), and (iv). SPEC3 and 4

model (v) and SPECS models (vi).

8,10,12 6,8,10,12
13,15,17
19,25,27

6,8,10,12
13,15,17
19,25,27

6,8,10,12
13,15,17
19,25,27

6,8,10,12
13,15,17
19,25,27

6,8,10,12
13,15,17
19,25,27

6,8,10,12
13,15,17
19,25,27

6,10,12
13,15,17
19,25,27

Fig. 5.17: SPEC1 (Normal mode) (EPS)

79

6,8,12 6,8,10,12 6,8,10,12 6,8,10,12
1,3,9 1,3,9 1,3,9 1,3,9

11,21,23 11,21,23 11,21,23 11,21,23

6,8,10,12
1,3,9

11,21,23

6,8,1012
1,3,9

11,21,23

6,8,10,12
1,3,9

11,21,23

6,8,10
1,3,9

11,21,23

Fig 5.18: SPEC2 (Normal mode) (EPS)

£-{1,3,13,15 £-0,3,13,15}

Fig. 5.19: SPEC3 (Normal mode) (EPS)

£-{9,11,17,19} £-{9,11,17,19} £-{9,11,17,19}

Fig. 5.20: SPEC4 (Normal mode) (EPS)

£-{21,23,25,27} £-{21,23,25,27} £-{21,23,25,27}

Fig. 5.21: SPEC5 (Normal mode) (EPS)

80

The recovery specifications are related to VI. VI is prone to failure. A return-to-

normal event is also defined for VI. In the case, where stop command has been issued by

pilot but the return-to-normal event has not happened, the backup valve (BV) is used to

close the propellant flow as required.

The following list outlines the additional specifications required for recovery mode of

EPS. Note that all normal mode specifications still apply to recovery mode

specifications.

i) When VI fails, the backup valve is used to stop the fuel flow when it is time

to close the valve after receiving a stop command,

ii) The backup valve can be reopened once the return-to-normal event happens

and the V1 is closed.

The following diagram shows the modified specification to control El considering the

failure and return-to-normal events for VI:

*selfloop {10,12,13,15,17,19,25,27} for

81

A suitable supervisor is computed to control the plant under consideration. Our

solution particularly tackles a situation which is normally not tackled by standard RW-

based solutions. For example, let us consider the plant in recovery mode. State 0 is the

initial state of the plant where all the components are at their initial states. State 8

represents the state where all components are at their initial states except VI. VI is in its

failed position at state 8. The plant is not producing any thrust at this state. The

following is a partial extract from the plant which includes the recovery mode:

8

Fig. 5.23: Extract from G (Plant in recovery mode: EPS)

The state that has to be considered is state 34. At this state, the subsystem has received

stop command and the fuel valve, V2 is closed. Now is the time to close the valve, VI

which has already failed. At this stage, we expect the return-to-normal event to occur.

However, it is not guaranteed that this event will occur. Also state 34 is not marked and

the plant can not stay at this state indefinitely where the engine is not off. At this state,

standard (non-robust) solutions depend upon the return-to-normal event and expect to

solve the problem. However, for practical reasons, a solution can not depend on this

event and hence our solution points to the necessity of an alternative way, in this case, a

backup valve to solve the problem.

82

In the two examples considered so far, the return-to-normal events are failure-correct

events and controllable. The next example Automatic Resource Allocator (ARA)

contains a recovery-action event as return-to-normal event and it is uncontrollable.

5.4 Automatic Resource Allocator (ARA)

In this example, we consider an automatic resource allocator, which supervises the

allocation of given resources. In this example, the return-to-normal event (r) is a

controllable event as opposed to SPS in the previous section. For simplicity, we consider

two users, two resources in the plant. This plant can represent two computers as two

users and two parallel processors as two resources.

5.4.1 Setup of ARA

The following schematic shows the setup for ARA.

Rl R2

B

Fig. 5.24: Setup for ARA

83

The ARA consists of two users, user A and user B, and two resources, Rl and R2. We

assume that there is a task allocator which allocates tasks to user A and user B. The

resources are allocated as per the availability. ARA does not store any data to save the

queuing of the tasks. Both users A and B need both resources to finish any given task.

The normal mode operation of the plant is as follows: Depending upon task

assignment, either user A or user B may acquire either resource. Then the same user

should acquire the second resource to be able to finish the task. Completion of a task by

a particular user will release both resources thus enabling another task to be initiated by

either user. The different states of a user are i) Idle, ii) wait, and iii) busy. At the wait

state, the user has acquired one resource and ready to acquire the second resource to

finish the task. The busy state represents where the user is busy finishing the task before

releasing both resources. Each resource can be in two different states i) Available; and ii)

Unavailable.

The problem the plant may face in normal mode operation is of 'mutual exclusion.' In

this scenario, each user acquires one resource and waits to acquire the second resource.

Since the second resource is already acquired by the other user, this scenario can continue

indefinitely. The plant observes deadlock in this scenario.

The plant enters into failure (recovery) mode, when user A observes a failure. The

failure event (f) is defined for user A, as user A malfunctions after acquiring either one

resource or both resources. This event makes the user A unable to finish the task at hand.

84

At this state, we define a controllable return-to-normal event (r) on user A. This return-

to-normal event is a reset action on user A, which resets user A to its initial state. This

reset action also makes user A to release the resource(s) at hand. We assume that the rest

of the components work without any failures. Since this return-to-normal event is

defined as a controllable event, we assume that the event will eventually occur and bring

user A back to normal operation thus bringing the plant back to normal operation.

However, as we see in Section 5.4.3, the plant in recovery mode faces blocking at

various states. We also see in that section that standard RW-based supervisory control

solutions would depend upon the failure event to occur to come out of blocking.

The next section presents the DES models for the users and the resources.

5.4.2 DES Models

The following table describes all the events used in this example:

Event

1
2
3
5
7
9
11
15

Tag

A Rl
A fail
A R2
B Rl
B R2
A task complete
B task complete
reset

Description

User A acquires Rl
User A malfunctions
User A acquires R2
User B acquires Rl
User B acquires R2
User A completes the task
User B completes the task
User A gets reset (recovery-action event)

Table 5.3: Event list for ARA

The following diagram shows user A in its full mode:

85

Fig. 5.25: User A (ARA)

Upon receiving a task assignment, user A acquires either Rl or R2. Then it acquires

the second resource and completes the task. Once the task is completed, it goes to its

initial state, simultaneously releasing both resources. As defined, user A is prone to

failure (state 4) and might malfunction at any state after acquiring one resource. The

return-to-normal event is a reset and brings user A from malfunctioning state to normal

initial state.

The following diagram shows the DES model for user B. User B works just like user

A, except that by assumption, (for simplicity), it does not malfunction at any time.

86

Fig. 5.26: User B (ARA)

The next two diagrams show resources: Rl and R2.

5,9,15 11 9,11,15 9,15 1,11 7,9,15

Fig. 5.27: Rl (ARA)

11 9,11,15

Fig. 5.28: R2 (ARA)

3,11

Note that the return-to-normal (reset) event (15) makes both resources available only if

they are already acquired by user A.

5.4.3 Plant Models

We use TTCT [15] to compute the ARA in its full mode including the failure event and

return-to-normal events. The following diagram shows the plant model:

87

9,15

Fig. 5.29: Complete model of ARA (G)

In this model, it can be seen that at states 7 and 9, the plant observes dead blocking

unless the failure event (2) occurs. In state 7, User A has Rl and user B has R2, hence

deadlock, unless as a result of failure in User A, it relinquishes Rl and then User B can

acquire Rl. A similar situation occurs in state 9 as well with User A holding R2 and

User B holding Rl. It is not advised to depend on the failure event to come out of

blocking. Standard RW-based supervisory control solutions assume that there is a path to

come out of blocking. However, this path starts with a failure event. Our solution

88

considers this possibility along with possible blocking scenarios when the plant returns to

normal mode from recovery mode. However, in this case, we do not foresee any

blocking issues in recovery mode since we assume that the controllable return-to-normal

event would eventually occur.

For the purposes of understanding the dynamics of ARA, we present the plant model in

its normal mode in the following diagram. Note that some states have been renamed to

match the plant model.

1,7

Fig. 5.30: Normal mode Plant (ARA) (GN)

We obtain the normal mode plant from the full mode plant by removing the failure

event and return-to-normal events, and the corresponding states.

89

In this problem, the job of the supervisor is to ensure nonblocking in normal mode

(both initially and after any return-to-normal event). Therefore all states are considered

legal: EN = QN, ER = QR.

5.4.4 Supervisors

Following our algorithm presented in Chapter 4, we compute the sequence of supervisors

VQ,V*,.... for ARA. The final robust supervisor (V^) is found as the limit of the

sequence. Note that in the faulty (recovery) mode no nonblocking condition is enforced

since the return-to-normal event is controllable. Also all faulty (recoveiy) states are legal

(ER= QR). Therefore, supervisors VQ,,VV\... need not be constructed.

The following diagram shows supervisor VQ :

Fig. 5.31: Normal mode Supervisor: F0*

And the following diagram shows the supervisor V[:

90

Fig. 5.32: Recovery mode Supervisor: Fj*

It can be easily verified that the condition for convergence is satisfied and V[= V^.

The automatic resource allocator (ARA) under supervision is shown in the following

diagram:

Fig. 5.33: ARA under supervision

It can be seen that the plant under supervision follows 'mutual exclusion' scenario.

5.5 Conclusion

In this chapter, three application examples are given. The first two examples that deal

with propulsion systems have controllable return-to-normal events and the third example

ARA has an uncontrollable return-to-normal events. It has been shown how the

91

algorithm presented in Chapter 4 provides the required supervisor, taking into account the

plant dynamics and the nature of failure and return-to-normal events.

92

Chapter 6

Conclusions and Future Research

6.1 Conclusions

In this thesis, fault recovery is studied using discrete event models. In particular, fault

recovery when the plant is capable of returning to normal mode of operation is studied.

A return-to-normal event is defined as an event that can bring the plant from various

faulty modes to normal mode of operation and is defined in the faulty mode. Return-to-

normal can be either because the faults are intermittent or because the plant has the

capacity to repair or reset. A design algorithm is presented to compute a robust

nonblocking supervisor under above said failure conditions.

We assume that the plant can be modeled as DES automaton and it contains finite

number of states. We also assume that all events including the failure events are

observable. The failure events are uncontrollable and return-to-normal events can be

93

either controllable or uncontrollable. The failures are assumed to be detected and isolated

without any delay.

The algorithm is developed using state-based approach. In our problem setup, we

assumed that the specifications are given in form of a set of safe states. The specification

for each failure mode is also the same and it does not depend upon the number of times

the failure event previously occurred. Then the pre-defined safe states remain unaffected.

This results in an easier and more transparent design for the control policies in terms of

safe and unsafe states compared to legal and illegal event strings. We consider two cases

of supervisory control problem, one with controllable return-to-normal (recovery-action)

events and the second one with uncontrollable return-to-normal (recovery-correction)

events. We have showen the resulting problems are instances of Robust Nonblocking

Supervisory Control of countably infinite plants. We provided a procedure for

computing maximally permissive supervisors for the fault recovery problem.

Three illustrative examples were provided. Two of the examples belong to the

spacecraft propulsion systems. DES theory lends itself perfectly to be used in the high

level supervisory control of spacecraft subsystems such as propulsion systems. Both

Simplified Propulsion System (SPS) and Extended Propulsion System (EPS) examples

depict propulsion systems used in spacecraft. These two examples contain uncontrollable

return-to-normal events. The Automatic Resource Allocator (ARA) represents computer

queuing systems and contains controllable return-to-normal events. The resulting

supervisors were also provided as DES models.

94

The problem considered in this thesis is all about plant dynamics and how these

dynamics affect overall results expected from specific plant operations. As shown in the

examples, all standard (non-robust) RW-based supervisory control methods fail to

specifically address the nonblocking properties of plants under supervision after certain

failures occur. The solutions provided by standard methods tend to have blocking issues

when the plant moves to normal mode and start the cycle of operation again. Providing a

robust solution that considers all the dynamics of the plant is very important in the face of

ever growing systems and their mission criticality. Generally, DES theory is well suited

to provide high level control in complex systems. However, DES theory developed with

the view of internal event dynamics best provides a complete solution to achieve desired

supervisory control.

6.2 Future Research

The current research can be continued in the following areas:

• In this thesis, the supervisory control problem for fault recovery is solved

using untimed discrete event models. This recovery framework can be

extended to timed discrete event systems (TDES).

• We assumed that all events are observable. In future work, either the

failure events or return-to-normal events can be considered as

unobservable events. This would induce transient modes into the problem.

Then the computed supervisor must enforce safety requirements in

transient modes too.

95

• In this thesis, only 'single failure scenarios' are considered through the

design algorithm and examples provided. However, in general, failures

can occur simultaneously in DES. The framework presented here can be

extended to work for 'multiple failure scenarios.' However, this would

make the computations very complex. A systematic way has to be found

to deal with this problem. To that end, it would be useful to develop a

software program to implement the design and verification so that multiple

failure scenarios can be dealt with.

• Only one kind of return-to-normal events is considered at a time in solving

the examples, either controllable or uncontrollable. However, in general, a

plant might contain a mix of controllable and uncontrollable return-to-

normal events related to different kinds of failure scenarios. Solving the

robust nonblocking supervisory problems for these cases would be very

challenging and computationally exhaustive. Further investigation is

needed to implement the design algorithm for these cases.

96

Bibliography

[1] S.E. Bourdon, M. Lawford, and W.M. Wonham, 'Robust nonblocking supervisory

control of discrete-event systems.' IEEE. Trans. On Automatic Control, vol 50, Pgs:

2015-2021,2005.

[2] S.E. Bourdon, M. Lawford, and W.M. Wonham, 'Robust nonblocking supervisory

control of discrete-event systems.' Proc. of the American Control Conference, vol 1,

pgs: 730 - 735, May 2002.

[3] Charles D. Brown, 'Spacecraft Propulsion.' Text book, AIAA, Edition 1996.

[4] R. Cieslak, C. Desclaux, A. S. Fawaz, and P. Varaiya. 'Supervisory control of

discrete-event processes with partial observation.' IEEE Trans. On Automatic Control,

33:249-260, 1988.

[5] Song Foh Chew, and Mark A. Lawley, 'Robust supervisory control for production

systems with multiple resource failures.' Proc. of the 2005 IEEE Int. Conf. on

Automation Science and Engineering, pages: 375 - 380, 2005.

[6] D. Gordon, and K. Kiriakidis, 'Reconfigurable robot teams: Modeling and

supervisory control.' IEEE Trans, on Control Systems Technology, 12(5):763 - 769,

Sept. 2004.

97

[7] Dieter K. Huzel, and David H.H, 'Modern Engineering for Design of Liquid-

Propellant Rocket Engines.' Text book, AIAA, edition 1992.

[8] F. Lin and W. M. Wonham, 'On observability of discrete event systems.'

InformationSciences, 44:173-198, 1988.

[9] Rudolf X. Meyer, 'Elements of Space Technology.' Text book, Academic Press, 1st

edition 1999.

[10] M. Moosaei, and Dr. S. Hashtrudi Zad, 'Fault recovery in control systems: A

modular discrete-event approach.' Ist Int. Conf. on Electrical and Electronics

Engineering. Pgs: 445 - 450, 2004.

[11] P.J. Ramadge and W. M. Wonham, 'Supervisory control of a class of discreet event

processes,' SIAM Journal of Control and Optimization, vol. 25, no. I, pp. 206-230, Jan,

1987.

[12] A. Saboori, and S. Hashtrudi Zad, 'Fault recovery in discrete event systems.' Int.

conf. on Computational Intelligence Methods and Applications, 2005. 6 Pages.

[13] A. Saboori and S. Hashtrudi Zad, 'Robust nonblocking supervisory control of

discrete-event systems under partial observation.' Systems & Control Letters, vol. 55, no.

10, pp. 839-848, Oct 2006.

[14] C. Wang, and Hashtrudi Zad, S, 'Fault recovery in discrete-event systems using

observer-based supervisors.' Int. Conf INDICON, 2005, Pgs: 442 - 445.

[15] TTCT Software. [Online] Available:

http://www.control.toronto.edu/people/profs/wonham/vvonham.html

[16] Q. Wen, R. Kumar, J. Huang, and H. Liu, 'Weakly fault-tolerant supervisory control

of discrete event systems.' Proc. of the 2007 American Control Conference.

98

http://www.control.toronto.edu/people/profs/wonham/vvonham.html

[17] B.C. Williams, M.D. Ingham, S.H. Chung, and P.H. Elliott, 'Model-based

programming of intelligent embedded systems and robotic space explorers.' Proc. of the

IEEE, vol. 91: 212-237, 2003.

[18] W. M. Wonham. Supervisory control of discrete-event systems. [Online]

Available: http://www.control.utoronto.ca/DES.

[19] Hashtrudi Zad, S, and M. Moosaei, 'Fault recovery in control systems: A modular

discrete event system approach.' 1st Int. Conf. on Electrical and Electronics Engineering

2004 (ICEEE), Pgs: 445 - 450.

99

http://www.control.utoronto.ca/DES

