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ABSTRACT 

Shear Stress Analysis of Tubular Composite Beams Subjected to Bending by 
Shear Load 

Rajpal Singh 

Tubular composite beams are of increasing interest due to their growing applications in 

the offshore and aerospace industries. Most analysis work done on tubular composite 

beams has been limited to pure bending, uniform axial loads or uniform torsion. These 

are also limited to the analysis of uniform section, uniform material and uniform 

thickness beams. In real applications, transverse shear loads are usually present and add 

complexity to the analyses. When a beam is under distributed or concentrated transverse 

loadings, regardless of the boundary conditions, the distributions of bending moments 

and internal transverse shear loads vary through the length of the beam. Analysis of such 

beams is very complicated. In this research, a systematic approach is presented to 

evaluate shear stress distribution across the cross section of thin walled tubular beams 

made of non homogeneous sections. Variation of shear stress through the thickness is 

ignored. Exact equations for the analysis of shear stresses in thin wall composite beams 

are derived in local coordinate systems. The results are projected in global coordinate 

system to facilitate evaluation and comparison of shear stress distribution in different 

beams. The method is applied to analyze beams with T, Triangular, Hexagonal, 

Octagonal and Decagonal sections. The pattern behaviour and shear stress variation in 

these beams is studied to predict the maximum shear stress in beams with circular cross 

section that has the same radius as the circumscribed circle of multi-gonal beams 
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Chapter 1 

Introduction, Literature Survey and Scope of the Thesis 

1.1 Introduction 

The present thesis has an objective to analyse the shear stress in composite tubular beams 

subjected to transverse loading. The three dimensional stress state at a point consists of 6 

stresses, 3 normal stresses and 3 shear stresses. For a circular composite tube under 

bending (Fig. 1.1a) the three shear stresses are x^ (interlaminar circumferential shear), xra 

(interlaminar axial shear) and xez (facial circumferential shear). For a tube made of 

homogeneous material, usually only TQZ is considered because it comes from the 

application of shear load. For the case of composite tubes, other shears are also 

important. However in this thesis, only the xez shear is considered. 
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Fig. 1.1a: Circular Composite tube. 

Fig. 1.1b shows different composite beams including multilayer circular composite beam, 

circular composite beam and hexagonal composite beam consisting of the same or 

different materials (segments 1 and 2) along the circumferential direction. In this thesis 

single layer composite beams consisting of the same or different materials along the 

circumferential direction are considered. 

Fig. 1.1b: Multilayer Circular Composite beam and Hexagonal Composite beam 

2 



Currently composite beams are widely used in building structures and bridges. Due to 

their increasing applications, researchers have been motivated to develop simple 

approaches for stress analysis of complex composite beams. For example in the case of 

bridges and in other building structures, there is need to analyse the shear stress 

distribution in different sections of beams subjected to shear load. Also in the case when 

there is a need for connecting two parts to make a composite structure in which it is 

necessary to know the shear stress to prevent shear failure. 

The present thesis was started with an attempt to perform stress analysis of multilayer 

circular composite beam which is widely used in many applications however it was 

modified to study beams with sections comprising of different material. The main 

concern in present thesis is shear stress iez. 

1.2 Shear Stresses in beams 

It took many years to understand and develop the concept of stresses. Galileo, Leonard 

Euler [1, 5, 6, and 13] and many others contribute towards this work. Shear plays an 

important role in designing of beams and needed to be considered to avoid failure. Shear 

stresses in beams are due to shear force generally denoted by ' V . In the design of short 

beams, shear stress due to transverse loading plays an important role. Also shear stresses 

are taken into consideration when longitudinal shear strength of material is low as 

compared to longitudinal tensile/compressive strength (Example: Grain running along the 

length of wooden beam). If we consider that known amount of shear force is applied to 

the beam, then it is reasonable to assume that shear stress 'x' is acting parallel to the shear 

3 



force. When shear stresses develop on one side or on one face (let's say vertical face) of 

an element, they are accompanied by equal magnitude of shear stress on horizontal face 

of same element 

Shear stresses do not exist in pure bending. This can be illustrated by giving an example 

that if a beam is made of separate flat pieces stacked on each other which are fixed 

together at one end and transverse load is applied on other end then pieces slide with 

respect to each other. But in case if there is only a couple applied then different pieces of 

such a composite beam will not slide with respect to each other but tends to bend in an 

arc of a circle. 

Practically, in actual solid beams when the flat board/pieces are bonded together, the 

deformation results into distortion. Distortion in a bent beam due to shear is shown in 

fig.1.2: 

Fig. 1.2: Distortion due to Shear 
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Static equilibrium C£F=0) h a s to be taken into consideration in order to develop shear 

stress relations for beams. Now consider a prismatic beam[l] (Fig. 1.3) having a vertical 

plane of symmetry under various types of loads (concentrated and distributed). 

L, 

A 
/ 

' 

L2 \v 

iiiim i 
1 
1 

^ L 

Fig. 1.3: Prismatic beam under concentrated and distributed loads 

A beam element BDB'D' of length Ax has been detached at a distance x from end A and 

at a distance yi from neutral axis (Fig 1.4). The forces exerted on beam element are: 

Vertical shearing forces VB and VD, Horizontal shearing force AH (on the lower face of 

the element), Horizontal normal forces GsdA and oDdA and load wAx. 

VP 

w 

B 

v i 

D t 
Vr 

° B d A \ 3 AX E 7 a p d A 

•> D ' B' AH 
N.A. 

Fig. 1.4: Beam element 

The equilibrium equation is £FX = 0. 

AH + j (o B -o D )dA=0 
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where the integral extends over the shaded area. Also the normal stresses can be 

expressed in terms of bending moments and equation 1.1 can be written as: 

A H = ( J l t e Z ^ J y d A (1.2) 

The integral represents first moment with respect to neutral axis of shaded portion and is 

denoted by Q. I represents centroidal moment of inertia of entire cross section. On the 

other hand the increment in bending moment is represented as 

MD - MB = AM = (dM/dx) Ax = VAx 

Therefore, 

AH = VQAx/I (1.3) 

Where Q=J ydA 

Horizontal shear force per unit length also known as shear flow is given by 

q = AH/Ax = VQ/I (1.4) 

The magnitude of shearing force exerted on the horizontal face of the element is given by 

AH. In order to obtain the average value of shearing stress on that face , shearing force is 

divided by area AA (AA = tAx; t = width of the element) of the face. Shear stress is given 

by 

x = VQ/It (1.5) 

Generally in case when width of the beam cross section is small as compared to its depth, 

there is no remarkable variation of shear stress along the width. Also variation of shear 

stress in narrow beam for which t < h/4 (t is width and h is depth of beam), across the 
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width of the beam is less than 0.8% of average value of shear stress [1]. So generally we 

use the above written expression to calculate average shear stress at any point. 

At upper and lower surfaces of the beam, horizontal shearing stress is equal to zero. So 

the maximum value of shear stress lies within the beam, where Q is maximum. In a beam 

with uniform cross section, shear and normal stress distribution is shown in fig. 1.5: 

A 
\ Y 

T 

*»-
xr 

= 0 

V 
a = a 

" Tmax \ 

i 

min 

(7 = 0 N/A 

^ 
T = 0 a = cr 

max 

Fig. 1.5: Distribution of Shear and Normal stresses in beam with uniform cross 

section 

Shear stress depends on distance from neutral axis. Shear deformation is the same in all 

elements having same distance from neutral axis. It is generally assumed that 

deformation caused by shearing stresses has no effect on distribution of normal stresses. 

1.3 Literature review 

In this section a literature survey is presented on the stress analysis of beams under 

different loading conditions. Significant work has been done on stress analysis of beams 

and other structural members, although the work done is limited to composite beam 

subjected to pure bending, uniform axial loads or uniform torsion. It is always a 
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challenging task to obtain stress distribution expressions for composite structures and 

multilayer structures. The complexity of stress equations is much more in the case when 

the beam is made of different types of materials as compared to one made of isotropic 

materials. 

1.3.1 Approaches presented in the literature 

Many books and journals demonstrated the work done on the formulation of stress 

equations when beams are under the action of transverse loading. Most of the works are 

limited to the analysis of uniform material and uniform thickness beams. In reality 

however, the formulation and analysis is very complex as transverse shear loads are 

present. In most books equations have been derived to calculate the normal stresses and 

shearing stresses in beams. Beer, Johnston, Dewolf [1] and Haslach, Armstrong [5] and 

many others [2-4] presented the basic approach towards determining the stresses in 

different structural members. Most of the work is concentrated on homogeneous beams. 

Gay and Hoa[7] presented an approach for the analysis of composite beams. Here 

composite beams are made of dissimilar materials or phases bonded together perfectly. 

Their approach defined the displacement equations analogous to stress and moment 

resultants for the applied loads. An approach has been developed for composite beams in 

flexure and thereafter torsion. Equilibrium and behaviour relations are used for the 

calculation of stress and displacement equations. . The isotropic phases of the beams are 

assumed to be perfectly bonded. Development of approach starts with flexure of 
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composite beams with isotropic phases. This approach provides the basic guidelines for 

present thesis. 

In the context of stress analysis of composite beams and tubes, the work is mainly 

concentrated on evaluation of displacements and stresses. Basic equations of anisotropic 

elasticity are available in Lekhnitskii [9] which provides a basis for almost all of the 

major studies in this field. He developed the governing equations for the analysis of a 

single-layer-anisotropic cylinder. A tube can be analysed by Lekhnitskii's stress function 

approach when it is in the state of generalised plane strain or generalized torsion. 

Jolicoeur and Cardou [8] and others [10-11] almost used the same approach to obtain the 

analytical solution for composite tubes. Jolicoeur and Cardou [8] extended the 

Lekhnitskii's method for layer-wise cylinders, and obtained the analytical solution for 

bending of coaxial orthotropic cylinders [8]. They studied two cases: no slip and no 

friction. In each case, perfect bonding conditions sustained. However it was found that 

for anisotropic materials, warping of the cross section develops even if just pure bending 

load is applied. Chouchaoui [10] also studied the layer wise anisotropy by assuming the 

perfect bonding between layers with no slip. Their method is based on analysis of each 

layer and satisfaction of interfacial continuity and boundary conditions. System of 

equations is complicated when many layers are involved. 

Few others developed their work by other techniques. Tarn and Wang [13] used a state 

space approach to analyse a composite tube under extension, torsion, bending and shear 
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loading. Their formulation suggests a symmetric way to determine the stress and 

deformation in a multilayered cylindrically anisotropic tube. 

Budynas [14] in his book explained the concepts of stress analysis and topics from 

advanced mechanics of materials. This book provides the discussion for transverse shear 

stresses and shear flow in thin walled beams. Also it highlights radial and tangential 

stresses in curved beams. Other authors [17, 18, and 21] also provide the basis of stress 

analysis with explanation of stress transformation and other relations. Timoshenko [22] 

developed the beam theory after taking into account shear deformation and rotational 

inertia effects. Commonly this theory describes the behaviour of short beams and 

sandwich composite beams. The resulting equation is of 4th order. 

Sayman and Esendemir [19] presented the analytical elastic plastic stress analysis carried 

out on metal matrix composite beams under uniformly distributed transverse load. The 

composite layers are made of stainless steel fiber and aluminium matrix. Sayman [20] 

also extended the stress analysis of composite beams loaded by bending moments. An 

analytical solution is obtained by satisfying the governing equations and boundary 

conditions. Benachour [23] developed a closed form solution for interfacial stresses of 

simply supported beams with bonded prestressed FRP plate. A parametric study has been 

conducted to investigate the study of interface behaviour which further affects the 

magnitude of shear and normal stress in the composite member. 

10 



Furthermore, Sayed [24] presented an analytical expression to estimate the shear strength 

of joint cores in concrete beam-column connections. Chatterjee [25] performed the shear 

test analysis on short beams to predict the failure mode. It is shown that the failure loads 

can be predicted for small span-to-depth ratios based on the maximum shear stress at 

failure. 

Alvarez-Dios and Viano [26] took into consideration beams of variable cross section, and 

derived a general model to evaluate the axial and shear stress distribution in the cross 

section. The three dimensional stress field at material discontinuities in composite beams 

is analysed analytically in agreement with finite element analysis.[27,28]. In the case of 

sandwich beams, structural analysis is carried out by transforming the web core sandwich 

beam into an equivalent homogeneous sandwich beam and stress components were 

calculated by re-evaluating the periodic structure of the beam. [29,30]. 

Ghugal and Shimpi [31] presented the review of shear deformation theories by taking 

into consideration the isotropic and anisotropic Beams. They discussed the merits and 

demerits of various theories like elementary theory of beam, first order, higher order and 

parabolic shear deformation theories etc. Cowper [32] and Murty [33] analyse the short 

beams and reviewed the shear correction factor and presented the discussion on shear 

coefficients in beam bending [34]. Donnell [35] came up with series solutions for 

deflections and stresses in continuously loaded beams. He also reviewed the effect of 

transverse shear strain and normal stress in the case of deflection of simply supported 

beam. Boley and Tolins [36] analzed the rectangular beams subjected to normal and shear 
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force varying along the span and calculated the stresses and deflections by an iterative 

procedure. 

Fatmi [37,38] and Mokos and Sapountzakis [39] presented a beam theory for 

homogeneous cross sections made of isotropic elastic material after considering the 

effects of torsion and shear forces. Theoretical development and analytical analysis has 

been presented starting with displacement model. They also conducted the comparison 

with classical beam theories. Some other researchers presented the shear stress analysis 

of beams using the finite element method [40] and presented the method to evaluate the 

warping properties of thin walled open and closed profiles. [41] 

Wagner and Gruttmann [42] presented a nodal displacement method for the analysis of 

flexural shear stresses of prismatic beams by integration of equilibrium equations. Thin 

walled cross sections were assumed to have constant thickness. Furthermore for 

anisotropic composite beams with any ply orientation and stacking sequence, a solution is 

derived for shearing stresses. Also layer by layer analysis has been provided using 

classical beam theory.[43,44]. An approach has been presented to determine shear center 

for anisotropic thin walled beams [45]. Solution for orthotropic beams under normal and 

shear loading has been obtained [46]. Special case of box beam has been analyzed for the 

study of deflections and stresses [47]. Pagano [48] investigated the limitations of classical 

laminated plate theory and presented an analysis composite laminates under cylindrical 

bending. 
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As seen in the literature, most of the work is related with uniform material, fibre-matrix 

composite materials or beams having uniform thickness. Few researchers approached to 

predict the behaviour of shear stresses in composite beams. This thesis provides a shear 

stress analysis technique for composite beams subjected to shear loading. 

1.4 Objective of the thesis 

The primary objectives of the thesis are: 

1. To develop a technique to analyze the shear stress (iez) distribution in composite 

beams where cross sections are made of different materials along the 

circumferential direction. 

2. To compare the results with current shear stress determining technique for 

specific (homogeneous) cases. 

3. To obtain shear stress distribution graphs for different cross sections and to 

predict the results for circular case. 

4. To conduct a comparison between homogeneous and composite beams to show 

the importance of present approach. 

This thesis presents the development of a new approach with which we can determine 

shear stress distribution in different types of composite beams under the action of applied 

shear force. The equations to determine the shear stress distribution are obtained for 

general cases and compared with the current' VQ/It' technique for homogeneous cases. 

13 



1.5 Organisation of the thesis 

The present chapter provides a brief introduction of shear stresses present in beams under 

different loading conditions. This chapter also gives an overview of background of 

mechanics of materials, literature survey of the work that has been done on the 

determination of stress in beams under different loading conditions, finally the primary 

objectives and scope of the present thesis. 

Chapter 2 provides the basic idea for the development of this approach. The preliminary 

step for further formulations has been provided. The complete overview of the present 

thesis approach is presented. The approach is then applied to the determination of shear 

stresses in different sections of T beam. 

Chapter 3 provides the detailed procedure to calculate the shear stresses in composite 

tubes subjected to shear loading. This chapter involves all the required steps-by-step 

derivations for getting the shear stress equations in four types of cross sections i.e. 

Triangular, Hexagonal, Octagonal and Decagonal. 

In chapter 4, derivations are obtained in global coordinates on the basis of basic 'VQ/It' 

technique used for determining shear stress mainly in homogeneous cases. Detailed 

comparison has been made between the two approaches for very specific homogeneous 

cases. Comparison is made to validate the present thesis approach. 

14 



In chapter 5, graphs are plotted to show the flow of shear stress in the different sections 

of tubes. This chapter also highlights the generalisation of results for circular tubes after 

plotting the maximum value of shear stress based on the specific dimensions of different 

types of tubes. It also shows diagrammatically for clear understanding of the approach 

followed for approximating the results for circular case. In addition, graphs are obtained 

for normalized shear stress after defining the shape factor. Finally the comparison has 

been made for homogeneous case and composite case and this comparison is shown in 

different graphs. These graphs show the significance of the present thesis approach. 

The thesis ends with chapter 6, which provides overall conclusion, contribution of this 

work and future recommendations for advanced formulations. 
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Chapter 2 

Overview of the present approach and analysis of T beam 

2.1 Introduction 

In this chapter, the basic overview of the present approach is presented. Mono 

dimensional approach explaining the determination of stresses in composite beams is 

discussed. All derivations have been provided which form the bases of this approach. 

Furthermore analysis of T beam is conducted. 

2.2 Overview of the Composite beams in flexure 

Evaluation of stresses and displacements of beams under loading is always a challenging 

job. A number of mechanical members can be considered under the category of beams 

due to their slenderness. A mono dimensional approach has been purposed by Gay and 

Hoa [7]. This approach provides the basis for formulation of stresses of composite beams 

under flexure and torsion. Using the equilibrium and behaviour relations leads to 

derivation of stress expressions. First symmetric composite beams with homogeneous 
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phases are considered (Fig. 2.1) [7] which provides a basis for extension to asymmetric 

section, transversely isotropic materials and orthotropic cases with more involvement of 

advanced formulation depending on geometry. 

A symmetric beam is considered to be in bending in the plane of symmetry (x, z) under 

the action of external loads (also symmetric with respect to plane of symmetry). So the 

procedure started with finding displacement field equations and continued with perfect 

bonding conditions to determine stresses. 

Fig. 2.1: Composite Beam [7] 

Equivalent Stiffness 

Equivalent stiffness in condensed form which includes the integrals of total cross section 

area for Extensional rigidity (ES), Bending rigidity (EIy ) and Shear rigidity (GS) are 

given as: 

(ES) = SDEidS = j:iEiSi 

17 
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(EIy) = fDEiZ
2dS = ZiEilyi (2.2) 

(GS)= jDGiCiS = Y.iGiSt (2.3) 

where i represents the different phases. 

Elastic center 

The selection of elastic center geometry plays an important role. For symmetric sections 

the elastic is given by the following equation: 

SD EtzdS =0 (2.4) 

Origin of the coordinate z can be chosen so that the above integral (2.4) is zero. 

If geometric shape is different for example in case of asymmetric cross section, 

supplementary conditions for equivalent stiffness, displacements and elastic center appear 

which results into more complex mathematical calculations. But in that case also the 

same approach has to be followed. 

Displacement field equations 

Elastic displacement field equations which include longitudinal displacement along x axis 

(Fig. 2.1), rotation of the sections and transverse displacements along y and z direction 

can be derived by taking into consideration the effect of rotation and distortion. The 

displacement equations are given as: 

ux = u(x) - z0y(x) + 77x(x,y,z) (2.5) 

% = *7y(x,y,z) (2.6) 

uz = w(x) + 77z(x,y,z) (2.7) 
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Where 77 represents the distortion of a cross section, r]x represents the longitudinal 

distortion of cross section and 6 represents the rotation. 

Perfect Bonding between the phases 

Another important aspect to mention is the bonding between different phases is assumed 

to be perfect. Due to the perfect bonding, displacement field is continuous between the 

two bonded phases. So in perfect bonding conditions displacements between two phases i 

and j (Fig. 2.2) in contact are given as: 

ux(i) = ux (j) 

%(i)=uyG) (2.8) 

uz (i)= uz (j) 

y -* 

Fig. 2.2: Interface between two phases [7] 

In the same way, for two bonded phases i and j , in the plane of an elemental interface 

with a normal vector n 
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Generally Strain transformation is given by: 

^ m £71 

£xt £nt -tt 

1 0 0 
0 cosd sind 
0 —sind cosd 

cxx cxy cxz 

-xy £yy £yz 

&xz £yz £zz. 

1 0 0 
0 cosd —sind 
.0 sind cosd 

This simplifies to 

£xx £xn £xt 
£xn £nn £nt 
Ext £nt Ett 

EXYCOS8 + s^sinB -s^-sind + EXZC0S@ 

zxycos8 -f sasin8 £yycos28 + syzsin28 + £zzsin26 (szz - £yy)sin8cos8 - eyz(sin28 - cos29) 

-ExySinB -f- £ncos8 (szz - Eyy)sin8cos8 -syz(sin28 -cos28) syy$in28- 2syzsin8cos8 •\-ezscos28 , 

In the plane of an elemental interface with a normal vector of n, the relation between 

strain tensors e of phases i and j are: 

£xx (i) = £xx (j) 

£xt ( 0 = £xt G) 

£tt (i) = £n (j) 

It can also be written as: 

£xx (i) = £xx 0) 

-£xzny + £xyn2 (for i) = £xynz - £xzny (for j) (2.9) 

£z2ny
2 - 2£yznynz + £yynz

2 (for i) = £zzny
2 - 2£yznyn2 + £yynz

2 (for j) 

On the interface having normal n, stress vector also remains continuous across an element 

of the interface. 

Txyny + rxznz (for i) = Txyny + Txznz (forj) 
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cryyTiy + Tyzriz (for i) = (Tyyiiy + Tyznz(for j) (2.10) 

Tyzny + OzzXiz (for i) = Tyzny + a^riz (for j) 

Equilibrium relations 

In order to proceed further to get the expression of stresses, equilibrium relations need to 

be defined. In the absence of body forces, one can start with local equilibrium dojj/Sxj and 

integrate it over the cross section. So after integrating the two equations are: 

± fD <7xxdS + JD {dT*yldy + dzjdz) dS = 0 

j - x JD -z<xxxdS + /D -z(d-rxy/dy + dzjdz) dS = 0 

± fD rxzdS + JD (dajdz + dzyz/dz) dS = 0 (2.11) 

Normal and Shear Stress resultants and moment resultant appears as: 

Normal stress resultant Nx = / crxxdS 

Shear stress resultant Tz = / TxzdS (2.12) 

Moment resultant My = / —zcrxxdS 

By plugging the values of stress resultants and moment resultants into equilibrium 

relations and taking into consideration the continuity of the expressions, one can obtain 

equations of equilibrium: 

dNx/dx = 0 

dTz/dx+pz = 0 (2.13) 

dMy/dx + T z =0 
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Where pzis transverse density of loading on the lateral surface of the beam. 

Constitutive Relations 

The constitutive relation can be written by taking into account the homogeneous nature of 

different phases. It is given (for phase i) as: 

^xx ^xy ^xz 

£xy £yy ^yz 

^xz ^yz *-zz 

_ 1 + vi 
Jxx '-xy '•xz 
^xy ®yy ~^yz 
^xz TyZ O'zz. 

| i [axx + oyy + ozz\ 
"1 
0 
.0 

0 0 
1 0 
0 1. 

(2.14) 

These equations are integrated over the domain occupied by cross-section area of the 

beam. The resulting equations are as follows: 

and 

JD £xx Ei dS = jD axxdS - fD Vj (<Xyy + aZ2)dS 

/D -Z£xx Ej dS = JD -z axxdS +jD zvs (<7yy + a^dS = 0 

;D2eX2G idS = /DTx zdS 

(2.15) 

After simplifying the equations and taking into account the displacements, the results can 

be obtained for resultants as: 

Nx = <F5)^ + /Dvi(c7yy + o-zz)dS 

My = ( E I y ) ^ + fD Viz( ffyy + azz)dS (2.16) 

Tz = (GS)(%-ey) + JDG^dS 
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Expressions for Flexure Stresses 

Expression for normal stresses can be extracted by simplifying the constitutive relation. 

Normal stresses Oyy and ozz are very small as compared to axx. 

The normal stress <jxx is given as: 

g
 My , P N. 

K> («) 
Bending Extension 

(2.17) 

t z 

L! 
Iphay'^jf. 

pfme'n*2.-\^p- % 

Normal Force 

• z 

;+ 

o. 

1 * •"» > < • « » — « * - • 
. l 1 . , ! - ' - —I—-.-Hi 

Bending moment 

Fig 2.3: Normal and Bending stresses. 

4J 
# 

As shown in the Fig. 2.3, the normal stress is discontinuous due to the difference in 

longitudinal moduli. 

Shear stress expressions are governed by warping function. The warping function has 

been introduced and simplified by using the above equilibrium equations, displacement 

field equations and normal stress expression. Starting equation was the equation of local 

equilibrium i.e. doi/dxj. Taking into consideration equations 2.13 and 2.17 we can write: 

23 



dxxy dxxz _ daxx 

dy dz dx 

and 

Et dMy Et dNx Et 

z - —— = - , „ . J , * z (EL) dx (ES) dx (EL) z 

Also with the displacement field in equations 2.5 to 2.7 and neglecting the variation of 

warping function between two neighbouring infinitely near sections one can write: 

drxy dzxz d d 
+ ~TT = — (GiYxy) + — (GiYxz) 

Thereafter 

dy dz dyK uxyj dz 

foxy dxxz_ = G (dhh dh}£ 
dy dz l \dy2 dz2 

(d2rj d2rjx\ Et 
Gt ^rr + ̂ i r - ~lz— dy2 dz2 J z(Ely) 

After mathematical formulation and putting 

T 
'z r,*=z = TGsj9iy'z) 

yields to 

,2 
Tg = 

_ E, (GS) 

G> (EI>) 

Substituting the function g(y,z) with the function g0(y,z) such that 

go(y,z) = g(y,z) + kz 

Where coefficient k is analogous to shear coefficient for homogeneous beams. 
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One verifies that g0 is solution of the problem. 

80 G-K>' (2.18) 

Where g0 (y,z) is longitudinal warping function for symmetric case and the following 

unique conditions and internal continuity has been taken into consideration 

dg0 

dn 
= 0 on the boundary dD. 

JDEigodS=0 

goi=goj 

After getting the expression for warping function, shear stress form can be determined as: 

xxz - G 
dur du, 

+ • 
dz dx J 

After putting the displacement values from equations 2.5, 2.6, 2.7 and then substituting 

the value of r)x and g0 (y,z), shear stress can be given by: 

T, dg0 
T = G • , 

' (GS) dz (2.19 a) 

Similarly we can obtain the expression for r xy 

xy ' {GS) dy (2.19 b) 

General shear stress form can be given as: 

G. 
f = <rt)Tt8mdg° (2.19 c) 
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2.3 Shear Stress Analysis of composite T-Beam 

2.3.1 Introduction 

In this section, the approach presented above has been developed for T beam. The 

procedure basically starts with the calculation of elastic center for T beam. The warping 

function consists of constants and further advancement can be achieved by first 

determining the expressions for constants by using equilibrium conditions. Shear stress 

expressions can be obtained by plugging in the values of warping function. In the 

following derivation a few assumptions have been taken i.e. T beam is assumed to have 

uniform very thin cross section. 

2.3.2 Step by step Procedure for shear stress expressions 

The figure of T beam under the action of shear force T2 is shown below 

1— 

1 

i 

— — — b -
i 

~1 
St'CtioB 1 

/ 
/ 

x section! ._» 

f 
1 

T, 

z 
* 

1 

1 

I 

_ * | 
__»l 

i 

i 

J 

, 

i 

«"1 

r tffi 

Fig. 2.4: T beam 
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In the figure T beam is shown to be made of two sections and two different materials (we 

can assume homogeneous also).The thickness of two sections is given by ei and ê . In this 

case of T beam we are considering height h up to the midpoint of section 1. 

Elastic center Location 

For elastic centre calculations we consider XYZ coordinate system starting from the 

bottom. The location of Elastic center can be calculated as 

a -
JEtZds 

\E ds 

2 

Where JE,Zds = JE2Ze2dZ + ^E.ZbdZ 

h-^-

1 9 

z2 

2 
+ Exb 

0 

Z2 

2 

h+-

2 2 

( * - * > ' 
+ E,b 

< * • * > ' < * - * > • 

2 2 h2+^ he, + • 
E,b 

tf + e-L- + he,-h2-^- + he, 

For Ei= E2= E and ei= ei = e 

\EjZds = Ee 
h2 <?, hex 

— + — L + bh 
2 8 2 

\Eids=E2(h--±)e2+E]bex 
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Eel 

a= -

h e, hex 
+ bh 

Ehe-E— + Ebe 
2 

For very thin cross section ei and Q2 is very small. For simple case assume b=h. 

(2.20) 

Ee 

a = 

hl 

+ h' 

2Ehe 

a = 3h/4 

Shear stress distribution 

In this approach, shear stress depends on warping function which needs to be determined 

first. Shear stress expressions in different sections are governed by following equations. 

Due to the assumption of thin section, there is no variation along 

the thickness direction. That is why there is only one shear stress governing equation for 

each section. 

In section 1 ? xy 
- G\ J dh°l 

(GS) z dy 

In section 2 
xz 

G2 ""02 

(GS) z dz 

Now from equation 2.18 
d2k 01 

dy2 
5 (GS) 
G^Uy) 

(2.21) 

(2.22) 

After integrating 
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dh 01 

dy 

Ex {GS) 
zy + A (2.23) 

And for section 2 

</2/*, 02 

dz2 

dh, 02 

i/z 

G2 (EIy) 

E2 (GS) z
2 

G2(EIy) 2 
+ B (2.24) 

There are two constants that need to be determined to get the expressions for shear stress. 

Determination of constant B and Shear Stress xxz 

Now at lower end, TXZ = 0 at z = - a 

Therefore from equation 2.22 and 2.24, 

dh. 02 

dz 
o=-^m^+B 

G2 (Ely) 

B = 
E2 (GS) 

G2 (Ely) v 2 y (2.25) 

After plugging in the value of this constant in the expression of warping function (2.24) 

and further in shear stress expression (2.22), one can obtain shear stress in section 2 as: 

V-z2^ 

Determination of constant A and Shear Stress xxy 

Now At free ends, ixy = 0 at y = b/2 and -b/2 

o < y < b/2 

(2.26) 
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n £> (GS) b A 0 = L-r—'Tz— + A 
Gx(EIy) 2 

A = 
Gx (EIy) 2 

E, 
*y (Ely) 

b{h-a + ^-) 
2 (U „ , e\ (h-a + -±)y 

b/2 < y < 0 

f 

(Ely) 
T. h-a+-

JL 
-y (2.27) 

A = -
Ex (GS)b(<h-a + ^> 

Gx (EIy) 2 

f e ^ 
T*y = 

{Ely) 
h-a+ — 

2 

b 
— + y 
2 7 

(2.28) 

Equilibrium Condition 

Equilibrium condition is considered by taking into consideration the shear force 

equivalent flow. Here first equilibrium condition is considered at the junction i.e. 

summation of all the forces in x direction has to be zero for the body in equilibrium. 

Therefore 

I F x = 0 
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ei 

1 
Z 

X 

At y = 0 and z = h-a 

IT e, = T e-, 
xy \ * xz 2 

Fig. 2.5: Equilibrium Condition 

• V i - V , + ^ 2 = 0 

f eAb 
(Ely) 

h-a + — 
2 

'a2-z^ 
e\ = K) 

2Elel h-a+ — 
2 

6 = E2e2(2ha- h2) 

/?-« + — b = (2ha-h2) 

After putting b=h and ignoring small terms, 
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hL=hL 

2 2 

This satisfies the equilibrium equation. 

2.4 Conclusion and discussion. 

In this chapter the method is explained to determine the shear stress of composite beams 

under bending. Approach is further developed for T beam to provide an idea of the 

procedure involved in the formulation and derivation. This chapter provides the basis for 

further analysis of complex shape composite beams like triangular, hexagonal, octagonal 

and decagonal beam. 
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Chapter 3 

Analysis of Composite beams of different cross sections 

3.1 Introduction 

In this chapter, the approach is developed for the shear stress analysis of composite 

beams of different cross sections. Started with thin triangular beam, this chapter covers 

hexagonal beam, octagonal beam and decagonal beam. The step-by-step procedure which 

involves mathematical formulation and derivations is explained in each section. 

3.2 Shear stress analysis of beams with Triangular section 

In this section, beam under consideration is triangular composite beam. The beam is 

assumed to have a thin cross section. The Triangular beam of height 'h' is shown in Fig. 

3.1. 
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Fig. 3.1: Triangular Beam 

3.2.1 Calculation of elastic center location 

To determine the elastic center first a coordinate system X,Y,Z starting from the bottom 

is considered. And after that coordinates are switched to elastic center as origin for x,y,z 

system for further analysis. The location of elastic center can be calculated in the same 

way as explained in the previous chapter. 

\EZds 
a - \Etds 
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Elastic centre is given by above expression and denoted by 'a'. If we consider the 

homogeneous beam, then due to same material properties elastic center is at 1/3 of the 

total height of the beam. 

3.2.2 Shear stress governing equations 

In section 1, shear stress is governed by the expression: 

r = r . = G , T> dK 

'" ' ' (GS) dy (3.1) 

In section 2, due to the inclined cross section shear stress expression is obtained by stress 

transformation. In global coordinates shear stress expressions are: 

_ G2 dh02 

(GS) z dy ( 3 2 ) 

Gi T
 dhi 

(GS) z dz 

(3.3) 

3.2.2.1 Stress transformation and Coordinate transformations 

In the case of triangular beam, the local and global coordinates do not coincide in the 

inclined sections. So to obtain the warping function and further shear stress expressions it 

is required to do the coordinate transformation and stress transformation. First the general 

transformation concept has been presented then it is modified for particular case. 
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General Concept 

- * y 

A 

Fig. 3.2: Stress Transformation 

The General transformation matrix is given by 

y 
Iz' 

|y 
Iz' 

cos# sin# 

-sin# cos# 

cos# sin# 

- s in# cos# 

M >where y = y"+A and z - z"+B ( A and B are constant) 

(3.4) 

y - A ] 
z - B 

\z-B\ 

cos# 

sin# 

-sin# 

cos# 
\y 
|z' 

Here angle 9 is a general angle. It does not represent the actual sign and value of angle 0 

in the following figures. The stress transformation depends on angle rather than distance 

between coordinates. And for general case it is given by 
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'XX 

lxyi 

*xz< 

Lxyi 

0~yiyi 

<-yiZI 

<-XZ' 

'•ytzi 

^ZIZI 

1 0 0 
0 cosd sind 
0 —sind cosd 

'xx try 
'•xy 

\Jxz 
Jyy 

tyz 

Txz~\ 

tyz 

°ZZ 

1 0 0 
0 cosd -sind 
0 sind cosd 

T2=Taf=-TJVsm0 + T„cosO 
(3.5) 

For inclined section of Triangular beam 

In the inclined section of the triangular beam, the above transformation matrices are 

modified as: 

Fig 3.3: Inclination angle 

Here angle is 

0=180 + 01 

y -cos# - s in# 

sin#, • cos#. 
y-A] 
z-B\ 

AlsoA=0, B=d 
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y \ 

z - d\ 

- cos 0] 

- sin 0] 

sin #, 

- cos #, 
\y 
w (3.6) 

So stress expression in the case of triangular beam's inclined section is given by: 

*•*•=*•,>.sin 3-*"* cos 3 ( 3 7 ) 

3.2.3 Derivation of Shear stress expressions for different sections of Triangular 
beam 

Shear stress expressions are governed by warping function. As discussed in chapter 2, 

warping function is expressed as: 

E, (GS) 
V^ 0 = ?'K>' 

Where V2ho is the Laplacian of warping function and is be defined as: 

0 dy2 dz2 

In order to facilitate the analysis for inclined sections the warping function in global 

coordinate system might be transformed into a local coordinate system. Referring to 

Fig.3.3, the warping function gradient in local coordinate system is defined as: 

0 dy'2 dz12 

The terms of second order differential equations of warping function with respect to y' 

and z' must be projected in the global coordinate system to be substituted in warping 
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function equation with global coordinates. As y' and z' are function of y and z, according 

to the chain rule of derivation 

dh0 =dh0 dy | dhB dz 

dy' dy dy' dz dy' 

The second order differential shall be expressed as follows: 

d2K _ d 
dy'1 dy 

dh0 dy dh0 dz 
1 

dy dy' dz dy' 

dy_ d_ 

dy' + dz 

dh0 dy | dh0 dz 

dy dy' dz dy' 

dz_ 

dy' 

d2K d2h / a . \ 

dy'2 dy1 

dy dlh0 dz dy dlh 
+ 2 + • 

fdz^ 

dy') dydz dy' dy' dz' yfy j 

By substituting the values from equation 3.6, one can get, 

^ % = ̂ W 6X + 2 ^ c o s 0 , sin*, - f ^ s i n 2 0X 
dy'2 dy2 'dydz ' ' dz2 ' 

Similarly, for the other second order term of warping function gradient 

dh0 _dh0 dz +dh0 dy 

dz' dz dz' dy dz' 

d2K = d 
dz'2 dz 

dh0 dz dh0 dy 

dz dz' dy dz' 

dz_ d_ 

dz' dy 

dh0 dz | dh0 dy 

dz dz' dy dz' 

dy_ 

dz' 

d2K d2hjdz^2 „d2h0dydz d2h0(dy^2 

dz'2 dz2 + 2- • + • 

\dz'J dydz dz' dz' dy 2 ^ z ' y 

By substituting the values from equation 3.6, one can get, 

^ = ̂ c o s 2 0X - 2 ^ c o s 0 , sin*, + ^ s i n 2 9X 
dz'2 dz2 ' dydz dy2 

The final warping function equation can be achieved by adding the above two results: 

39 



., d2h d2h d2h i -, -, \ d2h i •, , \ 
V2/*0 = — f + — f = ^ c o s 2 0 1 + s i n 2 0 J + ^ c o s 2 0 , + s i n 2 0 1 

0 dy'2 dz'2 dz2 V ' dy2 K ' 

y2/? J2K d2K d2K d2h 
0 dy'2 dz'2 dz2 dy2 

In the case of triangular beam, due to thin section one can ignore the variation of warping 

function with respect to y'. So for the inclined section warping function is governed by 

the following equation: 

d2h02 E2 {GS) 
V2h = 

° dz'2 G2(EIy)' 

In Horizontal Section 1 

In section 1, warping equation is given as (refer to section 2.2): 

dhm _ Ex {GS) 

dy Gx (EIy)
 y 

In Section 1, from above equation and equation 3.1, shear stress is given as 

E, 

(3.8) 

T*y 
'\ 

K> T. zy (3.9) 

In Inclined Section 2 

As from equation 3.7, shear stress expression for inclined section depends on xxy and xxz 

which further depends on their respective warping functions. The global warping 

functions can be represented in local warping functions as: 

M», = sin 0X ^ , ^ = -cos 0X ^ 
dy dz' dz dz 

After putting these values in equations 3.2, 3.3 and 3.7, 
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the governing equation of the shear stress can be written as: 

T„. 

Gi T dhm 

(GS) * dz' 

And the value of warping function (from equations 3.8 and 3.6) is given as: 

d2h02_ E2(GS) 

(3.9) 

dz' 

dh. 02 

G.{EIy) 

E2(GS) 

(-y'sin0. -z 'cos#, +d) 

_|2 

; v (-Vz'smO, cos#, + dz') + C 
dz' G2(EIyy 2 (3.10) 

Shear stress expression in inclined section is obtained by plugging equation 3.10 into 

equation 3.9 

r„, = 
E2T: 

<«,} 
(-y'z'sind cos^, +dz') + C 

(GS) 
(3.H) 

At z'=0, the above expression presents the value of shear stress for a point on the axis of 

symmetry of the beam; as such, the value of shear stress shall be zero, resulting in zero 

value for constant C. Therefore, Equation 3.11 is simplified as: 

7' . = 
E2T. 

?\-' 

K) 
E2T. 

(-y' z'sinO cos#, +dz') 

K> 
•cos 0-dz') as y=0 (3.12) 

3.3 Shear Stress analysis of beams with Composite Hexagonal section 

Now for hexagonal beam also the same procedure and same approach has been followed. 

The cross section is assumed to be thin. 
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Fig. 3.4: Hexagonal Beam 

In Fig. 3.4 a hexagonal beam with different cross sections is shown. The inclined sections 

are shown with inclination angles 9i, 02 etc. And thickness of each cross section is 

represented by ei, Q2 etc. It is assumed that elastic centre is exactly at the centre of the 

geometry for which Q\ = e4, Q2 = 63= Q5 = e(, and similarly Ei= E4, E2 = E3= E5 = E6 

3.3.1 Elastic center location 

To determine the elastic center first a coordinate system X,Y,Z starting from the bottom 

is considered. And after that coordinates are switched to elastic center as x,y,z system for 

further analysis. Elastic center location is given by 

\EZds 
a=- \E.ds 
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In the case of symmetric beam, 'a' can be taken exactly at the centre. Now in this 

composite beam elastic centre can be calculated in the same way as discussed in chapter 

2 for T beam. Here if we consider this beam to be symmetric then 'a' lies on geometric 

centre of the figure. 

3.3.2 Shear Stress Expressions 

The governing expressions for shear stress are given below. The shear stress expressions 

depend on the warping function. 

Shear stress governing equations in Sections 1 & 2 

In section 1 

i i „, ^L.Z^M (3.13) 
" ' (GS) dy dy G,{EIy)

 Y 

In section 2 

T. dh02 T. dh02 
rxy=Gll . ' ., ." ; T^G 

(GS) dy ' * 2 (GS) dz ( 3 H ) 
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Fig.3.5: Sections 1 and 2 

Coordinate Transformation 

To proceed further coordinates needed to be transformed 

Here angle 9 = 1 8 0 + 0i 

I 2' 

-cos#, -sin#, 

sin#, -cos#, 
y-A] 
z-B 

[y-A1 

z-B 

-cos#, 

-sin#, 

sin#, 

-cos#. 

And finally the basic shear stress equation for section 2 is given by: 

*i =*•„• =Txysmdl-T]acos0l (3.15) 

As from equation 3.15, shear stress expression for inclined section depends on xxy and xx 

which further depends on their respective warping functions. The global warping 

functions can be represented in local warping functions as: 
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1 _I_ t 7 _i_ 1 

«fy dz' dz dz' 

And the final governing equation is given as: 

r„. = G, 
7: <% 02 

(GS) dz' (3.16) 

So the above equation shows that the shear stress for inclined section depends on the 

local warping function. The warping function can be derived in the same way as we have 

in the case of triangular beam (equation 3.10) and is given as: 

dhn '02 

dz' 

E2(GS) Z'2 

—^ V(- /z ' s in0. cos0. +Bz') + C, 
G2(EIyy 2 

To determine the shear stress, the constant Ci is needed to be calculated first. The 

constants can be determined by considering the equilibrium equations. 

Equilibrium equations for calculation of constants 

For the calculation of constant, here equilibrium conditions are considered for section 1 

and section 2 of Fig. 3.6 

Fig 3.6: Shear Stress flow in Section 1 and Section 2 
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The static equilibrium condition is given by 

2 F , = 0 

\ xy 2 xz 

Where ei and e2 are thicknesses of section 1 and section 2 respectively. The equilibrium 

condition is considered at the corner having coordinates: 

v _ b/ z-h/ y /V Z / 2 

Here y',z'=0 

Therefore by putting these values in equations 3.13 and 3.16, one can get 

e,G, 
£, (GS) bh 
G . K ) 4 . 

= e2 G2 C, 

C = -
e,Ex (GS) bh 

e2G2 iE!,) 4 (3.17) 

So after plugging in the value of this constant in the warping function expression written 

above and then in the shear stress equation 3.16. the governing shear stress equations are 

given as: 

In section 1 (from equation 3.13) 

T*y = 

EXTZ h 
•y (3.18) 

In section 2 (from equation 3.16) 

r.,. = 
(EI> 

z'2 p h -— cos 6', — z -
2 2 

exEx bh 

(3.19) 
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Shear stress equations in Sections 3 & 4 

Similar approach can be followed to determine the shear stress expressions for the section 

3 and 4. 

In section 4, shear stress is given by 

T = 
xy 

G*-Td2hL and 

(GS) z dy 

In section 3 

dh, EA(GS). 

dy GA{EIy) 
zy 

(3.20) 

G3 T
 dhm 

*» (GS) z dy 

=
 Gi T dh°2 

(GS) z dz (3.21) 

Sections 3 of hexagonal beam is shown in the figure given below: 

Fig. 3.7: Sections 3 with local coordinates 
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Coordinate Transformation 

Here angle 9= 180 - 02 

(Though 0i is equal to 02 in magnitude) 

| y • 

W 

fy-Al 
\z I 

•cos#. sin#. 

-sin#, -cos^-, 
fy-A] 
z-B 

-cos#, -sin#, 

sin 0-, -cos#. 
y 
2' 

Where the value of constant A is given as: 

b h 
,4 = - + - t a n 0 , , 5 = O 

2 2 
' 2 ' J 

Shear stress in section 3 depends on the warping function dh, 03 

dz' 

and given as: 

71 «%, 03 

(G5> <fe' 
(3.22) 

In the same way as discussed in previous section (3.2.3) the warping function is described 

as: 

dha_ Ei{G$ 

dz' G,{EIy) 

_|2 

- / z ' s i n # 2 cos#2 + C, 

Equilibrium equations for calculation of constants 

For the calculation of constant C2, equilibrium conditions are considered for section 3 and 

section 4 
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IFx=0 

4 xy 3 xz 

Fig. 3.8: Sections 3 and 4 

at z 
h/2 and y = b/2 

y = - (y-A) cos02 + z sin02 

J = 
b__b__h_ 
2 2 2 

tan (9, 
J 

h 
cos #, sin G-, = 0 

2 2 2 

z' = - (y-A) sin02 - z cos92 

- tan 0, sin 6-, +— cos #, 
2 cos 6, 

After plugging these values into above written equilibrium equation and equations 3.20 

and 3.22, one can get 

e4G4 

£4 (GS) hh 

G<(Eiy)y 
= e3G3 

E,{GS) 

G.{EI>) 

-h 2 \ 

8 cos 9 
+ C, 

2 J 
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c2 = 
-eAEA (G5) bh E, (G5> ( h2 ^ 

efi, (EIy) 4 G3 ( ^ ) ̂ 8(X)S#,y 
(3.23) 

After putting the value of this constant in warping function equation as discussed earlier 

dK E3(GS) , 2« ^_£^M^_^M(_*L_] 
&• G3(EIyy

 y 2 2 e3G3(EIy)4 G3 (EIy){Scos02) 

Shear stress governing equation are given after considering equations 3.20, 3.22 and 3.24 

In section 4 

E4 h 
xy 

(3.25) 

In section 3 

T„, = 

K> 
z'2 _ e4E4bh h2 

C O S ^ 2—=-

2 ejiij 4 8cos#2 (3.26) 

Equilibrium check (at the point M as shown in fig. 3.9 where Section 2 and Section 3 

meet) 
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M 

Fig. 3.9: Point M 

h 
In equation 3.19 for shear stress for section 2 put z' = 

2 cos 9X 

h2 h2 exEx bh 

8cos6>, 4cos#, e2E2 4 

h2 exEx bh 

%QOSOX e2E2 4 

Also in equation 3.26 of shear stress for section 3 put z' = 0 

h2 e4E4 bh 

8cos#2 e3E3 4 

So for more specific case where we have 9i= 02, e]—e2—e-i=e4=e and same material 

(E), both equations are equal to each other. 

3.4 Shear Stress analysis of beams with Composite Octagonal section. 

The orthogonal beam with different sections is shown below: 

Tr„, = 

(Eivy 

* * : • = 

EI, 

(EI.) 
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Fig. 3:10: Octagonal Beam 

3.4.1 Elastic center location 

To determine the elastic center first a coordinate system X, Y, Z starting from the bottom 

is considered. And after that coordinates are switched to elastic center as x,y,z system for 

further analysis. Elastic center can be obtained by following equation. 

a 
JE Zds 

\Ejds 

To proceed further, It is assumed that elastic centre is exactly at the centre of the 

geometry having same thickness (e) and Ei= Es; E2 = E4= E6 = Eg, E3 = E7. 
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3.4.2 Shear stress expressions 

The shear stress governing equations are derived using the same procedure as described 

in previous sections of triangular beam and hexagonal beam. 

Shear stresses in Sections 1 and 2 

In Section 1 

_ _ c T* dK 
'" ' {GS) dy 

In Section 2 

_ _ G2 T2dh02 
Tr. = 

G2 TzdhQ2 

(GS) dz 

Shear stresses in sections 1 and 2 are same as in the sections 1 and 2 of hexagonal beam. 

So from equation 3.18 and 3.19, one can rewrite 

In Section 1 

T*y = 
-E,TZ h 

2y 

In Section 2 

**• = 
E2 T —cos#, 

2 ' 2 

exEx bh 

Shear stresses in sections 4 and 5 

Before proceeding to the derivation of shear stress, the coordinates are transformed for 

the case of inclined section. 

53 



* y ^ 

h/2 

Fig. 3.11: Sections 4 and 5 

Assume that all lengths are equal to b and for simplification in calculations. So the value 

of constants is given as: 

A=- + 
2 

B = ^ 
2 

V 2 2j 
tan G1 

[y-A 

Iz + B 

-cos#2 -sin 6*2 

sin#, -cos#, 
|y 
lz' 

Shear stress expressions are given as: 

For section 5 

T =r T* dh°5 
xy 5 (GS) dy 

dh05 ~E5(GS) 
zy dy G5(Eiy) 

In Section 4, as described in the previous sections shear stress is given as: 
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_r Tz dh04 

«" ~ 4 (GS) dz< 

And the warping function is given by the same equation as in the case of inclined section 

of hexagonal beam 

dho4 -E4 {GS) 

(3.27) 
- , .-(v'z'sin^-, cos#, -Bz') + C, 

dz' G4 (EIy)
 2 2 2 

Equilibrium equations for calculation of constant 

For the calculation of constant C2, equilibrium conditions are considered for section 4 and 

section 5 (Fig 3.11) 

2F=0 

e5Txy ~ e4Z'xz' 

Equilibrium condition at z = — , y = — 

y'=Q 

z' = - (y-A) sin 62 - (z+B) cos 02 

b b h 
2 2 2 

tan #, H— tan sin #, - h b 
— + — 
2 2 

cos 9-, 

h b h b 
— tan#2sin#2 —tan# 2 s in# 2 +—cos#2 —cos# 2 

z — 
V2 2y cos#, 

After putting these values in shear stress expressions for section 4 and 5 and then in 

equilibrium equation, one can get the value of constant as: 
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c, 
e5E5 (GS) bh E4 {GS) 

e4G4(EIy) 4 +G4(EIy) 

h__b_ 

\1 2. 
1 fh b^ 

2 cos 02 2 2 2 

1 
cos# 2j (3.28) 

After putting the value of constant in into equation 3.27, one can obtain the value of 

warping function 

d\4 = E4 (G5) 

** G< (EIy) 

\ ( za 

cos#, -Bz' 
J 

e5E5 (G5) bh | E4 (G5) 

e4G4 ( ^ ) 4 G4 (£/ r) 

' ' A ^ 2 

U 2. 
^ ^ 

2 cos <92 2 V2 2y cos# 2 ; 

Therefore shear stresses in section 4 and 5 of octagonal beam are given by: 

(3.29) 

U = 
£4 

K)" 
— cos<9, + 5z'— 5 5 

e4£4 4 

'A 6 

v 2 2J 2cos#2 2 

A b\ 1 

2 2 J cos 0, 
(3.30) 

Shear stresses in Section 3 

As we have shear stress expressions for sections 1, 2, 4 and 5. 

The shear stress expression for section 2 is given as 

W 
z'2 _ h , e,E, bh 
— costf, — z — — 
2 2 e2£2 4 
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Shear stress expression for section 3 is given as: 

r Tz dhm 
dh. 03 

E3(GS) 
+ C\ 

(GS) dz dz Gi(EIy) - ( 3 3 1 ) 

To derive the expressions for shear stress for section 3, we need to consider the 

equilibrium condition at y'= 0 and z' = b (If we assume all lengths are equal to b) 

2 xz 3 xz 

So after putting the values of y' and z' in to the above expressions for shear stress in 

section 2 and 3 and then in to the equilibrium equation, one can get 

2 j 

_ e2EA 
e3G3( 

V „ bh ex Ex bh 
— costf, !—! 

Z* Z. tsj *-J") • 

GS) 

EI>) 

~b2
 n bh e. E 

—cosy, !— 
2 2 e2 E 

= e 

bh 

~i 4 

'{GS) z 

+ E3(
G 

G,{EI 

' E, (GS) b \ Q 

G, (EIy) 8 3_ 

s)z>2 

; ) 8 

After putting the value of constant in equation 3.31, we obtain the expression for shear 

stress for section 3 

*"* = 
E3TZ 

K)L 2 e3 E} 

(b2 . bh exEx bh 
— cosw —• 
2 ' 2 e2E2 4 

1 *2~ 
+ — J 8 J 

"3 "xz r = ^ Z L 
K) 

z2 b2 ex Ex bh e2E2 „ 

2 8 e3 £3 4 e3£3 V 

bcosdx h 

2, (3.32) 
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3.5 Shear stress analysis of beams with Composite Decagonal section 

The decagonal composite beam is shown in the Fig. 3.12. 

Fig. 3.12: Decagonal Composite beam 

3.5.1 Elastic center. 

To determine the elastic center first a coordinate system X, Y, Z starting from the bottom 

is considered. And after that coordinates are switched to elastic center as x,y,z system for 

further analysis. Elastic center can be obtained by following equation. 

JE Zds 
a = • 

\Ejds 

To proceed further, It is assumed that elastic centre is exactly at the centre of the 

geometry having same thickness (e) and Ei= E6, E2 = Eio= E5 = E7, E3 = E9 = E4 = Eg 
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3.5.2Shear stress expressions 

Shear stress expressions for Sections 1 and 2 

In Section 1 

In Section 2 

xy ] (GS) dy 

_ G2 dh02 
T xy ~ ' > 1 • (GS) z dy 

r„ = 
G2 dh02 

{GS) z dz 

In section 1 and 2 shear stresses are same as in hexagonal beam. These shear stresses are 

given by the expressions: 

In Section 1 

T*y = 
EXTZ h 

-y 

In Section 2 

r„, = K> 
z' . h , e,E, bh 
— cosw — z ' — — • 
2 ' 2 e2E2 4 

Shear stresses in the sections 5 and 6 

In section 6 

Txy = G6 (GS) dy 
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In section 5 

G
 Tz dK 
5 (GS) dz' 

And the warping function is given as: 

dk 05 
E$ (GS) 

dz' 

dh05 

dz' 

Gs (EIy) 
y,z'sm0i cos ̂ 3 - Bz' + C, 

Es (GS) ( z'2 

K) 
cos ̂ 3 - Bz' + C, 

(3.33) 

Coordinate transformations 

Now at the point where local coordinates are shown in figure 3.13, the distance of local 

coordinates from global coordinates z and y is 

2 
h 

- b cos #4 tan 0} 

B = bcos#4 

And the transformation matrix is given as: 

(y-A 

|z + B 

-cos #3 

sin#. 

-sin #3 

-cos#. 
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h/2 

Fig. 3.13: Sections 4, 5 and 6 

Now for the calculation of constant C2, equilibrium condition is considered at 

2'y 2 

Equilibrium equation is given as: 

e6^xy ~ e5^xz' 

y = o 

z' = -(y - A) sin 0i - (z + B) cos <93 

b b h 

2 2 2 
tan 0l+b cos 6>4 (tan #3) 

^ 
sin #3 - — + 6 cos #4 cos #3 

— tan #3 sin #3 - (b cos 6>4) tan <93 sin 6>3 + — cos #3 - (6 cos 6>4) cos #3 
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- (h u a^ l 
z =\ — b c o s v , 

\2 J COS #3 

Now after putting these values of y' and z' into equation 3.33 and then into shear stress 

and equilibrium equation, one can get: 

efi<, 
Eb (GS) bh 
G* {Eh) ^ 

e5G5 

~E5 (GS) 

G5 {£!„)_ 
- b cos 0. 

A b(h 

y 2 cos 0i j 
•bcos0A 

j cos 0i 

• + C, 

•e6E6 {GS)bh^E5 (GS) f\ 

e5G5 (EIy) 4 +G5(EIy) 
bcos&. 

1 

2cos#3 2v 
bcosO, 

cos 0, 

(3.34) 

So the shear stresses for sections 5 and 6 are obtained by putting the value of constant in 

to warping function and then substituting into shear stress expressions. 

In section 6 

(Eiy2y 

In section 5 

*5 = K) 
^ - c o s * 3 + ^ - ^ -
2 3 e5E5 4 

h u a b cos 0. 

(3.37) 

(3.38) 

1 b 

2 cos 8X 2 

f, 
— b cos 6, 

3 ^ V - j cos <93 
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Shear stresses in Section 2 and 3 

Fig. 3.14: Section 1, 2 and 3 

Shear stresses in section 2 is 

r„. = K) 
z'2 p h , exE, bh 

COS0, Z •—! 

2 2 e2E2 4 

In section 3 

v ,=G, T- dh" 
(GS) dz' 

And the warping function is given as: 

dhu -E3 (GS) 

dz" G3 {EIy) 
- y"z" sin 62 --Z-cos 02+Bz" + C, 

J 

Transformation matrix is given as: 

f y - A 
| z - B 

-cos 6*2 sin#2 

-sin#, -cos#-. 
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A = — + b sin #, 

B = b cos 6, 

Equilibrium condition (at y' = Oand z' = b) (y" and z"=0) is 

2 j;z 3 ATZ 

So after putting in the values of coordinates into the shear stress expressions for section 2 

and 3 and then into the equilibrium equation, one can get 

e2G2 

E2 (GS) 

G2 (EIy) 

( b1 . hb ex Ex bh 
cos#, + — + ——! 

2 2 e2 E2 4 

= e 3 G 3 C 3 

C = £ 2 G 2 

e3G3 

E2 {GS) 

G2 (EIy) 
cos<9, + — + — — -

hb e, E, bh 

e2 E2 A j 
(3.39) 

dh, 03 E3 (GS) 

dz" G> (EIy) 

,"2 

- y"z" sin 02 cos d2+Bz" 

+ 
e2G2 

e3G3 

E2 (GS) 
G3 (EIy) 

•b2 hb e, E. bh 
— cos6> + — + —— ! 

2 2 e2 E2 4 

So shear stress in section 3 is given as 

T„« = 

K> 
T, — cos02-Bz"+^-^ 

2 e2 E3 

ful bh \ 
— cos#, 

J 

e, Ex bh 

73T3~4 

*"*" = 

K>' 
-cos#2 - -bcosO, z"+ 

e2 *-*2 

e3 E3 

fu.2 

-cosfl -
bh 

e3 E3 4 
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w — cos02 -(bcos02)z"+^-^ 
r^i bl . bh 

—cost/, 
2 2 

e, is, M 

z% =T „ = to) r. 
' z " 

- 6 cos<92 + — — 
e3 £3 

<b* 

j 

cos# 
2 ' 2 (3.40) 

3.6 Conclusion 

This chapter presented the step by step procedure to determine the shear stress equations 

for four different types of composite cross sections. The approach discussed in this 

chapter is valid for both homogeneous beams and for composite beams. 
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Chapter 4 

Comparison and validation of shear stresses 

4.1 Introduction 

In this chapter the comparison is conducted between two approaches used to determine 

shear stresses. First approach is developed in previous chapters and the second approach 

used generally for homogeneous beams i.e. VQ/It technique. The main idea of this 

comparison is to validate the present approach for homogeneous cases. The comparison 

has been conducted by reducing problem to homogeneous cases and then comparing the 

governing stress equations of 'VQ/It' method. 

4.2 Comparison of Shear stress in homogeneous triangular beam using two 
techniques 

As the shear stress determining expression is given as [1]: 
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Where V is vertical shear force, t is width of the section, Q is first moment of the area 

under consideration and I is moment of inertia of the entire cross section about neutral 

axis. 

Calculation of Centroid for triangular cross section 

It 

y = — 

Fig. 4.1: Calculation of centroid 

h 
/ 2 COS0 e2h 2 / 2 cosfl 

2he2 2hex sin 0 2he2 + 2hex sin 6 . e^infl 
1 I -I 

cos 6 cos 6 e-, 

y = -
h 

2(1+ -1-sin 0) 

Derivation of Shear stress expressions in local coordinates using VQ/It method 

The general expression to determine shear stress is given above. For comparison with the 

approach given in the thesis, the general expression needs to be modified. Here Shear 

67 



Stress expressions are derived using the same general expression based on the local 

coordinates of the sections. 

Fig. 4.2: Triangular homogeneous beam 

From the expression of shear stress it is clear that shear stress depends on Q which 

further depends on area under consideration and the distance from neutral axis to the 

centroid of that area. Now 

For section 1 

Q = Az = ye^a 

VQ V . 
T = -^ = —(y.a) 

Ie, I (4.1) 
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For section 2 

Q = A(z) = (z'e2)(d — ) 

T = 
VQ_=V_ 

Ie2 Ie2 

, ZCOS0 
ze2(d — ) 

T = • dz' cos^ 
2 

(4.2) 

So these are the expressions of shear stress obtained using the VQ/It technique in local 

coordinates for homogeneous case. If we recall the expressions for shear stress in 

triangular beam (chapter 3), the expressions are: 

For section 1, 

T» = K>-' zy 

For section 2 

£2r, 

'K)L 
-cosd-dz*) 

As its clear that, if we consider the homogeneous case, these expressions are equal in 

magnitude with the expressions obtained in above section for triangular beam. This 

shows the validity of our approach. 
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4.3 Comparison of Shear stress in homogeneous hexagonal beam using two different 
techniques 

Similar kind of comparison is conducted for hexagonal beam. 

VQ 
Derivation using — expression in local coordinates 

It 

Fig. 4.3: Sections 1 and 2 of Hexagonal beam 

In Section 1 

YQ.-L- h. 
It ~ Iex

 e,>' 2 

V h 
Ti=-ry I 2 (4.3) 

In Section 2 

b h fh z'cosQ^ 
Q = e, — x—he,z 

' 2 2 2 

r2 = 
YQ.=L 
n i 

e, bh z'h z'2 _ 
—! 1 COSfc' 

e2 4 2 2 (4.4) 
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Section 3 and 4 

• y 

Fig. 4.4: Sections 3 and 4 of hexagonal beam 

_, bh e-,h h 
Q = e, — + — l x -

1 4 2cos#, 4 
x— -e2zx-

z'cosff 

h = It I 
e, bh h2 

e2 4 8cos6> 2 
cos# 

(4.5) 

And the expressions derived in chapter 3 are: 

In section 1 

r ^ = 
-E,T, h 

2y 

In section 2 

r = E> T 
" fry-

—cos 0, 
2 

In section 3 

x - - \ 

E> T\ —cos#, -
2 

h , e,E, bh 
— z——• 

2 e2E2 4 

e4£4 bh h2 

e3E3 4 8 cos 9 2 . 
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So again the expressions derived here match with the Shear stress expressions derived in 

chapter 3 for the case of hexagonal beam, if we consider homogeneous beam only. 

4.4 Comparison of Shear stress in homogeneous Octagonal beam using two different 
techniques 

Derivation of shear stress expression from basic technique 

For Section 1 

Q = Az=ery.-

VQ V h 
1 It Ie, ' 2 

For Section 2 

_ V 

I 
— hy Q<y<b-

2 (4.6) 

b/2 

Fig. 4.5: Sections 1 and 2 of Octagonal homogeneous beam 

^ b h 

2 2 ' 2 

h z ? p cost/ 
2 2 
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T2 = 
VQ=J_ 
It /e, 

bhel +he2z' z' e2cos# 
~~A 2 2 

o < z'<6 
(4.7) 

For Section 3 

Fig. 4.6: Section 1, 2 and 3 of Octagonal Beam 

n b h 

2 2 ' 2 

/j -bcosd 

~2 2 
+ z"e, 

/? &cos#-z" 

h = It Ie, 
bhe, bhe2 b e2cos0 h „ , . „2 e , 

L + L - + z"e, z"e,bcosd-z" — 
4 2 2 3 2 3 2 

Now — b cos # = — 
2 2 

/* = 6(l + 2cos#) 

b „ z" b z 

2 2 4 2 

b b z b z 

~2~~l ~2~~4+1l 

r3 = Ie, 

bhe. 
+ be-, 

\ h b a cos 0 
2 2 

z e. 

2 V ; 
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7»-b
 7 

z = z 
2 

T ' = l 
bhet be^ 

4e3 ei 

h b 
cos & 

2 2 

\ i (^ 
+ — 

2 
(4.8) 

The expressions obtained in chapter 3 for octagonal beam are: 

In Section 1 

xy LK)J 
h 

2y 

In Section 2 

T„> = 

K> 
T: 

z'2 » h , e,E, bh 
— costt — z ' — — ! 

2 2 e2£2 4 

For Section 3 

3 x 
£3rz 

K)L 
z 6 e, £, 6A e2£"2 

• + -
- i ^ i 

• + -2 8 e3 £3 4 e3£3 

bcosft h 

V 

These expressions for different sections of octagonal beam (for homogeneous case) are 

same in magnitude as the expressions obtained in chapter 3 

4.5 Comparison of Shear stress in homogeneous Decagonal beam using two different 

techniques 
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Fig: 4.7: Sections 1, 2 and 3 of Decagonal beam 

For section 1 

h = 

v.y-ev~ v f l A 

/c, 
-hy 

V^ J (4.9) 

For section 2 

^ bexh 
Q = — — + z'£, 

2 2 

r u ,-/? z'cos#, 

4 e, 
• + 

hz' z'2cos#, 

(4.10) 

For section 3 

^ bexh , 
0 = —-— + be 

2 2 

/? bcosO, 1 ' + z".e, bcosd, -
z"cos0. 

bh e, 6e, 

v 4 e3 e3 v 

h b cos #, 
+ z' •bcosd, -

z"cos0. ^ 

J) 

Now b cos 6X = b cos 02 
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*"3 = 
bh ex 

T7 
h bcosd. 

3 V 

+ Z' b~ — 
V 1j 

C0S#, 

V 
T3 =• cos#2 +b z"cos6>2 + — + — 

2 e, 4 e3 

bh b2cos02^ 

(4.11) 

And the expressions obtained in chapter 3 are: 

In Section 1 

xy 2y 

In Section 2 

f „, = T: 
H) 1 

z' _ /* , e.is, M 
— cosw — z — L - ! 

2 e2£2 4 

For section 3 

T =T = 3 ;cz 

<*0 
' ^ 
V J 

cos02 +—— 
e3 E, 

fiji 
h a bh 
—cosy, 
2 ' 2 

e, E] bh 

J e 3 ^3 

These expressions for decagonal beam are similar to the expressions obtained in above 

section for homogeneous beam. 

4.6 Conclusion 

This chapter shows the comparison between present thesis approach and the conventional 

VQ/It approach for homogeneous beams. The shear stress expressions obtained in this 

chapter match with the expressions obtained by present thesis approach in chapter 3 of 
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thesis for homogeneous case. All the results match with each other and hence validate the 

present thesis approach. 
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Chapter 5 

Results, Analysis and Discussion 

5.1 Introduction 

This chapter provides graphical results of shear stress distribution for composite beams 

having different cross sections. At the end, the results are obtained for maximum shear 

stress magnitudes in all beams by taking into consideration the weight and type of beams. 

Also comparison is presented between present thesis approach for composite beams and 

conventional approach for homogeneous beams. 

5.2 Variation of shear stress across different Sections of beams 

In this Section, variation of shear stress with respect to different cross sections is 

demonstrated. Starting with box beam graphical results are presented for more complex 

beams like Hexagonal beams, Octagonal beams and Decagonal beams. In these Sections 

a graph showing the distribution and variation of shear stress in each Section of beam are 

plotted for four type of beams stated above. It is noteworthy that here all beams are 
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symmetric so graphs of shear stress distribution are plotted for half portion of the beams. 

It is also important to note that here a specific case is considered for simplification. It is 

assumed that beams are made of homogeneous materials and the thickness is the same in 

all the sections. This graphical presentation provides the basis for further advanced 

analysis. 

5.2.1 Shear Stress distribution in Box Beam 

The governing equations of shear stresses in different sections of box beam [7] are 

written below, fig. 5.1 shows the different sections of the box beam. 

Fig. 5.1: Sections 1, 2 and 3 of box beam 

For Section 1, 

r
v = l 

EXT, 
•y 

(5.1) 
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For Section 2, 

T„, -

K) 
z h e,E, bh 

I L ' ' 

2 8 e2E2 4 (5.2) 

For Section 3 

V 2y 

(5.3) 

In the case of box beam, fig. 5.2 shows the variation of shear stress in different sections 

from 0° to 180°. Here angle represents different cross sections. Shear stress in Section 1 

and Section 3 is zxy and shear stress in Section 2 is rxz. So for Section 1 and Section 3 

shear stress is varying with respect to y and variation is linear as shown in graph (from 

0° to 45° and then from 135° to 180°). For Section 2 shear stress is varying with respect 

to z and variation is parabolic as shown in graph from 45° to 135°. 

i i i i i i i I 1 i I i i i i i i 1 i i I i i i i i M i i i i i i I 
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 

A n g l e in ° 

Fig. 5.2: Variation of Shear Stress with respect to Sections 1, 2 and 3 (homogeneous 

beam) 
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Maximum magnitude of shear stress occurs in section 2 is given as: 

T = max. K> T, 
\h2 bh\ 

_8 4_ 
(5.4) 

5.2.2 Shear Stress distribution in Hexagonal Beam 

Different sections of Hexagonal beam are shown in the fig. 5.3. 

Fig. 5.3: Different Sections of Hexagonal beam 

In the same way, shear stress equations for hexagonal beam are given as: 

For Section 1, 

T = xy 

E,TZ h 
2y 

>r Section 2, 

* • * • = (EI.) 
r 
2 

z'2 

2 
* h , e,E, bh 

cos6> + — z'+-L-J 

2 e2E2 4 

(5.5) 

(5.6) 
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For Section 3, 

r„, = 
E3 T2 

K> 
z'2 . e4E4 bh h2 

— cos<92 + - 2 — 1 — + 
2 e-,E, 4 8cos# '3-^3 2 J (5.7) 

For Section 4, 

^ = " rA(y) 
K ) ^ (5.8) 

In hexagonal beam, again the variation of shear stress is shown for different sections 

from 0° to 180°. Shear stress in Section 1 and Section 4 is xxy and shear stress in 

Sections 2 and 3 is xxz•. Shear stress variation is linear for Section 1 and Section 3 as 

shown in graph from 0° to 30° and then from 150° to 180°. For Section 2 and Section 3 

shear stress is varying with respect to local coordinates and variation is parabolic as 

shown in graph from 30° to 150°. 

10 2b 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 

Angle in ° 

Fig. 5.4: Variation of Shear Stress with respect to Sections 1, 2, 3 and 4 

(homogeneous beam) 
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5.2.3 Shear Stress distribution in Octagonal Beam 

In the same way, the Octagonal beam (with height h and each side equal to b) is shown in 
the fig. 5.5 

Fig. 5.5: Different Sections of Octagonal beam 

The governing equations for shear stress in different sections of octagonal beam are given 

as: 

ForS( 

r = 
xy 

sction 1, 

E,T, 

For Section 2, 

r = E> T 

For Section 3, 

* " * = • 

(*0 

k 

z'2 . h , e.E, bh 
cos<9, + — z'+——! 

[ 2 ' 2 e2E2 4 

z2
 i b2 ex Ex bh e2E: 

2 8 e3 £3 4 e3£. 
-6 

'6cos#, 

I 2 
21 

(5.9) 

(5.10) 

(5.11) 
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In Octagonal beam, variation is shown for different Sections (fig.5.6). Shear stress in 

Section 1 and Section 5 is xxy and shear stress in Section 2 and 4 isT^' and shear stress 

in Section 3 is rxz. As shown in the figures shear stress variation is linear for Section 1 

and Section 5 and variation is parabolic for Sections 2, 3 and 4. 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 

Angle in " 

Fig. 5.6: Variation of Shear Stress with respect to Sections 1, 2 ,3 and 4 

(Homogeneous beam) 

5.2.4 Shear Stress distribution in Decagonal Beam 

The same procedure is followed for the case of decagonal beam (with height h and each 
side equal to b). 

Fig. 5.7: Different Sections of Decagonal beam 
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The shear stress equations are given as: 

For Section 1, 

T*y = 
2y 

For Section 2, 

T„, = w cost', + — z + 
elEl bh 

For Section 3, 

Tz 
* > - K> 

e, is, M e2 E2 

e3 £3 4 e3 £ 3 V 

bcos&n 

2 j 
cos#, 

(5.12) 

(5.13) 

(5.14) 

MPo. 

62,51 

ni 

<. -H 
(•5 

r 
ĉ  

c 
u 

-t-> 

^ « 

tr
 

V) 

t j 

I I 1 I I I I I I I I I I I I I I I I1 - I — I -I I I 'I I I I I I 
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Angle in * 

Fig. 5.8: Variation of Shear Stress with respect to Sections 1 to 6 

(Homogeneous beam) 
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Shear stress in Section 1 and Section 6 is xxy and shear stress in Section 2 and 5 is rxz> 

and shear stress in Section 3 and 4 is rXZ". As shown in the figure (fig. 5.8) Shear stress 

variation is linear or parabolic depending on the governing equations. 

5.3 Maximum magnitude of shear stress in different type of beams. 

In order to draw the graph of maximum magnitude of shear stress in different type of 

beams, moment of inertia (I = Ic + Ad2) needs to be calculated. 

Moment of Inertia 

Now general expressions for moment of inertia in different cases are obtained as: 

For Box beam: 

/ = 
bt> bth2 th3 

+ + 6 2 6 
(5.15) 

Where h is height of the box beam and b is width of Section 1 and 3 and t is thickness 

(Fig.5.1). 

For Hexagonal beam: 

bf bth1 UhT UK 
+ +—— + - — 

6 2 8 24 (5.16) 
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"7fr 

t2 = t/cos0 

Fig.5.9 : t and t2 

Where t2 is projection of thickness for Section 2 (Fig. 5.3) and it is measured parallel to 

horizontal axis. It is the same for all other inclined Sections. And t is the thickness of 

Section 1 and 4. 

For Octagonal beam 

b? bth2 t2 h b^ 

6 2 3 v 2 2 y 

+ 2t2(h-b) 
fh b\2 ttf 
V4 + 4y 

+ • 

(5.17) 

Where t2 is projection of thickness of inclined Section on horizontal plane and 13 is 

thickness of Section 3. 

For Decagonal beam 
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/ = 

br bth2 u 
— + +-?-

6 2 3 

+ 4t2(—bcos02) — + — cos<92 + — (Z>cos02) — bcos07 

v2 2y '2 V4 2 , 6 

+ 4^ (6 cos 62 J — cos ̂ 2 

(5.18) 

With the above expressions moment of inertia for each beam has been calculated. For the 

calculation of maximum shear stress, homogeneous case with same thickness of Section 

is taken into consideration. 

In the calculations of maximum magnitude of shear stress, curve is shown to approach 

towards that of the circular beam. This plot shows that same approach can be followed to 

get the stress distribution equations for circular case. If the circular beam is made of 

different materials or, the calculation of shear stress with basic techniques is very 

complicated and cumbersome. But with this new approach one can consider different 

material properties side by side to obtain the distribution of shear stress. 

Approach towards obtaining the results for circular beam 

In this section it is clearly illustrated how the step by step procedure has been followed to 

calculate the shear stress of different beams including circular beam. Starting with box 

beam, each step proceeds further with increasing in the number of sides having the same 

height of beam. In fig 5.10, the geometric relation between different type of beams and 

circular beam is shown. 
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Fig. 5.10: Dimensional comparison of each beam with circular beam 

In table 5.1, perimeter and width for the different type of beams are given. 

Table 5.1: Perimeter and width of each side of different beams. 

Number of sides 

Box beam (4) 

Hexagonal beam (6) 

Octagonal beam (8) 

Decagonal beam (10) 

Circle 

Perimeter (mm) 

80 

69.28 

66.27 

64.98 

62.83 

Width of each side (b) 

20 

11.52 

8.28 

6.50 

Height (h) 

20 

20 

20 

20 

20 
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Other parameters taken into consideration are: 

Shear force (Tz) equals to 2 KN 

Height of each beam 20 mm, 

Thickness of each section equals to 1mm. 

Calculation of shear stress 

With the above given parameters and dimensions, maximum magnitude of shear stress is 

calculated in different type of beams and after that results are plotted on a graph. 

Box beam 

x = 
max. < ^ > 

"1 ~h2 bh 
- j 

. 8 4 

(5.19) 

W . = 56.2MPa 

Hexagonal Beam 

E 
T™~{EIy)

 Z 

Where 0, = 30° 

bh h2 

4 8cos<9, 
(5.20) 

W . = 59.98 MPa 

Octagonal Beam 

E 
Vmm~(EIy)

 z 8 

Where 9, = 45° 

W . = 61-96V IPa 

3bh b2 cosft" 
+ 

4 2 (5.21) 
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Decagonal Beam 

r = 
max. K> 

V 
rM / 
— + b 
L4 I 

A bcosO, / * . \ 

v^y 
cos#, 

(5.22) 

Where 0, = 54° and 92=18° 

rm a x =62.51 MPa 

For Circular beam 

I = 7rr3t, Q=r2t 

T = 63.66 MPa 

After calculating the maximum magnitude of shear stress results are shown in the graph 

below. 

60 -F 

40 

20 

:.: rz ~ ~^^+^=*=-r——--—r — 

I ; 

1 1 1 , 1 1 1 i 1 1 1 I I 1 I I I m 

2 3 4 5 6 7 8 9 10 

Nunber of Sides 

Circle 

Fig. 5.11: Maximum magnitude of shear stress in different type of beams 
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The above graph shows the variation of maximum magnitude of shear stress with respect 

to the shape of the beam. As the number of sides increases from simple beam towards the 

circular, shear stress also varies. As shown above, same load is applied to all beams 

having same material and same thickness and same height. But in this case as shown in 

the table perimeter is decreasing as one goes from box beam towards circular beam. So to 

include the effect of less material used in the case of circular beam as compared to other 

beams, normalized stress is calculated as: 

Normalized stress 

In the calculation of normalized stress, weight is considered. Shape factor is defined as: 

_ weight per unit length of the beam 
weight per unit length of square beam 

So normalized stress for different shape of beams is calculated as: 

^normalized. = ^max. * V 

Table 5.2: Normalized shear stress 

Beam type 

Box beam (4) 

Hexagonal beam (6) 

Octagonal beam (8) 

Decagonal beam (10) 

Circular beam 

Normalized Shear Stress (MPa) 

56.21 

51.94 

51.32 

50.77 

49.99 
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The calculated results are shown in the table 5.2. When number of sides increases and 

approaches towards the circle, shear stress decreases. The results of normalized shear 

stress are shown graphically in fig. 5.12. As we see that results are close but different 

from previous case. Also after considering dimensions and weight, if we go from box 

beam to circular beam, shear stress decreases. 
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Fig. 5.12: Normalized shear stress in different type of beams 

5.4 Comparison between Composite beam and homogeneous beam using present 

approach 

In the case of homogeneous beams, determination of shear stress is easy as compared to 

composite beams. In open literature and in mechanics of materials books, methods are 

proposed to calculate the shear stress in homogeneous beams under transverse loading. 

But the approach presented in the present thesis is valid for both homogeneous and 

composite beams made of different materials. As shown above graphically in Section 5.1, 
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shear stress varies in different cross section of different type of beams. So in this section 

basically a comparison has been presented between the shear stress distribution in 

homogeneous case and shear stress distribution when we are using different materials. 

Different materials and different layers can be used in the manufacturing of composite 

beams depends on the applications to increase the flexural strength of the structure. 

For the comparison, as an example Hexagonal beam (Fig. 5.13) is taken. First the 

homogeneous case has been considered for the calculations. Then the calculations for 

shear stress distribution are extended to the case of composite beam with different 

materials. 

Fig 5.13: Hexagonal beam 

The following data has been taken for the calculations: 

Shear force (Tz) equals to 2 KN. 

Height of the beam equals to 20 mm. 

Thickness of each section equals to 1mm. 

t2 = t/cos9 where 0 = 30° 
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Width equals to 11.52 mm. 

The governing equations of shear stresses are given as 

For Horizontal Section 1, 

T*y = 
E,T. 

;y 
(5.23) 

For Inclined Section 2, 

r„ . 
2 

z' _ h , e,E, bh 
cos<9, + — z'+——! 

2 e2£2 4 (5.24) 

Case I: Homogeneous Hexagonal beam 

In homogeneous beam all sections are made of same material assuming to have same 

thickness. For homogeneous case as the material is same so Ei equals to E2. 

Moment of inertia around y axis for this beam is given as: 

/ = bf bth2 uti uti 
— + + -— + -8 24 

(5.25) 

After putting the values from above given data: 

1= 3845.52 mm4 

Now after plugging in the values of T and above given data in shear stress governing 

equations one can obtain: 

For Section 1 

T^ = 29.96 MPa for y = 5.76 (i.e. half of total width) 

For Section 2 

TXZ,= 59.98 MPa (maximum magnitude) 

These are the shear stress values for homogeneous hexagonal beam. 
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Case II: Composite Hexagonal beam 

Using analytical approach presented in Chapter 3, calculation of shear stresses in any 

arbitrary section of homogeneous and composite beams is feasible. To demonstrate the 

potentials of this approach through examples, shear stress distribution in a composite 

hexagonal beam, shown in Figure 5.14, is calculated. It can be observed that index 1 

refers to horizontal sections that are made of material number 1. Index 2, however, refers 

to four inclined sections. The material for Section 2 varies according to Table 5.3. Even 

though for the sake of simplicity materials for Section 2 are introduced by E2, it is 

obvious from Table 5.3 that 10 different materials are considered. 

Section 1, [ 

11.52-

t-lnn 
Section 1, E ? 

--t 2=1,15 

Fig 5.14: Different sections of Hexagonal beam 
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The equivalent flexural stiffness of the beam cross section is calculated according to the 

following equation: 

(EIy) =2E,I1+4E2I2==£1 
bt2 bth2 

+ • 
6 2 

+ E2 

t.h3 t-,h3 

1 +• 
8 24 

(5.26) 

By substitution of beam section geometry variables, b, t, h and t2 from Fig.5.14 and 

material properties, E| and E2, into this equation, equivalent stiffness of the beam cross 

section is calculated. 

Equations 5.23 and 5.24 are used to calculate shear stresses distribution in section 1 and 

2, respectively. For section 1, Equation 5.23 demonstrates a linear variation in shear 

stress, txy, with respect to y coordinate. Therefore, shear stress value varies linearly from 

zero on symmetry axis to its maximum value at point A in Fig. 5.14. For Section 2, 

Equation 5.24 represents a second order equation and a non-linear variation in shear 

stress, xxz', with respect to z' coordinate. Therefore, shear stress value varies from its 

minimum value at z - 0 to its maximum value at point B in Fig5.14, which is located on 

neutral axis of the beam cross section. Table 5.3 demonstrates the maximum shear stress 

in horizontal section at point A and maximum shear stress in the whole cross section 

corresponding to point B in Fig 5.14. 
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Table 5.3: Shear Stresses in Composite beam made of different materials 

El 
210 
210 
210 
210 
210 
210 
210 
210 
210 
210 

E2 
210 
190 
170 
150 
130 
110 
90 
70 
50 
30 

E2/E1 

1.000 

0.905 

0.810 

0.714 

0.619 

0.524 

0.429 

0.333 

0.238 

0.143 

T xv (MPa) 

29.96 

31.14 

32.43 

33.83 

35.35 

37.01 

38.84 

40.86 

43.10 

45.61 

T xz (MPa) 

59.98 

59.39 

58.74 

58.04 

57.28 

56.45 

55.53 

54.52 

53.39 

52.14 

The variation of shear stress in the horizontal section of the hexagonal beam with respect 

to Young's modulus ratio is shown in the Fig. 5.14. Ei is the same in all cases and the 

ratio of E2/E1 is varying between 0 and 1. 
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Fig 5.15: Shear Stress in horizontal section versus E2/E1 ratio (Hexagonal Beam) 
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Fig 5.16: Shear Stress in inclined section versus E2/E] ratio (Hexagonal Beam) 

The same kind of shear stress distribution is shown for the inclined section of hexagonal 

beam in Fig 5.16. The combined variation of shear stresses in both horizontal and 

inclined sections is shown in the Fig. 5.17. Both the curves are made by using different 

materials. As it is clear from equation 5.26, when E2 is increasing the equivalent stiffness 

is more. For shear stress in section 1, equivalent stiffness is in denominator (eq. 

5.23).This is represented in graph 5.17, when E2 is increasing the shear stress in section 1 

is decreasing. For section 2, as the effect of section AB (Fig. 5.14) is more dominant, so 

in this case when E2 is increasing shear stress is also increasing. When we are using 
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material with smaller value of E2 the effect of section AB is not significant in that case. 

For smaller value of E2 shear stress in section 2 approaches to maximum shear stress 

value in section 1 as shown in the graph 5.17. 

The shear stress variation is represented in these graphs using the present approach which 

shows the difference of this approach from conventional approaches. 
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Fig 5.17: Shear Stress in inclined and horizontal section versus E2/E1 ratio 
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Fig. 5.18: Variation of shear stress in homogeneous and composite hexagonal beam 

As shown in the Fig. 5.18, the shear stress distribution is different for Hexagonal 

composite beam and for Hexagonal homogeneous beam for three sections from 0° to 

180°. When we are using different materials bonded together to form a beam the shear 

stress distribution curves are different. As we move from homogeneous case to composite 

case, with decreasing stiffness for inclined sections, the shear stress for horizontal section 

is increasing and shear stress for inclined section is decreasing. The variation of shear 

stress in horizontal sections of hexagonal beam is shown from 0° to 30° and from 150° to 

180°. The variation is linear for horizontal section. On the other side the variation of 

shear stress in inclined sections is governed by second order equation as shown in the 
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graph between 30° to 150°. Different curves represent different cases of composite beam 

made of different materials. The ratio of E2/E1 varies from 1.0 to 0.1 as shown in the 

fig.5.18. When we are using stiff material for both sections (horizontal and inclined 

E2=Ei) the difference in shear stresses for both sections is more as shown in the Fig. 5.18. 

Shear stresses for that case are 29.95 MPa and 59.98 MPa for horizontal and inclined 

sections respectively. When the value of E2 is decreasing the difference between the 

values of shear stresses in inclined and horizontal sections is also decreasing. It is 

48.42MPa for horizontal section and 50.73 MPa for inclined section. 

This section shows that the present thesis approach has advantages over conventional 

methods of finding the shear stress distributions. With the present approach composite 

beams made of two or more dissimilar materials can be analyzed easily which is very 

difficult and complicated with conventional methods. 

5.5 Conclusion 

This chapter presented the results in graphical form for different cross sections. Also 

maximum shear stress results and normalized shear stress results are highlighted. Finally, 

variation of shear stress in composite beam and in homogeneous beam has been 

illustrated on different graphs which show the significance of the present approach. 
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Chapter 6 

Conclusions and Future Work 

6.1 Conclusion and Contribution 

Beam elements are widely used in building structures. So to determine the stresses in 

composite beams is always a challenging task. An approach is designed to cover the wide 

range of beams including homogeneous and composite beams. 

In the thesis, a new approach has been developed to perform the stress analysis of 

composite beams in flexure. Different shapes of beams including T beams, triangular 

beam, hexagonal beam, octagonal beam, decagonal beam have been analysed. The 

pattern behaviour and shear stress variation in these beams is studied to predict the 

maximum shear stress in a circular beam that has the same radius as the circumscribed 

circle of multi-gonal beams. The approach is valid for both type of beams i.e. 

homogeneous beams and composite beams. After developing the approach for complex 
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shapes of beams, a comparison has been conducted for homogeneous cases with basic 

technique to validate the approach. 

Finally the shear stress distribution is shown graphically for different type of beams. The 

results showing the maximum magnitude of shear stress in different beams are presented. 

Difference of present approach from conventional approaches has been shown in the last 

section which shows the importance of the present approach. 

There are constraints on this approach also. Mathematical constraints make it complex 

depending on the geometry of the beam. For complex geometric asymmetric shapes, the 

governing equations are complex. If elastic center does not fall on the center of the 

geometry then equations are more complex and then to determine the stress expressions 

is complicated and involve advanced mathematical derivations and calculations. 

6.2 Future work 

The approach can still be continued in the future based on the following 

recommendations: 

> The approach presented in the thesis to determine the stresses of composite beams 

under shear load may be extended for the analysis of composite beams having 

more than one layer 
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