
FT-PAS - A Framework for Pattern Specific Fault-Tolerance in

Parallel Programming

Gopinatha Jakadeesan

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Computer Science at

Concordia University

Montreal, Quebec, Canada

April 2009

© Gopinatha Jakadeesan, 2009

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-63279-6
Our file Notre r6f6rence
ISBN: 978-0-494-63279-6

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

• • I

Canada

Abstract

FT-PAS - A Framework for Pattern Specific Fault-Tolerance in Parallel

Programming

Gopinatha Jakadeesan

Fault-tolerance is an important requirement for long running parallel applications. Many

approaches are discussed in various literatures about providing fault-tolerance for parallel

systems. Most of them exhibit one or more of these shortcomings in delivering fault-

tolerance: non-specific solution (i.e., the fault-tolerance solution is general), no

separation-of-concern (i.e., the application developer's involvement in implementing the

fault tolerance is significant) and limited to inbuilt fault-tolerance solution. In this thesis,

we propose a different approach to deliver fault-tolerance to the parallel programs using

a-priori knowledge about their patterns. Our approach is based on the observation that

different patterns require different fault-tolerance techniques (specificity). Consequently,

we have contributed by classifying patterns into sub-patterns based on fault-tolerance

strategies. Moreover, the core functionalities of these fault-tolerance strategies can be

abstracted and pre-implemented generically, independent of a specific application. Thus,

the pre-packaged solution separates their implementation details from the application

developer (separation-of-concern). One such fault-tolerance model is designed and

implemented here to demonstrate our idea. The Fault-Tolerant Parallel Architectural

Skeleton (FT-PAS) model implements various fault-tolerance protocols targeted for a

collection of (frequently used) patterns in parallel-programming. Fault-tolerance protocol

iii

extension is another important contribution of this research. The FT-PAS model provides

a set of basic building blocks as part of protocol extension in order to build new fault-

tolerance protocols as needed for available patterns. Finally, the usages of the model from

the perspective of two user categories (i.e., an application developer and a protocol

designer) are illustrated through examples.

IV

Acknowledgements

I would like to express my special thanks to my supervisor Dr. Dhrubajyoti Goswami for

all his support, guidance, and encouragement. His valuable suggestions, feedbacks and

continuous evaluation throughout the course of this research, especially during difficult

times, helped me greatly to progress with my work. I am thankful for his advice and the

precious time he spent helping me amidst his tight schedule; without him this thesis

would not have been completed.

My special thanks to my parents for their love and advice, continuous support and

encouragement. I am grateful to them for their blessings and all they have given me

throughout my life.

I would like to thank my family members, friends and colleagues for their help and

support.

Thanks also to alma maters and all the staff at Concordia University and everyone who

helped me in any way.

Finally, I am grateful to The Almighty for His blessings.

v

Table of Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 The Problem 1

1.2 Objective 3

1.3 Contribution 4

1.4 Organization of the Thesis 5

2 Background and Related Works 7

2.1 Various Fault-Tolerance Techniques 7

2.1.1 Replication Mechanism 8

2.1.2 Checkpoint Mechanism 9

2.1.3 Logging Mechanism 14

2.2 Fault-Tolerance in Parallel Systems 15

2.2.1 FT-MPI 16

2.2.2 MPICH-V 16

2.2.3 Charm++ 17

2.3 Fault-Tolerance in Pattern-Based Parallel Systems 17

2.3.1 Muskel 18

2.3.2 Persistent Fault-Tolerance for the Divide-and-Conquer Application 19

2.3.3 MPI Farm Library 20

2.3.4 CoHNOW-FT-DR 20

vi

3 Pattern-Specific Fault-Tolerance 22

3.1 Pattern-Specific Fault-Tolerance Classification 22

3.1.1 Task Farm Pattern 23

3.1.2 Master-Slave Pattern 29

3.2 Protocol Discussion 33

3.2.1 Checkpoint Gradient 33

3.2.2 Checkpoint Dependency Graph 34

3.2.3 Gradient-based Checkpoint Protocol 35

3.2.4 Extended Protocol: Color-based Checkpoint Protocol 39

4 Introduction to FT-PAS 45

4.1 PAS Overview 45

4.2 User Categories and their Roles 48

4.3 Introduction to the FT-PAS Model 49

4.3.1 Overview 50

4.3.2 Specificity 51

4.3.3 Separation of Concern 52

4.3.4 Protocol Extension 53

4.3.5 Generic Group Definition 54

5 FT-PAS Design, Usage and Case Study 56

5.1 Framework Architecture 56

5.1.1 The FT-PAS Architecture 57

5.1.2 Framework Assumption 59

5.2 Design of the Framework Internals 60

vii

5.3 Protocol Extension: Primitives, Usages and Case Studies 70

5.3.1 Overview of the Protocol Extension 70

5.3.2 Primitives for the Protocol Extension 72

5.3.3 Framework Usages and Case Studies 78

6 Evaluation 90

6.1 Environment 90

6.2 Experiences on the Framework Usages 91

6.3 Experimentation and Results 92

6.3.1 Framework Overhead 93

6.3.1 Comparison of the Different Fault-Tolerance Protocols 95

7 Conclusion and Future Research 99

Bibliography 101

Vlll

List of Figures

Figure 1: Message types 10

Figure 2: Pattern-specific fault tolerance classification 23

Figure 3: Minimal state retention in a task-farm pattern 29

Figure 4: Gradient-based checkpoint protocol 36

Figure 5: Color-based checkpoint protocol 41

Figure 6: PAS skeleton 46

Figure 7: FT-PAS skeleton and its phases 49

Figure 8: FT-PAS skeleton and its components 51

Figure 9: Example of generic group mapping 55

Figure 10: General view of the framework 57

Figure 11: Architecture of the FT-PAS framework 58

Figure 12: High-level view of the framework 58

Figure 13: Conceptual view of the fault-tolerant parallel architectural skeleton 59

Figure 14: Framework internals 60

Figure 15: Failure detection monitor - post detection procedure 63

Figure 16: Interaction between dependency analyzer and other components 65

Figure 17: Three phase consistent checkpoint coordination 67

Figure 18: Recovery module and its action 69

Figure 19: High-level class diagram of gradient-based checkpoint protocol extension... 79

Figure 20: Gradient-based checkpoint protocol - protocol behavior 80

Figure 21: Gradient-based checkpoint protocol - failure reactor 80

ix

Figure 22: Gradient-based checkpoint protocol - marshaller 81

Figure 23: Gradient-based checkpoint protocol class 82

Figure 24: Gradient-based checkpoint protocol - service registration 83

Figure 25: Gradient-based checkpoint protocol - application developer's perspective.... 84

Figure 26: High-level class diagram - fault-tolerance protocol for iterative problem 85

Figure 27: Abstractlterator and State interfaces 86

Figure 28: Iteration-based application level checkpoint protocol class 87

Figure 29: Iterator with fault-tolerance actions 88

Figure 30: Fault-tolerant iterative application - application developer's perspective 89

Figure 31: Overhead due to logging 94

Figure 32: Overhead due to checkpointing 95

Figure 33: Fault tolerance overhead percent - varying message localization density 96

Figure 34: Overhead ratio - varying message localization density 97

Figure 35: Overhead comparison - application-level and system-level checkpoint 98

x

List of Tables

Table 1: Overhead incurred with and without the simple logging protocol 93

Table 2: Overhead incurred with and without checkpointing 94

Table 3: Fault tolerance overhead - varying message localization density 96

Table 4: Overhead comparison - application-level and system-level checkpoint 97

XI

Chapter 1

Introduction

In this chapter, we describe our research objective and summarize what is achieved.

1.1 The Problem

The advancements in computer hardware and high-speed networks have revolutionized

the concept of building powerful clusters using networks of workstations. The

networked-workstation clusters are more popular and used as a common environment for

parallel-computing. This is due to their cost-performance benefit, and their suitability for

solving a vast range of computational intensive problems using their combined

computing powers. This is in contrary to the high priced sophisticated parallel-computing

environment which is made from special parallel computers.

This paradigm shift towards the networked-workstation cluster has triggered interesting

challenges for researchers in various aspects. One such problem with the use of the

networked-workstation cluster is lack of reliability as this is made from off-the-shelf

components.

Fault-tolerance is essential for a long running parallel application in order to avoid

computational wastage. It must be noted that achieving fault-tolerance in parallel

application is complex. There are various reasons and challenges for the previously

mentioned difficulty in achieving fault-tolerance in parallel applications.

1

• There is no clear standard defined regarding fault-tolerance support in the parallel

programming environment. For example, in the message-passing parallel

programming environment, the Message Passing Interface (MPI) standard [46]

defines some general error handling mechanism intended mainly for resource

clean-up action, rather than from the perspective to support fault-tolerance.

• In most of the existing MPI parallel-programming environments (e.g., LAM-MPI

[4], MPICH-V [5] etc), the solution to tolerate fault is addressed in general and is

not specific to a problem category. Such a solution can lead to a performance

problem.

• Addressing fault-tolerance issues in specific at the application development phase

is tedious. The parallel-programming environment such as FT-MPI [1] requires

significant effort from an application developer to achieve fault-tolerance in a

given parallel program. It deviates the application developer's objective from the

application development.

• Moreover, the fault-tolerant solution provided in the existing system (such as

MPICH-V [5], etc.) is fixed and rigid. Such solution experiences closeness issues,

i.e., a given application is constrained to use the fault-tolerant strategy that is

provided within. Hence, it is not possible to build and add a new fault-tolerance

protocol.

Various researches have been conducted to resolve some of the above mentioned

difficulties. Our research focuses on a specific approach that is based on patterns. We

believe that patterns can indeed be used to provide fault-tolerance support for parallel

2

applications. All of these have motivated our research toward building a new model to

address the above stated challenges.

1.2 Objective

Although separating fault-tolerance implementation concern is an important benefit, most

of the existing parallel-programming system (LAM-MPI [4], etc.) leads to undesirable

performance overhead due to its fault-tolerance solution's generic nature. Such generic

fault-tolerance solution might fit well for certain problems but leads to bad performance

for others. In general, most of the existing system does not support fault-tolerance in a

problem category specific manner. Hence, it is necessary to provide such support in order

to check undesirable performance overhead.

There also exists an extended MPI implementation (e.g., FT-MPI [1]), which provides a

basic facility to implement application specific fault-tolerance but at the cost of

considerable involvement on the part of the application developer, such as saving system-

states, logging communication messages, etc. It is tedious to address such system-specific

issues (i.e., fault-tolerance) at the application development phase. Hence, it is necessary

to alleviate or liberate such burden during the application development phase in order to

focus on the application development rather than on the fault-tolerance issues.

Most of the existing systems (MPICH-V [5], Muskel [24], etc.) support a limited and

fixed set of fault-tolerance protocols. Consequently, there is no facility provided to add

new fault-tolerance as needed for available pattern implementation. Thus, if an

application demands a different fault-tolerance protocol which is not supported, generally

3

the application has no alternate choice but to use what is available or to abandon the idea

of specifically providing fault-tolerance. Such system imposes limitations and thus leads

to undesirable performance problems for applications. Hence, it is necessary to provide

support to build a new fault-tolerance strategy as needed.

1.3 Contribution

Through this research, we have contributed patterns classification based on fault-tolerant

strategies. This classification is novel to the best of our knowledge. We have designed

and implemented a model - the Fault-Tolerant Parallel Architectural Model (FT-PAS) -

to demonstrate and verify our concepts (separation-of-concern, protocol extension). The

FT-PAS model contributes: (1) to assist in application-specific fault-tolerance in a

programmer transparent/semi-transparent way, and (2) to provide a test bed in order to

build new fault-tolerance strategies and to evaluate the performance overhead of the

fault-tolerance strategies.

We believe different fault-tolerant techniques are well suited for different patterns. This

pattern-specific fault-tolerance solution indirectly contributes to overcome undesirable

performance overhead, which is incurred when employed with a non-specific solution. In

FT-PAS, we achieve separation-of-concern by pre-packaging pattern-specific fault-

tolerance strategy implementation in an application-independent manner. This notion

facilitates in separating the fault-tolerance implementation issues and alleviating burden

from the application developer. Lastly, we address the closeness issue by supporting a

fault-tolerance protocol extension. In FT-PAS, we contribute a set of core facilities as

building blocks in order to design and integrate a new fault-tolerance strategy for

4

available patterns. Thus, it provides greater flexibility to build new fault-tolerance

strategy at ease, for use with available patterns.

The FT-PAS model introduces two user categories in order to support a fault-tolerance

protocol extension: a protocol developer (responsible for implementing the new fault-

tolerance protocol) and an application developer (responsible for using the available

fault-tolerance protocol).

We evaluate the model implementation from two aspects: usage and performance. The

usage of the framework is evaluated based on the easiness of implementing various fault-

tolerance strategies. Subsequently, the performance of the framework is evaluated by

measuring and comparing the overheads incurred from different fault-tolerance strategies.

1.4 Organization of the Thesis

The thesis is organized as follows: Chapter 2 provides background knowledge and related

works. Chapter 3 discusses our novel classification of a few well-known patterns into

sub-patterns based on fault-tolerance strategies. Subsequently, we discuss two protocols

for a sub-pattern along with their correctness proof. Chapter 4 introduces our FT-PAS

model with discussion on two user categories: the protocol developer and the application

developer. The subsequent section discusses three important aspects which are addressed

in the model related to fault-tolerance. Chapter 5 discusses the model architecture, design

and usages from a two user group perspective. This chapter also includes a discussion on

the framework internals. Then, the core facilities related to protocol extension and their

primitives are discussed, along with case studies on several protocols and their usages.

5

Chapter 6 includes a discussion of the environment and the results that are observed from

our experiments are evaluated. Chapter 7 concludes the thesis and introduces the future

research direction.

6

Chapter 2

Background and Related Works

In this chapter, we introduce background knowledge and related works. This chapter is

divided into three sections. In Section 2.1, we introduce background details related to

various fault-tolerance techniques that are practiced in general. The following section

provides a brief review on few existing MPI-based parallel-programming environments

that support fault-tolerance. Section 2.3 describes some of the related pattern-based

parallel-programming works that provide fault-tolerance.

2.1 Various Fault-Tolerance Techniques

In this section, we discuss various fault-tolerance techniques and their background. Fault-

tolerance in a single process system is achieved by saving the current state for later

recovery using a contemporary checkpoint/restart system implementation. Many

checkpoint/restart libraries are available such as Libckpt [9], PSNC checkpoint library

[10], Condor checkpoint library [11] and BLCR (Berkley Lab's Checkpoint Restart) [12].

These systems are different in various aspects. To mention a few: the amount of state

saved is different, the medium of storage is different, the API is different, etc.

Achieving fault-tolerance in a parallel-distributed system is much more complex. This is

due to the fact that such applications involve more than one process. These processes

communicate and exchange information in order to solve a given problem. Using the

7

checkpoint libraries (e.g., PSNC checkpoint library, Condor library) alone would not be

sufficient in order to provide fault-tolerance. There are various mechanisms that are

proposed in [13] to achieve fault-tolerance for such distributed systems. At a higher-level,

they are classified into three categories: replication mechanism, checkpointing

mechanism and logging mechanism. There are other variances of these techniques

available. They are derived either from one or more of the above mentioned mechanisms.

Similar fault-tolerance techniques can equally be applied to the parallel programs with

additional emphasis on performance and scalability.

2.1.1 Replication Mechanism

Replication is one of the well-known techniques used to achieve fault-tolerance. As

illustrated in [14], it can be classified into two subcategories: active replication and

passive replication.

In the active replication type, there exist one or more backup nodes running in parallel to

a primary node. Each backup node receives all necessary inputs as received at the

primary. Independently, each node computes and generates results. Consequently, all the

nodes compare their results and take consensus regarding the correct output. They might

as well execute the byzantine algorithm to handle byzantine faults [22]. Other than

computation, each backup node monitors the primary node to detect failure.

Similarly, in the passive replication type a.k.a. primary-backup technique, there are

backup nodes. But unlike the active replication, here the backups do not compute in

parallel to the primary node. Instead, the primary sends all the necessary application

8

states to all the backups in order to keep them up-to-date. Thus, the backups which hold

the necessary system software and application states are ready to take over from the

primary in case of failure.

The replication scheme is costly as it nearly doubles the expenses without increasing the

computational capacity [15]. Instead, it is possible to replicate the modules at a finer level

rather than to replicate the entire machine as in [23]. This proves to be comparatively cost

effective but at the expense of overhead due to hosting a replica in the processing node.

2.1.2 Checkpoint Mechanism

Checkpoint mechanism is a commonly used technique to provide fault-tolerance in the

distributed and parallel systems. First, we discuss some general terms and definitions

related to this mechanism, which are used in later chapters. Then, we present the

classification of the checkpoint mechanism.

A global state is a set of process states, which represents the snapshot of the system at an

instance [42]. In global checkpointing, the global states are recorded periodically as a set

of checkpoints. A checkpoint refers to a process state saved during the failure-free

operation. There are two concepts related to consistency, each represented as a message

type: an in-transit message and an orphan message [42, 43, 44].

Definition 1 An in-transit message can be defined as a message which is sent but not yet

received in a given global state [43]. Formally, we refer a message m^/rom pt to pj as an

in-transit message ifeia—*ejt> such that eia e bik-i; e^ e bjk.

9

Where, (i) —> denotes happened-before relation [17]. (ii) eja and ejb are the send-event and

receive-event of the message m .̂ (iii) The behavior of a process containing the events that

occur between two checkpoints during the process execution is termed behavioral

fragment. For example, the behavior of a process ' j ' containing the events that occur after

the checkpoints Cjk-i but before Cjk is denoted by the behavioral fragment bjk associated

with the checkpoint Cjk. Similarly bjk-i is the behavioral fragment corresponding to the

checkpoint Cik-i- (iv) Cjk-i is the k-lth checkpoint at a process ' i ' and Cjk is the kth

checkpoint at a process ' j ' .

Pj

Cjk-l

D P,
 b ^ j -

Pj

Cjk

bjk

0 bjk-i e jb

Cjk

(a) In-transit Message (b) Orphan Message

Figure 1: Message types

Definition 2 An orphan message can be defined as a message whose receive event is

recorded but not the send event in a given global state [43, 44]. Formally, we refer a

message my from pi to pjas a potential orphan message if eia-^eji, such that e,a e b&; e^ c

bjk-1.

Where, (i) eja and ejb are the send-event and receive-event of the message mij. (ii) bjk and

bjk-i are the behavioral fragments corresponding to the checkpoint Cik and Cjk-i

10

respectively, and (iii) c;k is the k checkpoint at the member 'i ' and Cjk-i is the k-1

checkpoint at the member ' j ' .

An orphan message can occur in a system during recovery upon using an inconsistent

global snapshot. A message can be prevented from becoming orphan when both its send-

event and receive-event are placed in the same global snapshot during failure-free

execution.

Definition 3 A consistent cut is a set of checkpoints in which if a process's checkpoint

state reflects a message receipt, then the checkpoint state of the corresponding sender

reflects sending that message [13, 17J.

In specific, the orphan messages do not exist in the consistent checkpoint [42, 43]. In case

of the in-transit messages, they are either nonexistent or exist to be replay-able during the

recovery operation. In addition, all the determinants of the non-deterministic events

should be replay-able during the recovery operation.

Definition 4 Consistent checkpoint is said to be strong if it does not contain the in-transit

messages [42],

As mentioned earlier, one way to handle the orphan message is to take precautionary

measures to prevent a message from becoming orphan. Similarly, all the in-transit

messages and the determinants [45] of the non-deterministic events (if any) should be

recorded to help in replay during the recovery operation.

11

Checkpoint mechanisms can be classified into three subcategories: uncoordinated

checkpointing, coordinated checkpointing and communication-induced checkpointing.

They are discussed as follows.

(i) Uncoordinated Checkpointing

The uncoordinated checkpointing allows each process to decide independently when to

take checkpoints. This protocol is also known as independent checkpointing. This

autonomy allows processes to execute the checkpoint operation when their state

information is small. The major drawbacks of this protocol are susceptibility to domino

effect [45], useless checkpoints, and storage overhead due to multiple checkpoints.

This protocol constructs and maintains a graph to identify a consistent cut during the

recovery operation. Two such graph models are identified here: the dependency graph

[20] and the checkpoint graph [21]. They are constructed during the failure-free

execution based on the message-send and the message-receive. In case of failure, these

graphs help in recovering the failed process and rolling-back the dependent processes to a

consistent recovery line.

(ii) Coordinated Checkpointing

The coordinated checkpointing requires processes to collaborate in order to form a

consistent global state. In case of failure, all the processes are rolled-back to a most

recent checkpoint during recovery execution. They are not subject to the domino effect

[45]; hence, the recovery procedure is simplified. It reduces storage overhead as only one

checkpoint is maintained on the stable storage. However, such protocol may incur

12

overhead due to the coordination action. The coordination can be achieved by different

means: blocking and non-blocking.

A simple approach to the coordinated checkpointing is to block execution and

communication of all the processes while executing the checkpoint protocol [16]. This

protocol is called blocking checkpoint coordination. In the non-blocking checkpoint

coordination, the protocol does not block the communications. Instead, the coordination

is achieved by sending an explicit checkpoint-request message preceding the first post-

checkpoint message on each link. This way each process is forced to take a checkpoint

upon receiving the first checkpoint-request message. A well-known example of such non-

blocking checkpoint coordination protocol is the distributed snapshot algorithm proposed

by Chandy and Lamport [17].

Some protocols use marker [18] or checkpoint indices [19], which are piggybacked along

with the post-checkpoint message in order to achieve coordination.

(iii) Communication-Induced Checkpointing

The communication-induced checkpointing mechanism avoids the domino effect without

requiring the coordination action. This protocol generates two types of checkpoints: local

and forced. Local checkpoints can be taken independently, while the forced checkpoint is

taken to guarantee the progress of the recovery line. In specific, the forced checkpoint

avoids creation of the useless checkpoints. Here, no explicit coordination message is

exchanged. Instead, the coordination message is piggybacked along with the application

13

message. The receiver decides with the piggybacked information whether to take a forced

checkpoint. [13] presents few other protocol variations of this technique.

2.1.3 Logging Mechanism

The checkpoint techniques discussed above are expensive due to various reasons: the

process execution gets blocked, flattening the process state is time consuming and storing

data on the stable storage is space consuming. The log-based mechanism tries to

minimize or liberate these overheads. The log-based rollback recovery makes an explicit

assumption based on the piecewise deterministic model [45], based on which all the non-

deterministic events can be identified and their respective determinants can be logged

during the process execution.

The messages contribute largely as non-deterministic events in the message passing

system. During the failure-free execution, the determinants of such identified non-

deterministic events should be logged on to a stable storage. In case of failure, the failed

process should be able to recover by replaying the logged determinants.

A variant of the above procedure is possible, which can be thought of as an amendment

with checkpoint to reduce the amount of replay to quicken the recovery. More flavors of

the logging scheme are possible based on the place where the message logging is

executed on either the sender-side or the receiver-side. In addition, the way a message is

logged, i.e. synchronously or asynchronously, leads to a different variant. [13] presents a

detailed discussion on various log-based recovery mechanisms.

14

2.2 Fault-Tolerance in Parallel Systems

In this section, we discuss few existing parallel-programming environments which are

based on MPI (Message Passing Interface) [46] that supports fault-tolerance. MPI is a

specification for message passing in the parallel-programming domain. The current MPI

specification does not address in depth fault-tolerance like the case where a process fails

in the MPI environment. MPI provides two choices for failure handling: (1) In the default

option, the application can abort immediately on occurrence of any failure; (2) In the

second option, the application is provided with the flexibility to continue execution but

with no guarantee that any communication can occur further.

The intended purpose of the second option is to provide flexibility to the application in

doing cleanup locally before it terminates. Hence, this might not be sufficient to

implement the fault-tolerant techniques which are discussed in [13].

In spite of limitation with the current MPI specification, the different approaches to

provide fault-tolerance in MPI programs are discussed in [2]. Each of these approaches

has shortcomings due to its limitation to use for a specific program structures. Different

fault-tolerance techniques are targeted for different purposes which include process fault-

tolerance as in FT-MPI [1], network failure recovery as in LA-MPI [28], message

logging technique as in Ediga [29], checkpoint/restart technique as in Starfish [30],

CoCheck [31], MPICH-V [5], LAM/MPI [4], Charm++ [3], etc. Few of these

implementations which support fault-tolerance are discussed in the following sections.

15

2.2.1 FT-MPI

FT-MPI [1] is built upon HARNESS (Heterogeneous Adaptable Reconfigurable

Networked Systems), a fault-tolerant computing environment. The goal is to provide a

communication library in the form of MPI-API while benefiting fault-tolerance from the

HARNESS system. The FT-MPI implements a complete MP I-1.2 specification and some

parts of the MPI-2. It is aimed at providing a fault-tolerant MPI implementation, which

can survive failures. It modifies and extends the semantics of the MPI to provide various

intermediate states to help fault recovery in FT-MPI. This way it provides ability to alter

the internal state in order to recover from failure in applications.

In FT-MPI, when an error state is identified with a communicator, the new communicator

follows one of these semantics: shrink, blank, rebuild, or abort based on its failure mode.

More information on the semantics and modes can be found in [1]. The communicator

follows a continue/no-operation message mode in the midst of error. From the usage

point of view, the fault-tolerance can be achieved by making the error check and

corrective action from the implementation effort.

2.2.2 MPICH-V

MPICH-V [5] is a research effort to provide multiple fault-tolerance protocols on the

MPICH implementation. It provides automatic fault-tolerance without altering the

application. It uses a mix of checkpointing in conjunction with message logging to save

the process state and to automatically recover the failed processes. It introduces the use of

checkpoint servers, dispatchers and event loggers, which assist in alleviating the fault-

16

tolerance overhead. The different versions of the MPICH-V implementation support

different protocol types. MPICH-V provides flexibility to the end-user in choosing a

required protocol during installation.

2.2.3 Charm++

Charm++ [3] is an object-model based approach to the parallel application design and

development. It is based on C++. Processor virtualization is one of the core techniques

used. It aims at improving the performance of the application, the productivity of the

programmer and the scalability. Moreover, an 'Adaptive MPF version has been

implemented conforming to the MPI standards [46]. It provides fault-tolerance support

through various schemes: (1) On-disk checkpoint/restart—this approach involves a

synchronized checkpoint scheme with a centralized server to store checkpoints on

persistent stable storage. It supports only manual restart; (2) Double-memory

checkpoint/restart - this approach involves synchronized check-pointing to save states

using in-memory stable storage and automatic restart; (3) Double-disk (local)

checkpoint/restart - this approach is very similar to the previous approach except that the

storage is on persistent local disk; and (4) Message logging schemes - this approach

involves message logging on the in-memory scheme with automatic restart without

requiring any checkpoint synchronization.

2.3 Fault-Tolerance in Pattern-Based Parallel Systems

In this section, we discuss the pattern-based parallel systems that support fault-tolerance.

Design Patterns gained popularity in the field of object oriented design after the

17

publication of Design Patterns: Elements of Reusable Object-Oriented Software, the

book authored by Gamma et. al. [32]. In subsequent years, the use of pattern has been

explored in almost every domain. In general, design patterns are about providing

solutions to commonly recurring problems using the knowledge gained from experience

in software design and development.

Patterns gained acknowledgment in parallel-programming through experimentation from

different works over the past few years. eSkel [7] is one such early work in the form of

algorithmic patterns introduced by Cole at the University of Edinburg from the

algorithmic perspective. PAS (Parallel Architectural Skeleton) [8] is a novel approach

towards patterns from the architectural/structural perspective. Each skeleton in PAS is an

implementation model of patterns in parallel programming. They are provided with

pattern-specific primitives, such as communication-synchronization, etc. More

information on PAS and its background is discussed in Chapter 4. There exist various

other parallel-programming models like Muskel [24], MPIFarm [26], etc. Some of the

related works dealing with fault-tolerance are discussed in the following sections.

2.3.1 Muskel

Muskel [24] is a Java structured parallel-programming environment evolved from the

Lithium parallel-programming environment targeted for grids. The environment provides

run-time support for controlled quality-of-service. An application manager provided with

the environment takes care of delivering the quality-of-service to the application. The

same has been demonstrated using two structured patterns: the task farm and the pipeline.

The application developer is expected to define quality-of-service in terms of contracts.

18

For example, in the task farm, the performance-contracts used include the parallelism

degree and throughput maintenance in terms of the tasks processed per unit time. Similar

contracts are defined for faults such as recruiting a new processing resource to substitute

a missing one. Thus, the environment delivers quality-of-service to an application

dynamically for the user defined contracts.

2.3.2 Persistent Fault-Tolerance for the Divide-and-Conquer Application

The mechanism discussed here focuses on delivering fault-tolerance to an application

which operates based on the divide-and-conquer pattern [25]. The fault-tolerance

mechanisms are demonstrated with Satin, a Java framework for grid-enabled divide-and-

conquer applications. In Satin, the problem decomposition by recursive division leads to

entries in the work pool in each processor. The works are distributed across the

processors by work stealing: an idle processor steals jobs from the work pool of the other

processors. It is obvious that jobs that are stolen from the leaving processor lead to the

orphan job problem.

The system provides two fault-tolerance mechanisms to handle such fault. In the first

mechanism, in the orphan saving technique, the orphan jobs are handled by saving them

in-memory in an orphan table along with the results. Thus, a recovering process does a

lookup on the orphan job table to re-use the saved results. But this mechanism does not

support the total-loss or the suspend-resume of the application. This results in the

proposal of a second mechanism; this strategy is similar to the orphan saving technique

but with a minor amendment. It writes the partial results to a checkpoint file on a

persistent storage rather than in-memory. Thus, it overcomes the shortcoming of the first

19

mechanism: tolerating the total-loss and supporting the suspend-resume of the

application. More details on these techniques can be found in [25].

2.3.3 MPI Farm Library

MPI Farm Library [26] is a parallel-programming library with higher level interfaces

targeted for scientific application development. This library is built on top of the MPI

implementation and runtime environment. These APIs are better adapted for problem

implementation than that of the MPI [46]. But it supports only those applications which

follow the task farm pattern. The task farm, a.k.a. task parallel pattern, is a well-known

algorithmic pattern. The farm's inherent nature provides added benefit to support fault-

tolerance. Since everything is handled through the master, it becomes a natural place to

checkpoint. This library prefers portability instead of transparency; hence, it implements

the user-driven application-level checkpointing. On recovery from crash, the master

replays the results of jobs which are processed earlier. Thus, it forwards only those

pending jobs to the workers. More details on this library can be found in [26].

2.3.4 CoHNOW - FT-DR

CoHNOW FT-DR stands for collection of heterogeneous network of workstations, where

FT-DR refers to fault tolerance by means of data replication. Here, the workstations are

organized in a hierarchical master/slave scheme. The model includes various logical and

execution components for the overall working of the system. The fault-tolerance

activities in the model are comprised of three different phases: startup, normal execution

and failure recovery. In the startup phase, the activity initializes by replicating the master

20

information in a protective worker. The worker takes over in case of the master's failure.

In the normal execution phase, it involves data replication, fault monitoring and

detection. In case of failure, the job related to the faulty worker is reassigned to an

available worker. It also involves fault handling of various other internal components.

More details on this model can be found in [27].

All the above discussions provide background knowledge on various aspects such as

fault-tolerance techniques in general, fault-tolerance in the parallel systems and other

related works from the patterns perspective. The general concepts, definitions and

techniques that are presented here are referred to and used in later chapters for our

discussion.

21

Chapter 3

Pattern-Specific Fault-Tolerance

As a part of this research, we first classify patterns into sub-patterns based on different

fault-tolerant strategies, which are identified based on pattern characteristics. This

classification is novel to the best of our knowledge. Unlike existing environments

(MPICH-V [5], etc.), the pattern-specific fault-tolerant solution checks the performance

overhead, which is incurred when employed with a non-specific solution. We have

designed a model and implemented a framework following this classification to

demonstrate our ideas. In Section 3.1, we classify patterns into sub-patterns based on the

fault-tolerant strategies. In the following section, we discuss two fault-tolerant protocols

along with their correctness proof.

3.1 Pattern-Specific Fault-Tolerance Classification

The motivation behind the following discussion is to emphasize our research hypothesis

that different fault-tolerance techniques are applicable for different patterns in parallel-

programming. In our research, we classify a pattern into sub-patterns based on fault-

tolerant strategies. A sub-pattern is a derivative resulted from embedding a suitable fault-

tolerant strategy, which is selected based on the problem characteristics. The task farm is

a well known pattern, where the fault-tolerant strategies are identified based on the

computational intensity of the worker as shown in Figure 2. The fault-tolerant strategies

are as follows: (1) Restart recovery and (2) Checkpoint recovery and its variant.

22

Similarly, in case of the master-slave pattern, fault-tolerant strategies are identified based

on communication and synchronization characteristics as shown in Figure 2. They are as

follows: (1) Gradient-based checkpoint recovery, (2) Color-based checkpoint recovery,

and (3) Application-level checkpoint recovery for iterative problems. Each pattern

classification is discussed in detail in the following section.

BasePattern

A

Task Farm Pattern

Non-computational
Intensive Worker

Computational Intensive
Worker

Restart Recoverable Checkpoint Recoverable
Checkpoint Recoverable

Pipeline Pattern

Master Slave Pattern

Well-Defined
Communication Category

Arbitrary Communication
Category

Natural Synchronization
Category

Iterative Problem
Category

Guided Synchronization
Category

Gradient-based
Checkpoint

Color-based Checkpoint

Single Dimension Multi Dimension . on-going work

Figure 2: Pattern-specific fault tolerance classification

3.1.1 Task Farm Pattern

The task farm is a well known pattern and is used in many parallel applications. It is also

known as dynamic replication pattern. The task farm pattern contains five key

components: task pool, result pool, task generator, result collector and workers.

Let X be a problem space that needs to be solved. The task generator decomposes the

given problem space X into n independent chunks. Each independent chunk is

23

represented as Xj, and is computed at a worker. Let R(xi) be the computed sub-result for

an independent chunk Xj. The result collector is responsible for collecting the sub-results.

Based on the characteristics of the range of applications that make use of this pattern, the

fault tolerance strategies for the worker can be broadly classified into: (i) restart

recoverable and (ii) (independent) checkpoint recoverable. These strategies are based on

the workload of the worker relative to the overall problem size. All the components need

to be fault-tolerant via checkpointing which include a task pool, a result pool, a task

generator and a result collector.

(i) Checkpoint Recoverable Category

Consider a problem space where the decomposed sub-tasks are computational intensive.

The time taken to compute such an independent sub-task is significantly large. In such a

scenario, re-doing a lost work from the beginning is costlier. Employing an independent

checkpoint recovery strategy at each worker can reduce the computation loss

significantly. This can be achieved without incurring significant overhead during the

failure-free execution for the reasons illustrated below.

Assume that each independent chunk in the task pool is approximately of equal size and

all workers are approximately of equal computational capability. Let T be the time to

compute an independent sub-task Xj without any overhead. The failure-free execution

time for an independent sub-task can be represented as follows, where Ct is the

checkpoint time.

24

Failure-Free Execution time Et =
T ; without any overhead

T + Ct ; with checkpoint overhead

From the above expression, we can infer that the execution time for the failure-free

execution can be approximated to T, when Ct is negligibly smaller compared to T (based

on the assumption that each sub-task is computational-intensive).

Let N be the total number of checkpoints, It be the checkpoint interval, n be the number

of checkpoint taken so far and St be the computation saved as result of checkpoint

operation. They are represented as follows.

T
Checkpoint interval-time It =

N + l

Computation saved S, = n*I t ; 1 < n < N

Assume that a failure occurs at execution time t. The computational loss incurred using

the checkpoint scheme in a worker can be represented as follows.

Computational Loss L(t) = -s
t ; 0 < t < It

t - S, ; t > I,

In general, if T is total time taken to compute a sub-task then t represents the computation

lost due to failure. As we apply the checkpoint scheme, the loss incurred can be refined as

t (when t < It); and t - St (when t > It) based on the time interval during which the failure

occurred.

25

To summarize, the checkpoint overhead does not contribute much to the execution time

when compared to the amount of computation it saves when employed with the

checkpoint strategy. So, each worker can be independently checkpointed during

computation at an arbitrary or pre-defined point based on the characteristics of the

application. Hence, during recovery, it should be able to recover from an intermediate

recoverable state instead of all over from the beginning.

For example, consider a graphic rendering problem in the field of animation movie

production. It uses a render farm, which requires enormous computational power to

render thousands of frames. Each rendered frame is time consuming. Thus, it cannot

compromise failure in the middle of any single frame rendering. Such applications are

categorized as computationally intensive at each worker level. Therefore, each worker

needs to save its intermediate state. This can be achieved as either programmer

transparent or semi-transparent.

(ii) Restart Recoverable Category

On the contrary, consider a problem space where the decomposed sub-tasks are non-

computational intensive. The checkpoint strategy mentioned previously is not suitable

due to two reasons: high checkpoint overhead and high recovery overhead.

In such problems, we observe that the computation time of a sub-task is far less compared

to the checkpoint time if applied. Thus, the checkpoint overhead contributes significantly

to the execution time of the sub-task. In addition, the re-computation cost incurred due to

26

the checkpoint recovery is comparatively higher than the cost incurred when the sub-

tasks are re-computed from the beginning. This can be expressed as follows:

1 ckpt-recover ^ 1 restart-recover

Where, TCkpt-recover is the checkpoint recovery overhead, Trestart-recover is the recovery

overhead by re-computing the sub-task from the beginning. TCkpt-recoveris expressed as Et +

Rt + (T - St), and Trestart-recover is expressed as Et + T. Where, Et is the environment

recovery time, Rt is the time to recover the system state based on the saved checkpoint

and (T - St) is the remaining time required to finish re-computation on resumption from

an intermediate saved state. On substitution, the above expression can be re-written as

follows.

R«>St

For illustration purposes, let us assume that N and n be 1. The expression can be re­

written as follows:

Rt>T/2

From the above deduced expression, we observe that when Rt is greater than T/2

(execution time), overhead incurred from the checkpoint recovery is higher than that

incurred from re-starting the sub-task from the beginning.

In general, the problems that fall in this category satisfy the following constraints:

• The workload associated with a given task is so small that the overhead incurred from

employing the checkpoint strategy is more than the task execution time.

27

• The overall problem size is so huge that a worker's failure increases the overall

workload in each member. As a result, the time incurred to solve the overall problem

also increases.

For example, let us consider the problem of Mandelbrot set [6] based on relation Zn+i =

Zn
2 + C, where both Z and C are complex numbers. The overall work that needs to be

completed is huge, whereas the individual tasks (each pixel computation) are

comparatively small. Thus, failure during processing of an individual task can be redone

without any significant computational time loss. However, it requires availability of the

workers at all times in order to keep up with the expected completion time. As a result,

the workers could be configured to be replaceable with a new worker in case of failure.

(iii) Checkpoint Recoverable Category Variant

As another example of the computational intensive worker that might need a different

strategy from the previous one, let us consider a special case where tasks are partitioned

and distributed in a single go to the individual workers. The intention is to let a worker

compute more than one task at one go, save the partial results locally, and then send the

final results back. Therefore, it avoids overhead due to extra communications.

There may or may not be dependencies between the individual tasks assigned to a

worker. In either case, there is a need to save the minimal application state as the

intermediate state (minimal state retention) between successive processing of the tasks.

The application-level checkpointing (saving states of application-specific variables)

28

rather than system-level checkpointing may be sufficient to recover a failed worker from

the preceding task prior to failure (Figure 3).

Worker i Worker i
minimal state minimal state

::*m]^L:itma--i^M^E- ,.«»*.«,.; fMkraci

Figure 3: Minimal state retention in a task-farm pattern

The previous discussion shows that the task farm pattern can be further subcategorized

based on the fault-tolerance strategies of the workers. There is a need for an additional

component: a failure monitor. There can be one or more of these modules based on

implementation strategies. All the other modules including the failure monitor are

assumed to be failure-free.

3.1.2 Master-Slave Pattern

The master-slave is a commonly used pattern in the parallel programming domain. Here,

the slaves are interconnected via a fixed virtual topology (mesh, hypercube, star, etc.).

The computational model may or may not be data parallel (e.g., slaves may be

performing different tasks), based on the problem at hand. Here, we assume that the

number of concurrent computational units required for computation is known at the start.

Each task in this case is usually dependant on a subset of other tasks. These dependencies

are resolved via explicit messages within a subgroup of slaves. We call such a subgroup

of dependant slaves a communication subgroup, which has localized communication

dependencies among the members. There can be more than one communication

29

subgroup. Fault-tolerance strategies can differ based on the incidence and overlap of

these localized subgroups, as discussed in the following section.

We can subcategorize this pattern based on the communication and synchronization

characteristics of the slaves. At a higher level they are classified into two, i.e., slaves

having (a) well-defined communication pattern and (b) arbitrary communication (non-

pattern). It needs no mentioning that the well-defined communication patterns will create

localized communication subgroup(s) among slaves, while arbitrary communication

patterns may or may not create proper communication subgroups. Hence, their fault

tolerance strategy varies.

(i) Well-Defined Communication Category

There are several applications that involve well-defined communication patterns. In

general, the problem that steps into this category meets the following constraints.

• A set of tasks must execute at same time because they require information from other

dependent members.

• The communication messages are localized within a subgroup.

• Tasks that are sub-grouped based on message localization or dependencies might be

totally independent from tasks of other subgroups.

In this category, each communication subgroup coordinates among its members in order

to save checkpoint. In case of failure, all the members of the subgroup are recovered

together from the latest consistent cut. Thus, the group checkpoint action and the failure

30

recovery action are localized within a subgroup, and do not affect other independent

subgroups.

The well-defined communication pattern can be further sub-classified based on

synchronization characteristics as (a) natural synchronization and (b) guided

synchronization.

(a) Natural Synchronization

Informally, a naturally synchronizing pattern is defined as a pattern that exhibits obvious

synchronization points in their behavioral fragments in every member of a subgroup such

that inconsistent messages are guaranteed not to exist in the global snapshot saved at that

execution point. Thus, such patterns do not require explicit action to synchronize in order

to save a consistent global snapshot. Formally, it is defined as follows:

Definition 5 We refer a pattern as naturally synchronizing if Br'' is strong, i.e., send

event es in B ' implies existence of corresponding receive event er in B'"' and vice versa.

Where B(l'k) = \J bj(1'k), bj(1'k) is a subset of behavioral fragments (discussed previously

in Section 2.1.2) of a member i for iteration from 1 to k.

For example, all iterative based problems such as Jacobi, SOR fall under this category.

Providing fault-tolerance for such problems is straightforward. As they exhibit an

obvious synchronization point, each member in a subgroup should save its local states at

this point to form a consistent global checkpoint.

(b) Guided Synchronization

31

All the problems that do not exhibit obvious synchronization points are subcategorized

under the guided synchronization pattern. Such problems exhibit a well-defined

communication pattern with distinct communication subgroups but require explicit action

in order to support fault-tolerance, i.e., explicit action to coordinate among the members

of the subgroups to save a consistent cut. A suitable non-blocking coordination protocol

can be employed using message piggy-backing based on the locality of the messages

within the subgroups. Two such protocols related to this category are discussed in the

following section: (1) gradient-based checkpoint protocol and (2) color-based checkpoint

protocol.

For example, in a specific solution to render the graphics models, two (or more) frames

are processed concurrently: the current frame and the speculative processing of the future

frames. Each frame is partitioned among a subgroup of slaves using sort-middle or sort-

last partitioning strategies [34]. This imposes dependencies among the members of the

subgroups. Here, the frames are independent. The subgroups are distinct and each

subgroup processes a single frame. The gradient-based checkpoint protocol would fit for

such problem category. In certain applications, there exist inter-group dependencies. The

intergroup dependencies are resolved via occasional inter-group message exchange. The

color-based checkpoint protocol would fit well for such a problem category.

(ii) Arbitrary Communication Category

As an example of the arbitrary communication category, consider the problem of the

parallel ray tracing for rendering large scenes. In a data-parallel solution, the problem is

geometrically partitioned among the slaves. Based on the movements of the rays (decided

32

only at run-time), the slaves might require communicating with other slaves in an

arbitrary manner. Here, though the communication is arbitrary, the interactions among

the slaves are still among the nearest-neighbor, considering the geometric partitioning.

Hence, they form the well-defined communication subgroups. These subgroups overlap

and merge to create one large communication group, as discussed previously. However,

if the partitioning is not geometric, then there is no well-defined communication

subgroup. The parallel discrete event simulation is another application domain for

arbitrary communications. Traditional coordinated checkpoint protocol [13] would fit

well for such problem and uses explicit protocol messages for coordination.

3.2 Protocol Discussion

In this section, we present two modified protocols related to the master-slave pattern.

First, we present some required concepts related to the protocols. Next, we discuss the

protocols along with their correctness proof.

3.2.1 Checkpoint Gradient

Progressive creation of a new checkpoint leads to the displacement in the most recent

state that a process can recover from in case of failure. Checkpoint gradient is defined as

change in checkpoint number (i.e., checkpoint number of the sender's snapshot) relative

to a given reference (i.e., checkpoint number of the receiver's snapshot). Here all the

messages are assumed to be tagged with the checkpoint number to indicate the

checkpoint snapshot from which it originated.

33

The gradient can be computed from the tagged checkpoint number of a received message

using the receiver's checkpoint number as reference. The positive gradient is an

indication for a potential orphan message and the negative gradient is an indication for an

in-transit message. Thus, a received message can be detected as a potential orphan or an

in-transit message from the checkpoint gradient computation.

Axiom 1 A message is detected as an in-transit message when the computed checkpoint

gradient value (using receiver's checkpoint as reference) is negative.

Axiom 2 Similarly, a message is detected to be a potential orphan message when the

computed checkpoint gradient value (using receiver's checkpoint as reference) is

positive.

3.2.2 Checkpoint Dependency Graph

The checkpoint dependency graph is a generic model, i.e., it is common to all the

strategies. The basic idea is borrowed from [33] and is modified to accommodate for use

in the skeletons. For any given checkpoint and/or logging protocol, its execution results

in a protocol-specific dependency graph. Formally, it is represented as follows:

CDG = <C, D>

This captures dependency relations, where C is a set of checkpoints and D is a set of

dependency edges. Symbolically, the kth checkpoint taken at a member Pi is denoted as

Cjk. The execution behavior of a member Pj is partitioned into fragments associated with

each checkpoint. The behavioral fragment corresponding to the checkpoint Qk is denoted

34

by Bik. Bjk contains execution and events that occur after Qk but before (i) the creation of

the next checkpoint or (ii) the occurrence of termination or crash.

Here, each checkpoint Qk is represented as three-tuples to capture the information

required for recovery. Qk = <Sik, Lik, Njk>; where Sik is the local process state of

checkpoint Qk, Ljk is the log set in Bjk, and Nik is the sequence of determinants associated

with Bik. Local process state Sik corresponds to the local snapshot that is saved locally in

each member. Log set Lik corresponds to the messages logged in a particular behavioral

fragment in each member during the fault-tolerance strategy execution.

Definition 6 A checkpoint dependency graph is said to be proper if it satisfies the

following criteria (i) all messages that are exchanged between two behavior fragments

are either logged, (i.e., available in a log set) or their dependency recorded (i.e.,

available in a dependency edge set) and (ii) all the determinants of non-deterministic

events and the program order dependencies are recorded [33].

3.2.3 Gradient-based Checkpoint Protocol

The gradient-based checkpoint protocol is a modified version of a group checkpoint

protocol [33] using the checkpoint gradient. This protocol is targeted for the master-slave

problem category that exhibits message localization within the subgroup. However, the

subgroup as such does not communicate (exchange messages) with the other subgroups.

Unlike the original protocol, here the subgroups are assumed to be known from the pre-

knowledge of the pattern.

35

Definition 7 The gradient-based protocol is correct if (a) the protocol generates a

proper checkpoint dependency graph and (b) the protocol generates consistent global

snapshots, i.e., all the local checkpoints that form the global checkpoint snapshot are

consistent.

Assumption. The protocol initiator starts the checkpoint operation by taking a self-

checkpoint. The checkpoint operation always happens before a message delivery, except

in the case of the protocol initiator. The checkpoint operation and the message delivery

are assumed to be executed atomically, i.e., entirely or not at all. There exists one kernel

per group or one kernel per member. The kernel replays the in-transit message when

required; otherwise, it discards it. The subgroups are defined during design time.

Protocol. The protocol executed per communication subgroup is as follows.

Action for member p, before sending a message m to member py.
Piggyback group checkpoint control message (checkpoint number) along with application message m.

Action for an initiator on starting checkpoint protocol at periodic interval:
curckpt = curckpt + 1
Take a new checkpoint

Action for member p, before delivery of received message mfrom member py.
If message m is piggybacked with a larger checkpoint number (positive gradient) then

curckpt = piggybacked new checkpoint number
Take a new checkpoint
Record checkpoint dependency with member pj with respect to new checkpoint number

Else if message m is an in-transit message (negative gradient) then
Log message m

Actions for member p, during invocation of receive () call (from member p):
if member p(is recovered and there exists replay-message related to member/?, then

Replay message m from log
Else Execute receive () invocation

Figure 4: Gradient-based checkpoint protocol

36

Each communication subgroup executes the gradient-based checkpoint protocol. One

member in each subgroup is configured as the protocol initiator. The initiator is provided

with a logical clock or timer to trigger the protocol initiation. The checkpoint interval is

configured during the application development for each subgroup.

On protocol initiation, the initiator does a self checkpoint to save its own state. Then, it

piggy-backs all the out-going messages with the control information related to the current

checkpoint number.

On message receive, the potential orphan and the in-transit messages are identified. A

message originated from the previous checkpoint snapshot (i.e., control information with

decreasing checkpoint number) is considered as an in-transit message. Whereas, a

message with an increasing checkpoint number, when compared to that of the receiver, is

considered as a potential orphan message. An identified in-transit message is logged

during the failure-free execution and replayed during the recovery execution. On the

other hand, an identified potential orphan message triggers to take a new checkpoint

locally.

As a part of protocol, each member should send the checkpoint dependency information

to the kernel in order to formulate the checkpoint dependency graph. Checkpoint

dependency graph helps in identifying a latest consistent cut for a subgroup belonging to

a failed member. This identified consistent cut is used for recovery in case of failure.

When a member fails during execution, the kernel identifies all its dependent members

along with the latest consistent cut from the checkpoint dependency graph. Then, the

37

failed member is recovered and all its dependent members are roll-backed to the

consistent cut. During the recovery execution, all the recorded in-transit messages are

replayed before receiving any new messages.

Axiom 3 According to the protocol's logging policy, all messages whose gradient are

computed as negative are logged along with the checkpoint. Thus, all the in-transit

messages are logged during the failure-free execution.

Axiom 4 According to the protocol's checkpoint policy, all messages whose gradient are

computed as positive lead to the creation of a new checkpoint snapshot before the actual

delivery of the message. Thus, all the potential orphan messages are prevented from

becoming orphan.

Lemma 1 The gradient-based protocol is proper.

Proof. This follows immediately from the checkpoint and logging policy of the protocol.

The protocol either logs (in case of in-transit messages) or records the message

dependency with respect to the associated checkpoints. Thus, the CDG is always proper;

hence, the claim holds.

Lemma 2 The gradient-based protocol is consistent.

Proof. As the protocol is gradient based, it inherits the capability to detect the in-transit

messages and the potential orphan messages implicitly based on Axiom 1 and Axiom 2.

According to the protocol, the checkpoint gradient assists in identifying the inconsistent

messages. All the positive-gradient messages lead to the creation of a new checkpoint as

38

per checkpoint policy (Axiom 4) and all the negative-gradient messages lead to logging

(Axiom 3). Thus, all the potential inconsistent messages are handled during the failure-

free execution. This guarantees the consistency of the local checkpoint created by the

protocol. A global checkpoint assembled from all the consistent local-checkpoints is

therefore consistent and our claim holds.

Theorem 1 The gradient-based protocol is correct.

Proof. Follows directly from Lemma 1 and 2.

3.2.4 Extended Protocol: Color-based Checkpoint Protocol

The color-based checkpoint protocol is similar to the group checkpoint protocol in [33].

This protocol is designed based on the checkpoint gradient discussed earlier along with

minor modification to handle the inter-group message as well. It is targeted for the

master-slave problem category, which exhibits message localization within the subgroup

and exchanges occasional intergroup messages. Each group is assigned a distinct color. A

member's color is a two-tuple attribute based on group-color and shade (a.k.a. checkpoint

number). All messages are tagged with color-shade tuple, as in the sender. The color

helps to identify the message locality, whereas the shade helps to handle the potential

inconsistent messages (as in the previous protocol). Unlike the original protocol, here the

subgroups are assumed to be known from the pre-knowledge of the pattern.

CID Properties

39

(a) Consistency. The extended protocol is consistent if the protocol generates a consistent

global snapshot, i.e., all the local checkpoints that lead to form the global checkpoint

snapshot are consistent.

(b) Independence. The extended protocol leads to independent recovery of a subgroup if

the protocol liberates the inter-group dependency in order to constrain the recovery

spread within the subgroup.

(c) Diligence. The extended protocol is diligent if uniformly the protocol does not log the

messages (i.e., non in-transit messages) exchanged within the same subgroup.

Definition 8 The extended protocol is correct if (i) the protocol generates a proper

checkpoint dependency graph and (ii) the protocol satisfies CID properties.

Assumption. All assumption from the gradient-based protocol applies here. In addition,

we assume that each group will be assigned a distinct color.

Protocol. The protocol executed per communication subgroup is as follows.

Action for an initiator on starting checkpoint protocol at periodic interval:
curckpt = curckpt + 1
Take a new checkpoint.

Action for member p, before sending a message m to member pf
Piggyback group checkpoint control message (containing checkpoint number and color) along with
application message m.

Action for member p, after sending a message m to member pf
\ipj is not a member of subgroup then

Increment send-event count with respect to p}

End If

Actions for member pi on receive invocation from application to receive message from member pj:
If member p(is recovered and message exist for replay related to member pj

40

Replay recorded message from log related to Pj
Else

Execute receive action to receive message m from member pj
End If

Action for member p, before delivering received message mfrom member pj to application:
If color tag from control information matches with local group color then

If message m piggybacked with greater checkpoint number (positive gradient) then
curckpt = piggybacked new checkpoint number
Take a new checkpoint.
Record checkpoint dependency with member pj with respect to new checkpoint

Else if message m is an in-transit message (negative gradient) then
Log message m.

End If
Else if message m is inter-group message then

Log message m.
End If

Actions for member p, on send invocation to send a message to member py.
If member pi is recovered and pj is not group member then

Ignore send action.
Else

Execute send action to send message m to member pj
End If

Figure 5: Color-based checkpoint protocol

Each communication subgroup executes the color-based checkpoint protocol. Each

subgroup is colored distinctly. As in the previous case, one member in each subgroup is

configured as the protocol initiator. The initiator is provided with a logical clock or timer

to trigger the protocol initiation. Also, the checkpoint interval is configured distinctly for

each subgroup.

On protocol initiation, the initiator makes a self checkpoint to save its state. Then, it

piggy-backs the control information in all the outgoing messages. The control

information includes subgroup color and checkpoint number.

On message receive, the inter-group and the in-transit message are identified and logged.

The in-transit message is identified by comparing the color first, then comparing the

41

tagged checkpoint number in the control information with that of the receiver as in the

previous protocol (negative checkpoint gradient). The inter-group message is identified

by matching the color tag of the control information with the receiver's group color. The

color mismatch indicates that the received message is an inter-group message. Similar to

the previous protocol, the potential orphan message is identified by computing the

checkpoint gradient. The positive gradient leads to creating a new checkpoint in order to

prevent the message from becoming orphan.

Similar to the previous case, the kernel manages the checkpoint dependency graph. Each

member should send the checkpoint dependency information to the kernel after every

checkpoint execution. The formulated checkpoint dependency graph helps in proper

recovery in case of failure.

When a member fails during execution, the kernel identifies all its dependent members

from the checkpoint dependency graph. Then, the failed member is recovered and all its

dependent members are rolled back to the latest consistent cut identified by the kernel

from the graph. During the recovery execution, all the recorded in-transit and inter-group

messages are replayed. Whereas, all the inter-group message sends are ignored until its

recovered state is in sync with the members of the other subgroups.

Axiom 5 According to the protocol's logging policy, all messages whose color-tags are

different from that of the receiver's group color are logged along with the checkpoint.

Thus, all the inter-group messages are logged during the failure-free execution.

42

Axiom 6 According to the protocol's logging policy, all messages whose color-tags are

the same as that of the receiver's group color and whose gradient is computed as

negative are logged along with the checkpoint. Thus, all the in-transit messages are

logged during the failure-free execution.

Axiom 7 According to the protocol's checkpoint policy, all messages whose color-tags

are the same as that of the receiver's group color and whose gradient is computed as

positive lead to the creation of a new checkpoint snapshot before the actual delivery of

the message. Thus, all the potential orphan messages are prevented from becoming

orphan.

Lemma 3 The extended protocol is proper.

Proof. As in Theorem 1, this proof is based on the checkpoint and logging policy of the

protocol. As per the checkpoint and logging policy of the extended protocol, all the

received messages are either logged (in case of in-transit or inter-group messages) or

their dependency recorded with respect to the associated checkpoint. Thus, the

checkpoint dependency graph generated by the protocol is always proper and hence, our

claim holds.

Lemma 4 The extended protocol satisfies CID properties.

Proof. The protocol uses color-tag and checkpoint number as control information for its

execution. The checkpoint gradient assists in identifying the inconsistent messages. All

the positive-gradient messages lead to the creation of a new checkpoint, as per the

checkpoint policy (Axiom 7) and all the negative-gradient messages lead to logging

43

(Axiom 6). Similarly, the color-tag assists in identifying the inter-group messages and as

a result such messages are logged (Axiom 5). Thus, all the inconsistent messages are

handled by the protocol. Therefore, all the local checkpoints created are consistent and

hence, a global checkpoint formed from the local checkpoints is also consistent. This

satisfies condition (a): consistency property. All the messages with different color-tags

are considered to be the inter-group messages; as a result, they are logged (Axiom 5).

Hence, it frees the dependency of a subgroup with the outside world. This satisfies

condition (b): independence property. The color-tag and gradient helps in identifying the

intra-group messages (i.e., non in-transit messages). Uniformly, such messages are not

logged but with careful attention their dependency with associated checkpoints is

recorded to assist in proper recovery. This thereby satisfies condition (c): diligence

property.

Theorem 2 The extended protocol is correct.

Proof. Follows directly from Lemma 3 and 4.

In the above discussions, we have classified patterns and sub-patterns based on the fault-

tolerance strategy. Subsequently, we discussed two protocols related to the master-slave

pattern. From the above discussions, we observe that different patterns require different

fault-tolerance strategies. The same can be inferred from the evaluation of the different

protocols presented in a later chapter. The protocols discussed here are referred in later

chapters during the discussions on the framework usages and evaluations.

44

Chapter 4

Introduction to FT-PAS

In this chapter, we introduce our Fault-Tolerant Parallel Architectural Skeleton (FT-PAS)

model. The FT-PAS Model is based on the Parallel Architectural Skeleton (PAS) model

[8]. We start in the next section with a discussion on the PAS background. This section

presents a brief overview related to the PAS model. Section 4.2 introduces two user

groups and their roles in the FT-PAS model. Finally, Section 4.3 introduces the FT-PAS

model and discusses its various aspects.

4.1 PAS Overview

In this section, we briefly discuss the Parallel Architectural Skeleton (PAS) model [8].

This system envisions the architectural/structural aspects of the pattern as skeletons. A

skeleton in PAS is composed of structural/architectural attributes of patterns in parallel

computing. Each skeleton in PAS is parameterized based on the pattern-specific

structural attributes identified during the skeleton design. As an example, a task-

parallel/dynamic replication skeleton, provided by PAS, encapsulates structural aspects

of the task-parallel pattern. The task-parallel skeleton includes communication-

synchronization primitives. Some of the parameters of the skeleton are: number of

workers and the worker itself. These parameters are bound during the application

development phase.

45

A PAS skeleton with unbound parameters is called an abstract skeleton. An abstract

skeleton becomes a concrete skeleton when the parameters of the skeletons are bound to

actual values during the application development phase. A concrete skeleton is yet to be

filled in with the application-specific code. A concrete skeleton with the filled-in

application-specific code results in a code-complete module or simply a module.

For any given pattern, its corresponding abstract skeleton As in the PAS model is

composed of the following set of attributes:

(i) The representative of an abstract skeleton As is empty initially. When concretized

by filling with the application-specific code, it represents the module in its action

and interaction with other modules.

Abstract skelton

Concretizaton

A\ xx. xx
Concretizaton

Figure 6: PAS skeleton

(ii) The back-end of an abstract skeleton As consists of a set of abstract skeletons

represented formally as {Asi, AS2, , Asn}. Each abstract skeleton in the back-

46

end of As is determined during concretization of As. The skeletons contained

inside other skeletons result in a (tree-structured) hierarchy. Consequently, each

back-end skeleton As, becomes the child of the container skeleton As. The

children of an abstract skeleton Asare peers of one another.

(iii) The topology provides logical connectivity between the parent-children and

among the peers inside the back-end.

(iv) The internal primitives are the pattern-specific communication/synchronization

primitives. Interactions internal to a skeleton involving the representative and the

child modules are performed using these primitives. The internal primitives are

the inherent properties of a skeleton. They capture the partial behavior in terms of

the communications involved and the topology of the associated pattern.

(v) The external primitives of a skeleton are a sub-set of primitives that is used for

interactions with its parent and peers.

In addition to the aforementioned skeleton parameters, there exist some pattern-specific

parameters. For example, if a chosen pattern is Pipeline, then the number of stages is one

parameter and the connectivity of stages is another parameter. An abstract skeleton As

becomes Concrete skeleton Cs upon configuring these parameters with values. A concrete

skeleton Cs leads to a code-complete module when (i) the representative of As is filled

with the application specific code, and (ii) each child of the back-end is code-complete.

Examples of some of the communication primitive available from the task farm skeleton

include SendToMaster(...), ReceiveFromMaster(...), ScatterToWorker(...),

47

GatherFromWorker(...), etc. Interested readers can find the detailed description of the

PAS model with examples in [8].

From the above discussion, it is clear that the PAS follows a hierarchical approach for the

application development. An application with code-complete modules inherits all of the

above discussed attributes from the abstract skeleton. The code-complete module with no

parents represents the root of the hierarchy. The singleton module in parallel application

forms the leaf of the hierarchy. All other intermediate modules represent partial parallel

applications.

4.2 User Categories and their Roles

FT-PAS categorizes the users of the model into two: a protocol developer and an

application developer. From the PAS overview, we understand that the PAS too has two

sets of users whose responsibilities are targeted towards the application related aspects.

Whereas, here the user roles of FT-PAS are formulated towards addressing fault-

tolerance.

The protocol developer is responsible for designing and implementing new fault-tolerant

strategies using the basic building blocks provided from the model. The protocol

developer is expected to have a better understanding of the fault-tolerance issues than the

counterpart (application developer) discussed subsequently. In addition, the protocol

developer is expected to have a good understanding of the FT-PAS model in order to

integrate a fault-tolerance solution into an existing skeleton in the model.

48

Abstract skelton

O

Concretizaton

Concrete skeleton

Application Code & Fault-tolerance
configuration

Fault-tolerant Code
complete module

Fault-tolerance
strategy concretization

Fault tolerant
concrete skeleton

Application Code

Fault-tolerant Code
complete module

Protocol developer

Application developer

Figure 7: FT-PAS skeleton and its phases

During the application development phase, the application developer chooses a required

fault-tolerance strategy for a skeleton based on the given application characteristics. The

selected fault-tolerant strategy is configured with the skeleton to support fault-tolerance

of the application. The application developer is expected to have some understanding of

the fault-tolerance issues but only from the usage perspective rather than from the

implementation perspective. Figure 7 illustrates the user roles against the various phases

of the skeleton during the application development in the model.

4.3 Introduction to the FT-PAS Model

In this section, we introduce the FT-PAS model by illustrating its concepts in an informal

manner. Our idea is generic and can be implemented in any pattern-based parallel

49

programming model. For the purpose of discussion and to demonstrate our idea, we use

the PAS model as a base.

4.3.1 Overview

In practice, patterns in parallel-programming are targeted for application developers in

the application-related aspects. In comparison, our research focuses on assisting the

application developer in systems-specific aspects, e.g., fault-tolerance. This research

emphasizes the following two issues: firstly, different fault-tolerant techniques are well

suited for different patterns in parallel programming. Secondly, patterns-specific fault-

tolerance strategies can be implemented and pre-packaged in a generic fashion, i.e.,

independent of a specific application.

We present a new approach to provide fault-tolerance for parallel application using

patterns. We aim to achieve three important aspects from the fault-tolerance perspective:

(1) Specificity, (2) Separation-of-Concern and (3) Protocol Extension. All of these

aspects are discussed in the following sections.

The FT-PAS model is based on the PAS model. It supplements a new layer on top of the

PAS to support pattern-specific fault tolerance. Another objective of the FT-PAS model

is to provide necessary building blocks to build new fault-tolerance strategies as needed

for available skeletons. As a result, it extends the users of the PAS model with new

responsibilities related to delivering fault-tolerance.

50

4.3.2 Specificity

Each pattern is targeted for a different problem type. Similarly, this inherent nature to

address varying problem categories can help in addressing the system-side issues too (i.e.

fault-tolerance). An abstract skeleton As in the PAS is defined as {Rep, BE, Topo, P^t,

PExt}, each of which was elaborated on previously. In the FT-PAS model, we amend this

definition by including a new parameter S related to the fault-tolerance. This new

parameter related to the fault-tolerance strategy is to be designed, implemented and pre­

packaged along with the skeleton. So our new refined definition for the abstract skeleton

with the appended fault-tolerance parameter in the FT-PAS model is as follows:

As = {Rep, BE, Topo, Pint, PEXI, S}

Here, Rep stands for the representative, BE stands for the back-end, Topo stands for the

topology, Pint stands for the internal primitives, Pext stands for the external primitives, and

the new parameter S stands for the fault-tolerance strategy.

Abstract skeleton Concrete skeleton

Fault tolerant concrete Fault-tolerant Code complete
External skeleton module

primitives ~~ —__

Figure 8: FT-PAS skeleton and its components

51

The fault-tolerance strategy S is defined as pattern-specific like other primitives of the

skeleton. They are built using the basic building blocks and/or implementing the required

interfaces available from the model based on the strategy requirement. The various

internal components of the skeleton are shown in Figure 8.

4.3.3 Separation of Concern

In practice, the patterns are realized as a skeleton in parallel-programming by providing

an abstraction with higher-level programming primitives and by hiding the lower-level

issues like communication and synchronization. The PAS is one such model that

separates the lower-level parallel programming issues from the application developer to

ease the application development.

In addition, in FT-PAS, we address issues concerning fault-tolerance in a pattern-specific

manner. We separate the fault-tolerance implementation concern from the application

developer. This is by delivering the fault-tolerance implementation pre-packaged in an

application independent manner. During the application development phase, an

application developer can choose a pattern along with the suitable fault-tolerance

protocol which fits a given application.

Thus, the model can aid the developer in choosing an appropriate skeleton (pattern-

implementation) using the catalog of skeletons. This approach provides the necessary

separation of concern to the application developer as far as fault-tolerance is concerned.

52

4.3.4 Protocol Extension

Protocol extension is a key requirement for any pattern-based approach. Protocol

extension in our context refers to the fault-tolerance protocol extension, provisions for

allowing newer fault-tolerance protocols to be integrated to an available pattern,

whenever need arises. The FT-PAS model provides various core facilities to the protocol

developer in order to design a new strategy. Formally, the core facilities of the model are

represented as follows:

Fcore = {Pb, M , F r , C s , L s , T s }

Here, Fcore refers to the core facilities provided by the model. Pb refers to the protocol

behavior abstraction, M refers to the marshaller abstraction, Fr refers to the fault reactor

abstraction, Cs refers to the checkpoint service, Ls refers to the logging service and Ts

refers to the timing service. All these core facilities are explained in detail in the next

chapter following the discussion on the framework internals. These core facilities are

used in the fault-tolerance protocol extension. In theory, protocol extension is represented

as follows:

" x — Jpx • fcore * * custom

Here, Px refers to an extended protocol which is to be implemented. Fcore refers to the core

facilities provided by the model; Fcustom refers to a set of components concretized from

the core facilities; andy^ refers to the concretization function or action that the protocol

developer specializes and/or overrides in order to deliver the extended protocol-specific

functionalities.

53

It is the responsibility of a protocol developer to extend the FT-PAS model with newer

fault-tolerance protocols for an existing skeleton. In this context, the model can also serve

as a test-bed for evaluating newly designed fault-tolerance protocols. Protocol extension,

its primitives and usages, are demonstrated in detail using examples in the next chapter.

4.3.5 Generic Group Definition

From the PAS discussion, we know that a topology is defined as part of a given skeleton.

The base level primitives of the core facilities (discussed in the previous section) do not

have view of the topology, which is defined at higher level. A 1-D virtual processor array

representation is used internally in the FT-PAS model for referring to a node. For a given

topology, the individual nodes are mapped on to the 1-D virtual processor array. This is

similar to the virtual processor grid mapping in the extensible PAS [41]. However, we

use the 1-D virtual processor array for our convenience. In theory, it is represented as

follows:

Where, M\s a mapping function that maps nodes from the topology space Tto the 1-D

virtual processor array A. There are skeletons which require protocols to be executed in

groups like the group checkpoint protocol. The model should provide a generic way to

define groups in order for our base primitive to understand them irrespective of the

topology definition. This is achieved by using the abstract group mapping function. In

theory, a group mapping function is represented as follows:

g<M: r^ g

54

Here, QM is an abstract group mapping function, which is concretized during the

concretization phase. This mapping function groups the nodes from the abstract topology

space Tto the abstract group space Q. The constituents of the group space refer to the

members in the 1-D virtual processor array. This enables base primitives to understand

the group definition for executing the configured protocol.

/* group mapping function*/
void map_group(const Location &loc, SubGroupSet &grpSet)
{

grpSet[Loc[ROW]].addMember(loc); // members of same row are mapped to a same group
}

/* function to retrieve group id for a given member */
GROUPID my_group_id(const Location &loc, SubGroupSet &grpSet)
{

return grpSet[loc[ROW]].getGroupId();
}

Figure 9: Example of generic group mapping

For example, consider a data parallel skeleton in which all members of an identical row

should form a group. The group mapping function for such scenario is shown in Figure 9.

In the above discussions, we have introduced the FT-PAS model and various aspects that

are addressed in the model. The design and implementation of the FT-PAS model are

subsequently presented in the next chapter.

55

Chapter 5

FT-PAS Design, Usage and Case Study

In this chapter, we discuss the design and implementation of the FT-PAS model. We call

the FT-PAS model implementation: the FT-PAS framework. Fault-tolerance protocol

extension is an important contribution of this research. The framework provides basic

building blocks in order to implement a new fault-tolerance protocol for available

skeletons. We also discuss the protocol extension design along with its primitives and

usages. In Section 5.1, the architecture of the FT-PAS framework is presented. In Section

5.2, the high level design of the FT-PAS framework is discussed, which includes

discussion on the framework internals. In Section 5.3, we discuss protocol extension, its

primitives, and framework usage from a two user perspective (skeleton/protocol

developer and application developer) along with case studies.

5.1 Framework Architecture

In general, a framework is an abstraction to realize specialized functionalities by using

reusable components. The abstract components/interfaces provided with the framework

are subsequently concretized. A framework consists of the following:

1. A generic backbone, which aids in design, development and application execution in

the framework defined flow of control.

56

Application Module Application Module Application Module

Operating system
Operating system Operating system

Figure 10: General view of the framework

2. A set of concrete components, which are reusable and commonly used in building an

application.

3. A set of abstract components or interfaces, which are to be specialized or overridden

to deliver application-specific functionalities.

By implementing the interfaces and embedding the application functionalities, a concrete

application can be generated.

5.1.1 The FT-PAS Architecture

Figure 11 shows the architecture with various constituents and support layers of the FT-

PAS (Fault-Tolerant PAS) framework. We have demonstrated our idea using the PAS

model. As discussed previously, the PAS model generically (i.e., independent of specific

patterns and applications) defines the architecture of the patterns. The skeleton-specific

communication and synchronization primitives form the part of the PAS model. These

57

skeleton-specific communication-primitives are defined using the support from the layer

underneath, the message passing library.

Application Module

PAS

Operating system Message Passing Library and
Runtime

Figure 11: Architecture of the FT-PAS framework

The FT-PAS augments PAS with the patterns-specific fault-tolerance support. The

application programmer adds the application-specific behaviors (i.e. code segments

; control- and data-flow) by choosing the appropriate skeleton(s). specifying

/
FT-PAS

i i

^ ~
PAS

/O

/

/

/

/

'
Message Passing Library and

Runtime

/

/

FT Dyna-Repl FT Master-Slave FT Divide-
and-Conq

Fault-tolerance configuration

Dyna-Repl ; Master-Slave I Divide-and-
conq

Figure 12: High-level view of the framework

In addition, the application developer who wants to incorporate fault-tolerance support in

an application should choose the fault-tolerance strategy and supply the application-

58

specific fault-tolerance strategy parameter(s). Figure 13 gives the conceptual view of the

PAS skeleton embedded with fault-tolerance support.

Abstract skeleton ^ j 5;>;;>0 j]

Skeleton concretization

Concrete & semi-concrete fault- tolerance
strategies

A B Y Z fc.

Fault-tolerance
configuration

Figure 13: Conceptual view of the fault-tolerant parallel architectural skeleton

Depending on the fault-tolerance strategy at hand, the provisioning of fault-tolerance to

an application might be developer transparent or semi-transparent, i.e., requiring some

application-specific information.

5.1.2 Framework Assumption

Distributed and parallel systems experience different types of failures, such as crash

failure, omission failure and byzantine failure, which are discussed in [22, 40]. Our

framework is aimed at handling crash failure (process crash) and assumes fail-stop [22,

40] of software faults, along with the following assumptions: (1) The hardware and

operating system can survive, (2) The underlying network service can survive, (3) The

Framework to support fault-tolerance

Concrete skeleton with
fault-tolerance

Application code & Fault tolerance concretization

59

communication link is reliable, and (4) The framework itself is fault-tolerant and hence,

can survive.

5.2 Design of the Framework Internals

In this section, we discuss the design of the FT-PAS framework internals. We have

classified the constituents the framework into two categories: concrete modules and

abstract interfaces. The abstract interfaces are those which need to be specialized in order

to implement the fault-tolerance strategy-specific behaviors. The concrete modules are

generic functionalities that are commonly used in most of the fault-tolerant strategies. As

a result, these modules are provided as part of the framework internals. Figure 14

provides the design view on the modules of the framework internals.

Application Specific Implementation

Fault-Tolerant Skeleton

Recovery Manager

Framework Internals

Figure 14: Framework internals

60

5.2.1 Messaging Mechanism

a) Message Passing Library

The FT-PAS is built on top of sockets due to limitations with MPI for implementing

fault-tolerance (discussed previously in Section 2.2). An MPI like communication library

is built using sockets. The library provides the minimal necessary functionalities of MPI

but with added functionalities related to the fault-tolerance support.

The basic lower-level primitives are used to form the higher-level primitives of the FT-

PAS framework. More details on the added functionalities are discussed in the next

section.

b) Message Passing Library Extension

From our discussion in Chapter 2, it is clear that provision to support fault-tolerance is

required from the underlying system-software. As in FT-MPI [1], the FT-PAS model

extends the message passing library with modified semantics in order to provide support

for fault-tolerance. The extension to the message passing library is described in the

following section.

The communicator in our message passing library is incorporated with modified

semantics to handle failure recovery. There are various semantics possible. These

semantics guide different recovery strategies at a higher-level of abstraction. Our current

implementation supports the following semantics: build, recover, and repair. The build

mode is responsible for establishing a communication link among all processes during

61

normal execution. The repair mode is responsible for reestablishing the communication

link to the recovered member in the healthy dependent members. Similarly, the rebuild

mode is responsible for reestablishing the communication link to the healthy dependent

member in the recovering failed member.

All the above discussed modes and communication primitives are lower-level details.

They are used for the internal working of the model and hence, are not visible at a higher

layer.

5.2.2 Failure Detection Module

There exist various failure models that are discussed in [22, 40] to address different kinds

of faults. In our model, we focus only on the fail-stop fault model, i.e. process failure.

The communication link is assumed to be reliable. From the framework internals

perspective, the failure detection module consists of two components: Failure Detection

Monitor and Failure Notification Service.

a) Failure Detection Monitor

Each process, on successful registration, is monitored by the failure detection monitor.

The information (hostname and processed id) required for monitoring is registered to the

kernel as part of the framework initialization during the application startup. As mentioned

earlier, the failure detection monitor detects only process failure.

The failure detection monitor can detect process failure based on various approaches. In

general, they can be classified into two. The first approach is based on the operating

62

system support [38]. It scans for process availability using simple shell-command (i.e.,

ps). This, when combined with remote-shell (RSH) or secure-shell (SSH), provides a

simple but elegant mechanism to scan for availability of a process on a remote machine.

The second approach is based on the pulse or heart-beat technique. This technique is used

in most of the parallel and distributed systems for failure detection. The approach is

based on two models: the push model (heart-beat) and pull model (are-you-alive) as

addressed in [37]. In our framework, we currently support the first approach to scan for

faults. The latter approach (heart-beat or pulse technique) can as well be implemented in

our model without any impact on the application as it is purely internal to the system and

totally transparent to the protocol developer.

Fault-Tolerant Skeleton

Failure Notification
Service

Dependency
Analyzer

Recovery Manager

Framework Internals

Figure 15: Failure detection monitor - post detection procedure

Upon receiving a failure report, the failure detection monitor checks for the reported

failure before proceeding to the post-detection procedure. As shown in Figure 15, upon

failure detection, it finds all the dependent members and forwards the failure report to

63

their failure notification service. Lastly, it passes a message to the recovery manager in

order to trigger a recovery operation.

b) Failure Notification Service

The failure notification service receives a failure report from the failure detection

monitor. On receiving the failure report, it marks the corresponding dependent as failed

in order to avoid the error being cascaded further. In addition, it triggers post failure

actions which are protocol-specific behaviors. It also sends a failure report to the failure

detection monitor when there is failure during communication with a dependent member.

5.2.3 Checkpoint Module

The checkpoint module consists of three components: dependency analyzer, checkpoint

executor and checkpoint coordinator. The dependency analyzer is responsible for

maintaining a checkpoint dependency graph (CDG) [33] which is used during recovery.

The checkpoint executor is responsible for the following: checkpoint initiation and

checkpoint operation. The checkpoint coordinator is responsible for leading the

coordination action among the dependent members as a result of checkpoint initiation.

a) Checkpoint Dependency Analyzer

The checkpoint dependency analyzer maintains the checkpoint dependency graph (CDG)

(discussed previously in Section 3.2.2). The CDG is maintained per skeleton and it helps

to track recovery dependencies among the members of the skeleton. It is common to all

the strategies and is used during the recovery of processes. For any given checkpoint

64

and/or logging protocol, its execution results in a protocol-specific checkpoint

dependency graph. This graph captures the dependency relations and is constructed from

the dependency information received from each checkpoint executor.

Checkpoint Executor

Failure Detection
Monitor

Dependency Information
Recovery Manager

Dependency Analyzer

©

Q "
0

Checkpoint Coordinator

Figure 16: Interaction between dependency analyzer and other components

In addition, the checkpoint dependency analyzer plays the role of serving the dependency

information related to the CDG it maintains. It provides dependency information as

needed upon request to various components during the protocol execution. The failure

detection monitor and checkpoint coordinator are two other components which contact

the dependency analyzer to identify the dependent members. The recovery manager is

another component which inquires the dependency analyzer to identify the recovery line

a.k.a. consistent cut (discussed previously in Section 2.1.2).

b) Checkpoint Executor

65

As mentioned earlier, the checkpoint executor is responsible for executing the checkpoint

operation. As a result of the checkpoint operation, it stores the checkpoint file in a

location as directed by the resource manager. It also sends the corresponding dependency

information during the checkpoint execution to the dependency analyzer in order to keep

the CDG up-to-date.

c) Checkpoint Coordinator

There are fault-tolerance strategies for some patterns that require explicit blocked

coordination with their peers. The checkpoint coordinator is used for such cases. It does

coordination on behalf of the protocol initiator by executing a three-phase coordination

protocol [39]. The three-phase checkpoint protocol is as follows: In the first phase, the

coordinator receives a checkpoint initiation request from an initiator. Consequently, it

forwards the synchronization request to all peers of the initiator. In the second phase,

each member acknowledges back with the ready-message. In the final phase, the

coordinator sends the commit message to all peers to checkpoint the system state.

In the second phase of the protocol, a ready-message is sent when a member is ready to

participate in the coordination protocol. Otherwise, a busy-message is sent when it is

busy waiting to communicate with its dependent. For example, assume that two members

are supposed to communicate as per the execution order. The coordinator sends a

synchronization request to these two members. The first member happens to receive the

coordination signal late because it is currently blocked (waiting to receive a message

from its counterpart), while the other member receives the coordination signal on time

before the communication-send invocation. Here, the first member is blocked for the

66

communication to complete, whereas the second member has already sent a ready-

message back to participate in the protocol execution. In such a scenario, the kernel

releases the second member in order for the blocked member to complete its

communication. As a result, the blocked-member along with its counter-part progress

forward in order to empty their communication buffer. This mechanism is similar to the

bookmark exchange mechanism in [35]. Finally, the remaining members participate

voluntarily in the protocol execution (when their communications are complete) by

acknowledging back with the ready-messages. Subsequently, the coordinator initiates the

third phase of the protocol in order to save a consistent global state.

Synchronization phase Ready phase Checkpoint commit phase

Member 1

Checkpoint executor
(Initiator)

Checkpoint Coordinator

Member 2

Checkpoint executor

\ ,
| Initiation Request |

\

\
j Participation Request |

\
I Ready

/
| Ready |

/

/
| Checkpoint Commit

/

\
I Checkpoint Commit I

I

Figure 17: Three phase consistent checkpoint coordination

5.2.4 Resource Management

The kernel manages various resources which include processes and their information,

control message queue, and checkpoint/log file. Upon the start of an application, the

kernel spawns a required number of processes remotely in the preconfigured list of hosts.

Each member registers with the kernel by providing its process information as part of the

setup procedure for purposes of failure detection and recovery. Thus, the kernel maintains

67

the process information for each member of a skeleton. We refer to this registered

information as member information. It consists of process id, hostname, state, and

identifier. In addition, the kernel registers one listener thread per remotely spawned

process in order to handle control messages from the application. All received control

messages in each listener are placed in a common synchronized queue for processing.

The kernel organizes the checkpoint and log files related to the application in a directory

structure. This is established using a shared Network File System (NFS), making it

visible to all nodes. All information regarding where to store and fetch the checkpoint/log

file are directed by the kernel to the individual processes. This is done as part of the

initialization procedure at the application start.

This basic file management feature can very well be extended to support sophisticated

functionalities, e.g., checkpoint/restart fault-tolerance for OpenMPI [36], where remote

file management is achieved. In which, the runtime system temporarily saves the

snapshot locally. Then, it moves them to a stable storage as post-checkpoint aggregate

operations. During the recovery execution, it preloads the checkpoint file from the stable

storage to a node in which restoration is targeted.

5.2.5 Recovery Module

Upon receiving intimation from the failure detection monitor, the recovery manager

triggers the recovery operation. The recovery operation involves collaboration with

various components of the kernel. Recovery is executed in three stages. In the first stage,

the recovery manager inquires the dependency analyzer to identify a recovery line from

68

the CDG. As a result, the dependency analyzer computes the recovery line with respect to

the failed member. Both the recovery line and the dependent members list are sent back

to the recovery manager.

Dependency Analyzer

©
Inquire

Recovery Line &
Dependent Members List

©
Restore

Application

Revive ©
Recovery Manager (J) Registration

Reestablish comm.
channel

Reestablish comm. f^s
channel

Revived Member
Recovery Executor

©

Dependent Member
Recovery Executor

Recovery procedure
First stage : 1, 2
Second stage : 3, 4, 5
Third stage : 6

Figure 18: Recovery module and its action

In the second stage, the recovery manager restores the failed member and its recovery

executor retrieves all resources required for the application restoration. It recovers the

application state to an earlier saved system state. Note that the recovery executor is a

protocol specific module which is implemented by the protocol developer to incorporate

specific fault-tolerance behaviors. Finally, when the application is recovered, the

recovery executor registers with the kernel before resuming the application execution.

In the third stage, the recovery manager broadcasts the re-establishment-message to all

the members engaged in the recovery procedure. Thus, the communication links between

revived and healthy members are restored. Figure 18 illustrates these actions.

69

The recovery procedure can be as simple as creating a replacement member, ready to take

over a failed process to compute a new job (e.g., restart-recovery strategy for the

dynamic-replication skeleton). Whereas, a sophisticated mechanism might involve

recovering a failed member to resume its execution from an intermediate checkpointed

location (e.g. gradient-based checkpoint protocol).

5.3 Protocol Extension: Primitives, Usages and Case Studies

In this section, we discuss various core facilities that are used in building new fault-

tolerance protocols. The core facilities include abstract interfaces and semi-concrete

components which facilitate the design of the protocol-specific behaviors. Subsequently,

we discuss the primitives that are available from these core facilities. In addition, we

show the framework usages from the perspective of a protocol developer and an

application developer. We demonstrate how these primitives are used for the protocol

extension to design new strategies via difficult case studies.

5.3.1 Overview of the Protocol Extension

Protocol extension refers to provisions for integrating new fault-tolerance protocols to an

available pattern, whenever need arises. In this section, we discuss the core facilities and

its interfaces which are used in the protocol development as part of the protocol

extension.

The framework provides the following key facilities to a protocol developer in order to

integrate new strategies. Most of these core facilities implement part of the kernel

functionalities and define interfaces required for the protocol-specific behavior

70

implementation. This enables capabilities to integrate the protocol-specific behaviors

with the framework internals. The core facilities are as follows:

(i) The failure reactor implements failure notification service as part of kernel

functionalities and defines abstract post failure action which is to be implemented

specifically for a protocol. As part of the failure notification service, it automatically

triggers post failure actions which are protocol-specific.

(ii) Checkpoint and logging services implement the checkpoint executor as part of the

kernel functionalities. They provide built-in checkpoint and logging facilities which

create checkpoint, generate logs, save checkpoint and log data in a stable storage (either

locally or remotely on NFS) as directed by the resource manager. The default action(s)

can be overwritten by the protocol developer, e.g., what information to save, for instance,

in an application-level check-pointing or where to save the logged information for the

purpose of performance tuning.

(iii) The recovery handler implements the recovery executor as part of the kernel

functionalities. It provides a default abstract recovery implementation. The protocol

developer can define the protocol-specific recovery initialization and post-recovery

procedures. It collaborates with the kernel in recovering both the application and the

communication links among the members of the skeleton.

(iv) The marshaller provides an interface for implementation of the protocol-specific data

marshalling and un-marshalling capabilities. The framework provides a default

marshaller that facilitates the marshalling and un-marshalling of the application's

71

contiguous data (without pointers). It can be extended to support complex non-contiguous

data as well. The default marshaller can also be extended by the protocol developer for

marshalling/un-marshalling of the fault-tolerance protocol-specific control information.

(v) The fault-tolerance protocol behavior module provides an interface to the protocol

developer in order to incorporate fault-tolerance protocol specific behavior which is

executed as part of the protocol. For example, in case of the gradient-based checkpoint

protocol, its behavior includes starting the checkpoint action by the protocol initiator.

Consequently, the checkpoint action is executed in other group members after receiving a

control message with checkpoint flag set, etc. Similarly, the handling of the in-transit

messages (i.e., by logging/replaying during the failure-free/recovery execution) is all part

of the protocol specific behaviors.

5.3.2 Primitives for the Protocol Extension

In this section, we discuss the primitives available from the various core facilities

introduced in the previous section.

a) Checkpoint service

The checkpoint service implements the checkpoint facility with two flavors: system-level

check-pointing and application-level check-pointing. The type to use for a given protocol

is defined as part of the strategy definition by the protocol developer.

In case of system-level checkpoint, the checkpoint service uses a customized checkpoint

library to save the checkpoint state. This customized version is derived from a well

72

known checkpoint library [10] from the PSNC research group. The derived version has

been tailored specifically to the needs of our framework. In case of application level

checkpoint, it uses a simple mechanism to save the application developer's identified

state on to the stable storage. Both implementations are wrapped around a common

interface, though the underlying technique/mechanism involved in these two variants is

different. Below is the list of primitives available from the checkpoint service to a

protocol developer:

(i) Primitive for Setup Action: This primitive is used to setup the checkpoint service in a

skeleton. It is invoked as part of strategy initialization in the skeleton.

(ii) Primitive for Checkpoint Action: This primitive is used to initiate the checkpoint

action. It is invoked during the failure-free execution to save the system state that is used

during the recovery.

(Hi) Primitive for Recovery Action: This primitive is used to initiate the recovery action.

It is invoked as part of the recovery execution and recovers the system state to an earlier

saved-execution state stored during the failure-free execution.

(iv) Primitive for Call Back Registration Action: Each strategy is unique and requires a

way to define strategy-specific action as part of a protocol, i.e., post checkpoint action

and post recovery action. The checkpoint service provides a callback mechanism to

achieve this. This primitive is used by the protocol developer to register a callback

method. It is registered either as post checkpoint action type or post recovery action type.

The checkpoint service invokes the callback method automatically as post-failure actions

based on callback type (defined during the service registration).

73

b) Logging service

The logging service provides necessary basic interfaces required for the protocol

development related to logging. The logging service is used for different purposes based

on the fault-tolerance strategy. It is used for logging messages and for recording send

events. In case of gradient-based checkpoint protocol, it is used to log the in-transit

messages. Whereas, in the color-based checkpoint protocol, it is used to log messages of

two types - in-transit messages and inter-group messages. In the traditional logging

protocol, it is used to log all the messages exchanged among the members. The purpose

of the logging service varies based on the fault-tolerance strategy. Below is the list of

primitives available from the logging service to a protocol developer:

(i) Primitive for Setup Action: This primitive is used to setup the logging service in a

skeleton. It is executed as part of the fault-tolerance strategy initialization in the skeleton.

It is invoked during both the normal execution and the recovery execution.

(ii) Primitive for Cleanup Action: This primitive is used to clean up the log generated

during the fault-tolerance strategy execution.

(Hi) Primitive for Message Record Action: This primitive is used for logging a message.

It is invoked as part of the fault-tolerance strategy execution.

(iv) Primitive for Message Replay Action: This primitive is used to replay an earlier

recorded message during the application recovery. It is a part of the recovery execution

strategy.

74

(v) Primitive for Replay-Message Existence Check: This primitive is used to check for

existence of a replay message. This decision is used by the protocol in order to decide for

a message replay action.

(vi) Primitive for Send Redundancy Check: This primitive is used to check whether a

send-action is to be ignored or not. It returns true when the send-action is a redundant

action. This decision is used by the protocol to ignore the send-action replay related to a

non-dependent member which is not part of the recovery group.

c) Marshaller service

The marshaller service facilitates the protocol developers to incorporate

packing/unpacking actions to embed the protocol-specific control information. This

service provides a default packing and unpacking implementation for the application

messages. It can be extended by a protocol developer to incorporate strategy-specific

actions such as piggy-backing the control information with the application messages.

Below are the data packing primitives available from the marshaller service:

(i) Primitive for Data Packing: This primitive is used to marshal the input data into a

specified target buffer.

(ii) Primitive for Data Unpacking: This primitive is used to un-marshal the encoded data

into a specified target buffer.

Below are the marshaller interfaces which need to be concretized in order to specify

protocol-specific actions:

75

(i) Interface for Marshal Action: This interface should be concretized to implement the

strategy-specific marshalling actions. It is invoked on a send-action as part of the pre­

processing operation.

(ii) Interface for UnMarshal Action: This interface should be concretized to implement

the strategy-specific un-marshalling actions. It is invoked on a receive-action as part of

the post-processing operation. A default marshaller implementation to pack/unpack the

application message is shown below.

class DefaultMarshaller: public Marshaller
{ void marshalAction(...) /* Default marshalling procedure */

{ DataPacking::pack(...);/*Pack application data*/ }
void unmarshalAction(...) /* Default un-marshalling action */
{ int offset = DataPacking::unpack('...); /*Unpack application data */ }

}

d) Failure reactor service

The implementation of the framework provides the default failure reactor as shown

below.

class DefaultFailureReactor: public FailureNotificationService{
void actionQ
{

/* Re-establishes communication link with recovered member */
ftCommService.ReconnectComm(....);

}}

Note that there can be differences in these actions, depending on the protocol. For

example, in a color-based checkpoint protocol where the groups can exchange occasional

messages among them, the re-establishment of the communication links can be delayed

as some sends are discarded (redundant sends). Similarly, if receives need to replay

logged messages then re-establishment of the communication links can be delayed.

Hence, the framework facilitates by providing interfaces to both define and register

76

strategy-specific failure reactors for different communication methods. The Failure

Reactor Registration Primitive is used to register a failure reactor module to the

framework. The registered failure reactors are invoked by the failure notification service.

They are executed as part of the pre-processing operations during recovery.

e) Fault-tolerance behavior

This service provides interface methods which are to be implemented to define protocol

specific behaviors. The list of interface methods available to a protocol developer are as

follows: (i) Pre-Send Fault-Tolerance Behavior, (ii) Post-Send Fault-Tolerance

Behavior, (Hi) Pre-Delivery Fault-Tolerance Behavior, (iv) Post-Delivery Fault-

Tolerance Behavior, (v) Send Fault-Tolerance Behavior and (vi) Receive Fault-Tolerance

Behavior.

All the above interface methods should be concretized by the protocol developer to

define pre- and post-actions related to a fault-tolerance strategy. Their uses in few of the

strategies are shown as part of case studies in the following sections.

f) Integration

The protocol developer has to integrate all the protocol services used in the fault-

tolerance strategy design. A service registration method (registerFTServices) is defined

in the protocol class to facilitate integration. The protocol developer has to implement

this method. In this method, the protocol developer defines necessary service instances

and invokes their corresponding service registration method to configure services. The

framework provides one primitive for registration action for each service. These

77

primitives are listed as follows: (i) Primitive for Marshaller Registration (ii) Primitive for

Timing Service Registration, (Hi) Primitive for Checkpoint Service Registration, (iv)

Primitive for Logging Service Registration, (v) Primitive for Failure Reactor Registration

and (vi) Primitive for Fault-Tolerance Behavior Registration.

The registerFTServices method is invoked as part of the fault-tolerance strategy

initialization. In addition, the protocol developer needs to implement protocol-specific

cleanup action if required. Those fault-tolerance service-specific cleanups are invoked in

the cleanupFTServices method of the protocol class. In turn, this will be invoked as part

of the protocol cleanup action.

5.3.3 Framework Usages and Case Studies

In this section, we illustrate the framework usage by implementing two pattern-specific

fault-tolerance protocols using the above discussed primitives.

5.3.3.1 Case Study 1: Gradient-based Checkpoint Protocol

In this section, we illustrate how to implement a variation of a group checkpoint protocol

for the master-slave skeleton using the core facilities provided by the framework. The

protocol implemented here is the 'gradient-based checkpoint protocol' that is discussed in

Section 3.2. The protocol assumes that the subgroups are independent, i.e., there are no

(occasional) interactions across subgroups. The coordination among subgroup members

are achieved via piggybacking of application messages with control information. Thus,

there are no explicit protocol messages.

78

FailureNolification
Service

J
FTBehavior

Framework Support Modules

TimingService

l '

CheckpointService

A\

GCPFailureReactor

LoggingService

A:
FTProtocolBase

-UsesDefaul>
-Uses Default-

-Uses Default-

GradientCkptBehavior

U ses Custom

Uses Custom -

Uses Custom

Protocol Extension

FTPGradientbased
Ckpt

GCPMarehaller
Master-Slave Custom Fault-

Tolerance Protocol

Figure 19: High-level class diagram of gradient-based checkpoint protocol extension

Figure 19 provides a high-level class hierarchy diagram illustrating the framework

modules involved and their extensions by a protocol developer, which are elaborated in

the following:

a) Usages of the framework from a protocol developer's perspective

The following discussion illustrates a protocol developer's involvement in implementing

the gradient-based checkpoint protocol using the core functionalities of the framework.

Each fault-tolerance protocol has a protocol-specific behavior class which is extended by

the protocol developer from the default behavior class, FTBehavior. In this specific

example, we name this extended class as GradientCkptBehavior. This extended behavior

class implements all the protocol-specific actions as shown in the pseudo code of the

gradient-based checkpoint protocol in Figure 20.

79

Protocol specific fault tolerant behavior for pre-send action:
If I am the Initiator and the checkpoint flag is enabled

Increment the checkpoint number.
Take a new checkpoint.

End If

Protocol specific fault tolerant behavior for pre message-delivery action:
If the computed checkpoint gradient is positive (i.e., piggybacked checkpoint number is large)

Update receiver's checkpoint number with the piggybacked checkpoint number.
Take a new checkpoint.
Record checkpoint dependency.

Else if the computed checkpoint gradient is negative (i.e., in-transit message)
Record the received message.

End If

Protocol specific fault tolerant behavior for post receive-invocation action:
If the member is currently recovered and there exist messages available for replay then

Replay-message from log.
Returns a flag to indicate the existence of the replay-message.

Else
Returns a flag to indicate the non-existence of the replay-message.

End If

Figure 20: Gradient-based checkpoint protocol - protocol behavior

In this protocol, each member process logs the in-transit messages. During recovery, the

revived member needs to replay these messages and hence, re-establishment of the

communication links could be delayed. The module inherits the failure notifications

service and implements post-recovery actions as shown in Figure 21. Such actions are

also defined for other communication methods, e.g. send, probe, etc.

Protocol specific failure reactor action for receive communication method:
If replay-messages do not exist then

Re-establish the communication link.
End If

Figure 21: Gradient-based checkpoint protocol - failure reactor

Similarly, as mentioned earlier, the framework provides default data marshalling and un-

marshalling facilities. It can be extended by a protocol developer to incorporate protocol-

80

specific marshalling action by implementing the Marshaller interface. In this particular

example of the gradient checkpoint protocol, it is required to piggyback protocol-specific

control information (i.e. checkpoint number). The pseudo-code of the protocol-specific

GCPMarshaller action implementations are shown in Figure 22.

Protocol specific marshal action:
(i) Pack the application message to the target buffer using the data packing utility.
(ii) Pack the control message to the target buffer using the data packing utility.

Protocol specific unmarshal action:
(i) Unpack the application message from the input buffer using the data packing utility.
(ii) Unpack the control message from the input buffer using the data packing utility.

Figure 22: Gradient-based checkpoint protocol - marshaller

Now we implement the protocol class, FTPGradientbasedCkpt. This protocol class

inherits from the FTProtocolBase class of the framework. The protocol developer

overrides two initialization methods and provides protocol-specific initialization actions

as shown in Figure 23.

In the overridden startuplnitialize method, the default base protocol's initialization

method is first invoked. This establishes the communication link from the member to the

framework kernel. Next, the setup method for the checkpoint service is invoked to

initialize the service. This is followed by setting up a checkpoint interval using the in­

built per-process timer service through invocation of the setTimer method. Lastly, the

logging service setup routine is invoked to initialize the logger in order to record and

replay the in-transit messages.

81

class FTPGradientbasedCkpt: public FTProtocolBase
{

private:
struct Controllnfo
{ intckptnumber;

..../* other support method definitions */
};
public:
/* Extension with protocol specific startup initialization */
void startuplnitialize()
{ FTProtocolBase::startuplnitialize();/* Framework provided initialization */

getCheckpointService().setup(....);/* Checkpoint service setup */
getTimingService().setTimer(....);/* Timer initialization */
getLoggingService().setup(....);/* Logger initialization */

}
/* Extension with protocol specific recovery initialization */
void recoveryInitialize()
{ FTProtocolBase::recoveryInitialize(); /* Framework provided initialization*/

getCheckpointService().setupAction(....);/* Checkpoint service setup */
getCheckpointService().recoveryAction();/* Checkpoint recovery step */

}

/* Extension with protocol specific post checkpoint recovery */
void postRecoveryCallBack()
{ FTProtocolBase::registerInfoToKernel(); /* Register info, with kernel*/

FTCommService ftComm;
ftComm.reset(); /* Reset comm. channel state */
getLoggingService().setupl(....); /* Setup logging service to replay messages*/

}

}

Figure 23: Gradient-based checkpoint protocol class

Similar initializations are done during the recovery execution. They are amended in the

recoverylnitialize method. This protocol uses the checkpoint service as part of protocol

behavior. Hence, the protocol should implement post-recovery callback methods (Figure

23) in order to execute the necessary protocol-specific post-recovery actions. Finally, all

the protocol-specific service implementations are integrated using the registerFTServices

method as shown in Figure 24.

82

void FTPGradientbasedCkpt::registerFTServices()
{

/* Failure reactor registration */
registerFailureReactor(RECV_FAILUREJR£ACTOR,newGCPRecvFailureReactor());
..../* Similar registration of other reactor */

registerMarshaller(new GCPMarshaller()); /*Marshaller registration */
registerTimingService(new Clock()); /* Timing service registration */

registerLoggingService(new LoggingService()); /* Logging service registration */
CheckpointService ckptService = new CheckpointService(SYSTEMLEVEL);
registerCheckpointService(ckptService); /* Checkpoint service registration */

/* Post checkpoint action and post recovery action registration */
ckptService->registerCallBack(POST_RECOVERY_ACTION,

CheckpointService: :CallBack(this, &FTProtocolInterface::postRecoveryCallBack));
..../* Similar registration of postCheckpointCallBack method */

registerFTBehavior(new GradientCkptBehavior()); /* FT Behavior registration*/
}

Figure 24: Gradient-based checkpoint protocol - service registration

In the previous discussion, a protocol developer is assumed to be knowledgeable about

the framework's services and its interfaces. Also, the protocol developer is required to be

knowledgeable about the system's specific issues, e.g., fault-tolerance protocol design.

On the contrary, an application developer is expected to be minimally knowledgeable

about the system's specific issues. The following section illustrates an application

developer's involvement in embedding the previous fault-tolerance protocol into an

application code that uses the master-slave skeleton.

b) Usages from an application developer's perspective

In a blocking checkpoint protocol, where all processes are part of one group, the

application developer has virtually no involvement other than choosing a checkpoint

interval (if not using the default). In case of the previous protocol, the application

developer has to specify the subgroups and the protocol initiator for each subgroup.

83

class Slave : public SingletonSkeleton<CommFrot MS, FTPGradientbasedCkpt>
{ /* The Slave module extends the SingletonSkeleton in PAS. Its communication protocol is
CommProtMS and FT protocol is FTPGradientCkpt, which is the extended FT protocol class defined in
the previous section */

void run() {/* application specific code */}
}

class Application : public MasterSlaveSkeleton <Slave, CommProtMS, VOID, FTPGradientbasedCkpt>
{/* An application that uses the Master-Slave skeleton */

void run() {/* application specific code */}
void FTConfigure() /* FT protocol specific configuration */
{ SubGroups subgrpSet; /* Set of communication subgroups */

subgrpSet.setSize(NUM_OF_SUBGRPS); /* Specify the size */
/* create a subgroup: groupid, number of members, member enumeration */
SubGroup grpl(GRPl J D , GRP1_SIZE, GRP1_MEMBERS);
grpl.ProtocolInitiator (GRPIJTNITIATORJD); /* set protocol initiator id */
grpl.Ckptlnterval = GRP1 CKPTINTERVAL; /* set checkpoint interval */
subgrpSet.addSubGroup (grpl); /* add the above defined subgroup to the set */
/* ...Other subgroup declaration are omitted... */

}

U I

Figure 25: Gradient-based checkpoint protocol - application developer's perspective

Each instantiated FT-PAS module has a run method and an FTConfigure method for fault

tolerance configuration. This is illustrated in Figure 25. The implementation of the

FTConfigure method is the only involvement of the application developer from the fault-

tolerance perspective (Figure 25). For certain protocols, the configure methods can use

the default in-built parameters and functionalities. Hence, the fault tolerance support

becomes completely application-developer transparent in such cases.

5.3.3.2 Case Study 2: Application-level checkpointing for Iterative Problems

In this section, we demonstrate how to implement the fault-tolerance protocol for the

master-slave skeleton where the slaves are naturally synchronizing, i.e., iterative in

nature. This protocol uses the application-level checkpoint to save states.

84

I
FailureDetector Marshaller

Framework Support Modules

If
TimingService CheckpointService

DefaultFailureAction
1...3

LoggingService

A "
FTProtocolBase

-UsesDefauit-
-Uses Default-

-Uses Default-

Uses Default

Protocol Extension

±-L
FTProtocolNatSyn

Uses Default

DefaultMarshaller

Master-Slave - Iteration
based Application Level

Checkpoint Protocol

Figure 26: High-level class diagram - fault-tolerance protocol for iterative problem

It is assumed that the application developer identifies all the application state variables.

Only these user-identified application states are saved and restored during the checkpoint

and recovery execution. Figure 26 illustrates a high-level class diagram of the various

classes involved in the protocol implementation.

a) Usage of the framework from a protocol developer's perspective

The following section illustrates a protocol developer's involvement in implementing the

fault-tolerance protocol for the naturally synchronizing slaves. In order to support the

application-level checkpointing, the framework provides a state class as shown in Figure

27. In addition, the framework provides an abstract iterator as shown in Figure 27. This

protocol implements this abstract iterator to plug-in the fault-tolerance (application-level

checkpoint) support for the naturally synchronizing slaves.

85

class State
{ ...

int iterationCount;
int ckptlnterval;

}

template <class TState, class FT>
class Abstractlterator : public FT
{ virtual void Init(TState &myState)=0;

virtual bool Check(TState &myState, bool *ret)=0;
virtual void Finalize(TState &myState)=0;
virtual void Iteration(TState &myState)=0;
virtual void PostIteration(TState &myState)=0;
virtual void Start(TState &myState)=0;

}

Figure 27: Abstractlterator and State interfaces

The state class is amended with a set of minimal states which need to be saved for the

internal working of the iterator. In the next subsection, we show how this specialized

iterator is used by the application developer for concretization of the slave (application-

specific).

As mentioned earlier, this protocol is targeted for problems which exhibit natural

synchrony in their behavioral pattern (i.e., slaves which are iterative in nature). Thus, the

protocol requires no explicit coordination action or protocol behavior and does not

exchange any protocol-specific control information. Hence, it uses the default marshaller

for marshalling the application messages. It uses the default failure reactor for re­

establishing the communication link. Timing service is used to trigger the checkpoint at

regular iteration interval.

86

void FTProtocolNatuSync:;registerFTServices()
{

/* Failure reactor registration */
registerFailureReactor(RECV_FAILURE_REACTOR, new DefaultFailureReactor());
..../* Similar registration of other reactor */

registerMarshaller(new DefauItMarshaller()); /*Marshaller registration */
CheckpointService ckptService = new CheckpointService(APPLICATIONLEVEL);
registerCheckpointService(ckptService); /* Checkpoint service registration */

}

Figure 28: Iteration-based application level checkpoint protocol class

Similar to the protocol discussed earlier, the FTProtocolNatuSync protocol class provides

protocol initialization actions for both the startup and recovery execution. Subsequently,

the protocol class provides implementation to the registerFTServices method in order to

integrate various services used in the protocol implementation (Figure 28). The

checkpoint service instance used here is configured to support the application-level

checkpointing.

The FTIteratorAppLvlCkpt class implements the abstract iterator by using the fault-

tolerance protocol as the FTProtocolNatuSync protocol class. In the iterator

implementation, the protocol developer provides implementation only for the Start and

Postlteration methods. This is illustrated in Figure 29.

Protocol specific start action:
If the recovery flag set then

Recover the application-states.
Else

Initialize the application-specific states.
End If
Loop until the exit condition defined in the check method is

Execute the iterator method.
End Loop
Execute the finalize method for the cleanup.

satisfied

87

Protocol specific
If the iteration

Post-Iteration action:
count matches the checkpoint

Takes a new checkpoint.
End If

iteration interval the

Figure 29: Iterator with fault-tolerance actions

All other method definitions (i.e., Init, Check, Iterator, Finalize) are delegated to the

application developer in order to define the application-specific behaviors.

b) Usages from an application developer's perspective

The application developer's involvement in using the above designed protocol is shown

in Figure 30.

class AppState : public State
{ Work work;

Result partial Result;
}

class Slave : public SingletonSkeleton<CommProt_MS, FTIteratorAppLvlCkpt<AppState»
{ /* The Slave module extends the SingletonSkeleton using CommProt_MS as communication protocol
and FTIteratorAppLvlCkpt as FT protocol, which is an iterator implementation embedded with fault-
tolerance protocol */

AppState myState; /* Application state instance */
void Init(AppState *state){/* Application specific code */}
void Iterator(AppState *state){/* Application specific code */}
void Check(AppState *state){/* Application specific code */}
void Finalize(AppState *state){/* Application specific code */}

}

class MSApplication : public MasterSlaveSkeleton <Slave, CommProtMS, VOID,
FTIteratorAppLvlCkpt>
{ /* An application that uses the Master-Slave skeleton */

void run() {/* application specific code */}

void FTConfigure()
{/* FT protocol specific configuration */

SubGroups subgrpSet; /* Set of communication subgroups */
subgrpSet.setSize(NUM_OF_SUBGRPS); /* Specify the size */

88

/* create a subgroup: groupid, number of members, member enumeration */
SubGroup grpl(GRPl_ID, GRP1_SIZE, GRP1_MEMBERS);
grpl.ProtocolInitiator (GRPl_INITIATOR_ID); /* set protocol initiator id */
grpl.Ckptlnterval = CKPTJTERAINTERVAL; /* set checkpoint iteration interval */
subgrpSet.addSubGroup (grpl); /* add the above defined subgroup to the set */

}

J

Figure 30: Fault-tolerant iterative application - application developer's perspective

As with other protocols discussed earlier, the application developer should concretize

FTConfigure as part of the fault-tolerance configuration. The application developer

should define a class inheriting the state class like AppState (Figure 30). This class

should be defined with all the application-specific state variables which need to be saved

as part of the application-level checkpointing. In addition, the application developer

should concretize the iterator methods inherited in the slave class with the application-

specific code. Moreover, the slave class should declare an instance of the AppState class

and use this instance to hold any application state during processing.

In the above discussions, we have demonstrated the framework design, its primitives and

usages through two case studies. The evaluation of the above built pattern-specific fault-

tolerance protocols along with others are presented in the next chapter.

89

Chapter 6

Evaluation

In this chapter, we discuss the evaluation of the framework in terms of its usages and

performance. In Section 6.1, we discuss the environment and implementation issues

related to the FT-PAS framework. Subsequently, we summarize our experience on the

usages of the framework and its related issues. Finally, in Section 6.3, we present the

experimental results and discuss the performance overhead of the FT-PAS framework.

6.1 Environment

The current implementation of the FT-PAS framework is in C++. The test environment

consists of Sun-Fire-280R workstations. Each workstation has 2 CPUs (UltraSPARC III

Cu processors); it operates at 1015 MHz and has 4 GB RAM. All the workstations are

running the Solaris 9 operating system (SunOS) and are connected by LAN.

The framework uses a customized version of the PSNC Checkpoint library. The original

version of the library was written in C. We ported it to C++ and customized it to the

needs of the framework.

The framework is currently implemented on the Solaris platform. The experiments are

conducted in a LAN of homogeneous workstations. The development system uses

standard tools like GNC C++ library, etc., for compilation and execution. The underlying

communication layer uses sockets.

90

6.2 Experiences on the Framework Usages

To evaluate the usages of the FT-PAS, we implemented a set of protocols for the master-

slave skeleton. We designed the gradient-based checkpoint protocol and the color-based

checkpoint protocol (discussed previously in Section 3.2). We implemented both the

protocols and tested their performance with the above discussed test environment. The

experimental results are presented in the next section.

Below are few observations made from the experiments conducted during our evaluation.

• Using the FT-PAS, it is expected that the effort required to develop fault-tolerant

parallel applications are minimized.

o It provides built-in fault-tolerant skeletons, readily usable for application-

development with minimal effort.

o It provides capability to choose fault-tolerance strategies based on the

application-characteristics from a list of supported protocols for a given

skeleton.

• Moreover, the FT-PAS is expected to reduce the protocol development time for

implementing new fault-tolerant strategies from the perspective of a protocol

developer.

o It provides concrete reusable services such as checkpoint service, logging

service, fault monitor, etc., in order to reduce strategy implementation time.

91

o It provides semi-concrete or abstract interfaces to incorporate strategy-specific

behavior.

• The FT-PAS objective is to achieve a separation-of-concern, by separating the fault-

tolerance implementations from the application-specific details. Thus, it reduces the

application developer's burden.

• Using the FT-PAS, the protocol developer can extend the fault-tolerance protocol

base supported for a given skeleton by implementing new fault-tolerance strategies.

• Unlike many existing systems, the FT-PAS is aimed at addressing concern related to

delivering fault-tolerance support in a pattern-specific manner instead of having one

common fault-tolerance strategy for all application types.

6.3 Experimentation and Results

We conducted experiments to measure the performance of the framework using the test

environment described in Section 6.1. The results observed from various experiments are

discussed in the following section. In general, the objectives of these experiments are to

measure the framework overhead incurred due to fault-tolerance. This section is divided

into two subsections. Each of these subsections discusses a different set of experiments

for different objectives and interprets their results.

In the first subsection, the objective is to measure the framework overhead with and

without fault-tolerance. In the second subsection, the objective is to measure and compare

the overhead incurred due to different fault-tolerance strategies. In all these experiments,

92

the FT-PAS framework components are configured to run in a single workstation, while

the application modules run on the other workstations.

6.3.1 Framework Overhead

In the first set of experiments, the objective is to measure the overhead due to logging.

Table 1 presents the test results observed from the experiment by varying a single

parameter, i.e., number of communication events.

Total no. of

comm.

events

120

240

360

480

Execution time

without fault-

tolerance (in sec).

1.9090

3.5893

5.2327

6.8943

Execution time

with logging

protocol (in sec).

2.1441

4.0737

5.9893

8.2407

Overhead on use

of logging protocol

(in sec).

0.2351

0.4844

0.7566

1.3464

Overhead on use of

logging protocol (in

percent).

12.32%

13.50%

14.46%

19.53%

Table 1: Overhead incurred with and without the simple logging protocol

In theory, the logging overhead is expected to increase linearly with the increase in the

communication events (illustrated using dotted line in Figure 31). However, from the

above experiment, we observe an exponential increase (Figure 31). This deviation might

be due to the framework overhead (i.e. overhead incurred because of using a central data

store for message logging).

93

1.6

1.4

1.2

•o 1

ra
a>
•£ 0 .8
%
O 0.6

0.4
0.2

- 0 Observed

Expected

120 240 360
Event(s)

480

Figure 31: Overhead due to logging

In the second set of experiments, the objective is to measure the overhead due to the

checkpointing (system-level). Table 2 illustrates the test results observed by varying the

number of checkpoints.

Num. of

checkpoint

1

2

3

4

Execution time

without fault-

tolerance (in sec).

2.2677

7.0509

13.7527

23.3919

Execution time with

checkpointing (in

sec).

2.3836

7.4402

14.6365

25.1313

Overhead on use

of checkpointing

(in sec).

0.1159

0.3893

0.8838

1.7394

Overhead on use of

checkpointing (in

percent)

5.11%

5.52%

6.43%

7.44%

Table 2: Overhead incurred with and without checkpointing

In theory, the checkpoint overhead is expected to increase linearly with increase in the

number of checkpoints (illustrated using dotted line in Figure 32). However, from the

above experiment, we observe an exponential increase. This deviation might be due to

94

the framework overhead (i.e. overhead incurred because of using a central data store for

checkpoint state saving).

•o
ra a •F
a
> O

30

25

?0

1b

10

5

0
1 2 3 4

Number of Checkpoint(s)

Figure 32: Overhead due to checkpointing

6.3.1 Comparison of the Different Fault-Tolerance Protocols

In this subsection, we discuss two sets of experiments in order to compare two different

fault-tolerance protocols. In the first set of experiments, the objective is to compare the

overhead incurred using the color-based checkpoint protocol (discussed in Section 3.2)

and the blocking checkpoint protocol. First, we illustrate how the overhead changes in

varying the message localization density. Message localization density is defined as the

average message group density divided by the total inter-group messages; whereas, the

message group density is defined as the number of intra-group messages divided by the

group size. We fixed all parameters, such as the number of slaves per group, number of

groups and total number of intra-group messages per group but varied the message

localization density. The message localization density is varied by varying the number of

95

inter-group messages exchanged between two groups. Table 3 shows the overhead

observed from executing four test cases, each with varying message localization density.

Avg. message

localization

density

0.83

1.11

1.67

3.33

Execution time

without FT (in

sec).

4.1888

3.9789

3.9472

3.8919

Execution time with

color-based ckpt

protocol (in sec).

5.2375

4.6824

4.4284

4.1638

Overhead on use of

color-based ckpt

protocol (in sec).

1.05

0.70

0.48

0.27

Overhead on use of

color-based ckpt

protocol (in percent)

25.07%

17.59%

12.16%

6.94%

Table 3: Fault tolerance overhead - varying message localization density

The overhead decreased as the message localization density increased. This is from the

fact that the more messages are localized within a group, the less become the inter-group

messages. Thus, the overall overhead decreases as the logging overhead incurred from

inter-group message decreases, which is observed from the graph (Figure 33).

Figure 33: Fault tolerance overhead percent - varying message localization density

96

Also, we measured the overhead due to the blocked checkpoint protocol; its average

overhead is computed as 20.2 sec.

Figure 34: Overhead ratio - varying message localization density

Figure 34 shows the overhead ratio of the blocked checkpoint protocol over the color-

based checkpoint protocol by varying the message localization density. The overhead

ratio increases as the density increases. Thus we can interpret from the graph that the

color-based checkpoints do comparatively better than the blocked checkpoint protocol for

applications that have higher message localization density.

Num. of

checkpoint

1

2

3

4

Execution time

without fault-

tolerance (in sec).

2.2677

7.0509

13.7527

23.3919

Execution time

with appl-level

ckpt (in sec).

2.3192

7.3256

14.4813

24.6791

Overhead on use

of appl-level ckpt

(in percent).

2.27%

3.90%

5.30%

5.50%

Execution time

with sys-level

ckpt (in sec).

2.3836

7.4402

14.6365

25.1313

Overhead on use of

syst-level ckpt (in

percent).

5.11%

5.52%

6.43%

7.44%

Table 4: Overhead comparison - application-level and system-level checkpoint

97

In the final set of experiments, the objective is to compare the overhead incurred due to

the system-level checkpoint protocol with the application-level checkpoint protocol for a

problem of iterative type such as Jacobi. The overhead incurred using these two protocols

is observed by varying the number of checkpoints (Table 4).

Figure 35: Overhead comparison - application-level and system-level checkpoint

The size of the state information that is saved at each checkpoint for the system-level

checkpoint is significantly higher than that of the application-level checkpoint. Figure 35

illustrates the increasing trend of the checkpoint overhead comparing the two checkpoint

protocols. We can interpret that as the number of checkpoints increases, the percentage-

overhead increase due to the system-level checkpoint is higher compared to that of the

application-level checkpoint. Thus, we can infer that the application-level checkpoint

protocol do comparatively better than the system-level checkpoint protocol for the long

running parallel applications.

98

Chapter 7

Conclusion and Future Research

In this thesis, we have classified patterns into sub-pattems based on the fault-tolerance

strategies, which are identified based on pattern characteristics. We have presented a

model to achieve application-specific fault-tolerance in parallel programming.

The FT-PAS model is based on the PAS model. The FT-PAS addresses issues from a two

user group perspective: the application developer and the protocol developer. The FT-

PAS provides patterns implementation along with their supported fault-tolerance

strategies. This pre-packaged and pre-implemented solution delivers maximum possible

separation-of-concern, i.e., to alleviate the application developer's burden due to the

fault-tolerance implementation-specific issues.

The protocol developer is responsible for extending existing skeletons with newer fault-

tolerance protocols based on need. Hence, the protocol developer is expected to be well

experienced with systems-specific issues. The FT-PAS model contributes a set of core

facilities to support the protocol extension. Thus, the protocol developer can use these

core facilities to build new fault-tolerance strategies. From that perspective, the

framework can also be regarded as a test-bed for evaluating newer fault-tolerance

protocols.

Future studies can possibly focus on some areas of enhancement and limitation of the

current FT-PAS model, of which few are briefed here. Currently, we assume that the

99

internal-component of the FT-PAS model is failure-free. It is possible to overcome this

limitation by making the internal components fault-tolerant. The centralized checkpoint

dependency graph used in the FT-PAS model is another limitation which leads to total

loss of data when the central resource fails. This limitation can be resolved by managing

the checkpoint dependency graph in a distributed manner.

Further extensions can be amended to the model in order to contribute more flexibility in

terms of providing fault-tolerance. Further investigation is required in order to address

other issues such as compose-ability and adaptability with respect to fault-tolerance.

Compose-ability refers to addressing concerns in order to support fault-tolerance in

skeleton composition [41]; whereas, adaptability refers to investigating the need for

variable fault-tolerances in an application based on the run-time characteristics.

Currently, the fault-tolerance provided for an application in other existing systems,

including ours, is based on a single strategy (configured statically before compilation).

Whereas, an application might require choosing and adapting its strategy, in such case it

needs to be configured with more than one strategy. Thus, the strategy to use gets

selected at runtime based on the application's runtime characteristics.

In addition, the FT-PAS model can be extended to support Extensible PAS [41]. A

graphical user interface can be amended to the FT-PAS model to ease the users'

involvement related to application development and protocol development. All these are

potentially candidates that lead us in an interesting direction for future research.

100

Bibliography

[1] G. Fagg and J. Dongarra. FT-MPI: Fault Tolerant MPI, Supporting Dynamic

Applications in a Dynamic World. In Proc. of the 7l European PVM/MPI Users' Group

Meeting on Recent Advances in PVM and MPI, LNCS, vol. 1908, Springer-Verlag, 2000,

pp. 346-353.

[2] William Gropp and Ewing Lusk. Fault Tolerance in MPI Programs. In Proc. of the

Cluster Computing and Grid Systems Conference, Dec. 2002.

[3] Gengbin Zheng, Lixia Shi and Laxmikant V. Kale. FTC-Charm++: An In-Memory

Checkpoint-Based Fault Tolerant Runtime for Charm++ and MPI. In Proc. of IEEE

International Conference on Cluster Computing, Sep. 2004, pp. 93-103.

[4] Andrew Lumsdaine, Jeffrey M. Squyres and Brian Barrett. Reliability in LAM/ MPI

Requirements Specification. Technical Report TR563, Department of Computer Science,

Indiana University, Jun. 2002.

[5] George Bosilca, Aurelien Bouteiller, Franck Cappello, Samir Djilali, Gilles Fedak,

Cecile Germain, Thomas Herault, Pierre Lemarinier, Oleg Lodygensky, Frederic

Magniette, Vincent Neri and Anton Selikhov. MPICH-V: Toward a Scalable Fault

Tolerant MPI for Volatile Nodes. In Proc. of the IEEE/ACM SC2002 Conference, Nov.

2002, pp. 29.

[6] Timothy G. Mattson, Beverly A. Sanders and Berna L. Massingill. Patterns for

Parallel Programming. Software Patterns Series, Addison-Wesley Professional, 2004.

101

[7] M. Cole. Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal

Parallel Programming. Parallel Computing, 30 (3) (2004) 389-406.

[8] D. Goswami, Ajit Singh and Bruno R. Preiss. From Design patterns to Parallel

Architectural Skeletons. Journal of Parallel and Distributed Computing, 62 (4) (2002)

669-695.

[9] James S. Plank, Micah Beck, Gerry Kingsley and Kai Li. Libckpt: Transparent

Checkpointing under Unix. In Proc. of the Usenix Winter 1995 Technical Conference,

Jan. 1995, pp. 213-223.

[10] Poznan Supercomputing and Networking Center Checkpoint library, Poznan

Supercomputing and Networking Center. Available from: <http://checkpointing.

psnc.pl/>.

[11] Michael Litzkow and Marvin Solomon. Supporting Checkpointing and Process

Migration Outside the UNIX Kernel. In Proc. of the Usenix Winter 1992 Technical

Conference, Jan. 1992, pp. 283-290.

[12] J. Duell, P. Hargrove and E. Roman. The Design and Implementation of Berkeley

Lab's Linux Checkpoint/Restart. Berkeley Lab Technical Report (publication LBNL-

54941), Dec. 2002.

[13] E.N. Elnozahy, Lorenzo Alvisi, Yi-Min Wang and David B. Johnson. A Survey of

Rollback-Recovery Protocols in Message-Passing Systems. ACM Computing Surveys, 34

(3) (Sep. 2002) 375 - 408.

102

http://checkpointing.?psnc.pl/
http://checkpointing.?psnc.pl/

[14] M. Treaster. A Survey of Fault-Tolerance and Fault-Recovery Techniques in Parallel

Systems. ACM Computing Research Repository (CoRR), (cs.DC/0501002), Jan. 2005.

[15] D. Goldberg, M. Li, W. Tao and Y. Tamir. The design and implementation of a

fault-tolerant cluster manager. Technical Report Computer Science Department

(Technical Report CSD-010040), Oct. 2001.

[16] Y. Tamir and C.H. Sequin. Error recovery in multicomputers using global

checkpoints. In Proc. of the International conference on Parallel Processing, 1984, pp.

32-41.

[17] M. Chandy and L. Lamport. Distributed snapshot: Determining global states of

distributed systems. ACM Transactions on Computing Systems, 31 (1) (1985), pp. 63-75.

[18] T.H. Lai and T.H. Yang. On distributed snapshots. Information Processing Letters,

25(1987)153-158.

[19] E.N. Elnozahy, D.B. Johnson and W. Zwaenepoel. The performance of consistent

checkpointing. In Proc. of the ll' Symposium on Reliable Distributed Systems, Oct.

1992,39-47.

[20] B. Bhargava and S.R. Lian. Independent checkpointing and concurrent rollback for

recovery - An optimistic approach. In Proc. of the 7th Symposium on Reliable Distributed

Systems, Oct. 1988, pp. 3-12.

103

[21] W.M. Wang. Checkpoint Space reclamation for uncoordinated checkpointing in

message-passing systems. IEEE Transactions on Parallel and Distributed Systems, 6 (5)

(1995)546-554.

[22] Dmitry Mogilevsky and Sean Keller. SafeMPI - Extending MPI for Byzantine Error

Detection on Parallel Clusters. Technical Report (CoRR abs/cs/0506001), 2005.

[23] A. Cherif, M. Suzuki and T. Katayama. A Novel Replication Technique for

Implementing Fault-Tolerant Parallel Software. Kluwer Academic Publishers, Fault

Tolerant Parallel and Distributed Systems, Jan. 1998, pp. 373-384.

[24] Marco Danelutto. QoS in Parallel Programming through Application Managers. In

Proc. of the 13l Euromicro Conference on Parallel, Distributed and Network-Based

Processing, Feb. 2005, pp. 282-289.

[25] Gosia Wrzesinska, Ana-Maria Oprescu, Thilo Kielmann and Henri Bal. Persistent

Fault-Tolerance for Divide-and-Conquer Applications on the Grid. In Euro-Par 2007:

Proc. of the European Conference on Parallel Processing, LNCS, vol. 4641, Springer-

Berlin, 2007, pp. 425-436.

[26] Nuno Fonseca and Joao Gabriel Silva. MPI Farm Programs on Non-dedicated

Clusters. In Proc. of European PVM/MPI Users' Group Meeting on Recent Advances in

PVM and MPI 2003, LNCS, vol. 2840, Springer-Berlin, 2003, pp. 473-481.

104

[27] J. Rodrigues de Souza, E. Argollo, A. Duarte, D. Rexachs and E. Luque. Fault

Tolerant Master-Worker over a Multi-Cluster Architecture. In ParCo 2005: Proc. of

Parallel Computing, 33 (2005) 465-472.

[28] R. L. Graham, S.-E. Choi, D. J. Daniel, N. N. Desai, R. G. Minnich, C. E.

Rasmussen, L. Risinger and M. W. Sukalski. A network-failure-tolerant message-passing

system for terascale clusters. International Journal of Parallel Programming, 31 (4)

(2003) 285-303.

[29] S. Rao, L. Alvisi and H. M. Vin. Egida: An extensible toolkit for low-overhead

fault-tolerance. In FTCS '99: Proc. of the Twenty-Ninth Annual International Symposium

on Fault-Tolerant Computing, 1999, pp. 48.

[30] A. Agbaria and R. Friedman. Starfish: Fault-tolerant dynamic MPI programs on

clusters of workstations. InHPDC '99: Proc. of the 8' IEEE International Symposium on

High Performance Distributed Computing, 1999, pp. 167-176.

[31] G. Stellner. CoCheck: Checkpointing and process migration for MPI. In IPPS '96:

Proc. of the 10th International Parallel Processing Symposium, Apr. 1996, pp. 526-531.

[32] Erich Gamma, Richard Helm, Ralph Johnson and John M. Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Software. Computing Series, Addison-

Wesley Professional, 1994.

105

[33] Zunce Wei, Hon F. Li and Dhrubajyoti Goswami. A locality-driven atomic group

checkpoint protocol. In Proc. of the 7th International Conference on Parallel and

Distributed Computing, Application and Technologies, Dec. 2006, pp. 558-564.

[34] S. Molnar, M. Cox, D. Ellsworth and H. Fuchs. A Sorting Classification of Parallel

Rendering. IEEE Computer Graphics and Algorithms, Jul. 1994, pp. 23-32.

[35] Sriram Sankaran, Jeffrey M Squyres, Brian Barrett, Vishal Sahay and Andrew

Lumsdaine. The LAM/MPI Checkpoint/Restart Framework: System-Initiated

Checkpointing. International Journal of High Performance Computing Applications, 19

(4) (2005) 479-493.

[36] J. Hursey, J.M. Squyres, T.I. Mattox and A. Lumsdaine. The Design and

Implementation of Checkpoint/Restart Process Fault Tolerance for Open MPI. In IPDPS

2007: Proc. of the IEEE International Parallel and Distributed Processing Symposium,

Mar 2007, pp. 1-8.

[37] Pascal Felber, Xavier Defago and Rachid Guerraoui. Failure detectors as first class

objects. In DOA '99: Proc. of the 1st IEEE Intl. Symposium on Distributed Objects and

Applications, 1999, pp. 132-141.

[38] P. Stelling, I. Foster, C. Kesselman, C. Lee and G. Von Laszewski. A fault detection

service for wide area distributed computations. In Proc. of the 7th International

Symposium on High Performance Distributed Computing, Jul 1998, pp. 268-278.

106

[39] Georg Stellner. Consistent Checkpoints of PVM Applications. In Proc. of Is'

European PVM User Group Meeting, 1994.

[40] George Kola, Tevfik Kosar and Miron Livny. Faults in Large Distributed Systems

and What We Can Do About Them. In Euro-Par 2005: Proc. of IIth European

Conference on Parallel Processing, LNCS, vol. 3648, Springer-Berlin, Aug 2005, pp.

442-453.

[41] Mohammad Mursalin Akon, Dhrubjyoti Goswami and Hon Fung Li. SuperPAS: A

Parallel Architectural Skeleton Model Supporting Extensibility and Skeleton

Composition. In ISPA 2004: Proc. of International Symposium on Parallel and

Distributed Processing and Applications, LNCS, vol. 3358, Springer-Berlin, pp. 985-996.

[42] Jie Wu. Distributed System Design. CRC Press LLC, 1998.

[43] Ajay D. Kshemkalyani and Mukesh Singhal. Distributed Computing: Principles,

Algorithms, and Systems. Cambridge University Press, 2008.

[44] G. Cao and M. Singhal. On Coordinated Checkpointing in Distributed Systems.

IEEE Transactions on Parallel and Distributed Systems, 9 (12) (1998) 1213-1225.

[45] R.E. Strom and S.A. Yemini. Optimistic Recovery in Distributed Systems. ACM

Trans. Computer Systems, 3 (3) (1985) 204-226.

[46] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker and Jack Dongarra.

MPI: The Complete Reference. Scientific and Engineering Computation Series, MIT

Press, 1998.

107

