
An Automated Multimodal Face Recognition System 

Based on Fusion of Face and Ear 

Lorenzo Luciano 

A Thesis 

in 

The Department 

of 

Computer Science and Software Engineering 

Presented in Partial Fulfillment of the Requirements 

for the Degree of Master of Computer Science at 

Concordia University 

Montreal, Quebec, Canada 

February, 2009 

© Lorenzo Luciano, 2009 



1*1 Library and Archives 
Canada 

Published Heritage 
Branch 

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-63339-7 
Our file Notre reference 
ISBN: 978-0-494-63339-7 

NOTICE: AVIS: 

The author has granted a non­
exclusive license allowing Library and 
Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par Nnternet, preter, 
distribuer et vendre des theses partout dans le 
monde, a des fins commerciales ou autres, sur 
support microforme, papier, electronique et/ou 
autres formats. 

The author retains copyright 
ownership and moral rights in this 
thesis. Neither the thesis nor 
substantial extracts from it may be 
printed or otherwise reproduced 
without the author's permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. Ni 
la these ni des extraits substantiels de celle-ci 
ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting forms 
may have been removed from this 
thesis. 

Conformement a la loi canadienne sur la 
protection de la vie privee, quelques 
formulaires secondaires ont ete enleves de 
cette these. 

While these forms may be included 
in the document page count, their 
removal does not represent any loss 
of content from the thesis. 

Bien que ces formulaires aient inclus dans 
la pagination, il n'y aura aucun contenu 
manquant. 

1+1 

Canada 



CONCORDIA UNIVERSITY 
School of Graduate Studies 

This is to certify that the thesis prepared 

By: 

Entitled: 

Lorenzo Luciano 

A n A u t o m a t e d Mul t imodal Face Recogni t ion S y s t e m 

Based on Fusion of Face and Ear 

and submitted in partial fulfillment of the requirements for the degree of 

Master of Computer Science 

complies with the regulations of the University and meets the accepted standards 

with respect to originality and quality. 

Signed by the final examining committee: 

Dr. Hovhannes Harutyunyan Chair 

Dr. Peter Grogono Examiner 

Dr. Thomas Fevens Examiner 

Dr. Adam Krzyzak Supervisor 

Approved By Chair of Department or Graduate Program Director 

Dr. Robin A.L. Drew, Dean 
Engineering and Computer Science 

Date 



ABSTRACT 
An Automated Multimodal Face Recognition System 

Based on Fusion of Face and Ear 

Lorenzo Luciano 

This thesis presents an automated system for the detection and recognition of humans 

using a multimodal approach. Face recognition is a biometric method which has in 

recent years become more relevant and needed. With heavy research, it is achieving 

respectable recognition rates and is becoming more mature as a technology. It is even 

being deployed in certain situations such as with passports and credit cards. 

Our multimodal biometric system uses both a person's face and ear to improve 

the recognition rate of individuals. By combining these two biometric systems we 

are able to achieve significantly improved recognition rates, as compared to using a 

unimodal biometric system. 

The system is totally automated, with a trained detection system for face and 

one for ear. We look at recognition rates for both face and ear, and then at combined 

recognition rates, and see that we have significant performance gains from the multimodal 

approach. We also discuss many existing methods of combining biometric input and 

the recognition rates that each achieves. 

Experimental results indicate that a multimodal biometric system has higher 

recognition rates than unimodal systems. This type of automated biometric recognition 

system can easily be used in installations requiring person identification such as person 

recognition in mugshots. It can also be used by security agencies and intelligence 

agencies requiring robust person identification systems. 
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Chapter 1 

Introduction 

In this master's thesis, we present a multimodal framework for the automatic de­

tection and recognition of individuals using face and ear as input. The main moti­

vation behind our research is towards the design of a fast, automatic detection and 

recognition system of humans, especially applicable to security services such as in­

telligence agencies, investigative services, commercial protection, terrorist tracking, 

human tracking, etc. 

Given the prevalent criminal and terrorist activity in our society it would be 

beneficial to have a mechanism of human detection which is fast and reliable. We 

decided to use face and combine it with the ear because they are both usually exposed 

and do not require user participation. 

1.1 Motivation and Objectives 

The research and implementation lead us towards an automated system for the de­

tection and recognition of humans using a multimodal approach. Our multimodal 

biometric system uses both a person's face and ear to improve the recognition rate 

of individuals. By combining these two biometric systems we are able to achieve 

significantly improved recognition rates, as compared to using a unimodal biometric 

system. The system is totally automated, with a trained detection system for face 

and one for ear. 

1 
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We look at recognition rates for both face and ear, and then at combined recog­

nition rates, and see that we have significant performance gains from the multimodal 

approach. We also discuss many existing methods of combining biometric input and 

the recognition rates that each achieves. 

Experimental results indicate that a multimodal biometric system has higher 

recognition rates than unimodal systems. This type of automated biometric recog­

nition system can easily be used in installations requiring person identification such 

as person recognition in mugshots. It can also be used by security agencies and 

intelligence agencies requiring robust person identification systems. 

1.2 Overview of Biometrics 

Biometrics is a science dedicated to the identification and classification of individuals, 

based on some physical or behavioural attributes of that individual. Recognition is 

a task easily accomplished by humans, but is an enormously complex task for the 

computer. 

Falsification of individuals is a problem in today's digital world, passwords and 

identity cards can only go so far in protecting us and assuring us of the protection 

of our identity [36]. Imagine a system where falsification was impossible or nearly 

impossible, that is what we can someday hope biometrics will achieve. The necessity 

and requirement of a reliable identification system has put demand on biometric 

researchers to develop something useful and practical, in recent years. 

There are many different human traits that are being used in biometric systems, 

any human trait that can be used to identify and recognize an individual with a 

certain degree of accuracy is being researched and used in an attempt to accurately 

recognize individuals, see Table 1.1 for some of these biometric traits. 

One of the oldest biometric techniques is fingerprint recognition, still heavily used 



Biometric Trait 
3 

Character 
Ear 
Face 

Fingerprint 
Gait 

Hand Geometry 
Iris 

Signature 
Vein Pattern 

Voice 

Table 1.1: Examples of some biometric traits being used in biometric systems. 

today by almost all law enforcement agencies, although with newer modern tech­

niques. Iris has also proved to be a very reliable biometric, although like fingerprint 

requires the full cooperation of the user. Iris technology is now being used at many 

airports world wide for frequent flyers instead of passport identification. Some of the 

airports using this technology are in Canada, the United Kingdom and the United 

States[14]. See Figure 1.1 for some biometric systems that are being developed using 

various biometric traits and deployed in many different areas. 

Unlike these techniques, face recognition does not require full participation of the 

user, although it has not reached the recognition levels that fingerprint and iris have 

achieved thus far. Face recognition is still a very difficult problem, due to variabilitys 

in the human face, plus other variabilitys such as illumination, ageing, eyeglasses, 

camera location and distance etc.[l]. The fact that it is a non-intrusive biometric 

method however, makes it very interesting and practical as a biometric. 

Ear as a biometric is not as well known or recognized as many others are such as 

face, iris and fingerprint. Ears have however, been used as a forensic science[19] for 

a long time. The advantage of ear over other biometrics is that they have a rich and 

stable structure which does not change with time and age. It also does not change 

with a person's facial expressions and can be captured at a distance unlike fingerprint 

and iris, which was very important in our research. 
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Figure 1.1: Biometric systems are being developed and deployed in many different 
areas, here are a few examples of some biometric devices using various biometric 
inputs, (a) Iris (b) Hand (c) Face (d) Fingerprint and Pin 

Non-intrusive biometric methods have gained much interest in recent years due 

to the increased concern for public security. Since there is a tremendous increase in 

demand for useful and practical biometric systems, such a biometric system would be 

of high practical use and demand in both public and private sectors. 

1.3 Approaches and Contribution 

Human recognition using biometric means is a highly researched area, the need for 

such a system is incredibly high and the demand for one just as high. We have seen 

many advances in biometric uses such as fingerprint, iris, face, voice, gait, hand, ear 

etc.[l]. 

What makes face recognition an interesting biometric is that it is intuitive and 

does not require user participation, in other words it can be implemented without 

the user being aware that there is detection and recognition happening. Due to these 

factors, face recognition becomes a very interesting biometric for many applications 
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in real world situations, such as intelligence agencies, investigative organizations, 

surveillance, tracking and apprehension of criminals, against terrorism etc. 

There has been a tremendous amount of progress and research in recent years 

in the area of face recognition, especially in controlled environments. However, face 

recognition remains a very difficult and challenging problem for researchers. This 

is mainly due to the variation in the human face under various conditions such as 

illumination, expressions, view etc. These various conditions make it difficult to 

accurately match faces in real situations. 

The human ear as a biometric, compared to the face has not received as much at­

tention, although in recent years interest has increased due to its enormous potential. 

Ears have a tremendous potential as a biometric because of a number of factors. It is 

relatively stable over a persons lifetime, it does not change with a person's expression, 

it is a small and very rich area and is usually exposed [5, 40]. Along with the last 

issue stated, the ear is large enough to be captured at a distance, therefore does not 

require user participation. 

These factors led us to our research in combining face and ear biometric to possibly 

increase the recognition rate that they could achieve individually. 

1.4 Research Contribution 

The detection, recognition, and authentication of individuals without their full co­

operation would be a valuable tool for security and intelligence agencies requiring a 

robust person identification system. Biometric systems that do not have full person 

cooperation are still not as robust as other systems requiring complete person cooper­

ation such as fingerprint technology and iris technology, now widely used at airports 

and other installations. 

However, a robust system not requiring full person cooperation such as face recog­

nition using video or images would facilitate the identification of individuals and would 
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allow person identification from reasonable distances without the subjects knowledge. 

Such an unobtrusive, robust biometric system would have a great demand and im­

plication for law enforcement agencies and other commercial installations requiring 

person identification. 

We believe a system such as this would also have to be fully automated with the 

detection and recognition done without manual intervention, to be of the greatest 

possible value and use. Towards such a system, we have decided to combine face 

recognition with ear recognition in a multibiometric system to perhaps achieve a 

more robust recognition rate. 

There are many methods for face recognition as this is a heavily researched area. 

Some of these more popular methods are Eigenface [43], Gabor features [38], Fisher-

face [4] and Local Feature Analysis [33]. Eigenfaces are a fast technique, but do have 

some issues with lighting and scale. 

Due to the fact that we wanted a fast automated system, we used eigenfaces with 

eigenears to see if we could improve the recognition rate by using multibiometric, 

yet still maintain a fast, uncooperative fully automated system. Many other biomet­

rics modalities such as iris, hand, gait, voice, fingerprint are given in Handbook of 

Biometrics [1]. 

We decided to use ear in combination with face as it still enables us to have an 

uncooperative biometric system. In most instances, the face and ear are both exposed 

and we are able to detect and use these in a person recognition and identification 

system. 

The ear as a biometric seems less intuitive than the face, it is not what humans 

normally use to identify each other. Ear does however, make for a very interesting 

biometric and was first used as a biometric by Iannarelli[21]. He attempted to use ear 

as a biometric in a manual system by identifying important points on the ear and then 

using measurements to see if it could be used to identify individuals uniquely. In the 
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end he came up with twelve features and could uniquely identify 10,000 individuals. 

Ear has some very interesting properties lending itself to be a very good biomet-

ric candidate[37]. Given these properties, it seems like a very good complementary 

biometric to use in combination with the face. 

Many of the methods we mentioned for face recognition can also be used for 

ear recognition. In addition, there are some other methods which were developed 

specifically for ear recognition. There are also geometric approaches to ear recognition 

such as those described by Coras[ll], who in his studies uses geometric properties such 

as width and length of the ear to create a feature vector. 

Another method to ear recognition is the Gaussian approach described by Hurley 

et al.[20]. In this approach the ear is modeled using a Gaussian force field. The pixels 

of the ear image create a magnetic like force field as they exert forces against one 

another. These force field lines which are created by the magnetic like force on the 

pixels generate channels which are then used for identification. 

There are researchers also studying the validity of using 3D ear shape for recognition [46, 

24] and also in multibiometrics[47] 

The method we used for ear recognition is eigenears, which like eigenfaces, uses 

the method of PCA for comparing ears for recognition. 

The difficulty in such as system is occlusions, which could be a limitation for both 

face and ear, also lighting, has shown to cause difficulties. Combining both biometrics, 

we hope to overcome some of these difficulties and allow for a system with greater 

robustness. 

Some of the research and experimental results in the area of face and ear multi-

biometrics have shown to be very promising. 

Chang et al.[23] used PCA on face and ear using multi-instance biometric, using 

a manual land marking method. With the largest dataset of 111 subjects, they were 

able to achieve a combined recognition rate of 90%. Unimodal recognition rates for 
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face and ear were 70.5% and 71.6%, respectively, for one experiment and 64.9% and 

68.5%, respectively for another. 

Rahman and Ishikawa[39] also used PCA for combining face and ear, moreover 

they used profile images and manually extracted features. On a dataset of 18 subjects 

of profile face and ear, the recognition rate was 94.44%. In these experiments, the 

authors used the profile image to capture face(profile) and ear. 

Middendorff and Bowyer[29] used PCA/ICP for face/ear, manually annotating 

feature landmarks. On a 411 subject dataset they were able to achieve a best fusion 

rate of 97.8%. Face had a recognition rate of 88.1% and ear had a recognition rate of 

62.2% 

It must be mentioned that none of these systems is an automated system, requiring 

manually intervention in all cases to either manually landmark or annotate features. 

The research contribution of this thesis is the development of a multibiometric 

system using face and ear as biometrics, which is fully automated [26]. It requires 

no manual intervention at any point and was able to achieve a higher recognition 

rate(with a best rate of 100.0%) [27] on two separate experiments using two different 

databases(100 individual subset of FERET[35] and 114 person CVL database[32]), 

which is higher than previously mentioned research papers[23, 39, 29]. 

The automation includes a trained face and ear detector, extraction, cropping, and 

pre-processing. An automated system such as this would find immediate applications 

in many areas where identification and authentication are crucial. 

We will demonstrate and describe how fusion of face and ear using an optimized 

weighted scheme can significantly improve recognition levels. 

Our proposal, presents a multimodal framework for the detection and recognition 

of humans. The presented multimodal approach is able to achieve significantly higher 

recognition rates as we will demonstrate in this thesis. 



1.5 Organization of Thesis 

The remainder of this thesis is organized as follows; In Chapter 2, we look at automatic 

object detection, namely for face and ear. In Chapter 3, we illustrate face and ear 

biometrics as unimodal biometrics. In Chapter 4, we explore face and ear recognition 

as a multimodal biometric, combining face and ear for recognition. In Chapter 5, we 

review the experiments performed and the data achieved, measures, databases and 

tests used along with results. In Chapter 6, review and some concluding remarks. 



Chapter 2 

Object Detection 

2.1 Introduction 

The first step in our automated multimodal biometric system was the detection of 

the regions of interest. We are interested in extracting the objects which will form 

the basis of the recognition system; in this case the regions of interest are the objects, 

face and ear. The regions of interest are extracted using a Haar like features based 

object detector provided by the open source project OpenCV library[31]. This form 

of detection system is based on the detection of features that display information 

about a certain object class to be detected. 

Haar like features encode the oriented regions in images whenever they are found, 

they are calculated similarly to the coefficients in Haar wavelet transformations. 

These Haar like features can be used to detect objects in images, in this case the 

human face and the human ear. This Haar like object detector was originally pro­

posed by Viola and Jones[44] and later extended by Lienhart and Maydt[25]. 

A cascade of boosted classifiers using Haar like features is trained using positive 

(containing object to detect) images and negative (arbitrary, not containing object to 

detect) images. Cascade implies that the resultant classifier consists of many simple 

stages applied subsequently. It allows regions of non-interest or background regions 

to be discarded at every stage, so that computing time is not wasted in these areas of 

non-interest[44]. Boosted implies the classifiers at every stage are built using boosting 

10 
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Figure 2.1: Haar Wavelet 

techniques such as AdaBoost. 

2.2 Haar Wavelets 

To understand our detection system it is crucial to have an understanding of Haar 

wavelets, which form the basis of the object detector. The Haar wavelet was developed 

by Alfred Haar in 1909[16], it is the first wavelet ever discovered. Haar first used it to 

describe an orthonormal system, however the study of wavelets and the term wavelets 

only came to be much later. 

The Haar wavelet is a simple wavelet which is not continuous and not differen-

tiable. You can see a visual representation of a Haar wavelet in Figure 2.1. 

The Haar wavelet function tj;(t) can be described as, 

1 0<t<\ 

il>{t) = I - 1 \<t<l 

I 0 otherwise 

Its scaling function cp(t) can be described as, 

, , I 1 0<t<1 

[ 0 otherwise 

2.2.1 Haar Wavelet Properties 

The Haar wavelet has a number of properties which we will describe below[12]. 



1) All functions can be approximated linearly by, 
12 

0(*), 0(2*), 0(4*),...0(2**). 

their shifted functions. 

And also by, 

il>{t),tl>(2t), T/;(4*), ...</>(2fc*). 

their shifted functions. 

2) In orthogonal representation, 

/

oo 

2"V(2m* - n)V;(2mi* - m)dt = 5m,mi,Sn,ni. 
•oo 

where <5;j, represents the Kroneker delta. 

3) Functions which represent scaling and have different scale m have a functional 

relationship as described, 

(f)(t) = 0(2*) + 0 ( 2 * - 1 ) . 

<K*) = 0(2*) - 0(2* - 1). 

4) We can calculate the coefficients of scale m, by using the coefficients of scale 

m + 1, if 

and, 

/

•oo 

x(*)0(2m* - n)dt. 
-oo 

/•oo 

J M n , m ) = 2 f / x{t)i'(2mt - n)dt. 
•I —OO 

then. 
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Xw(n, m) = ^f\J2{Xw{2n,m + l)+ Xw(2n + l,m + 1)). 

and, 

Xw{n, m) = y/l/2(Xw(2n, m + 1) - Xw{2n + l,m + 1)). 

2.2.2 Haar Matrix 

We can describe the Haar matrix associated with the Haar wavelet as follows, 

Ho 
1 1 

1 - 1 

using a discrete wavelet transformation, we can transform a sequence, 

(OQ, ai, . . . , 02n, 02n+l ) -

into a sequence of two vectors, 

( ( ao , a i ) , .. . , (a2n, 02ra+l))-

If we then multiply each vector by the matrix H2 we get, 

((s0,<io),---, {sn,dn)). 

which is the first stage of the last Haar wavelet transform. 

With a sequence of length four, combining two stages the fast Haar wavelet trans­

form we would get. 

HA = 

1 1 1 1 

1 1 - 1 - 1 

1 - 1 0 0 

0 0 1 - 1 
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(a) 

00 

Figure 2.2: In this figure we see examples of Haar like rectangular features, a) two 
rectangular features, b) three rectangular features, c) four rectangular features 

2.3 Haar like Features 

The object detector uses features as opposed to pixels, features make it easier to 

encode ad-hoc domain knowledge which would be difficult to learn using a large 

quantity of training data[44]. The second reason for using features is the feature 

based system is a lot faster than a pixel based one. 

The system uses three types of features, see Figure 2.2 for a visual representation. 

A two rectangle feature, see Figure 2.2(a), has two rectangle regions. The two regions 

are the same size and shape. There is also a three rectangle feature, see Figure 2.2(b), 

and a four rectangle feature, see Figure 2.2(c). Given a detector with a width and 

height of 24x24, the set of features would be very large with over 180,000 [44]. 

2.3.1 An Integral Image 

With the large set of features and heavy computation involved, Viola and Jones[44] 

propose an intermediate representation for an image called an integral image. 

The integral image ii(x,y) is given by, 

x'<x.y'<x 
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where, the location of the integral image is (x, y), and the original image is i(x, y). 

Using the following pair of recurrences, 

s(x, y) = s{x, y-l) + i{x, y) 

ii{x,y) = ii(x-\,y) + s{x,y) 

where, s(x, y) is the row sum s(x, —1) = 0 and n(—1, y) = 0. 

Rectangular features provide an image representation which is rich and easily 

trainable. Together with the integral image concept, the rectangular features become 

very efficient. 

2.4 AdaBoost Learning 

AdaBoost learning is a method to boost the performance of a weak learning algo­

rithm. In their research, Freund and Schapire[15] proved that AdaBoost is capable of 

increasing the performance of a simple classifier. They showed that the training error 

rate of a strong classifier is capable of reaching zero exponentially with the number 

of rounds used, in later experiments the results proved this result[42]. AdaBoost is 

capable of achieving greater performance because it produces large margins rapidly. 

To compute every feature for every sub-window is very computationally expensive, 

therefore we need a method to make this more efficient. Without using every feature 

possible in a sub-window we are still capable of producing an effective classifier[44]. 

This question is which features do we use? 

To accomplish this the simple learning classifier is designed to select the rectangu­

lar feature which best separates positive and negative examples. Using this premise, 

the simple classifier determines the threshold function where the least amount of 

examples are misclassified. 
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Therefore, a weak classifier hj(x), with feature fj, threshold 9j and a parity pj 

will equal; 

f 1 ifPjfj(x) < Pj0j 

y 0 otherwise 

where x is a 24 x 24 pixel sub-window of an image. 

In practice, it has been shown that a single feature cannot perform the classifica­

tion with a low error rate. 

In early stages of the boosting process the error rate achieved are between 0.2 and 

0.3[44], later stages the rates achieved were between 0.4 and 0.5. 

2.4.1 AdaBoost Algorithm 

In this section we describe the AdaBoost algorithm for classifier learning. This al­

gorithm is capable of selecting one feature in each boosting stage from the potential 

180,000 features[44]. 

With a set of images (xi,yi),..., (xn, yn) where t/i = 0 for negative examples and 

Hi = 1 for positive examples. 

If we initialize weights w\^ as, 

1 1 
%~ 2m'2/ 

for yi, where m is the number of negatives and / is the number of positives. 

Now, for t = 1,...,T we, 

1) 

Normalize the weights wt)i as, 

Wt,i 

E n 
i = l Wt,3 

giving, wt as a probability distribution. 
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2) 

For every feature j , we train a classifier hj, which can only use one feature, with 

the error rate €j with respect to wt given as, 

^Wi\jj(xi)-yi\ 
i 

we choose the ht with the lowest et 

3) 

next, we update the weights for the next round, 

wt+i,i = wt,iP}~ei 

where, e, = 0 if Xi is correct, otherwise e* = 1, and /3t = jz~-

In the end, we have a strong classifier given as, 

, / x j 1 Ef=i <xtht(x) > \ E L at h(x) = < 
[ 0 otherwise 

where at = log j - . 

2.5 Cascade Classifiers 

A cascade of classifiers is capable of achieving increased performance and decreased 

computational time. It is capable of achieving this by rejecting most of the negative 

sub-windows while correctly detecting the positive sub-windows, therefore making it 

much smaller and more efficient. 

The name cascade comes from the fact that the process is sort of like a decision 

tree, where at each level of the process we make decisions depending on whether we 

have a negative or positive result. If we have a positive result, we proceed to a second 

classifier, if we get a positive result from the second classifier we proceed to a third 

classifier, we continue with the process in this manner. A negative result will cause 
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Figure 2.3: Visual depiction of the Detection Cascade. 

the sub-window to be rejected, see figure 2.3 for a visual of the cascade process. The 

stages in the cascade use AdaBoost to construct the training classifiers. 

The theory behind the cascade is that many of the sub-windows which are gener­

ated from an image are negative. Therefore, by rejecting these negative sub-windows 

early on, we can improve performance significantly. While at the same time, if we 

have a positive result, we evaluate every classifier in that cascade. 

In the following stages, the classifiers uses for its training only the examples which 

remain. Therefore, the task of the classifier gets harder as we go on into the stages, 

as compared to the first stages. It is very much like a decision tree as we narrow in 

on the solution. In Figure 2.4 you can see a complete visual representation of the 

AdaBoost Learning algorithm. 

2.6 Face Detection 

In this section, we will describe and look at how we went about developing and 

training our face detector. The process was tedious and long, due to the amount of 

images that were required to get a decent detector and the computing power also 

required for the training of the detector throughout all of its stages. 



Figure 2.4: Visual depiction of the AdaBoost Learning Algorithm. 

2.6.1 Data Set 

For our face detection, the positive data set was built with 2000 face images. These 

face images were made using an image clipping tool which allowed us to select an 

area from within the original image. We used the FERET database for the images as 

they provided many profile images from which we could use to crop the ear. Many of 

the images in the positive data set were also created with a tool which allowed us to 

use a face image and create many more positive sets from it, by for example rotating 

it a little. You can see some examples of the face images from Figure 2.5. 

The negative data set was made from about 5000 images acquired from various 

sources found on the internet. The only requirement was that they did not contain 

any faces. Some of the images included were of animals, landscapes, people(where 

the face was not visible) trains, automobiles etc. You can see some examples of these 

negative images in Figure 2.6. 
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Figure 2.5: Face Samples. Some samples of face images clipped from an image of a 
person. 
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2.6.2 Preprocessing 

The positive face images we eventually gathered after clipping them from the original 

image, came in many different sizes and intensities. These positive samples were 

scaled to the same size of 24x24; this seems to have yielded the best and fastest 

results. Once we had these positive input images scaled and normalized to a size of 

24x24, we proceeded with the training. Due to the heavy processing involved at each 

stage of the training process, it took about a week to run the complete training of 

the detector on a Duo CPU 2.66GHz PC with 2 GB of RAM. 

2.6.3 Performance 

The performance of the AdaBoost Haar face classifier was tested against a set of 200 

frontal images. It detected all faces, but we did have six falsely detected faces. To 

remedy this, we always chose the largest detected face in the image, with the belief 

that the largest detected face would actually be the face since the image was of a 

person, from about shoulder height and above, see Figure 2.7. 

This eliminated the problem of false detections and all faces were correctly de­

tected. At this point, our detector worked well, so we were able to proceed to the 

next level of our multimodal research. 

2.7 Conclusions 

The face detector developed was fast and accurate for the purpose intended. The 

face detector was automatic, fast and worked great for our non-intrusive multi modal 

biometric system. It was capable of detecting all faces, with the falsely detected faces 

being eliminated by selecting the largest detected face in an image. 
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Figure 2.6: Negative Samples. Some samples of images used in the negative data set, 
the images contain no faces or ears. 
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Figure 2.7: This shows an image where there was a falsely detected face. 

2.8 Ear Detection 

In this section, we look at and discuss the process we undertook to create our ear 

detector, In the end, we did have an ear detector which worked well. The process, 

like for the face detector, was long and tedious due to the amount of images required 

and the computing power it took to run through all of its stages. 

2.8.1 Data Set 

For our ear detector, the positive data set was built with 2000 ear images. These ear 

images were made using an image clipping tool which allowed us to select an area 

from within the original image. We used the feret database for the positive images as 

they provided many profile images from which we could use to crop the ear. Many of 

the images in the positive data set were also created with a tool which allowed us to 

use an ear image and create many more positive sets from it, by for example rotating 

it a little. You can see some examples of the ear images from Figure 2.8. 

The negative data set was made from about 5000 images acquired from various 

sources found on the internet. The only requirement was that they did not contain 

any ears. Some of the images included were of animals, landscapes, people (where 
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Figure 2.8: Ear Samples. Some samples of ear images clipped from an image of a 
person. 

the ear was not visible) trains, automobiles etc. You can see some examples of these 

negative images in Figure 2.6. 

2.8.2 Preprocessing 

The positive images we eventually came up with after clipping them from the original 

image, came in many different sizes and intensities. Therefore, these input images 

were scaled to a size of 16x24, this was to reflect the rectangular dimensions of the 

ear. Due to the heavy processing involved in each stage of the training process, it 

took about a week to run on a Duo CPU 2.66GHz PC with 2 GB of RAM. 

2.8.3 Performance 

The performance of the AdaBoost Haar ear classifier was tested against a set of 200 

profile images. The ear detector worked well with a few falsely detected ears, again 

this problem was overcome by selecting the largest detected object, see Figure 2.9. 



Figure 2.9: This shows an image where on the left we have a falsely detected ear. 

We did get images where the ear was not detected, this was due to too many 

occlusions around the ear, see Figure 2.9 for an example. In these cases, the image 

was simply not included. 

It failed to detect 5 of the images and this is due to occlusions around the ear, 

we could not improve on these results. For the purpose of this thesis, which was to 

research the capabilities of improving on recognition rates of persons using a multi­

modal approach with face and ear, the ear detector suited our purpose. There are 

better ear detectors which have been discussed in detail by many researchers [22], but 

our detector worked well enough for us to proceed with our multimodal research. 

2.9 Conclusions 

The ear detector developed, was fast and accurate for the purpose intended. Our 

goal was to come up with an ear detector which was automatic and fast for our non-

intrusive multi modal biometric system. It was capable of detecting all ears which 

were not occluded and to detect all but a few of the ears which were occluded, these 

being almost entirely occluded. 



Chapter 3 

Unimodal Biometrics 

3.1 Introduction 

A biometric system which uses face recognition is in great demand for the fight against 

crime and terrorism and for other various applications requiring a non-intrusive bio­

metric recognition system. Such a system is however still a very challenging problem 

for researchers. This is mainly due to the variability in the human face under various 

conditions such as expressions, ageing, glasses etc. and external conditions such as 

lighting, background, angle of camera etc. These varying conditions are a challenge 

in trying to develop a robust face recognition system. 

In analyzing these systems we must look at false acceptance rates (FAR), which 

is the probability that the biometric system incorrectly accepts someone, when it is 

in fact false. We also have to look at the false rejection rate (FRR), which is the 

probability that a biometric system incorrectly rejects a person when in fact it is 

true. 

With the intention of developing a robust face recognition system, there have 

been many methods or approaches to face recognition which have been proposed, 

researched and tested [34]. We will look at and analyze some of these methods, with 

the intention of seeing what are the benefits and disadvantages of each of the different 

methods. 

26 
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Some of the algorithms which have been proposed through the years include Princi­

pal Component Analysis/Eigenface(PCA)[43][3], Linear Discriminant Analysis(LDA)[13][7], 

Independent Component Analysis(ICA) [30], Local Feature Analysis(LFA)[33], and 

Support Vector Machines [17]. 

Recent developments in face recognition have also explored the area of 3D face 

recognition[6][10][8], in which the 3D surface area of the face is used for recognition. 

In the following sections we will look at some of these face recognition methods 

and then discuss in depth the method we will be using in our multimodal biometric 

system. 

3.1.1 Principle Component Analysis/Eigenface(PCA) 

Principal Component Analysis (PC A) or Eigenface is a recognition algorithm which 

attempts to find the least mean squared error linear subspace which is projected from 

the original N dimensional data space to an M dimensional feature space [43]. 

Doing this, the eigenface is capable of achieving a reduction in dimensionality by 

using the M eigenvectors of the covariance matrix which corresponds to the largest 

eigenvalues. We then attempt to find the vectors which best fit the data, in affect 

the vectors which maximize the total variance of the projected data. 

3.1.2 Linear Discriminant Analysis(LDA) 

Linear Discriminant Analysis(LDA) attempts to find the best projection vectors that 

will maximize the separation between classes in the projected space[13]. it accom­

plishes this by finding the best projection vectors that will maximize the ratio between 

the different class data and the same class data. 

3.1.3 Independant Component Analysis(ICA) 

In PCA, we attempt to find an orthogonal projection for the face images, so that 

we achieve an uncorrelated transformation of the features. Independent Component 
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Analysis(ICA) on the other hand, attempts to find a non-orthogonal projection in an 

attempt to get transformation features which are statistically independent. 

In PCA, the basis images depend on second order statistics, whereas in ICA, the 

concept is generalized to a model of higher order statistical relationships [41]. 

3.1.4 Local Feature Analysis(LFA) 

For its method of recognition, Local Feature Analysis(LFA) uses eigen-subspace de­

composition to construct a family of locally correlated feature detectors [33]. In the 

selection phase, LDA produces a minimally correlated subset of features which are 

topographically indexed that will define the subspace we are interested in. 

In this system robustness against variability will come from the local represen­

tation of the subspace. In this respect, the features used in LDA are less sensitive 

to variability such as illumination. This method of face recognition is also used in a 

commercial system [34]. 

3.1.5 Elastic Bunch Graph Matching(EBGM) 

In Elastic Bunch Graph Matching(EBGM) recognition is accomplished by construct­

ing a dynamic link architecture using image graphs as a representation of face images [45]. 

In effect, this is a geometrical representation of a face image. 

The image graph represents the face by using nodes and edges. The nodes in the 

image graph are used to represent facial landmarks such as nose, mouth and pupils. 

For the training images, a set of image graphs is used. 

At each node, which represent local features, a set of Gabor wavelet coefficients are 

used. In the Gabor, their contains information about the orientations and frequencies 

at every node. To perform recognition, the facial image is matched against every graph 

in the training set and the closest match is chosen as the identity of the person. 
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3.1.6 Support Vector Machines(SVM) 

Support Vector Machines(SVM) have been successful in face recognition systems[18]. 

This system works by mapping the data onto higher dimensional feature spaces, this 

is sometimes called the kernel trick[17]. 

The SVM then attempts to find the hyper plane which maximizes the margin of 

separation. This is in attempt to minimize the risk of misclassifying an image. In 

this manner, the SVM is not only able to classify training samples but also develop 

a better generalization of data it has not seen yet. 

3.2 Face Recognition using Principle Component 
Analysis 

PCA is one of the most successful methods used in face recognition and is also widely 

used for other image recognition applications such as the ear. PCA is a classical 

statistical technique working in the linear domain, making it suitable for many areas 

of research such as image processing, signal processing and control theory. PCA uses 

a statistical approach to recognition, it attempts to reduce the larger dimensionality 

of the data space to a much smaller dimensionality of feature space, which is how 

PCA is capable of describing the data economically. 

For our research, once we have our objects detected, the next step is the prepro­

cessing of the images. First, we extract only the portion of the image which was 

detected. For the face, the detected portion was further cropped in width to remove 

some of the unwanted and unneeded areas not making up the face. The ear was also 

extracted and further cropped to get a more accurate ear representation. This was 

all done automatically with experiments to determine the best cropping techniques 

and settings. For both face and ear we used Principle component Analysis (PCA) for 

recognition purposes. 

PCA is a successful method for recognition in images and is largely a statistical 
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method. PCA reduces the image space to a feature space; the feature space is then 

used for recognition. PCA translates the pixels of an image into principal components, 

which is called an eigenspace projection. Eigenspace is determined by the eigenvectors 

of the covariance matrix derived from the images. 

Let a face/ear image be represented by N x N matrix 

I(x,y). 

Let the training database be represented by images 

h, I2,..., IM-

The average face T is 
1 M 

ra=l 

Each face differs from the average face T by vector 

4>i = I i - T . 

Set of vectors is subject to PCA seeking a set of M orthonormal vectors \xn and 

eigenvalues Afc. Let C be a covariance matrix 

1 M 

c = iE^» 
= AAT 

where /ik are its eigenvectors and Â  are its eigenvalues and 

A = [0j, 02, . . . , 0M]-

The eigenproblem with Af2 x N2 matrix C is computationally intensive, so instead we 

can determine M eigenvectors //fc and M eigenvalues A'fc by solving a smaller M x M 

matrix ATA. Observe that A/i'k are eigenvectors of C — AAT. We then use linear 

combination of M training faces to form eigenfaces ui 

M 
ui = Yl^-^n-

n = ] 



31 

We usually use only a subset of M' eigenfaces corresponding to the largest eigenvalues. 

For classification, an unknown face image / is resolved into weight components by 

the transformation 

cok = ul(I-T), fc = l,...,M' 

and we form a new weight vector fl^ew 

Let f2fc be a vector describing k-th face class. Then we compute the Euclidean distance 

and we classify face / to class k, where tk is minimum. 

3.3 Cropping Techniques 
We noticed during our experiments with the unimodal face and ear biometrics that 

cropping an image before recognition would drastically change the recognition rates. 

We experimented with techniques of shortening the width and length at different 

intervals to see how this would affect the results. 

For face, bringing in the width and length so that most of the surface except for 

the part containing features such as eyebrows, eyes, nose, and lips was left, worked 

best. With the ear removing any excess of the image that was not correlated with 

the eye gave best results. 

3.4 Face Recognition Implementation 

Intuitively, the face seems like the most reasonable biometric, it is what humans use 

to recognize other humans, and they do it very well [49]. Computers on the other 

hand, struggle to achieve the accuracies that humans are able to achieve and at the 

speeds which humans are capable of recognizing other people. 
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One popular method which we use here is the technique of eigenfaces [43], this 

method uses PCA for comparing faces for recognition. Once we have detected, 

cropped and preprocessed our images we extract the portion which will be used for 

recognition. At this point, PCA is performed, it computes 'face space' represented 

by vectors, these eigenvectors which are computed by PCA, contain variance infor­

mation. These eigenvectors, called eigenfaces can be thought of as features. A face 

is then projected onto the 'face space' to determine eigenface coefficients. 

First, for each face in the training set, the face is transformed into 'face space' and 

the data for each face is stored into a 'face space'. For each test face, each image is 

projected onto this 'face space' and the system computes the distance from each face 

in the 'face space'. The smallest distance is assumed to be the match to the training 

set. 

3.4.1 Face Recognition Remarks 

We implemented our face recognition system using PCA, because it is a proven recog­

nition method which is fast and was well suited for our automated multimodal system. 

We wanted something which was fast and proven and we felt we could improve upon 

it with our face detector and our researched and tested cropping methods. 

Once the face was detected and extracted we went about cropping the image 

before we fed it to our PCA recognition algorithm, which we believed would increase 

substantially the recognition rates. 

We experimented with many different cropping styles, in the end we choose a 

method which gave us the best recognition results for face. There is however much 

more research to be done in this area, as we feel cropping is crucial to achieving decent 

recognition rates. 

Once the face was detected it was extracted from the original image. Then, this 

extracted image of the face was cropped and then fed into our PCA recognition 

system. We will discuss results for these recognition levels and others in the next 
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3.5 Ear Recognition Implementation 

The ear as a biometric seems less intuitive than the face, it is not what humans 

normally use to identify each other. However, it does have some very interesting 

properties lending itself to be a very good biometric. A few of these being that it is 

a small area, it is normally visible, and does not change with a persons expression or 

mood, and stays relatively stable throughout a persons life. Given these properties, 

it seems like a good biometric to use in combination with the face. 

Ear makes for a very interesting biometric and was first used as a biometric by 

Iannarelli[21]. He attempted to use ear as a biometric in a manual system by iden­

tifying important points on the ear and then using measurements to see if it could 

be used to identify individuals uniquely. In the end he came up with twelve features 

and could uniquely identify 10,000 individuals. 

Due to its small size and many distinguishing features ear is an interesting can­

didate for a biometric system. It also exhibits a uniform colour, which is a desirable 

trait for a biometric candidate [37]. What attracted us to the ear as a possible candi­

date for our multimodal system with face, was that it is a non-intrusive biometric, so 

that both of our inputs into our automatic multimodal system of face and ear were 

non-intrusive, therefore our system could be used in a non-intrusive application. 

Many of the methods we mentioned for face recognition can also be used for 

ear recognition. In addition, there are some other methods which were developed 

specifically for ear recognition. There are also geometric approaches to ear recognition 

such as those described by Coras[ll], who in his studies uses geometric properties 

such as width and length of the ear to create a feature vector. For comparison and 

recognition he then uses the measurements of these features against other features 

vectors to determine to best candidate. 
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Another method to ear recognition is the Gaussian approach described by Hurley 

et al.[20]. In this approach the ear is modeled using a Gaussian force field. The pixels 

of the ear image create a magnetic like force field as they exert forces against one 

another. These force field lines which are created by the magnetic like force on the 

pixels generate channels which are then used for identification. 

There are researchers also studying the validity of using 3D ear shape for recognition [46, 

24] and also in multibiometrics[47] 

The method used for ear recognition is eigenears, which like eigenfaces, uses the 

method of PCA for comparing ears for recognition. 

We chose to use PCA or eigenears in conjunction with our PCA method for face, 

because it allowed us to maintain a fast and proven recognition system with the hopes 

that recognition rates would increase once we applied a multimodal technique to the 

recognition system. 

3.5.1 Ear Recognition Remarks 

Like for face, for ear we implemented our ear recognition system using PCA because 

mostly due to the fact that it is a proven recognition method which is fast and was 

well suited for our automated multimodal system. We wanted something which was 

fast and proven and we felt we could improve upon it with our face detector and 

researched and tested cropping methods. 

The ear was first detected using our ear detector, we then went about cropping 

to ear to get the best recognition results. Once the ear was detected, extracted, 

and cropped we had one additional step to perform and that was to reflect the ear 

horizontally if it was a left ear, that way all ears had the same direction, or in other 

words the curvature for all ears was located on the same side. Without this step we 

would be unable to properly recognize the ears as the ears would be pointed differently 

and we would get incorrect values. 
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When all of the preprocessing was accomplished, we then used this final prepro-

cessed ear image for our recognition process. We thus, fed it to our PCA recognition 

algorithm, which we believed would produce substantially better recognition rates 

with the preprocessing done. 

We experimented with many different cropping styles, in the end we choose a 

method which gave us the best recognition results for ear. There is however more 

research to be done in this area as we feel cropping is crucial to achieving decent 

recognition rates. 

Therefore, once the ear was detected it was extracted from the original image. 

Then, this extracted image of the face was cropped and fed into our PCA recognition 

system. We will discuss results for these recognition levels and others in the next 

section. 

3.6 Conclusions 

In the end, we decided to use PCA for both face and ear, so we created eigenface 

and eigenear recognition algorithms for our system. We already mentioned many 

of the reasons for this, but basically because PCA is a proven method, which, with 

the properly applied preprocessing is capable of good recognition rate and that the 

algorithm fits quite well into our automated multimodal system. Another reason 

behind our decision was that our research was centered on improvement in recognition 

rates using a multimodal approach and less on trying to get the best recognition rates 

using a unimodal approach. 

By combining face and ear as biometrics we hoped to increase recognition rates 

as opposed to the unimodal recognition rates. Both face and ear being non-intrusive 

biometrics our system was capable of maintaining the non-intrusive requirement we 

had for our system. 

The face and ear was also beneficial as combined modes because of the fact that, 
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the face being larger, but which changes with expressions and could be occluded with 

certain items such as eye glasses, sun glasses, hats, moustaches, beards, scarves, etc. 

and which could change over time. The ear is of a small area, does not change much 

overtime, does not change with expressions, on the other hand is more easily occluded 

with some of the items mentioned for face, but also by hair, hats, ear muffs, ear 

phones, etc. By combining both these biometrics we hoped to increase the coverage 

we achieved, as an example if one is occluded we can still do recognition on the other. 

However, the system does become more complicated as we move to a more complex 

multimodal system. 

Let us now move on to our mulitmodal research and see what we were able to 

achieve, and review the advantages and disadvantages of such a system. 



Chapter 4 

Multimodal Biometrics 

4.1 Introduction 

The basic idea behind multibiometrics is to combine two or more biometrics with the 

hope of achieving better recognition results. The method we use for our multibio-

metric system is to use a multimodal approach (face and ear) with a single algorithm 

(PCA). 

The goal of a multibiometric system is to increase or improve the recognition rates 

achieved over unimodal biometric system, this is achieved using many methods. A 

multibiometric system normally overcomes many of the factors that plague a unimodal 

biometric system such as noise, variability and error rates [9]. Apart from the benefit 

of a higher recognition rate, a multimodal biometric system can also help in lowering 

false rejection error rates. 

4.2 Multimodal Biometric Methods 

In a multimodal biometric system the face and ear can be combined to create a more 

robust biometric system. The ear can be considered as another face component and 

therefore is a natural component in a multimodal system with face, giving us a more 

robust system with respect to occlusions and recognition rates. 

There are many methods in which two or more modes can be combined in a 

multimodal system. I will discuss two of these multimodal methods. 
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Figure 4.1: Parallel Multimodal System. 

The first method we will discuss is the parallel method in which both modes 

are run simultaneously and the results of these unimodal methods are then merged 

to get a unique measurement. As a simple example, using the PCA method, we 

can take the two distances from both face and ear and add them to create a new 

distance measurement for the combined modal system. There are of course, much 

more elaborate methods than this, which we will describe later in our experiments 

section. 

This kind of multimodal method is advantageous for compensating modes which 

are occluded or where some other information is lost in one of the modes. The other 

mode in these instances can compensate for the lost information of the mode. In 

our case, the ear is capable of filling in for face when it is occluded or in aiding 

recognition rate when they are both visible. You can see a visual diagram of this type 

of multimodal system in Figure 4.1. 

The second method is the cascade method combining more than one mode for a 

biometric system[23]. In this kind of a multimodal system, one of the modes is used 

to remove from the dataset non-candidates according to that mode. Then, the other 

mode will use only the rest of the dataset to determine which candidate best fits the 

criteria. You can of course start with either one of the modes and end with the other. 
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Figure 4.2: Cascade Multimodal System 

As an example in our case we can prune the dataset with face and then determine 

the best fit candidate with ear, or vice versa of course. 

Research will determine which mode is best as a pruner and which is best as a 

determiner of the best candidate[2]. You can see a visual diagram of this type of 

multimodal system in Figure 4.2. 

We decided to do our research of multimodal biometrics using a parallel system. 

Using this method we were capable of achieving some decent recognition improve­

ments over unimodal methods for face and ear. 

4.3 Individual Recognition and Evaluation 

We performed Principal Components Analysis individually for both face and ear. For 

our dataset we used a 100 subject gallery where both frontal and profile images were 

available. We also needed to have two of both frontal images and profile images if the 

subject was to be included in the dataset. We gathered our dataset from the FERET 

database where both frontal and profile are available. 
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For each of the features, the gallery of gathered subjects is used to generate the 

PC A space, in other words we a had a PCA 'face space' and a PCA 'ear space'. Each 

run generated a table of distance measurements from which the least distance is seen 

as the best candidate match for the subject. The distance measurements for each 

candidate are the distances from the candidate to the subject, therefore the least 

distance is seen as the best match. 

Each mode was first run separately, specifically we ran face through to the recog­

nition phase and then did the same for ear. As the distance measurements we use 

the Euclidean distance and the Mahalanobis distance. In the preceding sections we 

will briefly describe these two distance measurements and then look at our individual 

recognition results for both face and ear. 

We achieved better results for face than for ear, the best result for face was 95.2% 

while the best result for ear was 75.8%, see Table 4.1 and Table 4.3 for results. 

4.3.1 Euclidean Distance 

The Euclidean distance as mathematically defined as the distance between two points, 

sometimes also referred to as the 'ordinary' distance or the distance between two 

points we can measure with a ruler. The Euclidean distance can be proven using the 

Pythagorean theorem. 

More formally, the Euclidean distance between points P = (pi,p2, - ,Pn) and 

Q = (qi, q2,..., qn) in Euclidean n-space would be defined as follows; 

V(Pl ~Ql)2 + (P2 - Q2)2 + ... + (Pn - Qn)2 

Or, as; 

^2(Pi - Qi)2 
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4.3.2 Mahalanobis Distance 

The Mahalanobis distance measurement was first introduced by P.C. Mahalanobis in 

1936 [28]. It is used in applications trying to determine similarity between an unknown 

set and a known one. The Mahalanobis distance is often used in applications such as 

cluster analysis and in other applications requiring classification. 

To use the Mahalanobis distance for classification, for example to see if a test point 

belongs to any one of a group of N classes. First, we need to take the covariance matrix 

of each class. Then with a test sample, we compute the Mahalanobis distance to each 

class, the class with the minimal distance is the class which the test point belongs to. 

More formally, given a group of values where the mean /i = (/zx, 1^2, •••HP)T, and 

with a covariance matrix S for a multivariate vector x = (x\ )T , the Maha­

lanobis distance is defined as, 

DM(x) = y/ix-nYH-^X-n) 

4.3.3 Face Recognition and Evaluation 

For face recognition, after the image was preprocessed we ran it through our PCA 

algorithm. As mentioned before, our dataset contained 100 subjects. The best recog­

nition rate we achieved was 95.2% using a Mahalanobis distance measurement, see 

Table 4.1 for results. You can see that the Euclidean distance performed slightly 

lower than the Mahalanobis distance. 

Distance 
Euclidean 

Mahalanobis 

Face Recognition Rate 
93.6% 
95.2% 

Table 4.1: Unimodal face recognition rates using different distance models. 

Once we had our projected face we then calculated the distance from this face to 
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every face in our training dataset. The image in our training dataset which had the 

lowest distance is the one which was classified as being the best candidate for our 

subject. You can see a sample of these calculated distance measurements using both 

Euclidean and Mahalanobis distances for a few of the candidates in our dataset in 

Table 4.2. The least distance measurement being the best candidate, in this instance 

the best candidate would be 00721 for both distance measurements. 

Candidate 
00706 
00707 
00708 
00711 
00712 
00713 
00715 
00718 
00721 
00722 

Euclidean Distance 
2.09334E+07 
2.07378E+07 
2.06042E+07 
5.02336E+07 
1.80437E+07 
2.13500E+07 
7.12372E+07 
1.73229E+07 

1.06490E+06 
3.61059E+07 

Mahalanobis Distance 
1.75387E+09 
1.53092E+09 
1.73069E+09 
1.76720E+09 
1.55883E+09 
1.44996E+09 
1.59484E+09 
1.70514E+09 

2.13263E+08 
1.72997E+09 

Table 4.2: Sample Face Distances. 

The distance measurement gives us a possible candidate for our recognition ap­

plication, in Figure 4.3 we see images of possible candidates for a subject with their 

distance measurements. We are only displaying 5 of the possible candidates, but we 

ran it against the complete dataset. In this sample we can determine how a subject is 

matched to possible candidates using distance measurements. In this instance both 

distance measurements correctly choose a best match candidate, as both have the 

lowest distance. 

However, that is not always the case (otherwise our jobs as researchers in face 

recognition would be accomplished), and we do have cases where subjects are in­

correctly matched to candidates. That is the premise of our research in multimodal 

biometrics, to see if in cases like these, the other mode can compensate and actually 



Subject: 708 
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Candidate 

706 

707 

708 

711 

712 

Euclidean 

Distance 

1.43216e+007 

1.46384e+007 

1.47136e+O06 

3.51303e+007 

1.14182e+007 

Mahalanobis 

Distance 

1.61465e+009 

1.48886e+009 

2,33209e+008 

1.58248e+009 

1.44013C-K309 

ure 4.3: Face Image Distance Measurements with Correct Match. 
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correctly match a candidate to a subject. 

That said, our face recognition algorithm performed quite well with peak recog­

nition rates of 95.2%, there are however incorrect matches. In Figure 4.4, we see a 

sample of a subject incorrectly matched to a candidate. In this instance, both dis­

tance measurements have incorrectly matched the subject to candidates. It will be 

interesting to see if these incorrectly matched subjects can improve with a multimodal 

biometric system. 

4.3.4 Ear Recognition and Evaluation 

For ear recognition, we first preprocessed the image and then ran it through out 

PCA algorithm. As mentioned before, our dataset contained 100 subjects. The 

best recognition rate we achieved using ear as an input was 75.8% using a both the 

Euclidean and Mahalanobis distance measurements, see Table 4.3 for results. You 

can see from the table the results did not change between distance measurements. 

Distance 
Euclidean 

Mahalanobis 

Ear Recognition Rate 
75.8% 
75.8% 

Table 4.3: Unimodal ear recognition rates using different distance models. 

The next step in our ear recognition process was to take the projected ear and 

then calculate the distance from this ear to every ear in our training dataset. The 

image in our training dataset which had the lowest distance from the projected ear 

is the one which was classified as being the best candidate for our subject. You 

can see a sample of these calculated distance measurements using both Euclidean 

and Mahalanobis distances for a few of the candidates in our dataset in Table 4.4. 

The least distance measurement being the best candidate, in this instance the best 

candidate would be 00713 for both distance measurements. 
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Candidate 
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816 

Euclidean 

Distance 

4.58518E+06 

9.07750E+06 

3.77199E+07 

5.19798E+06 

2.64810E+07 

Mahalanobis 

Distance 

1.0Q979E+09 

7.370S6E+O8 

1.3S259E+09 

8.84S30E+08 

1.37970E+09 

Figure 4.4: Face Image Distance Measurements with Incorrect Match. 



Candidate 
00706 
00707 
00708 
00711 
00712 
00713 
00715 
00718 
00721 
00722 

Euclidean Distance 
1.48560E+07 
2.17146E+07 
1.52913E+07 
3.00794E+07 
3.53754E+07 

1.93287E+06 
5.32190E+07 
1.90368E+07 
2.28253E+07 
4.73500E+07 

Mahalanobis Distance 
1.11942E+09 
1.19981E+09 
1.25766E+09 
1.25473E+09 
1.21968E+09 

3.75250E+08 
1.24166E+09 
1.14052E+09 
1.23895E+09 
1.30703E+09 

Table 4.4: Sample Ear Distances. 

The distance measurement gives us a possible candidate for our recognition ap­

plication, in Figure 4.5 we see images of possible candidates for a subject with their 

distance measurements. We are only displaying 5 of the possible candidates, but we 

ran it against the complete dataset. In this sample we can determine how a subject is 

matched to possible candidates using distance measurements. In this instance both 

distance measurements correctly choose a best match candidate, as both have the 

lowest distance. 

As for face, we do not always get correct matches for subjects for ear too, and do 

have cases where subjects are incorrectly matched to candidates. 

Our ear recognition algorithm did not perform as well as the face recognition 

algorithm, the best we are able to achieve for ear recognition was 75.8% see Table 

4.3 for results, whereas we were able to achieve peak recognition rates of 95.2% for 

face. 

To illustrate some of these mismatches you can look at Figure 4.6. In this table, 

we see a sample of a subject incorrectly matched to a candidate. 

In this instance, both distance measurements have incorrectly matched the subject 

to candidates. Again, it will be interesting to see if these incorrectly matched subjects 

can improve with a multimodal biometric system. 
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00813 

00814 

00815 

00816 

00722 

Euclidean 

Distance 

1.43216e+007 

3.98075e+007 

2.80185e+007 

3.59356e+007 

3.90871e+006 

Mahalanobis 

Distance 

8.17085e+008 

1.14601e+009 

1.07254e+009 

9.96727e+008 

4.99585e+008 

Figure 4.5: Ear Image Distance Measurements with Correct Match. 
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Candidate 
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Euclidean 

Distance 

6.83835E+06 

9.14893E+06 

7.68272E+06 

L62874E407 

2.87700E+07 

Mahalanobis 

Distance 

9.53180E408 

7.21720E+08 

8.99598E+08 

1.05904E+09 

1.11909E+09 

Figure 4.6: Ear Image Distance Measurements with Incorrect Match. 



4.4 Fusion Recognition and Evaluation 

The fusion of a multibiometric system is where the results for each individual bio-

metric system is used to determine the classification. There are many methods of 

achieving this, one simple method is the sum of both biometric results to determine 

the best classification. We will experiment with many methods of fusion which will 

be discussed in detail in the experimental section. 

In our multimodal biometric system we will experiment with many methods of 

fusion to see what results we can achieve. We will experiment with from as sim­

ple methods as summing the two results and choosing the candidate with the least 

distance to more elaborate methods of normalizing the distances and then applying 

some kind of fusion method. We will also look at some weighted sums and see if this 

will lead us to some superior results. 

The key factor to any multibiometric system is to use a fusion technique that 

increases recognition rates, which method to use will depend on the algorithms and 

inputs used. We want to optimally combine the results from both biometrics to 

increase the levels of correct recognition. 

The best result in our multibiometric system was achieved using a Mahalanobis 

distance for each individual biometric and then a combined normalized sum using 

a weight of 0.7 for face and a weight of 0.3 for ear, with this we achieved a 100% 

recognition rate [27]. 

These results that were achieved are definitely very exciting and interesting to 

note at how combining two modes can drastically improve results, and confirms in 

this case the benefits of using a multimodal recognitions system as opposed to using 

any one of the modes used in a unimodal system. In later sections, we will describe 

these experiments in detail and look at how they were achieved. 

The main concern or issue that we will try to understand, explain and analyze in 

detail, is how this multimodal system was able to improve the recognition rates as 
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compared to using the same modes in a unimodal fashion. 

4.5 Contributions 

In researching the development of an automated multimodal biometric system we 

experimented with many techniques in an attempt to achieve significantly higher 

recognition rates. The face and ear are automatically detected, extracted, cropped 

and preprocessed in preparation for our recognition algorithm. In [26], we describe 

fully the methods and experiments we used in researching and developing our auto­

mated multimodal biometric system. 

We also experimented with many fusion techniques, in an attempt to discover 

which methods yielded the best results. We will not only present the experimental 

data, but we will also try to describe and analyze the data so that a better understand­

ing of multimodal biometrics, more specifically face and ear multimodal biometrics 

can be gleaned from research we did in this area of multimodal biometrics [27]. 

Experimental results will show that significant improvement in recognition rates 

can be achieved using various fusion techniques in multimodal biometrics and that 

results will vary greatly depending on fusion technique implemented. 

4.6 Conclusions 

In this section, we describe and look at the results of our multimodal biometric system. 

We went went into detail in describing the recognition results we achieved for face 

and ear individually. Looking at both the successes and shortcomings for each mode 

and their respective results. 

We also described our multimodal technique and some of the fusion methods we 

applied to get better results. As mentioned, we were able to achieve 100% multimodal 

recognition rate for one of the fusion techniques. These results definitely confirm 

previously stated literature that a multimodal biometric system using face and ear 
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can improve results over using either mode on its on. 

The results will show that a multimodal biometric system is capable of achieving 

superior recognition rates over any of the modes employed on its own. Face and ear 

seem to be very complimentary modes, while the face is larger it does change easily 

with expressions. The ear is much smaller than the face but it maintains is structure 

with expressions and is less likely to change with time. Together these two modes 

seem to offer a very good biometric as the results of our experiments show. 

In the next section, we will describe our experiments and all results in detail. We 

will look into all the fusion techniques we used in our implementation and all other 

techniques we might have employed in coming up with our results. 



Chapter 5 

Experiments 

5.1 Introduction 

In this section, we will describe and review our experiments and also all results from 

these experiments. The main purpose of this research and these experiments was to 

ascertain whether combining the two recognition modes of face and ear would lead to 

a better recognition rate as opposed to running the two respective modes individually. 

In an attempt for completeness, we experimented with many techniques even 

though we suspected the outcome of some of these experiments, and were found to 

be sometimes surprising. Many experiments were done with a multiple of fusion 

techniques, in an attempt to discover which methods yielded the best results. The 

experiments yielded many interesting results, some expected and some surprising. We 

will attempt to describe all in full detail so that they can be understood. 

In the preceding sections, we will first try to describe the system setup for the 

experiments. We will look at all aspects of our system setup. A look at the database 

will follow and then the experiments. We will not only present the experimental data, 

but we will also try to describe and analyze the data so that a better understanding 

of multimodal biometrics, more specifically face and ear multimodal biometrics can 

be understood from the research we did in this area of multimodal biometrics. 

Experimental results will show that significant improvement in recognition rates 

can be achieved using a multimodal biometric approach to recognition. 
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To demonstrate the concepts in this thesis, we ran many experiments using many 

different methods in an attempt to get the best and fullest understanding possible of 

face and ear multimodal biometrics. We will attempt to explain fully the experiments 

we went through in applying these concepts. 

For our dataset we used a subset of the FERET [35] see Figure 5.1 for samples of 

images. We used a set of 100 persons, for each person there must have been at least 

two frontal images and two profile images. This was so that we had enough of both 

frontal and profile images for each person, so that a training dataset and a testing 

dataset could be created. 

The training dataset consisted of one frontal image and one profile image for each 

of the 100 persons. The frontal images were used for the face biometrics and the profile 

images were used for the ear biometrics. This training dataset, which contained a 

frontal and profile image of each person, allowed us to run our detection, preprocessing 

and PCA algorithm on both face and ear for each person in the training dataset. At 

this point, we would have a training data file for both face and ear, containing face 

and ear information for each person. 

The testing dataset included at least one frontal image and one profile image 

for each of the 100 persons, in this respect we could get, for each person a face 

biometric and an ear biometric, so that we could test the multibiometric system. The 

test dataset is used to take a subject in the test dataset and then see what type of 

recognition rates we can get against the training dataset. 

5.3 System Setup 

Our automated multimodal biometric system using face and ear as input modes was 

built and run on a PC with a Intel dual core CPU @2.66GHz and two GB of RAM. 

The operating system of the computer was Windows XP with service pack 2. The 



Figure 5.1: Samples of images used, 1st row train face, 2nd row test face, 3rd row 
train ear, 4th row test ear. 
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Figure 5.2: Unimodal Recognition Rates for Face and Ear. 

application was written in C++ using Microsoft Visual Studio 2008. 

5.4 Unimodal Recognition 

Face and ear recognition as unimodal biometrics have already been discussed, but 

it is worth mentioning again before we proceed to the multimodal section for future 

comparisons in later sections. Keeping these rates in mind, we will see later whether 

they have any affect on the rates for our automated multimodal biometric system 

using face and ear as input modes. 

In Figure 5.4, you can get a visual depiction of the recognition rates for face and 

ear as unimodal biometrics. This graph presents the unimodal recognition rates for 

face and ear in an easy to read Bar Graph fashion for both Euclidean and Mahalanobis 

distances. 
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5.4.1 Unimodal Face Recognition 

As mentioned and explained in a previous section, for unimodal face recognition our 

results were pretty good and in line with many face recognition algorithms. Us­

ing the Euclidean distance measurement the recognition rate is 93.6% and using a 

Mahalanobis distance measurement the recognition rate achieved is 95.2%, a slight 

improvement, see Table 4.1 for results. 

5.4.2 Unimodal Ear Recognition 

For unimodal ear recognition our experimental testing did not achieve the same level 

of rates achieved using face. The recognition rate for both the Euclidean and Maha­

lanobis distances was 75.8%, see Table 4.3 for results. 

5.5 Multimodal Recognition 

At this point, once we had the results from the unimodal biometrics for face and ear, 

it was time to fuse the two to see if we could achieve better results. 

In order to properly compare and fuse distances from different modes, there is 

a need for an accurate normalization technique we can apply on the distances. To 

normalized the distances in our experiments calling for normalization we used the 

min-max normalization [29]. As an exercise, we complete a few experiments and show 

the results where normalization is not done. 

More formally, to normalize the distance x in the dataset; we get the normalized 

value x\ by; 

xi = (XJ — mini)/(maxi ~ mini) 

where, min and max are the minimum and maximum values for each dataset. 

Using this normalization we will get values in the range of [0,1] for each distance. 

This will allow us to fuse face and ear values with more accurate comparisons. 



Candidate Distance 
57 

00706 
00707 
00752 
00768 
00774 
00775 
00776 
00814 
00815 
00816 

Mahalanobis 
1.36678e+008 
1.25624e+009 
1.20509e+009 
1.27156e+009 
1.33894e+009 
1.14325e+009 
1.35618e+009 
1.22822e+009 
1.23459e+009 
1.14159e+009 

Normalized Mahalanobis 
0 

0.918055 
0.876106 
0.930616 
0.985867 
0.825395 

1 
0.895073 
0.9003 

0.824037 

Table 5.1: Sample Normalized Mahalanobis Face Distances. 

As an example, if you look at the data in Table 5.1, you will see how the min-max 

normalization transforms the distances into values between 0 and 1. The value of 

0 will always go to the distance with the lowest value, and 1 will always go to the 

distance with the greatest value. Everything else will fit somewhere in between. 

As you can see, we are now able to compare apples with apples and oranges with 

oranges, or in our case face and ear. 

Candidate 

00713 
00718 
00721 
00722 
00732 
00736 
00739 
00792 
00793 
00816 

Face 
Distance 

1.50731e+009 
1.50145e+009 
1.66943e+009 
2.60779e+008 
1.54012e+009 
1.82802e+009 
1.43991e+009 
1.39405e+009 
1.55724e+009 
1.44869e+009 

Normalized 
0.795371 
0.791631 
0.898813 

0 
0.816305 

1 
0.752363 
0.723105 
0.82723 
0.757967 

Ear 
Distance 

1.07424e+009 
1.06808e+009 
9.62873e+008 
4.99585e+008 
9.97497e+008 
1.05802e+009 
9.96477e+008 
8.38748e+008 
1.22593e+009 
9.96727e+008 

Normalized 
0.791158 
0.782685 
0.637837 

0 
0.685506 
0.768834 
0.684102 
0.466947 

1 
0.684446 

Table 5.2: Sample Face and Ear Normalized Distances. 

As another example, take a look at Table 5.2 which shows us the face and ear 
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distances before and after normalization. We can easily see that with the normalized 

values we get better comparisons between face and ear. The normalized values for 

both face and ear are all within the [0,1] range, with the best match for both having 

a normalized distance of 0. 

Without normalization it is hard to compare and hard to fuse distances coming 

from different modes, because they may have completely different mill's and max's. 

Therefore, making it hard to compare the two with these values, it is easier to fuse 

the two together using some fusion methods as we will look at in later sections. 

In our experiments, we will included some experiments with distances that are 

not normalized for comparison purposes only. 

Now that we have a good understanding of the min-max normalization technique 

employed in our experiments, we can start looking at some experimental data. 

5.5.1 Non-Normalized Sum 

As mentioned previously, we will do experiments using non-normalized distances as 

an exercise. 

We first did a sum using non-normalized distances; the first was a simple sum, 

where the distance measurements for face and ear were summed and the lowest 

summed distance was considered a best match. This was done for both distance 

measurements, see Table 5.3. 

Distance Type 
Euclidean 

Mahalanobis 

Recognition Rate 
95.2% 
98.4% 

Table 5.3: Combined Non-Normalized Recognition Rates. 

As can be seen from the results, the recognition rates achieved were higher than 

in the unimodal systems, with Mahalanobis distance achieving greater success rates 
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than the Euclidean distance. 

We were able to achieve greater recognition rates for both distances as compared 

to the same distances for unimodal recognition. 

If we look at the data for some of the candidates who were recognized incorrectly 

in the unimodal biometric, but correctly in the multimodal biometric, you will see 

how this is possible. 

In certain cases one mode can compensate for the other even if the distances are not 

normalized. If you look at the data in Table 5.4 you can see how this may be possible. 

In this case, the face recognition incorrectly identifies the subject as candidate 00708, 

with its second best candidate actually being the subject. Ear recognition however, 

correctly matches the subject to candidate 00707. 

Candidate 

00706 
00707 
00708 
00711 
00712 
00713 
00715 
00718 
00721 
00722 

Distance 
Face 

1.25376E+09 
8.93037E+08 

7.05484E+08 
1.15751E+09 
1.30226E+09 
1.13408E+09 
1.33495E+09 
9.81345E+08 
1.10393E+09 
1.13453E+09 

Ear 
1.05692E+09 

4.70358E+08 
1.16739E+09 
1.20618E+09 
8.62152E+08 
9.56125E+08 
1.10457E+09 
1.07699E+09 
9.69211E+08 
9.96581E+08 

Sum 
2.31068E+09 

1.36340E+09 
1.87287E+09 
2.36369E+09 
2.16441E+09 
2.09021E+09 
2.43952E+09 
2.05834E+09 
2.07314E+09 
2.13111E+09 

Table 5.4: Sample Face and Ear Non-Normalized Sum. 

When the distances are summed we get the correct match, partly due to the fact 

that faces second lowest distance was the correct match and also because the ear 

distance for the correct match compensates for the incorrect match for face. 



Weight (Face/Ear) 

(0.9/0.1) 
(0.8/0.2) 
(0.7/0.3) 
(0.6/0.4) 
(0.5/0.5) 
(0.4/0.6) 
(0.3/0.7) 
(0.2/0.8) 
(0.1/0.9) 

Distance Type 
Euclidean 

95.2% 
95.2% 
95.2% 
95.2% 
95.2% 
95.2% 
95.2% 
95.2% 
95.2% 

Mahalanobis 
98.4% 
98.4% 
98.4% 
98.4% 
98.4% 
98.4% 
98.4% 
98.4% 
98.4% 

Table 5.5: Non-Normalized Face/Ear Weighted Sum Recognition Rates. 

5.5.2 Non-Normalized Weighted Sum 

As a second exercise on non-normalized distances, we tried to see if results would 

improve using weighted sum. In our experiments, the weights on non-normalized 

distances did not seem to have any influence on the recognition rate. 

Table 5.5 presents recognition rates for different weights between face and ear 

for non-normalized distances. As can be seen from the data the weights in our case 

did not have any influence on the recognition rates we got. We experimented with 

distances from 0.9 face and 0.1 ear to 0.1 face and 0.9 ear, and did not receive any 

change in the recognition rates. 

The process of how we calculated the non-normalized weighted sum from the face 

and ear distances can be seen in Table 5.6. This table presents a few samples of 

non-normalized weighted sum for a combined face/ear. We first take the distances 

and multiply them by the weights, in this case 0.7 for face and 0.3 for ear. Then we 

add the results of these two operations and get the non-normalized weighted sum. 

As mentioned before, in our case the weights did not seem to have any influence on 

recognition rates. 



£1 
Candidate 

00706 
00707 
00708 
00711 
00712 
00713 
00715 
00718 
00721 
00722 

Distance 
Non-Weighted 

Face 
1.254E+09 
8.930E+08 

7.055E+08 
1.158E+09 
1.302E+09 
1.134E+09 
1.335E+09 
9.813E+08 
1.104E+09 
1.135E+09 

Ear 
1.057E+09 

4.704E+08 
1.167E+09 
1.206E+09 
8.622E+08 
9.561E+08 
1.105E+09 
1.077E+09 
9.692E+08 
9.966E+08 

Weighted(Face 0.7/Ear 0.3) 
Face 

8.776E+08 
6.251E+08 
4.938E+08 
8.103E+08 
9.116E+08 
7.939E+08 
9.345E+08 
6.869E+08 
7.728E+08 
7.942E+08 

Ear 
3.171E+08 
1.411E+08 
3.502E+08 
3.619E+08 
2.586E+08 
2.868E+08 
3.314E+08 
3.231E+08 
2.908E+08 
2.990E+08 

Sum 
1.195E+09 

7.662E+08 
8.441E+08 
1.172E+09 
1.170E+09 
1.081E+09 
1.266E+09 
1.010E+09 
1.064E+09 
1.093E+09 

Table 5.6: Sample Face/Ear Non-Normalized Weighted Sum. 

5.5.3 Normalized Sum 

In this section we will explore normalized distances and see how normalization effects 

the recognition rates of our multimodal biometric system using face and ear as modes. 

Using this method the distances for face and ear are first normalized using the min-

max normalization technique, then we sum the two normalized distances to get a 

normalized combined sum. The candidate with the least distance, is considered to be 

the best candidate. 

Distance Type 
Euclidean 

Mahalanobis 

Recognition Rate 
95.2% 
98.4% 

Table 5.7: Combined Face/Ear Normalized Recognition Rates. 

It is worth first looking at the recognition rates we achieved using normalization 

for the total dataset, these can be seen in Table 5.7. This table presents the recog­

nition rates achieved using both the Euclidean and Mahalanobis distances. With the 

Euclidean distance the recognition rate achieved was 95.2% and with the Mahalanobis 

distance a recognition rate of 98.4% was achieved. 
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For a better understanding and clarification, we will look at a couple of examples 

of how normalization affects the selection of a best fit candidate for a subject. We will 

look at a case were the normalized sum correctly selects the best candidate even where 

one of the modes had a different candidate match, and we will look at a case where 

the normalized sum candidate is completely different from the face or ear unimodal 

selection and is incorrect. 

Candidate 

00718 
00721 
00722 
00750 
00786 
00793 
00794 
00796 
00803 
00816 

Normalized Distance 
Face 

0.677116 
0.470315 
0.703521 
0.728494 

1 
0.652536 
0.860332 
0.565252 

0 
0.489258 

Ear 
0.447693 
0.276721 

1 
0.350975 
0.523457 
0.549456 

0 
0.757541 
0.173009 
0.296058 

Sum 

1.124809 
0.747036 
1.703521 
1.079469 
1.523457 
1.201992 
0.860332 
1.322793 
0.173009 
0.785316 

Table 5.8: Sample Face/Ear Sum of Normalized Distances with Correct Match. 

In the first example, from Table 5.8 we can see the data from some of the can­

didates for subject 00803. I have included candidates who had the least and most 

distances for both face and ear, and some other random candidates. From the data, 

we can see that face correctly matches the subject to the candidate, while we see that 

for ear, there is an incorrect match to candidate 00794, which has the least distance. 

Combined however the lowest normalized distance is candidate 00803 which is the 

correct match. If you look at the data, you will see that for face the second best 

match had a lot higher distance at 0.470315. For ear, the second best match had a 

normalized distance of 0.173009 and was actually the correct match and had a very 

low distance. These two factors lead to a correct match when the two are combined 
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with a distance of 0.173009, where the second best distance had a much higher rate 

of 0.747036. 

In our next example we will look at a situation where one of the modes in unimodal 

mode correctly identifies the correct candidate and the other doesn't, and combined 

the normalized sum selects an incorrect candidate. 

We will look at the data to try to ascertain why this situation occurs. The data 

can be seen in Table 5.9, from the table we can see how face correctly select the 

candidate for subject 00800, it is important to note however the low distance of the 

second best candidate for face at a rate of 0.16967. 

Ear incorrectly select candidate 00792, again however it is important to note the 

second best candidate which happens to be the same candidate as face's second best 

candidate with a very low distance of 0.0632297. 

You can probably guess now, how when these distances are combined the second 

best candidates for both face and ear will lead to the lowest combined distance and 

incorrectly selecting candidate 00751 as the best match for subject 00800. 

In the next section on weighted normalized sum, we will re-visit this example and 

see if a weighted normalized sum can remedy this situation by correctly selecting the 

candidate for subject 00800, even though the situation we just describes exists. 

Candidate 

00715 
00722 
00751 
00792 
00793 
00794 
00797 
00800 
00803 
00813 

Normalized Distance 
Face 

0.170573 
0.83388 
0.16967 
0.528418 
0.398919 

1 
0.288109 

0 
0.520331 
0.559398 

Ear 
. 0.56654 

1 
0.0632297 

0 
0.794843 
0.295133 
0.689195 
0.327908 
0.600329 
0.420601 

Sum 
0.737113 
1.83388 

0.2328997 
0.528418 
1.193762 
1.295133 
0.977304 
0.327908 
1.12066 

0.979999 

Table 5.9: Sample Face/Ear Sum of Normalized Distances with Incorrect Match. 
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5.5.4 Weighted Normalized Sum 

In this section, we will look at weighted normalized sum and see if weighted values for 

face and ear can improve the recognition rate of our algorithm. Using weighted values, 

the best recognition rate was achieved using a normalized Mahalanobis distance with 

a weight of 0.7 for face and 0.3 for ear, see Table 5.10 for all results. From this table, 

we can see the affects of different weight values for face and ear. 

These recognition results presented in Table 5.10 improve the results obtained in 

[29]. 

Weight (Face/Ear) 

(0.9/0.1) 
(0.8/0.2) 
(0.7/0.3) 
(0.6/0.4) 
(0.5/0.5) 
(0.4/0.6) 
(0.3/0.7) 
(0.2/0.8) 
(0.1/0.9) 

Distance Type 
Euclidean 

98.4% 
98.4% 
96.8% 
96.8% 
95.2% 
91.9% 
91.9% 
90.3% 
85.5% 

Mahalanobis 
95.2% 
96.8% 
100% 
98.4% 
98.4% 
93.6% 
91.9% 
85.5% 
79% 

Table 5.10: Combined Face/Ear Normalized Weighted Sum Recognition Rates. 

In Figure 5.3, we see a graph of the different recognition rates achieved using nor­

malized sum of face/ear with many different face/ear weights. The data is presented 

for both the Euclidean and Mahalanobis distance. From the graph we can see how for 

the Mahalanobis distance the line peaks at face/ear weights of 0.7/0.3 respectively, 

and then declines after that. From the graph, we can see that all points on the line 

above the point marked by the 0.5/0.5 point show an improvement in the recognition 

rate. 

Figure 5.4 presents the data in Table 5.10 in a bar graph format. This graph 

clearly indicates the levels achieved by the Euclidean and Mahalanobis distances for 
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Figure 5.3: Graph of Recognition Rates for Different Face/Ear Weights Using Sum. 
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Figure 5.4: Graph of Recognition Rates for Different Face/Ear Weights Using Sum. 

various face/ear weights in comparable fashion. 

We will now re-visit the example of subject 00800 we first introduced in the 

previous section. Recall how the sum of the normalized distances incorrectly selected 

a candidate even though face had the correct candidate selected. 

In Table 5.11 is presented the data for a weighted normalized Mahalanobis distance 

with weights of 0.7 for face and 0.3 for ear for subject 00800. You can see from the 

data that in unimodal mode, face correctly selects candidate 00800, but ear incorrectly 

selects candidate 00792. 

With a weighted sum however, the algorithm is capable of selecting the correct 

candidate. The weighted sum for the lowest distance is 0.09837 which is for the 
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candidate 00800. The second lowest distance is the candidate that previously gave 

us trouble 00751, its weighted sum is 0.13774, still however not close to the distance 

for the best candidate. 

Candidate 

00715 
00722 
00751 
00792 
00793 
00794 
00797 
00800 
00803 
00813 

Normalized Mahalanobis Distance 
Non-Weighted 
Face 

0.17057 
0.83388 
0.16967 
0.52842 
0.39892 

1 
0.28811 

0 
0.52033 
0.55940 

Ear 
0.56654 

1 
0.06323 

0 
0.79484 
0.29513 
0.68920 
0.32791 
0.60033 
0.42060 

Weighted (Face 0.7/Ear 0.3) 
Face 

0.11940 
0.58372 
0.11877 
0.36989 
0.27924 
0.70000 
0.20168 

0 
0.36423 
0.39158 

Ear 
0.16996 
0.30000 
0.01897 

0 
0.23845 
0.08854 
0.20676 
0.09837 
0.18010 
0.12618 

Sum 
0.28936 
0.88372 
0.13774 
0.36989 
0.51770 
0.78854 
0.40843 
0.09837 
0.54433 
0.51776 

Table 5.11: Sample Face/Ear Weighted Sum of Normalized Distances. Bold values 
indicate best candidate from respective algorithm. 

In this section we presented the fusion technique which gave us the best recogni­

tion rates for our automated multimodal biometric system. We demonstrated many 

techniques such as using different distance measurements, normalization and weights 

to achieve better and better results. Also, explaining the details behind these tech­

niques using many examples. 

In the next section we will briefly look at an interval technique for fusion, and see 

what it can accomplish in multimodal biometrics. 

5.5.5 Interval 

In our experiments we also attempted to use a distance measurement between the 

first and second best match assuming that a greater distance between the first and 

second would indicate a greater reliability, we called this the Interval-Euclidean and 
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the Interval-Mahalanobis distances, see Table 5.12. 

Distance Type 
Euclidean 

Mahalanobis 

Recognition Rate 
95.26% 
96.8% 

Table 5.12: Combined Face/Ear Normalized Interval Recognition Rates. 

The thinking behind this is that if there is a greater distance between the first and 

second best matches then it is an indication that the selection of the first is a surer 

thing or more reliable selection. As opposed to the first and second distances being 

very close, where this might indicate the selection is not so sure and was a close call. 

The results using this technique with both a Euclidean and Mahalanobis distance 

can be seen in Table 5.12. We can see that the results are much in line with the 

recognition rates obtained using a normalized distance, with a slight decrease in 

recognition for the Mahalanobis distance. 

It will be interesting to see if these results can hold up using a weighted technique, 

which we will explore in the next section. 

5.5.6 Weighted Interval 

In this section we will experiment with using weights on the interval recognition algo­

rithm. We basically ran experiments with the same weights we did for the normalized 

weighted sum. The results can be seen in Table 5.13. As can be seen from the resul­

tant recognition rates there is very little if any improvement in using weights on an 

interval fusion technique. 

In Figure 5.5, we see a graph of the different recognition rates achieved using 

weights on an interval based fusion system. From this visual representation you can 

see that there really is no improvement before or beyond the 0.5/0.5 mark, indicating 

that weights have; no beneficial affect on recognition rates in an interval fusion system 
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Normalized Weighted Interval Recognition Rates 
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Figure 5.5: Graph of Recognition Rates for Different Face/Ear Weights Using Interval. 



Weight (Face/Ear) 

(0.9/0.1) 
(0.8/0.2) 
(0.7/0.3) 
(0.6/0.4) 
(0.5/0.5) 
(0.4/0.6) 
(0.3/0.7) 
(0.2/0.8) 
(0.1/0.9) 

Distance Type 
Euclidean 

93.6% 
95.2% 
96.8% 
96.8% 
95.2% 
93.6% 
88.7% 
83.9% 
79.0% 

Mahalanobis 
95.2% 
95.2% 
93.5% 
96.8% 
96.8% 
93.6% 
87.1% 
82.3% 
77.4% 

Table 5.13: Combined Face/Ear Normalized Weighted Interval Recognition Rates. 

for combining face and ear in a multibiometrics system. 

Figure 5.6 presents the data in Table 5.5 in a bar graph format. This graph clearly 

indicates the levels achieved by the Euclidean and Mahalanobis distances for various 

face/ear weights in comparable fashion. 

5.5.7 Experiments with CVL Database 

We decided to test our system on another face database in later experiments using the 

CVL Face database[32], which consists of a dataset of 114 people with 7 images per 

person at various angles. Using this database, we were able to achieve very similar 

results to our original experiments using a subset of FERET[35]. 

Using an Euclidean distance, our best recognition rate was 99.2% with a normal­

ized weighted sum for face/ear of 0.8/0.2 respectively[26]. 

Figure 5.14 presents results for a combined face/ear normalized weighted sum 

recognition rates for the CVL database. 

With the CVL Database, and using a Mahalanobis distance we achieved a best 

result of 100% with a normalized weighted sum of (0.8 to 0.7)/(0.2 to 0.3) for face/ear, 

respectively[27], which matched our experiments using FERET. 

Figure 5.15 presents results for a combined face/ear normalized weighted interval 

recognition rates for the CVL database. 
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Normalized Weighted Interval Recognition Rates 
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Figure 5.6: Graph of Recognition Rates for Different Face/Ear Weights Using Interval. 



Weight (Face/Ear) 

(0.9/0.1) 
(0.8/0.2) 
(0.7/0.3) 
(0.6/0.4) 
(0.5/0.5) 
(0.4/0.6) 
(0.3/0.7) 
(0.2/0.8) 
(0.1/0.9) 

Distance Type 
Euclidean 

98.9% 
99.2% 
97.6% 
97.1% 
96.1% 
93.8% 
92.2% 
91.3% 
87.1% 

Mahalanobis 
97.1% 
100.0% 
100.0% 
99.6% 
99.6% 
95.2% 
93.9% 
87.4% 
81.2% 

Table 5.14: Combined face/ear normalized weighted sum recognition rates for CVL 
database. 

Weight (Face/Ear) 

(0.9/0.1) 
(0.8/0.2) 
(0.7/0.3) 
(0.6/0.4) 
(0.5/0.5) 
(0.4/0.6) 
(0.3/0.7) 
(0.2/0.8) 
(0.1/0.9) 

Distance Type 
Euclidean 

94.8% 
96.3% 
97.5% 
97.2% 
95.6% 
94.2% 
91.1% 
85.5% 
80.6% 

Mahalanobis 
96.7% 
96.9% 
94.3% 
97.2% 
97.2% 
95.2% 
90.8% 
84.4% 
79.2% 

Table 5.15: Combined face/ear normalized weighted interval recognition rates for 
CVL database. 

5.6 Conclusions 

In this section, we presented a lot of data on the experiments we performed for the 

research leading to this thesis. We used many different techniques in an attempt to 

fully explore and contribute to multimodal research. 

From the experimental data it is clear that a multimodal system is capable of 

augmenting the results achieved with a unimodal recognition using the same modes. 

The results from the experimental data clearly indicate that combining ear and face 

biometrics improves the recognition rate over using one of the modes on its own. 

Both face and ear present advantages and disadvantages that combining them in 
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a multimodal biometric system seems to take advantage of both their strong points. 

Another advantage of the face and ear combination is that both can be used as non­

invasive biometrics. 

We can see why interest in researching recognition techniques for person recogni­

tion is increasing using face and ear. With face and ear as multibiometrics we also 

get increased coverage. 

We tried to present full details on all our experiments and on how they were 

conducted. Also presented, were many examples on detailed calculation and how 

these calculations were made. These details illustrate some of the obstacles that 

must be overcome in order to achieve even better recognition rates in a biometric 

system. 

The results from the experiments presented here indicate that the best recognition 

rates are achieved using a normalized weighted sum. We do suspect however that the 

optimum weights will change depending on the rates achieved with those modes in 

unimodal mode, and on what modes are used as part of the multimodal biometric 

system. 

For our experiments however, a normalized weighted sum of 0.7 for face and 0.3 

for ear achieved the best results. 



Chapter 6 

Conclusions 

In this thesis, we presented a framework for the automatic detection and recognition 

of individuals using face and ear as input modes. We were motivated to undertake 

this research due to the great demand for such a system by security services, agencies, 

investigative services etc. 

Towards this goal, we developed an automatic face detector and an automatic 

ear detector to use in our system. Our detectors worked very well and we overcame 

certain obstacles by using some innovative techniques as explained in the thesis. 

Our system uses a multimodal approach to improve the recognition rates, and 

used face and ear as input modes. By combining these two biometrics we were able to 

significantly improve the recognition rates as was shown in the experimental section, 

over the same metrics used in an individual unimodal basis. 

One novel achievement of our system, is that the multimodal biometric system 

system presented in this thesis is totally automated, requiring no manual interven­

tion. This type of automated biometric recognition system can be easily used in 

installations requiring person identification. 

The research presented in this thesis, displays the possibilities for a system of 

detection and recognition of individuals without their full cooperation. These type of 

biometric systems are still not as robust as systems such as fingerprint and iris, and 

much work is still to be done to create such a system which is as robust as the ones 
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mentioned. 

However, such a robust system not requiring person cooperation would be invalu­

able to applicable areas already mentioned. 

6.1 Summary 

Interest in multimodal biometrics is clearly increasing amongst researchers, face and 

ear seems to be a natural fusion between two biometrics. Combining face and ear 

biometrics can improve the recognition rate of humans compared to unimodal face 

and ear biometrics as can be seen from the experiments in this thesis and in research 

carried out by other researchers[48, 23, 2]. 

Face is more intuitive but difficult because it changes with expression and also 

overtime. To compensate for this ear is smaller than face and seems to retain its 

properties through different expressions and overtime. Another advantage of face 

and ear multimodal system is that they can compensate for one another, such as if 

one is occluded(e.g. hair, sunglasses, hat etc.) you can still achieve a biometric by 

using the other. 

In this thesis, we looked at many fusion methods and the different results achieved, 

we also compared fusion methods amongst themselves. Among all of the different 

fusion methods experimented a normalized Mahalanobis sum weighted (0.7/0.3) dis­

tance achieved the best result at 100%. 

In Figure 6.1, we see a overall graph of the recognition rates for different face/ear 

weights using sum and interval. The line graph clearly displays the rates achieved 

using both Euclidean and Mahalanobis distances, you can see from this line graph 

the achievements of each fusion type. 

It is worth noting that this system is totally automated, no manual intervention 

was done including at the preprocessing stage. For biometric systems to be useful this 

is of crucial importance. There is still much research to be done in this area, such 
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as more effective preprocessing, so that these results can be achieved over a wider 

spectrum. 

In our research, we focused on person recognition using a multimodal biometric 

system where little or no person cooperation will be required. The system is fast 

and automated, and as experiments show achieves high recognition rates. There is 

however much research still to be done in testing other types of inputs, preprocessing 

and classification methods, so as to achieve these results in all environments. 

6.2 Future Work 

Our work and research was motivated by the need for a person identification system 

which is non-invasive and accurate. We also tried to present and research this need 

with the idea that the system would be totally automated. While we achieved some 

excellent results from our research and our experiments, from these also came new 

ideas and areas which could be explored in some future research and work. 

Pre-processing is crucial for any recognition algorithm and system. We noticed 

dramatic changes in the recognition rate using different methods of pre-processing. 

Specifically in cropping an image before it is run through a recognition system, we 

feel that there is still much work to be done in this area. It would be interesting to 

explore new techniques of cropping that would lead to the optimal recognition rates. 

In our case, we used face and ear as biometrics, but perhaps there are other metrics 

that can be combined that will lead to a more robust system. It would be interesting 

to see what kind of results could be achieved in a system such as this with other 

metrics. 

Also perhaps, the inclusion of a third metric could lead to very good recognition 

rates with a higher level of robustness. These are all areas in which future work is 

possible and very exciting. 

In our research, we were able to prove that a multimodal biometric system is 
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capable of better recognition rate than those same modes run as unimodal recognition. 

There is much research to be done to improve these rates under all conditions such 

as different illumination, gestures, ageing, occlusion, etc. How can we get a constant 

superior recognition rates. 

6.3 Final Thoughts 

The research carried out and described in this thesis was very interesting and exciting. 

We were able to develop an automated multibiometric system which achieved excellent 

recognition rates. The fusion of face and ear in s multimodal biometric system seems 

natural, and the experimental data in our research proved that this is possible and 

that it leads to superior recognition rates as opposed to using face and ear as unimodal 

biometrics. 

There is much research to be done in the field of mulitbiometrics and we plan to 

continue to carry out research in this exciting and interesting field. 
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