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ABSTRACT 

The Role of Acyl-CoA Oxidase in Peroxisome Division and Longevity in Yeast 

Christopher Gregg, Ph.D. 

Concordia University 2009 

Acyl-CoA oxidase (Aox) is an enzyme that carries out the first step of P-

oxidation of free fatty acids in peroxisomes. Here I describe a novel role for Aox in 

peroxisome biogenesis. I found that the peroxisome becomes competent for division only 

after it acquires the complete set of matrix proteins involved in lipid metabolism. 

Overloading the peroxisome with matrix proteins promotes the relocation of Aox from 

the matrix to the membrane. The binding of Aox to Pexl6p, a membrane-associated 

peroxin required for peroxisome biogenesis, initiates the biosynthesis of phosphatidic 

acid and diacylglycerol (DAG) in the membrane. The formation of these two lipids and 

the subsequent transbilayer movement of DAG initiate the assembly of a complex 

between the peroxins PexlOp and Pexl9p, the dynamin-like GTPase Vpslp, and several 

actin cytoskeletal proteins on the peroxisomal surface. This protein team promotes 

membrane fission, thereby executing the terminal step of peroxisome division. 

One of my objectives was to understand what role (if any) Aox and other 

peroxisomal enzymes of fatty acid oxidation may play in regulating yeast longevity. I 

found that Aox is an essential component of the protein network controlling the 

chronological lifespan of yeast placed on a low-calorie diet called calorie restriction 

(CR). My findings lead to the conlusion that fatty acid oxidation in peroxisomes controls 
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longevity by modulating the rate of ATP synthesis in mitochondria, but not by generating 

the ROS hydrogen peroxide. 

Recent studies in Dr. Titorenko's laboratory identified novel small molecules that 

greatly increase the chronological lifespan of yeast. My experiments with one of these 

novel anti-aging drugs, a commercially available compound further referred to as "LA", 

revealed that it extends yeast longevity under CR conditions. My studies aimed at 

elucidating the molecular mechanisms by which LA increases yeast lifespan revealed that 

lack of Aox or any other enzyme of peroxisomal fatty acid oxidation does not impair the 

anti-aging effect of LA. My findings demonstrated that LA extends yeast longevity by: 

(1) reducing the damaging effect of ROS on cellular macromolecules; and (2) amplifying 

the so-called "hormetic" effect of ROS through the activation of stress-protecting and 

other anti-aging proteins. 
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Introduction 

1.1 Peroxisome function and pathology 

Most eukaryotic cells possess organelles called peroxisomes [1-3]. Delimited by a 

single lipid bilayer, peroxisomes contain a fine granular matrix and occasionally a 

paracrystalline core [3]. These organelles contain at least one hydrogen peroxide-

producing oxidase and a catalase that decomposes the hydrogen peroxide produced 

during oxidation of fatty acids, purines and amino acids [1]. Peroxisomes do not have 

their own DNA and lack independent transcription and protein synthesis machineries [1-

3]. Therefore all peroxisomal proteins are encoded by nuclear genes [1-3]. The majority 

of these proteins are synthesized on free polysomes in the cytosol [1-3], though two 

peroxisomal membrane proteins (PMPs) are produced on ribosomes found on the rough 

endoplasmic reticulum (ER) [4, 5]. 

Peroxisomes are typically responsible for the degradation and biosynthesis of 

lipids [6-8]. The degradation of prostaglandin and polyamines can also occur within the 

peroxisomes, while purines and amino acids are often catabolized by a- and P-oxidation 

[9, 10]. Biosynthetic metabolic pathways that result in the formation of ether 

phospholipids (plasmalogens), cholesterol, bile acids and polyunsaturated fatty acids are 

also housed in the peroxisome [10, 11]. 

The so-called peroxisomal disorders are often lethal, as they result in global 

developmental delay and cause progressive neurological deficits [12-21]. The failure of 

peroxisomes to assemble into functionally intact organelles results in peroxisome 

biogenesis disorders that affect many peroxisomal metabolic pathways [12-16]. The 
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failure of peroxisomes to assemble correctly is caused by autosomal recessive mutations 

in any of twelve PEX genes encoding proteins called peroxins [17, 18]. Interest in 

peroxisome biogenesis disorders greatly stimulated studies aimed at understanding of the 

molecular mechanisms that govern peroxisome assembly, maintenance and inheritance 

[6,7,15,23]. 

Peroxisomes also serve as an intracellular signaling compartment and organizing 

platform that orchestrate developmental decisions from inside of the cell [23-38]. A 

greater understanding of how peroxisomes fit into the process of development, 

differentiation and morphogenesis has been gained in recent years [38]. Such research 

provides insight into the mechanisms underlying the severe neurological dysfunction and 

developmental delay characteristic of peroxisome biogenesis disorders [30, 38]. 

1.2 A revision of the peroxisome biogenesis paradigm: The peroxisomal 

endomembrane system 

Because peroxisomes function outside of the secretory and endocytic pathways of 

dynamic vesicular flow [39] it was believed that they were autonomous, static and 

homogenous organellar compartments [40]. This view on peroxisome biogenesis did not 

include intercompartmental vesicular trafficking or membrane fusion [41]. Until recently, 

the "growth and division" model for peroxisome biogenesis was a generally accepted 

paradigm of the assembly and maintenance of this organelle. In this model, all 

peroxisomes have the same function and structure and their progressive growth is due 

solely to the posttranslational import of peroxisomal membrane and matrix proteins 
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(Figure 1.1). The "growth and division" model for peroxisome biogenesis envisioned that 

new peroxisomes are formed only due to division of the pre-existing peroxisomes and 

that the endoplasmic reticulum (ER) serves only as a source of lipids for the growing 

peroxisomes. 

I Membrane proteins 
Matrix proteins I 

• 0 Lipids 

Figure 1.1. The "growth and division" model for peroxisome biogenesis postulated that all peroxisomal 
matrix and membrane proteins are posttranslationally imported into identical peroxisomes. According to 
this model, peroxisomes then undergo division to form new ones. This model considered ER only as a 
source of lipids for the growing peroxisomes. 

In the current model for peroxisome biogenesis, the ER is used as an 

endomembrane template for the formation of vesicles that contain a distinct set of 

proteins. In the yeast Yarrowia lipolytica, the formation of peroxisomes begins with the 

movement of group I peroxisomal membrane proteins (PMPs) such as Pex2p and Pexl6p 

to the ER (Figure 1.2) [23,42,43]. This process is followed by the TV-linked 

3 



glycosylation of the PMPs and their subsequent movement to a distinct subdomain of the 

ER, which becomes the pre-peroxisomal template (PPT) [7, 30]. The PPT then buds from 

the ER to form two different kinds of vesicles, PPV1 and PPV2, each containing Pex2p 

and Pexl6p (Figure 1.2) [7, 30, 43]. These vesicles are distinct from secretory vesicles 

(SV) derived from other specialized domains of the ER. These SV bud from the ER to 

initiate the export of their cargo proteins via the Golgi apparatus to the external medium 

of a cell, to the cell's plasma membrane and to the cell wall [23, 43, 44]. 

PPV1 and PPV2 undergo post-translation sorting of two partially overlapping sets 

of group II PMPs. This process results in the formation of peroxisomal precursors called 

PI and P2, the most immature peroxisomal vesicles (Figure 1.2) [7, 30, 45]. These 

vesicles contain a limited amount of matrix proteins but almost a complete set of PMPs 

[7, 30, 45]. They undergo fusion to form P3 which has a greater density than its 

precursors [7, 30, 45, 46]. The maturation of P3 is a stepwise process, involving the 

selective import of lipids and matrix proteins. This leads to the formation of P4, P5 and 

finally the mature P6 peroxisome, the largest and most dense peroxisomal subform, 

which contains a complete set of matrix and membrane proteins (Figure 1.2) [7, 30, 45, 

46]. 

Selective import of matrix proteins is dependent on how intermediates in the 

peroxisomal assembly pathway differ in their competency to import specific matrix 

proteins. Only PI and P2 are competent for the import of matrix enzyme malate synthase 

(MLS), but they lose this competency as they mature such that P3 to P6 cannot import the 

enzyme. P3 peroxisomes are the only subform able to import a 62-kD protein reactive 
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to the type 1 peroxisomal targeting signal (62-kD SKL). P4 peroxisomes selectively 

import isocitrate lyase (ICL), another matrix protein. This could imply that peroxisomal 

import machinery is assembled in a temporally ordered manner in distinct intermediates 

as peroxisomes mature [7, 30,43, 46-50]. 

Pex2p 
Pex3p 
Pex16p 
Pex19p 

Figure 1.2. A model for the multistep peroxisome assembly pathway acting in the yeast Y. lipolytica. 

In Y. lipolytica, peroxisomes do not grow and divide at the same time [45, 51]. 

The maturation process - which involves the import of matrix proteins and lipids - leads 

to the maturation of peroxisomes, and only fully mature peroxisomes, P6, are able to 

divide (Figure 1.3). In immature peroxisomes membrane scission is inhibited by Pexl6p, 

a membrane associated peroxin. The negative action of this protein is abolished in 

response to its binding to the matrix protein Aox [45,51]. As peroxisomes mature, 
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Figure 1.3. Pex 16p/Aox-dependent mechanism of peroxisome division. 

the import of matrix proteins leads to an increase in the density of proteins inside of the 

peroxisome. In P6 peroxisomes the matrix protein Aox is no longer only located in the 

matrix of the peroxisomes but is evenly distributed between the matrix and the membrane 

(Figure 1.3) [45, 51]. The membrane-bound Aox interacts with Pex 16, thereby 

terminating its negative effect on membrane scission and allowing the division of the 

mature peroxisome (Figure 1.3) [45, 51]. The temporal and spatial regulation of Aox and 

Pexl6p interaction separates the processes of peroxisome maturation and division, 

ensuring that only mature, metabolically active peroxisomes undergo division. The 

multistep pathway of peroxisome assembly described in Y. lipolytica has also been 

observed in human fibroblasts and the yeast Pichiapastoris [15, 120, 124]. 
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1.3 Coordination of compartment assembly and division in the peroxisomal 

endomembrane system 

Division and assembly of the peroxisomal endomembrane system are governed by 

a distinct set of proteins. Two proteins, ADP-ribosylation factor 1 (ARF1) and the coat 

protein complex type I (COPI), both known for their role in the peroxisome-to-ER 

retrograde protein transport in virus-infected cells, have also been shown to induce the 

proliferation of the peroxisomal endomembrane system [52-56]. These proteins have 

been demonstrated to promote the membrane scission event required for peroxisome 

division in evolutionarily diverse organisms. Yeast and mammalian cells deficient in 

ARF1 and COPI accumulate elongated tubular peroxisomes, suggesting that both 

proteins drive peroxisome division [52, 53]. Furthermore, the incubation of highly 

purified rat liver peroxisomes with cytosol resulted in the recruitment of ARF1 and COPI 

to the peroxisomal membrane [57]. This observation supports the notion that ARF1 and 

COPI must bind to peroxisomes for the proliferation of the peroxisomal endomembrane 

system to be initiated. Moreover, the type 3 of yeast ARF1 has been found to negatively 

control peroxisome division in vivo [53]. Taken together, these findings imply that the 

peroxisomal endomembrane system uses the same set of core proteins as the classical 

secretory system of vesicular flow in order to communicate with the ER for purposes of 

proliferation. Some peroxisome-specific proteins are also implicated in this process, 

including a distinct set of PMPs as well as dynamin-related protein DLP1/DRP3A/Vpslp, 

which is recruited from the cytosol to the peroxisome surface using the Fisl preceptor 
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[58, 59]. How these proteins interact under different metabolic conditions in a given cell 

or tissue type has yet to be established. 

Two pathways seemed to be involved in the assembly and division of 

peroxisomes in the peroxisomal endomembrane system. One pathway involves the ER-

dependent formation of individual compartments within the peroxisomal endomembrane 

system and is coordinated with the second pathway, which controls the division of 

peroxisomal compartments [45, 51]. One strategy for the coordination of compartment 

assembly and division is that a few peroxisomal vesicles derived from the ER undergo 

stepwise maturation and then divide [45, 51]. A second strategy involves the rapid 

formation of many vesicles from the ER or the proliferation of a few pre-existing ER-

derived carriers [45, 51] followed by their maturation into folly functional peroxisomes 

by the import of membrane and matrix proteins. 

Regardless of the strategy(s) that evolutionarily distant organisms employ for 

coordinating the assembly and division of individual compartments of the peroxisomal 

endomembrane system, the tubulation, constriction and scission of these compartments is 

regulated, depending on cellular and/or environmental conditions of a particular cell type, 

either by signals emanating from within these compartments [45] or by extraperoxisomal 

signals that are generated inside the cell in response to certain extracellular stimuli [59]. 

A distinct group of transcriptional factors induce the transcription of genes encoding 

proteins of the Pexllp family [58]. Pexllp-type proteins play a role in peroxisome 

division either directly, by activating peroxisome division, or indirectly, by recruiting 

dynamin-related proteins from the cytosol [59]. Before peroxisome division occurs, it is 
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necessary for each peroxisome's membrane to undergo expansion of their membranes by 

acquiring lipids. The most likely source of these lipids is the ER, which is a principle site 

for the biosynthesis of phospholipids [61]. It has been suggested that oil bodies are a 

source of lipids for the peroxisomes in oilseeds [62] and in Y. lipolytica [63]. The transfer 

of phospholipids in Y. lipolytica has been observed to take place between a 

subcompartment of the ER and acceptor membranes of the P3 and P4 peroxisomal 

intermediates [64]. Although several working models have been proposed for ER-

associated lipid-transfer proteins [65], the mechanism underlying the transfer of lipids 

from the ER to the peroxisomal membrane is yet to be established. 

1.4 Yeast as a valuable model system for unveiling the molecular and cellular 

mechanisms of aging 

Biological aging can be defined as the progressive decline in the ability of an 

organism to resist stress, damage and disease [66]. It is characterized by the appearance 

of degenerative and neoplastic disorders [67-69]. At the demographic level, aging 

manifests itself as an exponential increase in the mortality rate with the age of the cohort 

[66]. 

The yeast Saccharomyces cerevisiae has proven to be a valuable model in aging 

research [70] and the mechanics of aging seem to be conserved from yeast to humans 

[71]. In the lab one can monitor the chronological aging of yeast cells or the replicative 

aging of yeast cells. Replicative aging is defined as the number of times a mother cell is 

able to bud (Figure 1.4) [71]. Replicative aging has proven to be a good model for 

studying how "mitotic" cells in higher eukaryotes age and divide [72]. 
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Figure 1.4. The replicative lifespan of yeast is defined as the maximum number of buds (i.e., daughter 

cells) that a mother cell can produce before senescence. It mimics aging of dividing or "mitotic" human 

cells. 

Chronological aging is the amount of time a population of yeast cells remain viable in a 

non-dividing state (Figure 1.5) [71, 72]. A simple assay can be done to measure the 

amount of viable cells versus the amount of total cells in a yeast culture in stationary 

phase for a range of time-points. The curves obtained from such an analysis represent the 

chorological lifespan of a yeast cells and is a good model for the majority of cells in 

higher eukaryotes {i.e., "post-mitotic" cells which are no longer dividing) [71, 72]. 

1.5 Effect of genetic manipulations and dietary regimens on lifespan 

The lifespan of yeast can be extended by certain genetic manipulations. Sir2p, an 

NAD+ histone deacetylase, was the first protein extensively studied in the regulation of 

replicative aging of S. cerevisiae [71, 73, 74]. Mutations in the gene encoding Sir2p result 

in the silencing of extrachromosomal rDNA circles, which shortens the replicative 
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lifespan of yeast cells. Conversely, overproduction of Sir2p protein leads to an extension 

of lifespan that is dependant on stress response transcription factors and effectors such as 

Msn2p/Msn4p and superoxide dismutase [71 - 73]. Sirtl is the mammalian homologue of 

Sir2p and has been shown to extend lifespan in mice by the deacetylation and regulation 

of various proteins such as the tumor suppressor p53 [75 - 77]. Various components of 

Chronological life span •»*K 

Measure the total number of 
cells per ml of the culture 

Calculate % of alive cells 

Plate aliquots of appropriate 
dilutions of the culture 

After 2 days, count the number of 
alive cells per ml of the culture 

Figure 1.5. The chorological lifespan is defined as the length of time a yeast cell remains viable in a 

nondividing state. It mimics aging of nondividing or "post-mitotic" human cells. 

the insulin/IGF-1 glucose signalling pathway have also been implicated in the 

regulation of both replicative and chronological aging in S. cerevisiae [71, 73, 74]. 

Mutations in the genes RAS2, CYR1, PKA1 and SCH9 lengthen both types of lifespan 

while mutations in the genes encoding either Msn2p or Msn4p stress-resistance 

transcriptional factors nullify this lifespan extension (Figure 1.6) [75, 77, 78]. Similar 

phenotypes have been found in three other model organisms (i.e. mice, the nematode 

worm C. elegans, and the fruit fly D. melanogaster). In fact, knocking out components of 
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Figure 1.6. Longevity pathways are conserved across phyla and governed by an evolutionarily conserved 

nutrient-sensing signal transduction network. 

the insulin/IGF-1 pathway enhances lifespan of these higher eukaryotic organisms in a 

stress response-dependent fashion [75, 77, 78]. Taken together, these findings strongly 

suggest that longevity pathways are conserved across phyla and governed by an 

evolutionarily conserved nutrient-sensing signal transduction network (Figure 1.6) [75, 

77, 78]. 

Many mutations that extend lifespan have major side effects, including 

irreversible developmental or reproductive defects [79, 80]. One intervention that extends 

lifespan without such costs is the imposition of a calorie restriction (CR) diet. CR diet is 

defined as a dietary regimen that is low in calories but does not undernourish the 

organism [79,80]. CR has been shown to extend lifespan in a wide range of 
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evolutionarily distant organisms including yeast, rotifers, spiders, worms, fish, mice, rats 

and nonhuman primates [79 - 82]. Lifespan extension is observed when animals are fed 

25%-60% of the carbohydrates, fats or proteins that are given to control animals fed ad 

libitum [79, 80]. CR has also been found to delay the onset of age related diseases such as 

cancer, atherosclerosis, type II diabetes and neurodegeneration [83]. In fact, CR reduces 

age-associated neuronal loss in most mouse models of neurodegenerative disorders such 

as Parkinson's disease [64] or Alzheimer's disease [85]. The CR dietary regimen also 

prevents age-associated declines in psychomotor and spatial memory tasks [86], loss of 

dendritic spines necessary for learning [87] and improves the brain's plasticity and ability 

for self-repair [88]. 

In yeast, CR is imposed by reducing the glucose concentration in the complete 

YEPD medium from 2% to 0.5% [89] or to 0.2% (this study). This rich medium allows 

cells to continue to feed on yeast extract and peptone which provide an abundance of 

amino acids, nucleotides and vitamins, even as glucose levels are rapidly depleted. This 

reduction in the level of glucose from 2% to 0.5% or to 0.2% could impose a state of 

partial energy (ATP) limitation. Other dietary restriction protocols, which limit amino 

acids and other nutrients [90, 91], drastically slow the growth rate and make it more 

difficult to impose energy limitation. 

1.6 Reactive oxygen species (ROS) and aging 

It has been known for many years that CR extends lifespan but only recently have 

the mechanisms governing its anti-aging effect emerged. The answer to how CR extends 
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lifespan has proven to be quite complex as there are many observed consequences to such 

a diet, including specific changes in metabolism, neuroendocrine signaling and apoptotic 

cell death machinery. These effects often have striking differences depending on the 

tissue type that they are observed in [73, 77]. The "free radical theory" of aging, a 

generally accepted theory of aging, is that cumulative oxidative damage of various 

cellular constituents inflicted by the progressive generation of reactive oxygen species 

(ROS) causes organisms to function less effectively over time and results in age-

associated degenerative disorders [92]. The age-related irreversible oxidative damage can 

be observed in DNA, RNA, protein and lipids. Importantly, the extent of such oxidative 

damage correlates with the age of an organism [93 - 96]. Thus, it seems very likely that 

oxidative damage does limit lifespan. In fact, the enzyme superoxide dismutase (SOD), 

which is responsible for reducing ROS in cells, has been found to extend lifespan when 

over-expressed in Drosophila [97] and in stationary phase yeast cells [98]. 

Though ROS are generated in multiple compartments in the cell and by multiple 

enzymes within the cell, most ROS produced in a cell (up to 90%) are made in the 

mitochondrion (Figure 1.7) [99 - 102]. ROS are also generated by a family of NADP/H 

oxidases and by so-called phagocytic oxidases in the plasma membrane [99 - 102], in 

reactions catalyzed by cytosolic amino acid oxidases, cyclooxygenases, lipid oxigenases 

and xanthine oxidase [99 - 102], and during lipid metabolism in peroxisomes [7, 30]. The 

steady-state level of ROS within a cell is the result of a balance between the rate of its 

formation and decomposition due to anti-oxidant scavenger reactions that take place in 

various cellular locations (Figure 1.8). The most important anti-oxidant enzymes are 
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Figure 1.7. ROS are generated by numerous enzymes in multiple compartments within the cell, mostly (~ 

90%) within mitochondria. 
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Figure 1.8. Detoxification of ROS occurs in antioxidant scavenger reactions. 
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CuZnSOD (SOD1) subform of superoxide dismutase in the cytosol and the MnSOD 

(SOD2) subform of the same enzyme found in mitochondria (Figure 1.8). Both these 

enzymes are responsible for converting superoxide radicals to a less toxic and more 

stable ROS, hydrogen peroxide [99 - 102]. Hydrogen peroxide is then further detoxified 

by: 1) glutathione peroxidases in the cytosol, mitochondria and peroxisomes; 2) catalases 

in the cytosol, mitochondria and peroxisomes; and 3) peroxiredoxins in the cytosol, 

mitochondria and peroxisomes (Figure 1.8) [99 - 102]. 

Most of the known targets for the oxidative damage caused by ROS are 

mitochondrial proteins, DNA and lipids, including: 1) aconitase, a [4Fe-4S] cluster 

enzyme of the TCA cycle; 2) Lys4p, a [4Fe-4S] cluster enzyme of lysine biosynthesis 

that takes place in the mitochondrion; 3) succinate dehydrogenase (SDH), a [3Fe-3S] 

cluster- and heme-containing enzyme of the TCA that also functions as complex II of the 

electron transfer chain (ETC) in the mitochondrial membrane; 4) cytochrome c, a heme-

containing mobile component of the mitochondrial ETC; 5) cytochrome c oxidase, a 

Mitochondrial targets for ROS: 

• Aconitase (a [4Fe-4S] cluster enzyme) 

• Lys4p (a [4Fe-4S] cluster enzyme) 

• SDH (a [3Fe-3S] cluster- & heme-

containing enzyme; complex II of the ETC) 

• Cytochrome c (a heme-containing mobile 

component of the ETC) 

• Cytochrome c oxidase (heme-containing 

complex IV of the ETC) 

• mtDNA (is not protected by histones) 

• Saturated fatty acids of membrane lipids 

Intracellular targets: Proteins, Lipids, Nuclear DNA 

Figure 1.9. Major targets of oxidative damage by ROS in mitochondria. 
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heme-containing complex IV of the mitochondrial ETC; 6) the mitochondrial DNA 

(mtDNA) nucleoid that, in contrast to chromatin in the nucleus, lacks histones; and 7) 

saturated fatty acids of membrane lipids (Figure 1.9) [99 - 102]. 

Although high intracellular and intraorganellar levels of ROS can cause oxidative 

damage to various cellular constituents, low concentrations of intracellular ROS can 

activate cellular processes that protect cellular macromolecules from oxidative damage 

(Figure 1.10) [99 - 102]. Furthermore, such low concentrations of ROS activate a protein 

team that protects the cell from apoptosis [99 - 102], one of the forms of programmed cell 

death [39]. Extension of lifespan by the induction of a mild-stress response is called 

hormesis. These protective functions of the cell are initiated by ROS sensors present in 

the mitochondrion (i.e., protein kinases PKD1, PKC8, Src, Abl, PI3 kinase and Akt), 

plasma membrane {i.e., the Ras protein), and cytosol (i.e., the PNC1 protein) (Figure 

1.10) [99 - 102]. Some of these sensors interact with cytosol-to-nucleus and 

mitochondria-to-nucleus shuttling proteins (i.e., p32 and Hsp27p, respectively), thereby 

promoting their relocation to the nucleus. In the nucleus, these two shuttling proteins 

activate a distinct group of transcriptional factors and cofactors (i.e., SIRT1, FOX03, 

p53, NF-KB, DET1 and COP1), all of which function as global transcriptional activators 

of genes encoding oxidative stress-response and anti-apoptotic proteins [99 - 102]. 

Moreover, some of the ROS sensors in the cytosol and mitochondrion phosphorylate and 

inactivate the pro-apoptotic factors Bad and JNK, thereby delaying the intrinsic, 

mitochondria-dependent apoptotic pathway of programmed cell death (Figure 1.10) [99 -

102]. The intrinsic pathway of apoptosis also depends on the delicate balance between 
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mitochondrial fission and fusion [101, 104 - 106]. Mitochondrial fusion maintains a 

tubular mitochondrial network, thereby: 1) facilitating transfer of the mitochondrial 

membrane potential (i.e., energy) from CVrich to C>2-poor cellular regions; 2) 

complementing mtDNA mutations that accumulate with aging; and 3) hampering the 

intrinsic pathway of apoptosis (Figure 1.11) [101, 104 - 106]. On the other hand, 

mitochondrial fission breaks down the mitochondrial network, thereby: 1) ensuring 

inheritance of mitochondria by newly formed daughter cells; 2) causing respiratory 

defects; 3) leading to loss or mutation of mtDNA that remains uncomplemented; and 4) 

promoting the intrinsic pathway of apoptosis (Figure 1.11) [101, 104 - 106]. 

Apoptosis is known to be an essential part of human development and physiology 

[39]. Recent evidence suggests that mitochondria-dependent apoptosis, a pathway of 

programmed cell death, may play a role in the aging of evolutionarily distant organisms 

including many unicellular organisms [107]. Characteristic markers of apoptosis such as 

DNA cleavage, chromatin condensation, externalization of phosphatidylserine to the 

outer leaflet of the plasma membrane, and cytochrome c release from the mitochondria 

has recently been observed in yeast (Figure 1.12; data from Dr. Titorenko's laboratory) 

[108]. The apoptotic phenotype was observed in yeast cells with a mutation in the 

CDC48 gene [109]. ROS have been implicated as central regulators of yeast apoptosis, 

which leads to even more similarity towards apoptosis in metazoan organisms [110]. The 

identification of several yeast orthologues of mammalian apoptotic regulators has 

provided the final proof that yeast and metazoan apoptosis are two versions of the same 

cellular program. These key apoptotic regulators in yeast cells include: 1) the yeast 
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Figure 1.12. Hallmark events of apoptotic cell death in yeast. Data from Dr. Titorenko's laboratory. 

metacaspase Ycalp [109]; 2) an HtrA2/Omi-like protein, the yeast apoptotic serine 

protease Nmal 1 lp [111]; 3) the yeast apoptosis inducing factor Aiflp [112]; 4) the yeast 

histone chaperone Asflp [113]; and 5) the yeast mitochondrial fission protein Drplp 

[114] (Figure 1.13). The hallmark events of apoptosis have been observed in aging yeast 

cells [115], suggesting that apoptosis plays a role in regulating yeast longevity. Recent 

unpublished findings from Dr. Titorenko's laboratory provided evidence that the 

oxidation of free fatty acids in peroxisomes initiates a cascade of events that leads to an 

intrinsic, mitochondria-dependent apoptotic pathway of age-related programmed cell 

death. 
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Figure 1.13. The basic machinery of yeast apoptosis. 

In this thesis I will also look at the role of a novel anti-aging small molecule that 

was identified in Dr. Titorenko's laboratory. This molecule is called LA. I found that LA 

greatly increases the lifespan of yeast grown under CR conditions. My findings provide 

evidence that LA extends longevity in part by modulating ROS production in 

mitochondria. It seems that such LA-dependent specific modulation of ROS increases 

yeast lifespan not only by reducing the damaging effect of ROS on cellular 

macromolecules but also by amplifying the "hormetic" effect of ROS through the 

activation of stress-protecting and other anti-aging proteins. 

1.7 Thesis outline and contributions of colleagues 

Chapter 2 describes findings providing evidence for a novel role for Aox in 
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peroxisome biogenesis. I found that the peroxisome becomes competent for division only 

after it acquires the complete set of matrix proteins involved in lipid metabolism. 

Overloading the peroxisome with matrix proteins promotes the relocation of Aox from 

the matrix to the membrane. The binding of Aox to Pexl6p, a membrane-associated 

peroxin required for peroxisome biogenesis, initiates the biosynthesis of phosphatidic 

acid and diacylglycerol (DAG) in the membrane. The formation of these two lipids and 

the subsequent transbilayer movement of DAG initiate the assembly of a complex 

between the peroxins PexlOp and Pexl9p, the dynamin-like GTPase Vpslp, and several 

actin cytoskeletal proteins on the peroxisomal surface. This protein team promotes 

membrane fission, thereby executing the terminal step of peroxisome division. Chapter 3 

outlines evidence that Aox is an essential component of the protein network controlling 

the chronological lifespan of yeast placed on a CR diet. My analysis of the mechanism by 

which Aox and other peroxisomal enzymes of fatty acid oxidation regulate yeast 

longevity led to the conclusion that fatty acid oxidation in peroxisomes controls longevity 

by modulating the rate of ATP synthesis in mitochondria, but not by generating the ROS 

hydrogen peroxide. In particular, my findings provide evidence that the efficiency of 

acetyl-CoA formation via peroxisomal fatty acid oxidation modulates the efficiency of 

electron flow through the mitochondrial electron transport chain, activities of several 

well-known target enzymes for the oxidative damage by ROS, the mitochondrial 

membrane potential, and the maintenance of a mitochondrial tubular network. The 

mechanism by which a novel anti-aging small molecule called LA greatly extends yeast 

longevity under CR conditions is described in Chapter 4. My findings demonstrate that, 
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although fatty acid oxidation in peroxisomes is essential for delaying aging, it is not 

required for the ability of LA to extend yeast longevity. This chapter also describes a 

body of evidence that LA extends yeast longevity not only by reducing the damaging 

effect of ROS on cellular macromolecules but also by amplifying the so-called 

"hormetic" effect of ROS through the activation of stress-protecting and other anti-aging 

proteins. 

The findings presented in Chapter 2 have been published in The Journal of Cell 

Biology [Guo, T., Gregg, C , Boukh-Viner, T., Kyryakov, P., Goldberg, A., Bourque, S., 

Banu, F., Haile, S., Milijevic, S., Hung Yeung San, K., Solomon, J., Wong, V. and 

Titorenko, V.I. A signal from inside the peroxisome initiates its division by promoting 

the remodeling of the peroxisomal membrane. J. Cell Biol. (2007) 177:289-303]. This 

article was an Editors' Choice article in Science (2007) 316:801. I carried out and 

supervised more than 40% of all of the work described in this publication and prepared 

the first draft of sections relevant to my work. I am an equally contributed (together with 

Dr. Guo Tong) co-author on this publication. Dr. V. Titorenko provided intellectual 

leadership of this project and edited the manuscript. 

The data described in Chapter 3 are presented in the manuscript of a paper that is 

currently in preparation for submission to Cell Metabolism. I carried out and supervised 

more than 40% of all of the work described in this manuscript and prepared the first draft 

of sections relevant to my work. Dr. V. Titorenko provided intellectual leadership of this 

project and is editing the manuscript. 

The data described in Chapter 4 are presented in the manuscript of a paper that is 

23 



currently in preparation for submission to Nature Chemical Biology. I carried out and 

supervised more than 30% of all of the work described in this manuscript and prepared 

the first draft of sections relevant to my work. Dr. V. Titorenko provided intellectual 

leadership of this project and is editing the manuscript. 

All abbreviations, citations, and the numbering of figures and tables that have 

been used in the published paper and in the manuscripts in preparation have been 

changed to the format of this thesis. 
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2 Acyl-CoA oxidase functions as a molecular switch that controls peroxisome 

division 

2.1 Abstract 

In the yeast Y. lipolytica, peroxisomes begin as two vesicles called PI and P2 that 

gradually mature into metabolically active peroxisomes, P6. Only P6 peroxisomes are 

able to divide. The step-wise maturation of peroxisomes involves the import of matrix 

proteins and membrane lipids over time. The division of the mature peroxisome P6 

requires a change in the composition of its membrane lipids, which is preceded by the 

relocation of a protein called Aox from the matrix to the membrane of P6. My findings 

show that the movement of Aox from the matrix to the membrane of peroxisomes does 

not require interaction of Aox with a specific protein but rather occurs whenever the 

protein concentration within the peroxisomal matrix reaches a critical mass. The 

interaction of Aox with Pexl6p initiates a cascade of events that ultimately alters the lipid 

composition in the membrane to assume a shape that is more energetically favourable for 

peroxisome division. Such re-shaping of the membrane of mature peroxisomes P6 

promotes the recruitment to the peroxisomal surface of a protein machinery that drives 

peroxisome division by promoting the fission of the peroxisomal membrane. 

2.2 Introduction 

In the "growth and division" model of peroxisome biogenesis, peroxisomal 

membrane and matrix proteins are synthesized on cytosolic polyribosomes and then 

specifically targeted to the peroxisome. Daughter peroxisomes are formed by the division 
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of these peroxisomes [116]. Daughter peroxisomes then undergo the same process of 

growth and division [61]. Though some findings support this model, certain details of this 

process had not been elucidated including the means by which the growth and division of 

peroxisomes is coordinated. It was possible that only peroxisomes that had undergone 

growth and maturation were competent for division. It was also possible that immature 

peroxisomal vesicles first proliferated by dividing and only then grew and matured by 

importing matrix and membrane proteins. This latter pattern, whereby it is the immature 

peroxisomes that divide, was observed in the yeast Candida boidinii [60]. Finally, there 

was a possibility that both mature and immature peroxisomes divided in a process that 

was independent to that of their growth and maturation. 

Data on purification, protein profiling and electron microscopic analysis of 

mammalian and yeast peroxisomes have provided important information regarding the 

process of peroxisomal development. It was established that the population of 

peroxisomes in a cell consists of several peroxisomal subforms that differ in their size, 

morphology, buoyant density and protein composition [64, 117 - 120]. By monitoring of 

the in vivo dynamics of peroxisomal protein localization, it was demonstrated that there 

are several peroxisomal subforms, each differing in their competency to import various 

proteins [64, 117 - 120]. In yeast [120] and in mammals [121], most peroxisomal proteins 

are imported into small peroxisomal vesicles of intermediate buoyant density. By 

acquiring various proteins, these peroxisomal vesicles gradually mature to peroxisomes 

of high buoyant density. Recent findings in human and yeast cells have suggested that 
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several peroxisomal subforms are organized into a multistep peroxisome assembly 

pathway [15, 45, 50, 122 - 124]. The pathway operates by the conversion of subforms in 

a temporally ordered manner, involves the stepwise import of distinct subsets of matrix 

and membrane proteins into different intermediates along the pathway, and leads to the 

assembly of mature peroxisomes (Figure 1.2) [7, 15, 30, 123, 125]. 

It has been demonstrated that the mass of immature peroxisomal vesicles PI to P5 

is not more than 1-2% of that of mature peroxisomes [42, 45]. The peroxin Pexl6p, 

which is attached to the matrix surface of the membrane [126], negatively regulates the 

division of immature peroxisomal vesicles, preventing their excessive proliferation [45, 

50, 127]. The negative control of membrane scission by Pexl6p is necessary for the 

growth of yeast grown on medium containing oleic acid. Indeed, the lack of Pexl6p 

resulted in the excessive proliferation of immature peroxisomal precursors [45, 126] and 

impaired the utilization of oleic acid as a carbon source [126]. 

As peroxisomes mature from PI to P5 subforms, the import of distinct subsets of 

matrix proteins results in increasing fractions of matrix proteins that are present in mature 

peroxisomes [45, 125]. When the increase of the total mass of matrix proteins reaches a 

critical level, the redistribution of the heteropentameric Aox complex from the matrix of 

the peroxisome to its membrane is observed. Aox is present in the early P2 intermediate 

[45] of the peroxisome assembly pathway and its relocation to the peroxisomal 

membrane occurs only in the mature peroxisome P6, in which the mass of matrix proteins 

is greatest [45]. Overloading peroxisomes with any matrix proteins other than Aox was 

suggested be a major factor in the relocation of Aox complex to the membrane of 
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peroxisomes [45]. 

Inside mature peroxisomes, the membrane-bound pool of Aox complex interacts 

with Pexl6p. The interaction between Pexl6p and Aox requires that the Aox 

heteropentamer has its Aox4p and Aox5p subunits [45]. The formation of the 

Pexl6p/Aox supramolecular complex, which contains 2 molecules of Aox and two 

molecules of Pexl6p [45], terminates the negative action of Pexl6p on scission of the 

peroxisomal membrane. Thus, mature peroxisomes become division-competent. It is this 

interaction between Aox and Pexl6p that regulates the temporal and spatial separation of 

the processes of peroxisome assembly and division in Y. lipolytica. Such separation may 

provide an important advantage for the efficient, stepwise assembly of mature, 

metabolically active peroxisomes. 

In the above described model for peroxisome growth and division in Y. lipolytica 

(Figure 1.3), the interaction between Aox and Pexl6p terminates the negative action of 

Pexl6p on scission of the peroxisomal membrane, thereby allowing mature peroxisomes 

to divide [45]. Membrane scission involves strong membrane bending and a transient 

reorganization of the equilibrium bilayer configuration of the membrane into highly 

curved non-bilayer intermediates (Figure 2.1) [128 - 135]. These energetically 

unfavourable processes require a specialized team of proteins [136 - 155] and a distinct 

set of membrane lipids, including phosphoinositides [134, 140, 146, 156 - 160], 

phosphatidic acid (PA) [134-136, 139, 142, 157-160] and diacylglycerol (DAG) [134, 

135, 141, 142, 157- 160]. 
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Figure 2.1. Membrane scission involves strong membrane bending and a transient reorganization of the 

equilibrium bilayer configuration of the membrane into highly curved non-bilayer intermediates. The 

molecular shape of lipids influences membrane curving. 

Cone-shaped PA induces negative monolayer curvature in the outer (cytosolic) leaflet of 

a membrane bilayer in the constricted neck (Figure 2.2) [134, 135, 157 - 160] DAG, 

which has even more conical shape [133, 157 - 161] and is capable of very rapid 

transbilayer movement and lateral partitioning [135, 161 - 163], is a particularly potent 

inducer of negative monolayer curvature and membrane bending (Figure 2.2) (Figure 2.2) 

[133-135,157-163]. 

The key challenge for me was to determine whether or not the interaction between 

Pexl6p and Aox promotes specific changes in the lipid composition of the peroxisomal 

membrane that could trigger membrane destabilization, bending, scission and fission 
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Figure 2.2. By influencing membrane curvature, the molecular shape of lipids could regulate the rate and 

efficiency of the membrane destabilization, bending, scission and fission events required for the division of 

mature peroxisomes. 

events required for the division of mature peroxisomes. It should be stressed that 

aforementioned model for the Pex 16p/Aox-dependent mechanism of peroxisome division 

(Figure 1.3) does not specify what it is that causes Aox to be relocated from the matrix to 

the membrane in mature peroxisomes P6. Using an in vitro assay to reconstruct the 

processes that occur within the peroxisome, I tested three possible molecular mechanisms 

underlying such relocation of Aox within P6. First, it is plausible that the relocation of 

Aox is due only to an increase in the total mass of matrix proteins above a critical level. 

In this mechanism, this movement of Aox is not caused by its interaction with any 

specific protein in the matrix (Figure 2.3). Second, it is possible that: 1) a specific matrix 

protein rather than protein mass in the peroxisomal matrix initiates the relocation of Aox 
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Figure 2.3. First possible molecular mechanism underlying the relocation of Aox from the matrix to the 

membrane within mature peroxisomes P6. The relocation of Aox is due only to an increase in the total mass 

of matrix proteins above a critical level. In this mechanism, this movement of Aox is not caused by its 

interaction with any specific protein in the matrix. 

from the matrix to the membrane; and 2) this specific matrix protein is present already in 

the early peroxisomal precursors P1 and P2 and is activated only when the total mass of 

matrix proteins exceeds a critical level (Figure 2.4). Third, it is conceivable that: l ) a 

Figure 2.4. Second possible molecular mechanism underlying the relocation of Aox from the matrix to the 

membrane within mature peroxisomes P6. A specific matrix protein rather than protein mass in the 

peroxisomal matrix initiates the relocation of Aox from the matrix to the membrane. This specific matrix 

protein is present already in the early peroxisomal precursors P1 and P2 and is activated only when the total 

mass of matrix proteins exceeds a critical level. 
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Figure 2.5. Third possible molecular mechanism underlying the relocation of Aox from the matrix to the 

membrane within mature peroxisomes P6. A specific matrix protein rather than protein mass in the 

peroxisomal matrix initiates the relocation of Aox from the matrix to the membrane. This specific matrix 

protein is imported to the peroxisome only during the last step of peroxisome maturation, during the 

conversion of P5 to P6. 

specific matrix protein rather than protein mass in the peroxisomal matrix initiates the 

relocation of Aox; and 2) this specific matrix protein is imported to the peroxisome only 

during the last step of peroxisome maturation, during the conversion of P5 to P6 (Figure 

2.5). The data presented in this chapter provide comprehensive evidence that the 

relocation of Aox from the matrix to the membrane of P6 is due to an increase in the total 

mass of matrix proteins above a critical level and that it is not promoted by the interaction 

of Aox with any specific matrix protein. Moreover, the findings that I describe in this 

chapter clearly demonstrate that the interaction between Pexl6p and Aox results in an 

intraperoxisomal signalling cascade that activates the biosynthesis and transbilayer 

movement of a distinct set of membrane lipids. The change in the lipid content of the 

peroxisomal membrane is followed by the assembly of a multicomponent protein 

complex on the surface of the mature peroxisome, P6. The protein complex that forms 
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carries out membrane fission and completes the process of peroxisome division. 

2.3 Materials and Methods 

Strains, media and reagents 

The Y. lipolytica wild-type strain POld [164], the mutant strains pexlA [64], pexl9A 

[\65],pexl6A and PEX16-TH [126], the single AOX gene knock-out strains [164], and 

the media, growth conditions and genetic techniques for Y. lipolytica [48] have been 

previously described. Targeted integrative disruption of the ABP J, DPP I, PEX10, SLA1, 

SLC1 and VPS1 genes was performed with the URA3 gene of Y. lipolytica, using a 

previously described modification of the sticky-end polymerase chain reaction procedure 

[164]. Antibodies to Pex2p [64], Pexl6p [48], Pexl9p [165] and thiolase [50] have been 

previously described. Monospecific antibodies to Dpplp, PexlOp, Slclp and Vpslp were 

raised in rabbit against their peptides GAPRPDMLARCRPMSWMRP, 

CRQGVREQNLLPIR, GRIFPQYCSVTAKKALKWYP and 

MDKELISTVNKLQDALA, respectively. Purification of the DAG-binding Clb domain 

of protein kinase C [166] and its labeling with the fluorophore Alexa Fluor 488 [167] 

were performed as described previously. SDS-PAGE and immunoblotting [48] were 

performed as described. Cholic acid (sodium salt), ergosterol, hydroxylapatite, n-octyl-B-

D-glucopyranoside, palmitoyl-CoA agarose, and Triton X-100 were purchased from 

Sigma-Aldrich Canada Ltd. PIP-Strips were from Echelon Biosciences. Alexa Fluor 488 

signal-amplification kit for fluorescein-conjugated probes was purchased from Molecular 

Probes. Monoclonal anti-phosphatidylserine antibody was purchased from Upstate USA. 
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Fluorescein-conjugated goat anti-rabbit IgG antibodies and fluorescein-conjugated goat 

anti-mouse IgM antibodies were from Jackson ImmunoResearch Laboratories. N-

palmitoyl-D-eryf/zro-sphingosine (ceramide), 1,2-dioleoyl-sH-glycerol (diacylglycerol), 

l,2-dioleoyl-5«-glycero-3-phosphate (phosphatidic acid), l,2-dioleoyl-s?j-glycero-3-

phosphocholine (phosphatidylcholine), 1 -oleoyl-2-hydroxy-5«-glycero-3-phosphate 

(lysophosphosphatidic acid), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine 

(phosphatidylethanolamine), L-ct-phosphatidylinositol (phosphatidylinositol), and 1,2-

dioleoyl-5«-glycero-3-[phospho-L-serine] (phosphatidylserine) were from Avanti Polar 

Lipids. [Cl4]-labeled lipids, HiTrap Blue HP, Resource Q, Resource S, and Superose 12 

were from GE Healthcare. 

Subcellular fractionation and isolation of organelles 

The initial step in the subcellular fractionation of oleic acid-grown cells included the 

differential centrifugation of lysed and homogenized spheroplasts at 1,000 x g for 10 min 

at 4°C in a JS 13.1 rotor (Beckman) to yield a postnuclear supernatant (PNS) fraction. The 

PNS fraction was further subjected to differential centrifugation at 20,000 x g for 30 min 

at 4°C in a JS 13.1 rotor (Beckman) to yield pellet (20KgP) and supernatant (20KgS) 

fractions. The 20KgS fraction was further subfractionated by differential centrifugation at 

200,000 x g for 1 h at 4°C in a TLA110 rotor (Beckman) to yield pellet (200KgP) and 

supernatant (200KgS) fractions. To purify immature peroxisomal vesicles PI to P5, the 
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200KgP subcellular fraction was subjected to centrifugation on a discontinuous sucrose 

(18, 25, 30, 35, 40, and 53%, wt/wt) gradient at 120,000 x g for 18 h at 4°C in a SW28 

rotor (Beckman). 36 fractions of 1 ml each were collected. Different subforms of 

immature peroxisomal vesicles peaked at densities of 1.18 g/cm3 (fraction 5, P5), 1.14 

g/cm3 (fraction 15, P3 + P4), 1.11 g/cm3 (fraction 23, PI), and 1.09 g/cm3 (fraction 30, 

P2) were recovered [46]. The peak fractions containing immature peroxisomal vesicles 

PI, P2, P3 + P4 and P5 were recovered, and 4 vol of 0.5 M sucrose in buffer H (5 mM 

MES, pH 5.5, 1 mM KC1, 0.5 mM EDTA, 0.1% ethanol, 1 x protease inhibitor cocktail 

[PIC] [46] were added to each of them. Peroxisomes were pelleted onto a 150-ul cushion 

of 2 M sucrose in buffer H by centrifugation at 200,000 x g for 20 min at 4°C in a 

TLA110 rotor (Beckman). Individual pellets of different subforms of immature 

peroxisomal vesicles were resuspended in 3 ml of 50% (wt/wt) sucrose in buffer H. 

For purification of immature peroxisomal vesicles PI and P2, pellets of PI andP2 

resuspended in 50% (wt/wt) sucrose in buffer H were overlaid with 30, 28, 26, 24, 22, 

and 10% sucrose (all wt/wt in buffer H). After centrifugation at 120,000 x g for 18 h at 

4°C in a SW28 rotor (Beckman), 18 fractions of 2 ml each were collected. PI and P2 

were pelleted, resuspended and subjected to a second flotation on the same multistep 

sucrose gradient. Gradients were fractionated into 2-ml fractions as above, and PI and P2 

were recovered [46] and used for biochemical analyses. 

For purification of immature peroxisomal vesicles P3 and P4, pellets of P3 and P4 

resuspended in 50% (wt/wt) sucrose in buffer H were overlaid with 38%, 35%, 33% and 
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20% sucrose (all wt/wt in buffer H). After centrifugation at 120,000 * g for 18 h at 4°C in 

a SW28 rotor (Beckman), 18 fractions of 2 ml each were collected. P3 and P4 were 

pelleted, resuspended in 3 ml of 50% (wt/wt) sucrose in buffer HE (20 mM MES, pH 5.5, 

20 mM EDTA, 0.1% ethanol), overlaid with 39, 37, 35, 33, and 20% sucrose (all wt/wt in 

buffer HE), and subjected to centrifugation as above. Gradients were fractionated into 2-

ml fractions, and P3 and P4 were recovered and pelleted. After resuspension in 3 ml of 

50% (wt/wt) sucrose in buffer H, P3 and P4 were again subjected to flotation on the 

second multistep sucrose gradient described above. Gradients were fractionated into 2-ml 

fractions, and P3 and P4 were recovered [46] and used for biochemical analyses. 

Highly purified mature peroxisomes P6 were isolated from the 20 KgP subcellular 

fraction by isopycnic centrifugation on a discontinuous sucrose gradient as described 

previously [64]. 4 vol of 0.5 M sucrose in buffer H were added to the peak peroxisomal 

fraction 4 recovered after isopycnic centrifugation on a discontinuous sucrose gradient. 

Peroxisomes were sedimented through a 150-ul cushion of 2 M sucrose in buffer H by 

centrifugation at 200,000 * g for 20min at 4°C in a TLA110 rotor (Beckman). The 

resultant pellet of mature peroxisomes P6 was resuspended in buffer H containing 1 M 

sorbitol and was subjected to further centrifugation on a linear 20-60% (wt/wt) sucrose 

gradient (in buffer H) at 197,000 x g for 18 h at 4°C in a SW41Ti rotor (Beckman). Peak 

peroxisomal fraction 5 equilibrating at a density of 1.21 g/cm3 was recovered, and 

peroxisomes were sedimented through a 150-ul cushion of 2 M sucrose in buffer H by 

centrifugation at 200,000 x g for 20 min at 4°C in a TLA110 rotor (Beckman). Pellet of 
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mature peroxisomes P6 was resuspended in 55% (wt/wt) sucrose in buffer H, overlaid 

with 50, 45, 40, 30, and 20% sucrose (all wt/wt in buffer H), and subjected to 

centrifugation at 120,000 x g for 18 h at 4°C in a SW28 rotor (Beckman). 18 gradient 

fractions of 2 ml each were collected. Peak peroxisomal fraction 11 equilibrating at a 

density of 1.21 g/cm3 was recovered [64] and used for biochemical analyses. 

The free form of the ER [64] and the P3- and P4-associated subcompartment of 

the ER [46] were purified from Y. lipolytica cells as described previously. Subcellular 

fractionation of S. cerevisiae cells grown in glucose-containing YEPD medium and 

isolation of functional ER membranes were performed according to established 

procedures [168]. 

Peroxisome subfractionation and extraction 

Highly purified peroxisomes were lysed by addition of 10 vol of ice-cold LB buffer (20 

mM HEPES-KOH, pH 8.0, 50 mM NaCl, and 1 x protease inhibitor cocktail [PIC] [48], 

followed by incubation on ice for 30 min with occasional agitation. The suspension was 

centrifuged at 200,000 x g for 20 min at 4°C in a TLA110 rotor (Beckman). The pellet 

of membranes recovered after centrifugation of osmotically lysed peroxisomes was 

resuspended in ice-cold EB buffer (10 mM HEPES-KOH, pH 8.0, 5 mM EDTA, and 1 x 

protease inhibitor cocktail [PIC] [48] to a final concentration of 1.0 mg/ml. Equal 

aliquots of the suspension of membranes were then exposed to 1 M NaCl, 0.1 M Na2C03, 
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pH 11.0, or 0.5% (vol/vol) Triton X-100 [48]. After incubation on ice for 30 min with 

occasional agitation, the samples were subjected to centrifugation at 100,000 x g for 30 

min at 4°C in a TLA110 rotor (Beckman). Equal portions of the pellet and supernatant 

fractions were analyzed by SDS-PAGE, followed by immunoblotting. 

Protease protection analysis 

The pellet of highly purified mature peroxisomes was gently resuspended in ice-cold PPB 

buffer (5 mM MES, pH 5.5, 1 M sorbitol, 1 mM KC1, and 0.5 mM EDTA). Equal 

aliquots (10 or 20 ug of total protein) of these peroxisomes were incubated with 0, 5, 10 

or 50 ug of trypsin for 30 min on ice, either in the presence or absence of Triton X-100 at 

0.5% (vol/vol) final concentration. The reaction was terminated by addition of 

trichloroacetic acid to 10% final concentration. The protein precipitates were washed 

with ice-cold 80% (vol/vol) acetone, and equivalent fractions of each reaction were 

subjected to SDS-PAGE and immunoblotting. 

Lipid analyses 

Highly purified peroxisomes were lysed by addition of 10 vol of ice-cold LB buffer (20 

mM HEPES-KOH, pH 8.0, 50 mM NaCl, and 1 * protease inhibitor cocktail [PIC] 

[48], followed by incubation on ice for 30 min with occasional agitation. The suspension 

was centrifuged at 200,000 x g for 20 min at 4°C in a TLA110 rotor (Beckman). For 

extraction of membrane lipids, the pellet of membranes recovered after centrifugation of 

osmotically lysed peroxisomes and contained 1 mg of membrane protein was 
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resuspended in 1.0 ml of chloroform/methanol (1:1, v/v). After incubation on ice for 15 

min with occasional agitation, samples were subjected to centrifugation at 20,000 x g for 

15 min at 4°C. The chloroform phase was separated and dried under nitrogen. The lipid 

film was dissolved in 100 ul of chloroform (for the analysis of diacylglycerol, ergosterol 

and ceramide) or 100 ul of chloroform/methanol (1:1, v/v) (for the analysis of 

phosphatidylethanolamine, phosphatidic acid, phosphatidylcholine, phosphatidylinositol, 

phosphatidylserine, and lysophosphosphatidic acid). 25 ul of each sample were spotted 

on 60A silica gel plates for thin-layer chromatography (TLC) (Whatman). The lipids 

were developed in the following solvent systems: chloroform/acetone (4.6:0.4, v/v) (for 

the analysis of diacylglycerol, ergosterol and ceramide) and chloroform/methanol/water 

(65:25:4, v/v) (for the analysis of phosphatidylethanolamine, phosphatidic acid, 

phosphatidylcholine, phosphatidylinositol, phosphatidylserine, and lysophosphatidic 

acid). All lipids were detected using 5% phosphomolybdic acid in ethanol and visualized 

by heating for 30 min at 110°C. Lipids were quantitated by densitometric analysis of TLC 

plates as described previously [169], using lipid standards in the 0.1-0.5 ug range for 

calibration. 

For monitoring enzymatic activities of LPAAT and PAP, highly purified 

peroxisomes were lysed by addition of 10 vol of ice-cold LB buffer (20 mM HEPES-

KOH, pH 8.0, 50 mM NaCl, and 1 x protease inhibitor cocktail [PIC] [48], followed by 

incubation on ice for 30 min with occasional agitation. The suspension was centrifuged at 

200,000 x g for 20 min at 4°C in a TLA110 rotor (Beckman). The pellet of membranes 

recovered after centrifugation of osmotically lysed peroxisomes was resuspended in ice-
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cold buffer R (20 mM MES-KOH, pH 6.0, 150 mM NaCl, 5 raM DTT, 10% glycerol) 

containing 1% (w/v) n-octyl-P-D-glucopyranoside (OG). After incubation on ice for 20 

min with occasional agitation, the sample of detergent-solubilized peroxisomal 

membrane proteins (PMPs) was subjected to centrifugation at 100,000 * g for 20 min at 

4°C in a TLA110 rotor. The resulting supernatant of solubilized PMPs was depleted of 

Pexl6p by immunoaffinity chromatography under native conditions using anti-Pexl6p 

antibodies covalently linked to protein A-Sepharose [170]. For the reconstitution of 

peroxisomal liposomes carrying Pexl6p, detergent-solubilized PMPs immunodepleted of 

Pexl6p were supplemented with Pexl6p, which was purified from membranes of 

osmotically lysed immature peroxisomal vesicles PI by immunoaffinity chromatography 

under native conditions using anti-Pexl6p antibodies covalently linked to protein A-

Sepharose [170]. After elution with buffer E (20 mM HEPES-KOH, pH 7.5, 250 mM 

MgCb, 5 mM DTT, 10% glycerol) containing 1% (w/v) OG, purified Pexl6p was 

dialyzed against buffer R supplemented with 1% (w/v) OG. For the reconstitution of 

peroxisomal liposomes lacking Pexl6p, detergent-solubilized PMPs immunodepleted of 

Pexl6p were supplemented only with buffer R containing 1% (w/v) OG. Detergent-

solubilized PMPs immunodepleted of Pexl6p and either supplemented or not 

supplemented with purified Pexl6p in buffer R containing 1% (w/v) OG were then 

added to the films of unlabeled lipids, which were initially extracted from the membranes 

of highly purified peroxisomes using chloroform/methanol (1:1, v/v) and then dried down 

by a gentle stream of nitrogen. The lipid films were dissolved by gentle agitation for 20 

min at room temperature. For monitoring LPAAT activity, the unlabeled lipids, which 
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were extracted from the membranes of highly purified peroxisomes using 

chloroform/methanol (1:1, v/v), were supplemented with [ C]-labeled lysophosphatidic 

acid and unlabeled oleoyl-CoA (a co-substrate of LPAAT) dissolved in 

chloroform/methanol (1:1, v/v). The mix of unlabeled membrane lipids and [ C]-labeled 

lysophosphatidic acid was then dried down by a gentle stream of nitrogen. For 

monitoring PAP activity, the unlabeled lipids, which were extracted from the membranes 

of highly purified peroxisomes using chloroform/methanol (1:1, v/v), were supplemented 

with [ C]-labeled phosphatidic acid dissolved in chloroform/methanol (1:1, v/v). The 

mix of unlabeled membrane lipids and [ C]-labeled phosphatidic acid was then dried 

down by a gentle stream of nitrogen. For evaluating the positive effect of 

phosphatidylcholine on LPAAT and PAP, equal aliquots of unlabeled lipids extracted 

from the membranes of highly purified peroxisomes using chloroform/methanol (1:1, 

v/v) were first mixed with an appropriate [ C]-labeled lipid substrate of LPAAT or PAP 

in chloroform/methanol (1:1, v/v) and were then supplemented with various quantities of 

phosphatidylcholine dissolved in chloroform/methanol (1:1, v/v). The mix of unlabeled 

14 

membrane lipids, a [ C]-labeled lipid substrate, and unlabeled phosphatidylcholine was 

then dried down by a gentle stream of nitrogen. The lipid films were finally dissolved by 

gentle agitation for 20 min at room temperature in buffer R containing detergent-

solubilized PMPs, immunodepleted or not immunodepleted of Pexl6p, in 1% (w/v) OG. 

To dilute the detergent OG below its critical micellar concentration, thereby promoting 

the formation of peroxisomal liposomes, 3 volumes of buffer D (20 mM MES-KOH, pH 

6.0, 150 mM NaCl) were added to the mixture of detergent-solubilized PMPs and 
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membrane lipids dissolved in buffer R containing 1% (w/v) OG. To remove the 

detergent, the samples were dialyzed in a Tube-O-Dialyzer (7.5-kD cutoff) (Chemicon) 

against buffer D containing 0.1% Biobeads SM2 (Bio-Rad). After overnight dialysis at 

4°C, samples were transferred to the bottom of ultraclear centrifuge tubes (Beckman) and 

supplemented with 4 volumes of 65% (w/w) sucrose in buffer D in order to adjust the 

sucrose concentration of the samples to 52% (w/w). Samples were overlaid with 40% and 

then with 20% sucrose (both w/w in buffer D) and lastly with buffer D alone. After 

centrifugation at 200,000 * g for 18 h at 4°C in a SW50.1 rotor (Beckman), 18 fractions 

of 275 ul each were collected. Peroxisomal liposomes were recovered at the 40%/20% 

sucrose interface. The recovered peroxisomal liposomes were transferred from ice to 

26°C. Samples were taken at the indicated times after the transfer. Lipids were extracted 

from the membrane and analyzed by TLC. To calculate the initial rates of the LPAAT 

and PAP reactions, the [ C]-labeled lysophosphatidic acid, phosphatidic acid and 

diacylglycerol were separated by TLC and quantified by autoradiography. 

To evaluate the transbilayer distribution of DAG and PS in the membrane bilayers 

of different peroxisomal subforms, the suspension of highly purified peroxisomes in ice-

cold H250S buffer (5 mM MES-KOH, pH 5.5, 250 mM sorbitol, 1 mM KC1, 0.5 raM 

EDTA, 1 x protease inhibitor cocktail [PIC] [48] at 1 mg protein/ml was divided into 

two equal aliquots. One aliquot remained untreated, whereas peroxisomal vesicles in the 

other aliquot were lysed by addition of 10 vol of ice-cold LB buffer (20 mM HEPES-

KOH, pH 8.0, 50 mM NaCl, and 1 x protease inhibitor cocktail [PIC] [48], followed by 

incubation on ice for 30 min with occasional agitation. The suspension of lysed 
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peroxisomes was divided into two equal aliquots. One aliquot was dialyzed in a Tube-O-

Dialyzer (7.5-kD cutoff) (Chemicon) against buffer MR (10 mM MES/KOH, pH 5.5, 1 

mM KC1, and 0.5 mM EDTA) containing 250 mM sorbitol. The suspension of lysed 

peroxisomes in the other aliquot was dialyzed in a Tube-O-Dialyzer (7.5-kD cutoff) 

(Chemicon) against buffer HR (10 mM HEPES/KOH, pH 7.5, 1 mM KC1, and 0.5 mM 

EDTA) containing 250 mM sorbitol. After overnight dialysis at 4°C, resealed 

peroxisomes RPA that were formed in the aliquot dialyzed against buffer MR containing 

250 mM sorbitol and resealed peroxisomes RPB that were formed in the aliquot dialyzed 

against buffer HR containing 250 mM sorbitol were pelleted onto a 150-ul cushion of 2 

M sucrose in buffer MR or HR, respectively, by centrifugation at 100,000 x g for 20 min 

at 4°C in a TLA110 rotor (Beckman). Individual pellets of RPA and RPB were 

resuspended in 500 ul of 50% (wt/wt) sucrose in buffer MR or HR, respectively. The 

sample containing RPA was overlaid with 1.5 ml of 45% sucrose, 1 ml of 40% sucrose, 1 

ml of 25% sucrose, and 1 ml of 10% sucrose (all wt/wt in buffer MR). The sample 

containing RPB was overlaid with 1.5 ml of 45% sucrose, 1 ml of 40% sucrose, 1 ml of 

25% sucrose, and 1 ml of 10% sucrose (all wt/wt in buffer HR). Both samples were 

subjected to centrifugation at 200,000 x g for 18 h at 4°C in a SW50.1 rotor (Beckman). 9 

fractions of 555 ul each were collected. Resealed peroxisomes RPA and RPB floated to 

low density during centrifugation in the sucrose density gradient. Proteins from equal 

volumes of gradient fractions were analyzed by immunoblotting with antibodies to 

Pexl6p and Pexl9p. Equal volumes of gradient fractions were also subjected to lipid 

extraction, which was followed by TLC and visualization of lipids. 
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Resealed peroxisomes RPA and RPB, which were recovered in the peak fractions 

of the flotation gradients, and a highly purified subform of the intact peroxisomes from 

which these two types of resealed peroxisomes were formed, were used to evaluate the 

orientation in which the membranes delimiting RPA and RPB were resealed. RPA and 

RPB were pelleted onto a 150-ul cushion of 2 M sucrose in buffer MR or HR, 

respectively, by centrifugation at 100,000 x g for 20 min at 4°C in a TLA110 rotor 

(Beckman). Intact peroxisomes were pelleted onto a 150-ul cushion of 2 M sucrose in 

buffer H (5 mM MES, pH 5.5, 1 mM KC1, 0.5 mM EDTA, 0.1% ethanol, 1 x protease 

inhibitor cocktail [PIC] [48] by centrifugation at 100,000 x g for 20 min at 4°C in a 

TLA110 rotor (Beckman). Individual pellets of RPA, RPB and intact peroxisomes were 

resuspended in ice-cold buffer H at 1 mg protein/ml. Serial dilutions of RPA, RPB and 

intact peroxisomes in the range of 10-50 ug protein/ml were made in ice-cold buffer H. 

Anti-Pexl6p rabbit IgG or anti-Pexl9p rabbit IgG were added to concentrations 4 and 5 

ug/ml, respectively. After incubation for 30 min on ice, samples were subjected to 

centrifugation at 100,000 x g for 10 min at 4°C in a TLA110 rotor (Beckman). The 

pellets were resuspended in 200 ul of ice-cold buffer H and supplemented with 

fluorescein-conjugated goat anti-rabbit IgG. After incubation for 30 min on ice, samples 

were subjected to centrifugation at 100,000 x g for 10 min at4°C in aTLAHO rotor 

(Beckman). The pellets were resuspended in 200 ul of ice-cold buffer H and 

supplemented with Alexa Fluor 488 goat anti-fluorescein/Oregon Green IgG at 15 ug/ml. 

Following incubation for 30 min on ice, samples were subjected to centrifugation at 

100,000 x g for 10 min at 4°C in a TLA110 rotor (Beckman). The pellets were 
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resuspended in 200 (J.1 of ice-cold buffer H and supplemented with Alexa Fluor 488 

chicken anti-goat IgG at 20 ug/ml. After incubation for 30 min on ice, samples were 

subjected to centrifugation at 100,000 * g for 10 min at 4°C in a TLA110 rotor 

(Beckman). The pellets were resuspended in 200 ul of ice-cold buffer H and placed into 

the wells of a 96-well microplate. The fluorescence of samples was measured using the 

Wallac Victor 2 Multi-label microplate fluorescence reader with filters set at 485 (+/- 7.5) 

nm (excitation) and 510 (+/- 5) nm (emission). Controls were made for each dilution of 

RPA, RPB and intact peroxisomes. The controls included normal rabbit IgG at 4 or 5 

Hg/ml added instead of anti-Pexl6p rabbit IgG or anti-Pexl9p rabbit IgG, respectively. 

Background fluorescence, which was due to the nonspecific binding of rabbit IgG and/or 

fluorescein- or Alexa Fluor 488-labeled antibodies to the peroxisomal membrane, was 

subtracted. 

In intact peroxisomes, Pexl9p is a peripheral membrane protein that resides on 

the outer (cytosolic) face of the peroxisome [51]. Because this protein is attached to the 

surface of intact peroxisomes, it is accessible to anti-Pexl9p IgG exogenously added to 

these peroxisomes [51]. Importantly, the membranes of intact peroxisomes RPA and RPB 

are not permeable to the exogenously added IgG molecules. In fact, none of Pexl6p, a 

peripheral membrane protein residing on the inner (lumenal) face of the peroxisome, in 

intact peroxisomes and only a minor portion of this protein in RPA was accessible to 

anti-Pexl6p IgG [51]. The observed accessibility of the RPB-associated form of Pexl6p 

to anti-Pexl6p IgG was due to the inside-out orientation of the membrane delimiting 

most of the RPB species formed during peroxisome resealing. In addition, although the 
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levels of Pexl9p, a peripheral membrane protein residing on the peroxisomal surface, in 

intact peroxisomes, RPA and RPB were very similar to each other [51], only a minor 

portion of Pexl9p in the mostly inside out-oriented RPB species was accessible to anti-

Pexl9p IgG [51]. Altogether, these findings imply that, if the ratio "fluorescence for RPA 

(FRPA)/fluorescence for intact peroxisomes (FIP)" or "fluorescence for RPB 

(FRPB)/fluorescence for intact peroxisomes (FiP)" is calculated for Pexl9p, it is equal to 

the fraction of the total pool of Pexl9p that resides on the outer (cytosolic) face of those 

RPA or RPB species whose delimiting membranes acquired the outside-out orientation 

during their resealing. At the same time, the ratio "(FiP - FRPA)/F]P" or "(FiP - FRPB)/FIP", if 

calculated for Pexl9p, equals the fraction of Pexl9p that resides on the inner (lumenal) 

face of those RPA or RPB species whose delimiting membranes acquired the inside-out 

orientation during their resealing. Hence, the ratio "FRPA/FIP" or "FRPB/FIP" for Pexl9p is 

equal to the fraction of those RPA or RPB species that are present in the outside-out 

orientation (n00pj>A and n00RpB, respectively). Moreover, the ratio "(FiP - FRPA)/FIP" or "(FiP 

- FRPB)/FIP" for Pexl9p equals the fraction of those RPA or RPB species that were 

resealed in the inside-out orientation (nIORpA and n10
RpB, respectively). 

Resealed peroxisomes RPA and RPB, which were recovered in the peak fractions 

of the flotation gradients, and a highly purified subform of the intact peroxisomes from 

which these two types of resealed peroxisomes were formed, were used to calculate the 

percentage of DAG and PS residing in the cytosolic and lumenal leaflets of the 

membrane bilayers in different peroxisomal subforms. RPA and RPB were pelleted onto 

a 150-jxl cushion of 2 M sucrose in buffer MR or HR, respectively, by centrifugation at 
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100,000 x g for 20 min at 4°C in a TLA110 rotor (Beckman). Intact peroxisomes were 

pelleted onto a 150-ul cushion of 2 M sucrose in buffer H (5 mM MES, pH 5.5, 1 mM 

KC1, 0.5 mM EDTA, 0.1% ethanol, 1 x protease inhibitor cocktail [PIC] [48] by 

centrifugation at 100,000 x g for 20 min at 4°C in a TLA110 rotor (Beckman). Individual 

pellets of RPA, RPB and intact peroxisomes were resuspended in ice-cold buffer H at 1 

mg protein/ml. Serial dilutions of RPA, RPB and intact peroxisomes in the range of 10-

50 ug protein/ml were made in ice-cold buffer H. The DAG-binding Clb domain of 

protein kinase C labeled with the fluorophore Alexa Fluor 488 or anti-PS mouse IgM 

were added to concentrations 5 and 1 ug/ml, respectively. After incubation for 30 min on 

ice, samples were subjected to centrifugation at 100,000 x g for 10 min at 4°C in a 

TLA110 rotor (Beckman). For samples that were exposed to Alexa Fluor 488-tagged Clb 

domain, the pellets were resuspended in 200 ul of ice-cold buffer H and placed into the 

wells of a 96-well microplate. The fluorescence of these samples was measured using the 

Wallac Victor 2 Multi-label microplate fluorescence reader with filters set at 485 (+/- 7.5) 

nm (excitation) and 510 (+/- 5) nm (emission). Controls for monitoring DAG were made 

for each dilution of intact peroxisomes P5 and P6 and of the P5- and P6-based RPA and 

RPB, all of which contained DAG [51]. The controls included the corresponding 

dilutions of intact peroxisomes P4 and of the P4-based RPA and RPB, all of which did 

not contain DAG [51]. Background fluorescence, which was due to the nonspecific 

binding of Alexa Fluor 488-tagged Clb domain to the peroxisomal membrane, was 

subtracted. For samples that were exposed to anti-PS mouse IgM, the pellets were 

resuspended in 200 ul of ice-cold buffer H and supplemented with fluorescein-conjugated 

47 



goat anti-mouse IgM antibodies at 5 ug/ml. After incubation for 30 min on ice, samples 

were subjected to centrifugation at 100,000 x g for 10 min at 4°C in a TLA110 rotor 

(Beckman). The pellets were resuspended in 200 ul of ice-cold buffer H and 

supplemented with Alexa Fluor 488 rabbit anti-fluorescein/Oregon Green IgG at 15 

fig/ml. Following incubation for 30 min on ice, samples were subjected to centrifugation 

at 100,000 x g for 10 min at 4°C in a TLA110 rotor (Beckman). The pellets were 

resuspended in 200 ul of ice-cold buffer H and supplemented with Alexa Fluor 488 goat 

anti-rabbit IgG at 20 ug/ml. After incubation for 30 min on ice, samples were subjected to 

centrifugation at 100,000 x g for 10 min at 4°C in a TLA110 rotor (Beckman). The 

pellets were resuspended in 200 ul of ice-cold buffer H and placed into the wells of a 96-

well microplate. The fluorescence of samples was measured using the Wallac Victor 2 

Multi-label microplate fluorescence reader with filters set at 485 (+/- 7.5) nm (excitation) 

and 510 (+/- 5) nm (emission). Controls were made for each dilution of RPA, RPB and 

intact peroxisomes. The controls included normal mouse IgM at 1 ug/ml added instead of 

anti-PS mouse IgM. Background fluorescence, which was due to the non-specific 

binding of mouse IgM and/or fluorescein- or Alexa Fluor 488-labeled antibodies to 

the peroxisomal membrane, was subtracted. 

The fraction of a monitored lipid, either DAG or PS, residing in the cytosolic 

leaflet of the membrane bilayer of the intact peroxisome can be calculated as: 

F,P/(FIP + FIL),(1) 

where F]P is the fluorescence of a lipid-specific fluorescent probe specifically bound to 

48 



intact peroxisomes or to the species of RPA and RPB that are present in the outside-out 

orientation. In equation 1, FIP equals the fluorescence of this probe specifically bound to 

the outer (cytosolic) leaflet of the peroxisomal membrane bilayer delimiting intact 

peroxisomes or those species of RPA and RPB that were resealed in the outside-out 

orientation. Furthermore, FJL in equation 1 is the fluorescence of a lipid-specific 

fluorescent reporter molecule that would, if it could, bind specifically to the inner 

(lumenal) leaflet of the peroxisomal membrane bilayer delimiting intact peroxisomes. FIL 

can be monitored by measuring the fluorescence of this reporter molecule bound to the 

surface of those species of RPA and RPB that were resealed in the inside-out orientation. 

The value of FRPA, the fluorescence of a lipid-specific fluorescent reporter 

molecule specifically bound to the surface of RPA, can be calculated as: 

FRPA = (n00
RPA * F IP) + (ni0RPA * F I L), (2) 

where n00RpA is the fraction of the RPA species that are present in the outside-out 

orientation. The value of n00RpA for each of the outside out-oriented species of RPA 

formed during resealing of osmotically lysed peroxisomal subforms PI to P6 was 

calculated for a Pexl9p-specific fluorescent reporter molecule as described above. In 

equation 2, the value of n10RPA for each of the inside out-oriented species of RPA formed 

during resealing of osmotically lysed peroxisomal subforms PI to P6 was calculated for a 

Pexl9p-specific fluorescent reporter molecule as described above. Based on equation 2, 

FIL can be calculated as: 
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FRPA - (n RPA x FIP) 

F,L = (3) 

n RPA 

The value of FRPB, the fluorescence of a lipid-specific fluorescent reporter molecule 

specifically bound to the surface of RPB, can be calculated as: 

FRPB = (n00RPB x F1P) + (ni0RPB x FIL), (4) 

where n00RPB is the fraction of the RPB species that are present in the outside-out 

orientation. The value of n00RpB for each of the outside out-oriented species of RPB 

formed during resealing of osmotically lysed peroxisomal subforms PI to P6 was 

calculated for a Pexl9p-specific fluorescent reporter molecule as described above. In 

equation 4, the value of n10RpB for each of the inside out-oriented species of RPB formed 

during resealing of osmotically lysed peroxisomal subforms PI to P6 was calculated for a 

Pexl9p-specific fluorescent reporter molecule as described above. Based on equation 4, 

FIL can be calculated as: 

FRPB - (n RPB X FIP) 

F,L = (5) 

n RPB 
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Based on equation 3, equation 1 for calculating the fraction of a monitored lipid, either 

DAG or PS, residing in the cytosolic leaflet of the membrane bilayer of the intact 

peroxisome can be rewritten as: 

Fjp 

(6). 

FRPA - (n RPA x F]p) 

F,P + 

n RPA 

Furthermore, based on equation 5, equation 1 for calculating the fraction of a monitored 

lipid, either DAG or PS, residing in the cytosolic leaflet of the membrane bilayer of the 

intact peroxisome can be also rewritten as: 

Fip 

(7). 

FRPB— (n RPB x FIP) 

F,P + 

n RPB 

For each of the intact peroxisomal subforms PI to P6, equations 6 and 7 were used for 

calculating the fraction of a monitored lipid, either DAG or PS, residing in the cytosolic 

leaflet of the membrane bilayer. 
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Protein-lipid overlay assay 

To evaluate the lipid-binding specificity of Pexl6p, the pellet of membranes recovered 

after centrifugation of osmotically lysed peroxisomes was resuspended in buffer TBSO 

(10 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.5% n-OG) and incubated for 30 min on ice. 

Samples were subjected to centrifugation at 100,000 x g for 30 min at 4°C in TLA110 

rotor (Beckman). Under these conditions, n-OG completely solubilized the vast majority 

of all membrane proteins [171]. The supernatants of n-OG-solubilized proteins were then 

incubated at 5 ug/ml with the PIP-Strips (Echelon Biosciences) at 4°C overnight. After 

washing the PIP-Strip five times for 5 min each with TBSO, Pexl6p was detected by 

immunoblotting with anti-Pexl6p antibodies. 

Chemical cross-linking and immunoprecipitation under denaturing 
conditions 

Highly purified mature peroxisomes of wild-type and mutant strains were osmotically 

lysed by addition of 10 vol of ice-cold LCC buffer (20 mM sodium phosphate buffer, pH 

7.5, and 150mM NaCl), followed by incubation on ice for 30 min with occasional 

agitation. The suspension was centrifuged at 200,000 x g for 20 min at 4°C in a TLA110 

rotor (Beckman). The pellet of membranes recovered after centrifugation of osmotically 

lysed peroxisomes was resuspended in ice-cold LCC buffer to a final concentration of 0.5 

mg/ml. Cross-linking with the thiol-cleavable cross-linker dithiobis 

(succinimidylpropionate) (DSP) (Pierce Chemical Co.) was initiated by the addition of 

cross-linker (50 mM stock in DMSO) and continued for 1 h at 4°C. Cross-linking was 

quenched by addition of 0.1 vol of 1 M Tris-HCl, pH 7.5, and incubation for 30 min at 
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4°C. SDS was added to 1.25%, and samples were warmed at 65°C for 20 min and then 

cooled to room temperature. 4 vol of 60 mM Tris-HCl, pH 7.4, 1.25% (vol/vol) Triton X-

100, 190 mMNaCl, and 6 mM EDTA were added to the cooled samples, which were then 

cleared of any nonspecifically binding proteins by incubation for 20 min at 4°C with 

protein A-Sepharose washed five times with 10 mM Tris-HCl, pH 7.5. The cleared 

samples were then subjected to immunoprecipitation with anti-Vpslp, anti-PexlOp or 

anti-Pexl9p antibodies under denaturing, nonreducing conditions. These antibodies were 

covalently linked to protein A-Sepharose as described previously [172]. Bound proteins 

were washed five times with 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% (v/v) Triton 

X-100, and eluted with 2% SDS at 95°C for 5 min. Eluted proteins were analyzed by 

SDS-PAGE under reducing conditions, i.e., withDTT in the sample buffer, followed by 

silver staining. 

For identifying proteins that interact with Vpslp or Pexl9p in the cytosol, wild-

type and mutant cells were subjected to subcellular fractionation (see above) to yield the 

200S (cytosolic) fraction in buffer H (5 mM MES, pH 5.5, 1 mM KC1, 0.5 mM EDTA, 

0.1% ethanol, 1 x protease inhibitor cocktail [PIC] [48] containing 1 M sorbitol. 9 vol of 

ice-cold LCC buffer (20 mM sodium phosphate buffer, pH 7.5, and 150 mM NaCl) were 

added to the recovered cytosolic fraction. Cross-linking with DSP was initiated by the 

addition of cross-linker (50 mM stock in DMSO) and continued for 1 h at 4°C. Cross-

linking was quenched by addition of 0.1 vol of 1 M Tris-HCl, pH 7.5, and incubation for 

30 min at 4°C. SDS was added to 1.25%, and samples were warmed at 65°C for 20 min 

and then cooled to room temperature. 4 vol of 60 mM Tris-HCl, pH 7.4, 1.25% (vol/vol) 
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Triton X-100, 190 mMNaCl, and 6 mM EDTA were added to the cooled samples, which 

were then cleared of any nonspecifically binding proteins by incubation for 20 min at 4°C 

with protein A-Sepharose washed five times with 10 mM Tris-HCl, pH 7.5. The cleared 

samples were then subjected to immunoprecipitation with anti-Vpslp or anti-Pexl9p 

antibodies under denaturing, nonreducing conditions. These antibodies were covalently 

linked to protein A-Sepharose as described previously [172]. Bound proteins were 

washed five times with 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% (v/v) Triton X-100, 

and eluted with 2% SDS at 95°C for 5 min. Eluted proteins were analyzed by SDS-PAGE 

under reducing conditions, i.e., with DTT in the sample buffer, followed by silver 

staining. 

Electron microscopy and morphometric analysis 

Whole cells were fixed in 1.5% KMn04 for 20 min at room temperature, dehydrated by 

successive incubations in increasing concentrations of ethanol, and embedded in 

Poly/Bed 812 epoxy resin (Polysciences). Ultrathin sections were cut using an Ultra-Cut 

E Microtome (Reichert-Jung). Silver/gold thin sections from the embedded blocks were 

examined in a JEOL JEM-2000FX transmission electron microscope. For morphometric 

analysis of random electron microscopic sections of cells, 12 x 14-cm prints and 8 x 10-

cm negatives of 35-40 cell sections of each strain at 24,000-29,000 magnification were 

scanned and converted to digitized images with an HP ScanJet 4400c (Hewlett-Packard 

Co.) and Adobe Photoshop 6.0 software (Adobe Systems Inc.). Quantitation of digitized 

images was performed using the Discovery Series Quantity One 1-D Analysis Software 
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(Bio-Rad Laboratories). Relative area of peroxisome section (%) was calculated as "area 

of peroxisome section/area of cell section x 100". Peroxisomes were counted in electron 

micrographs, and data are expressed as the number of peroxisomes per um3 of cell section 

volume. 

Resealed peroxisomes RPA and RPB floated to low density during centrifugation 

in a multistep sucrose density gradient. A 200-ul aliquot of the peak fraction of purified 

RPA in MR buffer (10 mM MES/KOH, pH 5.5, 1 mM KC1, and 0.5 mM EDTA) or a 

200-ul aliquot of the peak fraction of purified RPB in HR buffer (10 mM HEPES/KOH, 

pH 7.5, 1 mM KC1, and 0.5 mM EDTA) was mixed with 400 ul of ice-cold 150 mM 

sodium cacodylate buffer, pH 7.2, containing 3% glutaraldehyde. Immediately after 

mixing the sample and glutaraldehyde solution, 600 ul of 2% OSO4 in ice-cold CD buffer 

(100 mM sodium cacodylate, pH 7.2) was added. After a 2-h incubation on ice, the 

resealed peroxisomes RPA and RPB were sedimented at 100,000 x g for 20 min at 4°C in 

a Beckman TLS55 rotor (Beckman) onto a bed (25-50 ul) of hardened, low-melting 2.5% 

NuSieve GTG agarose (FMC). The pellet was postfixed in a solution of 1% Os04 plus 

2.5% K^C^Oy in ice-cold CD buffer for 2 h on ice. The pellet was then rinsed twice with 

ice-cold CD buffer and exposed to 0.05% tannic acid in the same buffer. After a 30-min 

incubation on ice, the pellet was washed once with ice-cold CD buffer and three times 

with water. The pellet was incubated overnight with 2% uranyl acetate in water at 4°C 

and then washed three times with water. After dehydration in a graded ethanol series, the 

fixed and stained sample was embedded in Poly/Bed 812 epoxy resin (Polysciences). 

Silver/gold thin sections from the embedded blocks were examined in a JEOL JEM-
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2000FX transmission electron microscope. 

Immunoaffinity chromatography under native conditions 

Covalent coupling of affinity-purified antibodies to protein A-Sepharose for 

immunoaffinity chromatography was performed as described previously [47]. For 

immunoaffinity chromatography under native conditions, peroxisomal matrix proteins 

recovered in the supernatant fraction after centrifugation of osmotically lysed 

peroxisomes and peroxisomal liposomes were diluted with an equal volume of 50 mM 

Tris-HCl, pH 7.5, buffer containing 300 mM NaCl, 1% (v/v) Triton X-100 and protease 

inhibitor cocktail. The pellets of PMPs recovered after centrifugation of osmotically 

lysed peroxisomes and peroxisomal liposomes were resuspended in 25 mM Tris-HCl, pH 

7.5, buffer containing 150 mM NaCl, 0.5% (v/v) Triton X-100 and protease inhibitor 

cocktail. Samples were cleared of any non-specifically binding proteins by incubation for 

20 min at 4°C with protein A-Sepharose washed five times with 10 mM Tris-HCl, pH 

7.5. The cleared samples were then subjected to immunoaffinity chromatography. Bound 

proteins were washed five times with 25 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.5% 

(v/v) Triton X-100, and eluted with 100 mM glycine, pH 2.8. Proteins were precipitated 

by addition of trichloroacetic acid to 10%, washed in ice-cold 80% (v/v) acetone, and 

then subjected to SDS-PAGE followed by immunoblotting. 
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Reconstructing in vitro the relocation of Aox from the matrix to the membrane and 

its interaction with membrane-bound Pexl6p using peroxisomal and non-

peroxisomal proteins 

For preparing peroxisomal liposomes, the immature peroxisomal vesicles PI to P5 and 

mature peroxisomes P6 were purified as described above. Peroxisomes were osmotically 

lysed by incubation on ice for 20 min in 20 mM HEPES-KOH buffer, pH 8.0, containing 

50 mM NaCl and protease inhibitor cocktail. The lysate was subjected to centrifugation at 

100,000 x g for 20 min at 4°C in a TLA110 rotor (Beckman) to yield a supernatant 

containing peroxisomal matrix proteins (including Aox) and a pellet of peroxisomal 

membrane proteins (PMPs). Matrix proteins were dialyzed against buffer R (20 mM 

MES-KOH, pH 6.0, 150 mM NaCl, 5 mM DTT, 10% glycerol) containing 1% (w/v) n-

octyl-6-D-glucopyranoside (OG). Immunoaffinity chromatography under native 

conditions (see the protocol described above) using anti-Aoxlp antibodies covalently 

linked to protein A-Sepharose was used to deplete these peroxisomal matrix proteins of 

Aox. Aox complex for the reconstitution of peroxisomal liposomes was purified from the 

matrix of peroxisomes by immunoaffinity chromatography using anti-Aox3p antibodies 

covalently linked to protein A-Sepharose, as described above. After elution with buffer E 

(20 mM HEPES-KOH, pH 7.5, 250 mM MgCl2, 5 mM DTT, 10% glycerol), purified 

Aox complex was dialyzed against buffer R containing 1% (w/v) OG. The pellet of PMPs 

recovered after centrifugation of osmotically lysed peroxisomes was resuspended in ice-

cold buffer R containing 1% (w/v) OG. After incubation on ice for 20 min with 

occasional agitation, the sample of detergent-solubilized PMPs was subjected to 
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centrifugation at 100,000 x g for 20 min at 4°C in a TLA110 rotor. The resulting 

supernatant of solubilized PMPs was depleted of the Aox-Pexl6p complex by 

immunoaffinity chromatography under native conditions (see the protocol described 

above) using anti-Aoxlp antibodies covalently linked to protein A-Sepharose. Pexl6p for 

the reconstitution of peroxisomal liposomes was purified, by immunoaffinity 

chromatography using anti-Pexl6p antibodies covalently linked to protein A-Sepharose 

(as described above), from the pellet of PMPs recovered after centrifugation of 

osmotically lysed peroxisomes resuspended in ice-cold buffer R containing 1% (w/v) 

OG. After elution with buffer ER (20 mM HEPES-KOH, pH 7.5, 250 mM MgCl2, 5 mM 

DTT, 10% glycerol, 1% (w/v) OG), purified Aox complex was dialyzed against buffer R 

containing 1% (w/v) OG. 

Detergent-solubilized PMPs immunodepleted of the Aox-Pexl6p complex and 

either supplemented or not supplemented with purified Pexl6p were mixed with either 

dialyzed matrix proteins immunodepleted of Aox or dialyzed soluble non-peroxisomal 

proteins, as well as and with purified Aox complex. After incubation on ice for 20 min 

with occasional agitation, the mixture of peroxisomal matrix proteins (or of soluble non-

peroxisomal proteins) and PMPs (all in buffer R containing 1 % (w/v) OG) was added to 

the lipids extracted from the membrane of the corresponding peroxisomal subform and 

dried down by a gentle stream of nitrogen. The lipid film was dissolved by gentle 

agitation for 20 min at room temperature. To dilute the detergent OG below its critical 

micellar concentration, thereby promoting the formation of peroxisomal liposomes, 3 

volumes of buffer D (20 mM MES-KOH, pH 6.0, 150 mM NaCl) were added to the 
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mixture of peroxisomal matrix proteins (or soluble non-peroxisomal proteins), detergent-

solubilized PMPs and membrane lipids dissolved in buffer R containing 1% (w/v) OG. 

To remove the detergent, the samples were dialyzed in a Tube-O-Dialyzer (7.5-kD 

cutoff) (Chemicon) against buffer D containing 0.1% Biobeads SM2 (Bio-Rad). After 

overnight dialysis at 4°C, samples were transferred to the bottom of ultraclear centrifuge 

tubes (Beckman) and supplemented with 4 volumes of 65% (w/w) sucrose in buffer D in 

order to adjust the sucrose concentration of the samples to 52% (w/w). Samples were 

then overlaid with 40% and then with 20% sucrose (both w/w in buffer D) and lastly with 

buffer D alone. After centrifugation at 200,000 *g for 18 h at 4°C in a SW50.1 rotor 

(Beckman), 18 fractions of 275 ul each were collected. Peroxisomal liposomes were 

recovered at the 52%/40% sucrose interface. 

Mass spectrometry 

Proteins were resolved by SDS-PAGE and visualized by silver staining (Shevchenko et 

al., 1996). Protein bands were excised from the gel, reduced, alkylated and in-gel-

digested with trypsin (Shevchenko et al., 1996). The proteins were identified by matrix-

assisted laser desorption/ionization mass spectrometric peptide mapping (Jimenez et al., 

1998), using a Micromass M@LDI time-of-flight mass spectrometer (Waters). Database 

searching using peptide masses was performed with the Mascot web-based search engine. 
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2.4 Results 

2.4.1 Lipid composition of the peroxisomal membrane is changed during the last 

step of the assembly of the division-competent mature peroxisome 

Thin layer chromatography revealed that, in wild-type cells, the levels of phosphatidic 

acid (PA) and diacylglycerol (DAG) increased in peroxisomal vesicles that were being 

converted from P5 to P6 (Figure 2.6). PA and DAG are cone-shaped lipids that can 

induce membrane fission during organelle division (Figure 2.1). As the levels of PA and 

DAG increased, the levels of lysophosphatidic acid (LPA) decreased during the 

conversion of P5 to P6 (Figure 2.6). LPA is an inverted cone-shaped molecule and its 

presence makes membrane fission energetically unfavourable (Figure 2.1). In pexl6A 

mutant cells, which lack Pexl6p, PA and DAG accumulated and LPA disappeared even 

• Diacylglycerol (DAG) 

• Ergo sterol (Erg) 

• Ceramide (Cer) 

• Phosphatidylethanolamine (PE) 

• Phosphatidic acid (PA) 
• Phosphatidylcholine (PC) 
• Phosphatidylinositol (PI) 
• Phosphatidylserine (PS) 

• Lysophosphatidic acid (LPA) 

Figure 2.6. As peroxisomes mature to become division-competent, LPA is converted into PA and DAG. A) 
In wild-type cells, P6 contains negligible amounts of LPA and increased amounts of PA and DAG as 
compared to immature peroxisomal sub forms. B) In cells lacking Pexl6p, the conversion of LPA to PA and 
DAG occurs even in immature peroxisomes P3. These mutant cells cannot assemble P4, P5 or P6 
peroxisomes. C) In cells that overproduce Pexl6p, peroxisomes can mature but LPA is not converted to PA 
or DAG and therefore never becomes division-competent. 
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in the membrane of immature peroxisomal vesicles P3 (Figure 2.6). This pattern 

coincided with the excessive proliferation of immature peroxisomal vesicles P3 and their 

inability to be converted to P4 inpexl6A mutant cells [126]. Conversely, PEX-TH mutant 

cells, which overproduce Pexl6p [1261], did not accumulate PA or DAG and maintained 

high levels of LP A even in the membrane of P6 (Figure 2.6). Importantly, I found that in 

peroxisomal liposomes reconstituted from PI liposomes and radiolabeled [l4C]LPA, the 

amount of [14C]PA increased as the amount of [14C]LPA decreased provided the 

liposomes were depleted of Pexl6p (Figure 2.7). Over time, these PI liposomes would 

+ Pex16p Pex16p 
pk[C14]DAG 

«[C14]PA 

*[C14]LPA (Substrate) 

0 5 10 15 20 30 40 50 60 0 5 10 15 20 30 40 50 60 

+ Pex16p 

* • • • • • • • • 

m » • « • • • * . 

- Pex16p 
«[C14]DAG 

«[C14]PA (Substrate) 

«LPA 

0 5 10 15 20 30 40 50 60 0 5 10 15 20 30 40 50 60 
Time (min) 

Figure 2.7. Dynamics of radiolabeled lipids in PI liposomes that contain Pexl6p (+ Pexl6p) or lack it (-
Pexl6p). In the absence of Pexl6p, LPA acid is converted into PA and then DAG in about 1 hour. By 
contrast, LPA is not metabolized in the presence of Pexl6p. Conversely, the conversion of PA to DAG is 
independent of the presence of Pexl6p. 
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contain decreasing amounts of [14C]PA and increasing amounts of [14C]DAG (Figure 

2.7). However, if PI liposomes were reconstituted with [,4C]PA instead of [14C]LPA, I 

found that [14C]DAG accumulated in the presence or absence of Pexl6p (Figure 2.7). 

Taken together, my aforementioned findings provide evidence that: 1) the 

conversion of P5 to P6 is marked by the biosynthesis of PA and DAG in the peroxisomal 

membrane; 2) PA and DAG are formed in a two-step biosynthetic pathway, which 

includes two consecutive enzymatic reactions catalyzed by an LPA acyltransferase 

(LPAAT) and a PA phosphatase (PAP); and 3) Pexl6p, a negative regulator of the 

division of immature peroxisomal vesicles, inhibits LPAAT (Figure 2.8). 

® ® 
T LPAAT (Acyltransferase) T PAP (Phosphatase) 
0 7 === >0 >-0H 
' FA-

OH CoA 
Pex16p 

LPA PA DAG 

Figure 2.8. Pexl6p inhibits LPAAT, the first enzyme in a two-step biosynthetic pathway leading to the 

formation of DAG in the peroxisomal membrane during conversion of P5 to P6. 

2.4.2 The conversion of LPA to PA and then to DAG is a two-step biosynthetic 

pathway carried out by Skip (an LPAAT) and Dpplp (a PAP) 

Dr. Guo provided evidence that the LPAAT and PAP reactions are the only reactions 

leading to the formation of PA and DAG, respectively, in the peroxisomal membrane. 

She found that this membrane lacked the activities of all other enzymes that can promote 
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the biosynthesis of PA or DAG [141, 175, 176], including phospholipase D, inositol 

phosphosphingolipid phospholipase C (PLC), phosphoinositide-specific PLC, DAG 

kinase, inositol phosphorylceramide synthase, and inositolphosphotransferase 1). 

Furthermore, Dr. Guo purified LPAAT and PAP from the membrane of P6. Using mass 

spectrometry, Dr. Guo identified purified LPAAT and PAP as Slclp, an acylglycerol-3-

phosphate acyltransferase [177], and Dpplp, a diacylglycerol pyrophosphate phosphatase 

[178], respectively. Using highly purified peroxisomes of wild-type cells, she found that 

all six peroxisomal subforms have similar amounts of both Slclp (LPAAT) and Dpplp 

(PAP). Dr. Guo also demonstrated that, akin to the peroxisomal integral membrane 

protein Pex2p [126] and in contrast to the peroxisomal peripheral membrane protein 

Pexl6p [126], neither Slclp (LPAAT) nor Dpplp (PAP) was solubilized by either 1 M 

NaCl or 0.1 M Na2C03 (pH 11.0) [51]. She therefore concluded that both Slclp 

(LPAAT) and Dpplp (PAP) are integral membrane proteins. Furthermore, Dr. Guo found 

that, like Pexl6p attached to the lumenal face [126] and unlike the peripheral membrane 

protein Pexl9p on the cytosolic face of peroxisomes [126], both Slclp (LPAAT) and 

Dpplp (PAP) were resistant to digestion by external protease added to intact peroxisomes 

[51]. Altogether, these data of Dr. Guo imply that, in all six peroxisomal subforms, both 

Slclp (LPAAT) and Dpplp (PAP) are integral membrane proteins that do not face the 

cytosol, being integrated into the lumenal leaflet of the membrane. 

I therefore decided to investigate the effect of mutations eliminating Slclp or 

Dpplp on lipid composition of the peroxisomal membrane and on the ability of mature 

peroxisomes P6 to divide. I found that the lack of LPAAT in sic J A mutant cells: 1) 
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abolished the formation of PA and DAG and prevented the disappearance of LPA in the 

membrane of P6 (Figure 2.9); and 2) resulted in a reduced number of greatly enlarged 

mature peroxisomes (Figure 2.10). Moreover, I found that the lack of PAP in dpplA 

mutant cells: 1) did not impair the Slclp (LPAAT)-dependent biosynthesis of PA from 

LPA in the membrane of P6 (Figure 2.9); 2) prevented the conversion of PA to DAG in 

the membrane of P6 (Figure 2.9); and 3) resulted in fewer, but greatly enlarged, mature 

peroxisomes (Figure 2.10). 
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Figure 2.9. Slclp promotes the conversion of LPA to PA, whereas Dpplp catalyzes the subsequent 
biosynthesis of DAG from PA. A) In wild-type cells, mature peroxisomes P6 are able to convert LPA to 
PA and DAG. B) Mature P6 peroxisomes in cells lacking Slclp are unable to convert LPA to PA. C) 
Mature P6 peroxisomes in cells lacking Dpplp gene cannot convert PA to DAG. 
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wild type sldA dpplA 

Figure 2.10. Lack of Skip (LPAAT) or Dpplp (PAP) greatly increases the size of peroxisomes and 
dramatically reduces their number. Transmission electron micrographs of the wild-type, sic]A and dpplA 
strains grown for 9 h in oleic acid-containing medium. P, peroxisome. 

Altogether, my aforementioned findings provide evidence that: 1) both the Slclp 

(LPAAT)-dependent formation of PA from LP A and the subsequent Dpplp (PAP)-

dependent biosynthesis of DAG from PA, which occur in the lumenal leaflet of the 

peroxisomal membrane only during conversion of P5 to P6, are essential for the division 

of P6; and 2) although the biosynthesis of PA is necessary for the division of P6, the 

presence of PA alone is not sufficient for promoting this process, which also requires the 

biosynthesis of DAG. It remains to be established whether DAG alone stimulates 

peroxisome division or, alternatively, the simultaneous presence of PA and DAG in the 

membrane of P6 is mandatory for its fission. 

2.4.3 The binding of Pexl6p to LPA prevents the formation of PA and DAG in the 

membranes of immature peroxisomal vesicles 

Because Pexl6p inhibits LPAAT in the membranes of PI to P5, thereby preventing the 

formation of both PA and DAG, I sought to define the mechanism for the negative 
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regulation of LPAAT by Pexl6p in immature peroxisomal vesicles. I found that Pexl6p 

solubilized with the detergent n-octyl-J3-D-glucopyranoside (n-OG) from the membranes 

of PI to P5 purified from wild-type cells was able to bind only to LPA, a substrate of 

LPAAT, but not to any other lipid tested (Figure 2.11). In contrast, n-OG-soluble Pexl6p 

of mature peroxisomes P6 did not bind to LPA if these peroxisomes were recovered from 
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Figure 2.11. Pexl6p binds to LPA only in the membranes of division-incompetent peroxisomal subforms. 

(A and B) Different peroxisomal subforms purified from wild-type cells (A) and highly purified mature 

peroxisomes P6 of wild-type and mutant strains (B) were osmotically lysed and subjected to centrifugation. 

The pellet of membranes after such centrifugation was solubilized with a detergent, n-OG. Equal quantities 

of detergent-soluble membrane proteins were analyzed by protein-lipid overlay assay using commercial 

PIP-Strips. Pexl6p was detected by immunoblotting with anti-Pexl6p antibodies. 
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wild-type or aoxlA, aox2A and aox3A mutant strains (Figure 2.11). I found that all these 

strains lack LPA and carry both PA and DAG in the membranes of their division-

competent mature peroxisomes (Figure 2.12). Of note, Pexl6p has been shown to be 

attached to the membranes of immature peroxisomal vesicles only in its free form, 

whereas all the Pexl6p on the inner face of mature peroxisomes of wild-type or aoxlA, 

aox2A and aoxSA mutant cells is titrated by its interaction with Aox [51]. Importantly, the 

interaction between Pexl6p and Aox is not affected by n-OG (Dr. Guo's data). 

Altogether, my aforementioned findings suggest that the binding of Aox to Pex 16p in 

mature peroxisomes of wild-type cells greatly decreases the affinity between Pex 16p 

and LPA, thereby allowing LPA to enter the two-step biosynthetic pathway leading to the 

formation of PA and DAG. My hypothesis is supported by the observation that n-OG-

soluble Pexl6p of mature peroxisomes was capable of binding to LPA if these mature 

peroxisomes were purified from aox4A, aox5A or PEX16-TH strains (Figure 2.11). All 

these mutant strains: 1) carry Pexl6p in a free form that is not titrated by its interaction 

with Aox; 2) are deficient in the division of mature peroxisomes; and 3) accumulate a 

reduced number of greatly enlarged mature peroxisomes [45] that contain LPA but lack 

both PA and DAG (Figure 2.12). 

2.4.4 The relocation of Aox from the matrix to the membrane of P6 peroxisomes is 

due only to an increase in the total mass of matrix proteins above a critical level 

I hypothesized that there might be three molecular mechanisms underlying the observed 

relocation of Aox from the matrix to the membrane within mature peroxisomes P6. First, 
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Figure 2.12. Mutations that abolish the binding of Aox to Pexl6p, thereby impairing peroxisome division, 

prevent the biosynthesis of PA and DAG in the peroxisomal membrane. Highly purified peroxisomal 

sub forms were osmotically lysed and subjected to centrifugation. Equal quantities of the pelleted membrane 

proteins recovered from different peroxisomal subforms were subjected to lipid extraction, which was 

followed by TLC and visualization of lipids. 

it is plausible that the relocation of Aox is due only to an increase in the total mass of 

matrix proteins above a critical level. In this mechanism, this movement of Aox is not 
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caused by its interaction with any specific protein in the matrix (Figure 2.3). Second, it is 

possible that: 1) a specific matrix protein rather than protein mass in the peroxisomal 

matrix initiates the relocation of Aox from the matrix to the membrane; and 2) this 

specific matrix protein is present already in the early peroxisomal precursors PI and P2 

and is activated only when the total mass of matrix proteins exceeds a critical level 

(Figure 2.4). Third, it is conceivable that: 1) a specific matrix protein rather than protein 

mass in the peroxisomal matrix initiates the relocation of Aox; and 2) this specific matrix 

protein is imported to the peroxisome only during the last step of peroxisome maturation, 
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Figure 2.13. Reconstructing in vitro (i.e., in peroxisomal liposomes) the relocation of Aox from the matrix 

to the membrane and its interaction with membrane-bound Pexl6p using peroxisomal matrix and 

membrane proteins recovered from each of the six peroxisomal subforms purified from wild-type strain of 

the yeast Y. lipolytica. See Materials and methods for details. 
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during the conversion of P5 to P6 (Figure 2.5). To test if the third of the aforementioned 

mechanisms is responsible for the relocation of Aox from the matrix to the membrane in 

mature peroxisomes P6, I reconstituted such relocation of Aox in vitro {i.e., in 

peroxisomal liposomes) using peroxisomal matrix and membrane proteins recovered 

from each of the six peroxisomal subforms purified from wild-type strain of the yeast Y. 

lipolytica (Figure 2.13). Importantly, I found that, regardless of which of the six 

peroxisomal subforms has been taken for the reconstruction of peroxisomal liposomes, 

Aox associated with their membranes if the concentration of matrix proteins used for the 

reconstruction exceeded a certain level (Figures 2.14 and 2.15). In fact, the percentage of 
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Figure 2.14. Regardless of which of the six peroxisomal subforms has been taken for the reconstruction of 

peroxisomal liposomes, the percentage of membrane-bound Aoxlp subunit of the Aox complex in these 

peroxisomal liposomes was proportional to the level of matrix proteins that have been taken for their 

reconstitution and recovered in their matrix. 
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membrane-bound Aoxlp and Aox5p subunits in these peroxisomal liposomes was 

proportional to the level of matrix proteins that have been taken for their reconstirution 

and recovered in their matrix (Figures 2.14 and 2.15). It should be stressed that the 

observed relocation from the matrix of peroxisomal liposomes to their membranes was 

observed only for Aox but not for malate synthase or thiolase, the two abundant proteins 

in the matrices of various peroxisomal subform (note that thiolase is not present in PI 

[45] (Figures 2.16 and 2.17). Altogether, my aforementioned findings invalidate the third 

possible molecular mechanism for the relocation of Aox from the matrix to the 

membrane of P6, in which a specific matrix protein imported to the peroxisome only 

during the last step of peroxisome maturation (i.e., during the conversion of P5 to P6) 

initiates such relocation (Figure 2.5). 
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Figure 2.15. Regardless of which of the six peroxisomal subforms has been taken for the reconstruction of 

peroxisomal liposomes, the percentage of membrane-bound Aox5p subunit of the Aox complex in these 

peroxisomal liposomes was proportional to the level of matrix proteins that have been taken for their 

reconstirution and recovered in their matrix. 
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Figure 2.16. In contrast to Aox, malate synthase (MLS) does not relocate from the matrix to the membrane 

of peroxisomal liposomes reconstituted from various amounts of matrix proteins that have been recovered 

from the six different peroxisomal subforms. 
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Figure 2.17. In contrast to Aox, thiolase (THI) does not relocate from the matrix to the membrane of 

peroxisomal liposomes reconstituted from various amounts of matrix proteins that have been recovered 

from the five different peroxisomal subforms. Note that thiolase is not imported into the immature 

peroxisomal vesicle PI [45]. 
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To test if the second of the aforementioned mechanisms is responsible for the 

relocation of Aox from the matrix to the membrane in mature peroxisomes P6, I 

reconstituted such relocation of Aox in vitro (i.e., in peroxisomal liposomes) using 

several non-peroxisomal proteins (Figure 2.18). Importantly, I found that, regardless of 

which of the six peroxisomal subforms has been taken for the reconstruction of 

peroxisomal liposomes, Aox associated with their membranes if the concentration of the 

non-peroxisomal proteins cytochrome c, bovine serum albumin or apoferritin used for the 

reconstruction exceeded a certain level (Figures 2.19, 2.20, 2.21, 2.22, 2.23 and 2.24). In 

fact, the percentage of membrane-bound Aoxlp and Aox5p subunits in these peroxisomal 

liposomes was proportional to the level of the non-peroxisomal proteins cytochrome c, 

Centrifuge @100,000 g o ^ ' o Osmotic lysis /g©\ B. 

O \ . ? # <Oj 

Purify Aox by immunoaffinity chromatography 
Immunodeplete matrix proteins of Aox 

. I . 

Discard 

o ' o 
o 

Add detergent; 
[detergent] > CMC -

P6 

Solubilize membrane Solubilize membrane 
proteins with a detergent; lipids with Chloroform: 
[detergent] > CMC MeOH 

•4 \ 

Apoferritin (443 kDa), BSA 
(66 kDa)or cytochrome c 
(12.4 kDa) solubilized in 
detergent; [detergent] > CMC 

Dry down solubilized 
membrane lipids 

Mix 
Dissolve lipid films 

- in a detergent; 
[detergent] > CMC 

Reconstitute peroxisomal liposomes by 
diluting the detergent below its CMC 

t P1-... P6 - based liposomes that carry non-
peroxisomal proteins instead of matrix ones 

Purify reconstituted peroxisomal liposomes by flotation on a sucrose density gradient 

Figure 2.18. Reconstructing in vitro (i.e., in peroxisomal liposomes) the relocation of Aox from the matrix 

to the membrane and its interaction with membrane-bound Pexl6p using non-peroxisomal. See Materials 

and methods for details. 
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P_S P_S P_S P S P S P S 
P6 1:1 2:1 3:1 5:1 8:1 

Aoxlp 

Figure 2.19. Regardless of which of the six peroxisomal subforms has been taken for the reconstruction of 

peroxisomal liposomes, the percentage of membrane-bound Aoxlp subunit of the Aox complex in these 

peroxisomal liposomes was proportional to the level of the non-peroxisomal protein cytochrome c that has 

been taken for their reconstitution and recovered in their matrix. 

Aox5p 

P_SP_SPJ P S P S P S 
P6 1:1 2:1 3:1 5:1 8:1 

Figure 2.20. Regardless of which of the six peroxisomal subforms has been taken for the reconstruction of 

peroxisomal liposomes, the percentage of membrane-bound Aox5p subunit of the Aox complex in these 

peroxisomal liposomes was proportional to the level of the non-peroxisomal protein cytochrome c that has 

been taken for their reconstitution and recovered in their matrix. 
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Figure 2.21. Regardless of which of the six peroxisomal subforms has been taken for the reconstruction of 

peroxisomal liposomes, the percentage of membrane-bound Aoxlp subunit of the Aox complex in these 

peroxisomal liposomes was proportional to the level of the non-peroxisomal protein bovine serum albumin 

that has been taken for their reconstitution and recovered in their matrix. 
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Figure 2.22. Regardless of which of the six peroxisomal subforms has been taken for the reconstruction of 

peroxisomal liposomes, the percentage of membrane-bound Aox5p subunit of the Aox complex in these 

peroxisomal liposomes was proportional to the level of the non-peroxisomal protein bovine serum albumin 

that has been taken for their reconstitution and recovered in their matrix. 
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Figure 2.23. Regardless of which of the six peroxisomal subforms has been taken for the reconstruction of 

peroxisomal liposomes, the percentage of membrane-bound Aoxlp subunit of the Aox complex in these 

peroxisomal liposomes was proportional to the level of the non-peroxisomal protein apoferritin that has 

been taken for their reconstitution and recovered in their matrix. 
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Figure 2.24. Regardless of which of the six peroxisomal subforms has been taken for the reconstruction of 

peroxisomal liposomes, the percentage of membrane-bound Aox5p subunit of the Aox complex in these 

peroxisomal liposomes was proportional to the level of the non-peroxisomal protein apoferritin that has 

been taken for their reconstitution and recovered in their matrix. 

bovine serum albumin or apoferritin that have been taken for their reconstitution and 

recovered in their matrix (Figures 2.19, 2.20, 2.21, 2.22, 2.23 and 2.24). It should be 
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emphasized that my data strongly suggest that the observed ability of the non-

peroxisomal proteins, if present in a concentration exceeding a critical level, to cause the 

relocation of Aox from the matrix to the membrane of reconstituted peroxisomal 

liposomes is specific. Indeed, as I found, such relocation requires both the Aox4p subunit 

of the Aox complex (which is known to be required for the attachment of the entire 

complex to the peroxisomal membrane [51] and Pexl6p (Figures 2.25, 2.26, 2.27 and 

2.28). Taken together, my aforementioned findings invalidate the second possible 

molecular mechanism for the relocation of Aox from the matrix to the membrane of P6, 

in which a specific matrix protein present already in the earliest peroxisomal precursors 

PI and P2 promotes such relocation only when the total mass of other matrix proteins 

P1| — - - - | 

P2| - - - - 1 
P3| - - - -

i i Aoxlp 
P4| - - - - | 
P 5 | _ - - -

P S P S P S P S P S P S 
P6 1:1 2:1 3:1 5:1 8:1 

Figure 2.25. The observed relocation of the Aox complex from the matrix to the membrane of peroxisomal 

liposomes "packed" with cytochrome c requires Aox4p, a subunit of this heteropentameric protein complex 

that is essential for the anchoring of the entire complex to the peroxisomal membrane. Peroxisomal 

liposomes were reconstituted using various amounts of cytochrome c, membrane proteins immunodepleted 

of Aox, and Aox complex purified from aox4A mutant cells. 
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P S P S P S P S P S P S 
P6 1:1 2:1 3:1 5:1 8:1 

Figure 2.26. The observed relocation of the Aox complex from the matrix to the membrane of peroxisomal 

liposomes "packed" with bovine serum albumin requires Aox4p, a subunit of this heteropentameric protein 

complex that is essential for the anchoring of the entire complex to the peroxisomal membrane. 

Peroxisomal liposomes were reconstituted using various amounts of bovine serum albumin, membrane 

proteins immunodepleted of Aox, and Aox complex purified from aox4A mutant cells. 

P3 — ' - - —| 

P4| - " " -
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Figure 2.27. The observed relocation of the Aox complex from the matrix to the membrane of peroxisomal 

liposomes "packed" with cytochrome c requires Pexl6p, a membrane-bound docking factor for the entire 

Aox complex. Peroxisomal liposomes were reconstituted using various amounts of cytochrome c, 

membrane proteins immunodepleted of Pexl6p and Aox, and Aox complex purified from wild-type cells. 
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Figure 2.28. The observed relocation of the Aox complex from the matrix to the membrane of peroxisomal 

liposomes "packed" with bovine serum albumin requires Pexl6p, a membrane-bound docking factor for the 

entire Aox complex. Peroxisomal liposomes were reconstituted using various amounts of bovine serum 

albumin, membrane proteins immunodepleted of Pexl6p and Aox, and Aox complex purified from wild-

type cells. 

exceeds a critical level (i.e., in mature peroxisomes P6). 

Thus, my data provide comprehensive evidence for the validity of the first 

proposed mechanism underlying the relocation of Aox from the matrix to the membrane 

of P6. That is, such relocation of Aox: 1) is due only to an increase in the total mass of 

matrix proteins other than Aox above a critical level; and 2) is not promoted by the 

interaction of Aox with any specific matrix protein. 

2.4.5 Dynamics of changes in the transbilayer distribution of DAG and 

phosphatidylserine (PS) in the peroxisomal membrane during peroxisome 

maturation 

My aforementioned data strongly suggest that LPA enters the two-step pathway for the 
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biosynthesis of PA and DAG only when the efficiency of its binding to Pexl6p declines. 

Pexl6p is a peripheral membrane protein that is attached only to the lumenal leaflet of 

the peroxisomal membrane [179]. Furthermore, it seems unlikely that LP A can 

translocate from the lumenal to the cytosolic leaflet of the peroxisomal membrane, as its 

spontaneous transbilayer movement is very slow [45]. Moreover, as Dr. Guo 

demonstrated, neither LPAAT nor PAP faces the cytosol, being integrated into the 

lumenal leaflet of the peroxisomal membrane [45]. Altogether, these findings imply that 

the biosynthesis of PA and DAG is spatially restricted to the lumenal leaflet of the 

peroxisomal membrane. 

To evaluate the arrangement of DAG between the two leaflets of the membrane 

bilayers in different peroxisomal subforms, I decided to reconstitute two types of resealed 

peroxisomes, termed RPA and RPB, from osmotically lysed intact peroxisomes. RPA 

were reconstituted in a MES-based buffer at pH 5.5, whereas RPB were made in a 

HEPES-based buffer at pH 7.5.1 found that, similar to intact peroxisomes [51], both RPA 

and RPB could float out of the most dense sucrose during centrifugation to equilibrium in 

sucrose density gradients (Figure 2.29 A) and were bound by a single membrane (Figure 

2.29 C). In intact peroxisomes, Pexl9p is a peripheral membrane protein that resides on 

the cytosolic face of the peroxisome, whereas the peripheral membrane protein Pexl6p is 

attached to its lumenal face (Figure 2.29, B and D). In RPA, most of Pexl9p, but only a 

minor portion of Pexl6p, was accessible to trypsin and to the corresponding antigen-

specific IgG molecules exogenously added to this type of resealed peroxisomes (Figure 

2.29, B and D). Therefore, I concluded that the membrane delimiting most of the RPA 
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species formed during peroxisome resealing was present in the outside-out orientation, 

whereas only a minor fraction of RPA species had their membrane resealed in the inside-

out orientation. In contrast, in RPB, only a minor portion of Pexl9p, but most of Pexl6p, 

was accessible to trypsin and to the corresponding antigen-specific IgG molecules 

exogenously added to this type of resealed peroxisomes (Figure 2.29, B and D). Hence, I 

concluded that only a minor fraction of RPB had their membrane resealed in the outside-

out orientation, while the membrane delimiting most of the RPB species formed during 

peroxisome resealing was present in the inside-out orientation. Using a Pexl9p-specific 

fluorescent probe, I then calculated the percentage of outside out- and inside out-oriented 

species of RPA and RPB that were formed by resealing of osmotically lysed peroxisomal 

subforms PI to P6 (Figure 2.29, E and F). 

The ability to calculate the percentage of outside out- and inside out-oriented 

species of RPA and RPB allowed me to calculate the percentage of DAG residing in the 

cytosolic and lumenal leaflets of the membrane bilayers in intact peroxisomes. The DAG-

binding Clb domain of protein kinase C [51] labeled with the fluorophore Alexa Fluor 

488 was used as a DAG-specific fluorescent probe. In intact P5, only 13 ± 4% of the total 

pool of DAG was detected in the cytosolic leaflet of the membrane bilayer (Figure 2.29 

H). Thus, DAG resides predominantly in the lumenal membrane leaflet of P5. In contrast, 

DAG is distributed symmetrically between the two leaflets of the membrane bilayer in 

mature peroxisomes P6. In fact, 57 ± 3% of this lipid resided in the cytosolic membrane 

leaflet of P6 (Figure 2.29 H). 

I then used monoclonal antibodies to PS, a lipid that has a cylindrical shape [135], 
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m e m b r a n e . A) Resealed peroxisomes R P A and R P B w e r e created from osmot ica l ly lysed matu re 

peroxisomes P 6 as descr ibed in Mater ia ls and methods . R P A and R P B were subjected to flotation on a 

mul t is tep sucrose gradient. Resealed perox isomes floated to low density dur ing centrifiigation in the 

sucrose density gradient. Proteins from equal vo lumes o f gradient fractions were analyzed b y 

immunoblo t t ing with ant ibodies to the P M P s P e x l 6 p and P e x l 9 p . Equal volumes o f gradient fractions were 
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also subjected to lipid extraction, which was followed by TLC and visualization of lipids. Sucrose density 

(%, w/w) of fractions, as well as the percentage of PMPs and lipids recovered in fractions, are presented. 

(B) Resealed peroxisomes RPA and RPB, which were recovered in the peak fractions of the flotation 

gradients, and a highly purified subform of the intact peroxisomes P6 from which these two types of 

resealed peroxisomes were formed, were subjected to protease protection analysis. Equal aliquots (10 ug of 

total protein) of RPA, RPB and intact peroxisomes P6 were treated with the indicated amounts of trypsin in 

the absence (-) or presence (+) of 0.5% (vol/vol) Triton X-100 for 30 min on ice. Samples were subjected to 

SDS-PAGE and immunoblotting with antibodies to Pexl6 and Pexl9. (C) Electron micrographs of the PS-

based RPA and RPB recovered in the peak fraction 5 of the flotation sucrose density gradient presented in 

A. Bars, 500 nm. (D) Resealed peroxisomes RPA and RPB, which were recovered in the peak fractions of 

the flotation gradients, and a highly purified subform of the intact peroxisomes P6 from which these two 

types of resealed peroxisomes were formed, were exposed to the Pexl6p- and Pexl9p-specific fluorescent 

reporter molecules as described in Materials and methods. The Alexa Fluor 488 fluorescence at 510 nm 

was monitored in individual samples. (E) The percentage of the P6-based RPA and RPB present in the 

outside-out or inside-out orientation. The percentage of the RPA or RPB species that were resealed in the 

outside-out or inside-out orientation was calculated as described in Materials and methods. (F) The 

percentage of RPA and RPB resealed in the outside-out or inside-out orientation following osmotic lysis of 

different peroxisomal subforms. (G) Resealed peroxisomes RPA and RPB, which were recovered in the 

peak fractions of the flotation gradients, and a highly purified subform of the intact peroxisomes P6 from 

which these two types of resealed peroxisomes were formed, were exposed to the DAG- and PS-specific 

fluorescent reporter molecules as described in Materials and methods. The Alexa Fluor 488 fluorescence at 

510 nm was monitored in individual samples. (H) The percentage of a monitored lipid, either DAG or PS, 

residing in the cytosolic leaflet of the membrane bilayer was calculated for intact peroxisomes PI to P6 as 

described in Materials and methods. 

to monitor its transbilayer distribution in the membranes of different peroxisomal 

subforms. I found that PS in the membranes of immature peroxisomal vesicles PI to P3 

resides predominantly in their cytosolic leaflets (Figure 2.29 H). As peroxisomes mature, 

PS gradually moves from the cytosolic to the lumenal leaflets of their membranes. 

Indeed, only 15 ± 1% of this lipid resided in the cytosolic membrane leaflet of P6 (Figure 

2.29 H). In summary, the aforementioned findings led me to the conclusion that the 
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assembly of mature peroxisomes promotes the specific redistribution of DAG and PS 

between the two leaflets of the peroxisomal membrane. Specifically, I found that the 

movement of DAG from the lumenal to the cytosolic leaflet of the membrane bilayer 

coincides with the translocation of PS in the opposite direction. 

2.4.6 Endoplasmic reticulum-derived phosphatidylcholine in the peroxisomal 

membrane activates both LPAAT and PAP 

As I found, the levels of phosphatidylcholine (PC), a major glycerophospholipid of the 

peroxisomal membrane [179], in P4, P5 and P6 peroxisomes of wild-type cells were 

significantly higher than in PI, P2 and P3 peroxisomes (Figure 2.6 A). I concluded that 

the observed increase in the levels of PC was not due to its de novo synthesis. In fact, the 

membranes of P3 and P4 did not contain PA and DAG (Figure 2.6 A), two substrates for 

PC biosynthesis via the PE methylation and CDP-choline pathways, respectively [141]. 

Thus, I assumed that PC is transported to the membranes of P3 and P4 during their 

conversion to P4 and P5, respectively. Three established mechanisms of intracellular 

lipid transport to organellar membranes include: 1) transport catalyzed by cytosolic lipid 

transfer proteins [180, 181]; 2) vesicle-mediated transport [182, 183]; and 3) transport at 

regions of close apposition between specialized microdomains of the endoplasmic 

reticulum (ER) membrane and the membranes of the trans Golgi or mitochondria [181, 

184]. My data imply that: 1) PC is transferred from the donor membrane of a distinct 

subcompartment of the ER to the acceptor membranes of P3 and P4 associated with this 

subcompartment; and 2) this transfer of PC requires the peroxisome-associated peroxin 
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Pex2p, provides membranes of P3 and P4 with the bulk quantities of PC, and is essential 

for the conversion of P4 to P5. My hypothesis is based on the following findings. First, a 

distinct form of the ER co-purifies with P3 and P4 peroxisomes and can be separated 

from them by treatment with EDTA [50, 64]. Second, the P3- and P4-associated ER 

subcompartment can be distinguished from the free form of the ER by buoyant density 

and the total level of membrane glycerophospholipids [64], as well as by protein 

spectrum (Figure 2.30 B). Third, the pex2A mutation increases the levels of membrane 

glycerophospholipids in the P3- and P4-associated subcompartment of the ER [64], 
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Figure 2.30. The Pex2p-dependent transfer of PC from a P3- and P4-associated subcompartment of the ER 

provides the peroxisomal membrane with the bulk quantities of this lipid. (A) The spectra of lipids found in 

the membranes of different peroxisomal subforms that were purified from wild-type and pex2A mutant 

cells. (B) The spectra of proteins recovered in the free form of the ER and in the P3- and P4-associated 

subcompartment of the ER. Organelles were purified from wild-type and pex2A mutant cells as described in 

Materials and Methods. Arrowheads mark proteins found only in the ER subcompartment associated with 

P3 and P4 or significantly enriched in this subcompartment of the ER as compared with its free form. 
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substantially decreases the level of PC in P4 (Figure 2.30 A), and impairs its conversion 

to P5 (Guo et al., unpublished data). 

Moreover, some of my findings strongly suggest that PC in the peroxisomal 

membrane is a positive regulator of both LPAAT and PAP. In fact, the specific activities 

of these two membrane-bound enzymes in liposomes reconstituted from the Pex 16p-

immunodepleted PMPs and membrane lipids of PI, P2 and P3 were significantly lower 

than in liposomes reconstituted from membrane components of P4, P5 and P6 (Figure 

2.31, A and B). Importantly, I found that LPAAT and PAP activities detected in the 

membranes of these peroxisomal liposomes were proportional to the steady-state levels 

of PC recovered in these membranes (Figure 2.31, A and B). Moreover, I was able to 

reconstruct the positive effect of PC on both LPAAT and PAP in four different types of 

the Pexl6p-immunodepleted liposomes that were reconstituted from membrane 

components of PI, P2 or P3 and varied only in the quantities of PC present in their 

membranes (Figure 2.31, C, D, E, and F). Noteworthy, I found that, by rising the 

quantities of PC in the membranes of P1-, P2- and P3-based liposomes to the levels 

comparable to those present in the membranes of P4-, P5- and P6-based liposomes, both 

LPAAT and PAP could be significantly stimulated, matching their enzymatic activities in 

liposomes reconstituted from membrane components of P4, P5 and P6 (Figure 2.31, E 

and F). Considering that all six peroxisomal subforms have similar amounts of both 

LPAAT and PAP [51], my aforementioned findings support the notion that PC in the 

peroxisomal membrane activates these two enzymes. 
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Figure 2.31. PC in the peroxisomal membrane is a positive regulator of both LPAAT and PAP. (A and B) 

The initial rates of the LPAAT (A) and PAP (B) reactions and the levels of PC recovered in the membranes 

of liposomes reconstituted from the Pexl6p-immunodepleted PMPs and membrane lipids of different 

peroxisomal subforms. Peroxisomal liposomes that lack Pexl6p were reconstituted as described in 
14 

Materials and Methods. [ C]-labeled lipid substrates were incorporated into liposomes during their 

reconstitution. (C - F) The initial rates of the LPAAT (C and E) and PAP (D and F) reactions and the levels 

of PC recovered in the membranes of four different types of liposomes reconstituted from the Pexl6p-

immunodepleted PMPs and membrane lipids of PI (C, D, E and F), P2 (E and F) or P3 (E and F) 

peroxisomes. These four different types of P1-, P2- or P3-based liposomes varied only in the quantities of 

PC used for their reconstitution and recovered in their membranes after the reconstitution. For comparison, 
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the initial rates of the LPAAT (E) and PAP (F) reactions and the levels of PC recovered in the membranes 

of liposomes reconstituted from the Pexl6p-immunodepleted PMPs and membrane lipids of P4, P5 and P6 
14 

peroxisomes are shown. To calculate the initial rates of the LPAAT and PAP reactions, the [ C]-labeled 

LPA, PA and DAG were separated by TLC and quantified by autoradiography. To visualize non-

radiolabeled PC, lipids were separated by TLC and detected using phosphomolybdic acid. 

2.4.7 The biosynthesis of PA and DAG in the peroxisomal membrane promotes the 

recruitment of Vpslp from the cytosol to the surface of the mature peroxisome 

The S. cerevisiae protein Vpslp is essential for peroxisome division [185]. Vpslp is a 

member of the dynamin protein superfamily of large GTPases that carry out a broad 

range of functions including organelle division and fusion, budding of transport vesicles, 

and cytokinesis [187]. In an attempt to test an assumption that, akin to its S. cerevisiae 

counterpart, Y. lipolytica Vpslp is required for peroxisome division, I found that lack of 

this protein in Y. lipolytica resulted in a reduced number of greatly enlarged peroxisomes 

(Figure 2.32). Morphometric analysis of random electron sections further confirmed that 

lack of Vpslp impairs the ability of completely assembled peroxisomes to divide, 

resulting in fewer, but greatly enlarged, mature peroxisomes. Importantly, these 

morphological patterns of the vpslA mutant were very similar to those observed in the 

aox4A and PEXJ 6-TH mutant strains deficient in the division of mature peroxisomes P6 

(Figure 2.32). 

S. cerevisiae Vpslp is mainly a cytosolic protein [186]. It can also be found in a 

variety of cellular locations, including the Golgi, peroxisomes and vacuoles [185]. 

Likewise, as Dr. Guo found, most of 7. lipolytica Vpslp localized to the cytosol, whereas 

the minor portion of it was associated with both low-speed (20,000 x g) and high-speed 
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Figure 2.32. The dynamin-related large GTPase Vpslp is essential for the division of mature peroxisomes. 

Transmission electron micrographs of the wild-type, vpslA, aox4A and PEX16-TH strains grown for 9 h in 

oleic acid-containing medium. P, peroxisome. 

(200,000 x g) pelletable organelles [51]. Using highly purified peroxisomal subforms of 

wild-type cells, Dr. Guo revealed that Vpslp was only present in division-competent 

mature peroxisomes P6 but not in the division-incompetent immature peroxisomal 

vesicles PI to P5 [45]. Dr. Guo also provided evidence that Vpslp is a peripheral 

membrane protein associated with the outer (cytosolic) face of mature peroxisomes P6 

[45]. 

Taken together, my aforementioned findings and Dr. Guo's data suggested that 

the conversion of P5 to P6 in wild-type cells is marked by the recruitment of Vpslp from 
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the cytosol to the surface of mature peroxisomes P6, where Vpslp drives their division. 

But how does such recruitment relate to the Pexl6p/Aox intraperoxisomal signaling 

cascade that regulates the fission of the membrane delimiting mature peroxisomes P6? 

The answer to this question came from my observation that Vpslp was bound to division-

competent mature peroxisomes of wild-type or aoxlA, aox2A and aox3A mutant strains 

(Figure 2.33). In the membranes of mature peroxisomes of all these strains, LPA was 

converted to PA and DAG (Figure 2.6). In contrast, Vpslp was not attached to mature 

peroxisomes of aox4A, aox5A or PEX16-TH mutant strains (Figure 2.33). All these 

strains are deficient in the division of mature peroxisomes [45], being unable to convert 

LPA to PA and DAG in the peroxisomal membrane (Figures 2.6 and 2.12). I 

therefore concluded that the recruitment of Vpslp from the cytosol to the surface of 

mature peroxisomes relies on the Pexl6p/Aox-dependent biosynthesis of PA and DAG in 

their membranes. 

w * • • * mmm mmm •* Vpslp 

mmm mmm mmm mmm, mmm mmm « • • » ' * PexlOp 

<~mm mmm mmm mmm mmm mmm «—«^-»Pexl9p 

wt aoxlA aox2A aox3A aox4A aox5A PEX 16-TH 

Figure 2.33. Only division-competent mature peroxisomes recruit Vpslp from the cytosol to the outer face 

of their membrane. Mature peroxisomes P6 were purified from wild-type and mutant cells. Equal quantities 

(20 ug) of protein from these peroxisomes were analyzed by immunoblotting with the indicated antibodies. 
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2.4.8 The recruitment of Vpslp to the peroxisomal membrane results in the 

formation of a multiprotein complex 

To test whether Vpslp interacts with other components of the peroxisomal membrane, 

Dr. Guo used a combination of cross-linking, immunoprecipitation with anti-Vpslp 

antibodies and mass spectrometry of co-immunoprecipitated proteins. Using this 

approach, she revealed a Vpslp-containing complex on the outer face of the peroxisomal 

membrane. The following 6 components of this complex were identified by mass 

spectrometry: 1) Vpslp, a dynamin-like GTPase that is required for the division of 

mature peroxisomes (see above); 2) Slalp, a protein that regulates actin cytoskeleton 

organization and dynamics [188]; 3) Abplp, a protein that promotes F-actin assembly 

[189]; 4) Actlp, a structural constituent of actin cytoskeleton in yeast [190]; 5) the 

peroxin Pexl9p, a protein required for the import and/or membrane assembly of 

numerous PMPs [15, 165]; and 6) the peroxin PexlOp, an integral PMP required for 

peroxisomal matrix protein import [15]. Dr. Guo also provided evidence that: 1) the 

PexlOp- and Pex 19p-dependent recruitment of Vpslp from the cytosol to the surface of 

the mature peroxisome is mandatory for the attachment of Slalp, Abplp and Actlp to 

this division-competent peroxisomal subform [51]; 2) Vpslp, Slalp and Abplp initially 

form a complex in the cytosol; 3) this complex is then targeted from the cytosol to the 

surface of mature peroxisomes; and 4) only after its binding to mature peroxisomes, the 

Vpslp-Slalp-Abplp complex is able to promote the attachment of Actlp to the 

peroxisomal membrane. 

But what is the role of Vpslp-associated proteins in the division of mature 
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peroxisomes P6? My electron microscopic analysis revealed that, akin to Vpslp (see 

above), each of the two other components of the Vpslp-Slalp-Abplp complex is 

required for the division of mature peroxisomes P6. In fact, lack of either Slalp or Abplp 

resulted in a reduced number of greatly enlarged peroxisomes (Figure 2.34). 

In summary, my findings and Dr. Guo's data strongly suggest that the assembly 

of the Vpslp-Slalp-Abplp complex in the cytosol precedes its attachment to the surface 

of division-competent mature peroxisomes P6. The Vpslp-Slalp-Abplp complex binds 

to P6 by interacting with Pexl9p, a component of the Pexl0p-Pexl9p complex that is 

formed in the peroxisomal membrane during the earliest steps of peroxisome assembly 

and maturation. Only after it has been attached to the membrane of P6, the Vpslp-Slalp-

Abplp complex is able to interact with Actlp, thereby promoting the recruitment of actin 

to the surface of these division-competent peroxisomes. 

Figure 2.34. The Slalp and Abplp components of the Vpslp-Slalp-Abplp complex are required for the 

division of mature peroxisomes P6. Transmission electron micrographs of wild-type, slalA and abplA 

strains grown for 9 h in oleic acid-containing medium. P, peroxisome. 
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2.5 Discussion 

Altogether the above findings suggest the following model for peroxisome division in Y. 

lipolytica (Figure 2.35). In immature peroxisomal vesicles PI to P5, Pexl6p binds LPA 

in the lumenal leaflet of the peroxisomal membrane. The binding of Pexl6p to LPA 

prevents the biosynthesis of PA and DAG in a two-step pathway, which includes two 

consecutive enzymatic reactions catalyzed by Slclp (LPAAT) and Dpplp (PAP). The 

stepwise import of distinct subsets of matrix proteins into immature peroxisomal vesicles 

PI to P5 provides them with an increasing fraction of the matrix proteins present in 

mature peroxisomes. The increase in the total mass of matrix proteins above a critical 

level, which occurs only inside mature peroxisomes, causes the redistribution of Aox 

from the matrix to the membrane and its subsequent binding to Pexl6p. This, in turn, 

greatly decreases the affinity between Pex 16p and LPA, thereby allowing LPA to enter 

the two-step biosynthetic pathway leading to the formation of PA and DAG. The 

glycerophospholipid PC, which is transferred to the peroxisomal membrane from the P3-

and P4-associated subcompartment of the ER, activates both LPAAT and PAP. The 

resulting accumulation of PA and DAG in the lumenal leaflet of the membrane of mature 

peroxisomes triggers a cascade of events ultimately leading to peroxisome division. This 

cascade of events is initiated by the spontaneous flipping of DAG, which is known for its 

very fast transbilayer translocation, between the two membrane leaflets. The movement 

of DAG, a particularly potent cone-shaped inducer of membrane bending, from the 

lumenal to the cytosolic leaflet of the membrane bilayer coincides with the translocation 

of the glycerophospholipid PS in the opposite direction. This bi-directional movement of 
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Figure 2.35. The Pexl6p- and Aox-dependent intraperoxisomal signaling cascade drives the division of 

mature peroxisomes P6 by promoting the stepwise remodeling of lipid and protein composition of the 

peroxisomal membrane. See Discussion for details. 

DAG and PS generates a lipid imbalance across the bilayer, which may promote the 

destabilization and bending of the membrane. The biosynthesis of PA and DAG in the 

membrane of mature peroxisomes and, perhaps, the bending of the membrane due to the 

bi-directional transbilayer movement of DAG and PS promote the docking of the Vpslp-
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Slalp-Abplp complex to the surface of mature peroxisomes. This pre-assembled in the 

cytosol protein complex binds to mature peroxisomes by interacting with the peroxin 

Pexl9p. Pexl9p is a component of the Pexl0p-Pexl9p complex that is formed in the 

peroxisomal membrane during the earliest steps of peroxisome assembly. After its 

attachment to the peroxisomal membrane, the Vpslp-Slalp-Abplp complex interacts 

with Actlp, thereby recruiting this structural constituent of actin cytoskeleton to the 

surface of mature peroxisomes. The subsequent fission of the peroxisomal membrane 

leads to peroxisome division. 

It remains to be established how exactly Vpslp promotes peroxisome division. 

Initially, this dynamin-like GTPase interacts in the cytosol with Slalp and Abplp. Vpslp 

then functions in the attachment of the Vpslp-Slalp-Abplp protein complex to its 

docking factor Pexl9p on the surface of mature peroxisomes, thereby promoting the 

subsequent recruitment of actin to the membrane of division-competent peroxisomes. 

Therefore, it seems unlikely that Vpslp acts only as a mechanochemical enzyme [187] 

whose GTPase activity provides the mechanical force required for membrane fission in 

the constricted neck. Our data suggest that this dynamin-like protein may rather function 

as a regulatory GTPase [100] whose GTP-bound form promotes the multistep assembly 

of the membrane fission machinery, initially in the cytosol and then on the surface of 

division-competent mature peroxisomes. This machinery includes the Slalp, Abplp and 

Actlp components of actin cytoskeleton. The mechanism by which actin cytoskeleton 

regulates the terminal step of peroxisome division is currently being investigated. 

Similar to mitotic Golgi fragmentation [160, 191] and mitochondrial division 
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during apoptosis [192], peroxisome division is served by a protein team that is assembled 

on the peroxisomal surface in a stepwise fashion. The multicomponent protein 

machineries serving Golgi fragmentation and mitochondrial division are assembled in 

response to extraorganellar stimuli [160, 192]. In contrast, the protein team that executes 

peroxisome division undergoes multistep assembly in response to an intraperoxisomal 

signaling cascade (Figure 2.35). While this Pexl6p- and Aox-dependent signaling 

cascade is turned off inside immature peroxisomal vesicles, it is activated inside mature 

peroxisomes. Thus, it seems likely that the intraperoxisomal cascade for fine-tuning the 

fission of peroxisomal membrane is an intrinsic feature of the multistep peroxisome 

biogenesis program. Perhaps, this program has been evolved in order to separate the 

dramatic changes in the composition and architectural design of the membrane bilayer, 

all of which occur during peroxisome division, from the process of protein translocation 

across this bilayer, which takes place during peroxisome assembly. One of the benefits of 

employing such a strategy for the temporal separation of the processes of peroxisome 

assembly and division is that some of the membrane components can efficiently function 

in both processes. In fact, the peroxins PexlOp and Pexl9p known for their essential role 

in peroxisomal import of numerous matrix proteins and PMPs [15] are also required for 

the assembly of the peroxisome division machinery on the surface of mature 

peroxisomes. 

2.6 Conclusions 

My findings support the notion that a distinct set of lipid metabolic pathways operating in 
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organellar membranes and specific changes in the distribution of some lipids across the 

membrane bilayers provide a driving force for organelle division [141, 157 - 160, 163, 

193]. It is tempting to speculate that, after its spontaneous flipping between the two 

leaflets of the peroxisomal membrane (Figure 2.35), DAG undergoes the selective 

enrichment in distinct lipid domains that: 1) facilitate membrane fission through 

coordinated changes in local membrane curvature; 2) initiate the assembly of the Vpslp-

containing protein complexes on the surface of peroxisomes; and/or 3) promote the 

clustering of these protein complexes at the membrane fission site. A challenge for the 

future will be to define the spatial distribution of DAG and Vpslp-containing protein 

complexes in the membrane of division-competent mature peroxisomes. 
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3 The role of Acyl-CoA oxidase and other peroxisomal enzymes of fatty acid 

oxidation in controlling the rate of chronological aging 

3.1 Abstract 

Calorie restriction (CR) is found to extend lifespan in a wide variety of 

Eukaryotes including the single-celled budding yeast Saccharomyces cerevisiae. The 

commonly accepted "free radical theory" of aging proclaims that: (1) A variety of 

metabolic reactions within the cell and exogenous agents generate free radicals, including 

ROS; (2) ROS damage various cellular constituents such as nucleic acids, proteins and 

lipids; (3) some of this damage cannot be reversed, and thus accumulates over time; and 

(4) the accumulation of damaged cellular constituents causes aging and associated 

degenerative disorders. My findings provide the first comprehensive evidence that ROS 

that are produced in the peroxisome in the first, Aox-catalyzed reaction of fatty acid P-

oxidation do not regulate longevity in yeast under CR conditions. Moreover, I found that 

mitochondria, not peroxisomes generate the bulk of ROS in chronologically aging yeast 

placed on a CR diet. Unexpectedly, my studies aimed at elucidating the role for 

peroxisomal fatty acid oxidation in yeast longevity revealed that the formation of acetyl-

CoA, not of ROS, via peroxisomal P-oxidation of neutral lipids-derived fatty acids is 

mandatory for extending lifespan of CR yeast. My findings also led to the conclusion that 

the rate of peroxisomal P-oxidation of fatty acids that originate from stored neutral lipids 

controls the pace of chronological aging by modulating essential processes taken place in 

mitochondria. 
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3.2 Introduction 

Most of the known genetic manipulations that extend lifespan have been shown to 

cause major side effects, including irreversible developmental or reproductive defects 

[194]. An alternative way in which lifespan has been shown to be lengthened in various 

organisms is to impose a calorie restriction (CR) diet, which refers to a dietary regimen 

low in calories without undernutrition. It is well established that CR significantly extends 

lifespan of a remarkable range of organisms, including yeast, rotifers, spiders, worms, 

fish, mice, rats, and nonhuman primates [79, 81, 82, 194, 195]. This longevity results 

from the limitation of total calories derived from carbohydrates, fats or proteins to a level 

25% - 60% below that of control animals fed ad libitum [79, 194]. 

In yeast, CR can be imposed by reducing the glucose concentration in the 

complete YEPD medium from the usual 2% to 0.5% [89] or to 0.2% (this study). 

Because cells continue to feed on yeast extract plus peptone, which are rich in amino 

acids, nucleotides, and vitamins, the growth rate remains rapid as glucose levels are 

lowered. Thus, the reduction in glucose from 2% to 0.5% or to 0.2% could impose a state 

of partial energy (ATP) limitation. 

Even though CR is known for many years as the most effective way of extending 

lifespan of various organisms without genetically altering them, the mechanism(s) of its 

anti-aging action remain(s) unclear. Its complexity lies in multiple effects including 

metabolic, neuroendocrine, and apoptotic changes, which vary in intensity and exhibit 

striking differences among specific organ systems [73, 77]. A leading theory is that aging 

is caused by cumulative oxidative damage generated by ROS produced during respiration 

99 



[94, 95]. Oxidative damage to DNA, RNA, protein, and lipids has indeed been 

demonstrated to occur with aging [93 - 96]. This damage may limit life span. In fact, 

overexpression of the enzyme superoxide dismutase (SOD), which reduces ROS, extends 

lifespan in Drosophila [97] and in stationary phase yeast cells [98]. 

ROS are generated in multiple compartments and by multiple enzymes within the 

cell (Figure 3.1). Although the vast majority (estimated at approximately 90%) of these 

harmful compounds is produced in mitochondria (Figure 3.1) [99 - 102], ROS are also 

generated by NADP/H oxidases and phagocytic oxidases in the plasma membrane [99 -

102], in several oxidative reactions that are catalyzed by amino acid oxidases, 

cyclooxygenases, lipid oxigenase and xanthine oxidase in the cytosol [99 - 102], and 

during lipid metabolism in peroxisomes [7, 30] (Figure 3.1). The steady-state level of 

ROS within the cell is the result of a delicate balance that exists between the rates of ROS 

formation and of their detoxification in antioxidant scavenger reactions taking place in 

various cellular locations (Figure 3.2). The CuZnSOD (SOD1) subform of superoxide 

dismutase in the cytosol and the MnSOD (SOD2) subform of this enzyme in the 

mitochondrion convert superoxide radicals to a less toxic and more stable compound, 

namely hydrogen peroxide (Figure 3.2) [99 - 102]. The subsequent detoxification of 

hydrogen peroxide depends on the following enzymes (Figure 3.2) [99 - 102]: 1) 

glutathione peroxidases in the cytosol, mitochondria and peroxisomes; 2) catalases in the 

cytosol, mitochondria and peroxisomes; and 3) peroxiredoxins in the cytosol, 

mitochondria and peroxisomes. 

Lipid metabolism in peroxisomes generates ROS [7, 30]. The only chemical 
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Figure 3.1. ROS are generated by numerous enzymes in multiple compartments within the cell, mostly (~ 

90%) within mitochondria. 

reaction leading to the formation of hydrogen peroxide, the most abundant ROS molecule 

in the cell, is catalyzed by Aox. This peroxisomal enzyme promotes the first step in the 

metabolic pathway for [3-oxidation of fatty acids, thereby controlling the level of ROS 

produced in the peroxisome. On the other hand, a peroxisomal catalase, encoded by the 

CTA1 gene, can detoxify hydrogen peroxide inside the organelle, and is known to aid in 

the resistance to exogenously added hydrogen peroxide. 

My research began investigating a possible link between steady state levels of 

peroxisomal ROS and CR-dependant chronological lifespan extension. By reducing the 

steady state level of ROS in peroxisomes of CR yeast using genetic manipulations, I was 

hoping to extend lifespan by further limiting the amount of ROS produced in the cell. 
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Figure 3.2. Detoxification of ROS occurs in antioxidant scavenger reactions that take place in the cytosol, 

mitochondria and peroxisomes. 

Unexpectedly, I discovered that lack of the ROS-producing peroxisomal Aox shortened, 

not extended, the chronological lifespan of CR yeast. Thus, contrary to my initial 

hypothesis, the rate of ROS production in peroxisomes does not control the rate of 

chronological aging. On the other hand, my observation that lack of Aox causes 

premature aging suggested that some processes taking place in the peroxisome, perhaps 

P-oxidation of fatty acids, play essential role in the aging process. I therefore decided to 

elucidate: 1) how exactly, in molecular terms, lipid metabolism in peroxisomes control 

yeast aging; and 2) what are the logistics of integrating peroxisomal lipid metabolism into 

a network of cellular processes that govern yeast aging. 
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3.3 Materials and Methods 

Strains and media 

The wild-type strain Saccharomyces cerevisiae BY4742 (MATa his3Al leu2A0 lys2A0 

ura3A0) and mutant strains pexlA (MATa his3Al leu2A0 lys2A0 ura3A0 

pexlA::kanMX4), pex5A (MATa his3Al leu2A0 lys2A0 ura3A0pex5A::kanMX4),pex6A 

(MATa his3Al leu2A0 lys2A0 ura3A0 pex6A::kanMX4), pex7A (MATa his3Al leu2A0 

lys2A0 ura3A0 pex7A::kanMX4), foxJA (MATa his3Al leu2A0 lys2A0 ura3A0 

foxlA::kanMX4\ ctalA (MATa his3Al leu2A0 lys2A0 ura3A0 ctalA::kanMX4), fox2A 

(MATa his3Al leu2A0 lys2A0 ura3A0 fox2A::kanMX4), mdh3A (MATa his3Al leu2A0 

lys2A0 ura3A0 mdh3A::kanMX4), and fox3A (MATa his3Al leu2A0 lys2A0 ura3A0 

fox3A::kanMX4) were used in this study. Media components were as follows: 1) YEPD 

(0.2% Glucose), 1% yeast extract, 2% peptone, 0.2% glucose; and 2) YEPD (2% 

Glucose), 1% yeast extract, 2% peptone, 2% glucose. 

A plating assay for the analysis of chronological life span 

Cells were grown in YEPD (0.2% Glucose) medium at 30°C with rotational shaking at 

200 rpm in Erlenmeyer flasks at a flask volume/medium volume ratio of 5:1. A sample of 

cells was removed from each culture at various time points. A fraction of the cell sample 

was diluted in order to determine the total number of cells per ml of culture using a 

hemacytometer. 10 ul of serial dilutions (1:10 to 1:103) of cells were applied to the 

hemacytometer, where each large square is calibrated to hold 0.1 ul. The number of cells 

in 4 large squares was then counted and an average was taken in order to ensure greater 
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accuracy. The concentration of cells was calculated as follows: number of cells per large 

square x dilution factor x 10 x 1,000 = total number of cells per ml of culture. A second 

fraction of the cell sample was diluted and serial dilutions (1:102 to 1:105) of cells were 

plated onto YEPD (2% Glucose) plates in triplicate in order to count the number of viable 

cells per ml of each culture. 100 \x\ of diluted culture was plated onto each plate. After a 

48-h incubation at 30°C, the number of colonies per plate was counted. The number of 

colony forming units (CFU) equals to the number of viable cells in a sample. Therefore, 

the number of viable cells was calculated as follows: number of colonies x dilution factor 

x 10 = number of viable cells per ml. For each culture assayed, % viability of the cells 

was calculated as follows: number of viable cells per ml / total number of cells per ml x 

100%. The % viability of cells in mid-logarithmic phase was set at 100% viability for that 

particular culture. 

Plating assays for the analysis of resistance to various stresses 

For the analysis of hydrogen peroxide resistance, serial dilutions (1:10 to 1:10 ) of wild-

type and mutant cells removed from mid-logarithmic phase (day 1) and from diauxic 

phase (days 2 and 3) in YEPD (0.2% Glucose) were spotted onto two sets of plates. One 

set of plates contained YEPD (2% Glucose) medium alone, whereas the other set 

contained YEPD (2% Glucose) medium supplemented with 5 mM hydrogen peroxide. 

Pictures were taken after a 3-day incubation at 30°C. 

For the analysis of oxidative stress resistance, serial dilutions (1:10 to 1:10 ) of 

wild-type and mutant cells removed from mid-logarithmic phase (day 1) and from 
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diauxic phase (days 2 and 3) in YEPD (0.2% Glucose) were spotted onto two sets of 

plates. One set of plates contained YEPD (2% Glucose) medium alone, whereas the other 

set contained YEPD (2% Glucose) medium supplemented with 2.5 raM of the 

superoxide/hydrogen peroxide-generating agent paraquat. Pictures were taken after a 3-

day incubation at 30°C. 

For the analysis of heat-shock resistance, serial dilutions (1:10 to 1:10 ) of wild-

type and mutant cells removed from mid-logarithmic phase (day 1) and from diauxic 

phase (days 2 and 3) in YEPD (0.2% Glucose) were spotted onto two sets of YEPD (2% 

Glucose) plates. One set of plates was incubated at 30°C. The other set of plates was 

initially incubated at 55°C for 30 min, and was then transferred to 30°C. Pictures were 

taken after a 3-day incubation at 30°C. 

For the analysis of salt stress resistance, serial dilutions (1:10 to 1:10 ) of wild-

type and mutant cells removed from mid-logarithmic phase (day 1) and from diauxic 

phase (days 2 and 3) in YEPD (0.2% Glucose) were spotted onto two sets of plates. One 

set of plates contained YEPD (2% Glucose) medium alone, whereas the other set 

contained YEPD (2% Glucose) medium supplemented with 0.5 M NaCl. Pictures were 

taken after a 3-day incubation at 30°C. 

For the analysis of osmotic stress resistance, serial dilutions (1:10 to 1:10 ) of 

wild-type and mutant cells removed from mid-logarithmic phase (day 1) and from 

diauxic phase (days 2 and 3) in YEPD (0.2% Glucose) were spotted onto two sets of 

plates. One set of plates contained YEPD (2% Glucose) medium alone, whereas the other 

set contained YEPD (2% Glucose) medium supplemented with 1 M sorbitol. Pictures 
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were taken after a 3-day incubation at 30°C. 

Monitoring the formation of ROS 

Wild-type and mutant cells grown in YEPD (0.2% Glucose) were tested microscopically 

for the production of ROS by incubation with dihydrorhodamine 123 (DHR). In the cell, 

this nonfluorescent compound can be oxidized to the fluorescent chromophore rhodamine 

123 by ROS. Cells were also probed with a fluorescent counterstain Calcofluor White 

M2R (CW), which stains the yeast cell walls fluorescent blue. CW was added to each 

sample in order to label all cells for their proper visualization. DHR was stored in the 

dark at -20°C as 50 ul aliquots of a 1 mg/ml solution in ethanol. CW was stored in the 

dark at -20°C as the 5 mM stock solution in anhydrous DMSO (dimethylsulfoxide). 

The concurrent staining of cells with DHR and CW was carried out as follows. 

The required amounts of the 50 ul DHR aliquots (1 mg/ml) and of the 5 mM stock 

solution of CW were taken out of the freezer and warmed to room temperature. The 

solutions of DHR and CW were then centrifuged at 21,000 x g for 5 min in order to clear 

them of any aggregates of fluorophores. For cell cultures with a titre of - 107 cells/ml, 

100 ul was taken out of the culture to be treated. If the cell titre was lower, proportionally 

larger volumes were used. 6 ul of the 1 mg/ml DHR and 1 ul of the 5 mM CW solutions 

were added to each 100 ul aliquot of culture. After a 2-h incubation in the dark at room 

temperature, the samples were centrifuged at 21,000 x g for 5 min. Pellets were 

resuspended in 10 ul of PBS buffer (20 mM KH2P04/KOH, pH 7.5, and 150 mM NaCl). 

Each sample was then supplemented with 5 ul of mounting medium, added to a 
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microscope slide, covered with a coverslip, and sealed using nail polish. Once the slides 

were prepared, they were visualized under the Zeiss Axioplan fluorescence microscope 

mounted with a SPOT Insight 2 megapixel color mosaic digital camera. Several pictures 

of the cells on each slide were taken, with two pictures taken of each frame. One of the 

two pictures was of the cells seen through a rhodamine filter in order to detect cells dyed 

with DHR. The second picture was of the cells seen through a DAPI filter in order to 

visualize CW, and therefore all the cells present in the frame. 

For evaluating the percentage of DHR-positive cells, the UTHSCSA Image Tool 

(Version 3.0) software was used to calculate both the total number of cells and the 

number of stained cells. Fluorescence of individual DHR-positive cells in arbitrary units 

was determined by using the UTHSCSA Image Tool software (Version 3.0). In each of 3-

5 independent experiments, the value of median fluorescence was calculated by analyzing 

at least 800-1000 cells that were collected at each time point. The median fluorescence 

values were plotted as a function of the number of days cells were cultured. 

Visualization of intracellular lipid bodies 

Wild-type and mutant cells grown in YEPD (0.2% Glucose) were tested microscopically 

for the presence of intracellular lipid bodies (LB) by incubation with BODIPY 493/503. 

Cells were also probed with a fluorescent counterstain CW in order to visualize all cells 

in the population. BODIPY 493/503 was stored in the dark at -20°C as 100 jal aliquots of 

a 1 mM solution in ethanol. CW was stored in the dark at -20°C as the 5 mM stock 

solution in anhydrous DMSO. 
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The concurrent staining of cells with BODIPY 493/503 and CW was carried out 

as follows. The required amounts of the 100 ul BODIPY 493/503 aliquots (1 mM) and of 

the 5 mM stock solution of CW were taken out of the freezer and warmed to room 

temperature. The solutions of DHR and CW were then centrifuged at 21,000 x g for 5 

min in order to clear them of any aggregates of fluorophores. For cell cultures with a titre 

of- 107 cells/ml, 100 ul was taken out of the culture to be treated. If the cell titre was 

lower, proportionally larger volumes were used. The samples were then centrifuged at 

21,000 x g for 1 min, and pelleted cells were resuspended in 100 ul of TNT buffer (25 

mM Tris/HCl (pH 7.5), 150 mM NaCl and 0.2 % Triton X-100). After a 10-min 

incubation at room temperature, the samples were centrifuged at 21,000 x g for 1 min. 

Pellets were then resuspended in 100 ul of TN buffer (25 mM Tris/HCl (pH 7.5), 150 

mM NaCl), and the samples were subjected to centrifugation at 21,000 x g for 1 min. 

Pelleted cells were finally resuspended in 100 ul of TN buffer. Each 100 ul aliquot of 

cells was then supplemented with 1 ul of the 1 mM BODIPY 493/503 and 1 ul of the 5 

mM CW solutions. After a 15-min incubation in the dark at room temperature, the 

samples were centrifuged at 21,000 x g for 5 min. Pellets were resuspended in 100 ul of 

TN buffer. The samples were centrifuged again at 21,000 x g for 5 min, and pellets were 

resuspended in 100 ul of TN buffer. 10 ul of the BODIPY 493/503- and CW-treated cell 

suspension was then added to a microscope slide and covered with a coverslip. The slides 

were then sealed using nail polish. Once the slides were prepared, they were visualized 

under the Zeiss Axioplan fluorescence microscope mounted with a SPOT Insight 2 

megapixel color mosaic digital camera. Several pictures of the cells on each slide were 

108 



taken, with two pictures taken of each frame. One of the two pictures was of the cells 

seen through a fluorescein filter in order to detect cells dyed with BODIPY 493/503. The 

second picture was of the cells seen through a DAPI filter in order to visualize CW, and 

therefore all the cells present in the frame. For evaluating the percentage of BODIPY 

493/503-positive cells, the UTHSCSA Image Tool (Version 3.0) software was used to 

calculate both the total number of cells and the number of stained cells. 

Immunofluorescence microscopy 

Cell cultures were fixed in 3.7% formaldehyde for 45 min at room temperature. The cells 

were washed in solution B (100 mM KH2PO4/KOH pH 7.5, 1.2 M sorbitol), treated with 

Zymolyase 100T (MP Biomedicals, 1 ug Zymolyase 100T/1 mg cells) for 30 min at 30°C 

and then processed as previously described [66]. Monoclonal antibody raised against 

porin (Invitrogen, 0.25 ug/ul in TBSB buffer [20 mM Tris/HCl pH 7.5, 150 mM NaCl, 

lmg/ml BSA]) was used as a primary antibody. Alexa Fluor 568 goat anti-mouse IgG 

(Invitrogen, 2 ug/ul in TBSB buffer) was used as a secondary antibody. The labeled 

samples were mounted in mounting solution (16.7 mM Tris/HCl pH 9.0, 1.7 mg/ml p-

phenylenediamine, 83% glycerol). Images were collected with a Zeiss Axioplan 

fluorescence microscope (Zeiss) mounted with a SPOT Insight 2 megapixel color mosaic 

digital camera (Spot Diagnostic Instruments). 

Oxygen consumption assay 

The rate of oxygen consumption by yeast cells recovered at various time points was 
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measured continuously in a 2-ml stirred chamber using a custom-designed biological 

oxygen monitor (Science Technical Center of Concordia University) equipped with a 

Clark-type oxygen electrode. 1 ml of YEPD medium supplemented with 0.2% glucose 

was added to the electrode for approximately 5 minutes to obtain a baseline. Cultured 

cells of a known titre were spun down at 3,000 x g for 5 minutes. The resulting pellet was 

resuspended in YEPD medium supplemented with 0.2% glucose and then added to the 

electrode with the medium that was used to obtain a baseline. The resulting slope was 

used to calculate the rate of oxygen consumption in C>2% x min"1 x 109 cells. 

Electron microscopy and morphometric analysis 

Cells were fixed in 1.5% KMn04 for 20 min at room temperature, dehydrated by 

successive incubations in increasing concentrations of ethanol, and embedded in 

Poly/Bed 812 epoxy resin (Polysciences). Ultrathin sections were cut using an Ultra-Cut 

E Microtome (Reichert-Jung). Silver/gold thin sections from the embedded blocks were 

examined in a JEOL JEM-2000FX transmission electron microscope. For morphometric 

analysis of random electron microscopic sections of cells, digitized images were analyzed 

using the UTHSCSA Image Tool (Version 3.0) software. In each of 2 independent 

experiments, the percentage of cells that contain pexopodia and/or accumulate gnarled 

LB was calculated by analyzing at least 300 cells that were collected at each time point. 

The values of the percentage of cells containing pexopodia and/or accumulating gnarled 

LB were plotted as a function of the number of days cells were cultured. 
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3.4 Results 

3.4.1 Kinetics of growth and aging of wild-type cells on various glucose 

concentrations 

Cells were grown in an aqueous medium containing YEP (1% yeast extract and 

2% bacto peptone) and one of four concentrations of glucose: 0.2%, 0.5%, 1%, and 2%. 

The full growth cycle of wild-type culture in each of these four media begins with 

logarithmic phase and progresses through diauxic and post-diauxic phases to stationary 

phase (Figure 3.3 A). In logarithmic phase, the cells use glucose to make energy via 

glycolysis (Figure 3.3 B). The diauxic and post-diauxic phases occur when nutrients 

become limited and energy metabolism shifts to respiration, at which point mitochondrial 

proteins are synthesized, growth rate slows, and cells utilize ethanol and other two and 

three carbon compounds for energy production. After a 7-day incubation, wild-type cells 

enter stationary phase. In this phase, the metabolic rate slows and cells are unable to 

divide. 

Using a plate assay for monitoring chronological lifespan (Figure 3.4; see the 

"Materials and methods" section of this chapter for a detailed description of the assay), I 

examined the lifespans of yeast cultures grown on four different concentrations of 

glucose. It should be stressed that the plate assay that we are employing for monitoring 

chronological life span is a standard assay that is routinely used for this purpose by other 

laboratories (Figure 3.5) [196]. Furthermore, the terms "survival" and "alive cells" 

(Figure 3.5) are widely used for referring to survival by quiescent yeast cells of the aging-

promoted accumulation of molecular and cellular damage [196]. 

I l l 



A 35 

30 

_ 25 
E 

^ 2 0 

x 
^ 1 5 
a> 
° 1 0 

5 

0 

L D PD 
r*-irS,— ' 

ST 
I 

• - t -

. - p 

~J 
1| 
1 
S 
w 

4 j j | 

J 
A 
a 
• 
j 

w w 

IMJ 
raff 
I M 

-r^'M 

• i l l 
l i ' 
h i 

T T I X T 

WTT"T ] 
J ^ i i U M l i •FT » ^ V F 

•. 

1 

™! ' 1 

SSmi 
^4 

r ! 

1 j 

1 1 

1 1 

• i 
1 1 

; • 

'• ! + ^ . i _ r 

; j | 

]"• _"._"""::r.i_r...! 
H B i ! . i ! i ! ; 

P™ ~T—! 
PP 

. j . | _ j — j . 

J f i t-1--. ••!-!—>-+ 

••'•••-
i 

r^ 
• - • -

i 
i 

j _ 

ztz 
1 

i 

I 

-•-

i 
i 

! | 
1 

l 
i 
j 

i 

• • -

. M 

1 

! 1 
1 
1 

1 
i 
1 

*Jr 
A . 

i 

l 

j 
j ^ 

,A_ . 
3 _ j _ 

^ 
1 
i 
i 
l 
1 
j 
! 1 

1 

- = ^ 
| 

A — • 
-j: 

H i 

1 
1 
I 
1 [ 

z t 
_ g _ V C D x A 00 / „ l . . ^ ^ ^ r t 

V C D . A CO/ ~1 . .~~~« 
""w- i t r T y.^ /o ijiuuuae 

~* - • - i c r T i.u/o yiut-use 

-+- T er * *.u/o giucose 

L = log phase 

D = diauxic phase 

PD = post-diauxic phase 

ST = stationary phase 

B I' 

2 

w o u 

1.<H 

0.5 

0.50 

0.25 

0.2 

0.1 

„-*-D 

bs^—^ 

\NA^ 
\ \A* 
L\ \\ 

-•-0.2% glucose 

-•-0.5% glucose 

-A-1.0% glucose 

-#-2.0% glucose 

\ \ 

B T J B " ~~~~~, -9- B3i—1 

5 10 15 20 25 30 O 

Days in culture 

0 6 12 18 24 30 36 

Hours in culture 

Figure 3.3. Kinetics of growth and glucose consumption by wild-type strain. (A) Cells undergo four phases 

of growth. In the logarithmic (L) phase, cells ferment glucose and grow exponentially. In the diauxic (D) 

phase, cells use ethanol as a carbon source and their growth rate is reduced. In the post-diauxic (PD) phase, 

the growth rate is reduced even more and finally in stationary (ST) phase the cells stop dividing. (B) 

Glucose in the medium is almost entirely consumed by the end of the first day of cell growth, regardless of 

how much was in the medium to begin with. 

As shown in Figure 3.6, CR cells grown on 0.5% or 0.2% glucose lived significantly 

longer than non-CR-yeast grown on 1% or 2% glucose. Mean lifespan of the cells grown 

on 0.5% glucose nearly doubled that of those grown on 2% (Figures 3.6 B and C). Thus, 

0.5% is an optimal concentration of glucose for achieving the benefit of CR-dependent 

age extension. Those cells grown at 1% outlived those grown at 2%, while those grown at 

0.5% outlived those grown at 1 %, representing a dose-response relationship between the 

rate of chronological aging and the degree of CR (Figure 3.6 B). 
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Figure 3.4. A plating assay for the analysis of chronological lifespan. Chronological lifespan in yeast, 

which mimics aging of nondividing or "post-mitotic" cells of higher eukaryotic organisms, is the length of 

time a population of yeast cells remains viable in a nondividing state. 
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Figure 3.5. The plate assay that we are employing for monitoring chronological life span is a standard 

assay that is routinely used for this purpose by other laboratories. Data from Fabrizio et al. Cell (2005) 

123:655-667. 
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Figure 3.6. A dose-response relationship between the rate of aging and the degree of calorie restriction. (A) 

Cells begin to die by the end of the post-diauxic phase. The death of cells grown under CR conditions (i.e., 

on 0.2% or 0.5% glucose) is delayed, as compared to cells grown under non-CR conditions (i.e., on 1.0% or 

2.0% glucose). (B) Cells grown on 0.5% glucose have the highest mean lifespan of cells grown on the four 

glucose concentrations tested. (C) Mean lifespans of cells grown on 0.2%, 0.5%, 1.0% or 2.0% glucose. 

Importantly, the measurement of ATP in cells grown on four different concentrations of 

glucose revealed that the intracellular levels of ATP and the dynamics of their change 

during chronological aging were very similar in CR and non-CR yeasts (unpublished data 

from Dr. Titorenko's laboratory). Thus, yeast cells placed on the CR diet are not starving. 

Based on my aforementioned findings, I hypothesized that: (1) CR yeast remodel their 

metabolism in order to match the level of ATP produced by non-CR yeast; and (2) such 

specific remodeling of metabolism in CR yeast extends their lifespan. 
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3.4.2 ROS that are produced in peroxisomes are not essential for chronological 

aging 

With a portion of the intracellular ROS being produced in the Aox-dependent 

reaction of peroxisomal fatty acid oxidation, I set out to see if the amount of peroxisome-

produced ROS plays a role in chronological aging under CR conditions. Peroxisomal 

Aox, a product of the S. cerevisiae FOX1 gene, catalyzes the reaction whereby activated 

free fatty acids are oxidized to form trans-2-enol-CoA. This reaction produces a quantity 

of hydrogen peroxide that can then be detoxified, using the peroxisomal catalase Ctalp, 

to form water and molecular oxygen (Figure 3.7). I tested a fox] A mutant strain for the 

rate of chronological aging on 0.2% glucose, hence knocking out its ROS-producing 

reaction, with the hypothesis that limiting the amount of ROS in the peroxisome may 

increase the lifespan of yeast cells. Contrary to my expectation, the mutant strain 

exhibited a shortened lifespan, aging prematurely once the cells reached the stationary 

phase of growth (Figure 3.7). In addition to the foxl A mutant strain, I also tested a ctalA 

mutant strain placed on the CR diet, under the same hypothesis as that was made for 

Foxlp. It appeared that lack of the ROS-decomposing peroxisomal catalase Ctalp has 

little effect on chronological aging under CR conditions (Figure 3.7). Not only does this 

finding suggest a very little or no role for peroxisomal ROS in chronological aging under 

CR, but it also provides evidence for an important regulatory role for peroxisomal P-

oxidation of fatty acids in delaying chronological aging. 
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Figure 3.7. ROS that are produced in peroxisomes during fatty acid oxidation are not essential for 

chronological aging of CR yeast. Lack of the H202-producing peroxisomal Foxlp shortens, not extends, 

life span. Lack of the H202-decomposing peroxisomal Ctalp has little effect on chronological aging under 

CR. 

3.4.3 Mitochondria, not peroxisomes, consume the vast majority of 0 2 and 

produce the bulk of ROS 

To test further my hypothesis that peroxisomal ROS produced in the oxygen-

consuming reaction catalyzed by Foxlp (Aox) do not affect the rate of chronological 

aging in CR-dieting yeast, I measured the rate of oxygen consumption and the level of 

ROS production by CR cells that lack this protein. I found that the rate of oxygen 

consumption by CR cells of wild-type strain significantly increased when these cells 

entered the diauxic phase of growth on 0.2% glucose and then gradually declined through 

the post-diauxic and stationary phases (Figure 3.8). In contrast, after a dramatic increase 

in CR cells entering the diauxic phase of growth on 0.2% glucose to the levels that 
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Figure 3.8. Peroxisomes do not consume significant amounts of oxygen in CR yeast cells. Dynamics of 

changes in the rate of oxygen consumption by CR cells during chronological aging of the wild-type, foxlA 

and ctalA strains grown on 0.2% glucose. 

significantly exceeded those by respiring wild-type cells, the rate of oxygen consumption 

by foxlA mutant cells abruptly decreased so that upon entering stationary phase mutant 

cells consumed negligible amounts of oxygen (Figure 3.8). The observed during diauxic 

phase spike in the rate of oxygen consumption by foxl A mutant cells lacking Aox, which 

is the only known oxygen-consuming peroxisomal protein, strongly suggest that: (1) 

peroxisomes do not consume significant amounts of oxygen in CR yeast cells; and (2) the 

bulk of oxygen in CR yeast is consumed by mitochondria engaged into oxidative 

phosphorylation. My findings also suggested that the observed abrupt decline of oxygen 

consumption rate by CR foxl A mutant cells during post-diauxic phase, which followed 

the spike of respiration rate in diauxic phase, was due to the failure of oxidative 
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phosphorylation in mitochondria of foxlA mutant cells placed on the CR diet. This 

second assumption appeared to be correct (please see below). 

I then used the fluorescent dye Dihydrorhodamine-123 (DHR) for monitoring the 

dynamics of changes in the intracellular levels of ROS during chronological aging of 

wild-type and mutant strains. In the cell, this nonfluorescent compound can be oxidized 

to the fluorescent chromophore rhodamine 123 by ROS (Figure 3.9). I found that the 

number of ROS-positive CR cells of wild-type strain significantly increased when these 

cells entered the diauxic phase of growth on 0.2% glucose and then gradually declined 

through the post-diauxic and stationary phases (Figures 3.10 and 3.11). In contrast, after a 

substantial increase of ROS-positive CR cells of foxlA mutant strain entering the diauxic 

phase of growth on 0.2% glucose to the numbers very similar to those for wild-type 

strain, the number of ROS-positive foxl A mutant cells abruptly decreased so that only a 

minor portion of these cells had detectable levels of ROS upon entering stationary phase 

(Figures 3.10 and 3.11). The quantitation of the intensity of fluorescence signal detected 

by fluorescence microscopy in ROS-positive cells revealed that the intracellular level of 

ROS in CR wild-type strain significantly increased when these cells entered the diauxic 

phase of growth on 0.2% glucose and then gradually declined through the post-diauxic 

and stationary phases (Figure 3.11). In contrast, after a dramatic increase in CR cells 

entering the diauxic phase of growth on 0.2% glucose to the level that significantly 

exceeded that detected in wild-type cells, the intracellular level of ROS in foxl A mutant 

strain rapidly decreased so that upon entering stationary phase mutant cells possessed 

negligible amounts of ROS (Figure 3.11). The observed during diauxic phase spike in the 
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Figure 3.9. Using the fluorescent dye Dihydrorhodamine-123 (DHR) for monitoring the dynamics of 

changes in the intracellular levels of ROS during chronological aging of CR wild-type strain grown on 

0.2% glucose. In the cell, DHR can be oxidized to the fluorescent chromophore rhodamine 123 by ROS. 

BR, bright-field image. 
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Figure 3.10. Peroxisomes do not produce significant amounts of ROS in CR yeast. ROS were visualized 

using fluorescence microscopy with DHR. 
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Figure 3.11. Peroxisomes do not produce the major portion of ROS in CR yeast. Dynamics of changes in 

the number of ROS-positive cells and intracellular level of ROS during chronological aging of the wild-

type, foxJA and ctalA strains grown on 0.2% glucose. 

intracellular level of ROS mfoxlA mutant strain lacking Aox, which is the only known 

ROS-generating peroxisomal protein, strongly suggest that: (1) peroxisomes do not 

produce significant amounts of ROS in CR yeast; and (2) the bulk of ROS in CR yeast is 

produced by mitochondria due to the transfer of electrons from components of the 

electron transport chain to oxygen consumed by these organelles. My conclusion that 

peroxisomes do not produce significant amounts of ROS in CR yeast cells was further 

supported by my observation that both the number of ROS-positive cells and the 

intracellular levels of ROS during aging of the ctalA mutant strain lacking catalase, 

which is the only known ROS-degrading peroxisomal protein, were very similar to those 

found in aging wild-type strain (Figure 3.11). 
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3.4.4 The formation of acetyl-CoA via peroxisomal P-oxidation of neutral lipids-

derived fatty acids is required for extending lifespan of CR yeast 

Altogether, my aforementioned findings provided evidence that: (1) the Aox-

dependent reaction in peroxisomes does not consume significant amounts of oxygen in 

CR yeast cells; and (2) the Aox-dependent reaction in peroxisomes does not produce 

significant amounts of ROS in CR yeast cells. On the other hand, lack of Aox in the 

fox J A mutant strain led to premature chronological aging of CR cells. Not only do these 

findings suggest a very little or no role for the Aox-dependent generation of peroxisomal 

ROS in modulating the pace of chronological aging under CR conditions, but they also 

strongly suggest that peroxisomal P-oxidation of fatty acids plays an important regulatory 

role in the beneficial effect of CR on yeast longevity. Because Aox catalyzes the first step 

in a three-step pathway of fatty acid oxidation in the peroxisome, I hypothesized that the 

formation of acetyl-CoA via peroxisomal P-oxidation of fatty acids is required for 

extending lifespan of CR yeast cells. I therefore tested the rates of chronological aging of 

the mutant strains fox2A and fox3A. These two mutants lack the enzymes that catalyze, 

respectively, the second and third steps of peroxisome-associated P-oxidation of free fatty 

acids leading to the formation of acetyl-CoA (Figure 3.12). I found that lack of any of 

these two proteins shortened chronological life span in a fashion similar to that for the 

strain lacking Foxlp, with a sharp decline in the percentage of alive cells occurring after 

entering the post-diauxic phase of growth on 0.2% glucose (Figure 3.12). In addition, 

each mutant lacking either one of the three peroxisomal P-oxidation enzymes suffered 

from the same sharp decrease in the rate of oxygen consumption after the diauxic phase 
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Figure 3.12. Any yeast mutant that lacks an enzyme required for the formation of acetyl-CoA in 

peroxisomes ages and dies as soon as it enters the post-diauxic phase of growth on 0.2% glucose. 
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Figure 3.13. The inability of CR yeast entering post-diauxic phase to produce acetyl-CoA in peroxisomes 

results in the sharp decrease of mitochondrially synthesized ATP. 
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of growth (Figure 3.8). Taken together, my findings strongly suggested that the formation 

of acetyl-CoA via peroxisomal (3-oxidation of fatty acids is required for extending 

lifespan of CR yeast cells only when they enter post-diauxic phase. The inability of CR 

yeast entering post-diauxic phase to produce acetyl-CoA in peroxisomes resulted in the 

sharp decrease of mitochondrially synthesized ATP (Figure 3.13), and thereby 

accelerated the aging process. 

It should be stressed that the CoA-activated pool of fatty acids entering the |3-

oxidation pathway in peroxisomes is formed due to the lipolysis of neutral lipids that are 

deposited in lipid bodies (LB) [197]. LB of the yeast S. cerevisiae consist of a highly 

hydrophobic core of neutral lipids, mainly triacylglycerols and ergosteryl esters, 

surrounded by a phospholipid monolayer [198, 199]. Yeast LB also contain 16 major 

proteins, all of which are involved in lipid synthesis and degradation [197, 198]. The well 

known function of LB is storage of neutral lipids and fatty acids as an energy source and 

as a source of components needed for membrane biogenesis [197 - 199]. A reduction in 

the intracellular level of neutral lipids, the most abundant lipid of LB, was proposed to be 

a primary way by which calorie restriction extends lifespan [200, 201]. Therefore, I used 

fluorescent microscopy to monitor the kinetics of changes in the abundance of LB during 

chronological aging of wild-type and fox mutant cells. The neutral lipids stored in LB 

were visualized in living cells using the fluorescence lipophilic dye BODIPY 493/503 

(Figure 3.14). I found that the entering of wild-type cells into the post-diauxic growth 

phase on 0.2% glucose initiates rapid consumption of LB (Figures 3.14 and 3.15). In CR 

wild-type cells LB were almost entirely consumed by the beginning of stationary phase 
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Figure 3.14. Using BODIPY 493/503 for visualizing neutral lipids that are stored in lipid bodies. 

Glucose Ethanol 

(Adhlj^ADH 

Pyruvate—> Acetaldehyde 

(TAG, EEjER 

TAG, E E ( I J £ ^-> 

DAG, ERG 

— 100 

g. 

el
ls

 

C
 

0 60 
> 

1 40 

m 20 

0 
( 

LDPD ST 

) 5 10 
D ay s in ( :ulture 

- • -wt 
-O-foxlA 
-L-fox2A 

<^fox3A 

Peroxisome 

Figure 3.15. Lack of any of the three enzymes involved in peroxisomal P-oxidation of fatty acids impairs 

the mobilization of neutral lipids from lipid bodies. In CR wild-type cells lipid bodies were almost entirely 

consumed by the beginning of stationary phase. In contrast, no dramatic decrease in the abundance of lipid 

bodies was seen in chronologically aging CR cells of the short-lived foxlA,fox2A and fox3A mutant strains 

grown on 0.2% glucose. 
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(Figures 3.14 and 3.15). In contrast, no dramatic decrease in the abundance of LB was 

seen in chronologically aging CR cells of the short-lived foxlA,fox2A and fox3A mutant 

strains grown on 0.2% glucose (Figure 3.15). Thus, lack of any of the three enzymes 

involved in peroxisomal P-oxidation of fatty acids impaired the mobilization of neutral 

lipids from LB, perhaps by preventing or slowing down the lipolysis of LB-stored neutral 

lipids. 

This hypothesis has been confirmed by using thin-layer chromatography (TLC) of 

neutral lipids extracted from whole cells of the wild-type and fox mutant strains. I 

revealed that, in aging wild-type cells, CR promoted: (1) lipolysis of the two neutral 

lipids, triacylglycerols (TAG) and ergosteryl esters (EE), whose hydrolysis by lipases 

represents the first step in the generation of free fatty acids (FFA) in LB; (2) the 

consumption of diacylglycerol (DAG), a product of the lipolysis of TAG by LB-bound 

lipases and a substrate of the second lipolytic reaction leading to the formation of FFA in 

LB; and (3) the consumption of FFA (Figures 3.16 and 3.17). Importantly, any of the 

three mutants (i.e.,foxlA,fox2A andfox3A) that lacks an enzyme of the peroxisomal P-

oxidation of neutral lipids-derived FFA, when grown on 0.2% glucose, was unable to 

hydrolyze TAG, EE and DAG (Figures 3.18 and 3.19). Furthermore, as soon as any of 

the three fox mutants enters stationary phase on 0.2% glucose, it begins accumulating 

FFA (Figures 3.18 and 3.19). Interestingly, the closer to the beginning of the peroxisomal 

P-oxidation pathway the missing in a fox mutant reaction is, the more of FFA is 

accumulated within cells (Figures 3.18 and 3.19). 
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Figure 3.16. In aging wild-type cells, CR promotes: 1) lipolysis of the two neutral lipids, triacylglycerols 

(TAG) and ergosteryl esters (EE), whose hydrolysis by lipases represents the first step in the generation of 

free fatty acids (FFA) in lipid bodies (LB); 2) the consumption of diacylglycerol (DAG), a product of the 

lipolysis of TAG by LB-bound lipases and a substrate of the second lipolytic reaction leading to the 

formation of FFA in LB; and 3) the consumption of FFA. 
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Figure 3.17. In aging wild-type cells, CR promotes the lipolysis of triacylglycerols (TAG) and ergosteryl 

esters (EE), degradation of diacylglycerol (DAG) and the consumption of free fatty acids (FFA). 
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Figure 3.18. Any mutant that lacks an enzyme of the peroxisomal P-oxidation of neutral lipids-derived 

FFA, when grown on 0.2% glucose, is unable to hydrolyze TAG, EE and DAG deposited in lipid bodies. 

As soon as any of the three fox mutants enters stationary phase on 0.2% glucose, it begins accumulating 

FFA. The closer to the beginning of the peroxisomal P-oxidation pathway the missing in a fox mutant 

reaction is, the more of FFA is accumulated within cells. 

But where in the cells of fox mutants entering stationary phase on 0.2% glucose these 

various lipid species (i.e., TAG, EE, DAG and FFA) accumulated? Using the TLC 

analysis of lipids extracted from purified ER (which serves as a template for the 

formation of LB) and LB, I demonstrated that the prematurely aging fox mutants grown 

on 0.2% glucose accumulate FFA, as well as TAG, EE and DAG, in their ER-derived LB 
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Figure 3.19. The prematurely aging^a* mutants grown on 0.2% glucose accumulate FFA, as well as TAG, 

EE and DAG, in their ER-derived lipid bodies (LB). The closer to the beginning of the peroxisomal P-

oxidation pathway the missing in a fox mutant reaction is, the more of FFA and DAG is accumulated in LB. 

(Figure 3.19). Interestingly, the closer to the beginning of the peroxisomal p-oxidation 

pathway the missing in a fox mutant reaction is, the more of FFA and DAG is 

accumulated in LB (Figure 3.19). 

But where in the cells of fox mutants entering stationary phase on 0.2% glucose 

these various lipid species (i.e., TAG, EE, DAG and FFA) accumulated? Using the TLC 

analysis of lipids extracted from purified ER (which serves as a template for the 

formation of LB) and LB, I demonstrated that the prematurely aging fox mutants grown 

on 0.2% glucose accumulate FFA, as well as TAG, EE and DAG, in their ER-derived LB 

(Figure 3.19). Interestingly, the closer to the beginning of the peroxisomal p-oxidation 

pathway the missing in a fox mutant reaction is, the more of FFA and DAG is 

accumulated in LB (Figure 3.19). 
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Figure 3.20. In yeast cells grown on oleic acid, the extensive physical contact between peroxisomes and 

lipid bodies (LB) promotes the coupling of lipolysis of neutral lipids within LB with oxidation of FFA in 

peroxisomes (Binns et al. J. Cell Biol. (2006) 173:719-731). 

It should be noted that, in yeast cells grown on oleic acid, the extensive physical contact 

between peroxisomes and LB promotes the coupling of lipolysis of neutral lipids within 

LB with oxidation of FFA in peroxisomes (Figure 3.20) [202]. Using transmission 

electron microscopy followed by morphometric analysis, I showed that, as soon as fox 

mutants enter stationary phase on 0.2% glucose, their LB begin to build up so called 

"pexopodia" and "gnarls". "Pexopodia" represent extensions and intrusions of 

peroxisomes into LB, whereas "gnarls" epitomize organized arrays of FFA accumulated 
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Figure 3.21. As soon as fox mutants enter stationary phase on 0.2% glucose, their lipid bodies (LB) begin 

build up so called "pexopodia" and "gnarls". "Pexopodia" represent extensions and intrusions of 

peroxisomes into LB, whereas "gnarls" epitomize organized arrays of FFA accumulated within LB. The 

closer to the beginning of the peroxisomal P-oxidation pathway the missing in a fox mutant reaction is, the 

more of both "pexopodia" and "gnarls" are accumulated within LB. 

within LB (Figure 3.21) [202]. It should be stressed that the closer to the beginning of the 

peroxisomal P-oxidation pathway the missing in a. fox mutant reaction is, the more of 

both "pexopodia" and "gnarls" are accumulated within LB (Figure 3.21). 

Altogether, my aforementioned findings provide the comprehensive evidence 

that: (1) the formation of acetyl-CoA via peroxisomal P-oxidation of neutral lipids-

derived fatty acids is required for extending lifespan of CR yeast cells; (2) in CR yeast, 

the extensive physical contact between peroxisomes and LB promotes the coupling of 

lipolysis of neutral lipids within LB with oxidation of FFA in peroxisomes; and (3) the 
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rate of peroxisomal p-oxidation of neutral lipids-derived fatty acids is a key factor 

controlling the rate of lipolysis of neutral lipids within LB and, ultimately, the rate of 

chronological aging in yeast placed on the CR diet. 

3.4.5 The rate of peroxisomal P-oxidation of neutral lipids-derived fatty acids 

controls the rate of chronological aging by modulating essential processes in 

mitochondria 

As described above, lack of any of the three Fox proteins: (1) shortened 

chronological life span of CR yeast; (2) in "young" CR cells entering diauxic growth 

phase, dramatically increased the amplitude of the observed spike in the rates of oxygen 

consumption and ROS generation by mitochondria; (3) in aging CR cells entering post-

diauxic growth phase, resulted in the sharp decrease of the rates of oxygen consumption 

and ROS generation by mitochondria; and (4) in aging CR cells entering post-diauxic 

growth phase, considerably decreased the intracellular level of mitochondrially 

synthesized ATP. 

All these findings strongly suggest that the formation of acetyl-CoA via 

peroxisomal P-oxidation of neutral lipids-derived fatty acids modulate essential processes 

in mitochondria, including the electron transport chain and oxidative phosphorylation. It 

seems that that the observed spike in the rate of ROS generation by mitochondria of the 

fox mutants irreversibly damages key mitochondrial proteins. In fact, lack of any of the 

three Fox proteins resulted in rapid inactivation of cytochrome c oxidase and aconitase in 
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mitochondria of the prematurely aging fox mutants entering post-diauxic growth phase 

(Figure 3.22). Both these mitochondrial proteins represent the key targets for the 

oxidative damage by ROS [99 - 102]. 

LD PD ST 
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LD PD ST 
-•-wt, ACO, - Fe3+ - S2~ IACO activity before re-activation 
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Figure 3.22. Lack of any of the three Fox proteins results in rapid inactivation of cytochrome c oxidase and 

aconitase in mitochondria of the prematurely aging fox mutants entering post-diauxic growth phase. Both 

these mitochondrial proteins represent the key targets for the oxidative damage by ROS. Abbreviations: 

CCO, cytochrome c oxidase; ACO, aconitase. 

Furthermore, using the fluorescence dye Rhodamine 123 for monitoring the 

mitochondrial membrane potential (AT) (Figure 3.23), I demonstrated that lack of any of 

the three Fox proteins: (1) in "young" CR cells entering diauxic growth phase, 
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Figure 3.23. Using Rhodamine 123 for monitoring the mitochondrial membrane potential (^A) in living 

cells. 

dramatically increased the value of AT, thereby leading to the hyper-polarization of the 

inner mitochondrial membrane (Figures 3.24 and 3.25); and (2) in aging CR cells 

entering post-diauxic growth phase, resulted in the sharp decrease of the value of AT 

(Figures 3.24 and 3.25), thereby rapidly abrogating the AT-dependent processes in 

mitochondria, including the transport of solutes and the synthesis of ATP. 

Although lack of any of the three Fox proteins caused age-related changes in 

essential mitochondrial processes, it did not affect the abundance of mitochondria in 

chronologically aging CR yeast. In fact, the level of porin - one of the most abundant 

mitochondrial proteins - in CR cells of prematurely aging/ox mutants entering post-
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Figure 3.24. The foxIA mutation greatly increases the mitochondrial membrane potential (A*F) in cells 

entering diauxic (D) phase and causes its sharp decline in cells entering post-diauxic (PD) phase. 
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Figure 3.25. Lack of any of the three Fox proteins: (1) in "young" CR cells entering diauxic growth phase, 

dramatically increases the value of TA, thereby leading to the hyper-polarization of the inner mitochondrial 

membrane; and (2) in aging CR cells entering post-diauxic growth phase, results in the sharp decrease of 

the value of ^A. 
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Figure 3.26. Although lack of any of the three Fox proteins causes age-related changes in essential 

mitochondrial processes, it does not affect the abundance of mitochondria in CR yeast. 
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Figure 3.27. Lack of any of the three Fox proteins greatly affects the morphology of mitochondria in CR 

yeast. The morphology of mitochondria was visualized using immunofluorescence microscopy with anti-

porin antibodies. 
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Figure 3.28. Morphology of mitochondria depends on a balance between the processes of mitochondrial 

fission, fusion & tubulation. 

diauxic growth phase was very similar to that seen in wild-type cells (Figure 3.26). 

However, I found that lack of any of the three Fox proteins greatly affected the 

morphology of mitochondria in CR yeast. In fact, mitochondria in chronologically aging 

WT cells formed a tubular network (Figure 3.27). In contrast, in the foxlA mutant strain, 

this network was fragmented into individual mitochondria (Figure 3.27). Thus, the 

efficiency with which peroxisomes supply acetyl-CoA for its oxidation via the TCA cycle 

in mitochondria modulates, by a yet-to-be established mechanism, a delicate balance 

between the processes of mitochondrial fission, fusion and tubulation. Such balance plays 

a pivotal role in establishing and maintaining the morphological appearance of 

mitochondria (Figure 3.28) [203, 204]. 
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3.5 Discussion 

To study the effect of CR on the chronological lifespan of the yeast S. cerevisiae, I 

incubated wild-type strain BY4742 in rich YP medium initially containing 0.2%, 0.5%, 

1% or 2% glucose. I chose YP medium for chronological aging studies because, in 

contrast to a synthetic medium, it is rich in amino acids, nucleotides, vitamins and other 

nutrients. I therefore thought that the reduction of glucose concentration in YP medium 

would lower the number of available calories without compromising the supply of 

essential nutrients, thereby modeling a traditional CR dietary regimen established in 

experiments with laboratory rodents [205]. An equally important reason for choosing rich 

YP medium for chronological aging studies is that the recent isolation of quiescent and 

nonquiescent cells from yeast stationary-phase cultures grown in this medium provided a 

novel, valuable system for elucidating the mechanisms linking chronological aging to 

quiescence, the mitotic cell cycle and apoptosis [206, 207]. My choice of the strain 

BY4742 was based on its relatively short chronological lifespan [208], thereby offering 

considerable time savings for chronological aging studies of yeast cultivated in rich YP 

medium. Importantly, this yeast strain serves as one of the two haploid genetic 

backgrounds of the widely used Yeast Knock-Out Collection available from Open 

Biosystems. Using the developed assay for studying the chronological aging of yeast, I 

found that CR cells grown on 0.2% or 0.5% glucose lived significantly longer than cells 

grown under non-CR conditions on 1 % or 2% glucose. 

The mean chronological lifespan of cells grown on 0.2% glucose was extended by 

more than 60% and that of cells grown on 0.5% glucose was extended by almost 2-fold, 
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as compared to the mean chronological lifespan of cells grown on 2% glucose. Thus, the 

chronological lifespan of yeast can be extended by CR in a dose-dependent manner. Of 

note, CR yeast grown on 0.5% glucose lived longer than CR yeast grown on 0.2% 

glucose. Hence, 0.5% is an optimal concentration of glucose for achieving the benefit of 

CR-dependent longevity extension. Moreover, my findings imply that CR yeast cells 

remodel their metabolism in order to match the level of ATP produced by non-CR yeast 

cells. It is conceivable that such specific remodeling of metabolism in CR yeast cells 

extends their life span. The validity of this hypothesis has been recently confirmed in Dr. 

Titorenko's laboratory by using a systems biological approach for analyzing the age-

dependent dynamics of changes in proteomes and metabolomes of chronologically aging 

yeast. 

One of my objectives was to understand what role (if any) acyl-CoA oxidase and, 

perhaps, other peroxisomal enzymes of fatty acid oxidation may play in regulating yeast 

longevity. A priory, there are two different mechanisms by which fatty acid oxidation in 

peroxisomes could influence longevity of yeast under CR conditions. First, the formation 

of hydrogen peroxide in the Aox (Foxlp)-dependent reaction of fatty acid oxidation and 

its decomposition by peroxisomal catalase could modulate the level of this ROS 

molecule, which is known for its essential role in regulating longevity. However, my 

evaluation of the chronological lifespans of the foxlA mutant strain, which lacks the 

hydrogen peroxide-producing Aox, and the ctalA mutant strain, which lacks the 

hydrogen peroxide-decomposing peroxisomal catalase, provided convincing evidence 

that peroxisomally produced ROS do not influence yeast longevity under CR conditions. 
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Moreover, by monitoring the age-dependent dynamics of changes in the rates of oxygen 

consumption and ROS production by foxlA and ctalA cells, I established that in 

chronologically aging CR yeast: (1) peroxisomes do not consume significant amounts of 

oxygen and do not produce significant amounts of ROS; and (2) the bulk of oxygen is 

consumed and the major portion of ROS is generated by mitochondria due to the transfer 

of electrons from components of the electron transport chain to oxygen consumed by 

these organelles. Another mechanism by which fatty acid oxidation in peroxisomes could 

influence longevity of yeast under CR conditions consists in the ability of peroxisomes to 

generate considerable levels of acetyl-CoA, the final product of peroxisomal fatty acid 

oxidation. I hypothesized that, following its delivery to mitochondria for the oxidation via 

the tricarboxylic acid cycle, this peroxisomally produced acetyl-CoA could be 

responsible for the synthesis of the major portion of ATP in mitochondria. In support of 

this hypothesis, my analysis of the lifespans of mutants lacking Foxlp, Fox2p or Fox3p, 

along with the monitoring of oxygen consumption and ATP synthesis by their cells, 

provided evidence that the formation of acetyl-CoA via peroxisomal |3-oxidation of fatty 

acids is mandatory for the beneficial effect of CR on yeast longevity. Moreover, by 

monitoring the age-dependent dynamics of changes in the abundance of various lipid 

species during chronological aging of wild-type and fox mutant cells, I established that 

the rate of peroxisomal [3-oxidation of neutral lipids-derived fatty acids is a key factor 

controlling the rate of lipolysis of neutral lipids within LB and, ultimately, the rate of 

chronological aging in yeast placed on the CR diet. Finally, my evaluation of the effect of 

mutations eliminating individual enzymes of peroxisomal p-oxidation of neutral lipids-
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derived fatty acids on mitochondria-confined processes provided evidence that the 

formation of acetyl-CoA - the end product of such fatty acid oxidation - modulates 

essential processes in mitochondria, including enzymatic activities of cytochrome c 

oxidase, succinate dehydrogenase and aconitase, the mitochondrial membrane potential 

(A^), and a balance between the processes of mitochondrial fission, fusion and 

tabulation. 

3.6 Conclusions 

Altogether, my aforementioned findings led to the following conclusions. First, 

peroxisomes do not produce significant quantities of ROS in chronologically aging CR 

yeast. Second, ROS that are produced in peroxisomes during fatty acid oxidation are not 

essential for chronological aging of yeast placed on a CR diet. Third, both the formation 

of free fatty acids due to lipolysis of LB-deposited neutral lipids and their subsequent 

Foxlp (Aox)-, Fox2p- and Fox3p-dependent peroxisomal oxidation are mandatory for the 

observed extension of lifespan by CR. Fourth, by the beginning of PD phase, CR yeast 

synthesize the bulk of their ATP in mitochondria by oxidizing the pool of acetyl-CoA 

that has been generated in peroxisomes via Foxlp (Aox)-, Fox2p- and Fox3p-dependent 

fatty acid oxidation. I therefore concluded that fatty acid oxidation in peroxisomes 

controls longevity by modulating the rate of ATP synthesis in mitochondria, but not by 

generating the ROS hydrogen peroxide. Finally, my findings led to the conclusion that 

the efficiency of acetyl-CoA formation via peroxisomal fatty acid oxidation modulates: 

(1) the efficiencies of electron flow through the mitochondrial electron transport chain; 
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(2) activities of several well-known target enzymes for the oxidative damage by ROS 

(i.e., cytochrome c oxidase, succinate dehydrogenase and aconitase); (3) the 

mitochondrial membrane potential (AT); and (4) a balance between the processes of 

mitochondrial fission, fusion and tubulation, which plays a pivotal role in establishing 

and maintaining the morphological appearance of mitochondria. 
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4 By modulating ROS production in mitochondria, a distinct set of 

peroxisomal proteins mediates the ability of a novel anti-aging small 

molecule to extend yeast longevity 

4.1 Abstract 

Recent studies in Dr. Titorenko's laboratory identified 22 novel small molecules 

that greatly increase the chronological lifespan of yeast. My experiments with one of 

these novel anti-aging drugs, a commercially available compound further referred to as 

"LA", revealed that it extends yeast longevity under CR conditions. My studies aimed at 

elucidating the molecular mechanisms by which LA increases yeast lifespan revealed that 

lack of Aox or any other enzyme of peroxisomal fatty acid oxidation does not impair the 

anti-aging effect of LA. Thus, although fatty acid oxidation in peroxisomes is essential 

for delaying aging, it is not required for the ability of LA to extend yeast longevity. 

Moreover, my findings imply that the presence of peroxisomes in yeast cells is not a 

requirement for life-span extending ability of LA. However, two proteins needed for the 

import of soluble proteins into the peroxisomal matrix, which are called Pexlp and 

Pex6p, appeared to be critical for the ability of LA to extend yeast longevity. The 

essential role of at least one of these proteins - the AAA ATPase Pex6p - in mediating 

life-span extending ability of LA is due to its involvement in promoting the ability of 

another organelle, the mitochondrion, to maintain ROS homeostasis within a cell. My 

findings demonstrated that LA extends yeast longevity by: (1) reducing the damaging 

effect of ROS on cellular macromolecules; and (2) amplifying the so-called "hormetic" 

effect of ROS through the activation of stress-protecting and other anti-aging proteins. 
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4.2 Introduction 

Using a custom-designed microplate assay for monitoring yeast chronological 

lifespan, Dr. Titorenko's laboratory recently conducted a high-throughput screening of 

several combinatorial chemical libraries in search for small molecules that can increase 

yeast longevity. This screening procedure resulted in the identification of 22 novel 

compounds that cause a 6- to 10-fold extension of the chronological lifespan of a short­

lived mutant strain and belong to 5 chemically distinct groups. My experiments with a 

commercially available compound that belongs to one of these groups and is called LA 

revealed that, similar to its effect on the short-lived mutant used for the high-throughput 

screen, LA extends the chronological lifespan of wild-type strain under CR conditions 

(Figure 4.1). Importantly, all of the novel anti-aging compounds that have identified by 

Dr. Titorenko's laboratory - including LA - are structurally distinct from resveratrol, a 

constituent of red wine that extends the replicative lifespan of yeast [209] and the 

chronological lifespans of worms, flies and fishes [210 - 215] by activating so-called 

sirtuins of the Sir2p protein family. Furthermore, all these novel anti-aging compounds -

including LA - are structurally unrelated to several other small molecules that, similar to 

resveratrol, activate the sirtuin SIRT1, improve health and survival, and delay the onset 

of age-related diseases in rodent models [216-218]. Thus, it is conceivable that LA and 

the other novel anti-aging compounds that have been identified by Dr. Titorenko's 

laboratory target longevity-related cellular processes that are not modulated by 

resveratrol and other known activators of sirtuins. 

My studies described in Chapter 3 led to the conclusion that the formation of 
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Figure 4.1. The anti-aging small molecule LA extends the chronological life span of wild-type strain. 

acetyl-CoA via peroxisomal p-oxidation of neutral lipids-derived fatty acids is mandatory 

for increasing the chronological lifespan of CR yeast. I was intrigued therefore by a role 

(if any) for the Foxlp (Aox)-, Fox2p- and Fox3p-dependent peroxisomal fatty oxidation 

in the ability of LA to extend longevity of CR yeast. Moreover, the proper localization of 

Foxlp (Aox), Fox2p and Fox3p to the peroxisomal matrix depends on a distinct subset of 

at least 32 proteins that are collectively termed peroxins and encoded by the PEX genes 

[6 -8, 18, 22, 219 - 223]. The peroxins Pexlp, Pex5p and Pex6p are required for 

peroxisomal import of numerous matrix proteins targeted to the peroxisome by their 

carboxyl-terminal peroxisomal targeting signal type 1 (PTS1), including Foxlp (Aox) 

and Fox2p (Figure 4.2) [2,30]. Therefore, the pexlA, pexSA and pex6A mutants are 
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deficient in peroxisomal import of Foxlp (Aox) and Fox2p and accumulate them in the 

cytosol (Figure 4.2) [6, 8]. In contrast, thiolase (Fox3p), the third enzyme of peroxisomal 

p-oxidation of fatty acids, does not contain the PTS1, is targeted to the peroxisome by its 

amino-terminal PTS2 and, thus, accumulates only in the matrix of peroxisomes in pexlA, 

pex5A and pex6A mutant cells (Figure 4.2) [7, 8]. Furthermore, the peroxin Pex7p 

functions as a cytosolic shuttling receptor for peroxisomal import of Fox3p (thiolase), the 

third enzyme of peroxisomal P-oxidation of fatty acids that carries the PTS2 (Figure 4.2) 

[6, 8]. Therefore, Fox3p accumulates exclusively in the cytosol of pex7A mutant cells 

(Figure 4.2) [30]. In contrast, the pexlA mutation does not affect peroxisomal import of 

the first two enzymes of P-oxidation of fatty acids, namely Foxlp (Aox) and Fox2p 

(Figure 4.2) [2, 30]. Consequently, both these enzymes can be found exclusively in the 

peroxisomal matrix of pex7A mutant cells (Figure 4.2) [6, 8]. Moreover, the peroxin 

Pex3p is required for the formation of peroxisomes from the ER template (Figure 4.2) 

[125, 224]. Hence, all three enzymes of peroxisomal fatty acid oxidation accumulate 

exclusively in the cytosol of pex3 A mutant cells (Figure 4.2). The ability of mutant strains 

carrying various pex mutations to have the entire peroxisomal fatty acid P-oxidation 

pathway, or only some of its individual reactions, to take place in the cytosol opened an 

opportunity to evaluate the requirement of peroxisomal localization of this pathway for 

the ability of LA to extend longevity of CR yeast. 

It should be stressed that some peroxins and peroxisomal proteins possess a dual 

subcellular localization and function. Although proteins belonging to this distinct group 

have initially been recognized for their essential roles in peroxisome biogenesis and 
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Figure 4.2. Roles for Pex and Fox proteins in peroxisome biogenesis and function. 
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function, they have turned out to be also required for a distinct set of cellular processes 

that do not directly relate to peroxisome biogenesis and function, including certain 

developmental, differentiation and morphogenetic programs [38]. Recent studies have 

provided strong evidence that the developmental role of these bifunctional peroxisomal 

proteins with dual subcellular localization is independent of metabolic pathways 

operating in peroxisomes. In particular, while the peroxisome-associated pools of these 

proteins operate in peroxisome biogenesis and function, their pools in other subcellular 

organelles promote certain developmental decisions regardless of the metabolic state of 

peroxisomes [38]. For example, the human peroxin Pexl4p is an integral peroxisomal 

membrane protein that functions as the initial docking site for cargo-laden cytosolic 
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shuttling receptors of peroxisomal matrix proteins [7]. Human Pexl4p is also a nuclear 

protein [33]. Targeted to the nucleus by its nuclear localization signal, human Pexl4p 

interacts specifically with the p45 subunit of a DNA binding transcription factor, NF-E2. 

NF-E2 is a transcriptional regulator of erythroid and megakaryotic genes in pluripotential 

hematopoietic stem cells of the blood and lymphoid systems [33]. In the nucleus, a 

complex formed between Pexl4p and a histone deacetylase is proposed to act as a 

corepressor of the NF-E2-mediated transcription of these genes [33]. Furthermore, the 

essential roles of three peroxisome-bound peroxins of the yeast Yarrowia lipolytica, 

Pex2p, Pex6p and Pexl6p, in peroxisome biogenesis are well established [38]. Y. 

lipolytica Pex2p and Pexl6p are initially sorted to the ER and are then delivered in a 

Pex6p-dependent manner from the ER to peroxisomes via ER-derived vesicles [23, 42]. 

Whereas the major portion of Pex2p, Pex6p and Pexl6p resides in peroxisomes, a minor 

fraction is ER-associated [42]. While the peroxisome-bound pools of Pex2p, Pex6p and 

Pex 16p operate in peroxisome assembly and division, their ER-bound pools orchestrate a 

specific cell polarization and differentiation program, the dimorphic transition from a 

round yeast form to a filamentous (mycelial) form, by promoting the delivery of 

mycelium-specific proteins from the ER to the cell envelope 23, 42]. The role for at least 

one peroxisome- and ER-localized bifunctional protein, Pexl6p, in development and 

differentiation is evolutionarily conserved among yeasts and plants. The Arabidopsis 

ortholog of Y. lipolytica Pexl6p, the SSE1 protein, is required not only for peroxisome 

assembly but also for the biogenesis of protein and lipid bodies, a cellular differentiation 

program for energy storage in maturing seeds [24]. The biogenesis of protein and lipid 
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bodies depends on the ER and involves the sorting of oleosins, the most abundant protein 

components of oil bodies, via the ER [225]. Importantly, Pexl6p complements 

developmental defects in a cross-species fashion, as the Arabidopsis SSE1 protein 

re-establishes the dimorphic transition in the Y. lipolytica pexl6 mutant deficient in the 

delivery of mycelium-specific proteins from the ER to the tip of the growing filament 

[24]. Moreover, another bifunctional peroxisomal membrane protein of plants, CTS, is 

not only involved in the transport of acyl-CoA esters of fatty acids (FA-CoAs) into the 

peroxisome but is also essential for the transition from dormancy to germination, an 

important step in the embryonic development of Arabidopsis [32]. Seeds carrying cts 

mutations do not germinate and exhibit a "forever dormant" phenotype. Importantly, the 

inability of cts mutants to metabolize lipid body-derived FA-CoAs cannot account for the 

"forever dormant" phenotype, suggesting that the functions of CTS in the peroxisomal 

transport of FA-CoAs and in embryo development are different [32]. CTS is an ortholog 

of the human peroxisomal protein ALDP, a member of the ABC transporter family. 

Because the binding of other known ABC transporters to certain passive ion channels 

modulates their development-related activities [226], it has been proposed that the 

activity of CTS in embryo dormancy may involve its interaction with such channels [32]. 

It remains to be established what subcellular compartment serves as an organizing 

platform for the involvement of CTS in development. It is noteworthy that a human 

peroxisomal ABC transporter is present in a specialized subdomain of the ER from which 

peroxisomes form [227]. It has been therefore proposed that the ER-associated form of 

CTS promotes embryo development, while its peroxisomal form functions in the 
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transport of FA-CoAs into this organelle [38]. Finally, the peroxin Pex6p in the yeast S. 

cerevisiae functions not only in peroxisome biogenesis (Figure 4.2) but also in the import 

of the Atp2p, a |3-subunit of FjFo-ATPase, into mitochondria [228]. 

Altogether, the aforementioned findings greatly stimulated my interest in defining 

a role (if any) for peroxisome-associated enzymes (including Aox) and peroxins in the 

anti-aging effect of LA. The objective of studies described in this chapter was therefore 

to investigate if the ability of the peroxisome to oxidize fatty acids {i.e., a Fox-dependent 

function) or assemble properly {i.e., a Pex-dependent function) is essential for the ability 

of LA to increase the chronological lifespan of CR yeast. I was also intrigued by a 

possibility that some of the peroxins could mediate the anti-aging effect of LA by being 

involved in the cellular processes that do not directly relate to peroxisome biogenesis and 

function. 

4.3 Materials and Methods 

Strains and media 

The wild-type strain Saccharomyces cerevisiae BY4742 {MATa his3Al leu2A0 

lys2A0 ura3A0) and mutant strains pexlA {MATa his3Al leulAO lys2A0 ura3A0 

pexlA::kanMX4),pex5A {MATa his3Al leu2A0 lys2A0 ura3A0pex5A::kanMX4), pex6A 

{MATa his3Al leu2A0 lys2A0 ura3A0 pex6A::kanMX4), pex7A {MATa his3Al leu2A0 

lys2A0 ura3A0 pex7A::kanMX4), foxJA {MATa his3Al leu2A0 lys2A0 ura3A0 

foxlA::kanMX4), ctalA {MATa his3Al leu2A0 lys2A0 ura3A0 ctalA::kanMX4), fox2A 

{MATa his3Al leu2A0 lys2A0 ura3A0fox2A::kanMX4),mdh3A{MATahis3Alleu2A0 
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lys2A0 ura3A0 mdh3A::kanMX4), and fox3A (MATa his3Al leu2A0 lys2A0 ura3A0 

fox3A::kanMX4) were used in this study. Media components were as follows: 1) YEPD 

(0.2% Glucose), 1% yeast extract, 2% peptone, 0.2% glucose; and 2) YEPD (2% 

Glucose), 1% yeast extract, 2% peptone, 2% glucose. 

A plating assay for the analysis of chronological life span 

Cells were grown in YEPD (0.2% Glucose) medium at 30°C with rotational 

shaking at 200 rpm in Erlenmeyer flasks at a flask volume/medium volume ratio of 5:1. 

A sample of cells was removed from each culture at various time points. A fraction of the 

cell sample was diluted in order to determine the total number of cells per ml of culture 

using a hemacytometer. 10 JJ.1 of serial dilutions (1:10 to 1:103) of cells were applied to 

the hemacytometer, where each large square is calibrated to hold 0.1 ui. The number of 

cells in 4 large squares was then counted and an average was taken in order to ensure 

greater accuracy. The concentration of cells was calculated as follows: number of cells 

per large square x dilution factor x 10 x 1,000 = total number of cells per ml of culture. A 

second fraction of the cell sample was diluted and serial dilutions (1:102 to 1:105) of cells 

were plated onto YEPD (2% Glucose) plates in triplicate in order to count the number of 

viable cells per ml of each culture. 100 ul of diluted culture was plated onto each plate. 

After a 48-h incubation at 30°C, the number of colonies per plate was counted. The 

number of colony forming units (CFU) equals to the number of viable cells in a sample. 

Therefore, the number of viable cells was calculated as follows: number of colonies x 

dilution factor x 10 = number of viable cells per ml. For each culture assayed, % viability 
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of the cells was calculated as follows: number of viable cells per ml / total number of 

cells per ml x 100%. The % viability of cells in mid-logarithmic phase was set at 100% 

viability for that particular culture. 

Plating assays for the analysis of resistance to various stresses 

For the analysis of hydrogen peroxide resistance, serial dilutions (1:10 to 1:10 ) 

of wild-type and mutant cells removed from mid-logarithmic phase (day 1) and from 

diauxic phase (days 2 and 3) in YEPD (0.2% Glucose) were spotted onto two sets of 

plates. One set of plates contained YEPD (2% Glucose) medium alone, whereas the other 

set contained YEPD (2% Glucose) medium supplemented with 5 mM hydrogen peroxide. 

Pictures were taken after a 3-day incubation at 30°C. 

For the analysis of oxidative stress resistance, serial dilutions (1:10 to 1:10 ) of 

wild-type and mutant cells removed from mid-logarithmic phase (day 1) and from 

diauxic phase (days 2 and 3) in YEPD (0.2% Glucose) were spotted onto two sets of 

plates. One set of plates contained YEPD (2% Glucose) medium alone, whereas the other 

set contained YEPD (2% Glucose) medium supplemented with 2.5 mM of the 

superoxide/hydrogen peroxide-generating agent paraquat. Pictures were taken after a 3-

day incubation at 30°C. 

For the analysis of heat-shock resistance, serial dilutions (1:10 to 1:10 ) of wild-

type and mutant cells removed from mid-logarithmic phase (day 1) and from diauxic 

phase (days 2 and 3) in YEPD (0.2% Glucose) were spotted onto two sets of YEPD (2% 

Glucose) plates. One set of plates was incubated at 30°C. The other set of plates was 
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initially incubated at 55°C for 30 min, and was then transferred to 30°C. Pictures were 

taken after a 3-day incubation at 30°C. 

For the analysis of salt stress resistance, serial dilutions (1:10 to 1:10 ) of wild-

type and mutant cells removed from mid-logarithmic phase (day 1) and from diauxic 

phase (days 2 and 3) in YEPD (0.2% Glucose) were spotted onto two sets of plates. One 

set of plates contained YEPD (2% Glucose) medium alone, whereas the other set 

contained YEPD (2% Glucose) medium supplemented with 0.5 M NaCl. Pictures were 

taken after a 3-day incubation at 30°C. For the analysis of osmotic stress resistance, serial 

dilutions (1:10 to 1:10 ) of wild-type and mutant cells removed from mid-logarithmic 

phase (day 1) and from diauxic phase (days 2 and 3) in YEPD (0.2% Glucose) were 

spotted onto two sets of plates. One set of plates contained YEPD (2% Glucose) medium 

alone, whereas the other set contained YEPD (2% Glucose) medium supplemented with 1 

M sorbitol. Pictures were taken after a 3-day incubation at 30°C. 

Monitoring the formation of ROS 

Wild-type and mutant cells grown in YEPD (0.2% Glucose) were tested 

microscopically for the production of ROS by incubation with dihydrorhodamine 123 

(DHR). In the cell, this nonfluorescent compound can be oxidized to the fluorescent 

chromophore rhodamine 123 by ROS. Cells were also probed with a fluorescent 

counterstain Calcofluor White M2R (CW), which stains the yeast cell walls fluorescent 

blue. CW was added to each sample in order to label all cells for their proper 
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visualization. DHR was stored in the dark at -20°C as 50 ul aliquots of a 1 mg/ml 

solution in ethanol. CW was stored in the dark at -20°C as the 5 mM stock solution in 

anhydrous DMSO (dimethylsulfoxide). 

The concurrent staining of cells with DHR and CW was carried out as follows. 

The required amounts of the 50 ul DHR aliquots (1 mg/ml) and of the 5 mM stock 

solution of CW were taken out of the freezer and warmed to room temperature. The 

solutions of DHR and CW were then centrifuged at 21,000 x g for 5 min in order to clear 

them of any aggregates of fluorophores. For cell cultures with a titre of ~ 107 cells/ml, 

100 ul was taken out of the culture to be treated. If the cell titre was lower, proportionally 

larger volumes were used. 6 ul of the 1 mg/ml DHR and 1 JLII of the 5 mM CW solutions 

were added to each 100 ul aliquot of culture. After a 2-h incubation in the dark at room 

temperature, the samples were centrifuged at 21,000 x g for 5 min. Pellets were 

resuspended in 10 ul of PBS buffer (20 mM KH2P04/KOH, pH 7.5, and 150 mM NaCl). 

Each sample was then supplemented with 5 ul of mounting medium, added to a 

microscope slide, covered with a coverslip, and sealed using nail polish. Once the slides 

were prepared, they were visualized under the Zeiss Axioplan fluorescence microscope 

mounted with a SPOT Insight 2 megapixel color mosaic digital camera. Several pictures 

of the cells on each slide were taken, with two pictures taken of each frame. One of the 

two pictures was of the cells seen through a rhodamine filter in order to detect cells dyed 

with DHR. The second picture was of the cells seen through a DAPI filter in order to 

visualize CW, and therefore all the cells present in the frame. 

For evaluating the percentage of DHR-positive cells, the UTHSCSA Image Tool 
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(Version 3.0) software was used to calculate both the total number of cells and the 

number of stained cells. Fluorescence of individual DHR-positive cells in arbitrary units 

was determined by using the UTHSCSA Image Tool software (Version 3.0). In each of 3-

5 independent experiments, the value of median fluorescence was calculated by analyzing 

at least 800-1000 cells that were collected at each time point. The median fluorescence 

values were plotted as a function of the number of days cells were cultured. 

Visualization of intracellular lipid bodies 

Wild-type and mutant cells grown in YEPD (0.2% Glucose) were tested 

microscopically for the presence of intracellular lipid bodies (LB) by incubation with 

BODIPY 493/503. Cells were also probed with a fluorescent counterstain CW in order to 

visualize all cells in the population. BODIPY 493/503 was stored in the dark at -20°C as 

100 ul aliquots of a 1 mM solution in ethanol. CW was stored in the dark at -20°C as the 

5 mM stock solution in anhydrous DM SO. 

The concurrent staining of cells with BODIPY 493/503 and CW was carried out 

as follows. The required amounts of the 100 ul BODIPY 493/503 aliquots (1 mM) and of 

the 5 mM stock solution of CW were taken out of the freezer and warmed to room 

temperature. The solutions of DHR and CW were then centrifuged at 21,000 x g for 5 

min in order to clear them of any aggregates of fluorophores. For cell cultures with a titre 

of - 107 cells/ml, 100 ul was taken out of the culture to be treated. If the cell titre was 

lower, proportionally larger volumes were used. The samples were then centrifuged at 

21,000 x g for 1 min, and pelleted cells were resuspended in 100 ul of TNT buffer (25 
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mM Tris/HCl (pH 7.5), 150 mM NaCl and 0.2 % Triton X-100). After a 10-min 

incubation at room temperature, the samples were centrifuged at 21,000 x g for 1 min. 

Pellets were then resuspended in 100 ul of TN buffer (25 mM Tris/HCl (pH 7.5), 150 

mM NaCl), and the samples were subjected to centrifugation at 21,000 x g for 1 min. 

Pelleted cells were finally resuspended in 100 ul of TN buffer. Each 100 ul aliquot of 

cells was then supplemented with 1 ul of the 1 mM BODIPY 493/503 and 1 ul of the 5 

mM CW solutions. After a 15-min incubation in the dark at room temperature, the 

samples were centrifuged at 21,000 x g for 5 min. Pellets were resuspended in 100 ul of 

TN buffer. The samples were centrifuged again at 21,000 x g for 5 min, and pellets were 

resuspended in 100 ul of TN buffer. 10 ul of the BODIPY 493/503- and CW-treated cell 

suspension was then added to a microscope slide and covered with a coverslip. The slides 

were then sealed using nail polish. Once the slides were prepared, they were visualized 

under the Zeiss Axioplan fluorescence microscope mounted with a SPOT Insight 2 

megapixel color mosaic digital camera. Several pictures of the cells on each slide were 

taken, with two pictures taken of each frame. One of the two pictures was of the cells 

seen through a fluorescein filter in order to detect cells dyed with BODIPY 493/503. The 

second picture was of the cells seen through a DAPI filter in order to visualize CW, and 

therefore all the cells present in the frame. For evaluating the percentage of BODIPY 

493/503-positive cells, the UTHSCSA Image Tool (Version 3.0) software was used to 

calculate both the total number of cells and the number of stained cells. 
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Immunofluorescence microscopy 

Cell cultures were fixed in 3.7% formaldehyde for 45 min at room temperature. 

The cells were washed in solution B (100 mM KH2POVKOH pH 7.5, 1.2 M sorbitol), 

treated with Zymolyase 100T (MP Biomedicals, 1 ng Zymolyase 100T/1 mg cells) for 30 

min at 30°C and then processed as previously described [47]. Monoclonal antibody raised 

against porin (Invitrogen, 0.25 ug/ul in TBSB buffer [20 mM Tris/HCl pH 7.5, 150 mM 

NaCl, lmg/ml BSA]) was used as a primary antibody. Alexa Fluor 568 goat anti-mouse 

IgG (Invitrogen, 2 jig/ul in TBSB buffer) was used as a secondary antibody. The 

labeled samples were mounted in mounting solution (16.7 mM Tris/HCl pH 9.0, 1.7 

mg/ml /7-phenylenediamine, 83% glycerol). Images were collected with a Zeiss Axioplan 

fluorescence microscope (Zeiss) mounted with a SPOT Insight 2 megapixel color mosaic 

digital camera (Spot Diagnostic Instruments). 

Oxygen consumption assay 

The rate of oxygen consumption by yeast cells recovered at various time points 

was measured continuously in a 2-ml stirred chamber using a custom-designed biological 

oxygen monitor (Science Technical Center of Concordia University) equipped with a 

Clark-type oxygen electrode. 1 ml of YEPD medium supplemented with 0.2% glucose 

was added to the electrode for approximately 5 minutes to obtain a baseline. Cultured 

cells of a known titre were spun down at 3,000 x g for 5 minutes. The resulting pellet was 

resuspended in YEPD medium supplemented with 0.2% glucose and then added to the 

electrode with the medium that was used to obtain a baseline. The resulting slope was 
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used to calculate the rate of oxygen consumption in 02% x min"1 x 109 cells. 

Electron microscopy and morphometric analysis 

Cells were fixed in 1.5% KMn04 for 20 min at room temperature, dehydrated by 

successive incubations in increasing concentrations of ethanol, and embedded in 

Poly/Bed 812 epoxy resin (Polysciences). Ultrathin sections were cut using an Ultra-Cut 

E Microtome (Reichert-Jung). Silver/gold thin sections from the embedded blocks were 

examined in a JEOL JEM-2000FX transmission electron microscope. For morphometric 

analysis of random electron microscopic sections of cells, digitized images were analyzed 

using the UTHSCSA Image Tool (Version 3.0) software. In each of 2 independent 

experiments, the percentage of cells that contain pexopodia and/or accumulate gnarled 

LB was calculated by analyzing at least 300 cells that were collected at each time point. 

The values of the percentage of cells containing pexopodia and/or accumulating gnarled 

LB were plotted as a function of the number of days cells were cultured. 

4.4 Results 

4.4.1 Fatty acid oxidation in peroxisomes is not essential for the ability of LA to 

increase the chronological lifespan of CR yeast 

To investigate if the ability of the peroxisome to oxidize fatty acids (i.e., a Fox-

dependent function) or assemble properly (i.e., a Pex-dependent function) is a 

requirement for the anti-aging action of LA in chronologically aging yeast under CR 

conditions, I developed a definition of a protein or process that is critical for such action 
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of LA (Figure 4.3). I assumed that if lack of a protein or a mutational impairment of a 

process does not cause a statistically significant reduction or rise of the fold increase of 

mean chronological lifespan by LA, such protein or process is not essential for the anti-

aging action of LA (Figure 4.3). Conversely, if lack of a protein or a mutational 

impairment of a process causes a statistically significant reduction of the fold increase of 

mean chronological lifespan by LA, such protein or process is essential for the ability of 

LA to extend longevity (Figure 4.3). Furthermore, if lack of a protein or a mutational 

impairment of a process causes a statistically significant rise of the fold increase of mean 
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Figure 4.3. A definition of a protein or process that is critical for the ability of LA to extend longevity of 

chronologically aging yeast under CR conditions. Process 1 is not essential for the anti-aging action of LA. 

Processes 2 and 4 are essential for the ability of LA to extend longevity. Process 3 weakens the anti-aging 

effect of LA. MLS, mean chronological life span. 
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chronological lifespan by LA, such protein or process weakens the ability of LA to 

extend longevity (Figure 4.3). It should be stressed that my definition of a protein or 

process that is critical for the anti-aging action of LA ignores an age-related or age-

unrelated role that this protein or process might play in the absence of LA. Such role 

could consist in the ability of a protein or process to delay or promote aging in the 

absence of exogenous LA or simply to maintain fitness of yeast that are not exposed to 

this anti-aging compound. 

According to the definition of a protein or process that is critical for the ability of 

LA to extend longevity of chronologically aging yeast under CR conditions, none of the 

120 | — — ^ . - — • » — ^ ^ ^ — — — » — — 

110 • 1 1 1—I 1 \-

Figure 4.4. Foxlp (Aox) is not essential for the ability of LA to extend yeast longevity under CR 

conditions. 
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three enzymes of peroxisomal fatty acid oxidation (i.e., Foxlp (Aox), Fox2p and Fox3p) 

is essential for the anti-aging action of LA. In fact, although the fox1A, fox2 A and fox3 A 

mutations decreased the chronological lifespan of CR yeast that have not been exposed to 

LA, none of these mutations caused a statistically significant reduction or rise of the fold 

increase of mean chronological lifespan by LA (Figures 4.4, 4.5 and 4.6). Therefore, I 

concluded that, although fatty acid oxidation in peroxisomes is essential for delaying 

aging or increasing fitness of yeast under CR conditions, it is not required for the ability 

of LA to extend their longevity. 
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Figure 4.5. Fox2p is not essential for the ability of LA to extend yeast longevity under CR conditions. 

160 



4.4.2 Import of soluble proteins into the peroxisomal matrix is not essential for the 

ability of LA to increase the chronological lifespan of CR yeast 

The peroxin Pex5p is a cytosolic shuttling receptor for peroxisomal import of 

numerous matrix proteins targeted to the peroxisome by their carboxyl-terminal PTS1, 

including Foxlp (Aox) and Fox2p (Figure 4.2) [2, 30]. 
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0 1 2 3 4 5 6 7 8 9 10 1112 1314151617 1819 2 2 1 2 2 2 2 2 2 2 2 3 
0 2 3 4 5 6 7 8 9 0 
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Fold increase of mean chronological life span by LA 

Figure 4.6. Fox3p is not essential for the ability of LA to extend yeast longevity under CR conditions. 

Furthermore, the peroxin Pex7p functions as a cytosolic shuttling receptor for 

peroxisomal import of Fox3p (thiolase), the third enzyme of peroxisomal P-oxidation of 

fatty acids that carries the PTS2 (Figure 4.2) [6, 8]. 
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According to the definition of a protein or process that is critical for the ability of 

LA to extend longevity of chronologically aging yeast under CR conditions, neither 

LD PD ST 

1 5 10 15 20 25 30 35 

Days in culture 
Figure 4.7. Pex5p is not essential for the ability of LA to extend longevity of CR yeast. 

Pex5p nor Pex7p is essential for such anti-aging ability of LA. Indeed, although the 

pex5A and pex7A mutations decreased the chronological lifespan of CR yeast that have 

not been exposed to LA, none of these mutations caused a statistically significant 

reduction or rise of the fold increase of mean chronological lifespan by LA (Figures 4.7 

and 4.8). I therefore concluded that, although both the Pex5p-dependent peroxisomal 

import of PTS1-containing proteins and Pex7p-dependent peroxisomal import of PTS2-

containing proteins are essential for delaying aging or increasing fitness of yeast under 

CR conditions, none of these processes is required for the ability of LA to extend their 
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longevity. 
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Figure 4.8. Pex7p is not essential for the ability of LA to extend longevity of CR yeast. 

4.4.3 Presence of peroxisomes in yeast cells is not a requirement for life-span 

extending ability of LA 

The peroxin Pex3p is required for the formation of peroxisomes from the ER 

template (Figure 4.2) [125, 224]. According to the definition of a protein or process that 

is critical for the ability of LA to extend longevity of chronologically aging yeast under 

CR conditions, Pex3p not is essential for such anti-aging ability of LA. Indeed, although 

the pex3A mutation decreased the chronological lifespan of CR yeast that have not been 
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r—IÎ  

U 

-

pex3A: Peroxisomes are 
NOT formed from the ER! 

FA—> FA-CoA > Ac-Co A 

Cytosol 

- W T - LA | 

- W T + 25 m i c r o M LA | 

- W T + 50 m i c r o M LA 

- P E X 3 - L A | 

- P E X 3 • 25 m i c r o M LA j 

- P E X 3 • 50 m i c r o M LA ! 

W T 

pex3A _ — _ ' 

1 1.5 2 2.5 3 

Fold increase of mean chronological life span by LA 

0 1 2 3 4 5 6 7 8 9 10 1112 1314151617 1819 2 2 1 2 2 2 2 2 2 2 2 3 

0 2 3 4 5 6 7 8 9 0 

D a y s in c u l t u r e 

Figure 4.9. Pex3p is not essential for the ability of LA to extend longevity of CR yeast. 

exposed to LA, it did not cause a statistically significant reduction or rise of the fold 

increase of mean chronological lifespan by LA (Figure 4.9). I therefore concluded that, 

although the ability to form peroxisomes from the ER template is essential for delaying 

aging or increasing fitness of yeast under CR conditions, it is not required for the ability 

of LA to extend yeast longevity. Thus, presence of peroxisomes in yeast cells is not a 

requirement for life-span extending ability of LA. 
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4.4.4 Pexlp weakens the ability of LA to extend the chronological lifespan of CR 

yeast 

Together with Pex5p and Pex6p, the peroxin Pexlp is required for peroxisomal 

import of numerous matrix proteins targeted to the peroxisome by their carboxyl-terminal 

peroxisomal targeting signal type 1 (PTS1), including Foxlp (Aox) and Fox2p (Figure 

4.2) in evolutionarily distant organisms [2, 30]. 
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Figure 4.10. Pexlp weakens the ability of LA to extend longevity of CR yeast. 

Additionally, in the yeast Yarrowia lipolytica and Pichiapastoris, Pexlp - in cooperation 
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with Pex6p - drives the fusion of immature peroxisomal vesicles during an early stage of 

the multistep peroxisome assembly pathway (see Chapter 2) [7, 30, 45, 46, 50, 125, 171]. 

According to the definition of a protein or process that is critical for the ability of LA to 

extend longevity of chronologically aging yeast under CR conditions, Pexlp weakens 

such anti-aging ability of LA. Indeed, although the pexlA mutation decreased the 

chronological lifespan of CR yeast that have not been exposed to LA, it caused a 

statistically significant rise of the fold increase of mean chronological lifespan by LA 

(Figure 4.10). Thus, lack (or low level) of Pexlp is a requirement for the ability of LA to 

extend yeast longevity. 

4.4.5 Pex6p is essential for the ability of LA to extend the chronological lifespan of 

CR yeast 

Jointly with Pexlp and Pex5p, the peroxin Pex6p is required for peroxisomal 

import of numerous matrix proteins targeted to the peroxisome by their carboxyl-terminal 

peroxisomal targeting signal type 1 (PTS1), including Foxlp (Aox) and Fox2p (Figure 

4.2) across phyla [2, 30]. Moreover, in the yeast Yarrowia lipolytica and Pichia pastoris, 

Pexlp - in concert with Pex6p - promotes the fusion of immature peroxisomal vesicles 

during an early stage of the multistep peroxisome assembly pathway (see Chapter 2) [7, 

30, 45, 46, 50, 125, 171]. Furthermore, in the yeast S. cerevisiae Pex6p functions not only 

in peroxisome biogenesis but also in the import of the Atp2p, a (3-subunit of F)Fo-

ATPase, into mitochondria [228]. According to the definition of a protein or process that 

is critical for the ability of LA to extend longevity of chronologically aging yeast under 
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CR conditions, Pex6p is essential for the ability of LA to extend the chronological 

lifespan of CR yeast. In fact, not only the pex6A mutation decreased the chronological 

lifespan of CR yeast that have not been exposed to LA, but it also almost completely 

abolished the anti-aging effect of LA under CR conditions (Figure 4.11). 

WT - LA 

WT • 25 m i c r o M LA 

WT * 50 m i c r o M LA 

P EX6 - LA 

PEX6 • 25 m i c r o M LA 

PEX6 + 50 m i c r o M LA 
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Fold increase of mean chronological life span by LA 

Figure 4.11. Pex6p is essential for the ability of LA to extend longevity of CR yeast. 
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4.4.6 LA alters the age-dependent dynamics of several mitochondrial activities in 

CR yeast: A hypothesis for a dual role of ROS in regulating longevity 

My aforementioned findings provided evidence that the presence of peroxisomes 

in yeast cells is not a requirement for life-span extending ability of LA. However, the 

peroxin Pexlp weakens the ability of LA to extend the chronological lifespan of CR yeast 

(Chapter 4.4.4), whereas Pex6p - another AAA ATPase - is indispensable for such 

ability, being essential for the anti-aging action of LA (Chapter 4.4.5). Taken together, 

these findings strongly suggest that the critical role of both Pexlp and Pex6p in mediating 

the anti-aging effect of LA on CR yeast does not relate to their involvement in 

peroxisome biogenesis. It should be stressed that at least one of these two AAA ATPases, 

namely Pex6p, functions not only in peroxisome biogenesis but also in the import of the 

Atp2p, a P-subunit of FiFo-ATPase, into mitochondria [228]. Thus, Pex6p not only 

controls the biogenesis of the peroxisome but also modulates the functional state of 

another cellular organelle, the mitochondrion. I therefore suggested that the functionality 

of mitochondria is a requirement for the anti-aging effect of LA on CR yeast. This 

suggestion is indirectly supported by my observation that LA alters the age-dependent 

dynamics of several mitochondrial activities in CR yeast, including oxygen consumption, 

mitochondrial membrane potential (AT) and ROS generation. In particular, in CR yeast 

entering D phase, LA decreases the amplitude of the spike in all these mitochondrial 

activities (Figures 4.12, 4.13 and 4.14). Furthermore, during PD and ST phases, LA 

prevents a sharp decline of all these activities, maintaining them at the levels they 

reached by the end of PD phase (Figures 4.12, 4.13 and 4.14). Based on these findings, I 

168 



hypothesized that one of the mechanisms by which mitochondria regulate yeast longevity 

is based on the LA-dependent ability of mitochondria in aging yeast to maintain ROS 

homeostasis. I proposed that ROS, which are mostly generated as by-products of 

mitochondrial respiration [229, 230], play a dual role in regulating longevity. First, if 
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Figure 4.12. LA alters the age-dependent dynamics of cellular respiration by modulating mitochondrial 

oxygen consumption. 

yeast mitochondria are unable - due to a dietary regimen (see Chapter 3) or unavailability 

of LA - to maintain ROS concentration below a critically high level, ROS promote aging 

by oxidatively damaging certain mitochondrial proteins (such as cytochrome c oxidase 

[CCO], succinate dehydrogenase [SDH] and aconitase [ACO]; see Chapter 3). Second, if 

yeast mitochondria can - due to a dietary regimen (see Chapter 3) or availability of LA -
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Figure 4.13. LA alters the age-dependent dynamics of mitochondrial membrane potential (TA). 

maintain ROS concentration at an "optimal" level, ROS delay aging. This "optimal" level 

of ROS is insufficient to damage cellular macromolecules but can activate certain 

signaling networks [101, 229, 231 - 235] that extend life span by increasing the 

abundance or activity of stress-protecting and other anti-aging proteins. The term 

"mitohormesis" has been coined for such anti-aging role of mitochondrially produced 

ROS [236]; the term "hormesis" refers to a beneficial defence response of an organism to 

a low-intensity biological stress [237, 238]. In my hypothesis for a dual role of ROS in 

regulating longevity, LA extends the chronological lifespan of CR yeast by: (1) reducing 

the damaging effect of ROS on cellular macromolecules during L, D and PD growth 

phases; and (2) amplifying the "hormetic" effect of ROS during ST growth phase (i.e., in 

senescent yeast cells) through the activation of stress-protecting and other anti-aging 
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Figure 4.14. LA alters the age-dependent dynamics of ROS generation in mitochondria. 

proteins (Figure 4.15). Recent data from Dr. Titorenko's laboratory provided a 

conformation for the ability of LA to amplify the "hormetic" effect of ROS in senescent 

yeast cells through the activation of stress-protecting and other anti-aging proteins by 

showing that: (1) LA greatly enhances the resistance of non-proliferating yeast cells that 

have reached ST phase to acute oxidative stress and heat shock; and (2) LA considerably 

increases the intracellular levels of molecular chaperones protecting yeast from oxidative 

stress-induced protein aggregation. 

4.4.7 The age-dependent dynamics of changes in the levels of ROS in cells of Afox 

and Apex mutants exposed to LA confirms the validity of the hypothesis for a 

dual role of ROS in regulating longevity 
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Figure 4.15. In my hypothesis for a dual role of ROS in regulating longevity, LA extends the chronological 

lifespan of CR yeast by: (1) reducing the damaging effect of ROS on cellular macromolecules during L, D 

and PD growth phases; and (2) amplifying the "hormetic" effect of ROS during ST growth phase (i.e., in 

senescent yeast cells) through the activation of stress-protecting and other anti-aging proteins. 

In my hypothesis for a dual role of ROS in regulating longevity, LA extends the 

chronological lifespan of CR yeast by: (1) reducing the damaging effect of ROS on 

cellular macromolecules during L, D and PD growth phases; and (2) amplifying the 

"hormetic" effect of ROS during ST growth phase (i.e., in senescent yeast cells) through 

the activation of stress-protecting and other anti-aging proteins. If my hypothesis is valid, 

then any Afox or Apex mutation that in the presence of LA significantly decreases (as 

compared to LA-untreated wild-type cells) the "early" spike in ROS during L and D 

phases and, simultaneously, significantly increases (as compared to LA-untreated wild-

type cells) the "late" spike in ROS during ST phase could enhance the anti-aging effect of 
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LA. In fact, such a mutation is expected - according to my hypothesis - to reduce the 

damaging effect of ROS on cellular macromolecules during L and D phases and, 

simultaneously, to enhance the "hormetic" effect of ROS during ST phase. The validity 

of my hypothesis is supported by the observation that the pexl A mutation - which in the 

presence of LA resulted in a considerable reduction of ROS level during L and D phases 

and, simultaneously, in a significant rise of ROS level during ST phase (Figure 4.16) -

caused a statistically significant rise of the fold increase of mean chronological lifespan 

by LA (Figure 4.10). Furthermore, if my hypothesis is valid, then any Afox or Apex 

mutation that in the presence of LA significantly increases (as compared to LA-untreated 

wild-type cells) the "early" spike in ROS during L and D phases and, simultaneously, 
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Figure 4.16. In the presence of LA, the pexl A mutation - which causes a statistically significant rise of the 

fold increase of mean chronological lifespan by LA (Figure 4.10) - results in a considerable reduction (as 

compared to LA-untreated wild-type cells) of ROS level during L and D phases and, simultaneously, in a 

significant rise (as compared to LA-untreated wild-type cells) of ROS level during ST phase. 
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significantly decreases (as compared to LA-untreated wild-type cells) the "late" spike in 

ROS during ST phase could eliminate the anti-aging effect of LA. Indeed, such a 

mutation is expected - according to my hypothesis - to enhance the damaging effect of 

ROS on cellular macromolecules during L and D phases and, simultaneously, to weaken 

the "hormetic" effect of ROS during ST phase. The validity of my hypothesis is 

supported by the observation that the pex6A mutation - which in the presence of LA 

resulted in a considerable rise of ROS level during L and D phases and, simultaneously, 

in a significant decrease of ROS level during ST phase (Figure 4.17) - caused a 

statistically significant reduction of the fold increase of mean chronological lifespan by 

LA (Figure 4.11). Finally, if my hypothesis is valid, then any Afox or Apex mutation that 
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Figure 4.17. In the presence of LA, the pex6A mutation - which causes a statistically significant reduction 

of the fold increase of mean chronological lifespan by LA (Figure 4.11) - results in a considerable rise (as 

compared to LA-untreated wild-type cells) of ROS level during L and D phases and, simultaneously, in a 

significant decrease (as compared to LA-untreated wild-type cells) of ROS level during ST phase. 

in the presence of LA significantly increases (as compared to LA-untreated wild-type 
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cells) the "early" spike in ROS during L and D phases and, simultaneously, significantly 

increases (as compared to LA-untreated wild-type cells) the "late" spike in ROS during 

ST phase could have no influence on the anti-aging effect of LA. Indeed, although such a 

mutation is expected - according to my hypothesis - to enhance the damaging effect of 

ROS on cellular macromolecules during L and D phases, it would at the same time 

enhance the "hormetic" effect of ROS during ST phase. The validity of my hypothesis is 

supported by the observation that none of the foxlA, fox2A, fox3A, pex3A and pex7A 

mutations - all of which in the presence of LA resulted in a considerable rise of ROS 

level during L and D phases and, simultaneously, in an increase of ROS level during ST 

phase (Figures 4.18, 4.19, 4.20, 4.21 and 4.22) - caused a statistically significant 

0 1 2 3 4 5 E 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Days in culture 

Figure 4.18. In the presence of LA, the foxl A mutation - which does not cause a statistically significant 

reduction or rise of the fold increase of mean chronological lifespan by LA (Figure 4.4) - results in an 

increase (as compared to LA-untreated wild-type cells) of ROS level during L and D phases and, 

simultaneously, in an increase (as compared to LA-untreated wild-type cells) of ROS level during ST 

phase. 
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Figure 4.20. In the presence of LA, the fox3A mutation - which does not cause a statistically significant 

reduction or rise of the fold increase of mean chronological lifespan by LA (Figure 4.6) - results in an 

increase (as compared to LA-untreated wild-type cells) of ROS level during L and D phases and, 

simultaneously, in an increase (as compared to LA-untreated wild-type cells) of ROS level during ST 

phase. 
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Figure 4.22. In the presence of LA, the pex7A mutation - which does not cause a statistically significant 

reduction or rise of the fold increase of mean chronological lifespan by LA (Figure 4.8) - results in an 

increase (as compared to LA-untreated wild-type cells) of ROS level during L and D phases and, 

simultaneously, in an increase (as compared to LA-untreated wild-type cells) of ROS level during ST 

phase. 
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reduction or rise of the fold increase of mean chronological lifespan by LA (Figures 4.4, 

4.5, 4.6, 4.7, 4.8 and 4.9). 

4.4.8 Chronology of aging biomarkers in the idhlA and idhlA mutants confirms 

the validity of the hypothesis for a dual role of ROS in regulating longevity 

In my hypothesis for a dual role of ROS in regulating longevity, if yeast 

mitochondria are unable - due to a dietary regimen (see Chapter 3) or unavailability of 

LA (see sections 4.4.6 and 4.4.7 of this chapter) - to maintain ROS concentration below a 

critically high level, ROS promote aging by oxidatively damaging certain mitochondrial 

proteins (such as CCO, SDH and ACO; see Chapter 3). Conversely, if yeast mitochondria 

can - due to a dietary regimen (see Chapter 3) or availability of LA (see sections 4.4.6 

and 4.4.7 of this chapter) - maintain ROS concentration at an "optimal" level, ROS delay 

aging. This "optimal" level of ROS is insufficient to damage cellular 

macromolecules but can activate certain signaling networks [101, 229, 231 - 235] that 

extend life span by increasing the abundance or activity of stress- protecting and other 

anti-aging proteins. My analysis of the age-dependent dynamics of changes in the levels 

of ROS in cells of Afox and Apex mutants exposed to LA validated this hypothesis (see 

section 4.4.7 of this chapter). To further evaluate the validity of my hypothesis, I 

developed and tested a complementary experimental approach that uses a different 

longevity-extending intervention. This approach is based on the fact that certain 

components of the mitochondrial tricarboxylic acid (TCA) cycle and electron transport 

chain (ETC) are redundant. The redundant components of the mitochondrial TCA cycle 
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include the Pdxlp and Lpdlp subunits of pyruvate dehydrogenase, the Citlp, Cit2p and 

Cit3p isoforms of citrate synthase, the Idhlp and Idh2p subunits of isocitrate 

dehydrogenase, the Lsclp and Lsc2p subunits of succinyl-CoA ligase, and the Sdhlp, 

Sdh2p, Sdh3p and Sdh4p subunits of SDH (Figure 4.23A). I reason that mitochondria 

lacking a single redundant component would still be able to produce NADH and FADH2, 

the two donors of electrons for the ETC, but in reduced amounts. This, in turn, would 

reduce mitochondrial ROS generated as by-products of electron flow through the ETC. 

The same logic applies to the NADHrubiquinone oxidoreductase Ndilp, the Cyclp and 

Cyc2p isoforms of cytochrome c, and the cytochrome c peroxidase Ccplp. While lack of 

any of these redundant ETC components does not affect growth in glucose-containing 

medium [239], it would reduce mitochondrial ROS by weakening electron flow through 

the ETC. I expected therefore that, if my hypothesis that mitochondrial ROS play a dual 

role in regulating longevity is accurate, lack of a single redundant component of the ETC 

or TCA cycle would extend the life span of CR yeast grown on 0.2% glucose. This 

glucose concentration provides a modest life-span extension, as compared to that for 

0.5% glucose (see Chapter 3). I reason that, by decreasing the level of mitochondrial 

ROS, a mutation that eliminates only one of these redundant components would enable 

mitochondria of yeast grown on 0.2% glucose to maintain ROS at a level that is 

insufficient to damage cellular macromolecules but can increase the abundance and/or 

activity of stress-protecting proteins that delay aging. Remarkably, my analysis of yeast 

strains carrying mutations that eliminate either the Idhlp or the Idh2p subunit of 

isocitrate dehydrogenase revealed that both mutations extend the chronological lifespan 
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Figure 4.23. The idhlA and idhlA mutations extend the chronological life span of CR yeast. (A) Outline of 

metabolic flux through the mitochondrial TCA cycle. (B) Survival of chronologically aging WT, idhlA and 

idh2A. (C) The mean life spans of WT, idhlA and idhlA. Data are presented as ± SEM (n = 3-5). Cells 

were cultured in YEP medium containing 0.2% glucose. 

of CR yeast grown on 0.2% glucose (Figure 4.23B), making it very similar to that of CR 

yeast grown on 0.5% glucose (Figure 4.23C). Furthermore, as my hypothesis for a dual 

role of ROS in regulating longevity predicts, the idhlA and idh2A mutations altered the 

age-dependent dynamics of mitochondrial oxygen consumption, ROS production, A*F 

maintenance, and activities of CCO, SDH and ACO. Specifically, in CR yeast entering 

the D phase of growth on 0.2% glucose, both mutations decreased the amplitude of the 

spike in all of these mitochondrial activities (Figure 4.24). Moreover, during PD and ST 

phases, both mutations prevented a sharp decline of all of these activities, maintaining 

them at the steady-state levels they reached by the end of PD phase (Figure 4.24). 
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Figure 4.24. The idhlA and idh2A mutations alter the age-dependent dynamics of essential mitochondrial 

processes. The age-dependent dynamics of oxygen consumption (A), mitochondrial membrane potential 

TA (B), intracellular levels of reactive oxygen species (ROS) (C), and enzymatic activities of cytochrome c 

oxidase (CCO) (D), succinate dehydrogenase (SDH) (E) and aconitase (ACO) (F) for WT, idhlA and 

idh2A. The ACO activity was measured with or without the reactivation agents Fe3+ and Na2S. Cells were 

cultured in YEP medium containing 0.2% glucose. 

Noteworthy, the idhlA and idh2A averted the loss of CCO and SDH activities, which 

represent the major mitochondrial targets of oxidative damage by ROS [101, 106] 

(Figures 4.24D and 4.24E). Moreover, both mutations protected mitochondrial ACO 

from inactivation (Figure 4.24F) caused by the oxidation-dependent loss of one iron from 

its Fe/S cluster [240]. It should be stressed that recent studies in Dr. Titorenko's 

laboratory revealed that both mutations increased the abundance of cytosolic and 
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mitochondrial anti-stress chaperones, ROS-decomposing proteins, and proteins that bind 

to mitochondrial DNA and protect it from oxidative damage. Consistent with the elevated 

levels of these proteins, I found that both mutations enhanced heat-shock and oxidative 

stress resistance of chronologically aging CR yeast (Figure 4.25). 

Dayl(L) Day 2(D) Day4(PD) Day 9 (ST) Day 12 (ST) 

Figure 4.25. The idhlA and idh2A mutations enhance stress resistance of CR yeast. Heat-shock and 

oxidative stress resistance of WT, idhlA and idh2A. Cells grown in YEP medium containing 0.2% glucose 

were taken for analyses at the indicated time-points. 

4.5 Discussion 

In a high-throughput screening of several combinatorial chemical libraries that 

Dr. Titorenko's laboratory used to identify novel anti-aging small molecules, the short­

lived pex5A mutant was used as a tester strain. This mutant strain lacks Pex5p, a cytosolic 

shuttling receptor for peroxisomal import of numerous matrix proteins targeted to the 

peroxisome by their carboxyl-terminal PTS1, including Foxlp (Aox) and Fox2p [2, 30]. 

My experiments with one of the novel anti-aging drugs identified by Dr. Titorenko's 

laboratory, a commercially available compound LA, revealed that it extends longevity 

not only of the pex5A mutant but also of wild-type strain cultured under CR conditions. 
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Based on these findings, it was conceivable that LA extends the lifespan of the pex5A 

mutant by somehow by-passing the function of Pex5p in peroxisome biogenesis. 

Furthermore, my findings described in Chapter 3 led to the conclusion that the rate of 

peroxisomal (3-oxidation of fatty acids that originate from stored neutral lipids controls 

the pace of chronological aging under CR conditions. Altogether, these data suggested 

that LA could extend yeast longevity in part by targeting certain processes related to the 

biogenesis and/or function of peroxisomes. To investigate if the ability of the peroxisome 

to oxidize fatty acids {i.e., a Fox-dependent function) or assemble properly (i.e., a Pex-

dependent function) is a requirement for the anti-aging action of LA in chronologically 

aging yeast under CR conditions, I developed a definition of a protein or process that is 

critical for such action of LA (see section 4.4.1 of this chapter). Using my approach for 

defining processes that are critical for the ability of LA to extend longevity of 

chronologically aging yeast, I found - somewhat unexpectedly - that, although fatty acid 

oxidation in peroxisomes is essential for delaying aging or increasing fitness of yeast 

under CR conditions, it is not required for the ability of LA to extend their longevity (see 

section 4.4.1 of this chapter). Furthermore, my analysis of the ability of LA to influence 

the chronological lifespans of the pex5A and pex7A mutant strains provided evidence 

that, although both the Pex5p-dependent peroxisomal import of PTS1-containing proteins 

and Pex7p-dependent peroxisomal import of PTS2-containing proteins are essential for 

delaying aging or increasing fitness of yeast under CR conditions, none of these 

processes is required for the ability of LA to extend their longevity (see section 4.4.2 of 

this chapter). Moreover, my finding that the pex3A mutation - which eliminates a peroxin 
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essential for the formation of peroxisomes from the ER template [125, 224] - does not 

cause a statistically significant reduction or rise of the fold increase of mean 

chronological lifespan by LA implies that the ability to form peroxisomes from the ER 

template is not required for the ability of LA to extend yeast longevity (see section 4.4.3 

of this chapter). Taken together, my findings provide conclusive evidence that the 

presence of peroxisomes in yeast cells is not a requirement for life-span extending ability 

of LA. However, it appeared that at least two peroxins that play an essential role in 

peroxisome biogenesis, namely the AAA ATPases Pexlp and Pex6p, are critical for the 

ability of LA to extend longevity of chronologically aging yeast under CR conditions. 

One of these peroxins, Pexlp, weakens the anti-aging ability of LA so that the absence of 

this protein causes a statistically significant rise of the fold increase of mean 

chronological lifespan by LA (see section 4.4.4 of this chapter). It remains to be 

established how exactly, in molecular terms, Pexlp modulates the ability of LA to extend 

yeast longevity. One could suggest that, in addition to its essential role in peroxisome 

biogenesis, this peroxin controls an age-related process that does not relate to its function 

in the assembly of the peroxisome and is one of the targets of LA. This suggestion seems 

reasonable considering my finding that another AAA ATPase, Pex6p, functions not only 

in peroxisome biogenesis but also in the import of the Atp2p, a P-subunit of FiF0-

ATPase, into mitochondria [228] and - as I revealed - is indispensable for the anti-aging 

ability of LA (see section 4.4.5 of this chapter). Thus, Pex6p not only controls the 

biogenesis of the peroxisome but also modulates - in an LA-dependent fashion - the 

functional state of another cellular organelle, the mitochondrion. It should be stressed that 
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my conclusion that the critical roles of the peroxins Pexlp and Pex6p in the anti-aging 

ability of LA do not relate to their function in peroxisome biogenesis further support a 

concept [38] that some peroxins are bifunctional proteins controlling not only 

peroxisomal functions but also vital cellular processes unrelated to peroxisome assembly 

and maintenance. 

Based on the essential role of Pexlp in modulating - in an LA-dependent fashion -

the aging-related functional state of the mitochondrion and taking into consideration my 

observation that LA alters the age-dependent dynamics of several mitochondrial activities 

in CR yeast, including oxygen consumption, mitochondrial membrane potential (A^F) and 

ROS generation (see section 4.4.6 of this chapter), I hypothesize that one of the 

mechanisms by which mitochondria regulate yeast longevity is based on the LA-

dependent ability of mitochondria in aging yeast to maintain ROS homeostasis. In 

particular, I propose that ROS, which are mostly generated as by-products of 

mitochondrial respiration [229, 230], play a dual role in regulating longevity. First, if 

yeast mitochondria are unable - due to a dietary regimen (see Chapter 3) or unavailability 

of LA - to maintain ROS concentration below a critically high level, ROS promote aging 

by oxidatively damaging certain mitochondrial proteins (such as CCO, SDH and ACO; 

see Chapter 3). Second, if yeast mitochondria can - due to a dietary regimen (see Chapter 

3) or availability of LA - maintain ROS concentration at an "optimal" level, ROS delay 

aging. While this "optimal" level of ROS is insufficient to damage cellular 

macromolecules, it can activate certain signaling networks [101, 229, 231 - 235] that 

extend life span by increasing the abundance or activity of stress-protecting and other 
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anti-aging proteins. Two lines of evidence described in this chapter support my 

hypothesis for a dual role of ROS in regulating longevity. First, my analysis of the age-

dependent dynamics of changes in the levels of ROS in cells of Afox and Apex mutants 

exposed to LA provides evidence that LA extends the chronological lifespan of CR yeast 

by: (1) reducing the damaging effect of ROS on cellular macromolecules during L, D and 

PD growth phases; and (2) amplifying the "hormetic" effect of ROS during ST growth 

phase (i.e., in senescent yeast cells) through the activation of stress-protecting and other 

anti-aging proteins (see section 4.4.7 of this chapter). Second, my analysis of yeast strains 

carrying mutations eliminating either the Idhlp or the Idh2p subunit of isocitrate 

dehydrogenase - the two redundant components of the mitochondrial TCA cycle -

revealed that, in agreement with hypothesis, both mutations: (1) extend the chronological 

lifespan of CR yeast; (2) alter the age-dependent dynamics of mitochondrial oxygen 

consumption, ROS production, A*F maintenance, and activities of CCO, SDH and ACO; 

(3) avert the loss of CCO and SDH activities, which represent the major mitochondrial 

targets of oxidative damage by ROS [101, 106]; (4) protect mitochondrial ACO from 

inactivation, which is known to be caused by the oxidation-dependent loss of one iron 

from its Fe/S cluster [240]; and (5) enhance heat-shock and oxidative stress resistance of 

chronologically aging CR yeast (see section 4.4.8 of this chapter). 

4.6 Conclusions 

Altogether, my findings described in this chapter led to the following conclusions. 

First, although the ability of the peroxisome to oxidize fatty acids (i.e., a Fox-dependent 
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function) or assemble properly (i.e., a Pex-dependent function) is essential for delaying 

aging or increasing fitness of yeast under CR conditions, it is not a requirement for the 

anti-aging action of LA. My data provide the comprehensive evidence that the presence 

of peroxisomes in yeast cells is not required for life-span extending ability of LA. 

Second, at least two peroxins that play an essential role in peroxisome biogenesis, namely 

the AAA ATPases Pexlp and Pex6p, are critical for the ability of LA to extend yeast 

longevity under CR conditions. The ability of one of these peroxins, the AAA ATPase 

Pexlp, to weaken the anti-aging effect of LA does not relate to its essential role in the 

assembly of a functional peroxisome. Another AAA ATPase, Pex6p, which functions not 

only in peroxisome biogenesis but also in mitochondrial import of the P-subunit of FiF0-

ATPase, is indispensable for the anti-aging ability of LA. It seems that the essential role 

of Pex6p in mediating the longevity-extending effect of LA relates to its involvement in 

the biogenesis of mitochondria, not peroxisomes. Thus, some peroxins are bifunctional 

proteins controlling not only peroxisomal functions but also vital cellular processes that 

do not relate to peroxisome assembly and maintenance and are targeted by the anti-aging 

drug LA. Third, mitochondrially produced ROS play a dual role in regulating longevity. 

If yeast mitochondria are unable - due to a dietary regimen, unavailability of LA or 

genotype - to maintain ROS concentration below a critically high level, ROS promote 

aging by oxidatively damaging its mitochondrial target proteins (such as CCO, SDH and 

ACO). Conversely, if yeast mitochondria can - due to a dietary regimen, availability of 

LA or genotype - maintain ROS concentration at an "optimal" level, ROS delay aging. 
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While this "optimal" level of ROS is insufficient to damage cellular macromolecules, it 

can activate certain signaling networks that extend lifespan by increasing the abundance 

or activity of stress-protecting and other anti-aging proteins. 
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5 Conclusions and suggestions for future work 

5.1 General conclusions 

5.1.1 Aox controls a multistep process of peroxisome division 

Altogether, my findings reported in Chapter 2 suggest the following model for 

peroxisome division in Y. lipolytica (Figure 5.1). In immature peroxisomal vesicles PI to 

P5, Pexl6p binds LPA in the lumenal leaflet of the peroxisomal membrane. The binding 

of Pexl6p to LPA prevents the biosynthesis of PA and DAG in a two-step pathway, 

which includes two consecutive enzymatic reactions catalyzed by Slclp (LP A AT) and 

Dpplp (PAP). The stepwise import of distinct subsets of matrix proteins into immature 

peroxisomal vesicles PI to P5 provides them with an increasing fraction of the matrix 

proteins present in mature peroxisomes. The increase in the total mass of matrix proteins 

above a critical level, which occurs only inside mature peroxisomes, causes the 

redistribution of Aox from the matrix to the membrane and its subsequent binding to 

Pexl6p. This, in turn, greatly decreases the affinity between Pexl6p and LPA, thereby 

allowing LPA to enter the two-step biosynthetic pathway leading to the formation of PA 

and DAG. The glycerophospholipid PC, which is transferred to the peroxisomal 

membrane from the P3- and P4-associated subcompartment of the ER, activates both 

LPAAT and PAP. The resulting accumulation of PA and DAG in the lumenal leaflet of 

the membrane of mature peroxisomes triggers a cascade of events ultimately leading to 

peroxisome division. This cascade of events is initiated by the spontaneous flipping of 

DAG, which is known for its very fast transbilayer translocation, between the two 
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Figure 5.1. The Pexl6p- and Aox-dependent intraperoxisomal signaling cascade drives the division of 

mature peroxisomes P6 by promoting the stepwise remodeling of lipid and protein composition of the 

peroxisomal membrane. See Discussion for details. 

membrane leaflets. The movement of DAG, a particularly potent cone-shaped inducer of 

membrane bending, from the lumenal to the cytosolic leaflet of the membrane bilayer 

coincides with the translocation of the glycerophospholipid PS in the opposite direction. 

This bi-directional movement of DAG and PS generates a lipid imbalance across the 
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bilayer, which may promote the destabilization and bending of the membrane. The 

biosynthesis of PA and DAG in the membrane of mature peroxisomes and, perhaps, the 

bending of the membrane due to the bi-directional transbilayer movement of DAG and 

PS promote the docking of the Vpslp-Slalp-Abplp complex to the surface of mature 

peroxisomes. This pre-assembled in the cytosol protein complex binds to mature 

peroxisomes by interacting with the peroxin Pexl9p. Pexl9p is a component of the 

Pexl0p-Pexl9p complex that is formed in the peroxisomal membrane during the earliest 

steps of peroxisome assembly. After its attachment to the peroxisomal membrane, the 

Vpslp-Slalp-Abplp complex interacts with Actlp, thereby recruiting this structural 

constituent of actin cytoskeleton to the surface of mature peroxisomes. The subsequent 

fission of the peroxisomal membrane leads to peroxisome division. 

5.1.2 CR extends yeast lifespan by modulating the Aox-dependent fatty acid 

oxidation in peroxisomes 

Taken together, my findings described in Chapter 3 led to the following 

conclusions. First, peroxisomes do not produce significant quantities of ROS in 

chronologically aging CR yeast. Second, ROS that are produced in peroxisomes during 

fatty acid oxidation are not essential for chronological aging of yeast placed on a CR diet. 

Third, both the formation of free fatty acids due to lipolysis of LB-deposited neutral 

lipids and their subsequent Foxlp (Aox)-, Fox2p- and Fox3p-dependent peroxisomal 

oxidation are mandatory for the observed extension of lifespan by CR. Fourth, by the 

beginning of PD phase, CR yeast synthesize the bulk of their ATP in mitochondria by 
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oxidizing the pool of acetyl-CoA that has been generated in peroxisomes via Foxlp 

(Aox)-, Fox2p- and Fox3p-dependent fatty acid oxidation. I therefore concluded that fatty 

acid oxidation in peroxisomes controls longevity by modulating the rate of ATP synthesis 

in mitochondria, but not by generating the ROS hydrogen peroxide. Finally, my findings 

led to the conclusion that the efficiency of acetyl-CoA formation via peroxisomal fatty 

acid oxidation modulates: (1) the efficiencies of electron flow through the mitochondrial 

electron transport chain; (2) activities of several well-known target enzymes for the 

oxidative damage by ROS (i.e., cytochrome c oxidase, succinate dehydrogenase and 

aconitase); (3) the mitochondrial membrane potential (AT); and (4) a balance between 

the processes of mitochondrial fission, fusion and tubulation, which plays a pivotal role 

in establishing and maintaining the morphological appearance of mitochondria. 

5.1.3 A novel anti-aging small molecule LA extends yeast longevity by modulating 

mitochondrial ROS production in a Pexlp- and Pex6p-dependent fashion 

Altogether, my findings reported in Chapter 4 led to the following conclusions. 

First, although the ability of the peroxisome to oxidize fatty acids (i.e., a Fox-dependent 

function) or assemble properly (i.e., a Pex-dependent function) is essential for delaying 

aging or increasing fitness of yeast under CR conditions, it is not a requirement for the 

anti-aging action of LA. My data provide the comprehensive evidence that the presence 

of peroxisomes in yeast cells is not required for life-span extending ability of LA. 

Second, at least two peroxins that play an essential role in peroxisome biogenesis, namely 

the AAA ATPases Pexlp and Pex6p, are critical for the ability of LA to extend yeast 
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longevity under CR conditions. The ability of one of these peroxins, the AAA ATPase 

Pexlp, to weaken the anti-aging effect of LA does not relate to its essential role in the 

assembly of a functional peroxisome. Another AAA ATPase, Pex6p, which functions not 

only in peroxisome biogenesis but also in mitochondrial import of the P-subunit of F1F0-

ATPase, is indispensable for the anti-aging ability of LA. It seems that the essential role 

of Pex6p in mediating the longevity-extending effect of LA relates to its involvement in 

the biogenesis of mitochondria, not peroxisomes. Thus, some peroxins are bifunctional 

proteins controlling not only peroxisomal functions but also vital cellular processes that 

do not relate to peroxisome assembly and maintenance and are targeted by the anti-aging 

drug LA. Third, mitochondrially produced ROS play a dual role in regulating longevity. 

If yeast mitochondria are unable - due to a dietary regimen, unavailability of LA or 

genotype - to maintain ROS concentration below a critically high level, ROS promote 

aging by oxidatively damaging its mitochondrial target proteins (such as CCO, SDH and 

ACO). Conversely, if yeast mitochondria can - due to a dietary regimen, availability of 

LA or genotype - maintain ROS concentration at an "optimal" level, ROS delay aging. 

While this "optimal" level of ROS is insufficient to damage cellular macromolecules, it 

can activate certain signaling networks that extend lifespan by increasing the abundance 

or activity of stress-protecting and other anti-aging proteins. 

5.2 Suggestions for future work 

In my model for peroxisome division (Figure 5.1), the movement of DAG, which 

is synthesized in the inner leaflet of the membrane, into the outer leaflet of the membrane 
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in mature peroxisomes promotes their division. It is tempting to speculate that, after its 

spontaneous flipping between the two membrane leaflets, DAG undergoes the selective 

enrichment in distinct lipid domains that facilitate membrane scission through 

coordinated changes in local membrane curvature. To test this hypothesis, one would use 

fluorescence microscopy (FM) and immunoelectron microscopy (IEM) to monitor DAG 

in the outer leaflet of the membranes of different peroxisomal forms. I have used the 

DAG-binding Clb domain of protein kinase C for monitoring the dynamics of changes in 

the transbilayer distribution of DAG in the peroxisomal membrane during peroxisome 

maturation [51]. Clb would be produced, purified and labeled with the fluorophore Alexa 

Fluor 488 as described in the "Materials and methods" chapter. In addition, one would 

raise antibodies specific for Clb and use them for monitoring DAG in the membrane by 

IEM. Furthermore, one would use FM and IEM to visualize membrane lipids other than 

DAG. The following lipid-specific probes would be used for microscopy: 1) a tandem 

FYVE domain that specifically binds PI(3)P [167, 241]; 2) MED [242] and ENTH [243] 

domains specific for PI(4,5)P2 [244]; 3) the intrinsically fluorescent ergosterol ligand 

filipin and a biotinylated derivative of the sterol-binding ligand perfringolysin O [245, 

246]; 4) the PS-specific antibodies [45] and fluorescent sensor PSS-380 [247]; and 5) 

antibodies to ceramide [45]. The presence and spatial distribution of DAG and other lipid 

species in the outer leaflet of the peroxisomal membrane would be microscopically 

monitored in intact immature peroxisomal vesicles and mature peroxisomes. These 

organelles would be purified from wild-type cells and from aoxlA to aoxSA and PEX16-

TH mutant cells. Furthermore, using lipid-specific fluorescent probes, one would use the 

194 



established procedure for evaluating the arrangement of DAG and other lipid species 

between the two leaflets of the membrane bilayers in different peroxisomal subforms of 

the mutant strains aox4A, aox5A, PEX16-TH, slclA, dpplA, vpslA, slalA and abplA, all 

of which are deficient in peroxisome division (please see a detailed description of the 

procedure in the "Materials and methods" chapter). 

My data imply that the Pex2p-dependent transfer of PC from the P3- and P4-

associated ER subcompartment to the acceptor membranes of P3 and P4 provides these 

peroxisomal membranes with the bulk quantities of PC and is essential for the conversion 

of P4 to P5 (see Chapter 2). A distinct set of proteins associated only with the P3- and 

P4-bound ER subcompartment but not with the free form of the ER (see Chapter 2) may 

operate in the transfer of PC from the ER subcompartment to the membranes of P3 and 

P4 peroxisomes via membrane contact sites. These proteins would be analyzed by mass 

spectrometry and identified by database searching as described in the "Materials and 

methods" chapter. My data on mass spectrometric identification of proteins associated 

only with the P3- and P4-bound ER subcompartment would be then used to disrupt the 

encoding genes. The effects of knocking out these genes on the efficiency of delivery of 

PC to the membranes of different peroxisomal subforms in vivo would be determined. 

My findings provided evidence that the targeting of the dynamin-like protein 

Vpslp, which is essential for peroxisome division in this yeast, to the cytosolic face of 

mature peroxisomes from Y. lipolytica relies on the Pexl6p/Aox-dependent biosynthesis 

of PA and/or DAG in their membranes (see Chapter 2). In order to elucidate the role of 

various species of membrane lipids in the recruitment of Vpslp to the cytosolic face of 
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mature peroxisomes, one would monitor the efficiency of the binding of Vpslp to the 

outer face of liposomes reconstituted (as described in the "Materials and methods" 

chapter) with different quantities of DAG and other lipid species, including PA and PC, 

that, similar to DAG, regulate peroxisome division. To test whether Vpslp co-localizes 

with DAG and/or any other "regulatory lipid" in the outer leaflet of the membrane of 

mature peroxisomes, the wild-type strain and mutant strains deficient in peroxisome 

division, as well as P6 peroxisomes purified from these strains, would be analyzed by 

FM, IFM and IEM. Samples will be processed for double labelling with anti-Vpslp 

antibodies and with lipid-specific probes for monitoring the distribution of DAG, PI(3)P, 

PI(4,5)P2, ergosterol, PS and ceramide as described above. 

My findings provided evidence that ROS, which are mostly generated as by­

products of mitochondrial respiration, play a dual role in regulating longevity (see 

Chapters 3 and 4). First, if yeast mitochondria are unable - due to a dietary regimen, 

unavailability of LA or genotype - to maintain ROS concentration below a critically high 

level, ROS promote aging by oxidatively damaging certain mitochondrial proteins (such 

as CCO, SDH and ACO). Second, if yeast mitochondria can - due to a dietary regimen, 

availability of LA or genotype - maintain ROS concentration at an "optimal" level, ROS 

delay aging. This "optimal" level of ROS is insufficient to damage cellular 

macromolecules but can activate certain signaling networks that extend life span by 

increasing the abundance or activity of stress-protecting and other anti-aging proteins 

(see Chapters 3 and 4). To further evaluate the validity of my hypothesis for a dual role of 

ROS in regulating longevity, one would first change the levels of ROS accumulated in 
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CR yeast at different stages of the aging process by using genetic manipulations that alter 

the abundance of various antioxidant enzymes involved in the major ROS scavenging 

pathways. The abundance of the following ROS scavenging enzymes would be altered 

(Figure 5.2): 1) cytosolic (Sodlp) and mitochondrial (Sod2p) superoxide dismutases; 2) 

cytosolic (Cttlp) and peroxisomal (Ctalp) catalases; 3) mitochondrial cytochrome-c 

peroxidase (Ccplp); 4) mitochondrial thioredoxin (Trx3p) and thioredoxin reductase 

(Trr2p); 5) cytosolic thioredoxins 1 (Trxlp) and 2 (Trx2p), thioredoxin peroxidases 1 

(Tsalp) and 2 (Tsa2p), and thioredoxin reductase (Trrlp); and 6) glutathione peroxidases 

1 (Gpxlp) and 2 (Gpx2p). Two sets of mutant strains would be used in these 

experiments. One set would include mutants that lack each of the aforementioned 

enzymes, whereas the other set would include mutants that overproduce each of them 

under the control of a strong promoter. Mutant strains would be grown in medium 

containing 0.2% glucose plus LA. Concurrently with the assessment of the effect of LA 

on the life span of each of these mutants, one would measure ROS (visualized by 

fluorescence microscopy as described in "Materials and methods") accumulated in their 

cells at different stages of the aging process. Will genetic manipulations that increase 

ROS concentration in late ST phase above a certain "optimal" level or decrease it below 

such level annul the anti-aging effect of LA? Will genetic manipulations that further 

decrease the amplitude of the spike in ROS concentration during D phase enhance the 

beneficial effect of LA on longevity? 

As a further test of the validity of my hypothesis, one would use mass 

spectrometry-based quantitative proteomics to examine the effect of LA on the age-
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Figure 5.2. ROS scavenging enzymes of the yeast S. cerevisiae. 

related dynamics of changes in cellular and mitochondrial proteomes taking place in 

aging CR yeast. Will LA - perhaps, due to its ability to modulate the level of 

mitochondrially produced ROS - increase the abundance of cytosolic and mitochondrial 

anti-stress chaperones, ROS-decomposing proteins, and proteins that protect mtDNA 

from oxidative damage? Will the observed effect of LA on cellular and mitochondrial 

proteomes be reminiscent of that seen in the long-lived idhlA and idh2A mutants 

(unpublished data from Dr. Titorenko's laboratory)? Of note, both these mutants exhibit 
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the age-dependent dynamics of ROS that is similar to that observed in WT cells 

chronically exposed to LA (see Chapter 4). It is conceivable that the altered abundance of 

many stress-protecting proteins seen in the long-lived idhlA and idhlA mutants (and, 

based on the protective effect of LA on CR yeast exposed to chronic oxidative stress, is 

likely to be also observed in LA-treated WT cells) could be due to the global change in 

transcription of genes encoding these proteins. Therefore, as a step towards defining 

signaling pathways and downstream transcriptional networks through which the LA-

dependent modulation of ROS levels could extend longevity, one would compare age-

related transcriptional profiles between LA-treated and untreated yeast. Using DNA 

microarrays, one would examine age-related changes in gene expression during aging of 

WT cells grown in medium containing 0.2% glucose alone or 0.2% glucose plus LA. 

Cells would be taken at different stages of the aging process. It should be stressed that the 

genome-wide transcriptional profiles of yeast mutants that lack transcription factors 

regulating gene expression in response to various stresses (including oxidative stress) 

have been established and annotated [248 - 250]. Thus, the global analysis of gene 

expression changes caused by LA could help to identify transcription factors that 

orchestrate a distinct genomic expression program in response to LA-dependent 

modulation of ROS levels. 
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