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Abstract 

FT-PAS - A Framework for Pattern Specific Fault-Tolerance in Parallel 

Programming 

Gopinatha Jakadeesan 

Fault-tolerance is an important requirement for long running parallel applications. Many 

approaches are discussed in various literatures about providing fault-tolerance for parallel 

systems. Most of them exhibit one or more of these shortcomings in delivering fault-

tolerance: non-specific solution (i.e., the fault-tolerance solution is general), no 

separation-of-concern (i.e., the application developer's involvement in implementing the 

fault tolerance is significant) and limited to inbuilt fault-tolerance solution. In this thesis, 

we propose a different approach to deliver fault-tolerance to the parallel programs using 

a-priori knowledge about their patterns. Our approach is based on the observation that 

different patterns require different fault-tolerance techniques (specificity). Consequently, 

we have contributed by classifying patterns into sub-patterns based on fault-tolerance 

strategies. Moreover, the core functionalities of these fault-tolerance strategies can be 

abstracted and pre-implemented generically, independent of a specific application. Thus, 

the pre-packaged solution separates their implementation details from the application 

developer (separation-of-concern). One such fault-tolerance model is designed and 

implemented here to demonstrate our idea. The Fault-Tolerant Parallel Architectural 

Skeleton (FT-PAS) model implements various fault-tolerance protocols targeted for a 

collection of (frequently used) patterns in parallel-programming. Fault-tolerance protocol 
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extension is another important contribution of this research. The FT-PAS model provides 

a set of basic building blocks as part of protocol extension in order to build new fault-

tolerance protocols as needed for available patterns. Finally, the usages of the model from 

the perspective of two user categories (i.e., an application developer and a protocol 

designer) are illustrated through examples. 
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Chapter 1 

Introduction 

In this chapter, we describe our research objective and summarize what is achieved. 

1.1 The Problem 

The advancements in computer hardware and high-speed networks have revolutionized 

the concept of building powerful clusters using networks of workstations. The 

networked-workstation clusters are more popular and used as a common environment for 

parallel-computing. This is due to their cost-performance benefit, and their suitability for 

solving a vast range of computational intensive problems using their combined 

computing powers. This is in contrary to the high priced sophisticated parallel-computing 

environment which is made from special parallel computers. 

This paradigm shift towards the networked-workstation cluster has triggered interesting 

challenges for researchers in various aspects. One such problem with the use of the 

networked-workstation cluster is lack of reliability as this is made from off-the-shelf 

components. 

Fault-tolerance is essential for a long running parallel application in order to avoid 

computational wastage. It must be noted that achieving fault-tolerance in parallel 

application is complex. There are various reasons and challenges for the previously 

mentioned difficulty in achieving fault-tolerance in parallel applications. 
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• There is no clear standard defined regarding fault-tolerance support in the parallel 

programming environment. For example, in the message-passing parallel 

programming environment, the Message Passing Interface (MPI) standard [46] 

defines some general error handling mechanism intended mainly for resource 

clean-up action, rather than from the perspective to support fault-tolerance. 

• In most of the existing MPI parallel-programming environments (e.g., LAM-MPI 

[4], MPICH-V [5] etc), the solution to tolerate fault is addressed in general and is 

not specific to a problem category. Such a solution can lead to a performance 

problem. 

• Addressing fault-tolerance issues in specific at the application development phase 

is tedious. The parallel-programming environment such as FT-MPI [1] requires 

significant effort from an application developer to achieve fault-tolerance in a 

given parallel program. It deviates the application developer's objective from the 

application development. 

• Moreover, the fault-tolerant solution provided in the existing system (such as 

MPICH-V [5], etc.) is fixed and rigid. Such solution experiences closeness issues, 

i.e., a given application is constrained to use the fault-tolerant strategy that is 

provided within. Hence, it is not possible to build and add a new fault-tolerance 

protocol. 

Various researches have been conducted to resolve some of the above mentioned 

difficulties. Our research focuses on a specific approach that is based on patterns. We 

believe that patterns can indeed be used to provide fault-tolerance support for parallel 
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applications. All of these have motivated our research toward building a new model to 

address the above stated challenges. 

1.2 Objective 

Although separating fault-tolerance implementation concern is an important benefit, most 

of the existing parallel-programming system (LAM-MPI [4], etc.) leads to undesirable 

performance overhead due to its fault-tolerance solution's generic nature. Such generic 

fault-tolerance solution might fit well for certain problems but leads to bad performance 

for others. In general, most of the existing system does not support fault-tolerance in a 

problem category specific manner. Hence, it is necessary to provide such support in order 

to check undesirable performance overhead. 

There also exists an extended MPI implementation (e.g., FT-MPI [1]), which provides a 

basic facility to implement application specific fault-tolerance but at the cost of 

considerable involvement on the part of the application developer, such as saving system-

states, logging communication messages, etc. It is tedious to address such system-specific 

issues (i.e., fault-tolerance) at the application development phase. Hence, it is necessary 

to alleviate or liberate such burden during the application development phase in order to 

focus on the application development rather than on the fault-tolerance issues. 

Most of the existing systems (MPICH-V [5], Muskel [24], etc.) support a limited and 

fixed set of fault-tolerance protocols. Consequently, there is no facility provided to add 

new fault-tolerance as needed for available pattern implementation. Thus, if an 

application demands a different fault-tolerance protocol which is not supported, generally 
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the application has no alternate choice but to use what is available or to abandon the idea 

of specifically providing fault-tolerance. Such system imposes limitations and thus leads 

to undesirable performance problems for applications. Hence, it is necessary to provide 

support to build a new fault-tolerance strategy as needed. 

1.3 Contribution 

Through this research, we have contributed patterns classification based on fault-tolerant 

strategies. This classification is novel to the best of our knowledge. We have designed 

and implemented a model - the Fault-Tolerant Parallel Architectural Model (FT-PAS) -

to demonstrate and verify our concepts (separation-of-concern, protocol extension). The 

FT-PAS model contributes: (1) to assist in application-specific fault-tolerance in a 

programmer transparent/semi-transparent way, and (2) to provide a test bed in order to 

build new fault-tolerance strategies and to evaluate the performance overhead of the 

fault-tolerance strategies. 

We believe different fault-tolerant techniques are well suited for different patterns. This 

pattern-specific fault-tolerance solution indirectly contributes to overcome undesirable 

performance overhead, which is incurred when employed with a non-specific solution. In 

FT-PAS, we achieve separation-of-concern by pre-packaging pattern-specific fault-

tolerance strategy implementation in an application-independent manner. This notion 

facilitates in separating the fault-tolerance implementation issues and alleviating burden 

from the application developer. Lastly, we address the closeness issue by supporting a 

fault-tolerance protocol extension. In FT-PAS, we contribute a set of core facilities as 

building blocks in order to design and integrate a new fault-tolerance strategy for 
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available patterns. Thus, it provides greater flexibility to build new fault-tolerance 

strategy at ease, for use with available patterns. 

The FT-PAS model introduces two user categories in order to support a fault-tolerance 

protocol extension: a protocol developer (responsible for implementing the new fault-

tolerance protocol) and an application developer (responsible for using the available 

fault-tolerance protocol). 

We evaluate the model implementation from two aspects: usage and performance. The 

usage of the framework is evaluated based on the easiness of implementing various fault-

tolerance strategies. Subsequently, the performance of the framework is evaluated by 

measuring and comparing the overheads incurred from different fault-tolerance strategies. 

1.4 Organization of the Thesis 

The thesis is organized as follows: Chapter 2 provides background knowledge and related 

works. Chapter 3 discusses our novel classification of a few well-known patterns into 

sub-patterns based on fault-tolerance strategies. Subsequently, we discuss two protocols 

for a sub-pattern along with their correctness proof. Chapter 4 introduces our FT-PAS 

model with discussion on two user categories: the protocol developer and the application 

developer. The subsequent section discusses three important aspects which are addressed 

in the model related to fault-tolerance. Chapter 5 discusses the model architecture, design 

and usages from a two user group perspective. This chapter also includes a discussion on 

the framework internals. Then, the core facilities related to protocol extension and their 

primitives are discussed, along with case studies on several protocols and their usages. 
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Chapter 6 includes a discussion of the environment and the results that are observed from 

our experiments are evaluated. Chapter 7 concludes the thesis and introduces the future 

research direction. 
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Chapter 2 

Background and Related Works 

In this chapter, we introduce background knowledge and related works. This chapter is 

divided into three sections. In Section 2.1, we introduce background details related to 

various fault-tolerance techniques that are practiced in general. The following section 

provides a brief review on few existing MPI-based parallel-programming environments 

that support fault-tolerance. Section 2.3 describes some of the related pattern-based 

parallel-programming works that provide fault-tolerance. 

2.1 Various Fault-Tolerance Techniques 

In this section, we discuss various fault-tolerance techniques and their background. Fault-

tolerance in a single process system is achieved by saving the current state for later 

recovery using a contemporary checkpoint/restart system implementation. Many 

checkpoint/restart libraries are available such as Libckpt [9], PSNC checkpoint library 

[10], Condor checkpoint library [11] and BLCR (Berkley Lab's Checkpoint Restart) [12]. 

These systems are different in various aspects. To mention a few: the amount of state 

saved is different, the medium of storage is different, the API is different, etc. 

Achieving fault-tolerance in a parallel-distributed system is much more complex. This is 

due to the fact that such applications involve more than one process. These processes 

communicate and exchange information in order to solve a given problem. Using the 
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checkpoint libraries (e.g., PSNC checkpoint library, Condor library) alone would not be 

sufficient in order to provide fault-tolerance. There are various mechanisms that are 

proposed in [13] to achieve fault-tolerance for such distributed systems. At a higher-level, 

they are classified into three categories: replication mechanism, checkpointing 

mechanism and logging mechanism. There are other variances of these techniques 

available. They are derived either from one or more of the above mentioned mechanisms. 

Similar fault-tolerance techniques can equally be applied to the parallel programs with 

additional emphasis on performance and scalability. 

2.1.1 Replication Mechanism 

Replication is one of the well-known techniques used to achieve fault-tolerance. As 

illustrated in [14], it can be classified into two subcategories: active replication and 

passive replication. 

In the active replication type, there exist one or more backup nodes running in parallel to 

a primary node. Each backup node receives all necessary inputs as received at the 

primary. Independently, each node computes and generates results. Consequently, all the 

nodes compare their results and take consensus regarding the correct output. They might 

as well execute the byzantine algorithm to handle byzantine faults [22]. Other than 

computation, each backup node monitors the primary node to detect failure. 

Similarly, in the passive replication type a.k.a. primary-backup technique, there are 

backup nodes. But unlike the active replication, here the backups do not compute in 

parallel to the primary node. Instead, the primary sends all the necessary application 
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states to all the backups in order to keep them up-to-date. Thus, the backups which hold 

the necessary system software and application states are ready to take over from the 

primary in case of failure. 

The replication scheme is costly as it nearly doubles the expenses without increasing the 

computational capacity [15]. Instead, it is possible to replicate the modules at a finer level 

rather than to replicate the entire machine as in [23]. This proves to be comparatively cost 

effective but at the expense of overhead due to hosting a replica in the processing node. 

2.1.2 Checkpoint Mechanism 

Checkpoint mechanism is a commonly used technique to provide fault-tolerance in the 

distributed and parallel systems. First, we discuss some general terms and definitions 

related to this mechanism, which are used in later chapters. Then, we present the 

classification of the checkpoint mechanism. 

A global state is a set of process states, which represents the snapshot of the system at an 

instance [42]. In global checkpointing, the global states are recorded periodically as a set 

of checkpoints. A checkpoint refers to a process state saved during the failure-free 

operation. There are two concepts related to consistency, each represented as a message 

type: an in-transit message and an orphan message [42, 43, 44]. 

Definition 1 An in-transit message can be defined as a message which is sent but not yet 

received in a given global state [43]. Formally, we refer a message m^/rom pt to pj as an 

in-transit message ifeia—*ejt> such that eia e bik-i; e^ e bjk. 
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Where, (i) —> denotes happened-before relation [17]. (ii) eja and ejb are the send-event and 

receive-event of the message m .̂ (iii) The behavior of a process containing the events that 

occur between two checkpoints during the process execution is termed behavioral 

fragment. For example, the behavior of a process ' j ' containing the events that occur after 

the checkpoints Cjk-i but before Cjk is denoted by the behavioral fragment bjk associated 

with the checkpoint Cjk. Similarly bjk-i is the behavioral fragment corresponding to the 

checkpoint Cik-i- (iv) Cjk-i is the k-lth checkpoint at a process ' i ' and Cjk is the kth 

checkpoint at a process ' j ' . 

Pj 

Cjk-l 

D P,
 b ^ j -

Pj 

Cjk 

bjk 

0 bjk-i e jb 

Cjk 

(a) In-transit Message (b) Orphan Message 

Figure 1: Message types 

Definition 2 An orphan message can be defined as a message whose receive event is 

recorded but not the send event in a given global state [43, 44]. Formally, we refer a 

message my from pi to pjas a potential orphan message if eia-^eji, such that e,a e b&; e^ c 

bjk-1. 

Where, (i) eja and ejb are the send-event and receive-event of the message mij. (ii) bjk and 

bjk-i are the behavioral fragments corresponding to the checkpoint Cik and Cjk-i 
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respectively, and (iii) c;k is the k checkpoint at the member 'i ' and Cjk-i is the k-1 

checkpoint at the member ' j ' . 

An orphan message can occur in a system during recovery upon using an inconsistent 

global snapshot. A message can be prevented from becoming orphan when both its send-

event and receive-event are placed in the same global snapshot during failure-free 

execution. 

Definition 3 A consistent cut is a set of checkpoints in which if a process's checkpoint 

state reflects a message receipt, then the checkpoint state of the corresponding sender 

reflects sending that message [13, 17J. 

In specific, the orphan messages do not exist in the consistent checkpoint [42, 43]. In case 

of the in-transit messages, they are either nonexistent or exist to be replay-able during the 

recovery operation. In addition, all the determinants of the non-deterministic events 

should be replay-able during the recovery operation. 

Definition 4 Consistent checkpoint is said to be strong if it does not contain the in-transit 

messages [42], 

As mentioned earlier, one way to handle the orphan message is to take precautionary 

measures to prevent a message from becoming orphan. Similarly, all the in-transit 

messages and the determinants [45] of the non-deterministic events (if any) should be 

recorded to help in replay during the recovery operation. 
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Checkpoint mechanisms can be classified into three subcategories: uncoordinated 

checkpointing, coordinated checkpointing and communication-induced checkpointing. 

They are discussed as follows. 

(i) Uncoordinated Checkpointing 

The uncoordinated checkpointing allows each process to decide independently when to 

take checkpoints. This protocol is also known as independent checkpointing. This 

autonomy allows processes to execute the checkpoint operation when their state 

information is small. The major drawbacks of this protocol are susceptibility to domino 

effect [45], useless checkpoints, and storage overhead due to multiple checkpoints. 

This protocol constructs and maintains a graph to identify a consistent cut during the 

recovery operation. Two such graph models are identified here: the dependency graph 

[20] and the checkpoint graph [21]. They are constructed during the failure-free 

execution based on the message-send and the message-receive. In case of failure, these 

graphs help in recovering the failed process and rolling-back the dependent processes to a 

consistent recovery line. 

(ii) Coordinated Checkpointing 

The coordinated checkpointing requires processes to collaborate in order to form a 

consistent global state. In case of failure, all the processes are rolled-back to a most 

recent checkpoint during recovery execution. They are not subject to the domino effect 

[45]; hence, the recovery procedure is simplified. It reduces storage overhead as only one 

checkpoint is maintained on the stable storage. However, such protocol may incur 
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overhead due to the coordination action. The coordination can be achieved by different 

means: blocking and non-blocking. 

A simple approach to the coordinated checkpointing is to block execution and 

communication of all the processes while executing the checkpoint protocol [16]. This 

protocol is called blocking checkpoint coordination. In the non-blocking checkpoint 

coordination, the protocol does not block the communications. Instead, the coordination 

is achieved by sending an explicit checkpoint-request message preceding the first post-

checkpoint message on each link. This way each process is forced to take a checkpoint 

upon receiving the first checkpoint-request message. A well-known example of such non-

blocking checkpoint coordination protocol is the distributed snapshot algorithm proposed 

by Chandy and Lamport [17]. 

Some protocols use marker [18] or checkpoint indices [19], which are piggybacked along 

with the post-checkpoint message in order to achieve coordination. 

(iii) Communication-Induced Checkpointing 

The communication-induced checkpointing mechanism avoids the domino effect without 

requiring the coordination action. This protocol generates two types of checkpoints: local 

and forced. Local checkpoints can be taken independently, while the forced checkpoint is 

taken to guarantee the progress of the recovery line. In specific, the forced checkpoint 

avoids creation of the useless checkpoints. Here, no explicit coordination message is 

exchanged. Instead, the coordination message is piggybacked along with the application 
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message. The receiver decides with the piggybacked information whether to take a forced 

checkpoint. [13] presents few other protocol variations of this technique. 

2.1.3 Logging Mechanism 

The checkpoint techniques discussed above are expensive due to various reasons: the 

process execution gets blocked, flattening the process state is time consuming and storing 

data on the stable storage is space consuming. The log-based mechanism tries to 

minimize or liberate these overheads. The log-based rollback recovery makes an explicit 

assumption based on the piecewise deterministic model [45], based on which all the non-

deterministic events can be identified and their respective determinants can be logged 

during the process execution. 

The messages contribute largely as non-deterministic events in the message passing 

system. During the failure-free execution, the determinants of such identified non-

deterministic events should be logged on to a stable storage. In case of failure, the failed 

process should be able to recover by replaying the logged determinants. 

A variant of the above procedure is possible, which can be thought of as an amendment 

with checkpoint to reduce the amount of replay to quicken the recovery. More flavors of 

the logging scheme are possible based on the place where the message logging is 

executed on either the sender-side or the receiver-side. In addition, the way a message is 

logged, i.e. synchronously or asynchronously, leads to a different variant. [13] presents a 

detailed discussion on various log-based recovery mechanisms. 
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2.2 Fault-Tolerance in Parallel Systems 

In this section, we discuss few existing parallel-programming environments which are 

based on MPI (Message Passing Interface) [46] that supports fault-tolerance. MPI is a 

specification for message passing in the parallel-programming domain. The current MPI 

specification does not address in depth fault-tolerance like the case where a process fails 

in the MPI environment. MPI provides two choices for failure handling: (1) In the default 

option, the application can abort immediately on occurrence of any failure; (2) In the 

second option, the application is provided with the flexibility to continue execution but 

with no guarantee that any communication can occur further. 

The intended purpose of the second option is to provide flexibility to the application in 

doing cleanup locally before it terminates. Hence, this might not be sufficient to 

implement the fault-tolerant techniques which are discussed in [13]. 

In spite of limitation with the current MPI specification, the different approaches to 

provide fault-tolerance in MPI programs are discussed in [2]. Each of these approaches 

has shortcomings due to its limitation to use for a specific program structures. Different 

fault-tolerance techniques are targeted for different purposes which include process fault-

tolerance as in FT-MPI [1], network failure recovery as in LA-MPI [28], message 

logging technique as in Ediga [29], checkpoint/restart technique as in Starfish [30], 

CoCheck [31], MPICH-V [5], LAM/MPI [4], Charm++ [3], etc. Few of these 

implementations which support fault-tolerance are discussed in the following sections. 
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2.2.1 FT-MPI 

FT-MPI [1] is built upon HARNESS (Heterogeneous Adaptable Reconfigurable 

Networked Systems), a fault-tolerant computing environment. The goal is to provide a 

communication library in the form of MPI-API while benefiting fault-tolerance from the 

HARNESS system. The FT-MPI implements a complete MP I-1.2 specification and some 

parts of the MPI-2. It is aimed at providing a fault-tolerant MPI implementation, which 

can survive failures. It modifies and extends the semantics of the MPI to provide various 

intermediate states to help fault recovery in FT-MPI. This way it provides ability to alter 

the internal state in order to recover from failure in applications. 

In FT-MPI, when an error state is identified with a communicator, the new communicator 

follows one of these semantics: shrink, blank, rebuild, or abort based on its failure mode. 

More information on the semantics and modes can be found in [1]. The communicator 

follows a continue/no-operation message mode in the midst of error. From the usage 

point of view, the fault-tolerance can be achieved by making the error check and 

corrective action from the implementation effort. 

2.2.2 MPICH-V 

MPICH-V [5] is a research effort to provide multiple fault-tolerance protocols on the 

MPICH implementation. It provides automatic fault-tolerance without altering the 

application. It uses a mix of checkpointing in conjunction with message logging to save 

the process state and to automatically recover the failed processes. It introduces the use of 

checkpoint servers, dispatchers and event loggers, which assist in alleviating the fault-
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tolerance overhead. The different versions of the MPICH-V implementation support 

different protocol types. MPICH-V provides flexibility to the end-user in choosing a 

required protocol during installation. 

2.2.3 Charm++ 

Charm++ [3] is an object-model based approach to the parallel application design and 

development. It is based on C++. Processor virtualization is one of the core techniques 

used. It aims at improving the performance of the application, the productivity of the 

programmer and the scalability. Moreover, an 'Adaptive MPF version has been 

implemented conforming to the MPI standards [46]. It provides fault-tolerance support 

through various schemes: (1) On-disk checkpoint/restart—this approach involves a 

synchronized checkpoint scheme with a centralized server to store checkpoints on 

persistent stable storage. It supports only manual restart; (2) Double-memory 

checkpoint/restart - this approach involves synchronized check-pointing to save states 

using in-memory stable storage and automatic restart; (3) Double-disk (local) 

checkpoint/restart - this approach is very similar to the previous approach except that the 

storage is on persistent local disk; and (4) Message logging schemes - this approach 

involves message logging on the in-memory scheme with automatic restart without 

requiring any checkpoint synchronization. 

2.3 Fault-Tolerance in Pattern-Based Parallel Systems 

In this section, we discuss the pattern-based parallel systems that support fault-tolerance. 

Design Patterns gained popularity in the field of object oriented design after the 
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publication of Design Patterns: Elements of Reusable Object-Oriented Software, the 

book authored by Gamma et. al. [32]. In subsequent years, the use of pattern has been 

explored in almost every domain. In general, design patterns are about providing 

solutions to commonly recurring problems using the knowledge gained from experience 

in software design and development. 

Patterns gained acknowledgment in parallel-programming through experimentation from 

different works over the past few years. eSkel [7] is one such early work in the form of 

algorithmic patterns introduced by Cole at the University of Edinburg from the 

algorithmic perspective. PAS (Parallel Architectural Skeleton) [8] is a novel approach 

towards patterns from the architectural/structural perspective. Each skeleton in PAS is an 

implementation model of patterns in parallel programming. They are provided with 

pattern-specific primitives, such as communication-synchronization, etc. More 

information on PAS and its background is discussed in Chapter 4. There exist various 

other parallel-programming models like Muskel [24], MPIFarm [26], etc. Some of the 

related works dealing with fault-tolerance are discussed in the following sections. 

2.3.1 Muskel 

Muskel [24] is a Java structured parallel-programming environment evolved from the 

Lithium parallel-programming environment targeted for grids. The environment provides 

run-time support for controlled quality-of-service. An application manager provided with 

the environment takes care of delivering the quality-of-service to the application. The 

same has been demonstrated using two structured patterns: the task farm and the pipeline. 

The application developer is expected to define quality-of-service in terms of contracts. 
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For example, in the task farm, the performance-contracts used include the parallelism 

degree and throughput maintenance in terms of the tasks processed per unit time. Similar 

contracts are defined for faults such as recruiting a new processing resource to substitute 

a missing one. Thus, the environment delivers quality-of-service to an application 

dynamically for the user defined contracts. 

2.3.2 Persistent Fault-Tolerance for the Divide-and-Conquer Application 

The mechanism discussed here focuses on delivering fault-tolerance to an application 

which operates based on the divide-and-conquer pattern [25]. The fault-tolerance 

mechanisms are demonstrated with Satin, a Java framework for grid-enabled divide-and-

conquer applications. In Satin, the problem decomposition by recursive division leads to 

entries in the work pool in each processor. The works are distributed across the 

processors by work stealing: an idle processor steals jobs from the work pool of the other 

processors. It is obvious that jobs that are stolen from the leaving processor lead to the 

orphan job problem. 

The system provides two fault-tolerance mechanisms to handle such fault. In the first 

mechanism, in the orphan saving technique, the orphan jobs are handled by saving them 

in-memory in an orphan table along with the results. Thus, a recovering process does a 

lookup on the orphan job table to re-use the saved results. But this mechanism does not 

support the total-loss or the suspend-resume of the application. This results in the 

proposal of a second mechanism; this strategy is similar to the orphan saving technique 

but with a minor amendment. It writes the partial results to a checkpoint file on a 

persistent storage rather than in-memory. Thus, it overcomes the shortcoming of the first 
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mechanism: tolerating the total-loss and supporting the suspend-resume of the 

application. More details on these techniques can be found in [25]. 

2.3.3 MPI Farm Library 

MPI Farm Library [26] is a parallel-programming library with higher level interfaces 

targeted for scientific application development. This library is built on top of the MPI 

implementation and runtime environment. These APIs are better adapted for problem 

implementation than that of the MPI [46]. But it supports only those applications which 

follow the task farm pattern. The task farm, a.k.a. task parallel pattern, is a well-known 

algorithmic pattern. The farm's inherent nature provides added benefit to support fault-

tolerance. Since everything is handled through the master, it becomes a natural place to 

checkpoint. This library prefers portability instead of transparency; hence, it implements 

the user-driven application-level checkpointing. On recovery from crash, the master 

replays the results of jobs which are processed earlier. Thus, it forwards only those 

pending jobs to the workers. More details on this library can be found in [26]. 

2.3.4 CoHNOW - FT-DR 

CoHNOW FT-DR stands for collection of heterogeneous network of workstations, where 

FT-DR refers to fault tolerance by means of data replication. Here, the workstations are 

organized in a hierarchical master/slave scheme. The model includes various logical and 

execution components for the overall working of the system. The fault-tolerance 

activities in the model are comprised of three different phases: startup, normal execution 

and failure recovery. In the startup phase, the activity initializes by replicating the master 
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information in a protective worker. The worker takes over in case of the master's failure. 

In the normal execution phase, it involves data replication, fault monitoring and 

detection. In case of failure, the job related to the faulty worker is reassigned to an 

available worker. It also involves fault handling of various other internal components. 

More details on this model can be found in [27]. 

All the above discussions provide background knowledge on various aspects such as 

fault-tolerance techniques in general, fault-tolerance in the parallel systems and other 

related works from the patterns perspective. The general concepts, definitions and 

techniques that are presented here are referred to and used in later chapters for our 

discussion. 
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Chapter 3 

Pattern-Specific Fault-Tolerance 

As a part of this research, we first classify patterns into sub-patterns based on different 

fault-tolerant strategies, which are identified based on pattern characteristics. This 

classification is novel to the best of our knowledge. Unlike existing environments 

(MPICH-V [5], etc.), the pattern-specific fault-tolerant solution checks the performance 

overhead, which is incurred when employed with a non-specific solution. We have 

designed a model and implemented a framework following this classification to 

demonstrate our ideas. In Section 3.1, we classify patterns into sub-patterns based on the 

fault-tolerant strategies. In the following section, we discuss two fault-tolerant protocols 

along with their correctness proof. 

3.1 Pattern-Specific Fault-Tolerance Classification 

The motivation behind the following discussion is to emphasize our research hypothesis 

that different fault-tolerance techniques are applicable for different patterns in parallel-

programming. In our research, we classify a pattern into sub-patterns based on fault-

tolerant strategies. A sub-pattern is a derivative resulted from embedding a suitable fault-

tolerant strategy, which is selected based on the problem characteristics. The task farm is 

a well known pattern, where the fault-tolerant strategies are identified based on the 

computational intensity of the worker as shown in Figure 2. The fault-tolerant strategies 

are as follows: (1) Restart recovery and (2) Checkpoint recovery and its variant. 
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Similarly, in case of the master-slave pattern, fault-tolerant strategies are identified based 

on communication and synchronization characteristics as shown in Figure 2. They are as 

follows: (1) Gradient-based checkpoint recovery, (2) Color-based checkpoint recovery, 

and (3) Application-level checkpoint recovery for iterative problems. Each pattern 

classification is discussed in detail in the following section. 

BasePattern 

A 

Task Farm Pattern 

Non-computational 
Intensive Worker 

Computational Intensive 
Worker 

Restart Recoverable Checkpoint Recoverable 
Checkpoint Recoverable 

Pipeline Pattern 

Master Slave Pattern 

Well-Defined 
Communication Category 

Arbitrary Communication 
Category 

Natural Synchronization 
Category 

Iterative Problem 
Category 

Guided Synchronization 
Category 

Gradient-based 
Checkpoint 

Color-based Checkpoint 

Single Dimension Multi Dimension . on-going work 

Figure 2: Pattern-specific fault tolerance classification 

3.1.1 Task Farm Pattern 

The task farm is a well known pattern and is used in many parallel applications. It is also 

known as dynamic replication pattern. The task farm pattern contains five key 

components: task pool, result pool, task generator, result collector and workers. 

Let X be a problem space that needs to be solved. The task generator decomposes the 

given problem space X into n independent chunks. Each independent chunk is 
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represented as Xj, and is computed at a worker. Let R(xi) be the computed sub-result for 

an independent chunk Xj. The result collector is responsible for collecting the sub-results. 

Based on the characteristics of the range of applications that make use of this pattern, the 

fault tolerance strategies for the worker can be broadly classified into: (i) restart 

recoverable and (ii) (independent) checkpoint recoverable. These strategies are based on 

the workload of the worker relative to the overall problem size. All the components need 

to be fault-tolerant via checkpointing which include a task pool, a result pool, a task 

generator and a result collector. 

(i) Checkpoint Recoverable Category 

Consider a problem space where the decomposed sub-tasks are computational intensive. 

The time taken to compute such an independent sub-task is significantly large. In such a 

scenario, re-doing a lost work from the beginning is costlier. Employing an independent 

checkpoint recovery strategy at each worker can reduce the computation loss 

significantly. This can be achieved without incurring significant overhead during the 

failure-free execution for the reasons illustrated below. 

Assume that each independent chunk in the task pool is approximately of equal size and 

all workers are approximately of equal computational capability. Let T be the time to 

compute an independent sub-task Xj without any overhead. The failure-free execution 

time for an independent sub-task can be represented as follows, where Ct is the 

checkpoint time. 
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Failure-Free Execution time Et = 
T ; without any overhead 

T + Ct ; with checkpoint overhead 

From the above expression, we can infer that the execution time for the failure-free 

execution can be approximated to T, when Ct is negligibly smaller compared to T (based 

on the assumption that each sub-task is computational-intensive). 

Let N be the total number of checkpoints, It be the checkpoint interval, n be the number 

of checkpoint taken so far and St be the computation saved as result of checkpoint 

operation. They are represented as follows. 

T 
Checkpoint interval-time It = 

N + l 

Computation saved S, = n*I t ; 1 < n < N 

Assume that a failure occurs at execution time t. The computational loss incurred using 

the checkpoint scheme in a worker can be represented as follows. 

Computational Loss L(t) = -s 
t ; 0 < t < It 

t - S, ; t > I, 

In general, if T is total time taken to compute a sub-task then t represents the computation 

lost due to failure. As we apply the checkpoint scheme, the loss incurred can be refined as 

t (when t < It); and t - St (when t > It) based on the time interval during which the failure 

occurred. 
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To summarize, the checkpoint overhead does not contribute much to the execution time 

when compared to the amount of computation it saves when employed with the 

checkpoint strategy. So, each worker can be independently checkpointed during 

computation at an arbitrary or pre-defined point based on the characteristics of the 

application. Hence, during recovery, it should be able to recover from an intermediate 

recoverable state instead of all over from the beginning. 

For example, consider a graphic rendering problem in the field of animation movie 

production. It uses a render farm, which requires enormous computational power to 

render thousands of frames. Each rendered frame is time consuming. Thus, it cannot 

compromise failure in the middle of any single frame rendering. Such applications are 

categorized as computationally intensive at each worker level. Therefore, each worker 

needs to save its intermediate state. This can be achieved as either programmer 

transparent or semi-transparent. 

(ii) Restart Recoverable Category 

On the contrary, consider a problem space where the decomposed sub-tasks are non-

computational intensive. The checkpoint strategy mentioned previously is not suitable 

due to two reasons: high checkpoint overhead and high recovery overhead. 

In such problems, we observe that the computation time of a sub-task is far less compared 

to the checkpoint time if applied. Thus, the checkpoint overhead contributes significantly 

to the execution time of the sub-task. In addition, the re-computation cost incurred due to 
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the checkpoint recovery is comparatively higher than the cost incurred when the sub-

tasks are re-computed from the beginning. This can be expressed as follows: 

1 ckpt-recover ^ 1 restart-recover 

Where, TCkpt-recover is the checkpoint recovery overhead, Trestart-recover is the recovery 

overhead by re-computing the sub-task from the beginning. TCkpt-recoveris expressed as Et + 

Rt + (T - St), and Trestart-recover is expressed as Et + T. Where, Et is the environment 

recovery time, Rt is the time to recover the system state based on the saved checkpoint 

and (T - St) is the remaining time required to finish re-computation on resumption from 

an intermediate saved state. On substitution, the above expression can be re-written as 

follows. 

R«>St 

For illustration purposes, let us assume that N and n be 1. The expression can be re­

written as follows: 

Rt>T/2 

From the above deduced expression, we observe that when Rt is greater than T/2 

(execution time), overhead incurred from the checkpoint recovery is higher than that 

incurred from re-starting the sub-task from the beginning. 

In general, the problems that fall in this category satisfy the following constraints: 

• The workload associated with a given task is so small that the overhead incurred from 

employing the checkpoint strategy is more than the task execution time. 
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• The overall problem size is so huge that a worker's failure increases the overall 

workload in each member. As a result, the time incurred to solve the overall problem 

also increases. 

For example, let us consider the problem of Mandelbrot set [6] based on relation Zn+i = 

Zn
2 + C, where both Z and C are complex numbers. The overall work that needs to be 

completed is huge, whereas the individual tasks (each pixel computation) are 

comparatively small. Thus, failure during processing of an individual task can be redone 

without any significant computational time loss. However, it requires availability of the 

workers at all times in order to keep up with the expected completion time. As a result, 

the workers could be configured to be replaceable with a new worker in case of failure. 

(iii) Checkpoint Recoverable Category Variant 

As another example of the computational intensive worker that might need a different 

strategy from the previous one, let us consider a special case where tasks are partitioned 

and distributed in a single go to the individual workers. The intention is to let a worker 

compute more than one task at one go, save the partial results locally, and then send the 

final results back. Therefore, it avoids overhead due to extra communications. 

There may or may not be dependencies between the individual tasks assigned to a 

worker. In either case, there is a need to save the minimal application state as the 

intermediate state (minimal state retention) between successive processing of the tasks. 

The application-level checkpointing (saving states of application-specific variables) 
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rather than system-level checkpointing may be sufficient to recover a failed worker from 

the preceding task prior to failure (Figure 3). 

Worker i Worker i 
minimal state minimal state 

::*m]^L:itma--i^M^E- ,.«»*.«,.; fMkraci 

Figure 3: Minimal state retention in a task-farm pattern 

The previous discussion shows that the task farm pattern can be further subcategorized 

based on the fault-tolerance strategies of the workers. There is a need for an additional 

component: a failure monitor. There can be one or more of these modules based on 

implementation strategies. All the other modules including the failure monitor are 

assumed to be failure-free. 

3.1.2 Master-Slave Pattern 

The master-slave is a commonly used pattern in the parallel programming domain. Here, 

the slaves are interconnected via a fixed virtual topology (mesh, hypercube, star, etc.). 

The computational model may or may not be data parallel (e.g., slaves may be 

performing different tasks), based on the problem at hand. Here, we assume that the 

number of concurrent computational units required for computation is known at the start. 

Each task in this case is usually dependant on a subset of other tasks. These dependencies 

are resolved via explicit messages within a subgroup of slaves. We call such a subgroup 

of dependant slaves a communication subgroup, which has localized communication 

dependencies among the members. There can be more than one communication 
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subgroup. Fault-tolerance strategies can differ based on the incidence and overlap of 

these localized subgroups, as discussed in the following section. 

We can subcategorize this pattern based on the communication and synchronization 

characteristics of the slaves. At a higher level they are classified into two, i.e., slaves 

having (a) well-defined communication pattern and (b) arbitrary communication (non-

pattern). It needs no mentioning that the well-defined communication patterns will create 

localized communication subgroup(s) among slaves, while arbitrary communication 

patterns may or may not create proper communication subgroups. Hence, their fault 

tolerance strategy varies. 

(i) Well-Defined Communication Category 

There are several applications that involve well-defined communication patterns. In 

general, the problem that steps into this category meets the following constraints. 

• A set of tasks must execute at same time because they require information from other 

dependent members. 

• The communication messages are localized within a subgroup. 

• Tasks that are sub-grouped based on message localization or dependencies might be 

totally independent from tasks of other subgroups. 

In this category, each communication subgroup coordinates among its members in order 

to save checkpoint. In case of failure, all the members of the subgroup are recovered 

together from the latest consistent cut. Thus, the group checkpoint action and the failure 
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recovery action are localized within a subgroup, and do not affect other independent 

subgroups. 

The well-defined communication pattern can be further sub-classified based on 

synchronization characteristics as (a) natural synchronization and (b) guided 

synchronization. 

(a) Natural Synchronization 

Informally, a naturally synchronizing pattern is defined as a pattern that exhibits obvious 

synchronization points in their behavioral fragments in every member of a subgroup such 

that inconsistent messages are guaranteed not to exist in the global snapshot saved at that 

execution point. Thus, such patterns do not require explicit action to synchronize in order 

to save a consistent global snapshot. Formally, it is defined as follows: 

Definition 5 We refer a pattern as naturally synchronizing if Br'' is strong, i.e., send 

event es in B ' implies existence of corresponding receive event er in B'"' and vice versa. 

Where B(l'k) = \J bj(1'k), bj(1'k) is a subset of behavioral fragments (discussed previously 

in Section 2.1.2) of a member i for iteration from 1 to k. 

For example, all iterative based problems such as Jacobi, SOR fall under this category. 

Providing fault-tolerance for such problems is straightforward. As they exhibit an 

obvious synchronization point, each member in a subgroup should save its local states at 

this point to form a consistent global checkpoint. 

(b) Guided Synchronization 
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All the problems that do not exhibit obvious synchronization points are subcategorized 

under the guided synchronization pattern. Such problems exhibit a well-defined 

communication pattern with distinct communication subgroups but require explicit action 

in order to support fault-tolerance, i.e., explicit action to coordinate among the members 

of the subgroups to save a consistent cut. A suitable non-blocking coordination protocol 

can be employed using message piggy-backing based on the locality of the messages 

within the subgroups. Two such protocols related to this category are discussed in the 

following section: (1) gradient-based checkpoint protocol and (2) color-based checkpoint 

protocol. 

For example, in a specific solution to render the graphics models, two (or more) frames 

are processed concurrently: the current frame and the speculative processing of the future 

frames. Each frame is partitioned among a subgroup of slaves using sort-middle or sort-

last partitioning strategies [34]. This imposes dependencies among the members of the 

subgroups. Here, the frames are independent. The subgroups are distinct and each 

subgroup processes a single frame. The gradient-based checkpoint protocol would fit for 

such problem category. In certain applications, there exist inter-group dependencies. The 

intergroup dependencies are resolved via occasional inter-group message exchange. The 

color-based checkpoint protocol would fit well for such a problem category. 

(ii) Arbitrary Communication Category 

As an example of the arbitrary communication category, consider the problem of the 

parallel ray tracing for rendering large scenes. In a data-parallel solution, the problem is 

geometrically partitioned among the slaves. Based on the movements of the rays (decided 
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only at run-time), the slaves might require communicating with other slaves in an 

arbitrary manner. Here, though the communication is arbitrary, the interactions among 

the slaves are still among the nearest-neighbor, considering the geometric partitioning. 

Hence, they form the well-defined communication subgroups. These subgroups overlap 

and merge to create one large communication group, as discussed previously. However, 

if the partitioning is not geometric, then there is no well-defined communication 

subgroup. The parallel discrete event simulation is another application domain for 

arbitrary communications. Traditional coordinated checkpoint protocol [13] would fit 

well for such problem and uses explicit protocol messages for coordination. 

3.2 Protocol Discussion 

In this section, we present two modified protocols related to the master-slave pattern. 

First, we present some required concepts related to the protocols. Next, we discuss the 

protocols along with their correctness proof. 

3.2.1 Checkpoint Gradient 

Progressive creation of a new checkpoint leads to the displacement in the most recent 

state that a process can recover from in case of failure. Checkpoint gradient is defined as 

change in checkpoint number (i.e., checkpoint number of the sender's snapshot) relative 

to a given reference (i.e., checkpoint number of the receiver's snapshot). Here all the 

messages are assumed to be tagged with the checkpoint number to indicate the 

checkpoint snapshot from which it originated. 
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The gradient can be computed from the tagged checkpoint number of a received message 

using the receiver's checkpoint number as reference. The positive gradient is an 

indication for a potential orphan message and the negative gradient is an indication for an 

in-transit message. Thus, a received message can be detected as a potential orphan or an 

in-transit message from the checkpoint gradient computation. 

Axiom 1 A message is detected as an in-transit message when the computed checkpoint 

gradient value (using receiver's checkpoint as reference) is negative. 

Axiom 2 Similarly, a message is detected to be a potential orphan message when the 

computed checkpoint gradient value (using receiver's checkpoint as reference) is 

positive. 

3.2.2 Checkpoint Dependency Graph 

The checkpoint dependency graph is a generic model, i.e., it is common to all the 

strategies. The basic idea is borrowed from [33] and is modified to accommodate for use 

in the skeletons. For any given checkpoint and/or logging protocol, its execution results 

in a protocol-specific dependency graph. Formally, it is represented as follows: 

CDG = <C, D> 

This captures dependency relations, where C is a set of checkpoints and D is a set of 

dependency edges. Symbolically, the kth checkpoint taken at a member Pi is denoted as 

Cjk. The execution behavior of a member Pj is partitioned into fragments associated with 

each checkpoint. The behavioral fragment corresponding to the checkpoint Qk is denoted 
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by Bik. Bjk contains execution and events that occur after Qk but before (i) the creation of 

the next checkpoint or (ii) the occurrence of termination or crash. 

Here, each checkpoint Qk is represented as three-tuples to capture the information 

required for recovery. Qk = <Sik, Lik, Njk>; where Sik is the local process state of 

checkpoint Qk, Ljk is the log set in Bjk, and Nik is the sequence of determinants associated 

with Bik. Local process state Sik corresponds to the local snapshot that is saved locally in 

each member. Log set Lik corresponds to the messages logged in a particular behavioral 

fragment in each member during the fault-tolerance strategy execution. 

Definition 6 A checkpoint dependency graph is said to be proper if it satisfies the 

following criteria (i) all messages that are exchanged between two behavior fragments 

are either logged, (i.e., available in a log set) or their dependency recorded (i.e., 

available in a dependency edge set) and (ii) all the determinants of non-deterministic 

events and the program order dependencies are recorded [33]. 

3.2.3 Gradient-based Checkpoint Protocol 

The gradient-based checkpoint protocol is a modified version of a group checkpoint 

protocol [33] using the checkpoint gradient. This protocol is targeted for the master-slave 

problem category that exhibits message localization within the subgroup. However, the 

subgroup as such does not communicate (exchange messages) with the other subgroups. 

Unlike the original protocol, here the subgroups are assumed to be known from the pre-

knowledge of the pattern. 
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Definition 7 The gradient-based protocol is correct if (a) the protocol generates a 

proper checkpoint dependency graph and (b) the protocol generates consistent global 

snapshots, i.e., all the local checkpoints that form the global checkpoint snapshot are 

consistent. 

Assumption. The protocol initiator starts the checkpoint operation by taking a self-

checkpoint. The checkpoint operation always happens before a message delivery, except 

in the case of the protocol initiator. The checkpoint operation and the message delivery 

are assumed to be executed atomically, i.e., entirely or not at all. There exists one kernel 

per group or one kernel per member. The kernel replays the in-transit message when 

required; otherwise, it discards it. The subgroups are defined during design time. 

Protocol. The protocol executed per communication subgroup is as follows. 

Action for member p, before sending a message m to member py. 
Piggyback group checkpoint control message (checkpoint number) along with application message m. 

Action for an initiator on starting checkpoint protocol at periodic interval: 
curckpt = curckpt + 1 
Take a new checkpoint 

Action for member p, before delivery of received message mfrom member py. 
If message m is piggybacked with a larger checkpoint number (positive gradient) then 

curckpt = piggybacked new checkpoint number 
Take a new checkpoint 
Record checkpoint dependency with member pj with respect to new checkpoint number 

Else if message m is an in-transit message (negative gradient) then 
Log message m 

Actions for member p, during invocation of receive () call (from member p): 
if member p( is recovered and there exists replay-message related to member/?, then 

Replay message m from log 
Else Execute receive () invocation 

Figure 4: Gradient-based checkpoint protocol 
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Each communication subgroup executes the gradient-based checkpoint protocol. One 

member in each subgroup is configured as the protocol initiator. The initiator is provided 

with a logical clock or timer to trigger the protocol initiation. The checkpoint interval is 

configured during the application development for each subgroup. 

On protocol initiation, the initiator does a self checkpoint to save its own state. Then, it 

piggy-backs all the out-going messages with the control information related to the current 

checkpoint number. 

On message receive, the potential orphan and the in-transit messages are identified. A 

message originated from the previous checkpoint snapshot (i.e., control information with 

decreasing checkpoint number) is considered as an in-transit message. Whereas, a 

message with an increasing checkpoint number, when compared to that of the receiver, is 

considered as a potential orphan message. An identified in-transit message is logged 

during the failure-free execution and replayed during the recovery execution. On the 

other hand, an identified potential orphan message triggers to take a new checkpoint 

locally. 

As a part of protocol, each member should send the checkpoint dependency information 

to the kernel in order to formulate the checkpoint dependency graph. Checkpoint 

dependency graph helps in identifying a latest consistent cut for a subgroup belonging to 

a failed member. This identified consistent cut is used for recovery in case of failure. 

When a member fails during execution, the kernel identifies all its dependent members 

along with the latest consistent cut from the checkpoint dependency graph. Then, the 
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failed member is recovered and all its dependent members are roll-backed to the 

consistent cut. During the recovery execution, all the recorded in-transit messages are 

replayed before receiving any new messages. 

Axiom 3 According to the protocol's logging policy, all messages whose gradient are 

computed as negative are logged along with the checkpoint. Thus, all the in-transit 

messages are logged during the failure-free execution. 

Axiom 4 According to the protocol's checkpoint policy, all messages whose gradient are 

computed as positive lead to the creation of a new checkpoint snapshot before the actual 

delivery of the message. Thus, all the potential orphan messages are prevented from 

becoming orphan. 

Lemma 1 The gradient-based protocol is proper. 

Proof. This follows immediately from the checkpoint and logging policy of the protocol. 

The protocol either logs (in case of in-transit messages) or records the message 

dependency with respect to the associated checkpoints. Thus, the CDG is always proper; 

hence, the claim holds. 

Lemma 2 The gradient-based protocol is consistent. 

Proof. As the protocol is gradient based, it inherits the capability to detect the in-transit 

messages and the potential orphan messages implicitly based on Axiom 1 and Axiom 2. 

According to the protocol, the checkpoint gradient assists in identifying the inconsistent 

messages. All the positive-gradient messages lead to the creation of a new checkpoint as 
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per checkpoint policy (Axiom 4) and all the negative-gradient messages lead to logging 

(Axiom 3). Thus, all the potential inconsistent messages are handled during the failure-

free execution. This guarantees the consistency of the local checkpoint created by the 

protocol. A global checkpoint assembled from all the consistent local-checkpoints is 

therefore consistent and our claim holds. 

Theorem 1 The gradient-based protocol is correct. 

Proof. Follows directly from Lemma 1 and 2. 

3.2.4 Extended Protocol: Color-based Checkpoint Protocol 

The color-based checkpoint protocol is similar to the group checkpoint protocol in [33]. 

This protocol is designed based on the checkpoint gradient discussed earlier along with 

minor modification to handle the inter-group message as well. It is targeted for the 

master-slave problem category, which exhibits message localization within the subgroup 

and exchanges occasional intergroup messages. Each group is assigned a distinct color. A 

member's color is a two-tuple attribute based on group-color and shade (a.k.a. checkpoint 

number). All messages are tagged with color-shade tuple, as in the sender. The color 

helps to identify the message locality, whereas the shade helps to handle the potential 

inconsistent messages (as in the previous protocol). Unlike the original protocol, here the 

subgroups are assumed to be known from the pre-knowledge of the pattern. 

CID Properties 
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(a) Consistency. The extended protocol is consistent if the protocol generates a consistent 

global snapshot, i.e., all the local checkpoints that lead to form the global checkpoint 

snapshot are consistent. 

(b) Independence. The extended protocol leads to independent recovery of a subgroup if 

the protocol liberates the inter-group dependency in order to constrain the recovery 

spread within the subgroup. 

(c) Diligence. The extended protocol is diligent if uniformly the protocol does not log the 

messages (i.e., non in-transit messages) exchanged within the same subgroup. 

Definition 8 The extended protocol is correct if (i) the protocol generates a proper 

checkpoint dependency graph and (ii) the protocol satisfies CID properties. 

Assumption. All assumption from the gradient-based protocol applies here. In addition, 

we assume that each group will be assigned a distinct color. 

Protocol. The protocol executed per communication subgroup is as follows. 

Action for an initiator on starting checkpoint protocol at periodic interval: 
curckpt = curckpt + 1 
Take a new checkpoint. 

Action for member p, before sending a message m to member pf 
Piggyback group checkpoint control message (containing checkpoint number and color) along with 
application message m. 

Action for member p, after sending a message m to member pf 
\ipj is not a member of subgroup then 

Increment send-event count with respect to p} 

End If 

Actions for member pi on receive invocation from application to receive message from member pj: 
If member p( is recovered and message exist for replay related to member pj 
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Replay recorded message from log related to Pj 
Else 

Execute receive action to receive message m from member pj 
End If 

Action for member p, before delivering received message mfrom member pj to application: 
If color tag from control information matches with local group color then 

If message m piggybacked with greater checkpoint number (positive gradient) then 
curckpt = piggybacked new checkpoint number 
Take a new checkpoint. 
Record checkpoint dependency with member pj with respect to new checkpoint 

Else if message m is an in-transit message (negative gradient) then 
Log message m. 

End If 
Else if message m is inter-group message then 

Log message m. 
End If 

Actions for member p, on send invocation to send a message to member py. 
If member pi is recovered and pj is not group member then 

Ignore send action. 
Else 

Execute send action to send message m to member pj 
End If 

Figure 5: Color-based checkpoint protocol 

Each communication subgroup executes the color-based checkpoint protocol. Each 

subgroup is colored distinctly. As in the previous case, one member in each subgroup is 

configured as the protocol initiator. The initiator is provided with a logical clock or timer 

to trigger the protocol initiation. Also, the checkpoint interval is configured distinctly for 

each subgroup. 

On protocol initiation, the initiator makes a self checkpoint to save its state. Then, it 

piggy-backs the control information in all the outgoing messages. The control 

information includes subgroup color and checkpoint number. 

On message receive, the inter-group and the in-transit message are identified and logged. 

The in-transit message is identified by comparing the color first, then comparing the 
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tagged checkpoint number in the control information with that of the receiver as in the 

previous protocol (negative checkpoint gradient). The inter-group message is identified 

by matching the color tag of the control information with the receiver's group color. The 

color mismatch indicates that the received message is an inter-group message. Similar to 

the previous protocol, the potential orphan message is identified by computing the 

checkpoint gradient. The positive gradient leads to creating a new checkpoint in order to 

prevent the message from becoming orphan. 

Similar to the previous case, the kernel manages the checkpoint dependency graph. Each 

member should send the checkpoint dependency information to the kernel after every 

checkpoint execution. The formulated checkpoint dependency graph helps in proper 

recovery in case of failure. 

When a member fails during execution, the kernel identifies all its dependent members 

from the checkpoint dependency graph. Then, the failed member is recovered and all its 

dependent members are rolled back to the latest consistent cut identified by the kernel 

from the graph. During the recovery execution, all the recorded in-transit and inter-group 

messages are replayed. Whereas, all the inter-group message sends are ignored until its 

recovered state is in sync with the members of the other subgroups. 

Axiom 5 According to the protocol's logging policy, all messages whose color-tags are 

different from that of the receiver's group color are logged along with the checkpoint. 

Thus, all the inter-group messages are logged during the failure-free execution. 
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Axiom 6 According to the protocol's logging policy, all messages whose color-tags are 

the same as that of the receiver's group color and whose gradient is computed as 

negative are logged along with the checkpoint. Thus, all the in-transit messages are 

logged during the failure-free execution. 

Axiom 7 According to the protocol's checkpoint policy, all messages whose color-tags 

are the same as that of the receiver's group color and whose gradient is computed as 

positive lead to the creation of a new checkpoint snapshot before the actual delivery of 

the message. Thus, all the potential orphan messages are prevented from becoming 

orphan. 

Lemma 3 The extended protocol is proper. 

Proof. As in Theorem 1, this proof is based on the checkpoint and logging policy of the 

protocol. As per the checkpoint and logging policy of the extended protocol, all the 

received messages are either logged (in case of in-transit or inter-group messages) or 

their dependency recorded with respect to the associated checkpoint. Thus, the 

checkpoint dependency graph generated by the protocol is always proper and hence, our 

claim holds. 

Lemma 4 The extended protocol satisfies CID properties. 

Proof. The protocol uses color-tag and checkpoint number as control information for its 

execution. The checkpoint gradient assists in identifying the inconsistent messages. All 

the positive-gradient messages lead to the creation of a new checkpoint, as per the 

checkpoint policy (Axiom 7) and all the negative-gradient messages lead to logging 
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(Axiom 6). Similarly, the color-tag assists in identifying the inter-group messages and as 

a result such messages are logged (Axiom 5). Thus, all the inconsistent messages are 

handled by the protocol. Therefore, all the local checkpoints created are consistent and 

hence, a global checkpoint formed from the local checkpoints is also consistent. This 

satisfies condition (a): consistency property. All the messages with different color-tags 

are considered to be the inter-group messages; as a result, they are logged (Axiom 5). 

Hence, it frees the dependency of a subgroup with the outside world. This satisfies 

condition (b): independence property. The color-tag and gradient helps in identifying the 

intra-group messages (i.e., non in-transit messages). Uniformly, such messages are not 

logged but with careful attention their dependency with associated checkpoints is 

recorded to assist in proper recovery. This thereby satisfies condition (c): diligence 

property. 

Theorem 2 The extended protocol is correct. 

Proof. Follows directly from Lemma 3 and 4. 

In the above discussions, we have classified patterns and sub-patterns based on the fault-

tolerance strategy. Subsequently, we discussed two protocols related to the master-slave 

pattern. From the above discussions, we observe that different patterns require different 

fault-tolerance strategies. The same can be inferred from the evaluation of the different 

protocols presented in a later chapter. The protocols discussed here are referred in later 

chapters during the discussions on the framework usages and evaluations. 
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Chapter 4 

Introduction to FT-PAS 

In this chapter, we introduce our Fault-Tolerant Parallel Architectural Skeleton (FT-PAS) 

model. The FT-PAS Model is based on the Parallel Architectural Skeleton (PAS) model 

[8]. We start in the next section with a discussion on the PAS background. This section 

presents a brief overview related to the PAS model. Section 4.2 introduces two user 

groups and their roles in the FT-PAS model. Finally, Section 4.3 introduces the FT-PAS 

model and discusses its various aspects. 

4.1 PAS Overview 

In this section, we briefly discuss the Parallel Architectural Skeleton (PAS) model [8]. 

This system envisions the architectural/structural aspects of the pattern as skeletons. A 

skeleton in PAS is composed of structural/architectural attributes of patterns in parallel 

computing. Each skeleton in PAS is parameterized based on the pattern-specific 

structural attributes identified during the skeleton design. As an example, a task-

parallel/dynamic replication skeleton, provided by PAS, encapsulates structural aspects 

of the task-parallel pattern. The task-parallel skeleton includes communication-

synchronization primitives. Some of the parameters of the skeleton are: number of 

workers and the worker itself. These parameters are bound during the application 

development phase. 
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A PAS skeleton with unbound parameters is called an abstract skeleton. An abstract 

skeleton becomes a concrete skeleton when the parameters of the skeletons are bound to 

actual values during the application development phase. A concrete skeleton is yet to be 

filled in with the application-specific code. A concrete skeleton with the filled-in 

application-specific code results in a code-complete module or simply a module. 

For any given pattern, its corresponding abstract skeleton As in the PAS model is 

composed of the following set of attributes: 

(i) The representative of an abstract skeleton As is empty initially. When concretized 

by filling with the application-specific code, it represents the module in its action 

and interaction with other modules. 

Abstract skelton 

Concretizaton 

A\ xx. xx 
Concretizaton 

Figure 6: PAS skeleton 

(ii) The back-end of an abstract skeleton As consists of a set of abstract skeletons 

represented formally as {Asi, AS2, .... , Asn}. Each abstract skeleton in the back-
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end of As is determined during concretization of As. The skeletons contained 

inside other skeletons result in a (tree-structured) hierarchy. Consequently, each 

back-end skeleton As, becomes the child of the container skeleton As. The 

children of an abstract skeleton Asare peers of one another. 

(iii) The topology provides logical connectivity between the parent-children and 

among the peers inside the back-end. 

(iv) The internal primitives are the pattern-specific communication/synchronization 

primitives. Interactions internal to a skeleton involving the representative and the 

child modules are performed using these primitives. The internal primitives are 

the inherent properties of a skeleton. They capture the partial behavior in terms of 

the communications involved and the topology of the associated pattern. 

(v) The external primitives of a skeleton are a sub-set of primitives that is used for 

interactions with its parent and peers. 

In addition to the aforementioned skeleton parameters, there exist some pattern-specific 

parameters. For example, if a chosen pattern is Pipeline, then the number of stages is one 

parameter and the connectivity of stages is another parameter. An abstract skeleton As 

becomes Concrete skeleton Cs upon configuring these parameters with values. A concrete 

skeleton Cs leads to a code-complete module when (i) the representative of As is filled 

with the application specific code, and (ii) each child of the back-end is code-complete. 

Examples of some of the communication primitive available from the task farm skeleton 

include SendToMaster(...), ReceiveFromMaster(...), ScatterToWorker(...), 
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GatherFromWorker(...), etc. Interested readers can find the detailed description of the 

PAS model with examples in [8]. 

From the above discussion, it is clear that the PAS follows a hierarchical approach for the 

application development. An application with code-complete modules inherits all of the 

above discussed attributes from the abstract skeleton. The code-complete module with no 

parents represents the root of the hierarchy. The singleton module in parallel application 

forms the leaf of the hierarchy. All other intermediate modules represent partial parallel 

applications. 

4.2 User Categories and their Roles 

FT-PAS categorizes the users of the model into two: a protocol developer and an 

application developer. From the PAS overview, we understand that the PAS too has two 

sets of users whose responsibilities are targeted towards the application related aspects. 

Whereas, here the user roles of FT-PAS are formulated towards addressing fault-

tolerance. 

The protocol developer is responsible for designing and implementing new fault-tolerant 

strategies using the basic building blocks provided from the model. The protocol 

developer is expected to have a better understanding of the fault-tolerance issues than the 

counterpart (application developer) discussed subsequently. In addition, the protocol 

developer is expected to have a good understanding of the FT-PAS model in order to 

integrate a fault-tolerance solution into an existing skeleton in the model. 
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Figure 7: FT-PAS skeleton and its phases 

During the application development phase, the application developer chooses a required 

fault-tolerance strategy for a skeleton based on the given application characteristics. The 

selected fault-tolerant strategy is configured with the skeleton to support fault-tolerance 

of the application. The application developer is expected to have some understanding of 

the fault-tolerance issues but only from the usage perspective rather than from the 

implementation perspective. Figure 7 illustrates the user roles against the various phases 

of the skeleton during the application development in the model. 

4.3 Introduction to the FT-PAS Model 

In this section, we introduce the FT-PAS model by illustrating its concepts in an informal 

manner. Our idea is generic and can be implemented in any pattern-based parallel 
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programming model. For the purpose of discussion and to demonstrate our idea, we use 

the PAS model as a base. 

4.3.1 Overview 

In practice, patterns in parallel-programming are targeted for application developers in 

the application-related aspects. In comparison, our research focuses on assisting the 

application developer in systems-specific aspects, e.g., fault-tolerance. This research 

emphasizes the following two issues: firstly, different fault-tolerant techniques are well 

suited for different patterns in parallel programming. Secondly, patterns-specific fault-

tolerance strategies can be implemented and pre-packaged in a generic fashion, i.e., 

independent of a specific application. 

We present a new approach to provide fault-tolerance for parallel application using 

patterns. We aim to achieve three important aspects from the fault-tolerance perspective: 

(1) Specificity, (2) Separation-of-Concern and (3) Protocol Extension. All of these 

aspects are discussed in the following sections. 

The FT-PAS model is based on the PAS model. It supplements a new layer on top of the 

PAS to support pattern-specific fault tolerance. Another objective of the FT-PAS model 

is to provide necessary building blocks to build new fault-tolerance strategies as needed 

for available skeletons. As a result, it extends the users of the PAS model with new 

responsibilities related to delivering fault-tolerance. 
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4.3.2 Specificity 

Each pattern is targeted for a different problem type. Similarly, this inherent nature to 

address varying problem categories can help in addressing the system-side issues too (i.e. 

fault-tolerance). An abstract skeleton As in the PAS is defined as {Rep, BE, Topo, P^t, 

PExt}, each of which was elaborated on previously. In the FT-PAS model, we amend this 

definition by including a new parameter S related to the fault-tolerance. This new 

parameter related to the fault-tolerance strategy is to be designed, implemented and pre­

packaged along with the skeleton. So our new refined definition for the abstract skeleton 

with the appended fault-tolerance parameter in the FT-PAS model is as follows: 

As = {Rep, BE, Topo, Pint, PEXI, S} 

Here, Rep stands for the representative, BE stands for the back-end, Topo stands for the 

topology, Pint stands for the internal primitives, Pext stands for the external primitives, and 

the new parameter S stands for the fault-tolerance strategy. 

Abstract skeleton Concrete skeleton 

Fault tolerant concrete Fault-tolerant Code complete 
External skeleton module 

primitives ~~ —__ 

Figure 8: FT-PAS skeleton and its components 
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The fault-tolerance strategy S is defined as pattern-specific like other primitives of the 

skeleton. They are built using the basic building blocks and/or implementing the required 

interfaces available from the model based on the strategy requirement. The various 

internal components of the skeleton are shown in Figure 8. 

4.3.3 Separation of Concern 

In practice, the patterns are realized as a skeleton in parallel-programming by providing 

an abstraction with higher-level programming primitives and by hiding the lower-level 

issues like communication and synchronization. The PAS is one such model that 

separates the lower-level parallel programming issues from the application developer to 

ease the application development. 

In addition, in FT-PAS, we address issues concerning fault-tolerance in a pattern-specific 

manner. We separate the fault-tolerance implementation concern from the application 

developer. This is by delivering the fault-tolerance implementation pre-packaged in an 

application independent manner. During the application development phase, an 

application developer can choose a pattern along with the suitable fault-tolerance 

protocol which fits a given application. 

Thus, the model can aid the developer in choosing an appropriate skeleton (pattern-

implementation) using the catalog of skeletons. This approach provides the necessary 

separation of concern to the application developer as far as fault-tolerance is concerned. 
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4.3.4 Protocol Extension 

Protocol extension is a key requirement for any pattern-based approach. Protocol 

extension in our context refers to the fault-tolerance protocol extension, provisions for 

allowing newer fault-tolerance protocols to be integrated to an available pattern, 

whenever need arises. The FT-PAS model provides various core facilities to the protocol 

developer in order to design a new strategy. Formally, the core facilities of the model are 

represented as follows: 

Fcore = {Pb, M , F r , C s , L s , T s } 

Here, Fcore refers to the core facilities provided by the model. Pb refers to the protocol 

behavior abstraction, M refers to the marshaller abstraction, Fr refers to the fault reactor 

abstraction, Cs refers to the checkpoint service, Ls refers to the logging service and Ts 

refers to the timing service. All these core facilities are explained in detail in the next 

chapter following the discussion on the framework internals. These core facilities are 

used in the fault-tolerance protocol extension. In theory, protocol extension is represented 

as follows: 

" x — Jpx • fcore * * custom 

Here, Px refers to an extended protocol which is to be implemented. Fcore refers to the core 

facilities provided by the model; Fcustom refers to a set of components concretized from 

the core facilities; andy^ refers to the concretization function or action that the protocol 

developer specializes and/or overrides in order to deliver the extended protocol-specific 

functionalities. 
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It is the responsibility of a protocol developer to extend the FT-PAS model with newer 

fault-tolerance protocols for an existing skeleton. In this context, the model can also serve 

as a test-bed for evaluating newly designed fault-tolerance protocols. Protocol extension, 

its primitives and usages, are demonstrated in detail using examples in the next chapter. 

4.3.5 Generic Group Definition 

From the PAS discussion, we know that a topology is defined as part of a given skeleton. 

The base level primitives of the core facilities (discussed in the previous section) do not 

have view of the topology, which is defined at higher level. A 1-D virtual processor array 

representation is used internally in the FT-PAS model for referring to a node. For a given 

topology, the individual nodes are mapped on to the 1-D virtual processor array. This is 

similar to the virtual processor grid mapping in the extensible PAS [41]. However, we 

use the 1-D virtual processor array for our convenience. In theory, it is represented as 

follows: 

Where, M\s a mapping function that maps nodes from the topology space Tto the 1-D 

virtual processor array A. There are skeletons which require protocols to be executed in 

groups like the group checkpoint protocol. The model should provide a generic way to 

define groups in order for our base primitive to understand them irrespective of the 

topology definition. This is achieved by using the abstract group mapping function. In 

theory, a group mapping function is represented as follows: 

g<M: r^ g 
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Here, QM is an abstract group mapping function, which is concretized during the 

concretization phase. This mapping function groups the nodes from the abstract topology 

space Tto the abstract group space Q. The constituents of the group space refer to the 

members in the 1-D virtual processor array. This enables base primitives to understand 

the group definition for executing the configured protocol. 

/* group mapping function*/ 
void map_group(const Location &loc, SubGroupSet &grpSet) 
{ 

grpSet[Loc[ROW]].addMember(loc); // members of same row are mapped to a same group 
} 

/* function to retrieve group id for a given member */ 
GROUPID my_group_id(const Location &loc, SubGroupSet &grpSet) 
{ 

return grpSet[loc[ROW]].getGroupId(); 
} 

Figure 9: Example of generic group mapping 

For example, consider a data parallel skeleton in which all members of an identical row 

should form a group. The group mapping function for such scenario is shown in Figure 9. 

In the above discussions, we have introduced the FT-PAS model and various aspects that 

are addressed in the model. The design and implementation of the FT-PAS model are 

subsequently presented in the next chapter. 

55 



Chapter 5 

FT-PAS Design, Usage and Case Study 

In this chapter, we discuss the design and implementation of the FT-PAS model. We call 

the FT-PAS model implementation: the FT-PAS framework. Fault-tolerance protocol 

extension is an important contribution of this research. The framework provides basic 

building blocks in order to implement a new fault-tolerance protocol for available 

skeletons. We also discuss the protocol extension design along with its primitives and 

usages. In Section 5.1, the architecture of the FT-PAS framework is presented. In Section 

5.2, the high level design of the FT-PAS framework is discussed, which includes 

discussion on the framework internals. In Section 5.3, we discuss protocol extension, its 

primitives, and framework usage from a two user perspective (skeleton/protocol 

developer and application developer) along with case studies. 

5.1 Framework Architecture 

In general, a framework is an abstraction to realize specialized functionalities by using 

reusable components. The abstract components/interfaces provided with the framework 

are subsequently concretized. A framework consists of the following: 

1. A generic backbone, which aids in design, development and application execution in 

the framework defined flow of control. 
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Application Module Application Module Application Module 

Operating system 
Operating system Operating system 

Figure 10: General view of the framework 

2. A set of concrete components, which are reusable and commonly used in building an 

application. 

3. A set of abstract components or interfaces, which are to be specialized or overridden 

to deliver application-specific functionalities. 

By implementing the interfaces and embedding the application functionalities, a concrete 

application can be generated. 

5.1.1 The FT-PAS Architecture 

Figure 11 shows the architecture with various constituents and support layers of the FT-

PAS (Fault-Tolerant PAS) framework. We have demonstrated our idea using the PAS 

model. As discussed previously, the PAS model generically (i.e., independent of specific 

patterns and applications) defines the architecture of the patterns. The skeleton-specific 

communication and synchronization primitives form the part of the PAS model. These 

57 



skeleton-specific communication-primitives are defined using the support from the layer 

underneath, the message passing library. 

Application Module 

PAS 

Operating system Message Passing Library and 
Runtime 

Figure 11: Architecture of the FT-PAS framework 

The FT-PAS augments PAS with the patterns-specific fault-tolerance support. The 

application programmer adds the application-specific behaviors (i.e. code segments 

; control- and data-flow) by choosing the appropriate skeleton(s). specifying 
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Figure 12: High-level view of the framework 

In addition, the application developer who wants to incorporate fault-tolerance support in 

an application should choose the fault-tolerance strategy and supply the application-
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specific fault-tolerance strategy parameter(s). Figure 13 gives the conceptual view of the 

PAS skeleton embedded with fault-tolerance support. 

Abstract skeleton ^ j 5;>;;>0 j ] 

Skeleton concretization 

Concrete & semi-concrete fault- tolerance 
strategies 

A B Y Z fc. 

Fault-tolerance 
configuration 

Figure 13: Conceptual view of the fault-tolerant parallel architectural skeleton 

Depending on the fault-tolerance strategy at hand, the provisioning of fault-tolerance to 

an application might be developer transparent or semi-transparent, i.e., requiring some 

application-specific information. 

5.1.2 Framework Assumption 

Distributed and parallel systems experience different types of failures, such as crash 

failure, omission failure and byzantine failure, which are discussed in [22, 40]. Our 

framework is aimed at handling crash failure (process crash) and assumes fail-stop [22, 

40] of software faults, along with the following assumptions: (1) The hardware and 

operating system can survive, (2) The underlying network service can survive, (3) The 

Framework to support fault-tolerance 

Concrete skeleton with 
fault-tolerance 

Application code & Fault tolerance concretization 
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communication link is reliable, and (4) The framework itself is fault-tolerant and hence, 

can survive. 

5.2 Design of the Framework Internals 

In this section, we discuss the design of the FT-PAS framework internals. We have 

classified the constituents the framework into two categories: concrete modules and 

abstract interfaces. The abstract interfaces are those which need to be specialized in order 

to implement the fault-tolerance strategy-specific behaviors. The concrete modules are 

generic functionalities that are commonly used in most of the fault-tolerant strategies. As 

a result, these modules are provided as part of the framework internals. Figure 14 

provides the design view on the modules of the framework internals. 

Application Specific Implementation 

Fault-Tolerant Skeleton 

Recovery Manager 

Framework Internals 

Figure 14: Framework internals 
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5.2.1 Messaging Mechanism 

a) Message Passing Library 

The FT-PAS is built on top of sockets due to limitations with MPI for implementing 

fault-tolerance (discussed previously in Section 2.2). An MPI like communication library 

is built using sockets. The library provides the minimal necessary functionalities of MPI 

but with added functionalities related to the fault-tolerance support. 

The basic lower-level primitives are used to form the higher-level primitives of the FT-

PAS framework. More details on the added functionalities are discussed in the next 

section. 

b) Message Passing Library Extension 

From our discussion in Chapter 2, it is clear that provision to support fault-tolerance is 

required from the underlying system-software. As in FT-MPI [1], the FT-PAS model 

extends the message passing library with modified semantics in order to provide support 

for fault-tolerance. The extension to the message passing library is described in the 

following section. 

The communicator in our message passing library is incorporated with modified 

semantics to handle failure recovery. There are various semantics possible. These 

semantics guide different recovery strategies at a higher-level of abstraction. Our current 

implementation supports the following semantics: build, recover, and repair. The build 

mode is responsible for establishing a communication link among all processes during 
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normal execution. The repair mode is responsible for reestablishing the communication 

link to the recovered member in the healthy dependent members. Similarly, the rebuild 

mode is responsible for reestablishing the communication link to the healthy dependent 

member in the recovering failed member. 

All the above discussed modes and communication primitives are lower-level details. 

They are used for the internal working of the model and hence, are not visible at a higher 

layer. 

5.2.2 Failure Detection Module 

There exist various failure models that are discussed in [22, 40] to address different kinds 

of faults. In our model, we focus only on the fail-stop fault model, i.e. process failure. 

The communication link is assumed to be reliable. From the framework internals 

perspective, the failure detection module consists of two components: Failure Detection 

Monitor and Failure Notification Service. 

a) Failure Detection Monitor 

Each process, on successful registration, is monitored by the failure detection monitor. 

The information (hostname and processed id) required for monitoring is registered to the 

kernel as part of the framework initialization during the application startup. As mentioned 

earlier, the failure detection monitor detects only process failure. 

The failure detection monitor can detect process failure based on various approaches. In 

general, they can be classified into two. The first approach is based on the operating 
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system support [38]. It scans for process availability using simple shell-command (i.e., 

ps). This, when combined with remote-shell (RSH) or secure-shell (SSH), provides a 

simple but elegant mechanism to scan for availability of a process on a remote machine. 

The second approach is based on the pulse or heart-beat technique. This technique is used 

in most of the parallel and distributed systems for failure detection. The approach is 

based on two models: the push model (heart-beat) and pull model (are-you-alive) as 

addressed in [37]. In our framework, we currently support the first approach to scan for 

faults. The latter approach (heart-beat or pulse technique) can as well be implemented in 

our model without any impact on the application as it is purely internal to the system and 

totally transparent to the protocol developer. 

Fault-Tolerant Skeleton 

Failure Notification 
Service 

Dependency 
Analyzer 

Recovery Manager 

Framework Internals 

Figure 15: Failure detection monitor - post detection procedure 

Upon receiving a failure report, the failure detection monitor checks for the reported 

failure before proceeding to the post-detection procedure. As shown in Figure 15, upon 

failure detection, it finds all the dependent members and forwards the failure report to 
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their failure notification service. Lastly, it passes a message to the recovery manager in 

order to trigger a recovery operation. 

b) Failure Notification Service 

The failure notification service receives a failure report from the failure detection 

monitor. On receiving the failure report, it marks the corresponding dependent as failed 

in order to avoid the error being cascaded further. In addition, it triggers post failure 

actions which are protocol-specific behaviors. It also sends a failure report to the failure 

detection monitor when there is failure during communication with a dependent member. 

5.2.3 Checkpoint Module 

The checkpoint module consists of three components: dependency analyzer, checkpoint 

executor and checkpoint coordinator. The dependency analyzer is responsible for 

maintaining a checkpoint dependency graph (CDG) [33] which is used during recovery. 

The checkpoint executor is responsible for the following: checkpoint initiation and 

checkpoint operation. The checkpoint coordinator is responsible for leading the 

coordination action among the dependent members as a result of checkpoint initiation. 

a) Checkpoint Dependency Analyzer 

The checkpoint dependency analyzer maintains the checkpoint dependency graph (CDG) 

(discussed previously in Section 3.2.2). The CDG is maintained per skeleton and it helps 

to track recovery dependencies among the members of the skeleton. It is common to all 

the strategies and is used during the recovery of processes. For any given checkpoint 
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and/or logging protocol, its execution results in a protocol-specific checkpoint 

dependency graph. This graph captures the dependency relations and is constructed from 

the dependency information received from each checkpoint executor. 
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Figure 16: Interaction between dependency analyzer and other components 

In addition, the checkpoint dependency analyzer plays the role of serving the dependency 

information related to the CDG it maintains. It provides dependency information as 

needed upon request to various components during the protocol execution. The failure 

detection monitor and checkpoint coordinator are two other components which contact 

the dependency analyzer to identify the dependent members. The recovery manager is 

another component which inquires the dependency analyzer to identify the recovery line 

a.k.a. consistent cut (discussed previously in Section 2.1.2). 

b) Checkpoint Executor 
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As mentioned earlier, the checkpoint executor is responsible for executing the checkpoint 

operation. As a result of the checkpoint operation, it stores the checkpoint file in a 

location as directed by the resource manager. It also sends the corresponding dependency 

information during the checkpoint execution to the dependency analyzer in order to keep 

the CDG up-to-date. 

c) Checkpoint Coordinator 

There are fault-tolerance strategies for some patterns that require explicit blocked 

coordination with their peers. The checkpoint coordinator is used for such cases. It does 

coordination on behalf of the protocol initiator by executing a three-phase coordination 

protocol [39]. The three-phase checkpoint protocol is as follows: In the first phase, the 

coordinator receives a checkpoint initiation request from an initiator. Consequently, it 

forwards the synchronization request to all peers of the initiator. In the second phase, 

each member acknowledges back with the ready-message. In the final phase, the 

coordinator sends the commit message to all peers to checkpoint the system state. 

In the second phase of the protocol, a ready-message is sent when a member is ready to 

participate in the coordination protocol. Otherwise, a busy-message is sent when it is 

busy waiting to communicate with its dependent. For example, assume that two members 

are supposed to communicate as per the execution order. The coordinator sends a 

synchronization request to these two members. The first member happens to receive the 

coordination signal late because it is currently blocked (waiting to receive a message 

from its counterpart), while the other member receives the coordination signal on time 

before the communication-send invocation. Here, the first member is blocked for the 
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communication to complete, whereas the second member has already sent a ready-

message back to participate in the protocol execution. In such a scenario, the kernel 

releases the second member in order for the blocked member to complete its 

communication. As a result, the blocked-member along with its counter-part progress 

forward in order to empty their communication buffer. This mechanism is similar to the 

bookmark exchange mechanism in [35]. Finally, the remaining members participate 

voluntarily in the protocol execution (when their communications are complete) by 

acknowledging back with the ready-messages. Subsequently, the coordinator initiates the 

third phase of the protocol in order to save a consistent global state. 
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Figure 17: Three phase consistent checkpoint coordination 

5.2.4 Resource Management 

The kernel manages various resources which include processes and their information, 

control message queue, and checkpoint/log file. Upon the start of an application, the 

kernel spawns a required number of processes remotely in the preconfigured list of hosts. 

Each member registers with the kernel by providing its process information as part of the 

setup procedure for purposes of failure detection and recovery. Thus, the kernel maintains 
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the process information for each member of a skeleton. We refer to this registered 

information as member information. It consists of process id, hostname, state, and 

identifier. In addition, the kernel registers one listener thread per remotely spawned 

process in order to handle control messages from the application. All received control 

messages in each listener are placed in a common synchronized queue for processing. 

The kernel organizes the checkpoint and log files related to the application in a directory 

structure. This is established using a shared Network File System (NFS), making it 

visible to all nodes. All information regarding where to store and fetch the checkpoint/log 

file are directed by the kernel to the individual processes. This is done as part of the 

initialization procedure at the application start. 

This basic file management feature can very well be extended to support sophisticated 

functionalities, e.g., checkpoint/restart fault-tolerance for OpenMPI [36], where remote 

file management is achieved. In which, the runtime system temporarily saves the 

snapshot locally. Then, it moves them to a stable storage as post-checkpoint aggregate 

operations. During the recovery execution, it preloads the checkpoint file from the stable 

storage to a node in which restoration is targeted. 

5.2.5 Recovery Module 

Upon receiving intimation from the failure detection monitor, the recovery manager 

triggers the recovery operation. The recovery operation involves collaboration with 

various components of the kernel. Recovery is executed in three stages. In the first stage, 

the recovery manager inquires the dependency analyzer to identify a recovery line from 
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the CDG. As a result, the dependency analyzer computes the recovery line with respect to 

the failed member. Both the recovery line and the dependent members list are sent back 

to the recovery manager. 
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Figure 18: Recovery module and its action 

In the second stage, the recovery manager restores the failed member and its recovery 

executor retrieves all resources required for the application restoration. It recovers the 

application state to an earlier saved system state. Note that the recovery executor is a 

protocol specific module which is implemented by the protocol developer to incorporate 

specific fault-tolerance behaviors. Finally, when the application is recovered, the 

recovery executor registers with the kernel before resuming the application execution. 

In the third stage, the recovery manager broadcasts the re-establishment-message to all 

the members engaged in the recovery procedure. Thus, the communication links between 

revived and healthy members are restored. Figure 18 illustrates these actions. 
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The recovery procedure can be as simple as creating a replacement member, ready to take 

over a failed process to compute a new job (e.g., restart-recovery strategy for the 

dynamic-replication skeleton). Whereas, a sophisticated mechanism might involve 

recovering a failed member to resume its execution from an intermediate checkpointed 

location (e.g. gradient-based checkpoint protocol). 

5.3 Protocol Extension: Primitives, Usages and Case Studies 

In this section, we discuss various core facilities that are used in building new fault-

tolerance protocols. The core facilities include abstract interfaces and semi-concrete 

components which facilitate the design of the protocol-specific behaviors. Subsequently, 

we discuss the primitives that are available from these core facilities. In addition, we 

show the framework usages from the perspective of a protocol developer and an 

application developer. We demonstrate how these primitives are used for the protocol 

extension to design new strategies via difficult case studies. 

5.3.1 Overview of the Protocol Extension 

Protocol extension refers to provisions for integrating new fault-tolerance protocols to an 

available pattern, whenever need arises. In this section, we discuss the core facilities and 

its interfaces which are used in the protocol development as part of the protocol 

extension. 

The framework provides the following key facilities to a protocol developer in order to 

integrate new strategies. Most of these core facilities implement part of the kernel 

functionalities and define interfaces required for the protocol-specific behavior 
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implementation. This enables capabilities to integrate the protocol-specific behaviors 

with the framework internals. The core facilities are as follows: 

(i) The failure reactor implements failure notification service as part of kernel 

functionalities and defines abstract post failure action which is to be implemented 

specifically for a protocol. As part of the failure notification service, it automatically 

triggers post failure actions which are protocol-specific. 

(ii) Checkpoint and logging services implement the checkpoint executor as part of the 

kernel functionalities. They provide built-in checkpoint and logging facilities which 

create checkpoint, generate logs, save checkpoint and log data in a stable storage (either 

locally or remotely on NFS) as directed by the resource manager. The default action(s) 

can be overwritten by the protocol developer, e.g., what information to save, for instance, 

in an application-level check-pointing or where to save the logged information for the 

purpose of performance tuning. 

(iii) The recovery handler implements the recovery executor as part of the kernel 

functionalities. It provides a default abstract recovery implementation. The protocol 

developer can define the protocol-specific recovery initialization and post-recovery 

procedures. It collaborates with the kernel in recovering both the application and the 

communication links among the members of the skeleton. 

(iv) The marshaller provides an interface for implementation of the protocol-specific data 

marshalling and un-marshalling capabilities. The framework provides a default 

marshaller that facilitates the marshalling and un-marshalling of the application's 
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contiguous data (without pointers). It can be extended to support complex non-contiguous 

data as well. The default marshaller can also be extended by the protocol developer for 

marshalling/un-marshalling of the fault-tolerance protocol-specific control information. 

(v) The fault-tolerance protocol behavior module provides an interface to the protocol 

developer in order to incorporate fault-tolerance protocol specific behavior which is 

executed as part of the protocol. For example, in case of the gradient-based checkpoint 

protocol, its behavior includes starting the checkpoint action by the protocol initiator. 

Consequently, the checkpoint action is executed in other group members after receiving a 

control message with checkpoint flag set, etc. Similarly, the handling of the in-transit 

messages (i.e., by logging/replaying during the failure-free/recovery execution) is all part 

of the protocol specific behaviors. 

5.3.2 Primitives for the Protocol Extension 

In this section, we discuss the primitives available from the various core facilities 

introduced in the previous section. 

a) Checkpoint service 

The checkpoint service implements the checkpoint facility with two flavors: system-level 

check-pointing and application-level check-pointing. The type to use for a given protocol 

is defined as part of the strategy definition by the protocol developer. 

In case of system-level checkpoint, the checkpoint service uses a customized checkpoint 

library to save the checkpoint state. This customized version is derived from a well 
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known checkpoint library [10] from the PSNC research group. The derived version has 

been tailored specifically to the needs of our framework. In case of application level 

checkpoint, it uses a simple mechanism to save the application developer's identified 

state on to the stable storage. Both implementations are wrapped around a common 

interface, though the underlying technique/mechanism involved in these two variants is 

different. Below is the list of primitives available from the checkpoint service to a 

protocol developer: 

(i) Primitive for Setup Action: This primitive is used to setup the checkpoint service in a 

skeleton. It is invoked as part of strategy initialization in the skeleton. 

(ii) Primitive for Checkpoint Action: This primitive is used to initiate the checkpoint 

action. It is invoked during the failure-free execution to save the system state that is used 

during the recovery. 

(Hi) Primitive for Recovery Action: This primitive is used to initiate the recovery action. 

It is invoked as part of the recovery execution and recovers the system state to an earlier 

saved-execution state stored during the failure-free execution. 

(iv) Primitive for Call Back Registration Action: Each strategy is unique and requires a 

way to define strategy-specific action as part of a protocol, i.e., post checkpoint action 

and post recovery action. The checkpoint service provides a callback mechanism to 

achieve this. This primitive is used by the protocol developer to register a callback 

method. It is registered either as post checkpoint action type or post recovery action type. 

The checkpoint service invokes the callback method automatically as post-failure actions 

based on callback type (defined during the service registration). 
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b) Logging service 

The logging service provides necessary basic interfaces required for the protocol 

development related to logging. The logging service is used for different purposes based 

on the fault-tolerance strategy. It is used for logging messages and for recording send 

events. In case of gradient-based checkpoint protocol, it is used to log the in-transit 

messages. Whereas, in the color-based checkpoint protocol, it is used to log messages of 

two types - in-transit messages and inter-group messages. In the traditional logging 

protocol, it is used to log all the messages exchanged among the members. The purpose 

of the logging service varies based on the fault-tolerance strategy. Below is the list of 

primitives available from the logging service to a protocol developer: 

(i) Primitive for Setup Action: This primitive is used to setup the logging service in a 

skeleton. It is executed as part of the fault-tolerance strategy initialization in the skeleton. 

It is invoked during both the normal execution and the recovery execution. 

(ii) Primitive for Cleanup Action: This primitive is used to clean up the log generated 

during the fault-tolerance strategy execution. 

(Hi) Primitive for Message Record Action: This primitive is used for logging a message. 

It is invoked as part of the fault-tolerance strategy execution. 

(iv) Primitive for Message Replay Action: This primitive is used to replay an earlier 

recorded message during the application recovery. It is a part of the recovery execution 

strategy. 
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(v) Primitive for Replay-Message Existence Check: This primitive is used to check for 

existence of a replay message. This decision is used by the protocol in order to decide for 

a message replay action. 

(vi) Primitive for Send Redundancy Check: This primitive is used to check whether a 

send-action is to be ignored or not. It returns true when the send-action is a redundant 

action. This decision is used by the protocol to ignore the send-action replay related to a 

non-dependent member which is not part of the recovery group. 

c) Marshaller service 

The marshaller service facilitates the protocol developers to incorporate 

packing/unpacking actions to embed the protocol-specific control information. This 

service provides a default packing and unpacking implementation for the application 

messages. It can be extended by a protocol developer to incorporate strategy-specific 

actions such as piggy-backing the control information with the application messages. 

Below are the data packing primitives available from the marshaller service: 

(i) Primitive for Data Packing: This primitive is used to marshal the input data into a 

specified target buffer. 

(ii) Primitive for Data Unpacking: This primitive is used to un-marshal the encoded data 

into a specified target buffer. 

Below are the marshaller interfaces which need to be concretized in order to specify 

protocol-specific actions: 
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(i) Interface for Marshal Action: This interface should be concretized to implement the 

strategy-specific marshalling actions. It is invoked on a send-action as part of the pre­

processing operation. 

(ii) Interface for UnMarshal Action: This interface should be concretized to implement 

the strategy-specific un-marshalling actions. It is invoked on a receive-action as part of 

the post-processing operation. A default marshaller implementation to pack/unpack the 

application message is shown below. 

class DefaultMarshaller: public Marshaller 
{ void marshalAction(...) /* Default marshalling procedure */ 

{ DataPacking::pack(...);/*Pack application data*/ } 
void unmarshalAction(...) /* Default un-marshalling action */ 
{ int offset = DataPacking::unpack('...); /*Unpack application data */ } 

} 

d) Failure reactor service 

The implementation of the framework provides the default failure reactor as shown 

below. 

class DefaultFailureReactor: public FailureNotificationService{ 
void actionQ 
{ 

/* Re-establishes communication link with recovered member */ 
ftCommService.ReconnectComm(....); 

}} 

Note that there can be differences in these actions, depending on the protocol. For 

example, in a color-based checkpoint protocol where the groups can exchange occasional 

messages among them, the re-establishment of the communication links can be delayed 

as some sends are discarded (redundant sends). Similarly, if receives need to replay 

logged messages then re-establishment of the communication links can be delayed. 

Hence, the framework facilitates by providing interfaces to both define and register 
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strategy-specific failure reactors for different communication methods. The Failure 

Reactor Registration Primitive is used to register a failure reactor module to the 

framework. The registered failure reactors are invoked by the failure notification service. 

They are executed as part of the pre-processing operations during recovery. 

e) Fault-tolerance behavior 

This service provides interface methods which are to be implemented to define protocol 

specific behaviors. The list of interface methods available to a protocol developer are as 

follows: (i) Pre-Send Fault-Tolerance Behavior, (ii) Post-Send Fault-Tolerance 

Behavior, (Hi) Pre-Delivery Fault-Tolerance Behavior, (iv) Post-Delivery Fault-

Tolerance Behavior, (v) Send Fault-Tolerance Behavior and (vi) Receive Fault-Tolerance 

Behavior. 

All the above interface methods should be concretized by the protocol developer to 

define pre- and post-actions related to a fault-tolerance strategy. Their uses in few of the 

strategies are shown as part of case studies in the following sections. 

f) Integration 

The protocol developer has to integrate all the protocol services used in the fault-

tolerance strategy design. A service registration method (registerFTServices) is defined 

in the protocol class to facilitate integration. The protocol developer has to implement 

this method. In this method, the protocol developer defines necessary service instances 

and invokes their corresponding service registration method to configure services. The 

framework provides one primitive for registration action for each service. These 
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primitives are listed as follows: (i) Primitive for Marshaller Registration (ii) Primitive for 

Timing Service Registration, (Hi) Primitive for Checkpoint Service Registration, (iv) 

Primitive for Logging Service Registration, (v) Primitive for Failure Reactor Registration 

and (vi) Primitive for Fault-Tolerance Behavior Registration. 

The registerFTServices method is invoked as part of the fault-tolerance strategy 

initialization. In addition, the protocol developer needs to implement protocol-specific 

cleanup action if required. Those fault-tolerance service-specific cleanups are invoked in 

the cleanupFTServices method of the protocol class. In turn, this will be invoked as part 

of the protocol cleanup action. 

5.3.3 Framework Usages and Case Studies 

In this section, we illustrate the framework usage by implementing two pattern-specific 

fault-tolerance protocols using the above discussed primitives. 

5.3.3.1 Case Study 1: Gradient-based Checkpoint Protocol 

In this section, we illustrate how to implement a variation of a group checkpoint protocol 

for the master-slave skeleton using the core facilities provided by the framework. The 

protocol implemented here is the 'gradient-based checkpoint protocol' that is discussed in 

Section 3.2. The protocol assumes that the subgroups are independent, i.e., there are no 

(occasional) interactions across subgroups. The coordination among subgroup members 

are achieved via piggybacking of application messages with control information. Thus, 

there are no explicit protocol messages. 
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Figure 19: High-level class diagram of gradient-based checkpoint protocol extension 

Figure 19 provides a high-level class hierarchy diagram illustrating the framework 

modules involved and their extensions by a protocol developer, which are elaborated in 

the following: 

a) Usages of the framework from a protocol developer's perspective 

The following discussion illustrates a protocol developer's involvement in implementing 

the gradient-based checkpoint protocol using the core functionalities of the framework. 

Each fault-tolerance protocol has a protocol-specific behavior class which is extended by 

the protocol developer from the default behavior class, FTBehavior. In this specific 

example, we name this extended class as GradientCkptBehavior. This extended behavior 

class implements all the protocol-specific actions as shown in the pseudo code of the 

gradient-based checkpoint protocol in Figure 20. 
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Protocol specific fault tolerant behavior for pre-send action: 
If I am the Initiator and the checkpoint flag is enabled 

Increment the checkpoint number. 
Take a new checkpoint. 

End If 

Protocol specific fault tolerant behavior for pre message-delivery action: 
If the computed checkpoint gradient is positive (i.e., piggybacked checkpoint number is large) 

Update receiver's checkpoint number with the piggybacked checkpoint number. 
Take a new checkpoint. 
Record checkpoint dependency. 

Else if the computed checkpoint gradient is negative (i.e., in-transit message) 
Record the received message. 

End If 

Protocol specific fault tolerant behavior for post receive-invocation action: 
If the member is currently recovered and there exist messages available for replay then 

Replay-message from log. 
Returns a flag to indicate the existence of the replay-message. 

Else 
Returns a flag to indicate the non-existence of the replay-message. 

End If 

Figure 20: Gradient-based checkpoint protocol - protocol behavior 

In this protocol, each member process logs the in-transit messages. During recovery, the 

revived member needs to replay these messages and hence, re-establishment of the 

communication links could be delayed. The module inherits the failure notifications 

service and implements post-recovery actions as shown in Figure 21. Such actions are 

also defined for other communication methods, e.g. send, probe, etc. 

Protocol specific failure reactor action for receive communication method: 
If replay-messages do not exist then 

Re-establish the communication link. 
End If 

Figure 21: Gradient-based checkpoint protocol - failure reactor 

Similarly, as mentioned earlier, the framework provides default data marshalling and un-

marshalling facilities. It can be extended by a protocol developer to incorporate protocol-
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specific marshalling action by implementing the Marshaller interface. In this particular 

example of the gradient checkpoint protocol, it is required to piggyback protocol-specific 

control information (i.e. checkpoint number). The pseudo-code of the protocol-specific 

GCPMarshaller action implementations are shown in Figure 22. 

Protocol specific marshal action: 
(i) Pack the application message to the target buffer using the data packing utility. 
(ii) Pack the control message to the target buffer using the data packing utility. 

Protocol specific unmarshal action: 
(i) Unpack the application message from the input buffer using the data packing utility. 
(ii) Unpack the control message from the input buffer using the data packing utility. 

Figure 22: Gradient-based checkpoint protocol - marshaller 

Now we implement the protocol class, FTPGradientbasedCkpt. This protocol class 

inherits from the FTProtocolBase class of the framework. The protocol developer 

overrides two initialization methods and provides protocol-specific initialization actions 

as shown in Figure 23. 

In the overridden startuplnitialize method, the default base protocol's initialization 

method is first invoked. This establishes the communication link from the member to the 

framework kernel. Next, the setup method for the checkpoint service is invoked to 

initialize the service. This is followed by setting up a checkpoint interval using the in­

built per-process timer service through invocation of the setTimer method. Lastly, the 

logging service setup routine is invoked to initialize the logger in order to record and 

replay the in-transit messages. 
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class FTPGradientbasedCkpt: public FTProtocolBase 
{ 

private: 
struct Controllnfo 
{ intckptnumber; 

..../* other support method definitions */ 
}; 
public: 
/* Extension with protocol specific startup initialization */ 
void startuplnitialize() 
{ FTProtocolBase::startuplnitialize();/* Framework provided initialization */ 

getCheckpointService().setup(....);/* Checkpoint service setup */ 
getTimingService().setTimer(....);/* Timer initialization */ 
getLoggingService().setup(....);/* Logger initialization */ 

} 
/* Extension with protocol specific recovery initialization */ 
void recoveryInitialize() 
{ FTProtocolBase::recoveryInitialize(); /* Framework provided initialization*/ 

getCheckpointService().setupAction(....);/* Checkpoint service setup */ 
getCheckpointService().recoveryAction();/* Checkpoint recovery step */ 

} 

/* Extension with protocol specific post checkpoint recovery */ 
void postRecoveryCallBack() 
{ FTProtocolBase::registerInfoToKernel(); /* Register info, with kernel*/ 

FTCommService ftComm; 
ftComm.reset(); /* Reset comm. channel state */ 
getLoggingService().setupl(....); /* Setup logging service to replay messages*/ 

} 

} 

Figure 23: Gradient-based checkpoint protocol class 

Similar initializations are done during the recovery execution. They are amended in the 

recoverylnitialize method. This protocol uses the checkpoint service as part of protocol 

behavior. Hence, the protocol should implement post-recovery callback methods (Figure 

23) in order to execute the necessary protocol-specific post-recovery actions. Finally, all 

the protocol-specific service implementations are integrated using the registerFTServices 

method as shown in Figure 24. 
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void FTPGradientbasedCkpt::registerFTServices() 
{ 

/* Failure reactor registration */ 
registerFailureReactor(RECV_FAILUREJR£ACTOR,newGCPRecvFailureReactor()); 
..../* Similar registration of other reactor */ 

registerMarshaller(new GCPMarshaller()); /*Marshaller registration */ 
registerTimingService(new Clock()); /* Timing service registration */ 

registerLoggingService(new LoggingService()); /* Logging service registration */ 
CheckpointService ckptService = new CheckpointService(SYSTEMLEVEL); 
registerCheckpointService(ckptService); /* Checkpoint service registration */ 

/* Post checkpoint action and post recovery action registration */ 
ckptService->registerCallBack(POST_RECOVERY_ACTION, 

CheckpointService: :CallBack(this, &FTProtocolInterface::postRecoveryCallBack)); 
..../* Similar registration of postCheckpointCallBack method */ 

registerFTBehavior(new GradientCkptBehavior()); /* FT Behavior registration*/ 
} 

Figure 24: Gradient-based checkpoint protocol - service registration 

In the previous discussion, a protocol developer is assumed to be knowledgeable about 

the framework's services and its interfaces. Also, the protocol developer is required to be 

knowledgeable about the system's specific issues, e.g., fault-tolerance protocol design. 

On the contrary, an application developer is expected to be minimally knowledgeable 

about the system's specific issues. The following section illustrates an application 

developer's involvement in embedding the previous fault-tolerance protocol into an 

application code that uses the master-slave skeleton. 

b) Usages from an application developer's perspective 

In a blocking checkpoint protocol, where all processes are part of one group, the 

application developer has virtually no involvement other than choosing a checkpoint 

interval (if not using the default). In case of the previous protocol, the application 

developer has to specify the subgroups and the protocol initiator for each subgroup. 
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class Slave : public SingletonSkeleton<CommFrot MS, FTPGradientbasedCkpt> 
{ /* The Slave module extends the SingletonSkeleton in PAS. Its communication protocol is 
CommProtMS and FT protocol is FTPGradientCkpt, which is the extended FT protocol class defined in 
the previous section */ 

void run() {/* application specific code */} 
} 

class Application : public MasterSlaveSkeleton <Slave, CommProtMS, VOID, FTPGradientbasedCkpt> 
{/* An application that uses the Master-Slave skeleton */ 

void run() {/* application specific code */} 
void FTConfigure() /* FT protocol specific configuration */ 
{ SubGroups subgrpSet; /* Set of communication subgroups */ 

subgrpSet.setSize(NUM_OF_SUBGRPS); /* Specify the size */ 
/* create a subgroup: groupid, number of members, member enumeration */ 
SubGroup grpl(GRPl J D , GRP1_SIZE, GRP1_MEMBERS); 
grpl.ProtocolInitiator (GRPIJTNITIATORJD); /* set protocol initiator id */ 
grpl.Ckptlnterval = GRP1 CKPTINTERVAL; /* set checkpoint interval */ 
subgrpSet.addSubGroup (grpl); /* add the above defined subgroup to the set */ 
/* ...Other subgroup declaration are omitted... */ 

} 

U I 

Figure 25: Gradient-based checkpoint protocol - application developer's perspective 

Each instantiated FT-PAS module has a run method and an FTConfigure method for fault 

tolerance configuration. This is illustrated in Figure 25. The implementation of the 

FTConfigure method is the only involvement of the application developer from the fault-

tolerance perspective (Figure 25). For certain protocols, the configure methods can use 

the default in-built parameters and functionalities. Hence, the fault tolerance support 

becomes completely application-developer transparent in such cases. 

5.3.3.2 Case Study 2: Application-level checkpointing for Iterative Problems 

In this section, we demonstrate how to implement the fault-tolerance protocol for the 

master-slave skeleton where the slaves are naturally synchronizing, i.e., iterative in 

nature. This protocol uses the application-level checkpoint to save states. 
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Figure 26: High-level class diagram - fault-tolerance protocol for iterative problem 

It is assumed that the application developer identifies all the application state variables. 

Only these user-identified application states are saved and restored during the checkpoint 

and recovery execution. Figure 26 illustrates a high-level class diagram of the various 

classes involved in the protocol implementation. 

a) Usage of the framework from a protocol developer's perspective 

The following section illustrates a protocol developer's involvement in implementing the 

fault-tolerance protocol for the naturally synchronizing slaves. In order to support the 

application-level checkpointing, the framework provides a state class as shown in Figure 

27. In addition, the framework provides an abstract iterator as shown in Figure 27. This 

protocol implements this abstract iterator to plug-in the fault-tolerance (application-level 

checkpoint) support for the naturally synchronizing slaves. 
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class State 
{ ... 

int iterationCount; 
int ckptlnterval; 

} 

template <class TState, class FT> 
class Abstractlterator : public FT 
{ virtual void Init(TState &myState)=0; 

virtual bool Check(TState &myState, bool *ret)=0; 
virtual void Finalize(TState &myState)=0; 
virtual void Iteration(TState &myState)=0; 
virtual void PostIteration(TState &myState)=0; 
virtual void Start(TState &myState)=0; 

} 

Figure 27: Abstractlterator and State interfaces 

The state class is amended with a set of minimal states which need to be saved for the 

internal working of the iterator. In the next subsection, we show how this specialized 

iterator is used by the application developer for concretization of the slave (application-

specific). 

As mentioned earlier, this protocol is targeted for problems which exhibit natural 

synchrony in their behavioral pattern (i.e., slaves which are iterative in nature). Thus, the 

protocol requires no explicit coordination action or protocol behavior and does not 

exchange any protocol-specific control information. Hence, it uses the default marshaller 

for marshalling the application messages. It uses the default failure reactor for re­

establishing the communication link. Timing service is used to trigger the checkpoint at 

regular iteration interval. 
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void FTProtocolNatuSync:;registerFTServices() 
{ 

/* Failure reactor registration */ 
registerFailureReactor(RECV_FAILURE_REACTOR, new DefaultFailureReactor()); 
..../* Similar registration of other reactor */ 

registerMarshaller(new DefauItMarshaller()); /*Marshaller registration */ 
CheckpointService ckptService = new CheckpointService(APPLICATIONLEVEL); 
registerCheckpointService(ckptService); /* Checkpoint service registration */ 

} 

Figure 28: Iteration-based application level checkpoint protocol class 

Similar to the protocol discussed earlier, the FTProtocolNatuSync protocol class provides 

protocol initialization actions for both the startup and recovery execution. Subsequently, 

the protocol class provides implementation to the registerFTServices method in order to 

integrate various services used in the protocol implementation (Figure 28). The 

checkpoint service instance used here is configured to support the application-level 

checkpointing. 

The FTIteratorAppLvlCkpt class implements the abstract iterator by using the fault-

tolerance protocol as the FTProtocolNatuSync protocol class. In the iterator 

implementation, the protocol developer provides implementation only for the Start and 

Postlteration methods. This is illustrated in Figure 29. 

Protocol specific start action: 
If the recovery flag set then 

Recover the application-states. 
Else 

Initialize the application-specific states. 
End If 
Loop until the exit condition defined in the check method is 

Execute the iterator method. 
End Loop 
Execute the finalize method for the cleanup. 

satisfied 
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Protocol specific 
If the iteration 

Post-Iteration action: 
count matches the checkpoint 

Takes a new checkpoint. 
End If 

iteration interval the 

Figure 29: Iterator with fault-tolerance actions 

All other method definitions (i.e., Init, Check, Iterator, Finalize) are delegated to the 

application developer in order to define the application-specific behaviors. 

b) Usages from an application developer's perspective 

The application developer's involvement in using the above designed protocol is shown 

in Figure 30. 

class AppState : public State 
{ Work work; 

Result partial Result; 
} 

class Slave : public SingletonSkeleton<CommProt_MS, FTIteratorAppLvlCkpt<AppState» 
{ /* The Slave module extends the SingletonSkeleton using CommProt_MS as communication protocol 
and FTIteratorAppLvlCkpt as FT protocol, which is an iterator implementation embedded with fault-
tolerance protocol */ 

AppState myState; /* Application state instance */ 
void Init(AppState *state){/* Application specific code */} 
void Iterator(AppState *state){/* Application specific code */} 
void Check(AppState *state){/* Application specific code */} 
void Finalize(AppState *state){/* Application specific code */} 

} 

class MSApplication : public MasterSlaveSkeleton <Slave, CommProtMS, VOID, 
FTIteratorAppLvlCkpt> 
{ /* An application that uses the Master-Slave skeleton */ 

void run() {/* application specific code */} 

void FTConfigure() 
{/* FT protocol specific configuration */ 

SubGroups subgrpSet; /* Set of communication subgroups */ 
subgrpSet.setSize(NUM_OF_SUBGRPS); /* Specify the size */ 

88 



/* create a subgroup: groupid, number of members, member enumeration */ 
SubGroup grpl(GRPl_ID, GRP1_SIZE, GRP1_MEMBERS); 
grpl.ProtocolInitiator (GRPl_INITIATOR_ID); /* set protocol initiator id */ 
grpl.Ckptlnterval = CKPTJTERAINTERVAL; /* set checkpoint iteration interval */ 
subgrpSet.addSubGroup (grpl); /* add the above defined subgroup to the set */ 

} 

J 

Figure 30: Fault-tolerant iterative application - application developer's perspective 

As with other protocols discussed earlier, the application developer should concretize 

FTConfigure as part of the fault-tolerance configuration. The application developer 

should define a class inheriting the state class like AppState (Figure 30). This class 

should be defined with all the application-specific state variables which need to be saved 

as part of the application-level checkpointing. In addition, the application developer 

should concretize the iterator methods inherited in the slave class with the application-

specific code. Moreover, the slave class should declare an instance of the AppState class 

and use this instance to hold any application state during processing. 

In the above discussions, we have demonstrated the framework design, its primitives and 

usages through two case studies. The evaluation of the above built pattern-specific fault-

tolerance protocols along with others are presented in the next chapter. 
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Chapter 6 

Evaluation 

In this chapter, we discuss the evaluation of the framework in terms of its usages and 

performance. In Section 6.1, we discuss the environment and implementation issues 

related to the FT-PAS framework. Subsequently, we summarize our experience on the 

usages of the framework and its related issues. Finally, in Section 6.3, we present the 

experimental results and discuss the performance overhead of the FT-PAS framework. 

6.1 Environment 

The current implementation of the FT-PAS framework is in C++. The test environment 

consists of Sun-Fire-280R workstations. Each workstation has 2 CPUs (UltraSPARC III 

Cu processors); it operates at 1015 MHz and has 4 GB RAM. All the workstations are 

running the Solaris 9 operating system (SunOS) and are connected by LAN. 

The framework uses a customized version of the PSNC Checkpoint library. The original 

version of the library was written in C. We ported it to C++ and customized it to the 

needs of the framework. 

The framework is currently implemented on the Solaris platform. The experiments are 

conducted in a LAN of homogeneous workstations. The development system uses 

standard tools like GNC C++ library, etc., for compilation and execution. The underlying 

communication layer uses sockets. 
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6.2 Experiences on the Framework Usages 

To evaluate the usages of the FT-PAS, we implemented a set of protocols for the master-

slave skeleton. We designed the gradient-based checkpoint protocol and the color-based 

checkpoint protocol (discussed previously in Section 3.2). We implemented both the 

protocols and tested their performance with the above discussed test environment. The 

experimental results are presented in the next section. 

Below are few observations made from the experiments conducted during our evaluation. 

• Using the FT-PAS, it is expected that the effort required to develop fault-tolerant 

parallel applications are minimized. 

o It provides built-in fault-tolerant skeletons, readily usable for application-

development with minimal effort. 

o It provides capability to choose fault-tolerance strategies based on the 

application-characteristics from a list of supported protocols for a given 

skeleton. 

• Moreover, the FT-PAS is expected to reduce the protocol development time for 

implementing new fault-tolerant strategies from the perspective of a protocol 

developer. 

o It provides concrete reusable services such as checkpoint service, logging 

service, fault monitor, etc., in order to reduce strategy implementation time. 
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o It provides semi-concrete or abstract interfaces to incorporate strategy-specific 

behavior. 

• The FT-PAS objective is to achieve a separation-of-concern, by separating the fault-

tolerance implementations from the application-specific details. Thus, it reduces the 

application developer's burden. 

• Using the FT-PAS, the protocol developer can extend the fault-tolerance protocol 

base supported for a given skeleton by implementing new fault-tolerance strategies. 

• Unlike many existing systems, the FT-PAS is aimed at addressing concern related to 

delivering fault-tolerance support in a pattern-specific manner instead of having one 

common fault-tolerance strategy for all application types. 

6.3 Experimentation and Results 

We conducted experiments to measure the performance of the framework using the test 

environment described in Section 6.1. The results observed from various experiments are 

discussed in the following section. In general, the objectives of these experiments are to 

measure the framework overhead incurred due to fault-tolerance. This section is divided 

into two subsections. Each of these subsections discusses a different set of experiments 

for different objectives and interprets their results. 

In the first subsection, the objective is to measure the framework overhead with and 

without fault-tolerance. In the second subsection, the objective is to measure and compare 

the overhead incurred due to different fault-tolerance strategies. In all these experiments, 
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the FT-PAS framework components are configured to run in a single workstation, while 

the application modules run on the other workstations. 

6.3.1 Framework Overhead 

In the first set of experiments, the objective is to measure the overhead due to logging. 

Table 1 presents the test results observed from the experiment by varying a single 

parameter, i.e., number of communication events. 

Total no. of 

comm. 

events 

120 

240 

360 

480 

Execution time 

without fault-

tolerance (in sec). 

1.9090 

3.5893 

5.2327 

6.8943 

Execution time 

with logging 

protocol (in sec). 

2.1441 

4.0737 

5.9893 

8.2407 

Overhead on use 

of logging protocol 

(in sec). 

0.2351 

0.4844 

0.7566 

1.3464 

Overhead on use of 

logging protocol (in 

percent). 

12.32% 

13.50% 

14.46% 

19.53% 

Table 1: Overhead incurred with and without the simple logging protocol 

In theory, the logging overhead is expected to increase linearly with the increase in the 

communication events (illustrated using dotted line in Figure 31). However, from the 

above experiment, we observe an exponential increase (Figure 31). This deviation might 

be due to the framework overhead (i.e. overhead incurred because of using a central data 

store for message logging). 
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Figure 31: Overhead due to logging 

In the second set of experiments, the objective is to measure the overhead due to the 

checkpointing (system-level). Table 2 illustrates the test results observed by varying the 

number of checkpoints. 

Num. of 

checkpoint 

1 

2 

3 

4 

Execution time 

without fault-

tolerance (in sec). 

2.2677 

7.0509 

13.7527 

23.3919 

Execution time with 

checkpointing (in 

sec). 

2.3836 

7.4402 

14.6365 

25.1313 

Overhead on use 

of checkpointing 

(in sec). 

0.1159 

0.3893 

0.8838 

1.7394 

Overhead on use of 

checkpointing (in 

percent) 

5.11% 

5.52% 

6.43% 

7.44% 

Table 2: Overhead incurred with and without checkpointing 

In theory, the checkpoint overhead is expected to increase linearly with increase in the 

number of checkpoints (illustrated using dotted line in Figure 32). However, from the 

above experiment, we observe an exponential increase. This deviation might be due to 
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the framework overhead (i.e. overhead incurred because of using a central data store for 

checkpoint state saving). 
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Figure 32: Overhead due to checkpointing 

6.3.1 Comparison of the Different Fault-Tolerance Protocols 

In this subsection, we discuss two sets of experiments in order to compare two different 

fault-tolerance protocols. In the first set of experiments, the objective is to compare the 

overhead incurred using the color-based checkpoint protocol (discussed in Section 3.2) 

and the blocking checkpoint protocol. First, we illustrate how the overhead changes in 

varying the message localization density. Message localization density is defined as the 

average message group density divided by the total inter-group messages; whereas, the 

message group density is defined as the number of intra-group messages divided by the 

group size. We fixed all parameters, such as the number of slaves per group, number of 

groups and total number of intra-group messages per group but varied the message 

localization density. The message localization density is varied by varying the number of 
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inter-group messages exchanged between two groups. Table 3 shows the overhead 

observed from executing four test cases, each with varying message localization density. 

Avg. message 

localization 

density 

0.83 

1.11 

1.67 

3.33 

Execution time 

without FT (in 

sec). 

4.1888 

3.9789 

3.9472 

3.8919 

Execution time with 

color-based ckpt 

protocol (in sec). 

5.2375 

4.6824 

4.4284 

4.1638 

Overhead on use of 

color-based ckpt 

protocol (in sec). 

1.05 

0.70 

0.48 

0.27 

Overhead on use of 

color-based ckpt 

protocol (in percent) 

25.07% 

17.59% 

12.16% 

6.94% 

Table 3: Fault tolerance overhead - varying message localization density 

The overhead decreased as the message localization density increased. This is from the 

fact that the more messages are localized within a group, the less become the inter-group 

messages. Thus, the overall overhead decreases as the logging overhead incurred from 

inter-group message decreases, which is observed from the graph (Figure 33). 

Figure 33: Fault tolerance overhead percent - varying message localization density 
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Also, we measured the overhead due to the blocked checkpoint protocol; its average 

overhead is computed as 20.2 sec. 

Figure 34: Overhead ratio - varying message localization density 

Figure 34 shows the overhead ratio of the blocked checkpoint protocol over the color-

based checkpoint protocol by varying the message localization density. The overhead 

ratio increases as the density increases. Thus we can interpret from the graph that the 

color-based checkpoints do comparatively better than the blocked checkpoint protocol for 

applications that have higher message localization density. 

Num. of 

checkpoint 

1 

2 

3 

4 

Execution time 

without fault-

tolerance (in sec). 

2.2677 

7.0509 

13.7527 

23.3919 

Execution time 

with appl-level 

ckpt (in sec). 

2.3192 

7.3256 

14.4813 

24.6791 

Overhead on use 

of appl-level ckpt 

(in percent). 

2.27% 

3.90% 

5.30% 

5.50% 

Execution time 

with sys-level 

ckpt (in sec). 

2.3836 

7.4402 

14.6365 

25.1313 

Overhead on use of 

syst-level ckpt (in 

percent). 

5.11% 

5.52% 

6.43% 

7.44% 

Table 4: Overhead comparison - application-level and system-level checkpoint 
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In the final set of experiments, the objective is to compare the overhead incurred due to 

the system-level checkpoint protocol with the application-level checkpoint protocol for a 

problem of iterative type such as Jacobi. The overhead incurred using these two protocols 

is observed by varying the number of checkpoints (Table 4). 

Figure 35: Overhead comparison - application-level and system-level checkpoint 

The size of the state information that is saved at each checkpoint for the system-level 

checkpoint is significantly higher than that of the application-level checkpoint. Figure 35 

illustrates the increasing trend of the checkpoint overhead comparing the two checkpoint 

protocols. We can interpret that as the number of checkpoints increases, the percentage-

overhead increase due to the system-level checkpoint is higher compared to that of the 

application-level checkpoint. Thus, we can infer that the application-level checkpoint 

protocol do comparatively better than the system-level checkpoint protocol for the long 

running parallel applications. 
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Chapter 7 

Conclusion and Future Research 

In this thesis, we have classified patterns into sub-pattems based on the fault-tolerance 

strategies, which are identified based on pattern characteristics. We have presented a 

model to achieve application-specific fault-tolerance in parallel programming. 

The FT-PAS model is based on the PAS model. The FT-PAS addresses issues from a two 

user group perspective: the application developer and the protocol developer. The FT-

PAS provides patterns implementation along with their supported fault-tolerance 

strategies. This pre-packaged and pre-implemented solution delivers maximum possible 

separation-of-concern, i.e., to alleviate the application developer's burden due to the 

fault-tolerance implementation-specific issues. 

The protocol developer is responsible for extending existing skeletons with newer fault-

tolerance protocols based on need. Hence, the protocol developer is expected to be well 

experienced with systems-specific issues. The FT-PAS model contributes a set of core 

facilities to support the protocol extension. Thus, the protocol developer can use these 

core facilities to build new fault-tolerance strategies. From that perspective, the 

framework can also be regarded as a test-bed for evaluating newer fault-tolerance 

protocols. 

Future studies can possibly focus on some areas of enhancement and limitation of the 

current FT-PAS model, of which few are briefed here. Currently, we assume that the 

99 



internal-component of the FT-PAS model is failure-free. It is possible to overcome this 

limitation by making the internal components fault-tolerant. The centralized checkpoint 

dependency graph used in the FT-PAS model is another limitation which leads to total 

loss of data when the central resource fails. This limitation can be resolved by managing 

the checkpoint dependency graph in a distributed manner. 

Further extensions can be amended to the model in order to contribute more flexibility in 

terms of providing fault-tolerance. Further investigation is required in order to address 

other issues such as compose-ability and adaptability with respect to fault-tolerance. 

Compose-ability refers to addressing concerns in order to support fault-tolerance in 

skeleton composition [41]; whereas, adaptability refers to investigating the need for 

variable fault-tolerances in an application based on the run-time characteristics. 

Currently, the fault-tolerance provided for an application in other existing systems, 

including ours, is based on a single strategy (configured statically before compilation). 

Whereas, an application might require choosing and adapting its strategy, in such case it 

needs to be configured with more than one strategy. Thus, the strategy to use gets 

selected at runtime based on the application's runtime characteristics. 

In addition, the FT-PAS model can be extended to support Extensible PAS [41]. A 

graphical user interface can be amended to the FT-PAS model to ease the users' 

involvement related to application development and protocol development. All these are 

potentially candidates that lead us in an interesting direction for future research. 
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