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A B S T R A C T 

Fast And Scalable Similarity and Correlation Queries on Time Series 

Data 

Philon Nguyen 

Time series are ubiquitous in many fields ranging from financial applications such 

as the stock market to scientific applications and sensor data. Hence, there has been 

an increasing interest in time series indexing over the past years because there has 

been an increasing need for fast methods for analyzing and querying these datasets 

that are often too big for practical brute force analysis. We start with the main contri­

butions to the field over the past decade and a half. We will then proceed by describing 

new solutions to correlation analysis on time series datasets using an existing index 

called the Compact Multi-Resolution Index (CMRI). We describe new algorithms for 

indexed correlation analysis using Pearson's product moment coefficient and using the 

multidimensional correlation coefficient and introduce a new measure called Dynamic 

Time Warping Correlation (DTWC) based on Dynamic Time Warping (DTW). In 

addition to these linear correlation algorithms, we propose an algorithm called rank 

order correlation on a non-linear/monotonic measure. To support these algorithms, 
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we revised the Compact Multi-Resolution Index (CMRI) and propose a new index for 

time series datasets which improves over the sizes, speed and precision of CMRI. We 

call this index the reduced Compact Multi-Resolution Index (rCMRI). We evaluate 

the performance of rCMRI compared to CMRI for range queries and range query 

based queries. 
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Chapter 1 

Introduction 

In the past years, time series have become ubiquitous to many application domains 

such as stock market data streams, meteorological sensor data or scientific datasets. 

With advances in technology, voluminous amount of data is being collected for pat­

tern analysis and searches. For this, many techniques have been developed to index 

time series data for high performance queries and analysis. These techniques are an 

efficient substitute for sequential scan which is often too costly and even sometimes 

infeasible when the data size is huge. A first efficient solution for similarity matching 

on time series datasets was proposed in 1995 by Rakesh Agrawal, Christos Faloutsos 

and Arun Swami [AFS95]. 

The first chapter of this thesis is an overview of the main time series indexing 

techniques that have been proposed since 1994. Since for most cases, these indexes 

are a mixture of spatial data structures, dimensionality reduction and query and 

analysis algorithms, we will adopt a component base approach. By this we mean 
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that we will intensively review each ingredient that time series indexes may contain 

before considering the different recipes that have been developed. This helps the 

reader to see the new recipes for time series indexes that can be developed by mixing 

in an original manner different ingredients together. 

A persistent collection of time series is called a time series database. Data vol­

umes expected in time series databases may range from large to enormous. Efficient 

algorithms are necessary to mine this data since usual brute force algorithms based 

on sequential scan do not scale. Hence, it is necessary to structure and transform 

the raw time series in order to be able to perform useful data mining operations and 

extract valuable knowledge. This process of structuring time series for fast query 

processing and analysis is called time series indexing. 

The components of all time series indexing techniques surveyed in this thesis are 

dimensionality reduction, matching measures and algorithms and the actual indexing 

technique. The literature is vast on these components: we will focus on major works 

relevant to the field of time series mining and we will present a taxonomy of current 

methods for each of these components. 

Recently, interesting new and experimental data mining techniques have surfaced 

in the media, in sci-fi action movies and in the world of computer science. Users now 

want to be able to, perform online queries over huge petascale databases of multimedia 

data by content. Here are a few examples, 

1. National security agencies want to be able to see if a known terrorist was spotted 
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in any national airport video surveillance system. 

2. Doctors feed MM, EEG, ECG or any other physiological data sets to a database 

in order to get an accurate diagnostic. 

3. Stock brokers want to see if any stock in the world market followed some pattern 

in order to make buying and selling decisions. 

4. GIS data could be queried by content. For example, users may want to find the 

number of houses in a 2 mile radius of any nuclear power plant. 

5. Scientists need to analyse data coming from the new CERN Large Hadron 

Collider which is estimated to produce roughly 15 petabytes per year.. 

All these application domains have a common denominator: the data is spatial. 

Hence, traditional alpha-numeric databases and data structures are inefficient and 

sometimes insufficient: we need spatial data structures. These emerging applications 

are faced with huge computational challenges that can only be addressed by efficient 

data structures. 

Information and data streams expressed in terms of time series are often too 

large in their raw form to be used by humans for decision making. Economists, 

for example, are confronted with huge amounts of stock market data which they 

must relate to micro-economic and macroeconomic data. For example, stock market 

data can stream every second generating petascale databases. Efficiency is a central 

issue for correlation analysis and search in time series, and is required for many such 
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applications, examples of which are as follows. 

1. Stock brokers need to correlate stock market patterns to macroeconomic pat­

terns such as interest rates or exchange rates or to correlate stock market 

patterns amongst themselves. Stocks could also be clustered based on their 

correlation values [CC07]. 

2. Sensor network data could be mined using correlation analysis. Airplane engines 

sensor networks could make use of correlation queries in order to determine if 

repairs are needed. 

3. Click-stream and transactional data analysis could benefit from faster correla­

tion analysis. For example, in the customer relation management domain, we 

could correlate a marketing event to the number of clicks on certain web pages. 

4. In pattern matching, correlation queries could be used when query and target 

patterns are not identical but only correlated. Since we index the time series 

data over sliding windows, we can match shifted patterns too [JMK05]. Fur­

thermore, Dynamic Time Warping (DTW) based correlation could correlate 

skewed patterns. 

1.1 Spatial Data Structures 

Our review is focused more towards the R-tree family of spatial indexes, from low 

to high dimensional implementations, as they seem to be ubiquitous in the related 



Figure 1.1: R-tree structure [MNPT06]. 

literature on time series indexing. 

1.1.1 Hash-Based Solutions 

Grid files are a common hash-based spatial data structure [Sam06]. Technically, they 

are a multi-dimensional array such that the dimensions Xi,X2t...ixn correspond to the 

spatial coordinates x\, x2, • • • , %n of the object to be. indexed. Many queries can be 

performed efficiently on Grid files. The D-index is another hash-based spatial data 

structure for metric distance queries [DGSZ03]. 

Basically, the D-index generates buckets dynamically according to the dataset and 

from a specific metric distance measure on which different queries can be performed. 

1.1.2 Tree-Based Solutions 

We quickly review some terms and concepts which will help better understand the 

related literature that follows. We will rapidly browse through sequential variants of 



the original R-tree proposed by Guttman [Gut84] such as the R*-tree [BKSS90], the 

R+-tree [FSR87], the X-tree [BKK96] and the M-tree [CPZ97]. 

The R-tree is an efficient data structure for storing spatial objects such as CAD/ 

CAM geometries, GIS data, time series data, or multimedia objects. Any point query 

(exact match search) can be resolved at best in 0(log N), where N is the number of 

objects in the dataset. In addition to supporting point queries, R-trees also support 

other types of queries including range queries, nearest-neighbour queries, spatial joins 

and closest pairs queries [MNPT06]. 

The basic idea in R-trees is that an object's boundary can be approximated by 

a Minimum Bounding Rectangle (MBR). Leaf nodes of an R-tree contain the actual 

data objects while internal nodes contain an MBR which englobe the MBR's of their 

child nodes. This is shown in Figure 1.1 [MNPT06]. A fuzzy extension to MBR, 

called fuzzy MBRs, is proposed in [dCdTB04], which can deal with uncertainty in 

similarity queries. 

1.1.3 Variations on the R-Tree 

The R+-tree is actually an improvement based on two negative characteristics of 

R-trees: 

1. MBR's overlap and hence multiple paths are visited for a single query. 

2. Some large rectangles may increase overlap. 
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Figure 1.2: R+-tree structure [MNPT06]. 

Figure 1.3: R*-tree structure [MNPT06]. 
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Figure 1.4: X-tree structure [BKK96]. 

To avoid these problems, the R+-tree lets objects be divided between two or 

more MBR's hence achieving minimum overlap and balanced MBR size. As shown 

in Figure 1.2 [MNPT06], object d is divided between MBR B and C. 

The R*-tree on the other hand tries to minimize the area covered by each MBR 

and minimize the overlap between them by using heuristics, one of which is an in­

sertion strategy based on which MBR needs the less increase in size. Figure 1.3 

[MNPT06] shows an R*-tree. 

Both the R+-tree and the R*-tree are low dimensional data structure meaning 

that they perform well in practice when their MBR's have a dimension lower than 8. 

High-Dimensional R-Trees 

The X-tree is an R-tree for higher dimensional data. Its basic heuristic says that 

when data is highly overlapped, a linear data structure is better whereas when data 

is not overlapped, a hierarchical data structure is better. In the X-tree, directory 

rectangles are hierarchical whereas supernodes are linear. Figure 1.4 [BKK96] shows 

an instance of an X-tree. 
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Figure 1.5: An R-tree compared to an M-tree [JOV06]. 

The M-tree is a metric data structure, which means that it is meant to index 

objects for metric queries, queries whose distance function follows the triangle in­

equality. The M-tree indexes objects according to their mutual distance rather than 

their minimum bounding rectangle. A comparison between the R-tree and the M-tree 

is shown in Figure 1.5 [JOV06]. The M-tree was shown to perform well for higher 

dimensionality [CPZ97]. 

We mention briefly that other variants of R-trees for parallel and distributed 

architectures exists, such as those proposed in [FK92, FKK96, LS99, HKMW99, 

MLR07a, MLR07b, JOV06, JOV05, AAF99]. 

1.2 Dimensionality Reduction Techniques 

Let us begin with a simple definition of dimensionality reduction. A dimensionality 

reduction algorithm projects an n-dimensional object A in Rn onto an m-dimensional 

object B in Rm where n > m such that some properties of A, for instance distance 
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Figure 1.6: Hypercubes [cf. Wikipedia]. 

predicates, are preserved in B. For example, if an object A can be described by 100 

values, a reduced object B obtained from A could for example be represented by 10 

values such that some properties of A would be preserved in B. 

A first goal of dimensionality reduction is to improve the overall computational 

efficiency by reducing the total number of operations to be performed on an object 

and the space required to store the object. However, when dealing with time series, 

another more important factor is to be considered as shown in [LV06]: as the dimen­

sionality of a data object grows towards infinity, the discriminating power of distance 

measures reduces. In other words, as dimensionality of random vectors tends towards 

infinity, the norm of these random vectors approaches a constant, which is the mean 

of all these random vectors. We can show this in a different way by showing that 

high dimensional objects behave abnormally. For example, a circle and an imbricated 

square in the circle have different perimeters but as their dimensionalities grow to­

wards infinity, their perimeters tend to be equal. This is shown in Figure 1.6, where 

2D projections of hypercubes are shown for increasing dimensions. 

There are three main types of dimensionality reduction techniques used for time 
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Figure 1.7: DFT of time series data [AWAOO]. 

series mining, as follows. We consider representative works for each type. 

1. Spectral: Discrete Fourier Transforms (DFT), Discrete Wavelet Transforms 

(DWT) 

2. Piecewise: Piecewise Aggregate Approximation (PAA), Adaptive Piecewise 

Constant Approximation (APCA) 

3. Symbolic: Symbolic Aggregate Approximation (SAX) 

We next review the main techniques developed under the above taxonomy. All 

these techniques are lower-bounding and follow the requirements of the GEMINI as 

we will see. 
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1.2.1 Spectral Methods 

Discrete Fourier Transforms 

Discrete Fourier Transform (DFT) is a well known technique in fields such as sig­

nal processing. The first time series indexing techniques proposed in the litera­

ture originally used DFT as dimensionality reduction technique. Given a sequence 

s =< xo,Xi,...,xn-i > , the DFT coefficients of s denoted S = < X0,Xi, ...,Xn-i > 

is denned as follows [SZ02]: 

i n— 1 

XF = — ^xie-
2^Fl/n,F = 0,l,...,n-l (1.1) 

The inverse DFT is given by: 

xi = -±rYjXFe2^F*ln,i = Q,l)...,n-\ (1.2) 
V n F=0 

If all the coefficients are kept from the transformation, then the Euclidean distance 

between two non-transformed sequences and two transformed sequences is the same 

(Parsival's theorem). However, usually, only the first k coefficients are kept, hence 

the use of DFT as dimensionality reduction technique. In the case where the first 

k coefficients are kept, it has been shown that the Euclidean distance between the 

transformed and reduced coefficients lower bounds the real distance [AFS95]. Figure 

1.7 [AWAOO] shows a DFT. 
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Figure 1.8: DWT of time series data [AWAOO]. 

Discrete Wavelet Transform 

The Haar. wavelet is the first known wavelet transform [HaalO]. Figure 1.8 [AWAOO] 

shows a Haar wavelet transform. The Haar wavelet is used in [CFY03] for which an 

exact algorithm is provided, which implements the following expression. The Haar 

wavelet is used in , its exact algorithm can also be found there and its mathemaitcal 

expression is given by: 

i/4 (x) = 4>(2jx-i),i = Q,...,2j- (1.3) 

where 

m = 
1 0 < t < 0 . 5 , 

-1 0.5 < t < 1, 

0 otherwise 

given a scaling function: 
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= < 
1 0 < t < 1, 

0 otherwise 

1.2.2 Piecewise Aggregate Methods 

Piecewise Aggregate Approximation 

The Piecewise Aggregate Approximation (PAA) technique was introduced indepen­

dently in [FYOO, CKMPOla]. The idea is to segment a time series into equal length 

intervals and compute the mean of the points falling in each interval. PAA coefficients 

are given as follows [CKMPOla] (note that indexes start at 1): 

N X, 

J=f(i-1)+1 

The Euclidean distance between two PAA reduced sequences is [CKMPOla]: 

/?(xJy) = ^ J ^ ( x i - y i )
2 (i.5) 

As for the previous methods, the Euclidean distance between reduced sequences 

using PAA lower bounds the real distance. 

Adaptive Piecewise Constant Approximation 

The Adaptive Piecewise Constant Approximation (APCA) introduced in [CKMPOlb] 

looks like a DWT or PAA transform. However, in the APCA reduction, segments 

approximating the series can be of variable length. Hence a leading value and a mean 
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Figure 1.9: PAA compared to APCA reductions [CKMPOlb]. 

approximation value are required for each approximating segment. The algorithm 

starts by performing a DWT transformation over the time series to be reduced. Then 

it combines some segments together using an algorithm which runs in O(nlogn) and 

which finds an optimal combination scheme for the DWT segments. Furthermore, 

[CKMPOlb] shows how APCA is lower bounding and how distance measures can be 

computed over the APCA reduced coefficients. We will not go into the details of 

these distance measures, however, the basic idea is to bound each APCA segment 

with a maximum value and a minimum value taken from the original non-reduced 

time series and compute distance measures from these values. Figure 1.9, taken from 

[CKMPOlb] illustrates how APCA is superior in terms of precision compared to PAA. 

1.2.3 Symbolic Methods 

Symbolic Aggregate Approximation 

SAX was introduced by Keogh et al. [KLLC03, KLLC07]. The idea underlying this 

technique is to discretize a time series into a string representation such that traditional 
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Figure 1.10: SAX transformation [KLLC03]. 

string data structures (e.g. suffix trees and prefix trees) can now be used to index 

the sequences. The algorithm starts by transforming the time series into its PAA 

representation. A normalization is usually applied prior to dimensionality reduction 

in order to achieve equiprobable occurrence of symbols. A lookup table is then used 

to convert values falling in a pre-calculated interval to symbols. For example, a rule 

could be of the form "if 0.18 < x < 0.43 then x is mapped to A", where x is a PAA 

coefficient and A is a SAX coefficient. Figure 1.10 taken from [KLLC03] shows a 

SAX representation of a time series. 

1.2.4 Comparisons 

When choosing a dimensionality reduction technique, there is a trade-off to consider 

between size and precision. Note that a common measure of effectiveness of a di­

mensionality reduction technique is to compare the Euclidean distance between the 

original time series and their transformed counterparts. Discrete Fourier Transforms 

(DFT) applied to time series was proposed in [AFS95]. The idea is to use a slid­

ing window of n values over time sequences and transform the n values and keep N 
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values, where N is the number of DFT coefficients and is much smaller than n, the 

length of the sliding window. The DFT transformation runs in O(nlogn) and needs 

2N values for storage since the transformed data requires storing real and complex 

values. However, the space utilization of DFT can be reduced to N assuming the com­

plex conjugate property of DFT. The Discrete Wavelet Transform (DWT) [CFY03], 

improves DFT as it runs in O(n) and requires N coefficients for storage. However, 

in practice, DWT coefficients are very large and for sequences shorter than 10,000 

values, DFT and DWT perform the same. Comparisons between DFT and DWT are 

discussed in [AHK01]. Piecewise Aggregate Approximation (PAA) performs as well 

as DWT when the size n of the sliding window is a power of 2, but performs better 

than DWT for other values of n. One of the issues in DWT is the window size that 

has to be a power of 2. When it is not the case, DWT pads the values with 0's to make 

the window size attain a power of 2, hence reducing the precision of the transform. 

As in DWT, the run time complexity of PAA is O(n). As an improvement over PAA, 

Adaptive Piecewise Constant Approximation (APCA) proposed in [CKMPOlb] runs 

in O(nlogn) and offers a better approximation than PAA when the number of seg­

ments calculated are less or equal than PAA's. However, APCA needs 2N coefficients 

for storage, a leading value and a mean value. All the above mentioned methods are 

lower bounding and satisfy, as we will see, the GEMINI framework requirements. 

The choice of a particular dimensionality reduction usually involves considering 

a number of factors including space utilization, precision, complexity, indexability 

and the different distance measures it supports. As mentioned before, APCA is 
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more precise than PAA since it uses variable length segments to approximate the 

original sequence. However, PAA supports Dynamic Time Warping based distance 

measures; we found no study on this for APCA. SAX is reported as being the fastest 

dimensionality reduction method, however, an explicit time series index using it was 

only presented recently [AKFA08]. 

Other common feature extraction and dimensionality reduction techniques such 

as those based on Principal Component Analysis (PCA) and Neural Networks, while 

interesting in some application domains, are not suitable for time series. The main 

reason for this is that those techniques often require many iterations before they 

converge and they also require global information, although some implementations 

may be incremental. In time series, the data volume does not allow iterations over 

the whole data set and the information about the data may be incomplete at any 

given time since we do not know what may happen a minute or an hour from now. 

1.3 Absolute and Pa t te rn Based Similarity Mea­

sures 

We call a measure absolute if it computes a distance between two time series according 

to some given predefined metric. Examples of absolute distance measures are the 

Euclidean distance, Manhattan distance, Chebyshev's distance or Dynamic Time 

Warping distance. Since we are dealing with time series, we only consider distance 

measures over numerical domains and exclude distance measures over categorical 
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data such as Jacquard's coefficient. Absolute distance measures can be metric or 

non-metric. For example, the Euclidean distance is metric and the DTW distance 

is non-metric since it does not respect the triangle inequality. We call a measure 

pattern-based if it does not necessarily compute an absolute distance but rather, for 

example, the similarity in form of two time series. For example, a correlation query 

would look like this: "Find all subsequences in a time series database that move 

together with a degree of correlation higher than 90%". 

1.3.1 Absolute Similarity Measures 

Lp Norms 

Lp norms are a group of distance measures that can be expressed as follow: 

NII = ( 4 E W ) 1 / P (i-6) 
7V n=0 

For p = 1, we get the Manhattan distance and for p = 2, we get the well known 

Euclidean distance. We get Chebyshev's distance for p = oo. 

Dynamic Time Warping 

Exact indexing of dynamic time warping distance measures was proposed in [KR04] 

using PAA as a dimensionality reduction technique. It uses lower bounding dis­

tance measures of dynamic time warping distance that can apply to value space 

(LB_KEOGH) or to feature space (LB_PAA). Dynamic time warped distance is ob-
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Figure 1.11: Comparison between Euclidean distance and DTW [KR04]. 

tained from the following recurrence equation where d(xi,x2) is any given distance 

measure (in our case, the Euclidean distance): 

DTW(i,j) = d(qi,Cj) + min{DTW of adjacent cells) (1.7) 

where '"DTW of adjacent cells'" is given by: 

DTW{i - l,j - l),DTW(i - l,j),DTW(i,j - 1) (1.8) 

Figure 1.11 [KR04] shows how DTW works in comparison with Euclidean distance 

measures. 

1.3.2 Absolute Similarity Queries 

Range Queries 

A range query could be stated as follow: " Find all sequences of a time series database 

whose distance from a query sequence is less than a range parameter r." Any distance 

function could be used such as the Euclidean distance or the Dynamic Time Warping 

(DTW) distance. Range queries are very common in practice and are often used 

as the basis of other queries such as nearest neighbor queries and simple correlation 

queries. Here is the outline of a range query algorithm over a standard R-tree index: 

20 



so ,wVk/ 
23 

5 -

-15 

Correlation = -1 

• " - ' \ / l r * - - > • 

Figure 1.12: Perfect positive and negative correlation cases. 

1. Given a range parameter r and a query point Q, construct a circle centered at 

Q of radius r. 

2. Traverse the R-tree from the root and visit the MBR's that intersect the query 

circle. 

3. For every leaf node visited, compute the real distance of the leaf object to Q. 

If the distance is less than r, return the leaf object. 

Nearest Neighbor Queries 

A nearest neighbor query could be stated as follow: "Find the 10 closest sequences to 

a given query sequence." Nearest neighbor queries are also very common and generally 

use range queries in their algorithms. In this thesis, we will not discuss other spatial 

queries, however, the reader is referred to [MNPT06] for a complete survey of queries 

supported by R-tree indexes. 
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1.3.3 Pattern Based Similarity Measures 

Product Moment Correlation 

A correlation query could be stated as follows: "Find all subsequences that are cor­

related to a given subsequence with r^O.99.". A bivariate correlation query involves 

two input variables. A frequently used measure for bivariate correlation is Pearson's 

product-moment coefficient [PeaOl], which we use in our correlation queries and is 

defined as follow: 

R{X}Y) = t^Y^]^L ( i . 9 ) 
OXOY 

where X =< x\,x%, • • • ,xn > and Y = < y1;y2, • • •,yn > are two sequences, R is the 

Pearson's coefficient with — I < R < 1, p is the mean, and a is the variance. This 

measure reflects the degree of linear relationship between the two input variables: 

value +1 indicates perfect positive linear relationship, -1 indicates perfect negative, 

and 0 indicates there is no linear relationship between the two variables. Figure 1.12 

illustrates two examples of input variables and their correlation values. 

Multivariate correlation has the following quadratic form when the known 

variables given at query time [KM03]: 

R2{Xl1Y)=pT
XiyR~xlX3pXuY (1.10) 

where px{,Y is the vector composed of F ' s Pearson correlation coefficients with JQ 

and R(Xi,Xj) denotes the correlation matrix of variable Xi with Xj such that 

R(Xi,Xj) = 1 when i = j . Note that the matrix is symmetric and that when 
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Xi = {X\}, the multivariate formula reduces to Pearson's coefficient. Geometrically, 

multivariate correlation measures how well a hyperplane can fit the measured data. 

R a n k - O r d e r Cor re la t ion 

Rank order correlation was introduced by C. Spearman [Spe04]. Let n be the length 

of a sequence X, rx,i be the rank of the ith element in X and ry,i be the rank of the 

ith element in sequence Y, then the rank order correlation r can be defined as follow 

[KG90]: 

• , . ) 2 R(X,Y) = l-6T^=l{[x'i VY>1> (1.11) 
n6 — n 

When ties occur in the ranking, the ranking associated to the tied value is the average 

of all tied rankings. Furthermore, we can define U and V as functions of the number 

of ties Ui and vj, where i ranges over the number of values that are tied: 

tf=j^5>?-«<) (1-12) 

^ = ^ £ ( « ? " *i) (1-13) 

In case of ties, the following formula can be used to compute r: 

= 1 6 E ? = 1 ( T x i - r V , i )
2 + E/ + V 

n3 — n 
(1.14) 

Rank order correlation is a useful non-parametric substitute for the product moment 

correlation coefficient when the data analyzed does not satisfy assumptions such 

as interval scale measurement, linearity and the normal distribution of the input 

sequences X and Y. Furthermore, rank order correlation can help detect nonlinear 

monotonic relationships between sequences [DR05]. 
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D T W Correlation 

Since correlation queries can be mapped to Euclidean distances, we proposed a new 

measure, called Dynamically Time Warped Correlation (DTWC) [NS08a] obtained 

from the original DTW formula by applying the bivariate correlation condition de­

scribed in [SZ04]. This yields: 

RDTW(X, Y) > 1 - e2 => DDTW{X, Y) < 2ne2 (1.15) 

where RDTw(X,Y) is the DTWC coefficient, DDTW(X,Y) is the DTW distance 

between X and Y [MR81], symbol ~ denotes normalization, and n is the pattern 

length. DTWC has the same advantages over correlation that DTW distance has 

over Euclidean distance: it can adapt itself to unequal length and warped data sets. 

For example, consider the following two time series: < - 1 , 1, 1, 1, 4, 5, 7, 5, 4 > 

and < -1.1, 1.1, 4.1, 5.1, 7.1, 5.1, 4.1, 4.1, 4.1 > whose normalization are < -2.1547, 

-0.1547, 2.8453, 3.8453, 5.8453, 3.8453, 2.8453, 2.8453, 2.8453 > and < -2.6665, -

0.4665, -0.4665, -0.4665, 2.6335, 3.5335, 5.5335, 3.5335, 2.5335 >. We can see that 

the series are simply shifted and skewed. The standard correlation between both 

series is 0.5280 and would not be picked up by most correlation queries. However, 

the DTWC between the two series is 0.9088 (considering a Sakoe-Chiba band of 

2) and could be picked up by a DTWC query with r > 0.9. DTWC between the 

two series can be computed from the correlation between their two DTW expansion 

which is of length 11. This gives the sequences < -2.1547, -0.1547, -0.1547, -0.1547, 

2.8453, 3.8453, 5.8453, 3.8453, 2.8453, 2.8453, 2.8453 > and < -2.6665, -0.4665, -
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0.4665, -0.4665, 2.6335, 3.5335, 5.5335, 3.5335, 2.533, 2.533, 2.533 >. Note that the 

Euclidean distance between the normalized series is 6.7794 which is larger than the 

DTW distance of 1.087. 

1.3.4 Pat tern-Based Similarity Queries 

Product Moment Correlation Queries 

A typical bivariate correlation query would be "Find all subsequences of a stock 

market time series database that are correlated with a given subsequence of oil price 

values by a factor greater than 99%." A typical multivariate query would be "Find 

all subsequences of a stock market time series database that are correlated with a 

given subsequence of oil price, US interest rate and US inflation rate values by a 

factor greater than 99%." Simple correlation queries were studied in [SZ02, SZ04, 

HKSZ03c, HKSZ03a, HKSZ03b, NS08a], and multivariate correlation queries were 

addressed in [NS08a] using CMRI which is based on R-trees. [SZ02, SZ04] made use 

of a scheme called Statstream, whereas [HKSZ03c, HKSZ03a, HKSZ03b] developed 

a data structure called the Cone Tree which made use of the fact that the product 

moment coefficient can be expressed as a vector product, hence a cosine, since the 

data structure indexed angles. 

In general, simple correlation queries involve computing a range query over nor­

malized time sequences, whereas multivariate correlation queries are more complex 

and involve segmentating a solution space whose axis are the query variables, gener-
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ating a set of rules from the segmentation and then querying an R-tree based index 

using these rules. For more detailed information, the reader is referred to [NS08a]. 

Rank-Order Correlation Queries 

We proposed a first solution for indexed rank-order correlation queries in [NS08b]. 

Rank-order correlation queries are similar to bivariate correlation queries but rather 

than using the product moment coefficient, we use the rank-order correlation coeffi­

cient which can detect non-linear monotonic relationships. 

The rank-order correlation algorithm consists in a range query over the rank 

feature space of the time series. Indeed, for rank-order correlation queries, the usual 

sliding/disjoint windows are not indexed but rather their ordering. 

D T W Correlation Queries 

DTWC queries are similar to bivariate correlation queries but make use of DTWC 

measure we introduced in [NS08a]. DTWC queries detect subsequences that would 

be missed by normal product moment based queries due to skewing or warping. 

DTWC queries are similar to DTW queries [KR04], however, they are performed 

over the normalized time series. 

1.4 Time Series Indexes 

There are a number of classifications of indexing techniques for time series. This 

section, we discuss and highlight properties of different indexes. We will then discuss 
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some of these indexes in more details. 

1.4.1 The GEMINI Framework 

The GEMINI framework was developed by Faloutsos et al. [Fal96]. It constitutes the 

basis of most if not all time series indexing techniques. Its statement is simple: An 

index using a given dimensionality reduction technique will incur no false dismissals 

if and only if the dimensionality reduction technique lower-bounds the real distance. 

Incurring no false dismissals means that the index will not omit any correct answer. 

The lower bounding property actually means that the distance between two reduced 

time series is smaller or equal to the distance between the two original time series. 

The GEMINI framework opened the way for time series indexing and efficient search 

algorithms by providing correctness theorems and a general framework for indexing 

time series. Usually, an indexing solution will present something called a MINDIST 

and show that it lower-bounds the real distance measure to be indexed. 

1.4.2 Problem Solved Taxonomy 

A first taxonomy of indexing techniques could be based on the problem solved by 

the index. By problem solved we mean the constraints made on the length of the 

query by the indexing solution for example. Some indexes solve whole matching 

efficiently, others consider subsequence matching, and others handle variable length 

queries. Furthermore, some indexing strategies were specifically designed to reduce 

the index size. 
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Whole Matching 

The index proposed in [AFS95] solved the problem of efficiently retrieving similar 

time series of fixed length. This is usually called the whole matching problem in 

the time series indexing literature. By efficiency we mean that the solution avoids 

sequential scan (at least in most cases where the number of objects retrieved is much 

smaller than the total number of objects stored). Agrawal et al. [AFS95] proposed 

to use R-trees to index multi-dimensional points (i.e. the time series). However, 

the problem of high dimensionality remained since the proposed solution using of R-

trees does not perform well with high dimensional data due to overlapping of MBR's. 

Hence, the researchers proposed to reduce the dimensionality of the data using DFT 

such that distance predicates used in similarity queries such as Euclidean distance 

based predicates would be preserved in the transformed feature space. 

Subsequence Matching 

Another problem set is subsequence matching. Let X =< Xi,X2,x-j,..., xn > be a 

time series. Subsequence matching addresses the problem of matching a subsequence, 

e.g. x2, X3, with all possible sequences of for example length 2 in X. A first solution 

to this was proposed in [FMR94] and was called the I-Adaptive index. The idea was 

to index all the sliding windows of length w of a time series into an R-tree. As we 

will discuss later, this results in large indexes due to the redundancies produced by 

the use of sliding windows. The I-Adaptive index also solved variable length queries, 

however better solutions to variable length queries were devised. 
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Variable Length Queries 

Solving variable length queries means that an index must deal with the fact that the 

length of the query is only known at query time. Although the I-Adaptive index are 

also suitable for such queries, a better solution (at least in terms of precision defined 

as a function of the number of false positives retrieved) was proposed in [KS04]. The 

solution uses a Multi-Resolution Index (MRI) which stores a collection of I-Adaptive 

indexes at different resolutions 2a to 2b. Suppose we already have I-Adaptive indexes 

for resolutions 8, 16 and 32. Now suppose we have a range query of length 56 and 

range parameter r, the index is queried by partitioning the query into a query of 

length 8, one of length 16 and one of length 32 such as 56 = 8+16+32. We then 

start by querying one of the resolutions of the MRI. [KS04] proved that after each 

sub query, in general the range parameter r used can be reduced, and hence, further 

pruning occurs when another query is made on another corresponding resolution. 

Variations of the MRI exist. The Compact MRI (CMRI) was proposed as an 

improvement in size and precision over the MRI [KS07]. The reduced CMRI (rCMRI) 

further improved over the size and precision of the CMRI by actually combining the 

CMRI with Duality Matching (that we will discuss in the next section). 

Reducing the Index Size 

A common problem with sliding window indexes is the size of the index. For each 

time series of length s, we need to insert s — w+l points with dimension d in the index. 

This results in storing d* (s — w+l) numbers, where d is the reduced dimensionality. 
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Duality Matching [LMWOO, LMWOl] proposes a disjoint window solution. Hence the 

number of points in a time series database will be roughly equal to the number of 

points stored in the index. [LMWOO] showed that using disjoint windows is sufficient 

in order to solve range and nearest neighbor queries. In order to do so, the solution 

uses sliding windows over the query sequence and disjoint windows over the indexed 

points. Hence, for a query length q, it performs q — w + 1 queries over an index that 

is smaller by a factor of l/w. Even with a higher number of queries to be performed, 

the index is still comparable and sometimes better than sliding window solutions due 

to the reduced index size. 

1.4.3 Structural Taxonomy 

Structurally, time series indexes can be first divided into two categories: single res­

olution indexes and multi-resolution indexes. They can also be divided into two 

other categories: sliding window indexes and disjoint window indexes. Single resolu­

tion indexes can solve whole matching and subsequence matching efficiently. Multi-

resolution indexes were developed to increase the precision of single resolution indexes 

for variable length queries. Precision is here defined as a function of the number of 

false positives retrieved at query time. Disjoint window indexes are an improvement 

in terms of size over sliding window indexes. While disjoint window indexes can solve 

most queries, they cannot answer for example multivariate correlation queries. 
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Single Resolution Indexes 

The whole matching index proposed by Agrawal et al. [AFS95] is a single resolution 

index. The I-Adaptive index is also a single resolution index, as well as its improve­

ment, Duality matching. All these indexes can serve as backbone for multi-resolution 

indexes. They solve efficiently the whole matching and the more general problem of 

subsequence matching. 

Multi-Resolution Indexes 

When the query length is defined at query time, it is difficult to fine tune a single 

resolution index for any given query length. Multi-resolution indexes were proposed 

as an extension over single resolution indexes to address this problem. For example, 

MRI and CMRI are actually a collection of I-Adaptive indexes, whereas rCMRI is 

a collection of Duality Matching based indexes. Specific similarity algorithms were 

developed in order to improve the pruning over multiple index queries required by 

multi-resolution indexes. Multi-resolution in general improve the precision of the 

answer set, however, it comes at a cost of significant increase in the index size which 

is a function of the number of resolutions stored. 

Sliding Window Indexes 

Examples of indexes that originally made use of sliding windows include I-Adaptive, 

MRI and CMRI. The main problem with such indexes is the size of the index. Larger 

indexes also cause the query response time to be slower in general. Sliding windows 
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are shown in Figure 1.13. 

Disjoint Window Indexes 

In our work, we mainly studied two indexes that originally made use of disjoint 

windows: Duality Matching which was an improvement over the size and precision 

of the I-Adaptive index and rCMRI which was an improvement over the size and 

precision of the CMRI. Disjoint windows are shown in Figure 1.14. 

1.4.4 Dimensionality Reduction Used Taxonomy 

Another classification of time series indexing techniques is the type of dimension­

ality reduction techniques used. We distinguish three main types of dimensionality 

reduction techniques: spectral, piecewise aggregate and symbolic. All dimensionality 

reduction techniques including these should satisfy the GEMINI framework require­

ments. 
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Spectral 

The whole matching solution proposed by Agrawal et al. [AFS95] originally used 

DFT as dimensionality reduction technique. I-Adaptive and MRI also used DFT as 

dimensionality reduction technique. However, this may be misleading, since the three 

indexes mentioned above are more or less dimensionality reduction agnostic, meaning 

that they could use either DWT, PAA or APCA. This may not always be the case, 

since as we will see the TS-tree is dependent on the use of SAX. 

Piecewise Aggregate 

A few indexes originally used piecewise aggregate methods, for instance: CMRI 

[KS07] which used APCA and rCMRI [NS] which used PAA. The reason why in 

rCMRI we used PAA rather than APCA (which is more precise) was that the goal 

of rCMRI was reducing the index size and PAA reduced series would have half the 

number of coefficients that APCA series have for the same number of segments. Al­

though it can be argued that PAA may yield better precision than APCA with more 

approximating segments. 

Symbolic 

Although [KLLC03, KLLC07] report that traditional string based indexes such as 

suffix trees can be used to index SAX reduced time series, an important step in 

indexing SAX sequences for range queries, nearest neighbor queries and DTW queries 

was put forward by the TS-index [AKFA08]. The TS-index uses a MINDIST over 
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SAX sequence that can handle the above mentioned queries and that lower bounds 

the real distance, and hence satisfies the GEMINI framework requirement for SAX. 

1.4.5 Spatial Data Structure Used Taxonomy 

Another taxonomy would be to classify time series indexes according to the data 

structure they use, which could be R-trees or Grid files for example. 

R-Tree Indexes 

Most time series indexes discussed in this thesis make use of the ubiquitous R-tree. 

The I-Adaptive index, MRI, CMRI, rCMRI and Duality Matching all made use of 

R-trees originally. However, these indexes could easily swap their R-trees for any data 

structure in the R-tree family such as X-tree or R*-tree. Furthermore, in general, 

they could make use of any spatial data structure which supports range queries and 

nearest neighbor queries. 

Grid File Indexes 

The use of Grid files makes querying very efficient since we are dealing with a hash-

based solution. The only index that originally makes use of Grid files that we will 

discuss in this thesis is Statstream. Statstream is suitable for very large datasets and 

very large streams where read-once conditions apply. 
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1.4.6 High Level Description of Some Time Series indexes 

I-Adaptive 

The I-Adaptive index was proposed by [FMR94] as an efficient solution for subse­

quence matching. A family of other indexes using the I-Adaptive index were proposed 

and obtained by changing only the dimensionality reduction technique or the spatial 

data structure. Here is the general algorithm: 

1. Compute the sliding windows of length n for each series. 

2. Reduce the dimensionality of each sliding window from n to N where N is much 

less than n, denoted N « n using DFT for example. 

3. Insert each reduced window in a spatial data structure such as the R-tree 

A set of search operations are then possible over the R-tree such as range queries, 

nearest neighbor queries or correlation queries. While this solution can speed up 

considerably many data mining operations such as clustering and classification, it 

is only suitable for fixed length queries. When dealing with variable length queries, 

the solution degrades. When the length q of query Q is equal to the window size w, 

querying is straightforward. When q mod w = 0 and q > w, the following property 

[FMR94] holds for querying a sequence S decomposed into a number of disjoint 

sequences S^s with a query Q decomposed into a number of disjoint Qi's: 

D(Q,S)<e^\fp
i=1D(si,qi)<e/v^ (1.16) 
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Finally, when q mod w 7̂  0 and w < q < 2w, the following [FMR94] holds for 

subsequences S[i : j] of sequence S and Q[i : j] of query Q: 

D(Q,S) < e => D(S[i : j],Q[i : j] < e) (1.17) 

Duality Matching 

As can be seen, the size of the previous index grows rapidly since we index every 

sliding window of a time sequence. Hence, for every value added to a time series, 

a d-dimensional point is added to the index. For very large datasets, this may be 

a problem. Duality Matching was developed by Moon et al. to address this issue 

[LMWOO, LMW01, LMW02]. Using Duality Matching, we do not index sliding win­

dows anymore but disjoint windows. This improves the index size by a factor of 1/w 

where w is the window size. For the query, sliding windows are used instead to seg­

ment the query such that each sliding window coming from the query sequence is used 

to query the disjoint window index. Using sliding windows for the query sequence and 

disjoint windows for the index is enough to solve the subsequence matching problem. 

Duality matching and the I-Adaptive indexes are particular cases of a generalized 

matching framework [LMW02] where only the overlap between disjoint/sliding win­

dows is different. For a range query, each sliding window obtained from the query 

sequence is used to query the index of disjoint windows such that the offset of a 

matching subsequence in a sequence S is given by: 

offset = dw-offset — qw^offset + 1 (1-18) 
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where dw refers to disjoint windows and qw refers to query sliding windows. A proof 

of the correctness of this scheme can be found in [LMWOO, LMW01]. Values smaller 

or equal to zero and duplicates are discarded. Hence, the number of required queries 

is q — w + 1 whereas in I-Adaptive only one query is required. However, the index size 

has decreased by a factor of 1/w. An enhanced dual matching algorithm is described 

in [LMWOO, LMW01] which requires only one query while being less precise than the 

basic algorithm. 

In duality matching, there is a relation defined in [LMWOO, LMW01] between the 

minimum query length, Min(q), and the maximum window size, Max(w), used to 

index the time series: 

Max(w) = 
Min(q) + 1 

(1.19) 

This formula is important when determining the optimal window size of a multi-

resolution index using duality matching. 
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MRI 

The Multi-Resolution Index was proposed by [KS04] to support variable length sub­

sequence matching. The idea is to store different I-Adaptive at different resolutions 

using particular search algorithms for range or nearest neighbor queries. Here is an 

outline of the MRI index construction algorithm as proposed in [KS04]: 

1. Compute the sliding windows of length 2n of each series, where n ranges from 

a to b (a and b are called the stored resolutions of the index). 

2. Reduce the dimensionality of each sliding window as for the I-Adaptive index. 

3. Insert each reduced window in their respective tth I-Adaptive index within res­

olution 2n such that there will be t(b — a) indexes in total and the tth index 

corresponds to the tth time sequence in the database. 

Querying an MRI index is actually interesting. The query is divided into different 

powers of 2 length segments. Furthermore, as for range queries further pruning can 

be done, as the query advances. An MRI is shown in Figure 1.15. 

CMRI 

The Compact Multi-Resolution index (CMRI) was proposed by [KS07] as an im­

provement in the size and precision of the MRI and is shown in Figure 1.16. By 

combining all the I-Adaptive indexes used at any given resolution, CMRI achieves 

better size and performance. Here is an outline of the CMRI construction algorithm, 

which mainly differs with MRI in step 3: 

38 



a+1 
CMRI 

b-l b 

2 2 

/ \ / 
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1. Compute the sliding windows of length 2n of each series such that n ranges from 

a to b (a and b are called the stored resolutions of the index). 

2. Reduce the dimensionality of each sliding window as for the I-Adaptive index. 

3. Insert each reduced window in their respective I-Adaptive index of resolution 

2n such that there will be b — a indexes. 

TS-Index 

The TS-index developed in [AKFA08] is the most recent of all indexes discussed 

here. It is actually an indexing solution which makes use of SAX as dimensionality 

reduction and supports similarity queries such as range and nearest neighbor queries 

and Dynamic Time Warping queries. The basic data structure it uses is the TS-tree, 

which is a variant of a B+-tree adapted to SAX data. Partitioning and ordering of 

the multidimensional SAX data is required in order for pruning to occur at query 

time. 

The authors of the TS-index actually developed different MINDISTs in order to 

perform different similarity queries. However, they are quite involved and will not 
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be discussed here for the moment. The original TS-index is a single resolution index 

and can be combined into multi-resolution techniques in order to improve precision. 

S t a t s t r e a m 

Statstream was proposed in [SZ02, SZ04] for detection of correlated patterns under 

high performance requirements and very large volumes of time series. Here correlation 

means a score using Pearson's product moment coefficient. Shasha and Zhu [SZ02] 

prove that the product moment coefficient of two sequences is a function of the 

Euclidean distance between the normalization of those two sequences. The proposed 

solution uses a grid file, which can be described as a multi-dimensional hash, by which 

a target pattern is "hashed" to a cell in the grid file. Incoming patterns are hashed to 

a cell in the grid file. When a pattern is correlated, it is hashed to a cell in proximity 

to the target pattern. As can be seen, Statstream is appropriate when the target 

patterns are known in advance and for fixed correlation values. That is why it is a 

detector. 

In this chapter, we have studied various classification of indexing techniques for 

time series data based on type of queries they support, data structures they use 

and dimensionality reduction techniques they employed. We next propose efficient 

correlation algorithms for bivariate and multivariate correlation, DTW correlation 

and rank order correlation, that all use for the moment CMRI as index. 
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Chapter 2 

Fast Correlation Analysis on a 

Compact Multi-Resolution Index 

There has been increasing interest for efficient techniques for fast correlation analysis 

of time series data in different application domains. We present three algorithms for 

(1) bivariate correlation queries, (2) multivariate correlation queries, and (3) correla­

tion queries using dynamic time warping - a new correlation measure we proposed in 

[NS08a]. To support these algorithms, we propose a variant of the Compact Multi-

Resolution Index (CMRI). In addition to conventional nearest neighbor and range 

queries supported by CMRI, the proposed algorithms compute all answers to user-

defined, ad hoc and parametric correlation queries. The results of our experiments 

indicate a speed-up of two orders of magnitude over the brute force algorithm, and 

an order of magnitude improvement on average, while offering more functionalities 

than provided by other techniques such as StatStream [SZ02] and Spatial Cone Tree 
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[HKSZ03c]. 

In this chapter, we consider bivariate correlation queries that use Pearson's product-

moment coefficient [PeaOl]. Example of such a query would be: " Find all stock market 

segments that are correlated to the U.S. interest rate measured between two given dates 

at correlation value exceeding r". For multivariate correlation queries, an example 

would be: "Find all stock market segments that are correlated to the U.S. interest 

rate measured, the price of housing and the U.S. exchange rate at correlation value 

exceeding r." Multivariate correlation search over indexed time series has not been 

studied before to the best of our knowledge. We will also introduce a new correlation 

measure based on Dynamic Time Warping (DTW) [MR81] and propose an algorithm 

which uses this measure for searching time series. We furthermore propose a solu­

tion for indexed rank order correlation queries. To support these queries, we extend 

algorithms proposed in [KS07] and present new ones. 

2.1 Our Proposal 

Our goal in this thesis is to develop algorithms for fast correlation analysis which 

are flexible for solving problems from different domains and with different require­

ments. A desired solution should support variable parameter queries, variable length 

queries, variable number of parameters, and different correlation measures. To sup­

port variable parameter queries, we will use indexing schemes that do not hard-code 

query parameters. To handle variable length queries, we propose a variant of the 
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CMRI [KS07] which also supports usual similarity queries such as range and nearest 

neighbor queries. Finally, to support variable number of parameters and different 

correlation measures, we propose four algorithms that use this variant of the CMRI 

index. 

2.1.1 Bivariate Correlation Queries 

A frequently used measure for bivariate correlation is the Pearson's product-moment 

coefficient [PeaOl], which we use in our correlation queries. Using PAA as dimen­

sionality reduction and a variation of CMRI as indexing scheme, we will show that 

bivariate correlation queries on PAA feature spaces can be done without false dis­

missals. Given the following mapping from bivariate correlation to Euclidean distance 

D [SZ04], it holds that: 

D2(x,y) = 2w(l-R(x,y)) (2.1) 

Where w is the window size, R(x, y) is the Pearson product-moment correlation 

coefficient between time series x and y and ~ is the normalization operator. We note 

that the following condition holds: 

R(X, Y) > 1 - e2 => D2
LB(X, Y) < 2we2 (2.2) 

where D^B is the lower bounding distance measure in feature space and capitalized 

variables X and Y denote PAA reduced series obtained from X and Y respectively. 

Note that DLB is given by the following [CKMPOla]: 

77 N 

DLB{X)Y) = {-Y.{X^YiY)* (2.3) 
1 i = i 
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Condition 2.2 indicates that we can do bivariate correlation analysis without mod­

ifying drastically the CMRI index and PAA algorithm. For queries where correlation 

is negative, we have the following condition: 

R(x}y) < 1 - e 2 =» DlB(-X,Y) < 2we2 (2.4) 

Algorithm 1 shows steps of performing bivariate correlation queries on a compact 

multi-resolution index. This algorithm is a slight modification from [KS07]: the 

range variable e0 is set as a function of the correlation parameter r. 

A lgo r i t hm 1 Bivariate Correlation Algorithm 

Inpu t : A correlation parameter r, a query window q, the root of the ith index of the 

CMRI denoted rooti, the window size w, and the number c of R-tree indexes in 

the CMRI. 

O u t p u t : The match results results. 

1: pi = PARTITIONS) 

2: e0 = y/2w(l - r) 

3: for i = 0 to c do 

4: results = RANGE_SEARCH(root,ei,pi) 

5: ei+i = maxB&esuits(\/ef - d(qi, B)2) 

6: end for 

7: results = POSTPROCESS(results) 
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2.1.2 Dynamic Correlation Queries over 

Non-Normalized Time Series 

It is often required to store a non-normalized feature space since standard complex 

distance queries are performed on such spaces. Although we want to keep our feature 

and value spaces non-normalized, the bivariate correlation defined earlier requires 

that the feature space on which we pose queries to be normalized. Here we show 

that normalization can be done at query time when using PAA. For this, we apply 

at query time, the following transformation to the non-normalized feature space of 

dimension AT of a value space of dimension n: 

n N N 

* = - > + - £ *i (2-5) 

where i ranges from 1 to N. We can simply add "digests" to our data structure, as 

proposed in [SZ04], for the mean and standard deviation. The digest kept at every 

node for the variance a and the average \x can be propagated recursively to containing 

nodes as follow: 

DIGESTLow = {maxiechad(iJ,i),maxiechud{<ri)} (2.6) 

DIGESTHIGH = {miniechud(tJ,i),miniechud((Ti)} (2.7) 

The subscripts LOW and HIGH denote the low and high value of the containing 

Minimum Bounding Rectangle (MBR) used in CMRI. Note that this will no longer 

be possible when using an rCMRI index. 
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2.1.3 Multivariate Correlation Queries 

Our solution for multivariate correlation queries is implemented on a standard R-tree 

[Gut84]; we could also use R*-trees [BKSS90], i?+-trees [FSR87], or X-trees [BKK96] 

without modification to the algorithm. We focus on the 2D case where we have 

two query time series such as: "Find all stock market segments that are correlated 

to the U.S. interest rate measured, the price of housing and the U.S. exchange rate 

at correlation value exceeding r". Our proposed algorithm considers the 2D case, 

however, it can be extended to consider more than 2 time series. 

2.1.4 Segmentation of the Solution Space 

From the quadratic form definition of multivariate correlation, we can describe a 

solution space whose boundary is a hyper-ellipsoid. Figure 2.1 shows an example of 

the 2D case. Solutions to a multivariate correlation query where correlation needs to 

be greater than or equal to a user-defined variable r lie on the boundary or outside 

the boundary. 

While proposed for a different purpose, we adapted an algorithm from [KR04] to 

segment the upper and lower parts of the solution space. Hence, after sampling points 

of the solution space boundary, we generate a lower upper-bounding segmentation Ut 

and an upper lower-bounding segmentation Li using the following formulas for the 

2D solution space (see Figure 2.1): 

Ui = max(x%(i-1)+i,...,xfii) (2.8) 
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RIV.X1I j 
L J 

Figure 2.1: Segmentation of solution space with r = 0.97 and grayed out rules. 

Li = m m ( i i ( i „ 1 ) + 1 , ...,x%i) (2.9) 

In general, for an n-dimensional solution space, a set {U,L} is required for each 

unordered pair of coordinate axis. From this segmentation of the solution space, a set 

of control points is obtained, each of which includes the vertices of the segmentation. 

A set of rules {Ri} can be derived from the inner control points Q with coordinates 

C(x)j and C(y)i of the segmentation for the 2D case, but can be generalized to n-

dimensions. Algorithm 2 below shows the derivation of {Ri} for the 2D case. 

The number of rules needed is 0(c), where c is the number of control points. 

These rules can be implemented simply as IF-ELSE clauses. From Figure 2.1, we 

can see that if a point in solution space is a valid solution, then it must pass at least 

one of the checks in {Ri}, even though the converse may not be true. An "upper-

bounding in absolute value" property guarantees that no false dismissals will incur 

when using {Ri} to prune the solution space as we will see in Section 3.6. Notice 

that the precision of our pruning depends on the number of control points chosen to 
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Algorithm 2 Generate Rules 
Input: Lower upper-bounding control point in U and upper lower-bounding control 

point in L. 

Output: A set of rules. 

1: rules = {} 

2: for every cpi in L from i = 0 do 

3: repeat 

4: ADD_RULE : {x < cp{x)i AND y > cp{y)i} TO rules 

5: until cp(y)i reaches max(Li) 

6: for i = remaining control points do 

7: ADD_RULE : {x > cp{x)i AND y > cp{y)i} TO rules 

8: end for 

9: end for 

10: for every cpi in U from i = 0 do 

11: repeat 

12: ADD_RULE : {x < cp{x)i AND y < cp{y)i} TO rules 

13: until cp(y)i reaches m<in(Ui) 

14: for i = remaining control points do 

15: ADD_RULE : {x > cp{x)i AND y < cp(y)i] TO rules 

16: end for 

17: end for 

18: ADD_BOUNDARY_RULES() #see grayed areas in Fig.l 

19: return rules 
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segment the solution space. 

2.1.5 Transformation of the Solution Space 

Transformation of distance measures for quadratic form distance measures was first 

introduced in [KSUY01]. We have adapted those techniques in our context. Once a 

set Pi of points is found from the segmentation of the solution space, we determine 

whether they are inside or outside the boundary. Since the boundary is a rotated 

quadratic form hyper-ellipsoid, one way to decide this is to compute a transformation 

matrix composed of two linear transformation matrices. The first matrix rotates the 

hyper-ellipsoid such that its major and minor axes are orthogonal to the coordinate 

axes. It can be obtained, according to the Principal Axes Theorem, from the nor­

malized eigenvectors of the correlation matrix RXuxy ^n the 2D case, this matrix will 

always be the same, given that RXi,Xj is a symmetric matrix with elements on its 

diagonal that are equal, as follows: 

cos(a) —sin(a) 

sin(a) cos(a) 

The second linear matrix transforms the hyper-ellipsoid into a hyper-sphere, as fol­

lows. 

1/rrii i = j , 
MR2 

0 i^j, 

M; Ri « = 4 
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where the rrii's are the value of the radius of the major/minor axes parallel to the 

hyper-dimensional coordinate system. The final transformation matrix is given as: 

MR = MRl • MR2 (2.10) 

Each point of Pi is multiplied by the transformation matrix, and a point is a solution 

if and only if the norm of its transformed point is larger than the radius of the 

hyper-sphere (usually set to 0.5), i.e: 

\MRPi\ > radius (2.11) 

This condition is a second pruning step which yields a set of points that are exact 

solution to the multivariate correlation query when no dimensionality reduction is 

used and which may yield false positives if one is used. 

2.1.6 Cosine Definition of Bivariate Correlation 

To perform the pruning process described previously, we map the value space or 

feature space to bivariate correlation space since the solution space is described in 

terms of bivariate correlation variables. If we use an index over feature space, we must 

also ensure that the mapping from feature space to bivariate correlation space is such 

that the feature space correlation value upper bounds the real bivariate correlation in 

absolute value. The cosine definition of bivariate correlation satisfies this condition 

and corresponds to the cosine of the angle between the two target vectors x and y. 

It is defined as follows: 

R(x, y) = cos(x, y) = ——- (2.12) 
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Hence, we have the following: 

\cos{X,Y)\>\cos(x,y)\ (2.13) 

where X and Y are the PA A feature space sequences, and x and y are the corre­

sponding sequences in the value space. 

2.1.7 Querying over an R-Tree 

To implement the multivariate correlation algorithm, we need to be able to apply 

what we described previously to an index such as the R-tree, for which we define 

an algorithm to prune the solution space using the segmentation rules {Ri} over 

Minimum Bounding Rectangles (MBR) of the R-tree. To achieve this, we propose 

the concept of spanning angles which corresponds to the minimum and maximum 

angles amin and amax that an MBR can have with a query point Qi. To speed up 

the computation, in order to prune MBR's that do not contain points outside of the 

solution space segmentation given in Section 3.4, we use the following facts, adapted 

from [HKSZ03c]: 

R(x,y) > r => cos~1(cos(x,y)) < cos~x{r) (2-14) 

R(x,y) > —r =>- cos'1(cos(x,y)) < cos~l(—r) (2-15) 

R(x, y) < — r =» cos~l(cos(x, y)) > ir — cos~l(r) (2-16) 

R(x,y) < r => cos~1{cos(x,y)) < TY — cos~1{—r) (2-17) 
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Hence, if a rule Ri generated from the segmented solution space is of the form "r > 

0.9", this rule can be mapped to "am in < cos~1(0.9)." If a rule Rj generated from 

the segmented solution space is of the form "r < -0.9", this rule can be mapped 

to aamax > ix — cos_1(0.9)." In general, equations (16) and (17) above use amin, 

and equations (18) and (19) use amax. This approach can be extended to multiple 

correlation parameters. We next summarize our algorithm for multivariate correlation 

queries. 

2.1.8 Multivariate Correlation Queries 

Algorithm 

Algorithm 3 below shows steps of performing the multivariate correlation queries. It 

first obtains the solutions space transformation matrix described in Section 3.5 from 

the quadratic form matrix of equation (9). This is possible because we know the Xi 

values at query time. It then segments the solutions space given by the quadratic 

form matrix into upper-bounding and lower-bounding segments for the 2D case from 

equations (10) and (11). Finally, through tree traversal operations, we obtain for each 

MBR the minimum and maximum spanning angles to a query point and compare 

them against the set of rules {Ri} obtained from segmentation of the solution space. 
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Algorithm 3 Multivariate Correlation Algorithm 
Input: A correlation parameter r, query windows <&, the root of an R-tree, the 

reduced data dimension d, the window size w and a solution space matrix R 

Output: A answer set of results 

1: Pi = PAA(qi) 

2: MHl=ROTATIOI\LMATRIX(ft,r) 

3: MR2=SKEW_MATRIX(^) 

4: MR = MRl • MR2 

5: U = UPPER_SEGMENTATION(ft) 

6: L = LOWER-SEGMENTATIONfe) 

7: rules = GENERATE_RULES(£/,L) 

8: temp-results = TRAVERSE_TREE(root, rules, pt) 

9: for every result in temp-result do 

10: if \result • MR\ > radius then 

11: ADD result TO results 

12: end if 

13: end for 

14: results = POSTPROCESS(resuZis) 
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Algorithm 4 Adjunct method: ROTATION_MATRJX(gi,r) 
Input: Query windows cji and a correlation parameter r 

Output: A rotation matrix 

l: COMPUTE RXitXj FROM Qi and r 

2: COMPUTE MRl from eigenvectors of RXuXj 

Algorithm 5 Adjunct method: SKEW_MATRIX(ft,r) 
Input: Query windows qi and a correlation parameter r 

Output: A skewness matrix 

1: COMPUTE RXz:X] FROM 9 i and r 

2: COMPUTE M#2 from major and minor axis 

Algorithm 6 Adjunct method: UPPER-SEGMENTATION(gi)~ 
Input: Query windows q^ 

Output: A set of upper segmenting values 

1: Xi = sample points of the lower-bounding solution space 

2: Ui = max(x%{i-1)+1,...,xrLi) 

Algorithm 7 Adjunct method: LOWER_SEGMENTATION(gi) 
Input: Query windows $ 

Output: A set of lower segmenting values 

1: Xi = sample points of the upper-bounding solution space 

2: Li = m j n ( i n ( i _ i ) + 1 ) . . . ) i n i ) 
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Algorithm 8 Adjunct method: TRAVERSE_TREE(root, rules, pf) 
Input: An R-tree root, a set of rules, PAA points 

Output: Results 

l: if !IS_LEAF(root) then 

2: for every node in root do . 

3: ( e w i , cw)=GET_MBR_SPANNING_ANGLES() 

4: if CHECK_RULES(rules, otmin,amax) then 

5: TRAVERSE_TREE(node,rules,ft) 

6: end if 

7: end for 

8: else 

9: if COMPUTE_CORRELATION(pi, node) then 

10: ADD node TO results 

11: end if 

12: end if 

13: return results 

55 



Algorithm 9 Adjunct method: CHECK_RULES(rules, amin,amax) 
Input: MBR bounding points a w n and amax 

Output: A rule 

1: if rule is of type r>k then 

2: USE amin < cos~l(k) 

3: end if 

4: if rule is of type r<k then . 

5: USE amax > 7r — cos~1(k) 

6: end if 

2.1.9 From 1-dimensional to n-dimensional 

Solution Spaces 

As the quadratic form equation for multivariate correlation is a generalization of the 

bivariate correlation equation, the algorithm for multivariate correlation search is a 

generalization of the bivariate correlation search algorithm. For 1-dimensional solu­

tion spaces (i.e., bivariate correlation), the quadratic form equation for multivariate 

correlation reduces to: 

R{xuyf = [Rxuy] • [RXUX1] • [RXuy]
T = R2

Xuy > r (2.18) 

Graphically, a 1-dimensional solution space is a line. Furthermore, the rules generated 

for such a solution space is directly given by the previous expression R(y,Xi)2 > r. 

In general, the number of terms in a rule for an n-dimensional solution space is n and 

the number of rule types (rules having the same inequality operator for each term in 
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the rule) is k, where k is the number of quadrants in the solution space. 

2.1.10 Dynamically Time Warped Correlation 

In chapter 1, we proposed a correlation measure based on DTW. Here, we show how 

to answer DTWC queries using CMRI. Let x and y be time series. We know the 

following holds between the DTW distance and the Euclidean distance D: 

DTW(x,y)<D(x,y) (2.19) 

The DTW distance is the largest when no warping occurs or, in other words, when the 

warping path is a straight line. When this occurs, it holds that DTW(x, y) = D(x, y). 

If the warping path deviates, this means that it has found a path where DTW(xi, y,) 

is smaller than D(xi,yi), as can be seen from the DTW distance recurrence relation. 

Since the DTW distance is always smaller or equal to the Euclidean distance, the 

DTWC will always be greater than or equal to the standard correlation. That is: 

\DTWC(x,y)\>\R(x,y)\ (2.20) 

This property means that correlation queries using DTWC might return time series 

that would not have been returned by correlation queries using Pearson's coefficient. 

As correlation queries over sliding windows were robust face to translated datasets, 

DTWC is robust faced to skewed datasets. Note that the exact value of the DTWC 

can be computed from the standard correlation between the DTW expansions of 

two time series. Algorithm 10 shows the steps for performing DTWC queries. The 
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Algorithm 10 DTW Correlation Algorithm 

Input: A correlation value r, a query window q, the root of the i index of the 

CMRI rooti, the window size w and the number of R-tree indexes c in the CMRI. 

Output: The results results. 

1: pi = PARTITION(q) 

2: e0 = y/2w(l - r) 

3: for i = 0 to c do 

4: results = DTW_RANGE_SEARCH(root, e;, p,) 

5: ei+1 = maxBeresuitsiyef - d{qi} B)2) 

6: end for 

7: results = POSTPROCESS(results) 

basic idea behind DTW range queries is to find an upper bound and a lower bound 

to a query sequence from which we calculate a measure called LB_KEOGH, which 

lower bounds DTW. For PAA sequences, an equivalent lower bounding measure called 

LB_PAA exists. The proof of correctness of this algorithm (i.e., no false dismissals 

will occur) relies on the correctness of the DTW range query, which is shown in 

[KR04]. We do not show details on DTW range queries and the reader can refer to 

[KR04]. 

2.1.11 Rank Order Correlation Queries 

This section presents a polyhedral indexing technique for rank order correlation 

queries for time series data. Rank order correlation is a nonparametric and non-
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linear measure that can detect nonlinear monotonically increasing or decreasing re­

lationships between sequences. Rank order correlation has been extensively used in 

cases when the nature of the problem to be solved is non-parametric or when the 

relationship between two variables is nonlinear and monotonic. In such cases, linear 

correlation measures, such as the product moment coefficient, are inadequate and 

fail to detect correlative relations. Furthermore, rank order correlation has an in­

teresting geometrical interpretation that lends itself to indexing by spatial indexes, 

e.g. R-trees or R-tree based indexes such as the Multi-Resolution Index (MRI) or 

the Compact Multi-Resolution Index (CMRI). Our technique provides signficant im­

provement over sequential scan, the only other solution at the moment, by one to 

two orders of magnitude in some cases. 

Pearson's product moment correlation coefficient has been successfully indexed in 

[HKSZ03a, HKSZ03b, HKSZ03c, NS08a, SZ02, SZ04]. However, to the best of our 

knowledge, indexing time series databases for rank order correlation queries has not 

been studied before. 

Our approach to address rank order correlation queries is to map the time series 

data onto the polyhedral solution space of rank order correlation, hence the term 

"polyhedral index", and make use of current indexing techniques for variable length 

queries such as MRI [KS04] and CMRI [KS07]) to index the mapped spatial data. 

The proposed solution makes use of the geometric model of rank correlation described 

in [CS83, Sch79] in order to build a polyhedral R-tree based index which will offer 

significant speed-up over sequential scans which are the only other alternative. The 
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aforementioned geometric model makes it possible to map d-dimensional query and 

data points into a polyhedral solution space of size 0(d!) which can then be handled 

by spatial indexes [Gut84, BKSS90, FSR87, BKK96]. The size of the polyhedral 

solution space does not affect the size of the polyhedral index, which is of size O(n) 

where n is the number of data points in the time series dataset. Hence, changes are 

made to the underlying insertion and index construction algorithms, and a new rank 

order correlation query algorithm is proposed, which itself is based on range queries. 

In this section, we discuss the mathematical expression of rank order correlation 

and its properties. We also discuss a geometrical model of rank order correlation 

as described in [CS83, Sch79]. Finally, we discuss dimensionality reduction methods 

and spatial and multi-resolution indexes that can be used for time series data. 

A Geometric Model of Rank Correlation 

The rank order correlation of two sequences X and Y of length n can be projected onto 

a n-dimensional polyhedral with n! vertices [CS83, Sch79]. Let X =< Xi,..., xn > 

and Y = < yi,- • • ,yn >, then for each sequence in value space, there exists a corre­

sponding sequence in rank space Rx =< rx,i, • • •, rx,n > and RY =< ?Y,i, • • •, ?Y,n >• 

Note that these rankings can be expressed as a set of pair-wise permutation from a 

null ranking vector RQ =< 1,2,... ,n >. Furthermore, we have that any two vertices 

Rx and Ry are connected by a segment if and only if they are of the form given 

in [Sch79] where r and r+1 are an actual rank values that can be in non-adjacent 
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Figure 2.2: Polyhedral solution space for rank order correlation, 

positions in the rank space transformation of the series: 

Rx=<...,r,...,r + 1,...> (2.21) 

RY=< ...,r + l,...,r,...> (2.22) 

If we map the rank space to Euclidean space, we obtain an n-dimensional polyhedra 

with n! vertices, which is in fact an (n-l)-dimensional polyhedral rotated in the nth 

dimension. Figure 2.2 adapted from [CS83, Sch79] shows the case where n = 4. The 

color of each vertex shows the 4th dimension. Note that the length of each edge can 

be proven to be y/2 [Sch79]. 

The geometrical model of rank order correlation presented here can be applied not 

only to Spearman's coefficient but also to other tests using l2 norm, vector product 

and levels [CS83]. From this polyhedral model, we can effectively determine that 

the rank order correlation coefficient between X and Y as a function of the distance 
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between the rank space vectors of X and Y [Sch79]. In comparison, for other correla­

tion measures such as Kendall's tau, the value of the coefficient becomes a function 

of the shortest path between two vertices of the polyhedral solution space, which also 

corresponds to the minimum number of swaps required to transform Rx into Ry. 

Polyhedral Transformation of Time Series 

Before a time series data can be indexed, it needs to be transformed into its rank 

space equivalent. By performing this transformation to polyhedral space, we are ef­

fectively generating points in Euclidean space that can^be indexed by a spatial data 

structure. For example, for a common sliding window of size 32, we could have a 

polyhedral space of 32! vertices of dimension 32. Since such high dimensionality does 

not practically perform well on R-tree based indexes, it is common practice to reduce 

the dimensionality of the data to 8 using a dimensionality reduction method such as 

PAA [FYOO, CKMPOla], APCA [CKMPOlb], DWT [CFY03] or DFT [FMR94]. This 

results in a polyhedral solution space has 8! = 40,320 vertices which is enough to 

guarantee that the transformed data in rank space will be spread out enough for dis­

tance based queries to be significant assuming that the data is more or less uniformly 

distributed across rank orders. Furthermore, let RxPAA = < rxPAA,i, • • • ,rxPAA,n > 

and RyPAA = < rYpAA>i, • • •, ryPAAjn > be the PAA representation of Rx and Ry. 

We then have the following inequality from the lower bounding property of PAA 

[FYOO, CKMPOla]: 

D2(Rx,Ry) > D2(RXpAA,RYpAA) (2.23) 
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This condition will ensure that no false negatives will occur during query processing 

although we may have false positives. Now we consider the case where ties may 

occur. From [KG90], we know that, when ties occur, the sum of ranks stays the same 

whereas the sum of rank squares is reduced by the following factor: 

A=^(u3-u) (2.24) 

If we expand the summation of the squared rank differences in the definition of rank 

correlation, we have the following: 

£ ( rx , - TY,)2 = £ r\, + Y, r2
y>l - 2 £ rx,rY, (2.25) 

i=i 

Hence, the sum of squares for rx and ry is reduced by -U and -V, which is why the 

definition of tied rank correlation adjusts for U and V. Now we derive the condi­

tions under which we can guarantee that PAA reduced measures will incur no false 

negatives. We know the following: 

D2(RX,RY) > D2(RXPAA,RYPAA) (2.26) 

Considering the definition of the tied rank order correlation, we have the following: 

U > 0, V > 0 => D2(RX, RY) + U + V> D2(RXPAA,RYPAA) (2.27) 

This condition ensures a lower bound for of distance measures over PAA rank space 

values which in turn guarantees no false negatives will occur at query time. Hence, 

distance measures can be done on feature space without error. 
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Mapping Rank Order Queries to Range Queries 

Once the polyhedral feature space is obtained from the polyhedral rank space (which 

itself is obtained from value space) and properly indexed into an R-tree based index 

such as MRI [KS04] or CMRI [KS07], the only step left is to map the rank order cor­

relation query to a range query. Rank order correlation is a function of the Euclidean 

distance between rank vectors. Highly correlated rank vectors are close to each other 

in polyhedral space, whereas uncorrelated rank vectors are far from each other in 

polyhedral space. Hence, it is possible to perform a range query that will retrieve the 

higly correlated sequences since, by the definition of rank order correlation, distance 

between rank vectors is itself a function of correlation. This expression of distance 

between rank vectors as a function of correlation is given in the following equation: 

* = £>« - rr„? = " - r y - > (2.28) 
1 = 1 " 

For any given user-defined parameter r, it is possible to define a distance based range 

query. This range query is as follows: 

e < ^ ( 1 ~ r ) (
6

n 3 ~ n ) (2.29) 

Next we give algorithms for insertion in a polyhedral index and for rank order corre­

lation queries. 

Rank Order Correlation Algorithms 

In this section, Algorithm 11 describes insertion in an R-tree based index such as MRI 

or CMRI and Algorithm 12 describes the rank order correlation query based on range 
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queries. Basically, these algorithms transform the input time series data into rank 

polyhedral space. In our algorithms, we consider using a CMRI index. The insertion 

algorithms in an R-tree can be found in [Gut84], the PAA reduction reduction in 

[FYOO, CKMPOla] and the range query on R-trees and CMRI in [KS07, MNPT06]. 

Algorithm 11 Insertion in CMRI Algorithm for Rank Order indexing 

Input: A set 7$ of CMRI R-trees, a set of sliding windows {sn_2+i,..., sn}, CMRI 

R-tree resolution ranging from a to b. 

Output: An updated CMRI index. 

1: for i=a to b do 

2: < n , . . . , r2i >i= RANK(< Sn_2+1, .», S„ > ) 

3: < r - i , . . . , rd >i= PAA(< n , . . . , r2; >,) 

4: INSERT(<ri, . . . ,rd>i) inTj 

5: end for 
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Algorithm 12 Rank Order Correlation Query Algorithm 

Input: A correlation value r, a query window q, the root of the ith index of the CMRI 

rooU, the window size w and the number c of R-tree indexes c in the CMRI. 

Output: The results results. 

1: ft = PARTITION(q)// 

2: e0 = jO-rKf-«>) 

3: for i = l to c do 

4: results = RANGE_SEARCH(rootj,ej,pj) 

5: e i+1 = maxB€resuHs(^ef - d(qh B)2) 

6: end for 

7: results = POSTPROCESS(results) 
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Chapter 3 

Reduced Compact 

Multi-Resolution Index 

We present an improvement and extension of the Compact Multi-Resolution Index 

(CMRI) which supports variable length range and nearest neighbor queries. We call 

our index the reduced Compact Multi-Resolution Index (rCMRI). Central to the 

proposal is the concept of duality matching [LMW01]. Our improved and extended 

index combines both multi-resolution methods and duality matching into a single 

index. We study performance of rCMRI and compare it with CMRI and Duality 

Matching. While reducing the size of the CMRI by using duality matching, our 

proposal also improves the precision of duality matching by using multiple resolutions. 

We present an index construction algorithm for rCMRI, and also develop algorithms 

for range queries and nearest neighbor queries, in addition to linear and non-linear 

correlation queries. Using rCMRI, larger time series can be indexed efficiently since 
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Table 3.1: Size Comparisons Between CMRI and rCMRI 

Index and Data Scenarios 

Raw Data 

CMRI 

rCMRI 

Per Day 

10MB 

580MB 

18MB 

Per Minute 

11GB 

875GB 

27GB 

more can be loaded into main memory and less information is required to index 

correctly the full set of subsequences. In general, rCMRI is smaller than the CMRI 

by a factor of 1/w where w is the window size, and decreases the number of false 

positives and has a slightly better query response time. 

As illustration of index sizes, a time series database holding all end of day values of 

6,500 stocks over a period of 1 year requires approximately 10 MB to store. A CMRI 

for that database, assuming a feature extraction method keeping 8 coefficients and 5 

resolutions, would require approximately 580 MB. If the time series database stores 

values sampled at every minute, it would require roughly 11 GB. A CMRI for that 

database under the same assumptions would require roughly 875 GB, a case which 

cannot be handled efficiently by conventional systems. In contrast, the rCMRI index 

we propose here, assuming 8 coefficients and 5 resolutions, would require roughly 18 

MB for an end of day sampling case and 27 GB for a per minute sampling case, both 

of which can be easily handled by a conventional system. Table 3.1 summarizes this 

information. 
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3.1 Our Proposal 

In this section, we first explain the need for multi-resolution indexing schemes by 

showing how they can improve the precision of query results. We then present our 

rCMRI and explain its features and improvements, and discuss the optimal window 

size at each resolution used by rCMRI. Finally, we discuss various algorithms for 

index construction and insertion, for range queries, for nearest neighbor queries and 

for linear and non-linear correlation queries. 

3.1.1 Motivations for Multi-Resolution 

Multi-resolution is a concept that aims at increasing the precision of the answer 

set returned by an indexed query over indexed data. By storing data at different 

resolutions (often powers of 2), query sequences (also decomposed in powers of 2) 

provide a closer match to the indexed subsequences. In comparison, the I-Adaptive 

index relies on some heuristics in order to deal with variable length queries, both of 

which incur precision loss when used. Duality matching relies on a minimum query 

length, Min(q), from which we can derive a maximum window length, Max(w), both 

of which need to be tightly matched in order to offer optimal performance. Figure 3.1 

shows the number of subsequences returned by duality matching when a query length 

is 64 for a window size iv varying from 2 to 32. As the window size decreases, the 

number of subsequences returned increases which includes many false positives since 

the query at window size 32 incurs no false negatives. The precision penalty of not 
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Figure 3.1: Number of results retrieved as a function of the window size for query 

length = 64 and range query parameter e = 3.5. 

using optimal window sizes quickly grows to an order of magnitude. This justifies the 

use of multi-resolution which is an optimization method for when the query length is 

not known in advance. We have used real life stock market data sampled every day 

for a period of 400 days to perform this test. 

Furthermore, in Figure 3.1, we have only shown the number of valid subsequences 

returned by duality matching (i.e. offsets that are greater than 0 and not duplicated). 

However, it may be interesting to note that for 3 stocks (approximately 1000 different 

subsequences), the total number of subsequences (valid or invalid) returned was 64 

for a window size w = 32, 121 for w = 16, 273 for w = 8, 616 for w = 4, and 1611 

for w = 2. 

The proportion of valid subsequences returned to different subsequences in the 

input time series database we noted varied from 1% to 30% for 3 stocks, whereas the 

proportion of valid and invalid subsequences returned to the same input varied from 

1% to 160%. Even though invalid subsequences are pruned out at query processing 
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time and do not incur I /O cost, when the number of such subsequences is large, it 

increases overall processing time to identify and remove them out from the result set. 

These observations indicate that large window sizes incur less performance penality 

due to invalid subsequences. This is a second reason for using multi-resolution as a 

solution feature in our work. 

3.1.2 r C M R I 

Similar to CMRI, the rCMRI index stores all sequences for a given resolution in a 

single R-tree. However, instead of storing sliding windows (Figure 1.13) over each 

sequence, it stores disjoint windows (Figure 1.14). This reduces the size of the index 

by a factor of 1/w, where w is the window size. We will discuss below the optimal 

window size for each resolution. The size of rCMRI will always be smaller than the 

original CMRI if the series is longer than the window size. 

To furthermore improve on the size of the original CMRI, rCMRI makes use of 

PA A as dimensionlity reduction rather than APCA, hence decreasing the index size 

by half. Note that for streaming data, rCMRI only inserts a feature space value in 

the index when w values have elapsed since the last insertion since we are dealing 

with disjoint windows. The values between two insertions are accounted for in queries 

through Equation 1.17. 

Hence, rCMRI stores as many as b — a trees at resolution 2a, 2 a + 1 , . . . , 26_1 , 2b. Each 

resolution contains disjoint windows of size w whose dimensionality has been reduced 

using PAA (typically N = 8). Here we discuss optimal size of w. From Equation 
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1.19, we get a relationship between the maximum window size and the minimum 

query length, a proof of which is given in [LMW01]. From Figure 3.1, we can see that 

the precision of the result set decreases with the window size for a given query length 

q. This is referred to as the window size effect [LMW01]. From Equation 4, we see 

that the largest possible value of w for a given query length q is obtained when: 

q+l 
w = (3.1) 

In other words, the optimal size of w is roughly half of q. This leads us to the 

following: rCMRI will store at resolution 2l, disjoint windows of size w = 2 l/2. This 

improves the storage requirement of rCMRI by a factor of 1/w over the size of the 

original CMRI but is larger than the space required by duality matching by a factor of 

b — a, the number of resolution used (typically around 5), which aimes at improving 

over precision of queries while keeping the size of the index manageable for large 

datasets. 

3.1.3 Index Construction and Insertion Algorithms 

In this section, we present our index construction algorithm for rMCRI and for in­

sertion operations. As discussed previously, rCMRI resembles closely the original 

CMRI with the difference that it stores disjoint windows rather than sliding win­

dows, hence reducing the index size by a factor of 1/w. Algorithm 13 describes the 

index construction algorithm. 

Algorithm 14 below describes insertion operation into an rCMRI index for stream-

72 



Algorithm 13 Construction of rCMRI 
Input: R-tree resolutions {Ta . ..T&}, sequence Si = (si, s2,..., Sk), a reduced di­

mension d. 

Output: The rCMRI index. 

1: for i = atob do 

2: for j = lto k, j =j + (21"1) do 

3: ( r i , . . . , r d ) = PAA((sj,...,Sj+(2 i /2 ))) 

4: INSERT((n, . . . , rd ) in T,) 

5: end for 

6: end for 

ing values of a sequence S. Different sequences Si may require different number of 

iterations to terminate. The main feature of this algorithm is that it inserts only 

disjoint windows. Insertion occurs only when (k mod 2*)/2 = 0, for k > 1 for each 

sequence. This releaves the system of constant insertion as in CMRI. Interestingly, 

note that the streaming values between two insertions are still accounted for at query 

time due to Duality Matching correctness axioms which guarantee that if a sequence 

is within e distance of a query, any subsequence of the subsequence and the query 

will also be within e. The INSERT algorithm used is the one used for standard R-tree 

insertion method (e.g. [MNPT06]). 

Note that there is a significant improvement between index construction and in­

sertion algorithms for the original CMRI compared to the one proposed for rCMRI 

since insertion into the index now only occurs every w = 2 J _ 1 times a value is saved in 
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Algorithm 14 Insertion in rCMRI 
Input: A set Ti of R-trees, streaming values Sk for k > 1 , . . . , R-tree resolutions 

ranging from a to b. 

Output: Updated rCMRI index. 

1: for i = atob do 

2: for every streaming k do 

3: if k mod 2*-1 = 0 t h e n 

4: (ri,...,rd) = PAA((sk_ ( 2i-i)+i , . . . ,sk)) 

5: INSERT«n,...,rd) in Ti) 

6: end if 

7: end for 

8: end for 
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the database for a given resolution i in addition to an index size reduced by a factor 

of 1/w. This makes rCMRI more desirable for dealing with streaming values. 

3.1.4 Range Queries 

Range queries over subsequences are common on time series databases. They retrieve 

all subsequences of a set of sequences Si such that D(Si, Q) < e where Q is a query, 

D is a distance function, and e is a range query parameter. For range queries over an 

rCMRI index, we first divide the query in powers of 2, divide the subqueries obtained 

into k = n — w + 1 sliding windows where n is the number of values in the given 

sequence and then construct a range query for each query sliding window. The range 

query in question is similar to the one proposed for the original CMRI which itself is 

based on a standard range query algorithm [MNPT06]. An additional parameter p is 

required for range queries over rCMRI which gives the minimal number of included 

windows for a given query length q as defined in general by [LMW01]: 

For rCMRI, this parameter is always equal to 1 since q = 2w. Algorithm 15 describes 

the range query algorithm. Note that multiple range queries are required for rCMRI. 

As in any range query over feature space, a post-processing phase is required to 

eliminate false positives. An enhanced version of a duality matching range query can 

be found in [LMW01] where a single range query is performed rather than n — w + 1 

queries. That algorithm can be adapted as we adapted the basic algorithm to a 
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Algorithm 15 Range query over rCMRI 

Input: A range parameter e, a query Q of length q, the root of the ith index of the 

CMRI rooti, the window size w and the number of R-tree indexes c in the CMRI. 

Output: The answer results. 

1: Qi = PARTITION(Q) 

2: ei = e/y/p 

3: for i = l to c do 

4: ( f t,...,g,0)=SLIDING(Qi) 

5: for j = l to q-w+1 do 

6: dwjoffset = RANGE_SEARCH(rooti, e,, q) 

7: offset = dwjoffset — j + 1 

8: if offset > 0 and not duplicated then 

9: ADD of fset TO temp .results 

10: end if 

11: ei+i = maxBetemp.resuitsiye'i - d{q,j, B)2) 

12: end for 

13: end for 

14: results = POSTPROCESS(results) 
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multi-resolution scheme. Rather than using qj in the range query, we use MBRQ 

defined as the MBR containing all the sliding windows of Q. This corresponds to 

finding the centroid of MBRQ and performing a single range query with the centroid 

as query sequence and with e = Max(radiusMBRQ) + e. 

3.1.5 Nearest Neighbor Queries 

k-nearest neighbor (kNN) queries are another common queries in time sequence 

databases. Algorithm 16 describes kNN queries over an rCMRI index which is based 

on standard kNN queries that can be found in [MNPT06]. The algorithm first finds 

the k closest subsequences to the largest power of two decomposition of query Q in 

its corresponding R-tree in rCMRI using a standard kNN query. Since we construct 

n—w+1 subqueries for each sliding window of the query at resolution 2l, an additional 

post-processing phase incurs where the n — w + 1 result sets are merged to obtain a 

single set of k subsequences. Then, the distance e to the kth subsequence retrieved is 

used in a range query such as the one described in the previous subsection. 

3.1.6 Correlation Queries 

Algorithm 17 shows how to perform a Pearson bivariate correlation query on an 

rCMRI index. This algorithm is a slight modification from [KS07]: the range variable 

eo is set as a function of the correlation parameter r as in Chapter 2. 

Note that all correlation queries are to be performed on normalized sequences and 

rCMRI does not contain enough information to be able to normalize the sequences 
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Algor i t hm 16 KNN query over the rCMRI index 

I n p u t : An integer k, a query Q of length q, the root of the ith index of the CMRI 

rootj. 

O u t p u t : The results results. 

l: Qi = PARTITION(Q) 

2: for i = Max{i) do 

3: ( g j , . . . , f e ) = SLIDING(Qi) 

4: for j = l to q-w+1 do 

5: dwjoffset = KNN_SEARCH(rooti, qj) 

6: offset = dwjoffset — j'• + 1 

7: if offset > 0 and not duplicated t h e n 

8: ADD offset TO results 

9: end if 

10: end for 

11: end for 

12: kjresults = POSTPROCESS(temp_results) 

13: e = MaXi(D(Q,k-resultSi)) 

14: results = RANGE(Q,e) 

15: results = POSTPROCESS(results) 
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Algorithm 17 Correlation query over rCMRI 
Input: A range parameter e, a correlation parameter r, a query Q of length q, the 

root of the ith index of rCMRI rooti, the window size w and the number c of 

R-tree indexes in rCMRI. 

Output: The query results results. 

l: Qi = PARTITION(Q) 

2: ex = J2w{l-r)/y/p 

3: for i = l to c do 

4: (gZ ) . . . , f e ) = SLIDING(Qi) 

5: for j = l to q-w+1 do 

6: dw^offset = RANGE_SEARCH(rooti,ei,qj) 

7: offset = dw-offset — j + 1 

8: if offset > 0 and not duplicated then 

9: ADD offset TO temp_results 

10: end if 

11: ei+1 = maxBetemp.resuits{.\Je2
i - d(qj, B)2) 

12: end for 

13: end for 

14: results = POSTPROCESS(results) 
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at query time, unlike done in [NS08a]. Hence, we should now use an index with 

normalized values, different than the one used for range and nearest neighbor queries 

where subsequences are non-normalized. Since the size of rCMRI is smaller than the 

original CMRI, this may not be an issue. 

3.1.7 Rank Order Correlation Queries 

In this section, we present a rank order correlation query algorithm that uses rCMRI. 

Theoretical background on rank order correlation queries was given in the previous 

chapter. The algorithm is similar to a Pearson correlation query, but uses data that 

is stored in rank space. Hence, Algorithm 18 is a slight variation on Algorithm 17 

but on rank space data rather than on normalized space data. 
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Algorithm 18 Rank order correlation query algorithm over rCMRI 

Input: A range parameter e, a correlation parameter r, a query Q of length q, the 

root of the ith index of rCMRI rooti, the window size w and the number of R-tree 

indexes c in rCMRI. 

Output: The results results. 

l : Qi = PARTITION(Q) 

2: e0 = y/(l-r)(w3-w)/6/y/p 

3: for i = l to c do 

4: ( % , . . . , f e ) = SLIDING(Qi) 

5: for j = l to q-w+1 do 

6: dw.offset- RANGE^SEARCH(rooti,ei,qJ) 

7: offset = dw-offset — j + 1 

8: if offset > 0 and not duplicated then 

9: ADD offset TO temp_results 

10: end if 

11: el+x = maxBetemp.results(\/ef - d(qj, B)2) 

12. end for 

13: end for 

14: results = POSTPROCESS(results) 
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Chapter 4 

Performance Evaluation and 

Analysis 

In this chapter, we describe the experiments conducted for the evaluation of our 

proposed solutions for various queries over rCMRI and present the results. We begin 

by correlation queries followed by multivariate correlation queries and rank order 

queries. Then we proceed with rCMRI analysis. 

4.1 Performance of Correlation Queries 

We have evaluated the performance of our algorithms for fast correlation analysis 

and queries on time series datasets on a typical desktop PC using 3.2 GHz Intel 

Pentium IV processors with 504 MB of RAM running Windows XP. Our test pro­

grams are written in C + + and MATLAB programs were used to verify correctness of 
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Figure 4.1: Average performance of bivariate correlation queries for different fan-outs 

and cases. 

the results of the programs. We ran 15 runs of different correlation query instances 

that returned from 0 to 1000 records. Our analyses of the results indicated that the 

proposed algorithms provide online response times to complex correlation queries in 

standard computing environments and showed significant improvement over brute 

force sequential methods. In our experiments, we used real life stock market data, 

about 800 stocks sampled every day for a period of 400 days, of total size approxi­

mately 3 MB generating an index size of approximately 115 MB (using 5 resolutions 

and reduced data dimensionality of 8). 

4.1.1 Performance of Bivariate and Multivariate Correlation 

Queries 

We have studied the performance of complex correlation queries with single tree 

accesses to our indexing scheme, rCMRI. When multiple tree accesses are needed, in 

the worst case (when the query and the indexed data do not allow pruning between 
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tree accesses which happens when there is an exact match), the execution time and 

the number of disk I/O operations required increased linearly with the number of 

tree accesses. In both cases where data was in memory and on disk, for the bivariate 

and multivariate correlation query algorithms, even when we have up to 5 different 

tree accesses for a single query, we achieved an order of magnitude improvements in 

run time over brute force algorithms. Theoretically, point queries on R-trees offer at 

best 0(logn) performance where n is the number of data points. The complexity of 

range queries is 0(n + (n — 1)/'(/'anout — 1)) in the worst case which occur when 

all the n points are retrieved. Since the number of query results is often very small 

compared to n, the performance on average is closer to point queries. 

As mentioned earlier, to the best of our knowledge, no other correlation analysis 

algorithm offers the same flexibility with ad-hoc, user-defined queries. However, here 

we compare our work to other solutions described in the literature, i.e., StatStream 

[SZ02, SZ04] and the Spatial Cone Tree [HKSZ03a, HKSZ03b, HKSZ03c], for fixed 

correlation parameter values (to compare with StatStream) and fixed query length 

(to compare with the Spatial Cone Tree). StatStream offers a worse case run time 

of O(d), where d is the number of dimensions of the grid structure used to index the 

time series data. Hence, for queries with fixed correlation parameters, StatStream 

offers the best solution. However, if we want variable values of correlation parameters 

through implementing StatStream, we would need to scan the whole dataset in order 

to regenerate the grid structure, i.e., similar to the brute force sequential algorithm. 

[HKSZ03a, HKSZ03b, HKSZ03c] report 45% to 85% savings on computational costs 
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Figure 4.2: Average performance of multivariate correlation queries for different fan-

outs and cases 

for the Spatial Cone Tree solution. An advantage of our proposed algorithms is that 

they are scalable: for single tree accesses (fixed query lengths), our solution offers 

80% to 95% savings on I/O operations compared to sequential algorithms on real 

life data. The main advantage of our solution is its support for ad-hoc correlation 

queries, multivariate correlation queries, and dynamically time warped correlation 

queries. 

Figures 4.1 and 4.2 show average speed-ups over the brute force algorithms for 

queries returning 0 to 1000 results. The in-memory case measures performance in 

terms of run time and the on-disk case measures performance in terms of I/O oper­

ations. Performance is measured against different values of MAXNODES, which is 

the number of nodes an R-tree node can contain. 

We do not present performance data for DTWC queries since no performance 

altering modifications to the algorithm presented in [KR04] are made. Interested 

reader can refer to that paper for detailed performance evaluations. 
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Figure 4.3: Rank order reduction (a) Precision of for N=8 (b) Precision for N=16. 

4.1.2 Performance of Rank Order Correlation 

In this section, we first address the precision of PA A as a dimensionality reduction 

over rank order value spaces. We then proceed to analyse the performance of PAA 

correlation queries compared to sequential scan (the only other solution to the best 

of our knowledge) for the case where data resides in memory and the case where data 

resides on disk. 

4.1.3 Precision of PAA Reduction over Rank Order Data 

PAA reduced time series yield lower bounding distance measures within 20% of the 

real distance measured in value space when the dimension of the feature space is set 

to N=8 and 13% of the real distance measured in value space when the dimension 

of the feature space is set to N=16. In both cases, the dimensionality n of the value 

space is set to 32, which is also the sliding window size. Figure 4.3 shows the real 

squared distance of a given set of windows from a given query as a solid line and the 

lower bounding PAA distance of a reduced window from a given query. Note that 
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the lower bounding PAA distance is given by the following equation for two PAA 

sequences X and Y [CKMPOla]: 

DpAA = 
n N 

y\NY£xi~Yi)2 C 4 - 1 ) 

Figure 4.3(a) shows the case where the window size 32 in value space is reduced to a 

feature space of dimension 8, and Figure 4.3(b) shows the case where the dimension 

of the feature space is 16. 

4.1.4 Runtime and I /O Operations of Rank Order Queries 

Figure 4.4(a) shows the speed-up for the case where data is in memory, where the 

speed-up is defined as the ratio Tsequentiai/Tin(iexed for queries returning 10 to 100 

records and correlation coefficients set from 0.85 to 0.95. Figure 4.4(b) shows the 

percentage of I/O operations saved for the case where data is on disk, where this 

percentage is defined as total windows/nodes accessed. In both cases, we can see 

significant performance gains through using the polyhedral index for rank order cor­

relation queries. If the result set approaches the total number of elements in the 

index, performance degrades. However, most often the number of results returned 

by a range query is much smaller than the total number of data points stored in the 

R-tree index. 

Figure 4.4(c) shows performance comparisons using real NYSE stock market data, 

normally distributed synthetic data and uniformly distributed synthetic data. We can 

see that the performance of the polyhedral index over each datasets stays in the same 
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Figure 4.4: Rank order query performance (a) Data in memory case (b) Data on 

disk case (c) Dataset comparisons (real and synthetic) for data in memory case (d) 

Dataset comparisons (real and synthetic) for data on disk case. 

order of magnitude and that the polyhedral index performs well over real as well as 

synthetic data. 

Furthermore, we remark that the memory consumption of the CMRI index is 

O(kn), where k is the number of resolution trees used to index the data where n is 

the number of windows stored such as n = s(t-w+l), where s is the number of stocks, 

t is the number values in each stock and w is the window size. 
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Figure 4.5: (a) Size Comparison between rCMRI and CMRI (b) Index construction 

time comaprison between rCMRI and CMRI. 

4.2 Performance Analysis of the rCMRI Index 

In this section, we provide different comparisons between rCMRI based on Duality 

Matching and the original CMRI. These comparisons span issues such as the index 

size, which is smaller by a factor of 1/w for rCMRI, the index construction time, for 

which we provide runtime performance measures, and the runtime and I/O opera­

tions required for range queries, which can be used as benchmarks for other queries 

such as con-elation queries and nearest-neighbour queries since range queries are of­

ten the basis of these other queries. We also compare the two indexing schemes 

based on precision, experimental data and data volume. In general, we can say that 

rCMRI improves over CMRI in terms of index size, and hence index construction 

time. However, as we will see, query time for both indexes stays in the same order 

of magnitude when no buffering is allowed. When buffering is used, query response 

time is improved with rCMRI when measured through the number of I/O operations. 

The general setup for our experiments was the following: we used real stock 
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market data from the New York Stock Exchange (NYSE). Each stock was sampled 

over 400 days, hence producing 400 floating point values per stock. We increased the 

data volume from approximately 200 to 2000 stocks in our experiments on rCMRI 

and from approximately 200 to 1000 stocks in our comparisons between the reduced 

CMRI and the original CMRI. As we will see, rCMRI indicated better performance or 

was comparable to CMRI in all the experiments carried out. Furthermore, according 

to our experiments using real stock market data, rCMRI retrieves 20% less false 

positives than the original CMRI, which is consistent with the fact that Duality 

Matching was shown to be more precise than the I-Adaptive index. Most of these 

characteristics are due to the fact that rCMRI improves by a factor of 1/w the size of 

the original CMRI although the complexity of the algorithms itself is increased since, 

as for range queries, multiple queries over a smaller index are required. 

4.2.1 Comparisons on the Index Size and Construction Time 

The main contribution of rCMRI is the reduction in the size of the index compared to 

CMRI while still retaining the advantages of a multi-resolution index. In this section, 

we present the results of our experiments on the size the reduced CMRI. 

Figure 4.5(a), shows the ratio CMRIsize/rCMRIsize. As shown in the figure, 

for different values of MAXNODES (the underlying R-tree fanout), rCMRI yields 

an order of magnitude improvement. In theory, the improvement in the index size 

would be approximately l/w. In our case with w = 32, the improvement found 

experimentally was about 27. 
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Figure 4.6: Runtime performance of rCMRI. 

Figure 4.5(b) shows the improvement in the index construction time. As can be 

seen when the data volume increases, the improvement in index construction time 

increases to an order of magnitude: for approximately 800 stocks, the index construc­

tion time of the original CMRI is over 10 seconds whereas the index construction time 

of the reduced CMRI stays below one second. These properties indicate that rCMRI 

is more suitable for handling large volumes of data for example in data streams. This 

is mainly due to the use of disjoint windows rather than sliding windows. 

4.2.2 Comparisons on the Runtime and I/O Operations 

In this section, we compare rCMRI and CMRI on query response time (runtime and 

I/O operations). 

In Figure 4.6, we show the runtime for range queries over rCMRI. The complexity 

of the underlying algorithm seems to be linear with the input size. In general, runtime 

comparisons between rCMRI and CMRI only compares slightly advantageously in 

favour of rCMRI, while not offering at least an order of magnitude improvement. 
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Figure 4.7: Range query performance comparison between rCMRI and CMRI (a) 

Data in Memory (b) Data on Disk. 

Hence, when comparing runtime, we only get improvement ratios slightly higher than 

1. This is shown in Figure 4.7(a). In Figure 4.7(b), for the case where no buffering 

is allowed (i.e. cases marked as "all" for "all disk accesses"), a similar analysis 

holds: improvement ratios are slightly over 1 and less than order of magnitude. This 

is explained as follow: for any query, rCMRI performs multiple sub-queries over the 

same smaller index. Hence, the same page or window may be accessed many times for 

a given query. When measuring all disk accesses (i.e. access to a window), we do not 

see any significant improvement in index performance. However, when measuring all 

distinct disk accesses, which approximates the behavior of the index when buffering 

is used, we get a significant improvement ratio which is above an order of magnitude. 

This improvement can also be numerically compared to the improvement in the size 

ratio described in the previous section. As a note, in our experiments, we use runtime 

as a measure of index performance when the data fits in memory, whereas we use I /O 

operations as a measure of index performance when the data cannot fit in memory 
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and resides on disk. 
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Chapter 5 

Conclusion and Future Work 

In this thesis, we presented algorithms for correlation analysis and queries and de­

scribed how they differ from those proposed in [HKSZ03a, HKSZ03b, HKSZ03c, SZ02, 

SZ04]. The fastest solution is StatStream which runs in 0(d). However, the grid 

structure it uses to store the sliding windows is built and optimized for a fixed cor­

relation query parameter. Hence, to use variable correlation query parameters, one 

would need to rebuild the entire index which corresponds to scanning the whole time 

series database. The Spatial Cone Tree solves this problem by making use of a spe­

cialized tree-based index. However, the Spatial Cone Tree did not originally support 

variable length queries efficiently. Both StatStream and Spatial Cone Tree are spe­

cialized index structures built for bivariate correlation analysis. Our solutions make 

use of R-trees and MRI/CMRI [KS04, KS07] variants. Hence, standard complex 

similarity queries with variable length such as range queries and nearest neighbor 

queries can be handled. Furthermore, the algorithms we propose over those index 
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solve variable bivariate correlation queries, multivariate correlation queries and the 

new algorithm we proposed for DTWC queries. 

We introduced a new way of indexing time series for rank order correlation queries. 

Rank order correlation has been extensively used when dealing with nonlinear mono-

tonic relationships between time series. Our method offers significant speed-up and 

I/O operation savings when compared to sequential scan, the only other solution. 

The overhead of maintaining an index is still linear in the number of windows stored 

which itself is in the order of the number of values in the input time series. This 

overhead makes sense when dealing with large datasets that cannot be sequentially 

scanned in a reasonable amount of time. 

One of the problems with CMRI is its size. We addressed this issue and we showed 

how rCMRI, a scalable multi-resolution index, can be used to index time series in 

order to efficently answer different queries and how this solution helps in a query-

response environment. Our experiments show that rCMRI can be built optimally 

and how it improves on existing solutions such as the original CMRI and Duality 

Matching. We also proposed algorithms that can be used in conjunction with rCMRI 

to solve efficiently distance based queries such as range and nearest neighbor queries 

and pattern based queries such as product moment and rank order correlation queries. 

Furthermore, we remark that rCMRI is not bound to a particular underlying spatial 

data structure such as the one we used in our experiments; we could use any data 

structure that can answer range queries without false dismissals such as R*-tree, 

R+-tree, M-tree, X-tree, etc. 
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As future work, we plan to extend the implementation of rCMRI to parallel and 

distributed environments. This is important since the huge real life datasets to be 

indexed may be scattered around multiple hosts. We also plan to investigate ways to 

answer multiscale queries and nonlinear non-monotonic correlation queries. 
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